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Abstract

We consider the estimation of the optimal interval between doses for
interventions such as malaria chemoprevention and vaccine booster doses
that are applied intermittently in infectious disease control. A flexible
exponential-like function to model the time-varying intervention effect in
the framework of Andersen-Gill model for recurrent event time data, is con-
sidered. The partial likelihood estimation approach is adopted and a large
scale simulation study is carried out to evaluate the performance of the pro-
posed method. A simple guideline for the choice of the optimal interval
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between successive doses is proposed. The methodology is illustrated with
the analysis of data from a malaria chemoprevention trial.

Key words: Andersen-Gill model, Ghana, malaria, proportional inten-
sity, recurrent events, vaccine, waning efficacy.

1 Introduction

The efficacy of preventive interventions against infectious disease often wanes over
time, the intervention therefore needs to be re-administered to sustain protection
(for example, pertussis vaccines [11], and vaccines [22], insecticide-treated bednets
[20] and chemoprevention [21] in malaria control). Reliable surrogates of protec-
tion may not exist, for these interventions the optimal interval for re-dosing needs
to be determined from data on the incidence of disease events. In this paper we
describe an approach for estimating time varying efficacy for interventions that are
applied intermittently, and for estimating the optimal interval between successive
doses. We illustrate the use of the method with data from a malaria chemo-
prevention trial. Chemoprevention for malaria involves repeated administration of
antimalarial drugs at intervals and is used to protect children and pregnant women
in endemic areas. The choice of the optimal interval is an important public health
question.

In most statistical analyses of interventions in infectious diseases, the interven-
tion effect or protective efficacy is generally assumed to be constant. Randomized
trials of interventions against infectious disease are also often analyzed using data
on first episode of the disease even when subsequent episodes have been recorded
[1], leading to information loss and over-emphasis of short-term effects [10, 6]. The
estimation of constant intervention effects using recurrent event data has been
considered [6l, 23, 24]. Previous studies have considered the role of frailty in the
analysis of first or single disease episode in generating an apparent declining effi-
cacy [9]. An advantage of analysis of recurrent events that has not been sufficiently
discussed in this context is that, since a person remains in the analysis risk set
after experiencing one or more events, frailty has little impact on generating an
apparent declining efficacy [0, 24]. Methods for analysis of time-varying effects
have been described using cubic splines [19, 12] and smoothed residuals [7]. These
methods do not specifically address applications where interventions are repeat-
edly administered. They do not capture the sharp changes in hazard ratio at the
times of booster or repeated doses. In this paper, our objectives are to model
the time-varying efficacy of preventive intervention using recurrent event data and
to determine the optimal interval between successive intervention doses so as to
sustain a high level of protection.

Two issues need to be taken into consideration to establish an appropriate



statistical model for the analysis. Firstly, when a treatment is administered, there
may be a residual effect from previous treatments that needs to be taken into
account. Secondly, it is well known that individuals exposed to infection will
acquire some level of immunity to the disease. Hence, in the context of infectious
disease control, it may be unavoidable that interventions successful in preventing
infection also prevent natural acquisition of immunity. When the intervention
effect wears off, treated individuals may be more susceptible to infection than they
would have been if they had not received the intervention. Hence, it is important
to determine whether the preventive treatment will have a negative effect in the
long run. Other preventive interventions that are administered intermittently for
the control of infectious diseases would probably have similar concerns [15].

The remainder of this paper is organized in the following. The typical type of
data under consideration, the proposed model, the estimation method, and a cri-
terion for the determination of the optimal interval between successive preventive
treatments will be discussed in Section [2l In Section [3] a large scale simulation
study is conducted to assess the performance of the estimation method. In Section
[ the proposed model and method are applied to the data from a randomized
chemoprevention trial for malaria in young children. Section |5 concludes with a
discussion on the potential practical applications of this method.

2 The data, model and estimation method

Suppose we have a sample of n individuals who are randomized to either the
intervention or control group. Define z; as the group indicator with z; = 1 if
subject i is in the intervention group and z; = 0 otherwise. Subjects allocated
to the control group will receive no preventive intervention. Let 0 < t;; < t; <

- denote the multiple onset times of the disease episodes experienced by the
it" subject, and 0 < dj; < djo < --- < d; be the k pre-determined times for
dosing, with treatment or placebo, to the i subject for i = 1,2,--- ;n. Let x;(-)
denote the covariate vector process, and 7; the total follow-up time (censoring
time) associated with the i subject. We assume independent censoring, that
is, the censoring time 7; is independent of the onset times ¢;;’s given the history
of the covariate vector process x;(-). The covariate process is assumed to be
left continuous with right-hand limits. In practice, it is often the case that a
time-varying component of the covariate process is observed only at study entry
and exit and at the event times. For practical purposes, we simply assume these
covariates to be linear or constant between successive event times. Let N; (t) =
Z?; 1{t;; <t} denote the episode occurrence counting process of subject i and
Fi = o{zi,xi(s),Ni(s),s <t,d;j, j=1,2,...:d;; <t; i=1,...,n} denote the
o-algebra generated by all the data by time ¢. It has been suggested that the



Andersen-Gill model [3] is useful for assessing the impact of preventive medicine
on recurrent events in effectiveness studies [6]. As a measure of the individual risk
of a new event, the intensity process of N;(t) is assumed to have the form

N (t] Fis) = do (8) exp |87 (1) — - G (1), (1)

where A\g(-) > 0 is an unspecified baseline intensity function, 3 is the vector of
regression coefficients and G (-) is the function of the time-varying effect of the
intervention.

One approach would be using a single function G (t) to represent the logarithm
of the time-varying relative risk during the whole follow-up period, where ¢ is the
time since the first dose. However, in practice, it is difficult to arrange for each
participant to receive the intervention strictly according to the designed schedule,
and the variation in time to receive each dose among the subjects may lead to a
biased evaluation of the intervention effect if this modeling approach is adopted.
To account for the variations in the d;;’s among the subjects, we assume

Gt)= ) g(t—dy) (2)

Jidii <t

where g (t — d;;) indicates the amount of reduction in the disease risk on the log-
arithm scale due to the j™ dose of intervention, (¢ — d;;) units of time after the
administration of the j** dose. Note that the effects due to the j** and I** doses
(7 # 1) are assumed to be additive on the log-scale. Then G (t) is the cumulative
intervention effect for subject ¢ at time ¢. For example, let d;» < t < d;3, then the
cumulative intervention effect for subject ¢ at time ¢ is

Gt)=g(t—dn)+g(t—di),

which is interpreted as the intervention effect of the second dose (t — d;2) units of
time after the administration of it plus the residual intervention effect of the first
dose (t — d;1) units of time after its administration. A graphical illustration of this
example is given in Figure [I| and that optimization of the time between dy and d;
is an important part of the analysis.

The exponential decay function, g () = aexp (—0bt), has been used to model
waning vaccine efficacy [L1]. To answer the aforementioned research questions, we
modify the exponential decay function as

g(t) = aexp(=bt°) + ¢, for a,b,d > 0and — oo < ¢ < oo. (3)

The parameter a represents the dose effect immediately after each intervention
while b controls the overall decline rate of g(t). A negative value of ¢ suggests that



Intervention effect
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Figure 1: A graphical illustration of the cumulative intervention effect (G). solid
line: cumulative intervention effect for ¢ > ds; dashed lines: intervention effects

(g) of the first and second doses.



the long-term intervention effect is harmful, which accommodates the possibility
that the intervention hinders acquisition of natural immunity. The exponential de-
cay function is a special case of our proposed function when § = 1 and ¢ = 0. The
model we propose includes both initially rapid (6§ < 1) and initially slow (§ > 1)
decay as special cases. In pharmacodynamics, the relationship between physiolog-
ical effect and drug concentration is often non-linear with an upper asymptote [§].
Given a sufficient dose such that the drug concentration immediately after each
dose is near the asymptote level, one would expect § > 1.

The estimation of the model parameters 8 = (37, ~T)
can be made possible based on the partial likelihood

T

where v = (a,b,¢,6)7

ﬁ Nﬁ exp <5Tﬂ3¢ (tij) — 2 Zz;d“a,-j g (tij — du; ’Y))

=t st X Vi (b)) exp <B Ty (Lig) = 26 2payy <t 9 (Lig = i >>
where Y; (t) = 1{7; >t} is the at-risk indicator process. On letting 0 = 0/0v
and 8,2),,},T = 0%/(0y0~T), the corresponding log likelihood function, score function,

(4)

and the observed information matrix are respectively,

n N Tz
=1 j=1
n  Ni(m)
_ x; (L) SW (ty;;0)
ver= ; ; {( —0y 2,Gi Etij;’Y) ) - 50 (tz‘j';@) }’ ®)
n  Ni(m) 2
_ 0 0 SO (ti;;0)  SY (t;:0)°
1(0) = ; = {( 0 &27»)” %G (tij; ) ) + S(0) (tij;0) SO (¢ Z],B) (7)
where
t ’7 Z g zl7 7 (8)
ldll<t
SO(t;0) ZYk exp (BT@x(t) — 2z - Gr(t; 7)), 9)
k=1
" ®2 0 0 )
S@(t:6) ZYk (—67 az:;]:é';z(t,'y)> + <0 —3,27,),7 Zka(t;’)’))] exp (BT@n(t) = 2 Cills Y

(11)



The expressions for the derivatives of g in @ - depend on the form of ¢g. In
the case of the exponential-like function as in , the derivatives are as follows,

3 (t;y) = (exp (—bt5) , —at® exp (—bt‘s) .1, —abt’ log (t) exp (—bt‘s))T ,

%l
0 —t% exp (—bt‘s) 0 —btd log (t) exp g—bt‘;)
9? —t% exp (—bt‘s) at?d exp (—bt‘s) 0  —atdlog (t) exp (—bt°) (1 - bt‘s)
W‘g (t; ’7) = 0 0 0 0
—bt? log (t) exp (—bt‘s) —at® log (t) exp (—bt‘s) (1-0b%) 0 —abtd (log )% exp (—bt‘s) (1 —bt%)

The maximum partial likelihood estimator (MPLE) 6 of @ can be obtained
by maximizing the log likelihood function ¢(8), or equivalently solving the score
equation U(0) = 0 using, for example, the Newton-Raphson algorithm, whereby
the following is iterated until convergence,

0—60+1(0)"'U(0). (12)

The cumulative baseline intensity function Ag (t) = f(f Ao (1) du can be esti-
mated by the Breslow estimator [4] given by

Aot = [ t % (13)

where N(t) =>"7" | Ni(t A 7).

Under regularity conditions similar to VIL.2.1 and VII.2.2 in [2], it can be
shown that, as the sample size n tends to infinity, the MPLE @ of 6 is consistent
and asymptotically normal with its asymptotic variance consistently estimated by
the inverse of the observed information matrix evaluated at the MPLE, and the
Breslow estimator of A (+) is consistent and that v/n{Ag(.) — Ag(.)} converges to
a Gaussian process with zero mean and independent increments.

Under the framework of the Andersen-Gill model, the protective efficacy at
time ¢ due to the intervention is defined as

Atz =1Lz ()
At|z =0, (1))

which can be interpreted as the percentage reduction in the risk of disease at time
t due to the intervention and we denote PE(d;) = PEy be the protective efficacy
immediately after the first dose. Because of its simple nature, we propose to
determine a target interval between successive supplementary interventions such
that the protective efficacy of the intervention will be retained at a high level
relative to PEg at all time, say PE(t) > ¢ - PE, for d; <t < dj where 0 < { < 1is
a pre-specified fraction. More discussion on the target interval is given in Section
4 with an application to the randomized chemoprevention trial for malaria.

PE (1) = 1

=1—exp [_G (t)] )
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3 Simulation study

We assess the performance of the MPLE 0 through a simulation study. In the sim-
ulation, we mimic the malaria trial example to be considered in the next section by
assuming the covariates vector x;(t) = x; = (X1, Xi2)T where X are generated
independently from a Bernoulli distribution with P(X;; = 1) = P(X;; = 0) = 0.5,
and X, are from the uniform distribution over the interval (0,1), mimicking
the gender and age at entry of the subjects, respectively. The regression coef-
ficients are set to be 8 = (—0.5,0.5)T. We let Z be the intervention indicator
with Z = 1 for the intervention group and Z = 0 for the control group, respec-
tively. Z;’s are generated from a Bernoulli distribution with P(Z; = 1) = 0.5.
Each subject will receive 4 doses of intervention/placebo in total. Being consis-
tent with the malaria data set, we let the clock start at the time when the first
dose is given, so that d;; = 0 for ¢ = 1,...,n. To accommodate the variation
in time to receive doses in the subsequent interventions, we let the times to re-
ceive the second to the fourth dose for subject i be generated independently from
dio ~ U(0.8,1.2),d;3 ~ U(5.8,6.2),d;y ~ U(8.8,9.2), respectively. The censoring
times are set to be 7; = 24. The intervention effect function as in with @ = 2
and b = 0.5 is considered throughout the simulation study. Three different values
for ¢, namely —0.04, 0 and 0.04, are considered to mimic a negative, neutral and
positive long-term intervention effect, respectively. Two values, namely 6 = 1 and
0 = 3, are considered to mimic different declining patterns of the intervention ef-
fect. To simplify the data generation, the baseline intensity is set to be Ag(t) = 0.06
so that each subject will experience 1.3 episodes on the average in the simulated
data set. The sample size n is set to be n = 1000, 1500 or 2000.

The generation of recurrent event times usually involves finding the cumulative
intensity function A; (¢). In the presence of time dependent components in the
model, the calculation requires numerical integration. To avoid this, we considered
the thinning approach [I3] to generate the recurrent event times. Briefly, we can
choose a value A such that for V¢, the intensity function satisfies A (¢) < A. From

our experience, the choice of A = 1.05 [mtax )\(t)} is quite efficient in generating the

recurrent event times. If a set of times 717,75, - -+ are random samples generated
from a homogeneous Poisson process with constant rate A, then each time T has a
probability of A (T]*) /X to be an actual event time from the process with intensity
A (t). In this study, for each subject 7 with their particular intensity function \; (t),
we can generate the event times according to the following steps:

1. Set Tjo=0,T7" =0 and j = 1.
2. Draw a random number R ~ Exp (5\), and update T* =T + R.
3. Generate V ~ U (0,1):



Ai (T : . .
e IfV < <_ ), T* is an event time, then we set T;; = T* as the ;%

event time of subject ¢, update j = 5 + 1 and return to step 2.

Ai (T7)

o If V> ———= T*is not an event time, we directly go back to step 2

without updating j and T;;.

For each combination of the sample size n and the intervention effect function
g (+), the covariates and dosing times for all the n subjects are generated once and
held fixed, the event times for each subject are then simulated according to the
intensity model. The parameters @ are then estimated using the MPLE. The data
simulation and parameter estimation process is repeated for a total of 500 times.
For each combination of the values of n, ¢ and ¢, the average of the 500 estimates
(mean.est), the average of the 500 estimated standard errors (se), the empirical
coverage of the 95% confidence interval based on the asymptotic properties of the
estimator (cp) and the empirical standard deviation of the 500 estimates (esd) are
computed for each parameter. The results are summarized in Tables [I] to [2

The performance of the estimator is shown to be highly satisfactory from the
simulation studies. The mean estimates for the parameters are generally quite close
to their respective true values, and the average estimated standard errors closely
resembled the empirical standard deviations of the estimates. When the sample
size is small, the mean estimates for a and b seem to be slightly larger than the
true values, but the difference is not alarming with respect to the large standard
error estimates. Nevertheless, this phenomenon diminishes as n gets larger. The
finite sample properties of the estimator are well justified as the empirical coverage
probabilities are all reasonably close to the nominal level 0.95.

Figure [2| and Figure |3 show the point-wise percentiles (5", 10, 50", 90" and
95) of the 500 estimates for g (t) together with the true g (t). Generally, the
estimates are able to reveal the true shape of the intervention effects function,
as we can see that the 50" percentile of the estimated g (¢) coincides with the
true g (t). The true function of g (t) presented in Figure [2| is the exponential
decay function that is used frequently in clinical studies for describing declining
intervention effects. Our proposed function is a generalized form of this exponential
decay function and the proposed method is able to estimate it quite well.

To assess the performance of the estimator Ag (t) for the cumulative baseline
intensity function, the point-wise percentiles (5, 10", 50" 90" and 95*) of the
500 estimates for Ag (t) together with the true baseline intensity are presented in
Figures {4] to . It is reasonable to claim that the performance of Ag (t) is highly
satisfactory as the cumulative baseline intensity is accurately estimated although
we also note that the variation of the estimates grows with ¢, but this is just a
natural property of the Nelson-Aalen or Breslow estimator [4] [2].



Table 1: Simulation results based on the proposed model with § =1

6=1
n = 1000 n = 1500 n = 2000
true  mean.est se esd cp mean.est se esd cp mean.est se esd cp
51 -0.500 -0.501 0.059 0.057 0.961 -0.498 0.048 0.049 0.939 -0.499 0.042 0.042 0.962
S B2 0.500 0.496 0.099 0.097 0.957 0.499 0.081 0.080 0.953 0.499 0.070 0.067 0.968
? a 2.000 2.379 1.149 1.189 0.913 2.202 0.716 0.729 0.921 2.146 0.560 0.590 0.935
@b 0500 0.582 0.394 0.395 0.886 0.549 0.303 0.313 0.890 0.536 0.255 0.261 0.911
© ¢ -0.040 -0.053 0.040 0.041 0.966 -0.047 0.028 0.028 0.972 -0.043 0.022 0.021 0.962
6 1.000 1.116 0.507 0.549 0.943 1.079 0.392 0.408 0.955 1.057 0.329 0.347 0.943
51 -0.500 -0.502 0.061 0.065 0.943 -0.504 0.049 0.048 0.951 -0.499 0.043 0.044 0.931
B2 0.500 0.502 0.101 0.103 0.947 0.494 0.084 0.084 0.945 0.501 0.073 0.072 0.960
ﬁ a 2.000 2.505 1.362 1.476 0.955 2.290 0.926 1.063 0.943 2.120 0.568 0.553 0.952
o b 0.500 0.608 0.421 0.433 0.914 0.561 0.330 0.362 0.916 0.529 0.264 0.256 0.939
c 0.000 -0.012 0.040 0.039 0.971 -0.008 0.030 0.029 0.980 -0.003 0.023 0.023 0.968
6 1.000 1.091 0.502 0.517 0.939 1.079 0.406 0.409 0.939 1.061 0.339 0.326 0.970
81 -0.500 -0.505 0.062 0.065 0.951 -0.502 0.050 0.049 0.957 -0.502 0.044 0.042 0.965
= B2 0.500 0.503 0.106 0.099 0.969 0.495 0.085 0.083 0.949 0.502 0.075 0.073 0.953
= a  2.000 2.425 1.362 1.452 0.906 2.251 0.850 0.868 0.945 2.220 0.682 0.676 0.955
b 0.500 0.563 0.423 0.440 0.857 0.562 0.335 0.330 0.937 0.568 0.289 0.294 0.941
° ¢ 0.040 0.031 0.039 0.039 0.957 0.033 0.031 0.030 0.970 0.033 0.026 0.027 0.965
6 1.000 1.226 0.612 0.720 0.947 1.063 0.410 0.392 0.957 1.031 0.346 0.358 0.933
Table 2: Simulation results based on the proposed model with § = 3
6=3
n = 1000 n = 1500 n = 2000
true  mean.est se esd cp mean.est se esd cp mean.est se esd cp
81 -0.500 -0.501 0.056 0.057 0.952 -0.501 0.045 0.047 0.936 -0.501 0.039 0.038 0.951
I B2 0.500 0.506 0.093 0.092 0.943 0.499 0.074 0.072 0.955 0.500 0.066 0.066 0.951
? a 2.000 2.185 0.506 0.570 0.931 2.072 0.348 0.366 0.961 2.055 0.290 0.303 0.957
| b 0500 0.561 0.321 0.387 0.853 0.512 0.260 0.290 0.881 0.512 0.225 0.235 0.918
o ¢ -0.040 -0.041 0.017 0.017 0.941 -0.041 0.014 0.013 0.949 -0.041 0.012 0.012 0.947
6  3.000 4.092 2.392 3.141 0.845 3.747 1.764 2.084 0.910 3.417 1.344 1.388 0.929
81 -0.500 -0.500 0.057 0.057 0.938 -0.502 0.047 0.045 0.949 -0.500 0.040 0.041 0.945
B2 0.500 0.496 0.098 0.096 0.961 0.497 0.081 0.080 0.947 0.501 0.068 0.066 0.949
ﬁ a 2.000 2.136 0.498 0.565 0.942 2.076 0.363 0.363 0.945 2.072 0.315 0.324 0.955
< b 0.500 0.524 0.324 0.365 0.847 0.512 0.267 0.283 0.896 0.535 0.242  0.248 0.928
c 0.000 -0.002 0.017 0.017 0.957 0.000 0.014 0.015 0.933 -0.001 0.012 0.012 0.947
6  3.000 4.305 2.647 3.595 0.884 3.855 1.884 2.389 0.912 3.328 1.390 1.420 0.914
81 -0.500 -0.501 0.059 0.060 0.954 -0.501 0.048 0.048 0.957 -0.501 0.042 0.043 0.947
= B2 0.500 0.505 0.101 0.095 0.958 0.498 0.082 0.084 0.942 0.491 0.071 0.068 0.953
= a 2.000 2.204 0.593 0.736 0.947 2.098 0.397 0.422 0.957 2.052 0.323 0.310 0.959
b 0.500 0.563 0.356 0.399 0.876 0.532 0.291 0.310 0.896 0.505 0.249 0.256 0.901
° ¢ 0.040 0.038 0.018 0.018 0.945 0.040 0.015 0.015 0.946 0.040 0.013 0.013 0.947
6  3.000 3.996 2.383 3.060 0.880 3.674 1.926 2.039 0.923 3.561 1.618 1.780 0.932
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c=-0.04, n=1000 c=-0.04, n=1500 c=-0.04, n=2000

Figure 2: Plot of the true ¢ (t) and the empirical point-wise percentiles (5, 10",
50" 90" and 95 of the estimates for ¢ (t) when ¢ = 1.
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c=-0.04, n=1000 c=-0.04, n=1500 c=-0.04, n=2000

c=0.04, n=1000 ¢=0.04, n=1500

15

0 2 4 0 2 4 0 2 4

Figure 3: Plot of the true g (t) and the empirical point-wise percentiles (5%, 10"
50" 90" and 95) of the estimates for ¢ (t) when ¢ = 3.
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c=-0.04, n=1000 _.*’

0 10 20

Figure 4: Plot of the true A (t) and the empirical point-wise percentiles (5%, 10"
50" 90" and 95) of the estimates for Ag () when § = 1.
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¢=-0.04, n=1000 | .*

Figure 5: Plot of the true A (t) and the empirical point-wise percentiles (5%, 10t
50" 90" and 95) of the estimates for Ag () when § = 3.
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4 Application to the malaria data

We consider data from a randomized placebo-controlled trial of chemoprevention
for malaria in young children conducted in Ghana between September, 2000 and
June, 2004 [5]. A total of 2485 infants with mean age 2 months (s.d. = 0.61
month) were enrolled when they attended the immunization clinic for a dose
of diptheria-pertussis-tetanus (DPT) vaccine. They were randomized to receive
placebo or sulfadoxine-pyrimethamine (SP) to prevent malaria at their subsequent
immunization visits. The participants were scheduled to receive 4 doses of inter-
vention/placebo intermittently, namely, at 1 month, 2 months, 7 months and 10
months after enrolment. Since the intervention effect of SP is the main issue to be
investigated in the study, we choose the date at which the first dose of SP /placebo
was given to each subject as the origin of time at risk in the analysis. Tests for
malaria were performed on children attending the health facilities with a febrile ill-
ness. Cases with malaria parasites in the blood confirmed by microscopy, together
with history of fever or temperature > 37.5 degree Celsius were defined as cases
of malaria. To avoid double counting of the same malaria episode, cases recorded
in children who returned to the clinic with malaria within 7 days after an initial
diagnosis of malaria were ignored. The planned follow-up time for all children was
7 = 24 months. Some participants were lost to follow up during the study period
and were treated as censored observations at which the censoring times were the
times at last follow-up. 89% (1103/1242) of the children in the placebo group
and 88% (1088/1243) of the children in the SP group completed the full follow-up
period. Among all those infants, 71.5% of them had at least one malaria episode
during the follow-up.

The covariates considered in this study are infants’ age at baseline (age) and the
seasonal transmission of malaria (season, 1: rainy, 0: dry). Most cases of malaria
occurred during the rainy season (July to November in Ghana), coinciding with the
seasonal increase in the mosquito population. Since the participants were followed
for a nearly two-year time span, season must be considered as a time dependent
variable.

Figure @ shows the event times of a randomly selected sample (100 individuals
from both groups) from the data. Through a visual inspection of the density of
event time dots between the two groups, there is some evidence that the number
of events in the intervention group is much smaller than that in the control group
in the month right after each intervention administered to subjects of the interven-
tion group, but the numbers are similar about one month after each intervention,
consistent with the rapid waning of the intervention effect. Moreover, if we fo-
cus on the intervention effect in the long run, say from 15 months after the first
intervention, it seems that we can find more malaria episodes in the intervention
group than in the control group. Therefore, a model which can take into account

15



Figure 6: A random sample of the participants with their records of malaria infec-
tions during the follow-up.
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o - first malaria infection, A, +, X, ¢ are respectively first, second, third, fourth
recurrent infections; solid line: indicating the re-organized times (in month) for
the 4 doses, namely ¢ = 0 for the first dose, ¢t = 1 for the second dose, t = 6 for the
third dose and ¢ = 9 for the fourth dose; dashed line: indicating the time ¢ = 15
since the first dose.
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Table 3: Estimation results for the malaria data based on the standard Andersen-
Gill model and the proposed model.

parameter est se

A -0.1380 0.0364
A-G season 1.5075 0.0437
age 0.1090 0.0286

a 1.5037 0.1591
b 0.3959 0.1528
c -0.0220 0.0119
MPLE o 3.8764 1.1939

season 1.5115 0.0437
age 0.1083 0.0285

long-term intervention effects may be necessary.

In the first analysis, we assumed the intervention effect to be constant by fitting
the standard Andersen-Gill model to the data with Z = 1 if the subject was in the
intervention group and Z = 0 otherwise. The results were summarized in the first
part of Table . From this analysis, there is a 12.9 percent (BZ = —0.1380; 95%
CI=[-0.2093, —0.0667]) reduction in the risk of malaria among those who received
intervention relative to those who received placebo, with adjustment to seasonal
effect and age at enrollment. As expected, the rainy season is strongly associated
with the risk of malaria (Bseason = 1.5075; 95% CI=[1.4218,1.5932]). We also
observe that the risk of malaria is positively associated with infants’” age at entry

To describe how the effect of SP varied over time and to assess the intervention
effect in the long run, we apply our proposed model and the MPLE estimation
method to the data. The estimates for the regression parameters are summarized
in the second part of Table[3] It is seen that the estimates for wet season and age
at entry are almost identical to those based on the standard Andersen-Gill model.

Figure [7| shows the plot of the logarithm of the hazard ratio (HR) of a treated
individual against an untreated individual over time by keeping the season and age
at entry at some fixed values. As expected, the graph indicates a steep reduction
in the risk of malaria immediately after each dose, and the protective efficacy (1 -
HR) declined gradually over time. The estimated value of § was 3.88 that led to
a relatively stable HR for about 1 month after each dose of SP. Interestingly, the
logarithm of the HR immediately after the second dose was much lower than that
after the first dose, consistent with a residual effect of the first intervention per-
sisting until administering of the second intervention about a month later. There
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was no evidence of a residual effect when the third dose was administered about 5
months later. From 2.5 to 3 months after each dose, the log HR curve started to
go above the horizontal axis, indicating slightly increased risk of malaria infection
among subjects in the intervention group. However, there was no clear evidence
that the individuals became more vulnerable after receiving SP, as we can also see
from Table |3 that the parameter ¢ is not significantly different from zero at the
5% level.

The estimated cumulative baseline intensity functions for the two models are
presented in Figure[8] Again, the two estimated functions are similar to each other,
both showing a roughly linear growth rate in the baseline cumulative intensity over
time.

Seasonality has a major impact on the risk of malaria disease. The risk of
malaria in the dry season is only exp(—1.5115) = 22% of that in the rainy season.
Noteice that the estimated value of a is about the same as the estimated seasonal
effect, meaning that during the rainy season, the chemoprevention is able to control
the risk of the disease at the dry season level, at least in the short run. Hence these
data support the policy of implementing chemoprevention only in rainy season.
Suppose it is desirable to retain a high level of protective efficacy throughout the
observation period such that PE(t) > ¢ - PE, for t > dy, say for ¢ = 0.8 or 0.9, we
can determine the optimal time for the second dose, namely ds, such that

1 —exp{—g(dy —dy;v)} =(-PEg

is satisfied where PEg = 1 —exp {—G (dy;y)} is the protective efficacy immediately
after the first dose. Based on the estimated g (¢;) and by setting ¢ = 0.8, it is
easy to solve that do = 30.5 days after the first dose. Now given the second dose
administered at time dy = 30.5, we can continue to find ds based on the same rule,
such that

1- exp{—g (d:s - dl;’Y) ) (dz - d2;’7)} = (- PEq,

and we obtain d3 = 60.7 (30.2 days after the second dose) and dy = 90.5 (29.8
days after the third dose) iteratively. We note that the obtained intervals, (d; —
di—1) (j = 2,3,4), are all very close to each other. Therefore, for a convenient
implementation in real clinical practice, we may take 30 days as the target interval
between 2 successive doses of SP in a sense that the protective efficacy of the
intervention would be kept at least 80% of its initial level throughout. Moreover,
by setting ¢ = 0.9, the optimal times are dy = 25.7, d3 = 52.1 and dy = 77.9 with

the target interval around 26 days between any two successive doses of SP.
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Figure 7: Plot of the estimated logarithm of the time-varying hazard ratio of a

treated individual against an untreated individual based on the proposed method,
with all other covariates being held fixed.
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Figure 8: Plot of the estimated cumulative baseline hazard function based on the
standard Andersen-Gill model and the proposed model. black line: estimated
cumulative baseline hazard based on the proposed model; grey line: the estimated
cumulative baseline hazard based on the standard Andersen-Gill model.

20



5 Discussion

We proposed a flexible exponential-like function to model the time-varying in-
tervention effect of malaria chemoprevention in the framework of Andersen-Gill
model. The incorporated parameter ¢ allows for more flexible shapes in the mod-
eled function, for example, 6 > 1 indicates a slowly declining intervention effect
during the early period after the intervention, while § < 1 will lead to a rapidly
declining effect shortly after the administration of the intervention. The cumula-
tive intervention effect as described in helps to explain the enhanced protection
phenomenon observed in the malaria data set that malaria infections within one
month after the second dose of SP were very rare. The parameter c is incorporated
to account for the possible unintended long-term negative effect of the intervention
due to reduced acquisition of natural immunity. As stated in [5] and [I4], the in-
termittent interventions gave a high degree of protection against malaria infection,
but may also impair natural acquisition of immunity to some degree, which might
increase the risk after the intervention effect wanes. From our statistical findings,
the estimated parameter c is a very small negative number that is not significantly
different from 0. There might be a small negative long-term effect associated with
repeated administration of preventive intervention, but this effect is overweighed
by the benefits from the intervention. Furthermore, this negative effect will be
expected to decay over time as those in the intervention group catch-up their nat-
ural immunity after the intervention has waned, a feature we did not include in
the model because the study follow-up was only two years.
In another simulation study with similar setup as in Section 3, we let

—2t+2 0<t<1.05,
g(t) =
—0.1 t>1.05

to evaluate the flexibility and capability of the proposed model and method, even
when the intervention is declining in a linear rate. The working model is based on
g(t) as specified in (3)). The true function, the mean estimated g(¢) and some point-
wise percentiles are plotted in Figure [9] which shows that the proposed method is
able to approximate the shape of g(t) even if it is a straight line as the true function
mostly falls in the center of the estimated curves.

We used a parametric function to model the potential time-varying intervention
effect. The exponential function is widely used in medical applications to describe
declining intervention efficacy, and it is convenient to define a threshold based on
the parametric function as the time to give a booster dose. Therefore, in this study
we consider the definition of the time-varying protective efficacy in the framework
of Andersen-Gill model, that is, PE(t) = 1 — HR(¢), and we suggest that the time
to give a booster dose of intervention is when the PE(¢) starts to drop below a
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n=1500

Figure 9: Plot of the approximation to the linear intervention function with sample
size n = 1500. solid line: the true intervention function g (¢); red dashed line:
empirical point-wise percentiles (5", 10", 50", 90" and 95) of the estimates for

g(t).

given fraction of its initial level, with this fraction being chosen by taking into
account the feasibility and safety of more frequent intervention administrations.

Intermittent administration of antimalarial drugs to prevent malaria is increas-
ingly used by malaria control programmes. Optimal protection requires that the
interval between doses is carefully chosen to keep the individual at a low risk of
disease. The methods we have described can be used to determine the target inter-
vals between interventions needed to maintain a given minimum level of efficacy.
The choice of interval in practice will be a balance between efficacy and the feasi-
bility and tolerability of more frequent dosing. The proposed approach may also
be applicable to other interventions that are administered intermittently, such as
vaccines that require booster doses but for which good surrogate biomarkers of
protection are not available.

Analysis of multiple recurrent events data is generally complicated by its depen-
dence nature. In this paper, we specify the counting process N;(t) of event recur-
rences for subject 7 as having an intensity process in Andersen-Gill’s multiplicative
form in . With a known dependence structure from the basic knowledge of the
underlying problem, one may consider the time-shifted hazard form A(t —S; n,(—))
as discussed in [I8] or one of the many other forms reviewed in [I7]. Note that
the treatment of the asymptotic theory for the estimator would also be different
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if adopting a different model for A such as the dynamical recurrent events model
A(t — Sin,¢—)) [16]. Nevertheless, the choice of the modelling approach depends
on many other factors such as the background knowledge of the problem as well
as the hypotheses to be addressed in practice.
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