Clinical Infectious Diseases

SUPPLEMENT ARTICLE

A

Infectious Diseases Society of America hiv medicine association

Bayesian Estimation of Pneumonia Etiology:
Epidemiologic Considerations and Applications to the
Pneumonia Etiology Research for Child Health Study

Maria Deloria Knoll,' Wei Fu,'® Qiyuan Shi,' Christine Prosperi,' Zhenke Wu,?’ Laura L. Hammitt,'® Daniel R. Feikin,"? Henry C. Baggett,'™"

Stephen R.C. Howie,'>"*" J. Anthony G. Scott,*"” David R. Murdoch,"®"® Shabir A. Madhi,’" Donald M. Thea,® W. Abdullah Brooks,>*
Karen L. Kotloff.? Mengying Li,"* Daniel E. Park,"?2 Wenyi Lin,2 Orin S. Levine,"” Katherine L. 0'Brien,' and Scott L. Zeger®

'Department of International Health, International Vaccine Access Center, “Department of Biostatistics, *Department of International Health, and “Department of Population, Family and
Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Department of Rheumatology, Johns Hopkins School of Medicine, and ®Division of Infectious Disease and Tropical
Pediatrics, Department of Pediatrics, Center for Vaccine Development, Institute of Global Health, University of Maryland School of Medicine, Baltimore; 'Department of Biostatistics, University
of Michigan, Ann Arbor; Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi; *Division of Viral Diseases, National Center for Inmunizations and Respiratory Diseases,
and "°Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; ''Global Disease Detection Center, Thailand Ministry of Public
Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi; "“Medical Research Council Unit, Basse, The Gambia; "*Department of Paediatrics, University of Auckland,
"Centre for International Health, University of Otago, Dunedin, "®Department of Pathology, University of Otago, Christchurch, and 16Microlﬂology Unit, Canterbury Health Laboratories, Christchurch,
New Zealand; '"Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom; "®Medical Research Council: Respiratory and Meningeal
Pathogens Research Unit, and "*Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South
Africa; “Center for Global Health and Development, Boston University School of Public Health, Massachusetts; 'International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka and
Matlab; “Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, George Washington University, Washington, DC; *Bill & Melinda Gates Foundation, Seattle,
Washington

In pneumonia, specimens are rarely obtained directly from the infection site, the lung, so the pathogen causing infection is deter-
mined indirectly from multiple tests on peripheral clinical specimens, which may have imperfect and uncertain sensitivity and spec-
ificity, so inference about the cause is complex. Analytic approaches have included expert review of case-only results, case-control
logistic regression, latent class analysis, and attributable fraction, but each has serious limitations and none naturally integrate mul-
tiple test results. The Pneumonia Etiology Research for Child Health (PERCH) study required an analytic solution appropriate for
a case—control design that could incorporate evidence from multiple specimens from cases and controls and that accounted for
measurement error. We describe a Bayesian integrated approach we developed that combined and extended elements of attributable
fraction and latent class analyses to meet some of these challenges and illustrate the advantage it confers regarding the challenges

identified for other methods.
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Studies aimed at determining the cause of pneumonia have
inherent analytic challenges because they need to incorpo-
rate multiple types of laboratory measurements that have
imperfect sensitivity and specificity for identifying the causa-
tive agent. This is because such studies may evaluate multiple
specimens with multiple assays to improve sensitivity for each
pathogen being tested, may include control children who do
not have pneumonia to provide information on the test spe-
cificities, and may test for many pathogens to reveal potential
causes for a greater number of cases. However, there are no
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existing analytic methods that can integrate such diverse data
and account for their imperfect sensitivity and specificity to
estimate the proportion of cases caused by each pathogen (ie,
the etiologic distribution or etiology pie). Previous analytic
approaches, which include expert review and latent class anal-
ysis for case-only data and logistic regression and attributable
fraction for case-control studies, have >1 serious limitations
(Figure 1), described in detail by Hammitt et al [1]. In addition,
all of these methods intrinsically assume 100% sensitivity of
the tests; although the expert review and attributable fraction
approaches could account for sensitivity post hoc, there is no
principled way to incorporate uncertainty around the sensitiv-
ity estimates.

Previous pneumonia studies that conducted multiple tests
on cases and controls have acknowledged the limitations of the
available analytic choices when attempting to integrate these
data [2, 3]. Because of insufficient epidemiologic and statistical
tools, those investigators did not attempt to estimate the pneu-
monia etiologic distribution. Instead, they described etiology
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Expert review of data from cases only
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+ Can do for large numbers of pathogens and utilizes control data

* Produces biased results even when the peripheral measures
are unbiased

* Does not naturally integrate results for multiple tests/specimens

Figure 1.

Alternative analytic approaches used for determining pneumonia etiology. Abbreviations: BCX+, positive blood culture; Cor, coronavirus; Hinf, Haemophilus

influenzae; HMPV, human metapneumovirus A/B; NP/OP. nasopharyngeal/oropharyngeal; PCR, polymerase chain reaction; Rhino, rhinovirus; RSV, respiratory syncytial virus;

S. aur, Staphylococcus aureus; Spn, Streptococcus pneumoniae.

for a subset of the cases where they were confident about the
etiology, such as blood or lung aspirate culture-positive cases,
or for a subset of pathogens where measurements were consid-
ered both sufficiently sensitive and specific, such as for tubercu-
losis and pertussis, then designated all remaining cases to have
“unknown” etiology [1]. Thus, pneumonia etiology studies need
an approach that can better integrate data from multiple sources.

The Pneumonia Etiology Research for Child Health
(PERCH) study is a case—control study to estimate the etiol-
ogy of severe and very severe hospitalized pneumonia among
children in 7 lower- and middle-income African and Asian
countries [4]. PERCH aimed to collect as much data to inform
etiology as possible using state-of-the-art diagnostic testing
methods and standardizing clinical and laboratory procedures
across all sites. Nasopharyngeal/oropharyngeal (NP/OP)
specimens were tested by polymerase chain reaction (PCR) for
>30 pathogens in both cases and controls; whole blood was
tested for pneumococcus by PCR in both cases and controls;
blood cultures were performed in cases, detecting many types
of bacterial pathogens; induced sputum collected from cases
was tested for tuberculosis by culture; and select cases had
lung aspirates or pleural fluid collected and tested by culture
and PCR [5, 6]. Each of these measurements has the potential
for error, either in sensitivity or specificity.

In this article, we describe a novel analytic approach used by
the PERCH study, referred to as the PERCH integrated analysis,
designed to address the challenges of incorporating this multidi-
mensional array of evidence to estimate the etiologic distribution
of pneumonia cases. We compare the PERCH integrated analy-
sis to attributable fraction, the current main alternative method,
under conditions relevant for attributable fraction and then illus-
trate the performance of the PERCH integrated analysis under
conditions expanded beyond the limits of attributable fraction.

OVERVIEW OF THE PERCH INTEGRATED ANALYSIS

We begin by contrasting the PERCH integrated analysis to
attributable fraction, a common approach for analyzing case-
control data. Although there are other approaches to analyze
etiology data as described, attributable fraction is the only
one capable of reproducibly estimating an etiologic distribu-
tion using case—control data (albeit only with 1 specimen).

Attributable Fraction Approach

The attributable fraction method for assessing pneumonia eti-
ology is described elsewhere [1], but briefly it compares case
and control results from a single specimen using the odds
ratio (OR) and determines the proportion of all pneumonia
cases attributable to a pathogen by multiplying the attributable
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Text Box. How the PERCH Integrated Analysis Approach Extends Existing Analytic Methods

The PERCH integrated analysis has several appealing features for the PERCH study and other similar etiology studies that are not
addressed by existing analytic choices [7, 8].

1. Incorporates multiple sources of specimen measurements such as culture and polymerase chain reaction of blood, naso-
pharyngeal swabs, lung aspirates, and pleural fluid.

2. Estimates the etiologic fractions for each individual case in addition to the population etiology pie, which means that among
all the cases testing positive for a pathogen, the PERCH integrated analysis determines the probability for that individual’s data
profile of each pathogen being attributed as the cause of the pneumonia.

3. Does not require a pathogen’s odds ratio to be >1 for that pathogen’s data to be included in the analysis.

4. Enables incorporation of useful existing (prior) clinical knowledge regarding the sensitivity (true positive rate) of each
measurement.

5. Uses the new evidence provided by the data about sensitivity (true positive rate) of each measurement, and combines it with
the prior knowledge to produce revised sensitivity estimates (with confidence intervals) that reflect all the evidence.

6. Incorporates the uncertainty about the sensitivities and specificities into the uncertainties for the estimated etiologic fractions.

7. Imputes missing data by treating the missing values as unobserved, which means that cases and controls with partial data are
not excluded from analyses but instead can contribute the evidence they do have.

8. Allows for combining pathogen-specific etiology results into total viral and/or bacterial etiology fractions along with their
credible intervals.

fraction = 1-(1/OR) by the proportion of cases positive for that etiologic distribution and are interpreted as not being causes

pathogen (ie, estimates etiology for the population of cases, but ~ of the disease. Attributable fraction analyses also typically do

not for each individual case) [1, 7]. When multiple etiologies are
being estimated, simulation experiments (pathogens A and B in
Supplementary Figure 1) show that the coefficients are biased
as a result of measurement error and inherent negative corre-
lation among the predictors because in this simulation only 1
predictor can be positive (ie, in a case where pathogen A is the
true cause, pathogen A will more likely be positive and the other
pathogens will more likely be negative relative to other cases).
Because pathogens with an odds ratio <1 result in a zero or neg-
ative attributable fraction, these pathogens do not appear in the

not account for imperfect sensitivity of the tests so implicitly
assume a sensitivity of 100%; if the sum of attributable fractions
across the multiple etiologies assessed is <100%, this implies
that the remainder is due to other pathogens not tested for.

The PERCH Integrated Analysis Approach

The PERCH integrated analysis addresses the 3 major limitations
of the attributable fraction approach: it allows incorporation of
results from multiple tests, incorporates adjustment for imperfect
sensitivity of each test, and estimates etiology for individual cases
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Figure 2.

Estimating the etiologic fraction from a study with 2 types of measurements, 1 with control data, and accounting for imperfect sensitivity of both measurements:

the PERCH integrated analysis method. The PERCH integrated analysis can combine multiple specimens (shown here for 2 but can integrate more specimen/test measure-
ments, such as whole-blood polymerase chain reaction [PCR] and lung aspirate culture and PCR) and adjust each measurement for pathogen-specific sensitivity to estimate
the etiologic fraction using all available evidence. Abbreviations: BCx, blood culture; NP/OP PCR, nasopharyngeal/oropharyngeal polymerase chain reaction; PIA, PERCH
integrated analysis.
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(Text Box and Figure 2) [8, 9]. The analysis uses Bayesian meth-
ods [10] that allow incorporation of current knowledge of sen-
sitivity, including estimates of its uncertainty. Prior knowledge
about sensitivities is required to estimate the etiology when there
are no gold-standard tests. As such, the assumptions regarding
the sensitivity estimates of each test are identified, quantified, and
open to scrutiny rather than overlooked. Like latent class analysis,
the PERCH integrated analysis treats each child’s true cause as
a latent variable and then assumes each test provides evidence
about that cause. In this way, it enables integration of information
from multiple data sources, including case-only data and case—
control data, to estimate probabilities at the individual case level.

Integrating Multiple Measurements, Sensitivity, and Specificity

The concept of how the PERCH integrated analysis integrates
multiple measurements while simultaneously accounting for
the distribution for the unknown sensitivity can be illustrated
by considering data from 2 tests for 1 pathogen. Each test alone
provides an estimate of the etiologic fraction of the pathogen.
Integration can be performed by averaging the results to obtain
a single overall estimate. One could conceive that averaging the
results in a way that draws on the strengths of each may be an
acceptable method to get a single overall estimate that incorpo-
rates the evidence from each test.

We illustrate using an example common to pneumonia eti-
ology studies of integrating NP/OP PCR results from cases and
controls with blood culture data from cases to estimate the etio-
logic fraction due to pneumococcus. Let us assume we observed
9 of 600 (1.5%) hospitalized cases with pneumococcus detected
by blood culture, and based upon prior data from vaccine probe
trials, we assume that blood culture sensitivity is between 5% and
20%, with 95% probability. After accounting for the false nega-
tives, we would estimate the proportion of cases with pneumo-
coccal pneumonia to be between 7.5% and 30% (ie, 7.5% of cases
if the sensitivity is 20%, and 30% of cases if the sensitivity is 5%).
For NP/OP PCR data, let us assume that high density NP/OP
colonization with pneumococcus is a proxy for pneumococcal
pneumonia but with imperfect specificity that can be estimated
using the control data. Suppose that in the cases, we detected
30% with high-density NP/OP pneumococcal colonization and
observed odds ratio of 2 when compared with controls. Using
the attributable fraction method, we would estimate 15% of
cases to have pneumococcal pneumonia if we assume NP/OP
PCR test sensitivity is 100% (ie, 1-[1/OR = 2] x 30%). However,
the study data provide evidence regarding sensitivity of NP/OP
PCR, which is the proportion of the 9 blood culture-positive
pneumococcal cases that also had high-density pneumococcal
colonization. As with the first test, we also use prior knowl-
edge about the sensitivity of the NP/OP PCR. Suppose that the
observed rate of concordance of the 2 tests, combined with the
prior knowledge, leads us to conclude that the true NP/OP PCR
sensitivity is in the range 50%-90% with high probability. If so,

then between 17% and 30% (ie, 15%/90% and 15%/50%) of cases
would be estimated to have pneumococcal pneumonia based on
the NP/OP PCR data. Note that although the estimates from the
2 measurements are not identical, they are relatively consistent
in that both support estimates in the range of 17%-30% (ie, the
overlapping range from the 2 data sources).

The PERCH integrated analysis provides a method that inte-
grates these 2 estimates, the 1 with greater specificity but wide
uncertainty due to small sample size (blood culture) and the 1
with the larger (more statistically stable) number of positive
results but with poor specificity (NP/OP PCR). The PERCH
integrated analysis also incorporates statistical uncertainty of the
observations (eg, if we repeated the study we might have observed
7 or 11 positive blood cultures instead of 9) and the statistical
uncertainty of sensitivity and does this for all pathogens at once.

The Bayesian Concept

Bayesian analyses are similar conceptually to how a clinician
approaches a pneumonia patient regarding the etiology of their
condition. They do so with an informed set of prior expecta-
tions based on the season of the year, knowledge about com-
mon causes of pneumonia, the age of the patient, and so forth.
Likewise, in a Bayesian analysis, the study team must provide
a set of principled evidence-based expectations about the state
of the infection in the population of the cases (ie, etiology and
sensitivity “priors”), before incorporating the evidence from the
observed data. Stating the assumptions regarding the sensitiv-
ity of each measure as was done above is an example of setting
sensitivity priors. If there were no prior information to suggest
that 1 pathogen is more likely responsible for the pneumonia
over another for any given case, then setting every pathogen as
equally likely is an example of an etiology prior. More technical
details on the PERCH integrated analysis methodology are pre-
sented in the PERCH Integrated Analysis Statistical Methods
section and in Table 1, and this is followed by simulation analy-
ses demonstrating its advantage over attributable fraction.

PERCH INTEGRATED ANALYSIS STATISTICAL
METHODS

Technically, the PERCH integrated analysis is what Wu et al
have called a nested partial latent class model, which acknowl-
edges a case’s or control’s observations as error-prone meas-
urements of their unobserved lung infection status [8, 9]. The
“latent class” is the unknown etiology of the cases, and it is
“partially” latent in a case-control analysis because the control’s
lung status is known (no infection). The detection of a patho-
gen in a control specimen indicates a false-positive result for
case etiology attribution, therefore providing direct specificity
estimates for that test result. A nested partial latent class model
assumes that the pathogen infecting a case’s lung is present and
detected in each specimen with a given sensitivity of the test
measurement. Nesting refers to extra latent subclasses within an
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etiologic class to account for situations where results of some
measurements are not independent due to various biological
or laboratory factors, such as poor specimen collection result-
ing in negative results for all pathogens measured. To estimate
the etiologic fraction for each organism, the PERCH integrated
analysis incorporates the etiology and sensitivity priors with the
likelihood of the observed data through a numerical integration
process (Markov chain Monte Carlo [MCMC] [11]) to obtain
probability distributions of the etiology that comprise the main
output from the model (ie, “posterior” distributions). The pos-
terior is the prior distribution updated by the evidence meas-
ured by the study.

Input Parameters Required for PERCH Integrated Analysis

Because the PERCH integrated analysis is a Bayesian analy-
sis, it requires the user to specify 3 key parameters: (1) the
pathogens that will be included in the etiology pie, (2) start-
ing values for the distribution of the etiologic fractions (etiol-
ogy prior distributions) that give pathogens equal or unequal
weight (see below), and (3) the assumptions regarding the
sensitivity (sensitivity prior distributions) for each of the mul-
tiple tests. As a Bayesian method, the key unknowns (etiologic
fractions, sensitivities) are assumed to have probability dis-
tributions that represent our uncertainty about their values.
The analysis starts with the user-specified prior distributions
that reflect our degree of uncertainty before the study and are
updated by the evidence in the data to produce posterior dis-
tributions reflecting our reduced uncertainty after the study.
This approach uses the prior as a starting place. Although pro-
viding starting values for the distribution of the etiology frac-
tion may seem counterintuitive because this is what we aim
to learn from the study, in PERCH we choose “noninforma-
tive” priors that represent our starting assumption that each
pathogen has an equal chance to be the cause for a particular
child. With respect to prior assumptions, non-Bayesian meth-
ods also make them—for example, in the form of the analysis
selected. A complete description is shown in Table 1.

The selected values for the priors need to be evaluated in the
context of a study’s case definitions and eligibility criteria and
whether they should differ across subgroups. The priors are
distributions of plausible (allowable) values, not single values.
For example, when setting the sensitivity prior to support an
assumption of 50% sensitivity, the prior could be set with a range
of 25%-75% to allow for error if the exact magnitude is impre-
cise. When there is truly no prior knowledge about sensitivity, its
probability could be uniform across the range 0%-100%.

Measurements

Gold-standard measurements are assumed to have both per-
fect sensitivity and specificity. Gold-standard measurements
are rare in most situations, but perhaps PCR of pleural fluid
from cases with pleural effusion is an example in pneumonia

studies. Silver-standard measurements are assumed to have per-
fect specificity but imperfect sensitivity (eg, blood culture), and
bronze-standard measurements have both imperfect sensitivity
and specificity (eg, NP/OP PCR). Gold- and silver-standard
measurements are only needed from cases because their spec-
ificity assumption would imply no control would be positive,
whereas bronze-standard measurements are most useful when
also available from controls to provide stronger evidence of
specificity.

Organisms tested for may vary across measurement types.
For example, in the PERCH study, some bacteria have both
silver- and bronze-standard measurements, whereas other
bacteria have silver-standard measurements only and viruses
have bronze-standard measurements only. Organisms may also
have multiple measurements of the same type; for example,
cases and controls may have pneumococcal results from NP/
OP PCR, NP culture, and blood PCR (ie, 3 bronze-standard
measurements).

For simplicity, each measurement is incorporated into the
analysis as a binary variable (positive or negative). Continuous
measurements such as pathogen density are dichotomized using
thresholds. Missing data are treated as unobserved parameters
and are handled during the model estimation using standard
Bayesian methods [10]. The same approach can be used with
a mixture of continuous and binary measures at the expense of
some additional complexity.

Output

There are 2 main etiology outputs from the PERCH inte-
grated analysis: an etiology distribution for the population
of all cases and one for each individual case. The estimated
population etiologic fraction for a given organism is approx-
imately the mean of the individual case probabilities for that
organism and has a distribution calculated using random
samples from MCMC, from which a 95% credible interval
(95% CI), the Bayesian analogue of the confidence interval,
is calculated [10].

At the individual case level, the etiologic probability for
each organism ranges from 0% to 100%; their sum across all
the organisms will by definition be 100%. Individuals with an
organism identified by a silver-standard measurement, which
has 100% specificity, will have an etiology probability of 100%
for that organism, with all remaining organisms estimated at
0%. For individuals with organisms identified by bronze-stand-
ard measurements only, their etiology probabilities will be esti-
mated by incorporating the prevalence and strength of evidence
at the population level in addition to the observed measure-
ments for that individual (ie, cases positive only for that path-
ogen will have a higher probability of being attributed to that
pathogen than cases positive for multiple pathogens).

The PERCH integrated analysis also provides as an output
updated sensitivity estimates for the bronze- and silver-standard
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measurements. The data provide evidence of bronze-standard
(eg, NP/OP PCR) sensitivity, which is then incorporated with
the sensitivity priors. The evidence in the data comes from the
proportion of cases with positive silver-standard (eg, blood cul-
ture) results (and gold-standard results, if available) for a given
pathogen that are also bronze-standard-positive for that path-
ogen. However, unless there are gold-standard measurements,
the data cannot directly inform sensitivity for silver-standard
measurements for any pathogen or for bronze-standard meas-
urements for organisms without silver-standard evidence.
Nevertheless, the sensitivity estimates output for these meas-
urements do get updated indirectly because the etiologic frac-
tion estimate, case prevalence, sensitivity, and specificity must
all align given the data across all pathogens. The posterior dis-
tribution of sensitivity is also summarized by a mean and 95%
credible interval.

Bubble Plot

The output from a single PERCH integrated analysis is dis-
played in the form of a bubble plot. The bubble plot improves
upon the box plot, the usual method to visualize estimates and
their uncertainty, by drawing attention to pathogens with the
most relative precision instead of those with the most uncer-
tainty. The bubble plot does this by plotting a larger bubble for
pathogens with less uncertainty (ie, the area of the bubble is
proportional to the estimated etiologic fraction divided by its
standard error), whereas the box plot presents the largest boxes
for pathogens with the most uncertainty.

SIMULATION ANALYSES

Simulation Analyses of Etiology for a Single Specimen: PERCH Integrated
Analysis Versus Attributable Fraction

We estimated etiology using both the attributable fraction and
PERCH integrated analysis methods for conditions within the
limits of attributable fraction methodology by analyzing results
from just 1 specimen tested in both cases and controls. To quan-
tify the magnitude and direction of any bias, we performed
the analyses on simulated case and control data that reflected
sensitivity and specificity of the tests and known etiology for
the cases.

Methods to Simulate Data

We created a simulated population where the “true” etiology of
the cases was known for a simple scenario in which only 4 patho-
gens (A, B, C, and D) plus a “None of the Above Pathogens” cate-
gory (NoA) are responsible for pneumonia. The true fractions of
disease caused by each pathogen were 30%, 30%, 15%, and 15%,
respectively, and 10% for NoA. We simulated test results for 600
cases and 600 controls given the known etiology for each case
and used random sampling to apply the sensitivity and specificity
values for each pathogen A-D (Figure 3A). We created varying

combinations of sensitivity and specificity for each pathogen (test
sensitivity was 100% for pathogens A and B and 75% for patho-
gens C and D; test specificity was 85% for pathogens A and C and
50% for B and D). We created 500 simulated random datasets and
performed attributable fraction and PERCH integrated analysis
on each, as if a clinical study was conducted 500 times.

Results of Attributable Fraction

The attributable fraction analysis performed made no adjust-
ments for sensitivity (thus implicitly assuming 100% sensitiv-
ity). The mean (with 95% confidence interval) and selected
quantiles from the distribution of the 500 etiologic fraction
attributable fraction results for all 5 pathogen groups are shown
in the white box plots of Figure 3B and in Supplementary
Table 1. Under conditions when true sensitivity and specific-
ity are both high (eg, 100% and 85%, respectively, for patho-
gen A), attributable fraction approximates the true pathogen
prevalence but is biased because the sensitivity for some path-
ogens is misspecified (ie, assumes 100%). This inherent bias
with attributable fraction is caused by the negative correlation
between test results for different pathogens that are competing
with one another to predict case status [7]. If odds ratios are
estimated without adjusting for the results of the other patho-
gens, the resulting attributable fraction estimates are unbiased
when sensitivity is 100% (blue box plots in Supplementary
Figure 1). However, estimating single causes in the absence of
data on other causes does not reflect the situation in pneumo-
nia etiology studies.

Regardless of whether we are estimating etiology for a single
or multiple pathogens, when sensitivity is <100% (pathogens C
and D), the attributable fraction method underestimates etiol-
ogy, and the magnitude of both the bias and variance increases
as specificity decreases (ie, as the odds ratio approaches 1.0 as
for pathogen D; white boxes in Figure 3B). The etiologic frac-
tions of the pathogens are not constrained to sum to 100%, so
the distribution will incorrectly sum to <100% when >1 patho-
gens have <100% sensitivity. Often the resulting underestimated
etiologies will be misattributed to pathogens not tested for
(NoA white boxes in Figure 3B), thus overestimating their true
fraction. To account for sensitivity, the etiologic fractions could
be expanded either by normalizing so that all pathogen-specific
slices sum to 100%, which assumes the same sensitivity across
all pathogens, or by dividing individual pathogens by their sen-
sitivity. However, such adjustments are typically not done and
there is not a natural, principled way to incorporate the uncer-
tainty around the sensitivity estimates.

Results of the PERCH Integrated Analysis

The sensitivity priors for the PERCH integrated analysis were
first set to be consistent with the truth to demonstrate how
the PERCH integrated analysis performs under this ideal, but
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A Pathogen
Parameter A B C D NoA
True Etiology (%) 30 30 15 15 10
Test Sensitivity (%) 100 100 75 75 NA
Test Specificity (%) 85 50 85 50 NA
Cases testing positive* (%) 40.6 65.0 24.0 53.8 NA
Controls testing positive* (%) 15.1 50.0 14.9 50.2 NA
Odds Ratio* 3.9 1.9 1.8 1.2 NA

Sensitivity Prior for PIA (%) 99.9-99.99  99.9-99.99 74.99-75.01 74.99-75.01 NA

B 34.9% . .
E4 Attributable Fraction
40% 313% . PERCH Integrated Analysis

";; 20.7% 29.5% - g y
c o
R 13.4%
o 30%
S=

- 14%
I.E ‘g 14.9% ) 11.9%

9.5%

E,E 20% 12.4%
)
o8
==
hT

£ 10%

0% E
A B NoA

Pathogen

Figure 3. Analysis of 500 simulated datasets for a study that had only 1 specimen (A) and resulting etiologic fraction estimates using attributable fraction and PERCH
integrated analysis methods (B). 4, Analyses performed on measurements from 600 cases and 600 controls for each of 500 simulated datasets. *Prevalence and odds ratios
estimated by averaging across the 500 datasets that were created based on the true etiology, sensitivity, and specificity values. B, Description of boxplots: Bold black line,
mean of the true value across the 500 datasets; Diamond, average etiologic estimate across the 500 datasets; Vertical line through diamond, confidence interval around
the average etiologic estimate; Boxplot, distribution of the etiologic estimates across the 500 datasets. Numbers above boxplots indicate numeric value of the diamond.
Abbreviations: NA, not applicable; NoA, none-of-the-above; PIA, PERCH integrated analysis.

unrealistic, condition and then compared with more realistic,
wider sensitivity prior ranges. Because the PERCH integrated
analysis adjusted for imperfect sensitivity, the PERCH integrated
analysis results were less biased than for attributable fraction for
all combinations of sensitivity and specificity (ie, for all patho-
gens A-D; gray boxes in Figure 3B; Supplementary Table 1). As
a result, the percentage attributed to NoA was also less biased
when compared with attributable fraction and more frequently
produced estimates that were closer to the true etiologic frac-
tion (ie, narrower box plot). When the PERCH integrated anal-
ysis was performed using more realistic priors to reflect greater
uncertainty in the sensitivity of the measurements (ie, wider
ranges), the results were similar (Supplementary Figure 3).
Sensitivity priors with wider ranges are also illustrated in the
next simulation analysis involving multiple specimens.

Simulation Analyses Using the PERCH Integrated Analysis of Etiology for
Studies With Multiple Specimens

An advantage of the PERCH integrated analysis is that it nat-
urally handles multiple measures for some or all of the path-
ogens. In this example, NP/OP PCR tested in both cases and
controls and blood culture performed for cases only were ana-
lyzed. Again we quantified the magnitude and direction of bias
by performing the analyses on simulated case and control data
that reflected sensitivity and specificity of the tests and known
etiology for the cases.

Methods to Simulate Data

The true etiology fractions were specified to mimic a plausi-
ble scenario for a pneumonia etiology study in which 12 path-
ogens plus an NoA category (ie, pathogens not tested for) are
responsible for pneumonia (Figure 4B). The NP/OP PCR data
had imperfect sensitivity and specificity (ie, bronze standard),
and blood culture data had perfect specificity but imperfect
sensitivity (ie, silver standard). Pathogens varied by the type of
data available in that some had both bronze- and silver-stand-
ard data (eg, bacteria); some had bronze-standard data only (eg,
viruses); some had silver-standard data only (eg, bacterial path-
ogens found on blood culture that were not tested for in the NP/
OP); and 1 had both bronze- and silver-standard data, but the
bronze-standard data was uninformative (eg, bacterial pathogen
with NP/OP PCR OR = 1.0 because it was commonly carried in
all children). True NP/OP PCR sensitivity was 75% for all patho-
gens, but specificity varied by pathogen. True blood culture sen-
sitivity was 15% for all pathogens. Simulated datasets containing
600 cases and 600 controls were created by random sampling
from “populations” with the case and control pathogen preva-
lences produced based on the true etiology proportions and sen-
sitivity and specificity values. We created 500 simulated datasets,

and the PERCH integrated analysis was performed on each.
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, Char istics of cases
A o 345% and controls A [B1] B2 B3] B4a|cC1]|C2[C3| D1 [D2[D3] E |NoA
40% True etiology (%) 3610 10[10/10|[5[5[5] 1[1][1] 0 6
True BrS itivity (%) 75 |75 | 75| /|75 |7s|75| /|75 (75| /[ 75 | /
—_ True BrS specificity (%) 95 | 92 [ 92 [ /| 27 [96|96| / | 99 [99]| /[ 90 | /
c 8 BrS positive, cases (%) 30.2|14.8(14.7| / |73.2|75|7.6| / | 1.7 [1.7| / |10.0 /
ow 30% (= BrsS positive, controls (%) | 5.0 | 8.2 | 79 | / [73.0/4.0/4.1| / |0.99|1.0| / | 9.9 /
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Figure 4.

B2 B3 B4 C1

C2 C3 D1 D2 D3 E NoA

Pathogen

Etiologic fraction estimates using PERCH integrated analysis: distribution of results from analysis of 500 simulated datasets containing cases with known etiol-

ogy (4) and results from 1 randomly selected dataset (B). A, Pathogens A through D represent true pneumonia-causing pathogens that were tested for, pathogen E represents
a pathogen that was tested for but does not cause pneumonia, and NoA represents pathogens that cause pneumonia but were not tested for. Slashes in table indicate not
applicable for the pathogen. Description of boxplots: Bold black line, mean of the true value across the 500 datasets; Boxplots display the distribution of etiologic fraction
point estimates from 500 simulated datasets: Diamond, average etiologic estimate across the 500 datasets; Vertical line through diamond, confidence interval around the
average etiologic estimate; Numbers above boxplots indicate the numeric value of the diamond; whiskers denote the 5th and 95th percentiles of the etiologic fraction
point estimates. B, Bubble plot presenting the PERCH integrated analysis results from 1 randomly selected dataset. The area of the bubble is proportional to the estimated
etiologic fraction (number above the bubbles) divided by its standard error (ie, the larger the bubble, the greater the degree of confidence in the estimate). Abbreviations:
BrS, bronze-standard data (imperfect sensitivity and imperfect specificity; eg, nasopharyngeal polymerase chain reaction); NoA, none-of-the-above pathogens; PIA, PERCH
integrated analysis; SS, silver-standard data (imperfect sensitivity and perfect specificity; eg, blood culture).

PERCH Integrated Analysis Priors

The required starting values (priors) for etiology were non-
informative (ie, did not favor any pathogen over others); the
expected etiologic fraction for each pathogen plus the NoA cat-
egory was equal to 7.7% (n = 1/13). The etiology prior distri-
bution was set so that a few pathogens are responsible for most
of the pneumonia (Dirichlet 0.3) (see Supplementary Figure 2).
Sensitivity priors for NP/OP PCR were set to 60%-90% for each
pathogen and for blood culture were set to 5%-25% for each
pathogen (table in Figure 4A).

PERCH Integrated Analysis Results

The mean and selected quantiles (boxplot) of the distribution
of the resulting 500 etiologic fraction estimates for each path-
ogen are shown in Figure 4A. In the ideal case with known
sensitivities, the PERCH integrated analysis produced close

to unbiased estimates for all pathogens, regardless of the type
of data available or the magnitude of sensitivity and specific-
ity of the measurements. Results for pathogens that had both
bronze- and silver-standard measurements (B1, C1, and D1)
were more frequently close to the true value compared with
pathogens with only 1 measurement (B2-B3, C2-C3, and D2-
D3), demonstrating value in combining evidence from multiple
measurements, even when their individual results are similar.
For example, B1 had both specimens available and the bias and
standard deviation of the estimate was less than that observed
when only bronze- (B2) or silver-standard (B3) data were avail-
able (Supplementary Table 2). When the bronze-standard data
were uninformative (ie, OR, 1.0) as with pathogen B4, results
were similar to cases with silver-standard data only (B3), thus
showing no benefit of including these data but little harm either.
The mean sensitivity for the silver-standard sensitivity prior
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range of 5%-25% is slightly lower than the true sensitivity of
15%, resulting in a minor overestimation for pathogens with sil-
ver-standard data only (B3, C3, and D3) or with uninformative
bronze-standard data (B4). Note that pathogen E, a noncaus-
ative organism, received a low (<1%) but nonzero estimate as
expected because all pathogens analyzed will have nonzero esti-
mates. Figure 4B displays results from 1 of the simulated data-
sets that contributed to the distribution in Figure 4A in the form
of a bubble plot. Pathogen A had the largest bubble as expected
given it had the highest odds ratio. For each of the pathogens,
the 95% CI of the etiology fraction estimate (denoted by whisk-
ers) covered the true value.

Performance of the PERCH Integrated Analysis When
Sensitivity Priors Are Inaccurate or Imprecise. We evalu-
ated 5 plausible scenarios for pneumonia etiology studies in
which the assumptions of the prior sensitivities in the PERCH
integrated analysis performed on the 500 simulated datasets
described above and presented in Figure 4B were modified to
assess the impact of inaccurate or imprecise sensitivity priors
(Figure 5 and Supplementary Table 3). In general, specifying
inaccurate or imprecise sensitivity priors had small to modest
impact. One exception is when silver-standard sensitivity is
substantially inconsistent with the true sensitivity.

Scenario 1: Underestimating the true bronze-standard sensi-
tivity for a pathogen with a large etiologic fraction that only
has bronze-standard data. In comparison with the data in
Figure 4A, we changed the true sensitivity for the domi-
nant pathogen A to 90% so that the 75% mean sensitivity
prior (range, 60%-90%) was an underestimate; the sce-
narios for the remaining pathogens were left unchanged.
The bias caused by this sensitivity prior was to overesti-
mate the etiologic fraction of pathogen A by 5% on aver-
age (Figure 5A and Supplementary Table 3A). Because the
etiologic fractions estimated for all pathogens must sum
to 100%, there is an indirect impact on the estimates for
the other pathogens that are biased downward. The mag-
nitude by which they will be affected will be a function
of the strength of the evidence in their data. This can be
observed for the NoA group, which represents pathogens
not tested for and thus with no data. Its bias is greatest
(estimate decreased from the true value of 6% to 2.2%),
whereas the estimates for the other pathogens with data
were only minimally impacted.

Scenario 2: Underestimating the true bronze-standard sen-
sitivity for pathogens with and without silver-standard
data. To further examine the effects of underestimat-
ing bronze-standard sensitivity priors, we changed the
true sensitivity to 90% for 3 pathogens, each with 10%
true etiology, while leaving the mean sensitivity prior at
75% (range, 60%-90%). Compared with the results in

Figure 4A, etiology was only slightly overestimated for the
2 pathogens (B1-B2) with moderate bronze-standard data
(OR, 2), but pathogen B1, which also had silver-standard
data, was less affected (average bias was 0.9% vs 1.6%;
Figure 5B and Supplementary Table 3B). The effects on
pathogens without informative bronze-standard data (ie,
OR, 1 for silver-standard only data; B3-B4) were mini-
mal and only due to the indirect effect in response to the
increase in B2. The cumulative mean bias again mostly
affected the NoA group, but pathogen A also had a slight
(0.5%) mean decrease relative to the unbiased analysis in
Figure 4A.

Scenario 3: Overestimating the true silver-standard sensitivity.
To evaluate impact of mis-specifying silver-standard sen-
sitivity priors, we changed the true sensitivity to 5% for
all pathogens with silver-standard data and changed the
sensitivity priors to exclude the true value (range, 10%—
20%). The etiology estimates were underestimated for all
pathogens with silver-standard data, with a substantial
cumulative bias of approximately 21%, and perturbations
in the rank order of the pathogens, thus demonstrating the
importance of the silver-standard sensitivity priors in the
final estimates (Figure 5C and SupplementalryTable 3C).
The largest impact was on pathogens with the most sil-
ver-standard data and uninformative bronze-standard
data (B3 and B4), biasing their true etiologic fraction from
10% to approximately 4%. The cumulative bias was almost
exclusively reflected as a 4-fold increase in the NoA group,
with virtually no indirect effects on etiology for pathogens
without silver-standard data, including the noncausative
pathogen E, which remained near zero, demonstrating
that evidence against causality is still evidence.

Scenario 4: Increasing the range of the silver-standard sensi-
tivity prior. To evaluate the effect of wide silver-standard
sensitivity priors but where both still covered the true
sensitivity of 15%, we widened ranges from 5%-25% in
Figure 4A to 1%-50% in Figure 5D. Widening the sensi-
tivity prior range had little effect on the etiologic faction
estimates as these changed <1% for all pathogens and the
rank order of the pathogens was preserved (Figure 5D).
But widening the sensitivity priors produced greater
uncertainty in the estimates for pathogens with only sil-
ver-standard evidence (ie, 5%-6% wider 95% Cls for path-
ogens B3, B4, C3, and D3) (Supplementary Tables 2 and 3B
and Supplementary Figure 4).

Scenario 5: Measurements with poorer bronze-standard spec-
ificity. Although the bronze-standard specificities selected
for the above simulations generally reflect those observed
in the PERCH study for most measurements, we exam-
ined how the PERCH integrated analysis performed
when specificity decreased from >90% in Figure 4A to
75% (odds ratios changed from 2.0 to 1.0-1.3 for most
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pathogens; Supplementary Figure 5). The impact on
etiologic faction estimates was minimal (<2% change
for all pathogens), primarily limited to pathogens with
bronze-standard-only data, and there was no impact on
rank order (Supplementary Figure 5B). But the 95% ClIs
widened 2%-6% for all pathogens, not just those with
bronze-standard data (Supplementary Figures 5C and
5D), increasing the uncertainty of the results overall.

LIMITATIONS AND OPPORTUNITIES OF THE PERCH
INTEGRATED ANALYSIS

Despite the utility of this approach to expand the analytic options
to enable integration of data from multiple, imperfect measure-
ments, like any statistical model, the PERCH integrated analy-
sis has limitations. Although the current version of the PERCH
integrated analysis is flexible enough to meet most of the chal-
lenges of analyzing pneumonia etiology data, the PERCH inte-
grated analysis cannot solve or even address the biggest problem
in determining pneumonia etiology, which is that most of the
evidence comes from peripheral sources and not directly from
the site of infection. Even peripheral measurements with per-
fect specificity (ie, blood culture) have low prevalence and can
provide information only for bacterial pathogens, not viruses.
The strength of the evidence and the robustness of the infer-
ences from the PERCH integrated analysis would be greater
with more silver-standard blood culture- and lung aspirate-
confirmed cases, which both reduces uncertainty around these
measures and better informs on the sensitivity of the silver- and
bronze-standard NP/OP PCR data. Obviously, this inability to
quantify or correct for systematic bias in the peripheral meas-
urements applies to any analysis of pneumonia etiology.

An essential assumption of the PERCH integrated analysis is
that, when a pathogen is the cause of pneumonia, it is the only
pathogen whose chance of being measured in the periphery
is increased by its infection of the lung. This assumes that the
peripheral measurements are unbiased reflections of the state of
the lung. If instead, infection by 1 pathogen in the lung increases
the presence of other pathogens in the periphery, the PERCH
integrated analysis and any other analysis of the peripheral data
alone will be biased, absent external knowledge that could be
used for correction. In addition, in situations where >1 path-
ogen is determined to be in the lung, case-control studies by
design cannot determine whether only 1 or more than 1 are the
cause.

A limitation of any Bayesian analysis is that the prior distribu-
tions for etiology, sensitivity, and specificity are ultimately reliant
on the state of knowledge at the time. Despite the fact that the
priors are objectively updated by data, this raises the question
of the degree to which the resulting posterior distributions are
influenced by the prior assumptions, rather than just the data.
This is mitigated in that Bayesian methods are flexible enough
to incorporate our uncertainty about unknowns and we can

perform sensitivity analyses to determine which assumptions
are most influential on the substantive findings; when changing
the prior assumptions within a plausible class does not mean-
ingfully change the results, we can be more assured that the data
are largely determining the outputs by comparison to the priors.

Currently the PERCH integrated analysis is tailored for
binary (positive/negative) test results so that continuous data
such as pathogen density must be categorized into above and
below a threshold. Although continuous measurements are
becoming more of interest in diagnostics, most traditional test
results are still binary, and implementing thresholds enables
utilization of continuous data. However, extending the model
to include categorized data (eg, low, medium, high) is relatively
easy and may further improve estimation.

The PERCH integrated analysis has recently been upgraded to
enable regression-like adjustments to account for factors associ-
ated with pathogen distribution, such as seasonality and age, and
to produce stratified output when etiology might differ depend-
ing on case conditions, such as pneumonia severity or chest x-ray
positivity. However, adjustment for multiple variables or contin-
uous variables currently makes the computing time prohibitive.
But the method easily accommodates categorical covariates, and
analyses can be indirectly adjusted for an additional covariate by
stratifying and recombining using a standard population.

SOFTWARE

The Bayesian method for estimating population and individual
etiology fractions is implemented by connecting 2 freely avail-
able software programs in tandem on Linux or Windows oper-
ating systems: statistical computing language R-3.3.1 (http://
cran.r-project.org/) [12] and Bayesian inference software JAGS
4.2.0 (http://mcmc-jags.sourceforge.net/) [13]. The PERCH
integrated analysis combines these tools into an analytic pipe-
line for etiology research in a publicly available R package
(https://github.com/zhenkewu/baker).

The R package, named the Bayesian Analysis Kit for Etiology
Research, implements both exploratory and model-based
analyses of data collected for etiology research. The package
enables an analyst to organize diagnostic test results by their
measurement standards (bronze, silver, and gold standard) and
to calculate summaries such as the pathogen-specific positive
rates for cases and controls along with their comparison by
the odds ratio. The analyst can then specify which test results
to integrate, which pathogens to include, and their sensitivity
and etiology priors, among other model components. Based
on these model specifications, R calls and instructs JAGS to fit
the corresponding model to the selected data, performs model
diagnostics, and stores the posterior results for ensuing infer-
ence of the key unknown parameters, such as the population
and individual etiology distributions. Finally, the package offers
optional visuals as an aid to displaying the evidence in the data
for disease etiology and to facilitate model criticism.
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DISCUSSION

Pneumonia etiology studies in the current era commonly
assess NP/OP PCR data in cases and controls and blood culture
results in cases, among other evidence. Until now, we have been
unable to integrate these results and their sensitivity and speci-
ficity in a systematic, quantitative way to estimate the etiologic
fractions for a set of pathogens given a population of cases.
Here we have described and demonstrated the performance of
an open-source available method that has been developed to
integrate such data for etiology research. Although attributable
fraction and other analytic approaches to assess pneumonia
etiology such as expert review of case-only results, case-control
logistic regression, and latent class analysis have served well
in many disease conditions and produced valuable insights,
modern studies of pneumonia etiology call for an expanded
approach. We developed the PERCH integrated analysis
method, which builds on attributable fraction and latent class
analysis approaches, to enable analyses of PERCH data that
integrate results from multiple tests from multiple specimens
to assess the cause of pneumonia, while accounting for their
imperfect sensitivity and specificity.

The PERCH integrated analysis method builds on and extends
previous familiar analytic methods such as latent class analysis and
attributable fraction that are applicable for simpler conditions when
only 1 pathogen is being evaluated or only 1 specimen is collected
from cases and controls, respectively, but which are not directly
applicable for pneumonia study conditions [1]. The PERCH study
assesses >30 pathogens detected using 2-3 types of tests on 24
specimens collected from each case plus 2 specimens collected
from each control. The PERCH integrated analysis method is able
to integrate all of the PERCH data and, with informative priors,
data from other studies to produce synthesized estimates.

Bayesian methods used by the PERCH integrated analysis
force us to recognize the role of such often ignored parame-
ters. All methods make prior assumptions regarding these
parameters; some do not explicitly specify prior uncertainty
about them.

PERCH data have substantial limitations. In simplest terms,
we seek to know the frequency with which pathogens infect
lungs, and PERCH cannot measure the lung (with a few excep-
tions), only the blood and NP/OP. A similar state of affairs exists
in many sciences: particle physics (particle traces in steam),
astronomy (waves impinging on telescopes), and chemistry
(colorimetry), to name a few. Although Bayesian methods pres-
ent a solution, they also present a challenge in that they are not
as well understood or as widely used as frequentist statistics in
the international health community and may be mistrusted as
nontransparent “black box” methods. Nevertheless, the reality
is that, far from being new, this approach has been success-
fully used in many scientific applications since Thomas Bayes

introduced it 250 years ago. One of its most notable applications
was by Alan Turing to crack the enigma code [14]. The PERCH
integrated analysis may be likened in that respect to a modern
internal-combustion-engine car: its core (engine, wheels, con-
trols) is simple, not different than was used 100 years ago, but
there are lots of modern “bells and whistles,” each of which
improves its performance. The availability of open-source soft-
ware to conduct the PERCH integrated analysis will enable
wider use of Bayesian tools. This paper intends to make the
Bayesian methods transparent in its functions, removing the
perception of black box analyses in the pneumonia community.

The analysis presented here assumes a single-pathogen cause
model, but it can accommodate copathogens by assigning pre-
scribed combinations of pathogens. We are exploring methods
to expand the PERCH integrated analysis to enable it to evalu-
ate all possible combinations of pathogens while favoring more
parsimonious etiologies.

It is important to reiterate that any statistical analysis can
at best provide a valid summary of the evidence and remain-
ing uncertainties about disease etiology. The most informative
advancement for pneumonia etiology studies will come from
addressing the limitations of the data, in particular the lack of
measurements that are both moderately sensitive and specific.
Measurement limitation remains the greatest barrier to precisely
determining etiology, whether caused by only 1 or >1 pathogen.

Finally, pneumonia etiology studies are not unique in need-
ing methods to integrate multiple measurements. For example,
the Aetiology of Neonatal Infections in South Asia (ANISA)
case—control study aims to determine the etiology of serious
neonatal infections, including sepsis and meningitis [15]. The
ANISA study needs to integrate multiple test results from blood,
cerebrospinal fluid, and NP/OP specimens collected from cases
with those from blood and NP/OP specimens collected from
controls. This suggests that the PERCH integrated analysis has
applications beyond pneumonia etiology research.

CONCLUSIONS

The existing methods to estimate pneumonia etiology, includ-
ing attributable fraction, latent class analysis, case—control odds
ratio estimation, and expert panel reviews of case-only data, are
not able to integrate data from multiple specimen types, multi-
ple measurement types, and for multiple pathogens while also
accounting for measurement error. The PERCH integrated anal-
ysis is a novel analytic method that surmounts these limitations
by integrating evidence from multiple, imperfect diagnostic
measurements on cases and controls to estimate the etiologic
distribution and assign etiology to individuals, all with estima-
tions of uncertainty for the population of cases and for each indi-
vidual case. This analytic advance has potential applications in
etiology research beyond pneumonia.
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Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online.
Consisting of data provided by the authors to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the authors,
so questions or comments should be addressed to the corresponding author.
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