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Abstract 

The North American signal crayfish (Pacifastacus lenisculus) has invaded freshwater 

ecosystems across Europe. Recent studies suggest that predation of 

macroinvertebrates by signal crayfish can affect the performance of freshwater 

biomonitoring tools used to assess causes of ecological degradation. Given the 

reliance on biomonitoring globally, it is crucial that the potential influence of invasive 

species is better understood. Crayfish are also biogeomorphic agents, and therefore, 

the aim of this study was to investigate whether sediment-biomonitoring tool outputs 

changed following signal crayfish invasions, and whether these changes reflected 

post-invasion changes to deposited fine sediment, or changes to macroinvertebrate 

community compositions unrelated to fine sediment. 

 

A quasi-experimental study design was employed, utilising interrupted time series 

analysis of long-term environmental monitoring data, and a hierarchical modelling 

approach. The analysis of all sites (n=71) displayed a small, but statistically 

significant increase between pre- and post-invasion index scores for the Proportion of 

Sediment-sensitive Invertebrates (PSI) index biomonitoring tool (4.1, p = <0.001, 

95%CI: 2.1, 6.2), which can range from 0 to 100, but no statistically significant 

difference was observed for the empirically-weighted PSI (0.4, p = 0.742, 95%CI: -

2.1, 2.9), or fine sediment (-2.3, p = 0.23, 95%CI: -6.0, 1.4). Subgroup analyses 

demonstrated changes in biomonitoring tool scores ranging from four to 10 

percentage points. Importantly, these subgroup analyses showed relatively small 

changes to fine sediment, two of which were statistically significant, but these did not 

coincide with the expected responses from biomonitoring tools. The results suggest 

that sediment-biomonitoring may be influenced by signal crayfish invasions, but the 

effects appear to be context dependent, and perhaps not the result of biogeomorphic 



activities of crayfish. The low magnitude changes to biomonitoring scores are 

unlikely to result in an incorrect diagnosis of sediment pressure, particularly as these 

tools should be used alongside a suite of other pressure-specific indices. 
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1. Introduction 

Biological invasions of non-native species (herein invasive species) represent a 

significant threat to global biodiversity (Simberloff et al. 2013). Invasive species can 

exert strong pressures on the resident native biota of invaded habitats, both directly, 

through predation, competition or displacement, and indirectly by disrupting trophic 

dynamics (Lodge et al. 2012; Early et al. 2016), and altering the physical and 

chemical characteristics of the habitats that they invade (Johnson et al. 2011; Fei et al. 

2014; Greenwood & Kuhn 2014). With freshwater invasions expected to increase as a 

result of climate change and globalisation, invasive species have the potential to result 

in widespread ecological impacts; defined as measurable changes to the state of an 

ecosystem (Ricciardi et al. 2013; Kumschick et al. 2015). 

 

In Europe, one widespread freshwater invasive species is the North American signal 

crayfish (Pacifastacus leniusculus). Signal crayfish are omnivorous, opportunistic 

feeders, consuming algae, detritus, macrophytes, benthic macroinvertebrates, fish and 

other crayfish (Harvey et al. 2011). Recent research has suggested that predation on 



macroinvertebrates by signal crayfish (McCarthy et al. 2006; Mathers et al. 2016a), 

can lead to changes to biomonitoring tool outputs (Mathers et al. 2016b). Given the 

reliance of regulatory agencies globally on biomonitoring tools to diagnose ecological 

degradation in freshwater ecosystems (Birk et al. 2012), it is crucial that the potential 

for invasive species to influence tool outputs is better understood (MacNeil et al. 

2013). 

 

Sediment-specific indices (e.g. Proportion of Sediment-sensitive Invertebrates index; 

PSI, Extence et al. 2013, and Empirically-weighted Proportion of Sediment-sensitive 

Invertebrates index; E-PSI, Turley et al. 2016), which use macroinvertebrate 

community composition, have been developed to monitor fine sediment impacts. The 

PSI index has been shown to exhibit inflated scores following crayfish invasions 

(Mathers et al. 2016b). Higher PSI scores are normally indicative of lower fine 

sediment conditions, however, Mathers et al. (2016b) suggested that the post-invasion 

inflation of PSI scores were likely the result of selective predation by crayfish. Other 

research has shown decreased abundance of Gastropoda, Bivalvia and Hirudinea 

(preferential prey of crayfish; Crawford et al. 2006; Haddaway et al. 2012; Dorn 

2013), and a shift in community composition towards more mobile taxa that are able 

to avoid predation (Mathers et al. 2016a). These taxa generally score highly in the PSI 

index, resulting in a higher overall PSI score being recorded. 

 

Crayfish are considered to be biogeomorphic agents, with the ability to rework 

substrate, increase suspended particulate matter, and alter stream sediment dynamics, 

primarily due to their burrowing in river banks (increasing erosion and bank collapse), 

construction of pits and mounds, their large size, aggressive nature, and general 



movement and foraging on the river bed (Harvey et al. 2011; Johnson et al. 2011; 

Rice et al. 2012; Albertson & Daniels 2016). Therefore, whilst the effects on 

sediment-biomonitoring tool outputs may be the result of shifts in community 

composition from direct predation and/or the resulting changes to food web dynamics, 

they could also be partly the result of alterations to fine sediment conditions (i.e. 

resuspension of deposited fine sediment) caused by signal crayfish - a confounding 

factor that was not investigated by Mathers et al. (2016b). 

 

The aim of this study was to utilise a quasi-experimental study design and interrupted 

time series (ITS) analysis to investigate whether inflation of sediment-biomonitoring 

tool (PSI and E-PSI) scores occurred following signal crayfish invasions, and whether 

this was associated with changes to deposited fine sediment over time, or shifts in 

macroinvertebrate community composition resulting from other effects of crayfish 

invasion (direct or indirect). Interrupted time series analysis is able to estimate the 

effects of an intervention (e.g. invasion), taking account of pre-intervention long-term 

and seasonal trends, and autocorrelation, which are common in ecological 

applications (Friberg et al. 2009). The application of such techniques in epidemiology 

and clinical research is relatively common (Bernal et al. 2016; Gasparrini 2016), 

however its use within invasion ecology is rare (e.g. Brown et al. 2011), likely due to 

the challenges of obtaining long term data for pre- and post-invasion periods. Time 

since invasion is an important consideration when studying the impact of invasive 

species on the receiving ecosystem and therefore, time series data are likely to 

provide important insights into these impacts (Strayer et al. 2006; Kumschick et al. 

2015). 

 



A further aim of this study was to investigate the influence of stream characteristics; 

habitat heterogeneity and percentage of coarse substrate, on invader impacts. A 

stream with high habitat heterogeneity/complexity is likely to provide a greater 

variety of habitat for benthic macroinvertebrate refugia, than those with homogeneous 

habitat, potentially resulting in increased community stability and resilience to 

predation (Brown and Lawson 2010, Kovalenko et al. 2012). Substrate composition is 

a characteristic typically related to longitudinal gradients associated with channel 

gradient, stream power and flow (Church 2002), and is thought to be an important 

driver of macroinvertebrate community composition (Minshall 1984). 

Macroinvertebrate taxa have a variety of habitat preferences as a result of their 

biological traits (Extence et al. 2013), and as such, a stream with a high percentage of 

coarse substrate is likely to be inhabited by a different macroinvertebrate assemblage 

to one dominated by fine sediment. Signal crayfish invasions may impact these 

different assemblages to varying degrees, for example, due to the availability of 

preferential prey items. 

This study was led by the following five hypotheses:  

Hypothesis 1: The family-level PSI and E-PSI index scores are inflated after signal 

crayfish invasions.  

Hypothesis 2: The percentage of fine sediment is lower at sites post-invasion 

compared with pre-invasion.  

Hypothesis 3: The abundances of preferential crayfish prey taxa (e.g. Gastropoda and 

Hirudinea) are lower in the post-invasion periods.  

Hypothesis 4: Changes to PSI and E-PSI index scores in post-invasion periods will be 



greatest at sites with low habitat heterogeneity.  

Hypothesis 5: Changes to PSI and E-PSI index scores in post-invasion periods will be 

greatest at sites with low percentages of coarse substrate.  

 

2. Methods 

2.1. Site selection 

The stream and river sites were selected from a database comprising all past 

macroinvertebrate samples collected by the Environment Agency of England. A 

systematic search of the entire database for “Pacifastacus leniusculus” returned all 

stream and river sites in England where this species was recorded between the year 

1990 and 2014. The mostly family-level taxonomic data created uncertainty whether 

records of the family Astacidae were referring to the native white-clawed crayfish 

(Austropotamobius pallipes), signal crayfish, or other invasive crayfish species. 

Therefore, to avoid misidentifying the timing of the first record of signal crayfish, 

those sites with “Astacidae” recorded prior to the first record of “Pacifastacus 

leniusculus” were removed from the dataset. There were no records of 

“Austropotamobius pallipes” in the outstanding data. For each of the remaining sites, 

the midpoint between the first record of “Pacifastacus leniusculus” and the previous 

sample, was designated as the date of invasion; sites with fewer than four pre-

invasion and four post-invasion samples were subsequently removed from the dataset. 

Finally, for sites on the same watercourse, the site with > 10 pre-invasion samples and 

the greatest number of post-invasion samples was retained, to ensure independence of 

sites. The 71 remaining sites (Fig. 1) had an average (mean) of 22 pre-invasion 



samples, collected over an average period of 14 years, and 10 post-invasion samples, 

collected over an average period of 6.5 years. 

 

 

 

Figure 1. Locations of the selected river sites throughout England. [single column 

fitting] 

 

 

2.2. Sediment measurements 

The substrate composition data within this study consisted of visual estimates of the 

percentage of the substrate composed of bedrock, boulders (≥256 mm), cobbles (64-

256 mm), pebbles/gravel (2-64 mm), sand (≥0.06 and <2.00 mm), and silt and clay 



(<0.06 mm), recorded at the time of each macroinvertebrate sample. The size classes 

for sand, silt and clay were combined to form a substrate class referred to from this 

point forward as fine sediment.  The visual estimate method used to collect these data 

is described in the Standardisation of River Classifications project protocol (EU-

STAR 2004). Briefly, it involves the operator carrying out a visual inspection over a 

given reach, estimating the substrate composition and recording this as a percentage 

of the above classifications. 

 

2.3. Macroinvertebrate sampling and calculation of sediment biomonitoring indices 

The macroinvertebrate data used in this study were collected by the Environment 

Agency using the UK standard method; a standardised three-minute kick sample 

technique using a 900 µm mesh hand net, followed by a one-minute hand search. All 

in-stream habitats identified at the site were sampled in proportion to their occurrence 

(EU-STAR 2004). Family-level taxonomic data were used to calculate two family-

level sediment-biomonitoring indices for each sample, the PSI index (Extence et al. 

2013) and the E-PSI index (Turley et al. 2016).  

 

The PSI index is a biomonitoring tool that is designed to identify the degree of 

sediment deposition in rivers and streams (Extence et al. 2013; Turley et al. 2014). 

The index uses macroinvertebrate sensitivity ratings, which were assigned following 

an extensive literature review, and utilising expert knowledge of biological and 

ecological traits. The E-PSI index was developed using these same broad sensitive 

and insensitive classifications, but employed empirical data to assign indicator 

weightings within them, to improve the sediment-specificity of the index (Turley et 



al. 2016). Both indices result in a score between 0 (high levels of fine sediment), and 

100 (minimal fine sediment). 

 

 

2.4. Statistical analysis 

Interrupted time series analysis using segmented regression was employed to estimate 

the effects of crayfish invasions on biomonitoring tool outputs and fine sediment. A 

hierarchical modelling approach was applied to model differences in baseline levels 

and trends as random effects in R (R Development Core Team 2016). Linear mixed 

effect (lme) models (Pinheiro & Bates 2000) and linear quantile mixed models (lqmm) 

(Geraci 2014) were fitted to the time series data of E-PSI, PSI, and fine sediment, 

from all 71 sites. Both mixed effect models included fixed (invasion progress, time, 

and seasonal variation) and random effects (time and site). Time was a linear variable 

used to model the average trend (fixed effects) and site-specific (random effects) 

deviations from this trend. 

 

An a priori definition of the type of impact (e.g. step change, slope change, 

combination) was necessary to avoid the potential for statistical artefacts to occur 

when testing numerous models (Bernal et al. 2016). Invasion impacts typically 

increase rapidly in the early stages of establishment, leveling-off in the long term 

(Strayer et al. 2006; Ricciardi et al. 2013). Predictions of establishment time for 

signal crayfish suggest that ~50% of invaded sites (at similar latitudes) are 

successfully established within 4 years (Sahlin et al. 2010). Therefore, the post-

invasion periods in this study were modelled as gradual step changes, and a four-year 

establishment period was assumed following invasions (see Fig. 2). Although the 



impacts of some invasive species can take decades to become apparent (Strayer et al. 

2006), this ecologically relevant modelling approach could provide an insight into the 

relatively short-term potential impacts following crayfish invasions. 

 

 

	
 

Figure 2. Conceptual diagram of the gradual step change modelling approach used in 

this study. Solid line represents the regression line (site-specific). Dashed line 

represents the long term and seasonal variation (based on data from all study sites). 

Dotted vertical lines mark the beginning and end of the crayfish ‘establishment’ 

period. [2-column fitting] 

 

The seasonal variations of PSI, E-PSI and fine sediment were modelled using 

harmonic functions of time (Hunsberger et al. 2002; Barone-Adesi et al. 2011). 

Invasion progress was coded between 0, prior to the invasion commencing (the 

midpoint between the first “invaded” sample and the previous sample), and 1, 

following the end of the 4-year “establishment period”, depending on the samples 



temporal position within the establishment period (e.g. a sample was coded as 0.5 if it 

occurred halfway through the establishment period). 

 

Model assumptions were checked, and the residuals of the lme models showed some 

degree of heteroscedasticity. Despite this, they provide a useful indication of the 

magnitude of effects. The lqmm is less reliant on distributional assumptions, but in 

this study comes at the cost of precision, and therefore the lqmm results are only 

presented in the supplementary material (Table S1), to allow comparison of the effect 

estimates. After controlling for seasonality there was little evidence of autocorrelation 

of residuals.  

 

The multiple associations tested were based on specific a priori hypotheses, and in 

these circumstances it has been suggested that adjustments for family-wise error rates 

(e.g. Bonferroni-Holm corrections) can be overly conservative (Moran 2003), and 

therefore in this study p-values were not adjusted. 

 

2.5. Subgroup analyses 

Subgroup analyses were conducted to investigate whether the effect of crayfish on 

biomonitoring tool scores and fine sediment conditions varied as a function of habitat 

characteristics. The dataset of 71 sites was split into three roughly equal groups based 

on (i) substrate/habitat heterogeneity, and (ii) percentage of coarse substrate. 

 

2.5.1. Habitat heterogeneity 

The 71 sites were ranked and divided into three subgroups according to their median 

substrate Shannon diversity (Heterogeneity Group 1 – 3; low to high). This was 



calculated using the Shannon diversity of each samples’ substrate composition in the 

pre-invasion period. The Shannon Diversity Index (H) has been previously used as a 

measure of habitat heterogeneity in ecological and geomorphological research 

(Yarnell et al. 2006), and is calculated using the following formula: 

H = -Σ pi ln pi 

 

where pi is the proportion of the streambed categorised as substrate size class i. 

 

2.5.2. Percentage of coarse substrate 

The 71 sites were also ranked and divided into three subgroups based on the median 

of their pre-invasion estimates of coarse substrate (Substrate Group 1 – 3; low to high 

% coarse substrate), which ranged from 5% – 100%  (boulders, cobbles, pebbles and 

gravel). 

 

2.5.3. Shifts in community composition 

Differences in the community composition between pre- and post-invasion periods 

were examined in PRIMER 7 software via non-metric multidimensional scaling 

(NMDS) centroid plots and Bray-Curtis similarity coefficients. Analysis of similarity 

(ANOSIM; 999 permutations) was conducted to examine if the differences in 

communities were statistically different (R values: <0.25, barely distinguishable; 

0.25-0.75, separated but overlapping; >0.75, well separated; Clarke & Gorley 2001). 

To account for the variation in community composition over all 71 sites, ordination 

analyses were carried out on the subgroups. The similarity percentage function 

(SIMPER) was used to determine which taxa contributed most to the statistically 

significant differences between pre- and post-invasion community compositions. In 



order to use the available data, which was collected using a semi-quantitative 

technique, the raw abundance values were organised into ordinal classes  (1 = ≤ 9, 2 = 

10 – 32, 3 = 33 – 99, 4 = 100 – 332, 5 = 333 – 999, 6 = ≥1000).  

 

3. Results 

3.1. Sediment biomonitoring and fine sediment 

The results demonstrate that the interrupted time series analysis of all sites combined, 

showed a small, but statistically significant increase between pre- and post-invasion 

PSI scores (4.1, p = <0.001, 95%CI: 2.1, 6.2), with no such evidence of differences 

for E-PSI (0.4, p = 0.742, 95%CI: -2.1, 2.9) or fine sediment (-2.3, p = 0.227, 95%CI 

-6.0, 1.4). Visualisations of the lme models are provided in the supplementary 

material (Fig. S1). 

 

3.2. Habitat heterogeneity 

Results from the analyses of sites grouped by their habitat heterogeneity highlight low 

magnitude changes to PSI scores. Statistically significant increases were evident in 

post-invasion periods for sites in Heterogeneity Group 2 (5.7, p = 0.002, 95%CI: 2.2, 

9.3) and Heterogeneity Group 3 (7.4, p <0.001, 95%CI: 4.0, 10.7). 

  

E-PSI scores displayed low magnitude changes in post-invasion periods, with 

statistically significant changes in Heterogeneity Group 1 (-5.3, p = 0.027, 95%CI: -

10.0, -0.6) and Heterogeneity Group 2 (4.9, p = 0.026, 95%CI: 0.6, 9.2).  

 

A reduction in fine sediment was observed in post-invasion periods for sites in 

Heterogeneity Group 1 (-9.9, p = 0.011, 95%CI: -17.5, -2.2), but there was no 



evidence of changes to fine sediment in Heterogeneity Group 2 (0.0, p = 0.987, 

95%CI: -5.9, 5.8) or Heterogeneity Group 3 (3.0, p = 0.322, 95%CI: -2.9, 8.9). 

 

3.3. Coarse substrate 

Analysis of the sites grouped by their percentage of coarse substrate demonstrated 

statistically significant increases in PSI scores post-invasion compared with pre-

invasion, at sites with intermediate percentages of coarse substrate (Substrate Group 

2: 10.1, p <0.001, 95%CI: 6.8, 13.3). Other subgroups of sites showed no evidence of 

changes to PSI scores following crayfish invasions. 

 

Low magnitude effect size estimates were shown for E-PSI scores, with statistically 

significant changes to post-invasion scores, in Substrate Group 2 (4.6, p = 0.024, 

95%CI: 0.6, 8.6), and Substrate Group 3 (-4.2, p = 0.034, 95%CI: -8.0, -0.3). 

 

The results from the analyses of fine sediment within the coarse substrate groups, 

displayed a statistically significant decrease in fine sediment (-10.9, p = 0.011, 

95%CI: -19.3, -2.6) for sites with a low percentage of coarse substrate (Substrate 

Group 1). Other subgroups demonstrated no evidence of changes to fine sediment 

following crayfish invasions. 

 

3.4. Shifts in community composition 

Centroid NMDS ordination plots of all sites indicated some dissimilarities in 

macroinvertebrate community composition (ANOSIM p <0.001) associated with 

crayfish invasion but with substantial overlapping (R value of 0.232). Subgroup 

analyses illustrated dissimilarities (with partial overlapping) between pre- and post-



invasion communities, which coincided with those ITS subgroup analyses that were 

found to have statistically significant changes to their post-invasion PSI or E-PSI 

scores  (Figs 3e and 3f). The degree of separation between pre- and post-invasion 

community compositions within subgroups indicated a statistically significant 

separation for Heterogeneity Group 3 (ANOSIM: R = 0.333, p <0.001), and Substrate 

Group 2 (ANOSIM: R = 0.329, p <0.001). Although the ITS analyses highlighted 

differences in post-invasion index scores in Heterogeneity Group 1 and Heterogeneity 

Group 2, ANOSIM indicated that whilst there were statistically significant differences 

in community compositions there was substantial overlapping (R = 0.226, p <0.001 

and R = 0.152, p = 0.02, respectively). A summary of all ANOSIM values is 

presented in the supplementary material (Table S2). 

 

SIMPER identified that nine of the 10 taxa most responsible for driving the 

differences in the subgroups pre- and post-invasion community compositions, were 

identical, with consistent increases in abundance of Hydrobiidae, Gammaridae, 

Oligochaeta, Baetidae, Chironomidae, Simuliidae and decreases in Sphaeriidae, 

Asellidae, Hydropsychidae (Table S2). 

 

 

	



	
Figure 3a-g. Non-metric dimensional scaling centroid plots of benthic 

macroinvertebrate community composition for all sites, and sites split into subgroups 

based on their (i) habitat heterogeneity and (ii) percentage of coarse substrate (both 

groups: 1-3 represents low-high). [2-column fitting]  

 



4. Discussion 

4.1. Fine sediment 

Despite crayfish being considered biogeomorphic agents, the results of this study 

provide limited evidence of changes to deposited fine sediment conditions following 

crayfish invasions. Nevertheless, in agreement with recent research focused on rusty 

crayfish (Orconectes rusticus), which observed reduced accumulation of fine 

sediment in invaded streams (Albertson & Daniels 2016); two of the subgroup 

analyses demonstrated statistically significant, low magnitude declines in fine 

sediment (approximately 10 percentage points). Declines in deposited fine sediment 

may be the result of crayfish activity (e.g. foraging, general movement) on the 

streambed mobilising deposited fine sediment (Harvey et al. 2014; Albertson & 

Daniels 2016; Cooper et al. 2016; Rice et al. 2016). The lack of a consistent effect on 

fine sediment in the analysis of all sites, and across subgroup analyses, suggests that 

the influence of signal crayfish on fine sediment may be context dependent, perhaps 

confounded by site-specific characteristics such as local bank biophysical properties 

(Faller et al. 2016) affecting fine sediment inputs associated with burrowing in river 

banks (Harvey et al. 2014). Other factors, such as site-specific changes to flow 

dynamics and catchment land use over time, may also be confounding the time series 

analysis of substrate compositon (Allan 2004; Dewson et al. 2007). 

 

 

4.2. Biomonitoring tools outputs  

Results from this study suggest that signal crayfish invasions may influence the scores 

from sediment-biomonitoring tools. In agreement with previous work (Mathers et al. 

2016b), the PSI index was marginally inflated in post-invasion periods in the overall 



analysis, as well as in a number of subgroup analyses. The E-PSI index is slightly less 

affected, showing no inflation in the overall analysis, and changes of lower magnitude 

(compared to PSI) in the subgroup analyses. Importantly, the relatively low 

magnitude changes to both biomonitoring tool scores did not coincide with the 

expected alterations to fine sediment conditions. This suggests that changes to scores 

in post-invasion periods may not be the result of genuine geomorphic effects of 

crayfish. Instead, the changes to community composition (indicated by biomonitoring 

tool scores) may be the result of consumptive and/or non-consumptive effects of 

crayfish predation (Sih et al. 2010; Dorn 2013), and/or indirect effects, such as 

altering predator-prey dynamics of native fauna or modifying other aspects of the 

habitat (Byers et al. 2010). Similarly, to the fine sediment analyses, the lack of a 

consistent change to biomonitoring tool scores across all sites and subgroups, 

suggests that site-specific characteristics (abiotic and/or biotic) may influence the 

degree to which biomonitoring tools are affected by signal crayfish. Nevertheless, the 

effect estimates for both indices were relatively small (maximum of 10.1 index 

points) and are unlikely to result in an incorrect diagnosis of sediment pressure (or 

lack of). 

 

The disparity between post-invasion PSI and E-PSI scores may be the result of the 

different methods of index development and calculation. The development of the 

family-level E-PSI index also involved the removal of a number of “sensitive” 

families from its calculation, due to their indifference to reach scale estimates of fine 

sediment (Turley et al. 2016). 

 

4.3. Habitat heterogeneity 



The subgroup of sites with more homogeneous substrate was predicted to be the most 

probable to exhibit differences between pre- and post-invasion biomonitoring outputs 

as a result of crayfish predation. These sites are likely to afford the least resilience to 

crayfish predation, providing fewer refugia (Brown & Lawson 2010), and are likely 

inhabited by a community of fewer species (Tews et al. 2004). In partial agreement 

with this prediction, the subgroup had a small, but statistically significant decrease in 

post-invasion E-PSI scores, and analysis of community composition indicated 

dissimilarities between pre- and post-invasion periods. However, the effect estimate 

and confidence interval with a lower limit of almost zero, suggests that the magnitude 

of the effect on E-PSI is low. 

 

The PSI index exhibited inflated scores of low magnitude in the post-invasion period 

at sites with moderate and high habitat heterogeneity, but not at those with low 

heterogeneity. Heterogeneous substrate is often associated with zones of high velocity 

and well oxygenated water, areas that are typically inhabited by a high proportion of 

rheophilic and relatively fast-moving taxa (Dunbar et al. 2010), many of which are 

rated as highly sensitive to fine sediment. The inflated post-invasion scores and 

observed shifts in community composition at these sites may be the result of the 

crayfish having difficulties capturing fast-moving taxa, and instead selectively 

predating on slower moving taxa (many of which are rated as tolerant of fine 

sediment) resulting in a higher PSI score. A number of other studies have also 

suggested that more mobile taxa dominate in areas where crayfish are abundant 

(Nyström et al. 1999; Usio & Townsend 2004). 

 

4.4. Coarse substrate 



Longitudinal gradients in rivers and streams, and the associated transition from coarse 

substrate to fine sediment are important influencing factors of macroinvertebrate 

community composition (Minshall 1984). Sites in this study with an intermediate 

percentage of coarse substrate appear to be the most affected by crayfish invasions, in 

terms of their PSI scores, E-PSI scores and community composition. This effect may 

be the result of similar processes to those hypothesised for the observed changes to 

PSI scores at sites with high habitat heterogeneity. The sites in this subgroup 

(Substrate Group 2) have relatively equal proportions of coarse substrate and fine 

sediment, and as a result, sediment-sensitive and sediment-tolerant taxa are likely to 

be well represented in the macroinvertebrate community. Selective crayfish predation 

on slower moving, sediment-tolerant taxa would therefore result in inflated index 

scores. 

 

4.5. Community composition 

Invasive crayfish have been shown to alter native macroinvertebrate communities, 

reducing diversity and biomass, particularly of gastropods and bivalves (Klocker & 

Strayer 2004; Crawford et al. 2006; Dorn 2013). The consistent declines in 

Sphaeriidae (bivalve) abundance in post-invasion periods compared with pre-invasion 

periods, in this study, agree with this previous research. The sedentary nature of this 

taxon is likely to result in a poor ability to evade predation, making them easy prey 

items. In contrast, a number of taxa (i.e. Hydrobiidae, Gammaridae, Oligochaeta, 

Baetidae, Chironomidae, and Simuliidae) were consistently identified as having a 

greater abundance, in post-invasion periods. These taxa are likely to have biological 

traits that allow them to persist in the presence of crayfish (e.g. high mobility, high 

fecundity, multivoltine), and/or have innate or inducible defence mechanisms. For 



example, Gammarus pulex (Gammaridae) have been shown to increase locomotion, 

vertical migration and drift in the presence of predators (Haddaway et al. 2014). 

 

4.6. Fine sediment quantification 

Deposited fine sediment is a challenging environmental characteristic to quantify. It is 

unclear which sediment quantification technique is the most biologically relevant 

(Sutherland et al. 2012), or at which spatial or temporal scale sediment should be 

quantified, to detect modifications arising from crayfish activity (Harvey et al. 2011). 

The visual estimate technique used in this study is a reach scale estimate that is likely 

to have biological relevance as it relates to niche availability (Turley et al. 2017). The 

technique is intended as a rapid assessment approach, but has been criticised for its 

subjectivity and the associated operator error that can result in a low precision (Wang 

et al. 1996). In this study it was anticipated that the standardised training provided to 

the operators responsible for carrying out the visual estimate would have reduced the 

subjectivity and optimised the precision of the technique (Roper & Scarnecchia 

1995). 

 

4.7. Limitations 

In addition to the challenges concerning the quantification of fine sediment 

conditions, there are other noteworthy limitations of this study. The modelling 

approach and structure may have resulted in an over- or under-estimation of 

differences between pre- and post-invasion periods. Nevertheless, it was necessary to 

define an a priori model, and the model utilised in this study was based on invasion 

ecology theory and available knowledge of signal crayfish invasion dynamics (Sahlin 

et al. 2010; Ricciardi et al. 2013). In addition, the objective approach to identifying 



the date of invasion may have resulted in an underestimation of the differences 

between pre- and post-invasion periods. Due to the challenges of detecting crayfish at 

low densities (Peay 2003), it is possible that the sites were invaded prior to the first 

detection, however, at low densities their impacts are likely to be less significant.  

Lastly, although the lme model residuals showed some signs of heteroscedasticity, 

which may have influenced estimates of statistical significance, the effect estimates 

are of greater interest, and were broadly similar to the lqmm results (which have less 

distributional assumptions) presented in Table S1. 

 

4.8 Reliability of biomonitoring in the presence of invasive species 

With current water legislation placing a strong emphasis on the use of biomonitoring 

(Birk et al. 2012), and aquatic biological invasions expected to increase in the future 

(Early et al. 2016), an understanding of the influences of invasive species on native 

biodiversity and their effect on the performance of biomonitoring tools is crucial. The 

context dependency shown in this study highlights the need for investigation of the 

potential for site-specific effects caused by invasive species (Klose and Cooper 2012). 

Invader impacts are likely to be species-specific, impacting receiving communities 

and biomonitoring schemes to varying degrees. Knowledge of the invaders biological 

traits and ecological preferences (in their native range) may help focus research 

efforts on those species most likely to be impacting on biodiversity and biomonitoring 

(Pyšek et al. 2012). Additionally, investigation of the effects of other pressures, on 

invader impacts and establishment rate/success (Didham et al. 2007, Diez et al. 2012) 

is important for determining the reliability of biomonitoring tools in invaded 

ecosystems. 

 



In order for the impacts of invasions to be realised, data need to be available for both 

pre- and post-invasion periods at a suitable resolution to capture the natural 

community variation, and sampling variation of the outcome variable of interest, and 

ideally for a length of time that exceeds the successful establishment of the invasive 

species. However, studies of this temporal scale are often considered prohibitively 

expensive. The use of regulatory agency data that spans wide geographic areas, and 

which is often collected over multiple years, represents a coarse, but comparatively 

rapid and low-cost approach that can help to inform the protection and management 

of freshwater ecosystems (Dafforn et al. 2016). 

 

5. Conclusion 

The results of this study highlight the potential context dependency and variability of 

invader impacts, with the effect of crayfish invasions on biomonitoring tool outputs 

and community composition appearing to vary between sites. It is recommended that 

pressure-specific biomonitoring approaches be utilised in conjunction with the full 

range of biomonitoring tools available to the user, to assist with evaluating the most 

probable causes of ecological degradation in rivers and streams. 

 

Further research is needed to disentangle the multitude of possible factors, such as the 

presence of multiple pressures (e.g. channel modification, water quality and climate 

change), and extreme events (e.g. droughts and floods), which may facilitate more 

severe impacts on biodiversity following invasions. Conversely, it is also important to 

identify the characteristics and mitigation measures that can increase ecosystem 

resilience to invasions. Understanding the mechanisms by which invasion impacts are 



facilitated or mitigated is also crucial for the management and protection of aquatic 

ecosystems. 
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