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Abstract

Background—Implications of different adiposity measures on cardiovascular disease aetiology 
remain unclear. In this paper we quantify and contrast causal associations of central adiposity 
(waist:hip ratio adjusted for BMI (WHRadjBMI)) and general adiposity (body mass index 
(BMI)) with cardiometabolic disease. 
Methods—97 independent single nucleotide polymorphisms (SNPs) for BMI and 49 SNPs for 
WHRadjBMI were used to conduct Mendelian randomization analyses in 14 prospective studies 
supplemented with CHD data from CARDIoGRAMplusC4D (combined total 66,842 cases),
stroke from METASTROKE (12,389 ischaemic stroke cases), type 2 diabetes (T2D) from 
DIAGRAM (34,840 cases), and lipids from GLGC (213,500 participants) consortia. Primary 
outcomes were CHD, T2D, and major stroke subtypes; secondary analyses included 18 
cardiometabolic traits. 
Results—Each one standard deviation (SD) higher WHRadjBMI (1SD~0.08 units) associated 
with a 48% excess risk of CHD (odds ratio [OR] for CHD: 1.48; 95%CI: 1.28-1.71), similar to 
findings for BMI (1SD~4.6kg/m2; OR for CHD: 1.36; 95%CI: 1.22-1.52). Only WHRadjBMI 
increased risk of ischaemic stroke (OR 1.32; 95%CI 1.03-1.70). For T2D, both measures had 
large effects: OR 1.82 (95%CI 1.38-2.42) and OR 1.98 (95%CI 1.41-2.78) per 1SD higher 
WHRadjBMI and BMI respectively. Both WHRadjBMI and BMI were associated with higher
left ventricular hypertrophy, glycaemic traits, interleukin-6, and circulating lipids. WHRadjBMI 
was also associated with higher carotid intima-media thickness (39%; 95%CI: 9%-77% per 
1SD).
Conclusions—Both general and central adiposity have causal effects on CHD and T2D. Central 
adiposity may have a stronger effect on stroke risk. Future estimates of the burden of adiposity 
on health should include measures of central and general adiposity.  

Key Words: body mass index; Mendelian randomization 
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Clinical Perspective

What is new? 

This large-scale genetic analysis presents the most comprehensive causal assessment of 

adiposity with cardiometabolic diseases to date, including new data for stroke subtypes 

from METASTROKE and novel cardiometabolic traits including ECG measures and 

CIMT.  

We find that waist:hip ratio adjusted for BMI, a measure of central body fat distribution 

that aims to be independent of general adiposity, is causally related to higher risks of 

coronary heart disease, ischaemic stroke and type 2 diabetes and a multitude of 

cardiometabolic traits. 

Our findings also reinforce existing evidence on the causal relevance of general adiposity 

(BMI) to these diseases and provide more precise estimates.

What are the clinical implications? 

Both the amount of adiposity and its distribution play important roles in influencing 

multiple cardiometabolic traits and the development of cardiometabolic diseases. 

Furthermore, our findings indicate that body fat distribution has multiple causal roles in 

disease that are independent of general adiposity.  

This suggests that physicians should pay attention to measures of adiposity beyond BMI 

as measurement of such traits may identify patients at risk of cardiometabolic disease and 

provides opportunities to the scientific community to identify novel approaches to disease 

prevention.  
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Observational studies have identified associations between adiposity and the risk of developing 

incident coronary heart disease (CHD), stroke and type 2 diabetes mellitus (T2D)1, 2. Many

observational studies report consistent results with different measures of adiposity; for example 

the Emerging Risk Factors Collaboration found similar associations with both general adiposity 

measured via body mass index (BMI) and central adiposity measured via waist to hip ratio 

(WHR) for CHD and ischaemic stroke1. The association of different adiposity measures with 

T2D has also been found to be similar2. 

 However, other studies have suggested that central adiposity, measured as either WHR or

waist circumference (WC), may have stronger associations with cardiovascular disease. For 

example, INTERHEART found a stronger association for WHR with myocardial infarction (MI) 

than BMI, and the association of WHR with MI persisted after adjustment for BMI3. The Million 

Women Study found that WC increased CHD risk within BMI categories (and vice versa) again

suggesting each is independently associated with CHD4.  Furthermore, INTERSTROKE found 

WHR to be more strongly associated with stroke risk than BMI5. While these studies have 

attempted to separate the independent effects of general and central adiposity, this remains 

challenging in observational studies due to the high degree of correlation between adiposity 

measures. Another problem is that adiposity measures may differ in their reproducibility; for 

example BMI is less affected by regression dilution bias – a bias to the null resulting from 

measurement error - than WHR 6. In addition, all measures of adiposity suffer from confounding 

due to underlying ill-health at low or sub-clinical levels, because many chronic conditions lead to 

weight loss7-9.  Consequently it is very difficult, if not impossible, to quantify the true 

independent effects of different measures of adiposity in observational studies alone. 

example, INTERHEART found a stronger association for WHR with myocardial iinfnfnfarararctctctioioion n (M(M(MI)

han BMI, and the association of WHR with MI persisted after adjustment for BMI3. The Million
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Whilst Mendelian randomization (MR) studies minimise bias from traditional sources 

such as confounding, regression dilution bias and reverse causation, they may be susceptible to 

bias from pleiotropy (association of genetic variants with more than one variable). Pleiotropy can 

be vertical due to multiple downstream effects that follow the SNP effect on the exposure of 

interest, but this does not compromise MR assumptions. Alternatively, pleiotropy can be 

horizontal, whereby the SNP or instrument affects pathways other than those of the exposure of 

interest and could therefore invalidate the MR assumption that the SNP only affects the outcome 

through the exposure of interest, potentially leading to biased causal estimates. With multi-SNP 

instruments, there is a chance that pleiotropic effects might become balanced such that causal 

inference regarding the exposure is possible. In this study we perform MR analyses of BMI and 

WHR together with recently developed methods that are robust to horizontal pleiotropy under 

additional assumptions (Supplemental Figure 1).  We therefore employ MR-Egger regression to 

provide a test for unbalanced pleiotropy and a causal estimate of exposure on outcome in its 

presence10, 11. In addition we use the weighted median estimator which can give valid estimates 

even in the presence of horizontal pleiotropy provided at least 50 per cent of the information in 

the analysis comes from variants that are valid instruments, and has the advantage of retaining 

greater precision in the estimates compared to MR-Egger12. 

 This manuscript represents the most comprehensive assessment of the causal role of 

adiposity on CHD, stroke and T2D to date. It contrasts the causal effects of central adiposity 

(waist:hip ratio adjusted for BMI (WHRadjBMI) from general adiposity (BMI) on multiple 

cardiovascular outcomes: new CHD events from 14 prospective studies/ RCTs in addition to data

publicly available from the CARDIOGRAMplusC4D13 increasing CHD cases to 66,842,

multiple stroke subtypes using data from METASTROKE14 and T2D from DIAGRAM15. We

nference regarding the exposure is possible. In this study we perform MR analysesesss ofofof BBBMIMIMI aaandnn  

WHR together with recently developed methods that are robust to horizontal pleiotropy under 

additional assumptions (Supplemental Figure 1).  We therefore employ MR-Egger regression tor
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present the largest number of cardiometabolic traits ever examined in a MR analysis of adiposity  

including lipids from the Global Lipids Genetic Consortium (GLGC; 213,500 participants)16 and 

many novel intermediate disease end points, including electrocardiogram (ECG) measures of left 

ventricular hypertrophy, carotid intima media thickness (CIMT) as a measure of sub-clinical 

atherosclerosis, as well as markers of renal and lung disease.  We build distinct multi-SNP 

genetic instruments for each adiposity measure using the most comprehensive repertoire 

available from recent genome-wide association (GWA) studies17, 18,  with 97 SNPs for BMI and 

49 SNPs for WHRadjBMI, thereby more than doubling the phenotypic variance explained in 

some earlier MR studies19-23. 

Methods

Study selection and inclusion of participants

We include individual participant data from 10 studies in the University College London – 

London School of Hygiene and Tropical Medicine – Edinburgh - Bristol (UCLEB) consortium 

(see Supplemental Table 1 for study details). We include summary data from a further four 

studies (Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), Health and Retirement Study 

(HRS), Netherlands Epidemiology of Obesity (NEO) and Prospective Study of Pravastatin in the 

Elderly at Risk (PROSPER)), and summary data from four consortia (CARDIoGRAMplusC4D, 

METASTROKE, DIAGRAM, Global Lipids Genetics Consortium (GLGC)) (see Appendix). All 

participating studies received approval from local institutional review boards or ethics 

committees. All participants gave informed consent. 

Methods

Study selection and inclusion of participants

Weee innnclude indididividududualll pppararartiticiipapapantntnt dddataa a frfrom 1000 stududiesss iiin n n thththee e UnUniviviverersis tyty Cololollelelegegege LLLondododon n n – 

Londndndon Schooooll l ofofo HHyggiiene aaand Tropipp call Mediiiccinee – EdEdEdinininbubburgrgh -- BBristotol (U(U(UCLEB))) coconnsortiumum 

see Supplemental Tabble 1 for study details). WeW iinclude summary data from a furtheh r four 
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Clinical Outcomes

Supplemental Table 2 provides details of CHD ascertainment and number of events by study. 

In UCLEB studies the primary outcome was combined prevalent or incident CHD defined as 

fatal or non-fatal myocardial infarction, or a coronary revascularisation procedure, but excluding 

angina. In the majority of studies events were validated (e.g. hospital episode statistics, 

clinical/laboratory measurements, review of primary care medical records). 

CARDIoGRAMplusC4D used standard criteria for defining cases of CAD and myocardial 

infarction with some studies including angiography-confirmed stenosis and stable or unstable 

angina13. METASTROKE define stroke as a typical clinical syndrome with radiological 

confirmation; subtyping was done with the Trial of Org 10172 in Acute Stroke Treatment 

(TOAST) classification system14. We include all ischaemic stroke, three sub-types of ischaemic 

stroke (large-vessel disease, small-vessel disease and cardioembolic stroke) and haemorrhagic 

stroke. T2D definitions follow DIAGRAM24.

Cardiometabolic traits

For analysis of individual participant data studies, data on sex, age, measured standing height, 

weight, waist circumference and hip circumference were used to derive BMI and WHRadjBMI 

traits. WHRadjBMI was calculated by generating the predicted residuals from the linear 

regression of WHR on BMI. Biomarkers included in analyses were grouped into the following 

categories; Lipids (triglycerides, HDL-C and LDL-C), inflammation (IL-6), lung function (ratio 

of FEV1 to FVC), metabolic (glucose, insulin and albumin), renal (creatinine, estimated 

glomerular filtration rate (EGFR), MDRD) and systolic blood pressure. The following 

electrocardiogram (ECG) measures of left ventricular hypertrophy were recorded:  QRS voltage 

sum, QRS voltage sum product, Cornell product and Sokolow-Lyon index as well as PR interval

confirmation; subtyping was done with the Trial of Org 10172 in Acute Stroke Trereatatatmemementntnt 

TOAST) classification system14. We include all ischaemic stroke, three sub-types of ischaemic 

troke (larggge-vessel disease, small-vessel disease and cardioembolic stroke) and haemorrhagic 

troookekeke. T2D defefefiini ititi ioii nsnsn  fofofollllowww DDDIAIAIAGRGRG AMA 24.

Cardrdrdiometabooolill c ttraiitts

For anallysis of indidividud al participant data studies, dad ta on sex, age, measuredd standing height, 
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(see Supplemental Method 1 for definitions). Cardiometabolic traits that were not normally 

distributed were transformed to the natural logarithmic scale. For comparability across 

biomarkers, measurements were z-score standardised. Self-reports of current smoking status 

(ever/ never) and alcohol consumption (drinker/ non-drinker) were considered to be potential 

confounders of adiposity-cardiovascular disease (CVD) associations.  

Genotyping

Supplemental Table 1 details genotyping by study. Genotyping in all UCLEB studies was 

conducted with the Metabochip array (except a subset of ELSA study that used a GWAS 

array)25. The remaining studies used GWAS arrays (HRS, PROSPER) or Exome Chip (NEO). 

Individuals were excluded from the analyses on the basis of gender mismatch, excessive or 

minimal heterozygosity, relatedness or individual missingness (>3%). Individuals of non-

European ancestry were removed to minimise confounding by population structure. SNPs with a 

low call rate or evidence of departure from Hardy–Weinberg equilibrium were excluded from 

analyses (see Supplemental Table 1 for thresholds employed in different studies).  

Statistical Analyses 

Observational Analyses 

In individual participant data studies adiposity (BMI or WHRadjBMI) was z-score standardised 

and linear or logistic regression models were fitted for each cardiometabolic trait or disease 

outcome.  Observational models were adjusted for age and sex. Fixed-effect meta-analyses were 

employed to derive combined observational estimates across studies. We calculated I2 statistics 

to quantify heterogeneity between studies and derived P-values from Cochran’s Q test26.  

ndividuals were excluded from the analyses on the basis of gender mismatch, exxceceessssssiviviveee ororor 

minimal heterozygosity, relatedness or individual missingness (>3%). Individuals of non-r

European ancestry were removed to minimise confounding by population structure. SNPs with a 

oww w cccall rate orrr evevevidididennncecee ooof f dedeepapapartrtrtururure ffrorom Haaardrdyyffff –yyyy WeWeinininbebebergrgrg eququuilllibibrir umum wewewererere eeexcxcxcludeded d d d frfrfromomom 

analalalyysy es (see SuSuSuppplemem ntaala Table 1 fforor thressshholddss emememplplplooyeded in ddifferreentt t ssts udies)).  

Statistical AnA alyses 
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Genetic Analyses

SNP selection and construction of the genetic instruments 

Selection of SNPs for the genetic instruments was based on analyses from the Genetic 

Investigation of ANthropometric Traits (GIANT) consortium, which included 339,224 

individuals from 125 separate studies for BMI17 and 224,459 individuals from 101 studies for 

WHRadjBMI18.  These studies identified 97 independent SNPs for BMI and 49 independent 

SNPs for WHRadjBMI at GWAS significance. We found no overlap between the BMI SNPs and 

WHRadjBMI SNPs. In studies where the SNP identified by GIANT was not available in the 

Metabochip array, we used proxy SNPs in linkage disequilibrium (R2>0.8) with the specified 

SNP. Details of proxy SNPs used by platform (Metabochip/ GWAS) are given in Supplemental

Tables 3 and 4. 

Genetic association analyses in individual participant data

We performed a within study genetic association analysis with adiposity (standardised BMI and

WHRadjBMI) as a continuous trait using an additive model. We used linear or logistic 

regression models to estimate the additive effect of each SNP on cardiometabolic traits and 

outcomes. We used logistic regression to test the association of each SNP with smoking and 

alcohol consumption as potential confounders of the adiposity-CVD association.  

Instrumental variable analyses in summary data 

We conducted three tests for the causal estimation of each adiposity measure on cardiometabolic 

outcomes: 1) Inverse-variance weighted method (IVW), 2) MR-Egger and 3) Weighted median. 

In the absence of horizontal pleiotropy, we would expect all three tests to give consistent results.

All IV estimates in summary data were calculated using the mrrobust package (available from 

https://github.com/remlapmot/mrrobust) in Stata version 1427, 28. The proportion of variance in 

SNP. Details of proxy SNPs used by platform (Metabochip/ GWAS) are given in n SuSuupppppplelelememementntntal

Tables 3 and 4.

Genetic association analyses in individual participant data

Weee ppperformeddd aaa wwwitii hiiin n stststududu y y y gegegenenenetititic aassssociatiiiono aannalyyysisisisss wiwiwitht aaddidipopop siityty (stttananandadadardrdrdiseddd BBBMIMIMI anana d

WHHHRRRadjBMI))) aaas aa contntinuooouusu  trait usiingn  an adaddddittivve mmmodododelel. WWe uused lineneeaara  or loggig sstic 

egressiion models to estimate the additive efff ect off each SNP on cardiometabob lic traits and 
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adiposity explained by the genetic instruments in summary data was calculated using the 

grs.summary function from the gtx package in R29, 30. A threshold of statistical significance of 

P<0.025 (0.05/2=0.025) was used to reflect testing for two different adiposity traits (BMI and 

WHRadjBMI).

1) IVW instrumental variable analyses

To combine data across studies with summary level data we pooled the association of each SNP 

on risk of each CVD outcome/ cardiometabolic trait using fixed effects meta-analysis. To 

provide external weights for the SNP-adiposity associations, the effect of each SNP on adiposity 

(BMI; WHRadjBMI) in GIANT was pooled with that in all other contributing studies, excluding 

studies that had already contributed to GIANT (1958BC, EAS, HRS, NSHD, PROSPER,

Whitehall II). To quantify heterogeneity in the SNP effects across studies we calculated I2 and 

derived P-values from Cochrane’s Q tests. All P-values were two-sided.  Inverse-variance 

weighted meta-analysis (IVW) was used to provide a combined estimate of the causal estimates

(SNP-outcome/ SNP-adiposity) from each SNP. IVW is equivalent to a two-stage least squares 

or allele score analysis using individual-level data, and is hence referred to here as “conventional 

MR”31. However, it can lead to over-rejection of the null, particularly when there is 

heterogeneity between the causal estimates from different genetic variants.

2) MR-Egger instrumental variable analyses 

To account for potential horizontal pleiotropy in the multi-SNP adiposity instruments, we re-

estimated the instrumental variable associations using MR-Egger regression10, 11. MR-Egger tests 

for presence of, and accounts for, unbalanced pleiotropy by introducing a parameter for this 

bias10. Specifically, linear regression of the instrument-outcome effects is performed on the 

instrument-exposure effects, with the slope representing the causal effect estimate and the 

tudies that had already contributed to GIANT (1958BC, y EAS, HRS, NSHD, PROSOSSPEPEPERRR,,,

Whitehall II). To quantify heterogeneity in the SNP effects across studies we calculated I2 and 

derived P-values from Cochrane’s Q tests. All P-values were two-sided.  Inverse-variance 

weigigighhth ed metaaa---aana alalalysisisi (((IVIVIVW)W)W) wawawass s useded to provovo idede a cccomomombibibinenn d d eesestitit mamatete of f f thththe e cacacausu alll eeestststimimimatatates

SNPNPNP-outcomeee// SNNP-adadiposssititi y) from eeach SNNNPP. IVVWWW isisis eeququivivi alenent to a twowowo-stage leel asstt squarres

or allele score analysis using individual-lel vel data, and is hence referredd to heh re as “conventional
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intercept the net bias due to horizontal pleiotropy. An additional assumption is required that the 

individual SNP effects on the exposure are independent of their pleiotropic effects on the 

outcome (termed the ‘InSIDE assumption’)12.  

3) Weighted median estimate instrumental variable analyses 

Finally, we applied a complementary approach termed the weighted median estimator which can 

give valid estimates even in the presence of horizontal pleiotropy provided at least half of the 

weighted variance is valid12.   

Power calculations

Power to detect causal estimates was calculated based on the proportion of variance of the 

exposure explained by the instruments (R2), the total number of individuals in the analysis, and 

the number of cases and controls using the online tool http://cnsgenomics.com/shiny/mRnd/32.

Power estimates are provided in (Supplemental Table 5). 

Results

Studies and participants

Full descriptive details of the included studies are given in Supplemental Table 1.  Data from

14 prospective studies and randomised trials and four consortia were included with 66,842 CHD 

cases (3,716 from UCLEB/ other non-consortia studies), 12,389 ischaemic stroke cases and 

34,840 T2D cases. The number of individuals included in the analyses of cardiometabolic traits 

ranged from 6,625 to 213,556. The mean age in individual participant data  studies was 63.5 

years, the mean BMI 27.4 kg/m2 (SD 4.6) and the mean WHR 0.89 (SD 0.13) (Supplemental

Tables 1 & 6). Distribution of binary traits by study are given in Supplemental Table 7.

exposure explained by the instruments (R2), the total number of individuals in the e anananalalalysysysisisis,, ananand dd

he number of cases and controls using the online tool http://cnsgenomics.com/shiny/mRnd/32.

Power estimates are provided in (Supplemental Table 5). 

Resususults

Studies and d partici ipants
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Instrument validation 

We identified Metabochip proxies for 13 BMI SNPs and 7 WHRadjBMI SNPs; the median R2

was 0.965 & 0.913 respectively (Supplemental Tables 3 and 4). The proportion of variance of 

BMI explained by the BMI genetic instrument was 1.7% while the WHRadjBMI instrument 

explained 0.7% WHRadjBMI variance. The associations of individual SNPs with adiposity are 

shown in Supplemental Tables 8 and 9.  

Mendelian randomization analysis of adiposity with cardiometabolic traits

Figure 1a/b presents estimates of associations between BMI and WHRadjBMI with 

cardiometabolic traits from IV analyses. Both genetically instrumented adiposity measures were

found to be causally associated with increased insulin and triglycerides. In addition, BMI was 

causally associated with higher IL-6, with a directionally consistent result identified for 

WHRadjBMI. Both adiposity measures were also causally associated with decreased levels of 

HDL-C. However, only WHRadjBMI was associated with increased LDL-C, and the association 

with SBP was also stronger. BMI was inversely associated with albumin, while WHRadjBMI

was not; but heterogeneity across studies was moderately high (I2=57%).  

 There was evidence for a causal association with some of the ECG measures that index 

left ventricular hypertrophy with both adiposity measures associated with higher log Cornell 

Product; in addition BMI, but not WHRadjBMI associated with lower Sokolow-Lyon index.

There was no suggestion for a causal association of either measure of adiposity and PR interval.  

Both WHRadjBMI and, to a weaker extent, BMI were causally associated with higher CIMT

(39%, 95%CI: 9%, 77% and 18%, 95% CI: 1%, 38% higher per SD in WHRadjBMI and BMI,

respectively). WHRadjBMI had a weak association with lung function (FEV1:FVC) at 0.12 units 

per SD (95%CI 0.01, 0.24), but the P-value of 0.04 does not meet the threshold which takes into 

found to be causally associated with increased insulin and triglycerides. In additionon,, BMBMBMI II wawawasss

causally associated with higher IL-6, with a directionally consistent result identified for 

WHRadjBMI. Both adiposity measures were also causally associated with decreased levels of 

HDDLLL-C. Howeeevvev r,r,r onllly y y WHWHW RaRaRadjdjdjBMBMBMI waw s assosos ciatated wwwititithhh ininincreaeaaseeedd LDLDL-CCC,,, ananandd d tht e asasssososociciiatatation

withthh SBP was aalsll oo strronngerrr. BMBB I was ininverselllyy assssociciciatatatededed wiwith aalbbumminn, wwwhile WWWHRHRH aadjBMI

was not; but heterogeneity across studies was moded rately hih gh (I22=57%)).  
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account testing for multiple measures of adiposity. There was no suggestion of a causal

association of either adiposity measure with any of the measures of renal function.

With MR-Egger regression there was no convincing evidence for directional pleiotropy in any of 

the associations of adiposity traits with continuous cardiometabolic traits (Supplemental Tables 

10 and 11).

Supplemental Figures 2a/b illustrate the consistency of observational and IV estimates for 

associations between adiposity and cardiometabolic traits (Supplemental Tables 12 and 13).

Mendelian randomization analysis of adiposity with cardiometabolic diseases 

Figures 2a-c show the association of each adiposity measure with CHD, ischaemic stroke and 

T2D from conventional IVW and weighted median MR analyses. MR-Egger estimates tended to 

be much more imprecise and are therefore presented separately in Supplemental Table 14 to 

facilitate interpretation.

Mendelian randomization analysis of adiposity with CHD  

The summary causal estimate per 1SD increment in BMI from conventional IVW MR was an 

OR for CHD of 1.36 (95%CI: 1.22, 1.52) (Figure 2a). MR-Egger regression suggested little 

evidence for unbalanced pleiotropy in the genetic instrument (intercept P-value=0.65), and both 

MR-Egger and weighted median estimates were consistent with the IVW estimate

(Supplemental Figure 3a). Furthermore, MR estimates were consistent with observational 

estimates reported by the Emerging Risk Factors Collaboration (Figure 2a) 

 Similarly, we found an association between WHRadjBMI and CHD using conventional 

MR (OR 1.48, 95% CI 1.28, 1.71 per SD WHRadjBMI, Figure 2a and Supplemental Figure 

3b). The intercept for the MR-Egger test was 0.0134 (95%CI -0.0004, 0.0278; P-value=0.06). 

The causal estimate from MR-Egger was imprecise (OR 0.89, 95% CI 0.52, 1.53), but the 

T2D from conventional IVW and weighted median MR analyses. MR-Egger estimamaatetetess teteendndndededed to 

be much more imprecise and are therefore presented separately in Supplemental Table 14 to 

facilitate interpretation.

Meeenndn elian raaannndomomomizzzatattioioionn anananalalalysysysis oof f adipososo ityy withthth CCCHDHDHD 

Thee e ssus mmary cacacausaal eesstimaata eee per 1SD inncremmmennt inn BBBMIMIMI fffroomm coonnvenntitionnnaala  IVW MRMRM was ann 

OR for CHDD of 1.36 ((959 %CI: 1.22,2  1.52) (FiF gure 2a2 ). MRR-Egger regression suggestedd little
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weighted median estimator (which retains more power than MR-Egger) provided a causal effect

of 1.61 (95% CI 1.36, 1.90) which was consistent with the IVW result.

Mendelian randomization analysis of adiposity with ischaemic stroke  

The causal OR for the association between BMI and ischaemic stroke was 1.09 (95%CI 0.93, 

1.28 per SD) (Figure 2b). Results from the MR-Egger analysis were compatible with no 

unbalanced pleiotropy (intercept P-value=0.73), and the weighted median estimator suggested no 

causal association (Supplemental Figure 3c). Estimates for association between BMI and stroke 

sub-types were imprecise and 95% confidence intervals all included the null (Table 1). Thus, 

while all IV estimates for BMI and stroke include the Emerging Risk Factors Collaboration 

estimate (Figure 2b), lack of precision hinders any clear causal evidence for an association 

between BMI and ischaemic stroke.

 Results do, however, provide some evidence for a causal association of WHRadjBMI 

with ischaemic stroke (OR 1.32, 95%CI 1.03, 1.70 per SD in WHRadjBMI) (Figure 2b). MR-

Egger regression was consistent with no unbalanced pleiotropy (intercept P-value=0.94), and the 

weighted median estimator was very close to the IVW estimate (causal OR 1.34, 95%CI 0.97, 

1.86 per SD increase in WHRadjBMI) (Supplemental Figure 3d). Limited evidence was found 

for a causal association with stroke sub-types; all point estimates were consistently above one but 

precision was poor and 95% confidence intervals included the null (Table 1).   

Mendelian randomization analysis of adiposity with T2D  

We found a causal OR for T2D of 1.98 (95%CI: 1.41, 2.78) per SD increase in BMI (Figure 2c). 

Similar but stronger estimates were identified using MR-Egger (OR 3.70, 95% CI 1.63, 8.41; P-

value for pleiotropy=0.10) and weighted median estimator (OR 2.70, 95% CI 2.26, 3.23). One 

BMI SNP (rs7903146) was an outlier (Supplemental Figure 3e) and is a marker for 

estimate (Figure 2b), lack of precision hinders any clear causal evidence for an aassssococociaiaiatititiononon 

between BMI and ischaemic stroke.

Results do, however, provide some evidence for a causal association of WHRadjBMI 

withhh iisi chaemiccc ssts rororoke ((OROROR 1.3.332,2,2, 9995%5%5 CICI 1.03, 11.700 per r r SDSDSD iiin n n WHWHHRaRaR djBMB I)I)I) (F(F(Figigiguruu e 2b2b2b))). MRMRMR-

Eggegeger r regressioioonn n waw s consisssttet nt with nnoo unbalalal ncced pppleleleioioiotrtrt opopy (iinnterceppt PPP-value=0=0= .9944), andd tthe

weighted median estimator was very close to thhe IVIVW estimate (causal ORO 11.34, 95%%CIC  0.97,7  R
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the TCF7L2 gene, a GWAS-identified locus for T2D33. We therefore repeated the T2D analysis 

excluding rs7903146 (Supplemental Table 15 yielding an IVW OR of 2.25 (95%CI: 1.87, 2.71) 

per SD increase in BMI, with similar estimates from MR-Egger and weighted median estimators. 

Likewise, we found a causal relationship between WHRadjBMI and T2D (OR 1.82, 95% CI 

1.38, 2.42 per SD increase in WHRadjBMI, Figure 2c). MR-Egger did not provide evidence of 

unbalanced pleiotropy (P-value for pleiotropy=0.21), and the weighted median estimator result 

was consistent with the IVW (OR 1.64, 95% CI 1.25, 2.15) (Supplemental Figure 3g).

Multivariate Mendelian randomization 

We found some evidence for association of both adiposity instruments with smoking, but not 

with other major confounders (Supplemental Table 16). To account for this, sensitivity analyses 

were undertaken for each cardiometabolic disease using multivariate MR including the effect of 

each SNP used as instrument for BMI and WHRadjBMI on smoking. MR estimates were found 

to be robust to this adjustment (Supplemental Table 17), with generally consistent point 

estimates measured with greater imprecision reflecting the reduced power in these analyses. The 

multivariate MR (adjusted for smoking) for the causal association of WHRadjBMI with 

ischaemic stroke was 1.27 (95% CI 0.84-1.93) broadly similar to 1.32 (95% CI 1.03-1.70) in the 

main IVW analysis, but with a wider confidence interval. We also included FEV1:FVC in these 

sensitivity analyses due to the likely association of this trait with smoking; again adjusted results 

were very similar to the main IVW results (Supplemental Table 17).

Discussion

We conducted the most comprehensive MR analysis to date comparing the causal role of central 

and general adiposity in the development of multiple cardiovascular disease outcomes (CHD, 

with other major confounders (Supplemental Table 16). To account for this, sennsisitititivivivitytyy aaanananalylylyses

were undertaken for each cardiometabolic disease using multivariate MR including the effect of 

each SNP used as instrument for BMI and WHRadjBMI on smoking. MR estimates were found 

o bbbe e e robust to o thththisss adjjjususstmtmtmenenntt t (((SuSuSupppppplemementalll TaTabble 171717),),) wwwititith gegeenenen rar lllly y cooonsnsnsisisstetetentnn  poioio ntntnt 

estiiimmam tes measssuuru eded wwitth greaeaeater imprpp eciision rrer ffleecttingngng ttthehehe rededuceded powwerrr iiin these  aanalalyses. TThhe 

multivariate MR (a( djd usted for smoking) for the causal associatioi n of WHRH addjBMIM  witi h h
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multiple stroke sub-types and T2D). Owing to benefits of MR to minimize residual confounding 

by common lifestyle factors and underlying ill-health, we are able to quantify that one standard 

deviation increase in genetically instrumented WHRadjBMI (~0.08 units) results in a ~50% 

increase in risk of CHD independent of BMI. This compares with the ~40% increase in risk of 

CHD we find per 1SD increase in genetically instrumented BMI (~4.6 kg/m2) which is 

consistent with the observational effect derived from large prospective population cohorts 

including the Emerging Risk Factors Collaboration 1 (CHD HR 1.29 [1.22-1.37] per 1SD) and 

the Prospective Studies Collaboration33 Thus, while observational studies such as the Emerging 

Risk Factors Collaboration  have found risk to be consistent across different measures of 

adiposity, our results suggest WHRadjBMI may have a stronger effect, although the greater 

imprecision in the MR estimates should also be considered.  

 Similarly, while observational studies have found different measures of adiposity to have 

similar associations with risk of ischaemic stroke1, our result again suggest that WHRadjBMI 

may be more strongly associated (increased risk ~30% per 1SD). Recent findings from 

INTERSTROKE also suggest that WHR is a much stronger deleterious risk factor for ischaemic 

stroke5.  Our SBP results follow a similar pattern, with a much stronger association between 

central adiposity and SBP than general adiposity. This is also the first MR study to suggest 

potential causal association between central adiposity ischaemic stroke subtypes, and CIMT, a 

widely used surrogate measure of sub-clinical atherosclerosis. 

 Previous adiposity MR studies used limited numbers of SNPs, (with weaker genetic 

instruments), fewer events and generally failed to find evidence for a causal association between

BMI and CHD19, 21. However, one MR study using a 3-SNP allele score (FTO, MC4R,

TMEM18) reported an OR of 1.52 (95% CI 1.12-2.05 for a 4 kg/m2 increase in BMI20 , and most 

adiposity, our results suggest WHRadjBMI may have a stronger effect, although ththe e e grgrg eaeaeateteterr 

mprecision in the MR estimates should also be considered.  

Similarly, while observational studies have found different measures of adiposity to have

imimimilalalar associatatatiiionsnsns wwwitith h h ririr sksk ooof f f isisischchchaemim c stroookek 11, our r r rereresusuultltlt aggaiaiainnn susuggggest thththatatat WWWHRRRadaddjBjBjBMIMIMI  

mayyy bebb  more sststrror ngnglyy aassoccciaaated (increeaased riskk ~3~30%%% ppperere 111SD). RRecenent ffif nndn ings fffrromm 
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recently a MR study using a 32-SNP instrument for BMI found similar results for CHD to ours22.

We do not however replicate the causal association between BMI and ischaemic stroke reported 

by the same study (hazard ratio per SD-increase of BMI 1.83; 95% CI 1.05-3.20)22, despite 

increasing the number of stroke cases tenfold. Furthermore, our results are in line with those for 

ischaemic stroke from the Emerging Risk Factors Collaboration and INTERSTROKE, including 

the apparently stronger association we find between central adiposity and stroke relative to 

general adiposity. Results for the causal association of WHRadjBMI with CHD and T2D are 

consistent with those from a recent MR analysis34.

We present the largest number of cardiometabolic traits ever examined in a MR analysis 

of adiposity. The current findings are broadly consistent with earlier MR studies for glucose, 

triglycerides, HDL-C, SBP, and IL-6, providing further support for a detrimental impact of 

adiposity on the cardiovascular system19, 21, 23. However, we find no evidence for a causal 

association between BMI and LDL-C, consistent with some but not all earlier studies21, 23. A 

recent MR study found a causal effect of BMI and a wide range of lipid metabolites, including 

all LDL metabolites35, but was conducted in a younger, healthier population (average BMI 

~24kg/m2) than is commonly included in MR studies (including the current one) and this could 

explain the discrepancy with our findings (as observational studies suggests the association of 

BMI and LDL-C plateaus beyond 27kg/m2) 33. We also report novel positive causal associations

of adiposity with the ECG measure log Cornell product (a measure of left ventricular 

hypertrophy; LVH). The negative association of BMI with Sokolow Lyon (an alternative 

measure of LVH) was unexpected and may represent a false positive. While both log Cornell 

product and Sokolow Lyon measure left ventricular hypertrophy, log Cornell product is 

considered to be the better test for identifying LVH when measured against a gold standard36. 

of adiposity. The current findings are broadly consistent with earlier MR studies fofor r r glglglucucucososose,e,e, 

riglycerides, HDL-C, SBP, and IL-6, providing further support for a detrimental impact of 

adiposity y on the cardiovascular system19, 21, 23. However, we find no evidence for a causal

assooocicic ation betwtwtweeeen nn BMBMBMII I ana d d d LDLDLDL-L-L-C, coc nsisteeentn wwith sososomememe bbbutt nnnototo aalll eearliiiererer ssstututudidd es21, 233... AAA

eceeennnt MR studydydy ffounnd a cauauausal effect oof BMII I aandd a wiwiwidedede ranngge ooff lipiidd mememetaboliteeess, iinncludingng R
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 This study demonstrates that central obesity (as quantified by WHRadjBMI) has a causal 

effect on CHD that is independent of BMI. This finding demonstrates the potential of MR 

approaches for investigating highly correlated adiposity measures that have proved challenging 

to disentangle in observational studies37. In these analyses we find that WHRadjBMI has a more 

deleterious lipid profile than BMI, with detrimental associations of greater magnitude with 

triglycerides and HDL-C and association with LDL-C not found for BMI. The association of 

WHRadjBMI with CIMT is also of greater magnitude. Conversely, BMI appears to have a 

greater inflammatory effect than WHRadjBMI, and potentially a stronger effect on the ECG 

measures that index left ventricular hypertrophy as well as with glucose and T2D. The apparent 

lack of association of WHRadjBMI with glucose is surprising, but is potentially explained by a

negative association of WHRadjBMI SNPs with BMI. Interestingly, a recent paper showed 

WHRadjBMI to associate with 2-hour fasting glucose suggesting that WHRadjBMI may have 

differential effects according to how glucose is measured; different mechanisms are likely to 

regulate fasting and 2-hour glucose34. In keeping with our findings, the discovery GWAS that 

identified 49 SNPs associated with WHRadjBMI18 found associations of the SNPs with 

concentrations of HDL-C, TG, LDL-C, adiponectin and fasting insulin. Furthermore, the study 

identified enrichment of WHRadjBMI SNPs for T2D and CHD.  

 This study suggests that it is not only the volume of adiposity, but also its location, that is 

relevant for disease, lending weight to the emerging theory that the deposition of body fat plays 

important roles that are independent of total fat. For example, at a given BMI, there is 

considerable inter-individual variation in the amount of visceral fat, which shows associations 

with disease38. Our results also suggest that efforts to quantify the effect of adiposity on burden 

of disease should include multiple measures of adiposity to avoid underestimating the true 

ack of association of WHRadjBMI with glucose is surprising, but is potentially exexexplplplaiaia nenened dd bybyby aaa

negative association of WHRadjBMI SNPs with BMI. Interestingly, a recent paper showed 

WHRadjBMI to associate with 2-hour fasting glucose suggesting that WHRadjBMI may have 

difffererrential effffececctsss aaaccccororrdididingngg ttto o o hohohow ww gllucu ose iss meaeasurerered;d;d dddifififfeerereentntnt mmecechanininismsmsmsss arara e liiikekeelylyly tttooo
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burden of adiposity on health39. As regards specific interventions that focus WHR more than 

BMI, there is observational evidence that physical activity can modify WHR independent of 

BMI40. Thus it may be possible to mitigate the effects of WHR through increased population-

wide physical activity. In addition, our findings open potentially new avenues of investigation. 

For example, identifying these causal effects of WHRadjBMI can enable research to focus on the 

downstream consequences of this trait, and potentially identify traits (such as metabolites)35 that 

could mediate the relationship between WHRadjBMI and disease which may themselves be 

amenable to pharmacological modification. Such traits downstream of WHRadjBMI could be 

unique (and not shared with BMI) raising the possibility of novel opportunities for drug 

discovery and disease prevention.  

Strengths

This study has many strengths. First, independent multi-SNP instruments comparing the effect of

central and general adiposity on multiple CVD outcomes; second, the use of powerful genetic 

instruments for BMI and WHRadjBMI which explained up to twice the phenotypic variation 

compared with previous MR studies; third, large number of clinical events that provided ample 

power to detect the associations of adiposity with cardiometabolic diseases fourth, the use of 

methods to minimise the impact of unbalanced pleiotropy in the genetic instruments that may 

invalidate findings from conventional MR.  

 In addition to this being the most comprehensive evaluation of adiposity-related traits 

with cardiovascular and metabolic risk factors and diseases, our analysis also facilitates their 

direct comparison, and therefore contrasts the effects of general adiposity with body fat 

distribution in the same datasets. This provides novel insights, demonstrating that WHRadjBMI 

discovery and disease prevention.  

Strengths

This studyyy has many strengths. First, y independent multi-SNP instruments comparing the effect of
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is more relevant to the development of subclinical atherosclerosis and stroke compared to BMI, 

whereas both BMI and WHRadjBMI are important for CHD and diabetes. 

Limitations

Limitations include the potential pleiotropic effects of the multi-SNP instruments. However, 

results suggest little evidence for unbalanced pleiotropy. Re-estimates of the causal associations

using MR-Egger regression were broadly consistent with our conventional MR analysis, albeit 

with a loss of precision and consequently a loss of power, while weighted median estimates (that 

retains more power than MR-Egger) proved remarkably similar to IVW.   

The InSIDE (Instrument Strength Independent of Direct Effect), which is untestable, 

assumes that the pleiotropic effects of the genetic variants are uncorrelated with the association 

of the genetic variants with the exposure. Violation of InSIDE would give rise to biased causal 

estimates from MR-Egger; however each MR approach has different strengths and assumptions, 

for example, violation of InSIDE does not affect the weighted median MR approach 12. This 

highlights the importance of using the three MR approaches (IVW, median and MR-Egger) in 

our study. General concordance of MR estimates derived from these approaches helps reinforce 

the conclusions that can be drawn.   We used a multi-SNP instrument for WHR that had already 

been adjusted for BMI as part of the GIANT GWAS18. Genetic instruments for phenotypes 

adjusted for heritable components may show association with the adjusted phenotype through 

collider bias41, which could violate the InSIDE assumption. Indeed, we found WHRadjBMI 

SNPs to be associated with BMI beyond what would be expected by chance (Supplemental

Table 18). This could lead to biased results; however in the current scenario the bias will tend to

be towards the null (and underestimate the true effect) as the WHRadjBMI SNPs are associated 

negatively with BMI. 

assumes that the pleiotropic effects of the genetic variants are uncorrelated with tthehee aaasssss ocoociaiaiatititiononon 

of the genetic variants with the exposure. Violation of InSIDE would give rise to biased causal 
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 We selected cardiometabolic traits a priori on the basis that previous studies have shown 

them to be observationally and genetically associated with BMI. Therefore, although we test 

multiple outcomes use of a conventional Bonferroni would over-penalize the interpretation.

Future studies should look to include emerging CVD outcomes such as heart failure and atrial 

fibrillation, and consider additional potential confounders. In addition, more stroke cases should 

be added to improve precision in these analyses, in particular for multivariate MR analyses. 

Given that our MR analysis on CHD was largely based on summary data, we were unable 

undertake more detailed investigations of the linear relationship between BMI or WHRadjBMI 

and risk of CHD and/ or to explore the causal effects of very low levels of BMI or WHR on 

CHD42. These are important next steps to investigate, given the uncertainty regarding whether 

the U-shape association of BMI with disease reflects a true causal relationship, or whether it is 

an artefact from residual confounding and/or underlying ill-health. The recent finding of a J-

shaped (rather than U-shaped) association between BMI and mortality in healthy non-smokers 

reinforces the likely role of artefact this association43. Therefore, application of methods for non-

linear MR could help to determine the true optimal level of BMI for health44. However, such 

analyses would require access to individual participant data in all studies.  

Finally, although we identify several downstream biological mechanisms by which 

general and central adiposity may mediate the effects on risk of CHD, these results should be 

considered as exploratory and further studies using adequate methodology for mediation analysis 

should be conducted45, 46, including the analysis of finer resolution for cardio-metabolic traits for 

example using NMR metabolomics.

CHD42. These are important next steps to investigate, given the uncertainty regarddininnggg whwhwhetetetheheherr 
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Conclusions

Our study supports evidence for a causal role of both central and general adiposity in risk of 

CHD and T2D, and central adiposity in risk of ischaemic stroke. Furthermore, our results suggest 

that central adiposity may pose higher risk for stroke and CHD. Efforts to estimate the role of 

adiposity on cardiovascular disease should consider the potential independent effects of different 

measures of adiposity. 
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Table 1. Mendelian randomization estimates for the association of adiposity and stroke sub-
types

IVW Weighted median
OR LCI UCI I2 P(Genetic pleiotropy) OR LCI UCI

BMI
All ischaemic stroke 1.09 (0.93, 1.28) 20% 0.734 0.98 (0.77, 1.25)

- Cardioembolic 1.18 (0.89, 1.55) 0% 0.507 1.40 (0.87, 2.24)
- Large vessel disease 1.14 (0.82, 1.59) 19% 0.625 1.12 (0.65, 1.91)
- Small vessel disease 0.93 (0.64, 1.35) 30% 0.270 1.15 (0.67, 1.97)

Haemorrhagic stroke 1.51 (0.73, 3.13) 0% 0.435 1.28 (0.37, 4.40)
WHRadjBMI
All ischaemic stroke 1.32 (1.03, 1.70) 38% 0.936 1.34 (0.96, 1.87)

- Cardioembolic 1.24 (0.84, 1.83) 0% 0.588 1.32 (0.73, 2.38)
- Large vessel disease 1.37 (0.90, 2.09) 0% 0.470 0.87 (0.48, 1.58)
- Small vessel disease 1.57 (0.98, 2.51) 13% 0.861 1.71 (0.89, 3.29)

Haemorrhagic stroke 1.89 (0.69, 5.18) 0% 0.430 1.73 (0.42, 7.06)
IVW: inverse variance weighted (also termed ‘conventional’ MR) and weighted median. P(genetic 
pleiotropy) relates to the P-value derived from the intercept of MR-Egger; a small P-value denotes 
presence of directional pleiotropy.

VW: inverse variance weighted (also termed conventional  MR) and weighted median. P((geg netic 
pleiotropy) relates to the P-value derived from the intercept of MR-Egger; a small P-valuuee dededenononotetetesss
presence of directional pleiotropy.
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Figure Legends

Figure 1a. Association of BMI with continuous biomarkers derived from Mendelian 

randomization analysis. Values represent standardized mean differences of each trait per SD 

increase in BMI derived from conventional (IVW) Mendelian randomization analysis. Non-

normally distributed variables were natural ln transformed; therefore mean differences displayed 

on the log scale may be anti-logged and interpreted as percentage differences in SD of trait per 

SD in BMI. Log triglycerides from individual participant data studies only; GLGC triglycerides 

in Supplemental Table 10.

Figure 1b. Association of WHRadjBMI with continuous biomarkers derived from 

Mendelian randomization analysis. Values represent standardized mean differences of each 

trait per SD increase in WHRadjBMI derived from conventional (IVW) Mendelian 

randomization analysis. Non-normally distributed variables were natural log transformed; 

therefore mean differences displayed on the log scale may be anti-logged and interpreted as 

percentage difference in SD of trait per SD in WHRadjBMI. Log triglycerides from individual 

participant data studies only; GLGC triglycerides in Supplemental Table 11. 

Figure 2a. Associations of adiposity with risk of CHD from observational and Mendelian 

randomization analyses. Association between coronary heart disease and adiposity (BMI and 

WHRadjBMI) comparing causal odds ratios (OR) per SD of adiposity trait derived from 

instrumental variable analysis and observational analysis from the Emerging Risk Factors 

Consortium hazard ratio (HR per SD of BMI or waist:hip adjusted for age, sex and smoking 

Figure 1b. Association of WHRadjBMI with continuous biomarkers derived from 

Mendelian randomization analysis. Values represent standardized mean differences of each 

raitt ppper SD incccrrer asasase innn WWWHRHRRadadadjBjBjBMIMM ddere ived ffror m m convnvnvenenentititionoo alal (IVIVI W)W) Menenendededelililianana  

andddoomo ization n aana alalyysiis. Noon-n-n-normallyly ddistribututu edd vvarrriaiaiablblblees wwere nnaturaral lololog transfffoormemed; 

herefore mean difffef rences displayed on the log scale may be anti-logged and d interpreted as 
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status)1. Causal estimates are derived from Mendelian randomization and include conventional 

(ratio) approach and weighted median (see Methods for further details). P(genetic pleiotropy) 

relates to the P-value derived from the intercept of MR-Egger; a small P-value denotes presence 

of directional pleiotropy.

Figure 2b. Associations of adiposity with risk of ischaemic stroke from observational and 

Mendelian randomization analyses. Association between ischaemic stroke and adiposity (BMI 

and WHRadjBMI) comparing causal odds ratios (OR) per SD of adiposity trait derived from 

instrumental variable analysis and observational analysis from the Emerging Risk Factors 

Consortium (HR of ischaemic stroke per SD of BMI or waist:hip adjusted for age, sex and 

smoking status)1. Causal estimates are derived from Mendelian randomization and include 

conventional (ratio) approach and weighted median (see Methods for further details). P(genetic 

pleiotropy) relates to the P-value derived from the intercept of MR-Egger; a small P-value 

denotes presence of directional pleiotropy.

Figure 2c. Associations of adiposity with risk of T2D from observational and Mendelian 

randomization analyses. Association between T2D and adiposity (BMI and WHRadjBMI) 

comparing causal odds ratios (OR) per SD of adiposity trait derived from instrumental variable 

analysis and observational analysis from Vazquez et al., 20072. Causal estimates are derived 

from Mendelian randomization and include conventional (ratio) approach and weighted median 

(see Methods for further details). P(genetic pleiotropy) relates to the P-value derived from the 

intercept of MR-Egger; a small P-value denotes presence of directional pleiotropy.

Consortium (HR of ischaemic stroke per SD of BMI or waist:hip adjusted for agee, sesesex xx ananand dd

moking status)1. Causal estimates are derived from Mendelian randomization and include

conventional (ratio) approach and weighted median (see Methods for further details). P(genetic 

pleiiotototropy) relalalatttes s s tott ttthehee PPP-v- alalalueueue ddderere iveded from m m tht ee iinteercrcrcepepept t t ofoo MMMRR-R EgE geger; aaa sssmamamallllll P-vavav lululue e e

denonootett s presennnceec ooff diirectiooonnan l pleiotrooppy.












