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Abstract 

Ocular infection by Chlamydia trachomatis (Ct) results in trachoma, the leading 

infectious cause of blindness. Infection clears naturally, but repeated exposure in 

endemic areas and resulting inflammation promote tissue damage leading eventually to 

blinding sequelae. Antibiotic treatment as part of community-based intervention reduces 

prevalence of infection and disease but rarely eliminates the problem completely and 

progression to scarring and blindness does still occur. Sixty years of vaccine trials have 

produced variable results therefore new candidate antigens and better understanding of 

the underlying causes of infection and disease are required. 

 Serum samples from trachoma-endemic communities in The Gambia were tested 

against the arrayed Ct proteome to identify antibody responses associated with 

protection from infection and from scarring disease. More focussed global antibody 

profiles were associated with partial immunity to infection. Several antibody targets 

were identified as individually associated with infection and disease outcome. Clinical 

Ct isolates collected from Guinea-Bissau were screened for evidence of natural 

selection to identify further immune targets and to validate those discovered through 

serological techniques. Evidence of positive selection was found for known Ct virulence 

factors, there was little evidence of balancing selection. Antibody targets associated 

with susceptibility to infection and scarring had evidence of purifying selection. One of 

the Ct antigens, CT442, identified as being an immune target and under natural 

selection was characterised further using cell-culture models. It was localised to the 

inclusion membrane through immunofluorescence microscopy, the primary point of 

contact with the host, and potentially interacted with pathways involved in intracellular 

vesicular trafficking based on interacting proteins identified through mass spectrometry. 

Ct infection is shown to stimulate a broad, polyclonal antibody response, 

individuals with more focussed responses are better protected from persistent infection 

and scarring progression. Purifying selection in antibody targets which associate with 

poor resolution of infection suggests two possible hypotheses for Ct evasion of immune 

responses. The decoy hypothesis, in which Ct actively promotes immune responses 

against irrelevant, decoy antigens to divert antibody responses away from protective 

antigens, and the blocking hypothesis, in which antibodies against certain Ct surface 

antigens block the binding of neutralising antibodies. Evidence of selection in CT442 

show it is important but unlikely essential for Ct survival, the functions that are driving 

this evolution require further study.  
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1.1. Trachoma  

 

1.1.1. Epidemiology 

 

Trachoma, caused by ocular infection with Chlamydia trachomatis (Ct), is the leading 

infectious cause of blindness worldwide. Ocular infections with Ct affect the epithelial 

cells of the conjunctiva1, with repeated infection in endemic areas causing a chronic 

keratoconjunctivitis2, 3. While numbers of people blinded by trachoma have declined in 

the past two decades, from over 6 million in the 1990’s4 to a present day estimate of 

around 1.1 million5, there is still a significant disease burden. At least 2.8 million people 

suffer some form of visual impairment6, with an estimated 40 million people having 

active disease, together accounting for a loss of 1 million disability-adjusted life years 

and substantially reduced productivity7.  

Ct infection causes an influx of innate and adaptive immune cells into the 

conjunctiva, including neutrophils, NK cells, macrophages, T-cells and B-cells. B-cells 

are the predominant cell type which form observed conjunctival follicles, known as 

trachoma inflammation, follicular (TF). Higher load or persistent infections cause a 

more severe inflammatory infiltration, indicated by vascularisation/reddening of the 

conjunctival surface, known as trachoma inflammation, intense (TI). Repeated rounds 

of infection and subsequent bouts of inflammation cause damage to the conjunctival 

tissue which results in deposition of scar tissue as part of the healing process, known as 

trachomatous scarring (TS), however as this scarring progresses over time, the eyelids 

become distorted leading to in-turned eyelids and eyelashes, known as entropion. In-

turned eyelashes in contact with the surface of the eye, known as trachomatous trichiasis 

(TT), cause mechanical abrasions which can lead to corneal opacities (CO)1, 8 (Figure 

1.1).  
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Infections causing the clinical signs of active trachoma are almost exclusive to children, 

who harbour both the infection and disease for longer but suffer minor scarring 

pathology8, 9. In contrast infection and active disease are rarely observed in adults, but 

scarring pathology is more frequently observed with the highest prevalence of scarring 

disease observed in people over 40 years of age. The prevalence of conjunctival scarring 

and visual impairment varies between trachoma endemic populations, areas with the 

highest prevalence of active disease also have the highest prevalence of scarring and 

blinding disease.  

Currently trachoma is considered to be endemic in 55 countries, with recent 

trachoma assessment data available from 31 of these. Trachoma is widespread, being 

found in Central and South America, South and Southeast Asia, Australia and the 

Pacific Islands10. However it is most common in dry regions of Africa, notably in East 

and Central Africa and the Sahel region of West Africa (Figure 1.2)10, 11. Trachoma 

control efforts are underway in many of these areas, and several countries have 

eliminated trachoma as a public health problem12. Despite this many countries still lack 

reliable data and are yet to implement control measures11, 13. 

Figure 1.1. WHO simplified trachoma grading system. 
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Figure 1.2. Global map of active trachoma (2015). 

Image courtesy of the International Coalition for Trachoma control (http://www.trachomacoalition.org/).
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1.1.2. Control and elimination 

 

Global Elimination of Trachoma by 2020 (GET2020) is a WHO-endorsed alliance 

focussed on increased and improved mapping of endemic areas and control through the 

SAFE strategy14, 15. The strategy consists of Surgery for in-turned eyelids, Antibiotics 

for infection, Facial cleanliness to reduce transmission and Environmental change for 

improved sanitation to reduce transmission (Figure 1.3). The antibiotic of choice for 

trachoma is the Pfizer-donated Zithromax, administered annually in endemic 

communities depending on the prevalence of clinical signs of active disease in the 1-9 

year olds, with surveys 3-5 years after implementation to decide on continued annual 

treatment and/or reinforcement of FE components16-18.  

 

1.1.3. Risk factors for trachoma 

 

Risk factors for trachoma have been extensively reviewed19-21. Establishing causal 

relationships between individual factors and trachoma has been challenging due to their 

complex and interconnected nature. Risks include environmental factors, socio-

economic status, behavioural factors, host genetics and immune response. 

 Trachoma is a seasonal disease22 and is predominantly associated with dry areas, 

most commonly in sub-Saharan Africa. Availability of water and type of water source 

Figure 1.3. SAFE strategy for trachoma control. 
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are known risk factors23, 24. These are linked with the universal finding that facial 

cleanliness19, 20, 23, individually and in combination with ocular/nasal secretions, is 

associated with trachoma. The presence of flies (Musca sorbens), either on the faces of 

children or around latrines, have an inconsistent association25, 26. It is unclear whether 

they are able to transmit Ct or are just a consequence of poor facial hygiene. Similarly, 

the presence of other pathogens and commensal bacteria on the conjunctiva is 

associated with trachoma27, this may be both a result of trachomatous disease and also a 

driving factor. 

 Socio-economic status is an important risk factor for trachoma. Crowded 

households are associated with increased risk of trachoma20, particularly in terms of 

numbers of children as they are at greater risk.24, 28 Lower levels of household education 

are also a risk factor29. The presence of household cattle increases the risk of 

trachoma21, 23, this may be linked to the presence of flies. 

 

1.2. Chlamydia trachomatis  

 

1.2.1. History and evolution within and between species 

 

The causative organism Ct belongs to the Chlamydiaceae family of Gram-negative-like, 

obligate, intracellular bacteria, which contains two separate genera Chlamydia and 

Chlamydophila30. However the evolution of the species within these genera, and their 

closely related biology and ecology, suggest they should more appropriately be 

considered as a single genus31. The family is believed to have arisen around 200 million 

years before present32, 33, and during this process they lost large parts of their genome in 

adaptation to intracellular life retaining only necessary genes34. This evolutionary 

optimisation of the genomes is supported by expression of over 90% of their genes at 

the mid-point of their life cycle35. Chlamydia trachomatis as a separate species evolved 

around 100 million years ago with the early mammals31, 33, 36. 

Ct can be split into two biovars based on tissue tropism and other biological properties, 

lymphogranuloma venereum (LGV) which may disseminate and spread to the 

lymphatics and trachoma biovars which are more restricted to the urogenital tract or 

conjunctiva. The trachoma biovar can be further subdivided based on serological typing 
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of the major outer membrane protein (MOMP, ompA gene). Ocular and urogenital 

strains are subdivided into 16-19 serovars designated A to K. A, B and C serovars are 

predominately associated with ocular infection and D-K serotypes with urogenital 

infection. Phylogeny based on the results of whole genome sequencing, rather than 

ompA genotyping, suggests that in evolutionary terms the A-C genotypes diverged from 

the urogenital strains around 2.5 million years before present32 after the trachoma biovar 

had previously split into the groups T1 and T237 (Figure 1.4, adapted from Harris et al 

37). A recent study of conjunctival Ct isolates from an Australian Aboriginal community 

have questioned the monophyletic lineage of ocular isolates, they found ocular isolates 

more closely related to both the T1 and T2 urogenital lineages except for apparently 

ocular ompA and certain polymorphic membrane protein (pmp) genes38. The 

evolutionary origin of these unusual isolates and the evidence for trachoma in the 

sampled children require further study. 

Ct serovars A-C have been consistently isolated from the ocular conjunctiva of 

individuals with trachoma39-41. Studies in the 1950s and 1960s demonstrated Ct was 

able to be cultured in vitro42. Subsequent inoculation of blind volunteers confirmed Ct 

as the causative agent of trachomatous disease43-45. 
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Figure 1.4. Maximum likelihood reconstruction of the Ct whole-genome phylogeny. 

Ct species phylogeny using the chromosomal sequences of 52 genomes. Strain names 

are coloured by serotype, see key. Scale bar represents number of SNPs. 
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1.2.2. Host cell entry and early host interactions 

 

The developmental cycle of Ct has been defined extensively in vitro. During the cycle 

Ct alternates between an extracellular, stress-resistant infectious form (elementary body) 

and an intracellular, non-infectious replicative form (reticulate body). Differentiation 

from elementary bodies (EBs) to reticulate bodies (RBs) occurs intracellularly after 

invasion of host cells, following several rounds of replication RBs differentiate back to 

EBs for reinfection of new host cells (Figure 1.5, adapted from Bastidas et al46). 
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Figure 1.5. Ct developmental cycle. 

A) Cryo-electron microscopy tomogram of EBs contacting the host plasma membrane through the type-three secretion (T3S) apparatus. B) 3D 

representation. C) Electron microscopy tomogram of the ‘synapse’ across the inclusion membrane involving the RER, T3S-apparatus and RBs. 

D) Labelled-electron tomography data. 
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Ct enters cells as metabolically-inactive, infectious EBs, these are resistant to stress 

owing to a rigid outer membrane supported by disulphide cross-linked cysteine-rich 

proteins47, 48. Prior to contacting host cells, EBs polarise with the bacterially-conserved 

type-three secretion (T3S) machinery49 aggregating on the side of host-cell contact50 

(Figure 1.5 parts A and B, adapted from Nans et al 50). Preliminary low affinity 

interactions with host heparan sulphate proteoglycans46 are quickly strengthened by 

higher affinity binding involving various chlamydial and host proteins (Table 1.1). The 

best characterised of the chlamydial-entry proteins is TARP (translocated actin-

recruiting phosphoprotein), a T3S-effector which enters the host cytosol upon contact 

with the plasma membrane47, 51. Through interactions with SH2-domain containing 

proteins Tarp can induce cellular signalling and actin polymerisation and 

reorganisation48, 52, directly and through Arp2/3. Through SHC1 TARP can also inhibit 

apoptosis53, the importance of this is supported by infection-related upregulation of anti-

apoptotic Bag1 through MAPK/ERK signalling54 and transcriptional profiling of 

mRNA35 and microRNA55 data showing modulation of apoptosis-related transcripts. 

Another effector TepP has been shown to act immediately downstream of Tarp, where it 

recruits scaffold proteins to impact host signalling and innate immune responses56. 

These early events are critical in entry and survival53. Another T3S-effector, CT694, is 

believed to be important in reversing these cytoskeletal changes once the bacteria have 

entered46. 

The next step in intracellular survival is avoidance of lysosomal degradation, for 

which Ct employs two strategies. Initially EBs delay the maturation of their 

encapsulating vacuoles to avoid fusion with lysosomes, following this they form an 

intracellular compartment, the inclusion, which actively modulates host interactions and 

responses 57. 

 

Table 1.1. Ct and host factors involved in cell entry and early intracellular events. 

CHLAMYDIAL 

PROTEIN 

HOST 

PROTEIN(S) 

FUNCTION(S) REFERENCE(S) 

UNKNOWN FGF2 (Fibroblast 

growth factor 2) 

Enhance EB binding 

and uptake, heparan 

sulphate proteoglycan-

58, 59 



29 

 

dependent, via FGF-

receptor 

UNKNOWN FGFR (Fibroblast 

growth factor 

receptor)/PDGFRb 

(Platelet-derived 

growth factor 

receptor b) 

Stimulate mitogenic 

signals through Erk1/2, 

latter involved in entry  

52, 60 

UNKNOWN Dynamin2, Hsc70 

and Arp2 

Clathrin-mediated 

endocytosis and 

interaction with Tarp-

mediated entry 

61 

LPS CFTR (Cystic 

fibrosis 

transmembrane 

conductance 

regulator) 

Required for entry and 

uptake of EBs, impairs 

the normal ion-channel 

function of CFTR 

62 

TARP Various Regulates apoptosis, 

cell growth and 

intracellular signalling 

53 

TEPP Crkl-2 (Scaffold 

protein) 

Downstream of Tarp, 

recruits scaffold 

proteins upon entry, 

involved in signalling 

an innate immune 

response 

56 

CT694 AHNAK and others Localises to the plasma 

membrane, possibly 

reverses Tarp-actin 

reorganisation 

46, 63, 64 

PMPD Unknown Important in 

attachment and 

65, 66 
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stimulation  

MOMP Possibly mannose-6 

phosphate 

Role in attachment, via 

heparan-sulphates, but 

not necessary 

67 

OMCB Unknown Role in attachment, via 

glycosaminoglycan-

like receptors 

68 

 

1.2.3. Chlamydial inclusion and its host interactions 

 

The early inclusion consists of host proteins derived from its vesicular carriers, as it 

develops and chlamydial protein synthesis starts these replace those of the host48. 

Inclusions are found at the microtubule-organising centre, owing to their early vesicle 

trafficking, in close association with the nucleus69. They are stabilised by interactions 

with the host cytoskeleton48 and this localisation allows association with the Golgi 

apparatus, which in acute but not persistent infection70 is actively fragmented to form 

Golgi stacks for host interactions71. Within this compartment EBs transform into 

metabolically-active RBs which replicate through binary fission48. The inclusion 

protects the bacteria from host attack and facilitates nutrient acquisition and host 

modulation. Nutrients are acquired through selective sequestering of lipid-containing 

vesicles in the endosomal pathway72, additionally lipid droplets can enter the 

inclusion48, 73 and membrane-associated peroxisomes can be taken up74.  

 Host modulation is achieved through secretion of chlamydial effectors46, which 

involves direct interaction with the rough endoplasmic reticulum (RER) (Figure 1.5 

parts C and D, adapted from Dumoux et al 75)76. Many of these effectors are secreted 

into the host cytosol by the type-2 secretion (T2S) or T3S-apparatus77, 78, including 

Tarp, CT694 and CPAF (chlamydial proteasome like activity factor)79-81. Additionally, 

a number of effectors that can enter the host nucleus such as NUE (nuclear effector) 

have been identified82. Between 50 and 65 of the T3S-proteins after entering the cytosol 

are inserted into the inclusion membrane, by a currently unclear mechanism. These 

inclusion membrane proteins (Incs), while dissimilar in primary sequence, share a bi-

lobed membrane-spanning structure and interact extensively with the host cell83. 
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Host organelles including Golgi-derived vesicles84, multi-vesicular bodies85, 

lipid droplets86, rough endoplasmic reticulum76 and centrosomes87 are recruited to the 

inclusion and are important in its development, acquisition of nutrients and Ct survival 

and transmission. Until recently only a few Incs had been functionally investigated. 

CT223, CT229 and IncA are important in inclusion trafficking and development. CT223 

recruits the host factor CEP170 through which it modulates microtubule organisation to 

traffic towards centrosomes87. IncA is essential for homotypic fusion of inclusions, the 

process by which inclusions fuse in multiply infected cells88. CT229 recruits Rab4 as 

early as 2 hours post-infection, likely functioning in trafficking of the inclusion and 

recruited host organelles89. A number of other Rab proteins are recruited to the 

inclusion90. As well as intracellular trafficking these Rab proteins are critical for lipid 

acquisition in Ct, which requires Golgi disruption as described previously91. IncD 

through the lipid transfer protein CERT92 and IncG through recruitment of lipid 

droplets93, are also important in lipid acquisition. IncG also recruits the host adaptor 

protein 14-3-3β through which it regulates Ct-resistance to apoptosis94, 95. 

More recently a large-scale affinity-purification mass spectrometry analysis was 

performed on Incs, identifying host interactions for 38 Incs96. Several common 

functional pathways were identified including; endocytosis, ubiquitination, apoptosis, 

cell division and DNA damage/repair. This study identified an interaction between IncE 

and two components of the retromer, a complex of host proteins involved in retrograde 

trafficking from endosomes to the trans-Golgi network. Recruitment of sorting nexins 5 

and 6 to the inclusion prevented association of the retromer complex, inhibition of this 

function significantly reduced Ct progeny formation. This approach did not identify all 

previously identified Inc interactors, but it did highlight organelles and pathways either 

known to or assumed to be important during Ct intracellular development. 

Incs also regulate Ct exit from cells. Many Incs are localised uniformly 

throughout the inclusion membrane, a subset localises to discreet microdomains97. 

These microdomains are enriched for Src family kinases, suggesting they may control 

multiple functions through downstream signalling. CT850 interacts with dynein motor 

proteins to regulate inclusion intracellular positioning98, another microdomain Inc 

CT228 appears to control cell exit99. Through differential recruitment and activation of 

components of the myosin phosphatase pathway, CT228 can regulate the switch 

between two methods of exit described below. 
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1.2.4. Exit and the potential for persistence 

 

In vitro between 24 and 48 hours after infection, once the RBs have replicated 

extensively, the reversion back to EBs begins. This brings about changes in gene 

expression, with a focus on gene involved in modifying the bacterial surface, amino 

acid synthesis and energy metabolism100. Around 60 hours post-infection release of the 

infectious EBs can be seen100. Previously it was thought to occur only through cell lysis, 

where the inclusion and subsequently the host plasma membrane rupture to release 

infectious EBs46, 72. It is now known that packaged release involving extrusion of the 

inclusion towards the plasma membrane and cytoskeletal reorganisation is also 

possible46, 72. Extrusion is an active process involving actin cytoskeletal reorganisation 

through which EBs pinch off from the inclusion, surrounded by inclusion membrane, 

followed by protrusion and detachment from the host cell membrane72. This leaves the 

host cell intact and often residual inclusion remains. Recent studies have suggested 

extrusions can enhance extracellular survival and viability of EBs, while also facilitating 

uptake and survival within macrophages101. 

An interesting phenomenon of Chlamydia species is their in vitro ability to 

‘persist’ in a dormant, morphologically abnormal102-104, yet viable state105. It can be 

induced by antibiotics, iron depletion103, amino acid starvation, oxidative stress and 

IFNγ106. IFNγ-induction depletes intracellular tryptophan causing upregulation of 

tryptophan synthesis and DNA repair pathways, while reducing cell division and RB-

EB transition, supporting a persistent phenotype105. The in vivo existence of persistence 

has not been proven. 

 

1.2.5. Chlamydia trachomatis population genetics 

 

Prior to the availability of Ct whole-genome sequences, Ct genetics was focussed on a 

few key genes involved in pathogenicity and tropism. OmpA as described above was 

used to define the serovars, it was also commonly used to investigate transmission in 

trachoma-endemic communities. A study in The Gambia found minimal change in the 

prevalence of individual ompA variants or the sequence of these variants during a 2-year 

study107.  A later study in The Gambia had similar results examining ompA alleles 

collected before and 2 months after mass drug administration (MDA) of Zithromax in a 
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community. There was evidence of directional selection, with most new mutations 

being rare either because an allele had risen to fixation (positive selection) or variation 

was being driven out of the population (purifying selection)108. A study of ompA in 

Tanzania found evidence of positive selection in serovar B isolates and purifying 

selection in serovar A isolates109, suggesting natural selection was acting differently 

within these two Ct populations. 

 OmpA does not reflect the whole-genome phylogeny described previously, 

however the plasticity zone, tarP and the polymorphic membrane proteins (pmp) do 

associate with tropism. The plasticity zone is a highly variable region of approximately 

25 genes in Ct, several of which are pseudogenes within certain serovars. 

Polymorphisms within this region, notably in a putative cytotoxin and the tryptophan 

synthase operon, distinguish between the tropisms110. In ocular isolates truncation of 

trpA or mutations in trpB mean they cannot synthesise tryptophan111. During Ct 

infection high levels of IFNγ induce IDO which promotes degradation of tryptophan. 

Indole from the urogenital microbial flora is hypothesised to allow urogenital and LGV 

isolates to synthesise tryptophan, this inability to synthesise tryptophan is thought to be 

part of the reason serovar A-C isolates are primarily restricted to the ocular conjunctiva. 

The domain structure of the Ct-entry effector TARP varies between the ocular, 

urogenital and LGV biovars112. Numbers of tyrosine-rich repeats and actin-binding 

domains differentiate between the three groups, possibly affecting invasive ability. 

PmpF, pmpH and to a lesser extent pmpB, C, G and I associate with tropism113. PmpB 

had evidence of positive selection across 18 Ct isolates, suggesting it is important in Ct 

survival. All remaining pmp’s were under purifying selection or evolving neutrally. 

 Genome-wide scans for genes under selection have consistently supported these 

genes as being important in Ct pathogenicity and tropism. Using populations of Ct 

isolates three studies have been published using 4114, 12115 and 59113 genomes 

respectively. The first two studies identified tarP, ompA and pmp’s under positive 

selection across all studied serovars, they also identified a number of Incs under positive 

selection. The study using 59 genomes tested for evidence of positive selection 

associated with different aspects of Ct evolution. Adaptation to the conjunctiva and 

variations in ocular pathogenicity highlighted the same genes again, further 

demonstrating their importance in Ct virulence. A study of 4 ocular isolates with 

differential virulence in non-human primates and in vitro found remarkably similar 

polymorphic genes, including tarP, 3 genes in the plasticity zone and CT147, the Inc 
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putatively involved in Ct avoidance of lysosome fusion116. All of these studies also 

found genes classed as hypothetical under positive selection within Ct, highlighting the 

considerable portion of the genome currently not characterised. 

 

1.3. Immunology of trachoma 

 

1.3.1. Initial responses to Ct infection 

 

Ct infection of conjunctival epithelium induces a strong pro-inflammatory response, 

characterised by production of cytokines and chemokines such as interleukin-1 alpha 

(IL-1α), IL-6, IL-8 and granulocyte macrophage colony-stimulating factor (GMCSF)117, 

118. This response stimulates infiltration of neutrophils, macrophages and NK cells119-121. 

This innate immune response stimulates an influx of adaptive immune cells. 

Conjunctival follicles initially primarily consist of B cells, with evidence of 

macrophages and T-cells119. This is supported by an excess of plasma cells directly 

below the conjunctiva3, 122. Epithelial cells upregulate MHC-Class 1 and 2 on their 

surface119, 123. Lymphoproliferative and cytolytic responses to Ct antigens including 

whole EBs and MOMP are important in the resolution of infection124-126.  

Production of IFNγ is an important part of this response125, 127, levels of the 

cytokine are boosted during Ct infection and active disease. IFNγ is believed to help 

control ocular infection through induction of IDO and subsequent degradation of 

tryptophan, as described previously111. However, studies of longitudinal infection in 

children from trachoma-endemic communities found higher levels of IFNγ, and also 

IDO and IL-10, was associated with longer duration of infection and quicker acquisition 

of infection128. 

Local and serum antibody responses are induced by Ct129, 130, their role in 

immunity is unclear. Anti-Ct IgG, both in tears and serum, associates with active 

disease with titre increasing with severity of inflammation130. However, Ct-infectivity 

neutralising antibodies have been demonstrated in vitro and in animal models131-135. 

Additionally, a strong antibody recall response was associated with partial immunity to 

reinfection in non-human primates after immunisation with an attenuated plasmid-free 

Ct136. The lack of a consistent immune response associating with protection from Ct 
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infection and active disease, and the persistence of conjunctival inflammation in the 

absence of Ct, have led to the suggestion that a chronic, dysregulated immune response 

is the driving factor in trachomatous sequelae. 

 

1.3.2. Immunopathology of recurrent Ct infection and persistent inflammation 

 

Historically, explanations for trachomatous pathology have been split into two broad 

groups, the ‘cellular paradigm’ and the ‘immunological paradigm’137. The cellular 

paradigm states that the innate response from epithelial cells to Ct infection drives 

pathology. The immunological paradigm states that cell-mediated immunity is the 

driving factor. 

 The immunological paradigm was originally focussed around a proposed 

delayed-type hypersensitivity (DTH) reaction against the Ct antigen HSP60, the 

hypothesis being that re-exposure to HSP60 can stimulate memory T-cells and drive 

inflammation and tissue damage through secretion of IFNγ and activation of 

macrophages. Subsequent studies of HSP60 have been inconsistent. Anti-HSP60 

antibody responses in some populations have been associated with scarring and 

urogenital pathology138-140, however lymphoproliferative responses appear to associate 

with resolution of Ct infection and are depressed in adults with scarring. In the latter 

study HSP60 stimulated IL-4 production in scarred adults141, suggesting weakened Th1-

type responses could be driving pathology. Evidence from conjunctival transcriptomics 

have not supported this, instead they have shown the involvement of regulatory T-cells 

and Th17 cells in active trachoma142, 143. 

Human studies of the conjunctival transcriptome have supported the cellular 

paradigm. Pro-inflammatory factors such as psoriasin, CXCL5, TNFα and IL-1β are 

upregulated in active disease and scarring143, 144. Factors involved in tissue remodelling 

and fibrosis such as CTGF and several matrix metalloproteinases (MMPs) are also 

upregulated in scarring144, 145. The exacerbation of conjunctival inflammation by non-

chlamydial bacteria, both pathogenic and commensal, further supports the role of innate 

responses in driving scarring pathology27, 146. In natural infections there is likely a 

careful balance between cellular and immunological responses, the dysregulation of 

either may support the chronic inflammatory environment that drives conjunctival 

scarring pathology.   
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1.4. Immune targets in Ct infection 

 

1.4.1. Early studies of immunodominant antigens 

 

Initial identification of immunodominant antigens in ocular Ct infection utilised 

immunoblotting. EB proteins from ocular serovars were separated by gel 

electrophoresis and blotted with tears and/or serum from individuals with trachoma or 

previously challenged non-human primates. Antibodies against MOMP, chlamydial 

LPS and HSP60 were frequently identified in these studies147-149. Immunoblotting 

highlighted the presence of multiple unidentified protein bands with weaker recognition, 

these were stimulating antibody responses but not as frequently or as strongly as 

MOMP. A recent study in non-human primates immunoblotted with serum after 

challenge with an attenuated plasmid-free Ct136. They identified the immunodominant 

antigens described above and several other antigens. Based on previous studies they 

predicted and proved that these unidentified antigens included CPAF, Pgp3 and PmpD. 

A number of antigens still were unidentified. These studies were limited by the need for 

antibodies specific to each antigen to confirm their identity, this inherently required 

previous knowledge of them being immunogenic. 

 

1.4.2. The history and importance of protein-array screens for serological profiling 

 

The last decade has seen the advent of protein-based screens of human serum to 

discover the complete profile of antibody responses stimulated by an infection 150. This 

has streamlined the identification of diagnostic and vaccine candidates, leading to faster 

progression and evaluation of individual targets. For Plasmodium falciparum and 

malaria the proteome has been screened to find immunity-associated antigens151 and 

antigens associated with particular stages of infection 152, subsequent work used 

candidates from these studies to test for changes in antibody dynamics with age 153. 

Similarly in studies of schistosomiasis serological-screens have been developed 154 and 

utilised for testing association of antigens, particular antibody isotypes and disease 

intensity155. This approach has been applied to a number of bacterial species including 

Mycobacterium tuberculosis. An array was developed using 4000 proteins (99% of the 

genome) and used to determine antibody profiles of people with and without disease156. 
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Candidates from this screen have been used in studies of in vivo protection157, for 

diagnostics158, 159 and to test antibody dynamics in different disease severities and 

outcomes160. 

 

1.4.3. Protein-array screens of serological and cellular responses from persons with Ct 

infection 

 

There have been 6 studies which have screened human serum against micro-arrays of Ct 

antigens to identify serological responses, 2 of these simultaneously investigated T-cell 

responses (Table 1.2). Four of these 6 studies utilised the same GST-fusion protein 

array. One study used a similar array, but utilising both GST and His-tagged proteins. 

The remaining study produced a genomic expression library of Ct proteins, they 

identified individual antigens after screening for antibody responses and sequencing the 

reactive clones. When comparing within these urogenital arrays (Appendix Table 1), 

there are a number of commonly recognised antigens but there are still many that are 

identified in only one or two studies. This likely represents differences in production 

and testing of the arrays and heterogeneity in immune responses, specifically targeted 

antigens, in Ct infection. 

 

Table 1.2.Summary of Ct micro-arrays screens of human sera. 

Number of proteins tested (No. proteins), the characteristics of screened sera (Sera 

phenotype) and testing for T-cell responses are indicated. UGT CT+ means current 

urogenital Ct infection. TFI means tubal-factor infertility. CT-AB+ means tested positive 

for Ct serum antibodies. 

AUTHOR 

(YEAR) 

ARRAY 

TYPE 

NO. 

PROTEINS 

SERA 

PHENOTYPE 

T-CELL 

RESPONSES 

 

SHARMA 

(2006) 

FUSION 

PROTEINS 

156 FEMALE, 

UGT CT+ 

NO  

COLER 

(2009) 

EXPRESSION 

LIBRARY 

NA UGT CT+ YES  

WANG 

(2010) 

FUSION 

PROTEINS 

908 FEMALE, 

UGT CT+ 

NO  
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FINCO 

(2011) 

FUSION 

PROTEINS 

120 CT-AB+ YES  

RODGERS 

(2011) 

FUSION 

PROTEINS 

908 UGT CT+ +/- 

TFI 

NO  

BUDRYS 

(2012) 

FUSION 

PROTEINS 

908 TFI, FERTILE 

OR UGT CT+  

NO  

 

 

1.4.4. Serological screen of Gambian trichiasis patients and healthy controls 

 

Using an array of 908 Ct serovar D/UW3-CW proteins produced as GST-fusion 

proteins 161 sera from Gambian trichiasis patients and controls from a trachoma endemic 

community were screened (chapter 5)162. This study identified ten antigens recognised 

by over half of the fifty-nine samples tested, more significantly four antigens were 

preferentially recognised by those with trichiasis and eight by healthy controls (Table 

1.3). Of particular interest were CT117 (IncF), CT442 and CT556 as they are 

Chlamydia-specific as well as being reportedly immunogenic and protective 162. IncF 

and CT442 are both inclusion membrane proteins and they have putative roles in 

bridging interactions between RBs and the host cytosol through the RER163 and 

modulating host transcription respectively82. The study had a number of limitations.  

Purification of the GST-fusion proteins was inadequate which made 

quantification impossible, limiting repeatability and the ability to compare responses to 

different antigens on the array. In addition it is unclear how the large GST-fusion 

(approximately 26 kDa) would have impacted native confirmation of the proteins164, 165, 

which might explain poor immunogenicity of known chlamydial antigens including 

MOMP (CT681) and HSP60 (CT110).  Aside from these technical issues there were 

also problems with sample selection and analysis. Only 34 case and 25 controls sera 

with the highest antibody titres against ocular serovar Ct EBs were screened on the 

complete array. No attempt was made to normalise across the 908 antigens and there 

was no correction for multiplicity of testing, meaning false positives were not properly 

accounted for166.  

The overlap of antigen recognition from this study with results from the arrays 

screening serum and cells from persons with urogenital infection is shown in Table 1.3, 
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demonstrating a considerable disparity between the findings.  This lack of common 

antigen identification both between and within biovars implies differences may not be 

entirely due to the different sites of infection, this is unsurprising considering the 

limited variation between serovars. A more probable cause of the differences is 

variation in the form of arrays used. Several publications used the same GST-fusion 

array161, 162, 167-169, one used a similar approach but with histidine-tagged proteins170, 

another used affinity-purified proteins printed on slides171, while another used a 

genomic expression library172. Even within these approaches the quality of protein 

produced varied significantly, as did the number of proteins tested, ranging from 100 to 

908. Additionally, the criteria for considering an antigen ‘immunodominant’ were not 

consistent. These discrepancies reiterate the need for validation of the findings from 

screening the Gambian trachomatous sera. 

 

Table 1.3.Summary of frequently and differentially recognised antigens in adults with 

TT. 

Nine-hundred and eight ORFs were screened with sera from Gambian adults with and 

without scarring trachoma. ID was based on Ct D/UW3 nomenclature. Antigens 

recognised by more than half of the sera (50 % recognition), differential clinical 

association with scarring (pathology) or lack of scarring (protection) and previous 

identification of each antigen by B-cells and T-cells are indicated. 

ID NAME >50% 

RECOGNISED 

CLINICAL 

ASSOCIATION 

B-CELL T-CELL  

CT414 PmpC No Pathology 1/5167-169, 171, 

172 

0/2171, 172 

CT667 Hypothetical No Pathology 0/4167-169, 172 0/1172 

CT695 Hypothetical No Pathology 2/4167-169, 172 0/1172 

CT706 ClpP2 No Pathology 0/5161, 167-169, 

172 

0/1172 

CT019 IleS No Protection 0/4167-169, 172 0/1172 

CT117 IncF No Protection 0/5161, 167-169, 

172 

0/1172 

CT301 PknD No Protection 0/4167-169, 172 0/1172 

CT442 CrpA No Protection 3/5161, 167-169, 0/1172 
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172 

CT553 Fmu  No Protection 0/4167-169, 172 0/1172 

CT556 Hypothetical No Protection 0/4167-169, 172 0/1172 

CT571 GspE No Protection 0/5161, 167-169, 

172 

0/1172 

CT709 MreB No Protection 0/4167-169, 172 0/1172 

CT089 CopN Yes None 6/7161, 167-172 0/2170, 172 

CT143 Hypothetical Yes None 2/4167-169, 172 0/1172 

CT240 RecR Yes None 1/4167-169, 172 0/1172 

CT456 Tarp Yes None 3/5167-169, 171, 

172 

0/2171, 172 

CT517 RplX Yes None 0/4167-169, 172 0/1172 

CT694 Hypothetical Yes None 3/5161, 167-169, 

172 

1/1172 

CT806 Ptr Yes None 2/5167-169, 171, 

172 

0/1172 

CT841 FtsH Yes None 1/5167-169, 171, 

172 

0/2171, 172 

CT858 CPAF Yes None 4/5161, 167-169, 

172 

1/1172 

PCT03 Pgp3 Yes None 2/4167, 168, 171, 

172 

0/2171, 172 

 

 

1.5. Vaccine trials and current status 

 

Vaccine trials for trachoma began in the 1960’s using live-attenuated bacteria isolated 

from endemic populations, with varied results. Generally they afforded some protection, 

often short-lived173, and reduced disease severity174, 175, importantly showing the 

potential for a vaccine to protect from trachoma. However, results in non-human 

primate models and the contemporary interpretation of clinical disease in the human 

trials suggested that in some circumstances a delayed type hyper sensitivity reaction 

may have been induced resulting in more severe disease and worse conjunctival 
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scarring. As a result there have been no new trails in humans since the last trial in India 

in 1979176. 

1.5.1. MOMP as the primary vaccine candidate 

 

MOMP has been the primary focus of vaccine trials as it is induces infection-

neutralising antibodies in vitro132, 177. Vaccination with various formulations of 

complete MOMP178-182 or peptide epitopes183-185 induce strong immune responses, 

however while infectivity has been reduced in some studies, protection has been short-

lived and ineffective against the major pathologies181, 185. A need for native 

conformation186, its limited protection and recent suggestions that immune responses to 

MOMP may be host-detrimental34 mean new vaccine targets are needed.  

 

1.5.2. New targets and delivery systems 

 

Recent studies have utilised new delivery systems and new immune targets identified 

from micro-arrays for B and T-cell antigens, these have also been combined with 

strategies utilising targeted immunogenic regions of MOMP. Trialled adjuvants and 

delivery systems include; hepatitis B core antigen, E. coli bacterial ghosts187, cationic 

liposomes188, nanoparticles189 and classical adjuvants such as CpG DNA190. Members of 

the polymorphic membrane protein family are immunogenic and partially protective187, 

191-193, as are a number of type-three secretion substrates including Tarp, CPAF and 

CT442 an inclusion membrane protein194, 195. A number of these studies have also 

employed new formulations of MOMP, including a stabilised trimer supposed to 

represent native structure196 and a fusion construct consisting of neutralising epitopes 

from four different urogenital serovars188, 191. 

These new targets and screening methods, combined with the ability to direct 

vaccines to particular cell types and tissues197 suggest more effective formulations are 

possible for vaccination against Ct. They have also highlighted the importance of route 

of delivery and type of immune response induced. Despite the mixed evidence for 

protection afforded by antibodies in vivo, neutralising antibodies in combination with 

Th1- type T-cells appear to be necessary for protection. 
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1.5.3. Current status 

 

There is current optimism as three different vaccines, formulated and delivered in 

different ways, are approaching phase 1 clinical trials. A combination of neutralising 

MOMP epitopes from the three most prevalent sexually transmitted serotypes 

with/without a recombinant MOMP protein delivered by cationic liposomes191, 198, UV-

inactivated Ct delivered mucosally conjugated to adjuvant nanoparticles189, 199 and 

plasmid-cured Ct delivered direct to the surface of the eye200, 201. Despite some success 

in animal models, it is impossible to know whether these vaccines will be effective in 

humans undergoing natural, possibly repeated, rounds of infection and disease.  
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2. Hypotheses and Research Questions 
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2.1. Humoral immunity plays a significant role in protection from human ocular 

Chlamydia trachomatis infection and trachomatous disease 

  

2.1.1. Do serological anti-Chlamydia trachomatis responses correlate with resolution of 

infection and protection from reinfection?  

 

2.1.2. Do serological responses associate with the blinding sequelae of infection in 

trachoma? 

 

2.1.3. Do antibodies limit progression of scarring in endemic communities? 

 

2.2. Targets of humoral immunity in trachoma are under natural selection 

 

2.2.1. Can we identify new antigenic targets of Ct immunity in trachoma using protein 

microarrays? 

 

2.2.2. Are the identified antibody targets under immune-driven selection? 

 

2.2.3. Are signatures of selection detectable within a population of ocular Ct strains? 

 

2.3. CT442 is a host immune target in trachoma that is involved in bacterial 

pathogenesis 

 

2.3.1. What is the intracellular localisation of CT442 and does this facilitate intracellular 

development and survival of Ct through specific host interactions? 

 

2.3.2. What host and/or chlamydial proteins and pathways does CT442 engage? 



45 

 

3. Methods 
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3.1. Protein expression and purification 

 

3.1.1. Agarose and SDS-polyacrylamide gel electrophoresis 

 

PCR products and validation steps during cloning of Chlamydia trachomatis (Ct)-

constructs were visualised by agarose gel electrophoresis. Gene fragments were stained 

using SYBR Safe (Thermo Fisher Scientific) and band sizes were estimated using 1 Kb 

DNA ladder (Thermo Fisher Scientific). 

Protein samples diluted 1:1 in Laemmli buffer and incubated at 95°C for 10 minutes, 

were visualised by sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis 

using either NuSep pre-cast protein gels (Homebush, NSW) or in-house gels for 1.5 to 3 

hours using 120 to 140 volts. Bands were visualised using Coomassie blue dye or silver 

stain, when the protein concentration was expected to be < 0.2 mg.ml. Band sizes were 

estimated using either Precision Plus Protein Dual Colour (Bio-Rad) or Amersham ECL 

Full-Range Rainbow (GE Healthcare Life Sciences) molecular weight marker.  

 

3.1.2. Immunoblotting 

 

Samples run on SDS-polyacrylamide gels were transferred to nitrocellulose membranes 

at 4 °C for 1-1.5 hours using 75 volts. Membranes were washed in washing buffer B 

(buffer details Appendix 9.1) at room temperature for 30 minutes and blocked three 

times in blocking buffer D at room temperature for 30 minutes. Membranes were 

incubated at 4 °C overnight with relevant primary antibody (Table 3.1). After three 

washes, membranes were incubated at room temperature for 2 hours with either goat 

anti-mouse (GAM) or goat anti-rabbit (GAR) horse radish peroxidase (HRP) conjugate 

diluted 1:1000 in blocking buffer D and incubated at room temperature for 2 hours. 

After a final three washes, membranes were incubated at room temperature for 3 

minutes with Amersham ECL Western Blotting Detection Reagent (GE Healthcare Life 

Sciences). After exposure for 1 to 30 minutes, membranes were developed. Band sizes 

were estimated as above. 
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Table 3.1. Primary antibodies for immnoblotting. 

PRIMARY ANTIBODY 

TARGET 

DILUTION  HOST SPECIES 

CT442 1:1000 Rabbit 

GFP 1:5000 Mouse 

GST 1:10000 Mouse 

HISTIDINE 1:1000 Rabbit 

RAB7A 1:1000 Mouse 

 

 

3.1.3. Provided Ct constructs 

 

27 GST-fusion Ct constructs were provided by Professor Guangming Zhong (UT Health 

Science Center, San Antonio, TX) and were produced as previously described161. 

 CT089 and CT875 were provided by Professor Steven Reed (Infectious Disease 

Research Institute, Seattle, WA) and were produced and expressed as previously 

described172. 

Both N and C-terminal GFP-fusion CT442 constructs were provided by Dr 

Maud Dumoux (Birkbeck, UCL, London), these were used for in vitro experiments 

described in chapter 3.7. Chaperone plasmids pKJE7 and pTf16 were provided by Dr 

Gerald Larrouy-Maumus (Imperial College, London) and produced commercially by 

Takara Bio (Kusatsu, Japan), these express different types of molecular chaperones to 

improve folding of proteins being expressed in E. coli (Table 3.2)202, 203.  

 

Table 3.2. Molecular chaperones expressed by the Takara Chaperone Plasmids. 

PLASMID CHAPERONE(S) RESISTANCE 

MARKER 

PKE7 dnaK, dnaJ, grpE Chloramphenicol 

PTF16 Tig Chloramphenicol 
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3.1.4. Transformation and miniprep of provided constructs 

 

For transformation, heat-shock competent or electro-competent E. coli and plasmid 

were defrosted on ice. Two μl plasmid DNA (pDNA) was added to 50 μl E. coli and 

incubated on ice for 30 minutes for heat-shock or 2 minutes for electroporation. Bacteria 

were incubated at 42°C for 2 minutes or electroporated, followed by addition of 950 μl 

LB and incubation at 37°C for 1 hour at 230 RPM. Bacteria were pelleted by 

centrifugation for 1 minute at 13000 RPM, resuspended in 50 μl LB and spread on agar 

plates with 50 μg/ml ampicillin and other required antibiotic. Plates were incubated at 

37°C overnight and stored long-term at four °C. 

 Colonies from transformed bacteria were used to inoculate 100 ml LB with 50 

μg/ml ampicillin and other required antibiotic, cultures were incubated at 37°C for 3 

hours at 230 RPM. One ml culture was stored at -80°C with 10% glycerol for future 

inoculations, the remaining culture was pelleted by centrifugation at four °C for 30 

minutes at 4500 RPM. pDNA was purified from pellets using NucleoBond Xtra Midi as 

described in the manufacturers protocol (Macherey-Nagel). Briefly pellets were 

resuspended in RES-EF buffer, mixed 1:1 with LYS-EF buffer and incubated on ice for 

5 minutes to lyse the bacteria. The lysate was mixed 2:1 with NEU-EF buffer and 

incubated on ice for 5 minutes followed by application to an equilibrated column. The 

column was washed once each with FIL-EF, ENDO-EF and WASH-EF buffers. ELU-

EF buffer was added to the column, the eluate was mixed two to one with minus 20 °C 

isopropanol and incubated overnight at 4 °C to precipitate pDNA. pDNA was pelleted 

by centrifugation at 4 °C for 30 minutes at 13000 RPM and the pellet dried briefly at 

room temperature. The pellet was washed with 70% ethanol and centrifuged as before 

except at room temperature. After drying, the pellet was resuspended in an appropriate 

volume of 50°C H2O-EF buffer and pDNA concentration was determined using a 

NanoDrop. 

 

3.1.5. Design and production of constructs 

 

A polyhistidine (His)-tagged CT442 construct was designed using the pET22b(+) 

expression vector, to produce the protein with a smaller tag that would better reflect the 

native tertiary structure. Primers for CT442 were designed using Primer3Plus 
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(http://primer3plus.com/), with N-terminal BamHI and C-terminal XhoI restriction 

enzyme sites (Appendix Table 9.2). CT442 was amplified from genomic Ct DNA by 

polymerase chain reaction (PCR) using PCRBIO HiFi polymerase (PCR Biosystems), 

the product was run on an agarose gel and purified using QIAquick Gel Extraction Kit 

(Qiagen). The ends of the CT442 fragment for cloning and pET22b(+) vector were 

digested using BamHI and XhoI with NEB buffer (Table 3.3). The digestion products 

were ligated using T4 ligase and T4 ligation buffer (NEB) (Table 3.4). Ligated plasmid 

was transformed into DH5α E. coli as described above. Colonies were screened for 

successful transformation by colony PCR. 

 

 

Table 3.3. Trialled conditions for restriction digest of the CT442-His insert. 

DIGESTION 

TYPE 

BUFFER INCUBATION 

TIME 

(HOURS) 

VECTOR 

DEPHOSPHORYLATION  

DOUBLE  NEB 3.1 1 No 

DOUBLE NEB 

CutSmart 

1 No 

DOUBLE  NEB 

CutSmart 

1 Yes 

DOUBLE NEB 3.1 2 No 

DOUBLE NEB 3.1 12 No 

DOUBLE  NEB 3.1 1 No 

DOUBLE NEB 

CutSmart 

2 Yes 

SEQUENTIAL

  

NEB 

CutSmart 

1 Yes 

SEQUENTIAL 

 

NEB 

CutSmart 

2 Yes 
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Table 3.4. Trialled conditions for ligation of the CT442 insert into the pET22b(+) 

plasmid. 

INSERT TO 

VECTOR RATIO 

INCUBATION 

TIME 

(HOURS) 

INCUBATION 

TEMPERATURE 

(°C) 

TRANSFORMATION 

METHOD 

3:1 0.5 37 Heat-shock 

3:1 0.5 20 Heat-shock 

3:1 3 20 Heat-shock 

3:1 12 4 Heat-shock 

3:1 0.5 37 Heat-shock 

3:1 3 20 Heat-shock 

3:1 12 4 Heat-shock 

6:1 0.5 37 Heat-shock 

6:1 12 4 Heat-shock 

3:1 12 4 Electroporation 

6:1 0.5 37 Electroporation 

6:1 12 4 Electroporation 

    

 

Due to difficulties in ligating the CT442 gene into pET22b(+) expression vector, the 

construct was produced commercially through GenScript (Piscataway, NJ). 

 

3.1.6. Optimisation of expression and purification conditions 

 

A small volume of LB media (2x YT for GST-constructs) was inoculated with frozen 

stocks of transformed E. coli and incubated at 37°C overnight at 230 RPM. Overnight 

cultures were diluted 1:50 into applicable media and incubated at 37°C at 230 RPM 

until OD 600 reached 0.6 to 1.2. IPTG was added at a concentration from 100 μM to 1 

mM to induce expression and incubated at 10°C to 37°C from 2 hours to overnight. 

 Cultures were centrifuged at 4 °C for 30 minutes at 4500 RPM, the pellets were 

resuspended in 1/20th culture volume of Tris-buffered saline (TBS, PBS for GST-

constructs) with protease inhibitors. The bacteria were lysed by cell disruption followed 
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by centrifugation at 4 °C for 30 minutes at 4000 RPM to remove aggregated material 

and cell debris. Relevant detergents were added and the samples were incubated at room 

temperature for 2 hours on a roller. The samples were centrifuged at 4 °C for 1 hour at 

160000 RPM, the supernatants contained the soluble proteins and were stored at -20°C. 

The pellets contained insoluble proteins and was either discarded or solubilisation was 

attempted using different detergents (Table 3.5). 

 

Table 3.5. Trialled detergents for improved solubility of expressed proteins. 

NAME DETERGENT TYPE 

ASB-14 Zwitterionic 

CHAPS Zwitterionic 

DDM Non-ionic 

LDAO Zwitterionic 

OCTYL Β-D-1-THIOGLUCOPYRANOSIDE Non-ionic 

POLYOXYETHYLENE (10) TRIDECYL ETHER Non-ionic 

TRITON X-100 Non-ionic 

 

 

To purify GST-fusion constructs 1/2000th culture volume of 50% glutathione sepharose 

beads were added to the soluble protein samples to bind the GST moiety and incubated 

at room temperature for 2 hours on a roller. The samples were passed down a 5 ml 

polypropylene column leaving a bed of GST-fusion bound beads. The beads were 

washed five times with 5 ml PBS before adding 1/4000th culture volume elution buffer 

and incubated at room temperature for 30 minutes. The eluates were collected and the 

elution step repeated twice.  

 To cleave the GST-fusion prior to purification the process was repeated until the 

beads were passed down the column. The beads were washed five times with 5 ml 

cleavage buffer before adding 1/4000th culture volume cleavage buffer with 8% 

PreScission Protease (GE Healthscare Life Sciences) and incubated at four °C 

overnight. The eluates were collected and the elution step repeated twice.  

 GST-fusion proteins and cleaved proteins were further purified by size-

exclusion based gel-filtration chromatography using a 35 ml Superdex 200 column (GE 



52 

 

Healthcare Life Sciences) with an ÄKTApurifier. The column was washed with 1 

column volume distilled H2O followed by one column volume PBS containing 

detergents found in the samples being purified. The samples were applied to the column 

and 1 further column volume PBS with detergent was applied to the column with 

fractions taken every 0.5 ml.  

 His-tagged CT442 was purified by affinity chromatography using a 5 ml 

HisTrap (GE Healthcare Life Sciences) with an ÄKTApurifier. The column was washed 

with one column volume distilled H2O followed by 1 column volume TBS containing 

detergents found in the samples being purified and 10 mM imidazole. The samples were 

applied to the column followed by 2 column volumes TBS with step-wise increasing of 

imidazole concentration up to 250 mM. Weakly and non-specifically bound proteins 

should be washed from the column with low concentrations imidazole, proteins with a 

high affinity should remain bound until the imidazole concentration increases. Fractions 

were taken every 0.5 ml during the imidazole gradient. 

 

3.1.7. Peptide selection and production 

 

Biotinylated peptides of CT442 (AA 135-150), IncA (CT119, AA 258-273) and IncG 

(CT118, AA 149-164) were produced by thinkpeptides (ProImmune, Oxford, UK), 

using sequences from Ct D/UW3. Purity was determined by High Performance Liquid 

Chromatography (HPLC), the minimum accepted was 80 %. Lyophilised peptides were 

resuspended in distilled H2O, then aliquoted and stored at -80°C. All peptide sequences 

had been previously identified as immunogenic (personal communications, Dr Bernhard 

Kaltenboeck)204. 

 

3.2. Serological screening of proteome arrays 

 

3.2.1. Glutathione S-transferase fusion protein micro-titre plate array 

 

A glutathione S-transferase (GST) fusion protein enzyme-linked immunosorbent assay 

(ELISA) was used to screen the Ct proteome with sera from 59 people (chapter 5). The 

original results were published by Lu et al162, the details of the array were published by 
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Sharma et al161. Nine-hundred and eighteen open reading frames (ORFs) from Ct 

serovar D/UW3-CW, encompassing the genome and plasmid, were cloned into the 

pGEX expression vector which produces protein with an N-terminal GST-fusion 

(Amersham Biosciences Corp., Piscataway, NJ), these were a combination of full-

length and N/C-terminal fragments (each half full-length). After transformation into E. 

coli expression of each protein was optimised for isopropyl-β-D-1-

thiogalactopyranoside (IPTG) concentration (0.1 to 5 mM), bacterial density at 

induction (0.5 to 1.5 optical density [OD]), incubation temperature (10 °C to 30 °C) and 

time (0.5 hours to overnight). After centrifugation the bacteria pellets were resuspended 

into Triton lysis buffer and lysed by sonication, debris was removed by high-speed 

centrifugation and the supernatant was frozen at -80 °C. Successful expression of the 

proteins was determined by purification on glutathione-conjugated agarose beads and 

running on sodium dodecyl sulphate (SDS)-polyacrylamide gels. Lysates were accepted 

for the micro-titre plate array if a band was present at the expected weight after staining 

with Coomassie blue dye. In total 933 lysates were used, covering 908 serovar D Ct 

proteins. 

 Bacterial lysates were diluted 1:10 in PBS, added 200 μl/well into glutathione-

coated 96-well microplates (Pierce, Rockford, IL) and incubated overnight at four °C to 

allow binding. Lysate from an empty pGEX vector (containing free GST) and GST-

chlamydial protease/proteome-like activity factor (CPAF) were included as positive and 

negative controls respectively. To reduce background absorbance from non-specific 

antibodies, human sera to be tested were incubated overnight at 4 °C with lysate from 

an empty pGEX vector followed by purification on glutathione-conjugated agarose 

beads. Prior to testing, the plates were washed twice with washing buffer A and blocked 

with blocking buffer A for 1 hour at room temperature. Serum samples were diluted in 

blocking buffer B and added to the plates for 2 hours at room temperature. After 

washing, human antibody reactivity was detected by adding of alkaline phosphatase-

conjugated goat anti-human immunoglobulin G (IgG; Jackson ImmunoResearch 

Laboratories, Inc., West Grove, PA) and the substrate p-nitrophenyl phosphate. The 

antibody binding was measured as absorbance (OD) at 405 nm.  

 For determining positive antibody responses all sera were separately incubated 

overnight at 4 °C with lysate from HeLa cells and Ct-infected HeLa cells. Only 

antibody responses which were unaffected by incubation with HeLa cells but were 
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significantly lowered by incubation with Ct-infected HeLa cells were considered 

positive.  

 

3.2.2. Microarray chips  

 

Ct protein microarray chips were prepared as described previously205 by Antigen 

Discovery (Irvine, CA) and screened using sera from 123 patients (chapter 4). Briefly 

894 ORFs from Ct serovar D/UW3-CW genome were PCR amplified and in vivo cloned 

into the pXT7 expression vector which produces proteins with an N-terminal His 

fragment and a C-terminal haemagglutinin sequence and T7 terminator. Ct-specific 

products were expressed from the plasmids using an in vitro transcription translation 

system (RTS 100 kit, Roche) and printed on nitrocellulose coated glass slides 

(GraceBio) using an OmniGrid Accent microarray printer (Digilab). Successful 

expression of the proteins was determined using antibodies against His (clone His-1; 

Sigma) and haemagglutinin (clone 3F10; Roche). Eight-hundred and sixty-four of 894 

ORFs were successfully expressed, determined by positivity for both terminal tags205. 

 Prior to testing sera was diluted 1/100 in blocking buffer C at room temperature 

for 30 minutes with agitation while the microarrays were rehydrated using protein array 

blocking buffer (Whatman, Piscataway, NJ). The arrays were probed with sera at room 

temperature for 2 hours with agitation. After 3 washes with washing A buffer the 

microarrays were incubated with biotin-conjugated goat anti-human antibody (Jackson 

ImmunoResearch Laboratories, West Grove, PA). After 3 further washes the 

microarrays were incubated with streptavidin-conjugated Sensilight P3 (Columbia 

Biosciences, Columbia, MD). The microarrays were scanned in a ScanArray Express 

HT microarray scanner (Perkin Elmer, Waltham, MA) and the fluorescence signal was 

quantified and corrected for background noise using QuantArray software (Perkin 

Elmer, Waltham, MA). 

 

3.2.3. Normalisation and filtering 

 

Distribution of the data was determined using the mean of each serum across all tested 

antigens in a Shapiro-Wilk test and by visualisation of the data in histograms. 

Normalisation methods were assessed using a published method of ranking to select the 



55 

 

method which best minimised deviation across the array206. To calculate relative rank 

deviation (RRD), sera were ranked based on mean signal intensity and the absolute 

standard deviation at each rank was divided by the mean at each rank. In this context 

each rank consists of one individual.  

 Subsequent normalisation steps were; selection of included serum, selection of 

included control antigens, inverse hyperbolic sine transformation and comparison of 

mean-centring, 2% trimmed mean and 10% trimmed mean. At each step the RRDs were 

visualised to identify the best method, which produced the lowest RRD. To determine 

the degree of normalisation achieved, the data was tested as before in a Shapiro-Wilk 

test and by visualisation. 

 Post-normalisation the global median of each array was calculated, individual 

antigens whose median was lower than the global median were excluded. This filtering 

was done to exclude infrequently and weakly recognised antigens, as they are less likely 

to be repeatable with different methods and populations.  

 

3.2.4. Determining positivity 

 

 

In the published analysis of the GST-fusion array positivity was defined as an optical 

density (OD) equal to or greater than two standard deviations above the mean from the 

relevant 96-well plate162. There is no consensus method for what constitutes a 

significant positive in serological microarrays. There are always samples clearly 

positive or negative, towards the outer limits of OD/signal intensity, but there is rarely a 

clear separation of responses into distinct populations as is favoured for clinical assays. 

Several different methods were tested for identifying breakpoints in the data. The 

intention was to find the most appropriate method for separating responses to each 

antigen. 

 The tested methods included extrinsic and intrinsic methods. Extrinsic methods 

tested were; mean of no DNA controls, global mean and global mean plus 2 standard 

deviations. Intrinsic methods tested were; k-means clustering, k-medoids clustering, 

fuzzy c-means clustering, hierarchical clustering and mixture modelling. The intrinsic 

methods were tested allowing for 2 to 10 clusters. The average silhouette width of each 
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antigen was used to determine how well the data fit within its cluster. Silhouette ranges 

from minus one to one and is defined by equation 1.  

 
 

 

(1) 

Where i is a data point, a is average dissimilarity with all other data points in its cluster, 

b is the lowest average dissimilarity to any other cluster of which i is not a member. If i 

is similar to other data in its cluster a will be low. If i is also dissimilar to data in the 

nearest cluster b will be high. In this case silhouette will tend towards one. If i is not 

similar to its cluster a will be high. If i is similar to data in the nearest cluster b will be 

low. In this case silhouette will tend towards minus one. A silhouette close to one 

suggests that i is on the edge of two clusters (Table 3.6). 

 

Table 3.6. Summary of how similarities within and between clusters impact the 

silhouette score. 

OWN 

CLUSTER 

FIT 

A NEAREST 

CLUSTER FIT 

B CONCLUSION SILHOUETTE 

GOOD Low Bad High Fits cluster Close to 1 

BAD  High Good Low Fits nearest 

cluster 

Close to -1 

GOOD Low Good Low On the border Close to 0 

BAD High Bad High On the border Close to 0 

 

The mean of each silhouette per antigen gave the average silhouette width, which 

showed how tightly clustered the data was as a whole. To determine positive responses, 

two clusters were identified and method which had the highest average silhouette width 

for each antigen separately was identified. Data points clustered with the maximum 

OD/signal intensity point of each antigen were considered positive and the opposing 

cluster negative. 
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3.2.5. Choice of outcome variable and covariates 

 

 

Where possible the OD/signal intensity values were used for analysis rather than data 

categorised into positive and negative responses. This was used to avoid unnecessarily 

losing information and because most responses were continuous. 

For the GST-fusion micro-titre plate array all comparisons were between 

scarring cases (trachomatous scarring [TS], trachomatous trichiasis [TT] or corneal 

opacity [CO]) and healthy-matched controls unless otherwise stated. In the published 

analysis intensity of responses in scarring cases and healthy controls were compared 

using Student’s t-test and number of positive responses using Fisher’s exact test162. In 

the re-analysis intensity of responses were compared using a general linearised model 

(glm) and number of positive responses using χ2 test. For the glm 10,000 permutations 

of the outcome variable were performed to get an adjusted p-value. For cross-

validations, summary p-values were calculated using Fisher’s method. Likelihood ratio 

tests were used to compare models with null models only including the covariates, age 

and gender. Multivariate regression was performed using random forests through the R 

package ranger, variable importance was determined using the Gini impurity index. 

Adjusted odds ratios (OR*) and adjusted confidence intervals (CI*) were calculated as 

the unadjusted OR exponentiated by half the range for a given antigen. 

ROC curves were produced manually from specificities and sensitivities 

computed using R packages pROC and ROCR. ROC curves and AUC classified as 

random were calculated by 100 random resampling of variables included in the model 

to obtain a normal distribution from which to draw a median value. 

For the microarray chips an episode of infection was defined as a Ct-positive 

result from an in-house 16s qPCR assay207, an episode of disease was defined as 

presence of either follicular trachoma (TF) or inflammatory trachoma (TI)208. An 

episode was considered continuous if an individual’s infection or disease status was 

consistent in consecutive visits. Where data was missing between visits with consistent 

infection or disease status it was considered continuous, where data was missing 

between visits with inconsistent infection or disease status it was assumed status 
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changed at the midpoint. To best utilise the longitudinal information a number of 

categorisations were examined as potential outcome variable (Table 3.7). 

 

Table 3.7. Different outcome measures considered for analysis of the longitudinal study 

of Ct infection. 

OUTCOME 

VARIABLE 

NUMBER OF 

CATEGORIES 

CATEGORISATION 

PARAMETERS 

NUMBERS 

PER 

CATEGORY 

  0 1 2 0 1 2 

INFECTIOUS 

EPISODE(S) OR 

NOT 

Two No 

episodes 

≥ 1 

episode 

NA 23 67 NA 

NUMBER OF 

INFECTIOUS 

EPISODES 

Two No 

episodes 

1 

episode 

≥ 1 

episode 

23 19 48 

MEDIAN 

DURATION OF 

INFECTIOUS 

EPISODES 

Three No 

episodes 

0 ≤ 2 

weeks 

> 2 

weeks 

23 37 30 

MEDIAN 

DURATION OF 

INFECTIOUS 

EPISODES 

Two ≤ 2 

weeks 

> 2 

weeks 

NA 60 30 NA 

 

Statistical analyses comparing intensity of responses and number of positive responses 

between the dichotomous outcomes were performed as described previously for the 

GST-fusion array. For both arrays the influence of covariates was modelled through 

univariate-glm. Covariates with a significant association with the outcome variable (p-

value ≤ 0.1) were included in the glm of the individual antigens. Age and gender were 

always included. 

 

3.2.6. Diversity metrics 
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Ecological measures of diversity rely on species breadth/richness, the total number of 

species in a sample, and species diversity, which additionally incorporates the relative 

abundance of each species. In this analysis antigens were considered as species, 

abundance as the response to each antigen and the samples were either the continuous 

data or split into the dichotomous outcome variables. These definitions are based on the 

assumption that responses on the array broadly correlate with abundance of circulating 

antibodies in each sample. A normalised OD of one was interpreted as one arbitrary unit 

of circulating antibody. This means if a response to an antigen is twice as high in one 

sample compared with another, circulating antibodies are twice as abundant in that 

individual.  

Breadth was defined as the number of antigens each individual had a positive 

response to. For the remaining measures examining diversity existing methods were 

adapted to incorporate the continuous OD/signal intensity values. This was deemed 

more appropriate as an assumption of these methods was that individuals within a 

species are equivalent209, 210, in this analysis the species are antigens and positive 

responses within them are not equal.  

 Three different measures of diversity were utilised to improve reliability of the 

results. Shannon’s entropy (H) defined by equation 2, Simpson’s index (D) defined by 

equation 3 and Hill numbers defined by equation 4210. Higher values for all three 

indicate increased diversity and greater evenness. High values of H mean that an 

unknown individual could belong to any species, in our context this means one unit of 

antibody in a sample could be targeted against any antigen because responses in the 

sample are even211. High values of D mean that two randomly chosen individuals are 

likely to be from different species, in our context this means that if we take two separate 

unit of antibody from the array they are unlikely to be targeted against the same antigen 

due to evenness of the responses211. 

 

 

 

 

(2) 

 

 

(3) 
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Where S is number of antigens and pi is the proportion of antibodies specific to each 

antigen. Pi is estimated as the amount of antibody specific to each antigen divided by the 

total amount of antibody present in each individual. 

Hill numbers are slightly more complex because they change with order of 

diversity (q), as q increases more weight is placed on the most abundant species or in 

our case the most strongly recognised antigens210. Within each value of q, higher values 

indicate increased diversity. Of greater interest is the diversity profile, which is how Hill 

numbers change with increasing q. The steeper the decline the more uneven the sample 

is, in our context a steeper decline in Hill numbers implies antibody responses are 

focussed on a few strongly recognised antigens.  

 

 

 

(4) 

 

Where S is number of antigens, pi is the proportion of antibodies specific to each antigen 

and q is the order of diversity. Figure 3.1 provides a simplified interpretation of breadth, 

diversity and evenness, A) represents an even sample where responses are not focussed 

on one antigen and B) represents an uneven sample where diversity is less because 

responses are predominantly targeted against one antigen. 
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A)      B)     

           

           

           

           

           

           

           

           

           

           

 

Figure 3.1. Visualisation of theoretical antibody responses in two samples, different 

colours represent abundance of antibody responses to different antigens. 

A) High levels of breadth and diversity. B) Similar breadth however diversity is 

reduced. In both samples antibodies against eight antigens are detectable, however in 

the right-hand sample the majority of antibodies are targeted against one antigen (red). 

This is an example of an uneven antibody response. 

 

3.3. In silico analyses 

 

3.3.1. Expression, localisation and structure 

 

Developmental cycle expression stage for each transcript was based on data and 

groupings from Belland et al212, this grouping was manually assigned to data from 

Nicholson et al213. Localisation of expressed proteins was predicted using Cello214, 

pSORTB215 and loctree3216, three of the top performing servers for bacterial proteins216. 

Predicted localisation was defined as the consensus from the 3 predictions. 

Transmembrane domains were assigned from consensus predictions from MemBrain217, 

Phobius (http://www.ebi.ac.uk/Tools/pfa/phobius/) and TMHMM218, which have been 

independently validated219. 
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3.3.2. B and T-cell epitopes predictions 

 

MHC class-1 epitopes were predicted with SYFPEITHI (http://www.syfpeithi.de/bin), 

Net-MHC1220 and IEDB-SMM221. MHC class-2 epitope were predicted with 

SYFPEITHI, Net-MHC2222 and ProPred. B-cell epitopes were predicted using 

BepiPred223, ABCpred224 and IEDB-antibody epitope prediction. Consensus predictions 

from the first 2 servers were matched with regions predicted to contain antibody 

epitopes based on a consensus of; beta-turn propensity225, accessibility226, flexibility, 

antigenicity227 and hydrophilicity228. These have been previously validated as top 

performers for linear B-cell epitope prediction223, 229, 230. 

 

3.4. Study details of tested serum samples 

 

3.4.1. HLA polymorphism and scarring trachoma 

 

In The Gambia in 1995, 153 people with evidence of TS by clinical examination were 

recruited alongside age, sex and village-matched controls with normal eyes from Kaur 

Health Centre and the villages of Jali and Berending. A 1 ml sample of venous blood 

was taken from each person to obtain serum. Details of the collection are available from 

Conway et al231, 232. A total of 231 serum samples were tested from this study (Table 

3.8). The joint Scientific and Ethics Committee of the Gambian government and the 

Medical Research Council Laboratories approved the study. 

 

Table 3.8. Sample characteristics from the HLA polymorphism and scarring trachoma 

study. 

 HEALTHY 

CONTROLS 

SCARRED 

CASES 

ASSOCIATED 

P-VALUE 

NUMBER 116 115 NA 

AGE IN YEARS  

(95% CI) 

37.50 

(7.00-65.00) 

38.00 

(7.00-65.75) 

0.900 

FEMALE (N 

[%]) 

84 (72.41) 80 (69.57) 0.633 
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3.4.2. NK-cells and trachoma 

 

As part of a study looking at NK-cell responses in West Kiang District of The Gambia 

in 2006, twelve to fifteen healthy participants from three different age groups (two to 

five; fifteen to 25 and >35 years) were recruited from trachoma-endemic 

communities233. A total of 37 serum samples were available of which 32 had been 

previously examined for presence of Pgp3 antibodies234. The joint Scientific and Ethics 

Committee of the Gambian government and the Medical Research Council Laboratories 

approved the study. 

 

3.4.3. Longitudinal cohort study of Ct infection and active trachoma  

 

In 2002 a rapid assessment survey of adults and children was carried out in the Western 

and North Bank Regions of The Gambia and villages with greater than 20 % prevalence 

of active trachoma (TF and/or TI) were selected as study sites142, 235. Initially six 

villages were selected and a further three were included to increase the power of study 

as the prevalence of active trachoma in the target population (children aged 4-15 years) 

was lower than expected. The joint Gambian Government-Medical Research Council 

Ethics Committee and the Ethics Committee of the London School of Hygiene & 

Tropical Medicine approved the design and procedures of this study. 

School-age children in these villages were examined for the clinical signs of 

trachoma. A subset of 345 children between the ages of 4 and 15 years were recruited 

and followed for a period of 28 weeks. At baseline and approximately fortnightly visits 

(ten to nineteen days), children were examined for signs of active trachoma and a digital 

photograph of each eyelid was taken. Two swabs were collected, one into a dry 

polypropylene tube and the other into RNAlater™. Tear fluid was collected from the 

right eye using a sponge-tipped eye spear (Merocel®, Xomed Surgical Products, 

Jacksonville, Florida USA), inserted in the inferior conjunctival fornix and held there 

for approximately 30 seconds. A sample of venous blood was taken at the beginning 

and cessation of the study. Details of the collection and loss to follow-up are available 

from Faal et al128. An episode of infection was defined as a positive result from an in-

house 16S rRNA PCR207, clinical disease was defined according the WHO simplified 
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grading system208. Collectively, 130 serum samples from baseline and cessation of the 

study were available for testing (Table 3.9).  

 

Table 3.9. Sample characteristics from the longitudinal cohort study of Ct infection and 

active trachoma. 

 PROTECTED UNPROTECTED ASSOCIATED 

P-VALUE 

NUMBER 95 35 NA 

AGE IN YEARS  

(95% CI) 

9.00 

(2.00-14.00) 

9.00  

(1.85-13.15) 

0.982 

FEMALE (N [%]) 42 (44.21) 13 (37.14) 0.470 

VILLAGE (N [%]) 

- 1 

- 2 

- 3 

- 4 

- 6 

- 7 

- 8 

 

13 (13.68) 

10 (10.53) 

1 (1.05) 

14 (14.74) 

14 (14.74) 

34 (35.79) 

9 (9.47) 

 

18 (51.43) 

2 (5.71) 

0 (0.00) 

3 (8.57) 

5 (14.29) 

6 (17.14) 

1 (2.86) 

0.002 

 

 

3.4.4. Scarring case-control study  

 

In The Gambia from May 2006 to February 2009, 61 people with evidence of TS and 

TT by clinical examination were recruited alongside age, sex and village-matched 

controls with normal eyes from the Western, Central and Lower River Regions. A 

sample of venous blood was taken from each person to obtain serum. Details of the 

collection are available from Lu et al 162. A total of 116 of these archived sera were 

available for testing (Table 3.10). The study and its procedures were approved by the 

joint Gambian Government/Medical Research Council Ethics Committee 

 



65 

 

Table 3.10. Sample characteristics from the 2006-2009 scarring case-control study. 

 HEALTHY 

CONTROLS 

SCARRED 

CASES 

ASSOCIATED 

P-VALUE 

NUMBER 58 58 NA 

AGE IN YEARS  

(95% CI) 

55.50 

(30.43-73.73) 

60.00 

(34.00-77.88) 

0.199 

FEMALE (N 

[%]) 

40 (68.97) 39 (67.24) 0.842 

 

3.4.5. NK-cells and scarring trachoma 

 

In the Gambia in 2011, 90 people with evidence of TS and TT by clinical examination 

were recruited alongside age, sex and village-matched controls with normal eyes from 

multiple rural regions55. A sample of venous blood was taken from each person to 

obtain serum. A total of 90 of these serum samples were available for testing. The 

Ethics Committee of the Gambian Government/Medical Research Council Unit, and the 

ethics committee of the London School of Hygiene and Tropical Medicine approved the 

study 

 

Table 3.11. Sample characteristics from the NK-cells and scarring trachoma study. 

 HEALTHY 

CONTROLS 

SCARRED 

CASES 

ASSOCIATED 

P-VALUE 

NUMBER 38 52 NA 

AGE IN YEARS  

(95% CI) 

19.50 

(1.00-39.00) 

20.50 

(3.55-37.73) 

0.224 

FEMALE (N [%]) 30 (78.95) 45 (86.54) 0.343 

 

3.4.6. Longitudinal cohort in Tanzanian children investigating scarring progression 

(2012-2016) 

 

The study was conducted in three adjacent trachoma endemic communities in 

Kilimanjaro and Arusha regions, Northern Tanzania. A cohort of children aged 4 to 12 
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years were followed for 4 years. At baseline (January 2012) and every three months, 

children were examined for clinical signs of trachoma. Conjunctival swabs were taken 

to test for Ct infection. Ct DNA was detected using a previously described droplet 

digital PCR assay236.  

At cessation of the study blood samples were collected from a subset of 372 

children. Finger prick blood specimens were collected onto filter paper which hold 

approximately 10 µL of blood. Filter papers were air-dried on a dedicated specimen 

rack for between four and twelve hours, before being sealed in a small zip lock bag. 

Field-grades for scarring at baseline and the end of the study were regraded from digital 

photographs by an ophthalmologist experienced in trachoma grading, scarring 

progression was defined as the presence of new conjunctival scars when comparing 

baseline and end-stage photographs side by side (Table 3.12). Some children were not 

seen at baseline or at the end of the study, these 61 were excluded from the analysis of 

scarring progression. Blood-spot ELISA was performed in the Kilimanjaro Clinical 

Research Institute (KCRI) laboratory, Kilimanjaro Christian Medical Centre (KCMC), 

Moshi, Tanzania. This study was reviewed and approved by the Tanzanian National 

Institute for Medical Research Ethics Committee, the Kilimanjaro Christian Medical 

Centre Ethics Committee, and the London School of Hygiene and Tropical Medicine 

Ethics Committee. 

 

Table 3.12. Demographics of children sampled at the end of a 4-year longitudinal cohort 

of scarring progression in Tanzania. 

 NO PROGRESSION PROGRESSION P-VALUE 

NUMBER 243 68 NA 

AGE IN YEARS  

(95% CI) 

11.00 (9.00-16.00) 11.00 (9.00-15.33) 0.465 

FEMALE 

(N [%]) 

139 (57.20) 46 (67.65) 0.123 

BASELINE CT+ (N 

[%]) 

28 (13.53) 12 (20.69) 0.181 

VISITS WITH F 

SCORE > 1 (N [%]) 

0 

 

 

116 (47.74) 

 

 

24 (35.29) 

0.027 
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1-2 

> 2 

64 (26.34) 

63 (25.92) 

15 (22.09) 

29 (45.31) 

VISITS WITH P 

SCORE > 1 (N [%]) 

0 

1-2 

> 2 

 

 

165 (67.90) 

55 (22.63) 

23 (9.47) 

 

 

20 (29.41) 

21 (30.89) 

27 (39.71) 

< 0.001 

BASELINE 

SCARRING GRADE 

(N [%]) 

0 

1 

2 

3 

 

 

 

171 (70.37) 

21 (8.64) 

4 (1.65) 

11 (4.53) 

 

 

 

25 (36.76) 

15 (22.06) 

7 (10.29) 

11 (16.18) 

< 0.001 

FINAL SCARRING 

GRADE (N [%]) 

0 

1 

2 

3 

 

 

219 (90.12) 

12 (4.94) 

4 (1.65) 

8 (4.94) 

 

 

0 (0.00) 

17 (25.00) 

13 (19.12) 

38 (55.88) 

< 0.001 

 

3.4.7. NK-cells and HCMV, cross-sectional survey (The Gambia 2011)  

 

In The Gambia, participants were recruited from the villages of Keneba, Manduar, and 

Kantong Kunda in the West Kiang district for a study investigating NK-cell function in 

HCMV237 infections and thee modulating effects of vaccination on their functions. 

Venous blood samples were collected from individuals aged 1 to 49 years, serum 

samples from 495 of these individuals were available for testing. This study was 

approved by the ethical review committees of the Gambia Government/Medical 

Research Council and the London School of Hygiene and Tropical Medicine. 

 

3.4.8. The Solomon Islands Trachoma prevalence survey 2014  
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In the Solomon Islands, 13 villages in Temotu, Rennell and Bellona provinces were 

selected based on a pre-MDA survey in September-November 2013 showing clinical 

signs of TF in over 10% of the population238. Finger prick blood spots were collected 

from 1501 people of all ages as described above. The study was approved by the 

London School of Hygiene & Tropical Medicine Ethics Committee and the Solomon 

Islands National Health Research Ethics Committee. 

 

3.5. Humoral immunology 

 

3.5.1. Optimisation and validation of the in-house ELISA 

 

Initial optimisation of this ELISA method was achieved using the positive control 

antigen Pgp3. Serum dilution, anti-human IgG-peroxidase antibody concentration 

(Sigma Aldrich) and antigen concentration were optimised. 32 samples from the NK-

cells and study (chapter 3.4.2) were previously tested using an independent Pgp3-based 

serological assay published by Wills et al234, OD values from that assay were used as 

reference or ‘gold’ standard to test the in-house ELISA. The optimised ELISA was 

further validated on 495 sera representing individuals with ages 1 to 49 years from a 

Gambian community endemic for trachoma (chapter 3.4.7). 

 For testing blood-spot eluates rather than serum/plasma samples, and for 

additional validation, the in-house ELISA was used to test Pgp3 responses in 260 

samples collected from a trachoma prevalence survey in the Solomon Islands (chapter 

3.4.8)238. Results were compared with those from an independent Pgp3-based 

serological assay developed at the Centre for Disease Control (Atlanta, GA) and 

currently being employed by the Global Trachoma Mapping Project239. 

 

3.5.2. Serum/plasma ELISA 

 

Antigens were diluted to one μg/ml in coating buffer A (for proteins) or coating buffer 

B (for peptides) and 50 μl/well added to the first 90 wells of Immulon 4 HBX microtitre 

plates (Fisher Scientific, Loughborough, UK). Pgp3 was similarly diluted and added to 

the remaining 6 wells of each plate as a positive control. Antigens were bound at 4 °C 
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overnight, the plates were covered throughout the protocol. Sera/plasma were diluted 

1/500 (for proteins) or 1/250 (for peptides) in blocking buffer A, samples stored in 

glycerol were tested twice as concentrated. Four hyper-immune control sera were 

pooled and diluted 1/100 and then serially diluted 1/5, 5 times. After 30 minutes 

agitation, diluted samples were stored at 4 °C overnight. 

 The following day plates were inverted and washed twice with washing buffer A 

and blocked with 100 μl blocking buffer A at room temperature for 4 hours. After 2 

washes 100 μl test sera in triplicate and control sera were added and incubated at room 

temperature for 4 hours. After 4 washes 100 μl anti-human IgG-peroxidase antibody 

diluted 1/30000 blocking buffer A were added per well and incubated at room 

temperature for 1 hour. After a final 4 washes 100 μl 1-Step Ultra TMB-ELISA 

substrate (Fisher Scientific, Loughborough, UK) was added per well and incubated at 

room temperature for 10 minutes (for proteins) or 15 minutes (for peptides). The 

reaction was stopped by addition of 100 μl 2 M sulphuric acid per well to stop the 

reaction and the plate read at OD 450 nm for detection and 700 nm for background 

correction.  

 

3.5.3. Dried blood-spot ELISA 

 

Blood-spots were picked and added to individual wells of 96-deep well plates, 

antibodies were eluted in 300 μl blocking buffer B at 4 °C overnight. Plates and control 

sera were otherwise prepared as above. The following day plates were washed and 

blocked as above. Forty μl blood-spot eluates and 100 μl control sera were added per 

well and incubated at room temperature for 2 hours. The antibody binding and detection 

were performed as above. 

 

3.5.4. Biotinylated peptide ELISA 

 

Stocks of streptavidin were diluted to 5 μg/ml in H2O and 100 μl/well added to the first 

90 wells and Pgp3 was added to the remaining 6 wells on each plate as above. 

Streptavidin and Pgp3 were dried onto the plates by incubation, uncovered, at 37°C 

overnight. Blood-spots were diluted as above, sera/plasma were diluted 1/250. 
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 The following day the plates were rehydrated with washing buffer A at room 

temperature for 15 minutes. Biotinylated peptides were diluted to 1 μg/ml in coating 

buffer B and 50 μl/well added to the first 90 wells, blocking buffer A was added to the 

remaining 6 wells of each plate. Peptides were bound to streptavidin at room 

temperature for 1 hour with agitation. After 2 washes plates were blocked with 100 μl 

blocking buffer A at room temperature for 30 minutes. After two washes the antibody 

binding and detection were performed as above. 

 

3.5.5. Between-plate normalisation 

 

Non-specific absorbance at OD 700 nm was subtracted from absorbance at 450 nm, 

samples in triplicate were averaged and values greater than 1 standard deviation from 

the mean were excluded. Values from each positive control dilution were averaged 

across all plates for each sample set. Values from each plate were divided by the 

averaged values, the mean deviation for each plate’s serial dilution from the average 

was used to transform each plates values.  

 

3.5.6. Comparison of OD values 

 

Normalised OD values were compared as described previously. Briefly, positivity was 

determined using an objectively determined clustering method and number of positives 

compared using χ2 test. Continuous OD values were compared using a glm. 

 

3.6. Population genomics 

 

3.6.1. Isolate collection and whole-genome sequencing 

 

Survey, clinical examination and sample collection methods have been described 

previously240. Briefly, we conducted a cross-sectional population-based survey in 

trachoma-endemic communities on the Bijagós Archipelago of Guinea Bissau. 

Conjunctival swabs were obtained from the left upper tarsal conjunctiva of each 
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participant, DNA was extracted and Ct omcB (genomic) copies/swab quantified from 

the second conjunctival swab using droplet digital PCR (ddPCR)236.  

For 8 individuals, whole genome sequence (WGS) data was obtained following 

Ct isolation in cell culture. Briefly, samples were isolated in McCoy cell culture by 

removing 100 μl eluate from the original swab with direct inoculation onto a glass 

coverslip within a bijou containing Dulbecco’s modified Eagles’ Medium (DMEM). 

The inocula were centrifuged onto cell cultures at 1800 rpm for 30 minutes.  Following 

centrifugation the cell culture supernatant was removed and cycloheximide-containing 

DMEM added to infected cells which were then incubated at 37°C in 5% CO2 for three 

days. Viable Ct elementary bodies (EB) were observed by phase contrast microscopy. 

Cells were harvested and further passaged every three days until all isolates reached a 

multiplicity of infection between 50-90 % in 2 x T25 flasks. At this point cells were 

harvested, scraped and centrifuged to concentrate and remove cell debris. All isolates of 

Ct were negative when tested for mycoplasma contamination by fluorescence 

microscopy using Hoechst 33258 staining and by using a VenorGem Mycoplasma PCR 

Detection Kit (Minerva Biolabs, Berlin, Germany) according to the manufacturer's 

instructions. Each isolate was prepared and EBs purified as described241. DNA was 

extracted from gradient purified EBs using the Promega Wizard Genomic Purification 

kit according to the manufacturer’s protocol242.  

For the remaining individuals (118), WGS data were obtained directly from 

clinical samples. DNA baits spanning the length of the Ct genome were compiled by 

SureDesign and synthesized by SureSelectXT (Agilent Technologies, UK). Ct DNA 

extract from clinical samples was quantified and carrier human genomic DNA added to 

obtain a total of 3µg input for library preparation. DNA was sheared using a Covaris 

E210 acoustic focusing unit (Christiansen 2014). End-repair, non-templated addition of 

3’–A adapter ligation, hybridisation, enrichment PCR and all post- reaction clean-up 

steps were performed according to the SureSelectXT Illumina Paired-End Sequencing 

Library protocol (V1.4.1 Sept 2012). All recommended quality control measures were 

performed between steps.  

DNA was sequenced at the Wellcome Trust Sanger Institute using Illumina 

paired-end technology (Illumina GAII or HiSeq 2000). All 126 sequences passed 

standard FastQC quality control criteria243.  
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3.6.2. Alignment, assembly and filtering by individual genes 

 

Raw fastq files were aligned and assembled using BWA SAMtools244 with A/Har-13 as 

the reference genome. Variants were called and filtered using BCFtools245 

andVCFtools246, with a minimum base quality score of 20 (99% accuracy) and a 

minimum read depth of 10.  

Assembled isolates were combined and used as a database in the command-line 

version of Basic Local Alignment Search Tool (BLAST+)247. Individual gene sequences 

from A/Har-13 were used as queries to extract copies successfully sequenced in the 

isolates. Sequences with more than half missing calls were excluded. MUSCLE 

algorithm was used for gene alignments248. Alignments were inspected manually using 

SeaView249 and visualisation were output using Geneious250. 

 

3.6.3. Allele frequency-based signatures of selection 

 

Aligned multi-fasta files for each gene were used as input for Variscan-2.0.3251 to 

calculate Tajima’s D, Fu and Li’s D* and F* and Fay and Wu’s H. RunMode 12 and 

RunMode 22 were used, sites with less than 50 sequences were not included. Sliding-

window analyses were performed over windows of 42 nucleotides with jumps of three 

nucleotides. All three measures look at the number and frequency of mutations within a 

population to determine whether they occurred randomly under neutrality or were 

caused by a form of natural selection. They are based on different methods of estimating 

the genetic diversity (θ) in a population252. The rationale for using these different 

metrics is that when combined they are more informative than any one of them alone. 

Tajima’s D is based on the prevalence of low and intermediate frequency alleles 

and can detect directional selection (where a single allele is favoured, causing changes 

in the allele frequency over time) and balancing selection (multiple alleles are 

maintained at an intermediate frequency in a population). If directional selection is 

acting, purifying or positive selection, most mutations at a given position will be rare 

because they are either; deleterious, therefore being driven out of the population 

(purifying) or one mutation is beneficial, therefore this mutation will increase in 

frequency at the expense of other mutations (positive). If balancing selection is acting, 
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two or more mutations at a given position will be present in the population at 

intermediate frequency. Directional selection is indicated by negative values of D. 

Balancing selection is indicated by positive values of D. 

Tajima’s D can be influenced by changes in population structure. If a population 

has expanded in number, there will be many rare mutations that have not yet been 

driven out by purifying selection, leading to a negative D-value. Conversely, if a 

population has decreased in number, there will be fewer rare mutations, leading to a 

positive D-value. Fu and Li’s D* and F* are very similar to Tajima’s D, however they 

utilise a sequence from outside the population, to account for the effect of population 

changes. Therefore, if D and D*/F* are positively correlated, this supports the observed 

mutations being a result of natural selection not population changes. 

The above metrics can identify evidence of balancing and directional selection, 

they cannot distinguish within directional selection between positive and purifying 

selection. Fay and Wu’s H is based on the prevalence of intermediate and high 

frequency alleles and can detect positive and purifying selection. If purifying selection 

is acting, few mutations will reach high frequency. If positive selection is acting, 

beneficial mutations will reach high frequency. Positive selection is indicated by 

negative values of H. Purifying selection is indicated by positive values of H. 

Combining these metrics can therefore reliably identify mutations caused by natural 

selection and determine whether they are under positive, purifying or balancing 

selection. Calculations for these metrics are detailed below. 

Tajima’s D compares the average pairwise diversity (π), the average difference 

between a pair of sequences across all sites, and the number of segregating sites (κ), the 

number of sites within a population which are polymorphic253. Tajima’s D is calculated 

from equation 7. For equation 5, x is the frequency of sequences i and j, δ is the number 

of nucleotide differences per site between them and N is the total number of sequences. 

For equation 6, n is the number of sequences and i is the number of times a given allele 

is present. 

 

 

(5) 

 

 

(6) 

 
 

(7) 
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Positive selection increases the frequency of few advantageous mutations, meaning 

most mutations are kept at a low frequency. In this situation the average difference 

between pairs of sequences is low but the number of segregating sites is relatively high, 

thus D will be negative. Purifying selection reduces the frequency of deleterious 

mutations, meaning mutations are occurring but not becoming common. In this situation 

again the average difference between pairs of sequences is low and the number of 

segregating sites is high, thus D will be negative. Balancing selection maintains 

multiple mutations at intermediate frequencies, this means increased polymorphism at 

these sites. In this situation the average difference between pairs of sequences is higher 

but the number of segregating sites remains stable, thus D will be positive. One problem 

with this measure is that when populations expand mutations are less likely to be lost, 

meaning the number of segregating sites will increase and D will be negative and the 

opposite is true for population bottlenecks. 

Fu and Li’s D* and F* are similar to Tajima’s D but they distinguish between 

‘old’ and ‘young’ mutations, and therefore are less sensitive to population changes254. 

‘Old’ mutations are found on internal branches of the genealogy and ‘young’ mutations 

are found on external, more recent branches. D* is calculated from equation 8, 

essentially total number of mutations minus number of singletons, mutations only 

occurring once in the population. F* is calculated from equation 9, average pairwise 

diversity minus number of singletons. For equations 8 and 9, n is the number of 

sequences, η is the total number of mutations, αn is the denominator from equation 6 and 

ηs is the number of singletons.  

 
 

(8) 

 

 

(9) 

 

Similarly to Tajima’s D positive and purifying selection both bring about an excess of 

rare mutations, making D* and F* negative. In contrast balancing selection will 

maintain older mutations, reducing the number of ‘young’ mutations making D* and F* 

positive. By comparing Tajima’s D with Fu and Li’s F* we can determine the influence 

of singleton mutations, an F* value more negative than its corresponding D value would 

indicate that most mutations are singletons. As described above, negative D, D* and F* 
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values can be indicative of both positive and purifying selection. Fay and Wu’s H can 

be used to determine which form of natural selection is occurring, or more accurately 

which is the dominant selection pressure. 

 Fay and Wu’s H utilises an outgroup sequence (A/Har-13) and focusses on the 

difference between intermediate and high frequency alleles rather than intermediate and 

low frequency alleles as the previous metrics do255. It is calculated from equation 12. 

Where n is the number of sequences, i is the number of times an allele occurs and ξi is 

the number of differences from the ancestral outgroup per allele. 

  

 

(10) 

  

 

(11) 

  
 

(12) 

 

H is heavily influenced by high frequency alleles because of the i2 component in 

equation 11. Purifying selection keeps alleles from becoming common, therefore there 

will be few high frequency alleles and H will be positive. Positive selection causes 

alleles to rise to fixation thus increase in frequency, therefore H will be negative.  

 

3.6.4. Haplotype-based signatures of selection 

 

These metrics utilising allele frequencies were complemented by a haplotype based 

method, integrated haplotype score (iHS). iHS was designed to identify alleles at 

intermediate frequencies that are being driven towards fixation (positive selection) or 

possibly balancing selection256. iHS looks at SNPs individually and their proximity 

along the chromosome to other SNPs, comparing a user-defined ancestral sequence to 

the derived sequence. In this study, the ancestral sequence chosen is A/Har-13, a 

trachoma-isolate collected in the 1950s. iHS is able to identify regions along a 

chromosome with relatively recent evidence of positive selection, by comparing the 

acquisition or loss of SNPs, and those in close proximity, between the ancestral and 
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derived sequences. A significantly positive or negative iHS, determined by comparing 

to all SNPs on the chromosome, is indicative of positive selection. 

Extended haplotype homozygosity (EHH) is a measure of distance calculated 

around SNPs on a given haplotype, if the haplotype is all the same EHH will be one and 

if it is all different EHH will be zero. Integrated haplotype homozygosity (iHH) is 

calculated as the decrease or decay in EHH as you move further from a given SNP, both 

on the ancestral sequence and the derived sequence. In our studies the ancestral allele 

was defined as the allele in A/Har-13 and the derived allele was defined by variants in 

the Ct isolates from Guinea-Bissau. The unstandardised iHS is calculated from equation 

13. Where iHHA and iHHD are the iHH from the ancestral and derived sequences 

respectively. 

 

 

(13) 

  

Unstandardised iHS is then standardised based on the genome-wide mean and variance 

of iHS for SNPs with the same allele frequency. If multiple SNPs with evidence of 

selection are within a defined distance of each other, EHH greater than 0.05, they can be 

combined to indicate windows under selection. Values significantly less than one 

indicate longer haplotypes on the derived sequence, indicative of a selective sweep 

driving an allele towards fixation before further mutations have arisen. Values 

significantly greater than one indicate longer haplotypes in the ancestral sequence, this 

is also a sign of selection. Selection could now be favouring the ancestral allele or 

ancestral alleles around the favoured site could be hitchhiking with it. In our analysis we 

will use the absolute iHS, using significantly positive values as indicators of selection. 

 Short read data from the 126 ocular Ct isolates were mapped against Ct A/HAR-

13 using SAMtools245. Non-polymorphic sites were removed. SNPs with a minor allele 

frequency (MAF) less than 0.05 and more than 25 % missing calls were excluded. 

Alleles were defined as ancestral (0) or derived (1) based on the ancestral isolate A/Har-

13. iHS incorporate distance between SNPs to identify signatures of selection and 

cannot be calculated over sites with missing calls, for this reason imputation was used to 

classify missing calls. A simple genetic distance-based imputation was used. Genome-

wide pairwise nucleotide diversity was calculated for each pair of sequences. For each 

missing call within a sequence, all sequences with calls at those sites were assigned a 
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score based on the pairwise diversity between them and the sequence with a missing 

call. These scores were summed at each site for ancestral and derived calls respectively 

and divided by the number of respective calls. The state with the lower score was used 

to define the missing call (Figure 3.2). iHS was calculated using the R package rehh, 

WHAMM (http://coruscant.itmat.upenn.edu/whamm/ihs.html) and selscan257. Scores 

were standardised as described above after binning MAF into 40 discrete bins of size 

0.025. 

 

Figure 3.2. Genetic distance-based imputation of missing calls. 

A) Genome-wide pairwise diversity was calculated for each pairs of sequences. B) Each 

sequence was examined for missing calls. C) For each site with a missing call for each 

sequence, calls at each site for assigned a score based on their sequences pairwise 

diversity when compared to the sequence with the missing call. D) These scores were 
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summed for the ancestral allele (0) and the derived allele (1) respectively and divided by 

the number of each allele to get an average score per allele type. E) If the average 

ancestral allele score was lower than the equivalent derived allele score the missing call 

was classed as ancestral (0) and vice versa, because a lower score means the sequences 

are more similar. 

3.7. Cell biology using cell-culture models 

 

3.7.1. Mammalian cell-culture and Ct infection 

 

Cell lines were cultured in 75 cm2 aerated flasks at 37 °C with 5 % CO2 and split every 

2 days at approximately 80 % confluence. HeLa cells were cultured in culture medium 

A and seeded at a density of 2x106 cells per ml. For microscopy, cells were seeded at a 

density of 7x104 cells per ml at approximately 50 % confluence onto glass coverslips in 

24-well plates. 

 Ct-LGV2 infections were performed 24 hours after seeding of cells onto 

coverslips, -80 °C stocks were diluted to one infection forming units (IFU) in infection 

medium and centrifuged at room temperature for 10 minutes at 1000 RPM. After 

incubation at 37 °C five % CO2 for 80 minutes infection medium was exchanged for the 

relevant culture medium and cells were incubated at 37 °C, 5 % CO2 until fixation.  

 

3.7.2. GFP-construct transfection 

 

Green fluorescent protein (GFP)-construct transfections were performed 24 hours after 

seeding of cells onto coverslips. Constructs were diluted to 150 ng per 50 μl transfection 

medium and incubated at room temperature for fifteen minutes, followed by 1/10 

dilution into culture medium onto cells and incubation at 37 °C, 5 % CO2 until fixation. 

 

3.7.3. Fixation and antibody staining for IF microscopy 

 

Cells were fixed with either 4% paraformaldehyde (PFA) at room temperature for 30 

minutes, followed by addition of 50 mM ammonium chloride, or methanol at -20 °C for 

5 minutes. Fixed coverslips were washed 3 times with PBS and cells were 
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permeabilised with either 1:1 methanol/ethanol or PBS with 0.05 % Triton X-100 at 4 

°C for 15 minutes. After 2 washes coverslips were blocked with 1 or 10 % BSA. After 2 

further washes primary antibody in PBS with 1 % BSA was added and coverslips were 

incubated at room temperature (Table 3.13). After 2 washes coverslips were stained 

with Hoechst 33258 (1/5000) and relevant secondary antibody (1/200) in PBS with one 

% BSA and incubated at room temperature for 30 minutes. After 2 final washes 

coverslips were mounted onto slides using MolWiol and stored at 4 °C for at least 24 

hours before examination.  

 

Table 3.13. Primary antibodies for IF microscopy. 

PRIMARY ANTIBODY 

TARGET 

DILUTION  HOST SPECIES 

CT442 1:200 Rabbit 

CALRETICULIN 1:1000 Rabbit 

 

3.7.4. Co-Immunoprecipitation of CT442-GFP from HeLa cells 

 

HeLa cells were seeded and cultured as above but in 150 mm by 20 mm plates for a 

total of 8x106 cells per condition, conditions tested were GFP or CT442-GFP 

transfected with and without Ct-LGV2 infection. Twenty-four hours post-transfection 

and infection cells were washed twice with Hank’s buffered saline solution (HBSS) and 

incubated on ice for 5 minutes with co-immunoprecipitation (Co-IP) buffer. Cells were 

scraped from the flasks and vortexed for 1 minute, followed by incubation on a roller at 

4 °C for 30 minutes while being vortexed every 5 minutes. Cells were lysed by ten 

passages through a 23G needle and supernatant was collected by centrifugation at four 

°C for ten minutes at 13000 RPM. Five μl Protein-G beads (Thermo Fisher Scientific) 

were added per ml of lysate, followed by incubation on a roller at 4 °C for 2 hours. The 

beads and non-specifically bound proteins were removed using a magnetic bar and 1 μl 

anti-GFP antibody was added per ml of lysate, followed by incubation on a roller at 4 

°C overnight. Five μl new Protein-G beads were added per ml of lysate, followed by 

incubation on a roller at 4 °C for 3 hours. The beads and specifically bound proteins 

were collected using a magnetic bar and the beads were washed 3 times with PBS with 

0.1% NP40. After 3 washes in PBS the beads were split in two and stored at -20 °C.  
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Elution buffer B was added to half of the beads and vortexed for 3 minutes, the 

eluate was diluted 1:1 with Laemmli buffer and incubated at 95°C for 10 minutes. 

Samples were blotted as described previously and bands were visualised using anti-GFP 

antibody to confirm precipitation of GFP and CT442-GFP from cultures.  

 

3.7.5. Liquid chromatography-mass spectrometry  

 

The remaining half of the beads were analysed by liquid chromatography-mass 

spectrometry as described previously87. Briefly, bead-coupled proteins were trypsin-

digested overnight at 37°C in twenty μl 25 mM NH4HCO3. Digests were analysed 

using a LTQ Velos Orbitrap (Thermo Fisher Scientific) coupled to a nano-LC Ultimate 

3000 RSLCnano system (Thermo Fisher Scientific). Peptides were analysed in the 

orbitrap in full ion scan mode at a resolution of 30,000 (at m/z 400) and with a mass 

range of m/z 400−1800. Mass spectrometry data were searched against the NCBInr 

Homo sapiens and the SwissProt Chlamydia trachomatis databases. False discovery rate 

(FDR) was calculated using the reversed database approach with a 1 % filter. 

 

3.7.6. Filtering of mass spectrometry hits 

 

Hits from mass spectrometry were grouped into 7 categories; GFP only, ubiquitous, 

uninfected only, infected only, CT442-uninfected, CT442-ubiquitous and CT442-

infected (Table 3.14). Hits from groups 1 to 5 were excluded, for Ct hits group 6 was 

also excluded. Hits were ranked based on the score from group 7, those below 50 were 

excluded. Overlapping hits common to five or more inclusion membrane proteins (Incs) 

from a large-scale affinity-based mass-spectrometry analysis of Inc-host interactions 

were also excluded96. Overlap with CT442 proteins identified in the above study, Ct-

inclusion enriched proteins258 and lipid-droplet enriched proteins from Ct-infected 

cells93 were included but not used to filter. 
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Table 3.14. Grouping of proteins identified by mass spectrometry. 

Proteins were grouped for filtering of targets. A ‘+’ indicates proteins that were present 

in the list of targets from that experiment. 

GROUP UNINFECTED 

GFP 

 

CT442-

GFP 

INFECTED 

GFP 

 

CT442-

GFP 

DESCRIPTION 

1 + - + - GFP only 

2 + + + + Ubiquitous 

3 + + - - Uninfected only 

4 - - + + Infected only 

5 - + - - CT442-

uninfected 

6 - + - + CT442-

ubiquitous 

7 - - - + CT442-infected 

 

3.7.7. Pathway-enrichment analysis 

 

Pathway enrichment analysis was performed using all filtered proteins, either including 

or excluding proteins which were common to 5 or more Incs as described above. The 

comparator dataset for enrichment analysis was Homo sapiens proteome, NCBI taxon-

id 9606. Bonferroni correction was used to correct for multiple comparisons, corrected 

p-values ≤ 0.05 were considered significant. The Database for Annotation, Visualization 

and Integrated Discovery (DAVID) bioinformatics resource259 was used to determine 

enrichment of GO-terms260 and Pfam261 and IntePro protein domains262. Enriched 

pathways were determined through KEGG263 and Reactome264. Protein-protein 

interactions were found and scored using STRING265, interactions with an overall score 

less than 0.5 were excluded. Visualisations of protein-protein interactions were 

produced using R package igraph. Spheres contain filtered hits. Size of protein-spheres 

represents mass spectrometry scores for each protein, increased size reflects higher 

score. Connecting lines represent interactions. Thickness of connecting lines represent 
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STRING interaction scores, increased thickness reflects higher scores. Ct-proteins were 

manually annotated with published information.  
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4. Association between antibody response 

and longitudinal ocular infection   
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4.1. Introduction 

 

4.1.1. Natural history of trachoma 

 

Ct has consistently been isolated from the ocular conjunctiva of individuals with clinical 

signs of trachoma42, and had been shown through direct inoculation to cause 

trachomatous disease43, 44. In trachoma-endemic communities ocular Ct infection has 

been consistently shown to associate with the presence and severity of active 

trachomatous disease (TF and/or TI)266, 267. Ct-infected individuals without active 

disease still often have sub-clinical minor signs of disease and live in households where 

active disease is present267. In households and communities with increased prevalence 

and load of ocular Ct, active disease is also more common267-269. Individuals with severe 

disease (TI) have higher Ct conjunctival loads and prolonged episodes of infection268. 

 Active disease is primarily found in children under the age of ten years270. 

Disease prevalence declines from its peak in pre-school children (one to four years old) 

to older children and teens (five to fourteen years old and from this group to adults 

(fifteen years or older)8, 266, 271. This can partly be explained by reduced exposure to Ct 

with increasing age, which is presumed to be due to development of immunity270, 272. 

This reduced prevalence observed in cross-sectional surveys is also partly due to 

duration of infections and active disease episodes which both decline with age. Median 

infectious episode duration drops from approximately four weeks in young children to 

two weeks and less than two weeks in older children and young adults respectively8. 

Similarly, median active disease episode duration falls from thirteen weeks to five and 

two weeks in the older age groups. Modelling data suggests the median durations of 

both infection and active disease may be longer, particularly in pre-school children, 

however the decrease in length of episodes is consistent9. This suggests a partial 

immunity to Ct develops with increasing age in endemic communities. 

 

4.1.2. A balance of protective and pathogenic immune responses 

 

Conversely to active disease, prevalence of trachomatous scarring, trichiasis and corneal 

opacities increase with age271. Persistent or chronic infection is associated with 

progression of these pathologies273. This presents a paradoxical situation where immune 
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responses are necessary in resolving Ct infection but can promote or at least do not 

prevent later pathologies274. Conjunctival Ct infection induces a strong pro-

inflammatory response marked by production of cytokines such as interleukin-1 alpha 

(IL-1α), IL-6, IL-8 and granulocyte macrophage colony-stimulating factor (GMCSF)117, 

118. This innate immune response also promotes recruitment of neutrophils, 

macrophages and NK-cells119-121. NK cells are also important during Ct infection 

through early secretion of IFNγ and activation of Th1 CD4+ T-cells275. Cell-mediated 

immune responses have been extensively studied in chlamydial infections, proliferation 

of CD4+ T-cells and production of interferon-gamma (IFNγ) has been implicated in 

successful resolution of infection in animal models and human infections125-127, 142, 186. 

Lymphoproliferative and cytolytic responses to Ct antigens including whole EBs and 

MOMP are important in the resolution of infection124-126.  Recent work using a non-

human primate model of trachoma has suggested CD8+ T-cells may also have a role in 

Ct clearance200.  

The role of antibodies in Ct infection and subsequent disease has been the 

subject of decades of research as Ct infection stimulates and influx of B-cells into the 

conjunctiva119. These are the primary constituent of conjunctival follicles and stimulate 

hypergammaglobulinaemia130. Neutralising antibodies against Ct have been 

demonstrated in animal models131, 132 and in vitro133-135 and B-cell promotion of T-cell 

mediated Ct clearance is important in some murine models276-278. A recent study in non-

human primates showed increased antibody responses against a panel of Ct antigens 

were heightened in animals that were partially protected upon ocular re-challenge with 

Ct136. In contrast, human studies find anti-Ct antibodies associated with both active 

disease and progressive scarring129, 266, 279, with the highest titres found in cases of 

severe disease130. A longitudinal study in The Gambia found that higher IgG responses 

against the immunodominant MOMP were associated with higher rates of infection and 

higher titres increasing the associated risk280. Ocular Ct infection clearly induces a 

strong humoral immune response but its role in protection or pathology in vivo is 

unclear. 
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4.1.3. Proteome-wide antibody profiling 

 

Screening whole-proteome arrays as discussed in chapter 1.4 has become a popular 

method to elucidate antibody responses and improve understanding of their role in 

infection and disease281. Extensive use of these methods has highlighted some common 

themes in humoral immune targets of human pathogens including; functions in protein 

binding and catalytic activities, early/late or late expression stage and membrane 

localisation282. A recent study on Plasmodium falciparum used a panel of 856 

previously identified parasite antigens to screen samples from a Ugandan population 

with well characterised P. falciparum infection in the last year and malaria exposure in 

the previous eight years283. This longitudinal information allowed them to identify 

current antibody responses that were predictive of most recent exposure and frequency 

of exposure in the preceding twelve months. Longitudinal studies have previously been 

utilised to examine the impact of tear and serum antibody responses, against Ct-EB and 

the Ct antigen MOMP, on Ct infection280. A similar methodology was applied to 

elucidate the role of Ct genome-wide antibody responses in longitudinal ocular Ct 

infection in a trachoma-endemic setting. 

 

4.1.4. Study design and arrayed sera 

 

The study was performed as described in chapter 3.4.3 and in Faal et al142. Briefly, 345 

children aged 4 to 15 were recruited from nine villages in The Gambia where rapid 

assessment of school-age children found greater than 20 % active trachoma. At baseline 

and each fortnightly visit for 6 months, children were examined for clinical signs of 

active trachoma. Conjunctival swabs were collected in duplicate to test for Ct infection 

and tear fluid was collected for cytokine-based and serological assays. Blood samples 

were collected at baseline and cessation of the study, a total of 186 samples were 

collected. Conjunctival expression and production of cytokines in this cohort have been 

previously examined128. Both expression and production of pro-inflammatory cytokines, 

predominantly IFNγ and TNFα, was enhanced in individuals with current ocular Ct 

infection. This pro-inflammatory response was also associated with acquisition and 

slower resolution of Ct infection. This study attempted to characterise the humoral 

immune response in these individuals. 
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 The number of samples to be screened on the array was limited due to resource 

limitations. Samples were selected to cover a range of phenotypes, including; recent 

infection, multiple episodes of infection, lack of infection and/or clinical disease. In 

total 90 sera from baseline and 33 sera from the end of the study were selected. These 

were screened against a previously published array incorporating 894 genomic ORFs 

from serovar D Ct (chapter 3.2.1)205. Individual antigen fluorescence intensities were 

assumed to be proportional to the presence of antigen-specific antibodies in the sera. 

The complete profile of responses for each serum sample was used to look for global 

changes in antibody recognition and its association with frequency and duration of Ct 

infection. Differential recognition of individual antigens was also examined. In the 

analysis presented only the 90 prospective baseline sera were included in order to 

identify which antigens were the focus of current or established immune responses 

associated with protection from acquisition of further Ct infection and disease. 

 

4.2. Results 

 

4.2.1. Protection from Ocular Ct infection 

 

A number of outcome measures were considered to reflect immunity. The simplest 

comparison being individuals free of infection during the six months against those with 

any infection, however the latter covered individuals with one to five infectious 

episodes who were clearly resolving infection differently. Separating this group into one 

or more episodes of infection was also inappropriate as single episodes lasted between 

two and 26 weeks. Therefore frequency and duration of infection episodes were 

combined to define acquired immunity and to split individuals into groups for analysis. 

Initially three groups of individuals were compared.  Those with no infections, those 

with short duration infections (two weeks or less) and those with long duration 

infections (longer than two weeks). In order to increase the power of analysis, those 

with no or short duration infections were combined (protected-immune) and compared 

to those with long duration infections (susceptible – non-immune). Short and long 

duration infections were defined by the median duration of infectious episodes for the 

90 individuals with sera. The median duration of infection was two weeks or one visit 

(Table 4.1). This comparison compares individuals who were either protected from 
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infection or resolved quickly against those with either long duration or frequent 

infection episodes (Figure 4.1), which reflects the variation in immunity seen in this 

study and other trachoma-endemic communities. 

 Protected and susceptible individuals were comparable by age and gender. 

Village membership was significantly different but both protected and susceptible 

individuals were present in four of six villages. The demographic similarity of immune 

and non-immune individuals meant that history of ocular Ct exposure was assumed to 

be similar. 

 

Table 4.1. Patient demographics in protected and susceptible groups. 

Associations with protection or susceptibility to infection were determined using a 

generalised linear model. For age, bracketed numbers are the 95 % confidence intervals 

around the median. For gender and village, bracketed numbers are the percentage. 

 PROTECTED 

(IMMUNE) 

SUSCEPTIBLE 

(NON-IMMUNE) 

P-VALUE 

NUMBER 60 30 NA 

AGE IN YEARS  

(95% CI) 

9.00 (2.00-11.53) 8.00  (1.73-12.00) 0.413 

FEMALE (N [%]) 24 (40.00) 13 (43.33) 0.762 

VILLAGE (N [%]) 

- 1 

- 2 

- 4 

- 6 

- 7 

- 8 

 

7 (11.67) 

2 (3.33) 

5 (8.33) 

11 (18.33) 

27 (45.00) 

8 (13.33) 

 

19 (63.33) 

0 (0.00) 

1 (3.33) 

3 (10.00) 

7 (23.33) 

0 (0.00) 

< 0.001 
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Figure 4.1. Visualisation of longitudinal evidence of ocular Ct infection in 90 

individuals during the six-month study. 

Visits every two-weeks are indicated on the horizontal axis, the 90 individuals are 

separated on the vertical axis. Red rectangles are visits where an individual’s 

conjunctival swab was Ct-positive by 16S rRNA QPCR, grey rectangles are Ct-negative 

visits. A) Individuals are sorted by ID. B) Individuals are sorted by median duration of 

infection episodes, protected and susceptible groupings are indicated on the right-hand 

side. 
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4.2.2. Array normalisation and filtering 

 

The raw fluorescence intensity data from the microarray was strongly positively 

skewed, p-value < 0.001 (Figure 4.2A). In total 90 serum samples from the beginning of 

the study and 33 serum samples from the end tested on 894 antigens were included. 

Negative values were classified as missing calls (NA) as they were strongly separate 

from the distribution of the remaining data.  

 Transformation and normalisation of the array was assessed using relevant rank 

deviation (RRD)206. The data was inverse hyperbolic sine transformed, which reduced 

RRD across all samples (Figure 4.2B). Mean-centring and trimmed means of 2 and 10 

% were tested to normalise the data. The two trimmed mean methods were 

indistinguishable, mean-centring reduced the RRD compared to both (Figure 4.2C). 

 Antibody responses were filtered by excluding any with mean fluorescence 

intensity lower than the global mean across all antigens, this removed infrequently 

recognised antigens. The 30 serum samples from the end of the cohort were excluded 

because of the small group size and an intention to focus on prospective responses. The 

normalised data from 90 serum samples tested on 441 antigens remained positively 

skewed (p-value 0.001) as a result non-parametric tests of significance were used 

throughout (Figure 4.2D). 
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Figure 4.2. Transformation and normalisation of the raw array data. 

A) Histogram showing positively skewed distribution of the raw data. B) Significantly reduced deviation (RRD) in the data after inverse hyperbolic-

sine transformation (red) compared with the raw data (black). C) Reduced deviation in the data after mean-centring (black) compared with 

normalisation by trimmed-mean at 2 % (red) and 10 % (blue). D). Histogram of normalised data still showing a slight positive skew. 
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The normalised continuous data was used where its distribution permitted the 

appropriate analysis, for methods which required categorical data samples were divided 

into groups on a per antigen basis. Division of the data into groups was assessed using 

average silhouette width, which tests within and between group variance to determine 

the degree of separation of individuals. Grouping methods tested were; k-means 

clustering, k-medoids clustering, fuzzy c-means clustering, hierarchical clustering or 

mixture modelling. 

 Binary classification into positive and negative samples per antigen performed 

best and was empirically better than all other cluster sizes up to ten, p-value < 0.001 

(Appendix Figure 1). Hierarchical clustering was the worst performer for a cluster size 

of two across all 441 antigens. The remaining methods while not performing well 

(median silhouette width average = 0.6) were equally good at splitting the data (Figure 

4.3). Instead of using one method for classifying responses as positive, silhouette score 

was determined for individual antigens using each clustering method. For each antigen 

the clustering method with the highest silhouette score was used to call responses 

positive or negative. This method, referred to as ‘Best’, was significantly better than 

using one method for all antigens, p-value < 0.001 (Figure 4.3). 

Figure 4.3. Average silhouette widths for clustering method trialled for all 441 antigens.  

'Best' method had the highest median across all antigens. Clustering methods are detailed 

on the left-hand side. Red lines indicate the median. Notches were calculated as median 

+/- 1.57 x IQR/sqrt of n, where IQR is the interquartile range and n is the number of 

samples. The whiskers were calculated by adding 1.5 times the IQR to the 75 percentile 

and subtracting 1.5 times the IQR from the 25 percentile. Dots are outliers. 
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4.2.3. More focussed global antibody responses are associated with protection 

 

Comparing 441 filtered antigens with the complete panel of 894 present on the 

microarray there was no difference in gene expression stage or peak, p-values of 0.772 

and 0.498, and no difference in predicted localisation, p-value 0.390. 

The global responses were examined in protected and susceptible groups. 

Breadth, defined as the number of antigens an individual had a positive response to, was 

highly variable. There was a non-significant trend towards lower breadth in protected 

individuals, p-value 0.088 (Figure 4.4). 

 

Figure 4.4. Increased breadth of responses in susceptible individuals. 

Boxplots of breadth of responses (x-axis) in protected and susceptible individuals (y-

axis). Breadth was measured as the number of antigens an individual had a positive 

response to. 

 

Global antibody profiles were examined further by adaptation of measures of diversity 

typically applied in ecology and now in meta-genomics284, these incorporate breadth 

and relative abundance of species210. In this context each individual was considered as a 

separate population of antibody responses (species), the relative strength of which 
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equated to abundance (chapter 3.2.6). The diversity per individual was measured using 

three different methods, Hill numbers, Shannon’s diversity indices and Simpson’s 

diversity indices because they often produce different results211. A high number 

indicates high diversity or an evenness of antibody responses, meaning responses are 

targeted equally across multiple antigens. Hill numbers also incorporate order of 

diversity. Increasing this number puts greater importance on the most abundant 

antibody responses. Hill numbers stable across changing order of diversity indicate an 

even population of responses, declining numbers as order of diversity increases indicate 

an uneven population dominated by a few commonly recognised antigens.  

Hill numbers dropped significantly with increasing order of diversity in both 

groups, which means individual’s responses were highly uneven and therefore focussed 

on a few select antigens. Hill numbers were similar across all orders of diversity 

between the protected and susceptible groups (Table 4.2). Both Shannon’s and 

Simpson’s diversity indices were higher in susceptible individuals, p-values of 0.080 

and 0.024. This demonstrates less focussed antibody responses in susceptible 

individuals, as suggested by breadth (Figure 4.5). 

 

Table 4.2. Uneven antibody responses in protected and susceptible individuals, as 

determined by Hill numbers. 

Associations were determined using a generalised linear model. 

ORDER OF 

DIVERSITY 

PROTECTED  

MEDIAN (IQR) 

SUSCEPTIBLE 

MEDIAN (IQR) 

P-VALUE 

2 415.21 (414.65-415.69) 415.12 (413.99-415.76) 0.472 

3 20.38 (20.36-20.39) 20.37 (20.35-20.39) 0.472 

4 7.46 (7.46-7.46) 7.46 (7.45-7.46) 0.472 

5 4.51 (4.51-4.52) 4.51 (4.51-4.52) 0.472 
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Figure 4.5. Increased diversity and less focussed responses in susceptible individuals. 

Diversity was measured using A) Shannon’s diversity index and B) Simpson’s diversity 

index. 
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4.2.4. Individual antibody responses are associated with a lack of protection 

 

Association of responses with individual antigens and infection outcome was 

determined using a generalised linear model adjusting for age, gender and village of 

residence. Forty-two antigens were identified as targets of differential antibody 

responses between protected and susceptible individuals, p-values <= 0.05 (Table 4.3). 

Higher responses to all of these antigens associated with lack of protection from 

infection. When baseline Ct infection status was included in the model 19/42 antigens 

remained significantly associated, a further 19 were associated at a significance level of 

0.1. The association of higher responses to these antigens with susceptibility to infection 

was not due to current Ct infection. Despite variation in the significance of the 

association they were equally good at predicting whether an individual was protected or 

susceptible, with AUC’s ranging from 0.73 to 0.80. 

 

Table 4.3. Fort-two differentially recognised antigens between protected and susceptible 

individuals. 

Univariate associations were determined using a generalised linear model. Variables 

were resampled 10,000 times and remodelled to determine permuted p-values (P*). 

Odds ratios and confidence intervals were calculated for an increase of half the range 

per antigen, rather than one unit (chapter 3.2.5). CT+ is the p-value after adjusting for 

baseline infection status. 

ANTIGEN P-VALUE P* T SE(T) OR* 95% CI* AUC CT+ 

CT545 0.001 < 0.001 8.38 2.63 9.05 2.57-39.71 0.78 0.003 

CT118 0.003 0.002 6.40 2.18 8.18 2.19-37.48 0.78 0.008 

CT123 0.004 0.001 6.43 2.21 8.7 2.23-43.16 0.76 0.006 

CT541 0.006 0.004 6.09 2.21 6.74 1.85-28.71 0.78 0.012 

CT664 0.009 0.008 5.76 2.20 6.36 1.71-28.27 0.80 0.015 

CT119 0.009 0.007 5.19 1.98 4.35 1.51-14.00 0.76 0.019 

CT381 0.010 0.009 5.03 1.96 4.56 1.48-15.49 0.76 0.021 

CT584 0.012 0.010 6.90 2.75 6.3 1.62-29.64 0.76 0.022 

CT284 0.012 0.009 6.34 2.53 4.83 1.51-18.22 0.74 0.035 

CT502 0.014 0.012 6.46 2.62 5 1.50-19.93 0.80 0.018 
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CT051 0.017 0.015 5.06 2.11 5.44 1.47-24.26 0.74 0.027 

CT592 0.019 0.018 4.14 1.77 3.6 1.28-11.23 0.75 0.038 

CT073 0.020 0.017 6.01 2.58 6.91 1.47-39.52 0.77 0.015 

CT078 0.020 0.018 6.07 2.61 4.88 1.38-20.58 0.74 0.044 

CT023 0.022 0.019 6.60 2.88 7.61 1.56-51.76 0.77 0.038 

CT223 0.022 0.020 5.93 2.59 4.11 1.31-15.14 0.76 0.043 

CT795 0.024 0.018 3.91 1.73 3.67 1.23-11.93 0.76 0.036 

CT875 0.028 0.030 5.14 2.34 4.21 1.22-16.47 0.73 0.070 

CT181 0.030 0.024 4.32 1.99 4.05 1.20-15.42 0.75 0.067 

CT694 0.031 0.031 3.91 1.81 3.68 1.17-12.78 0.74 0.048 

CT021 0.034 0.033 5.45 2.57 4.72 1.19-21.77 0.77 0.074 

CT813 0.035 0.033 3.50 1.66 3.13 1.12-9.57 0.75 0.064 

CT841 0.036 0.035 3.77 1.80 3.15 1.12-9.78 0.74 0.074 

CT017 0.036 0.039 3.77 1.80 4.37 1.16-18.92 0.75 0.087 

CT142 0.036 0.037 4.24 2.03 3.41 1.12-11.48 0.74 0.074 

CT764 0.037 0.034 5.74 2.75 4.5 1.18-20.92 0.78 0.067 

CT728 0.039 0.040 4.86 2.35 3.97 1.14-16.23 0.78 0.045 

CT228 0.039 0.037 5.54 2.69 4.34 1.16-19.64 0.74 0.058 

CT703 0.040 0.042 4.82 2.34 5.76 1.20-34.90 0.74 0.051 

CT494 0.040 0.037 5.63 2.74 5.62 1.19-32.96 0.76 0.078 

CT106 0.041 0.039 5.87 2.87 3.45 1.11-12.30 0.76 0.065 

CT097 0.041 0.040 5.50 2.70 3.6 1.10-13.26 0.75 0.089 

CT316 0.043 0.049 6.00 2.96 3.66 1.10-14.02 0.75 0.076 

CT579 0.044 0.041 3.73 1.85 3.55 1.09-13.26 0.77 0.081 

CT168 0.044 0.044 6.32 3.14 5.37 1.19-32.48 0.76 0.106 

CT089 0.044 0.045 4.54 2.26 3.34 1.07-11.61 0.75 0.099 

CT237 0.045 0.043 5.79 2.88 4.53 1.13-22.39 0.75 0.092 

CT806 0.046 0.046 4.89 2.45 3.49 1.08-12.84 0.76 0.069 

CT668 0.048 0.049 5.68 2.87 3.45 1.07-12.91 0.77 0.096 

CT642 0.048 0.047 5.80 2.93 3.39 1.08-12.52 0.76 0.120 

CT695 0.049 0.053 3.73 1.90 3.44 1.06-12.84 0.75 0.103 

CT570 0.050 0.049 5.92 3.02 4.29 1.08-20.48 0.76 0.093 
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To examine when and how these antigens might be targeted by the host immune 

response during the Ct developmental cycle, expression stage predicted from Belland et 

al212 and predicted localisation from three bioinformatics tools were compared between 

the 42 differentially recognised antigens and the 441 filtered antigens (chapter 3.2.5). A 

χ2 test was used to quantify over-representation or under-representation of particular 

expression stages or predicted localisations in the differentially recognised antigens. 

Late stage expressed genes were over-represented in these differentially recognised 

antigens, p-value 0.042 (Figure 4.6A), and both very early and very late peak expressed 

genes were over-represented, p-value 0.007 (Figure 4.6B). Extracellular/secreted, inner 

membrane and periplasmic proteins were over-represented in these antigens, p-value 

0.056 (Figure 4.7). 
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Figure 4.6. Over-representation of late and very early expressed proteins in antigens 

associated with susceptibility. 

Proteins identified through transcriptomics as expressed late or very early in the Ct 

developmental cycle were over-represented in the 42 differentially recognised antigens 

(grey) compared with the total 441 (black).  
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To determine the value of combining antibody responses against multiple antigens for 

predicting susceptibility, antigens were added step-wise to a generalised linear model 

adjusting for age, gender and village. Antigens were added in order, based on the 

strength of their association with susceptibility. Model quality (AIC) decreased as 

antigens were added until the 32nd antigen, the minor improvement in predictive ability 

(AUC) was therefore less than the complexity added for each antigen (Table 4.4). 

Likelihood ratio tests comparing the multivariate models with a null model including 

only age, gender and village had the same result. Progressive AUC improvement was 

likely due to overfitting as more variables were included. The median response of all 42 

combined was significantly higher in unprotected individuals but was highly variable, 

as demonstrated by the decrease in model quality (Figure 4.8). 

 A model including 32 antigens was used to determine specificity and sensitivity 

for detecting susceptibility to infection. With 100 % specificity the maximum sensitivity 

was 70.00 %. With 100 % sensitivity maximum specificity was 70.00 % (Figure 4.9A). 

Figure 4.7. Over-representation of proteins extracellular, inner membrane and periplasm 

in antigens associated with susceptibility. 

Proteins with a consensus localisation prediction of extracellular, inner membrane and 

periplasm were over-represented in the 42 differentially recognised antigens (grey) 

compared with the total 441 (black).  
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A best compromise from this model would have 91.66 % specificity and 90.00 % 

sensitivity, minimalising false positives without missing many true positives. To 

determine the value of selecting antigens based on univariate analysis, equivalent 

multivariate modelling was performed using antigens selected at random from the total 

441. This was repeated 100 times to obtain a normal distribution. Antigens identified 

from univariate analysis had equivalent predictive power to those chosen at random for 

models of one to fifteen antigens. Models using randomly selected antigens had greater 

predictive power when more than fifteen antigens were included (Figure 4.9 parts B and 

C). Combining antigens individually associated with susceptibility to infection did not 

improve their predictive power. 

 

Table 4.4. Combinatorial antibody responses increased complexity with minimal benefit 

to predictive power. 

Generalised linear models including antigens in a step-wise manner decreased in quality 

until 32 antigens were included, determined by model quality (AIC) and likelihood ratio 

test comparing with the null model including only covariates (P-VALUE). Predictive 

value (AUC) showed modest progressive improvement suggestive of over-fitting. 

ANTIGENS INCLUDED AIC AUC P-VALUE 

1 90.01 0.78 < 0.001 

2 90.48 0.76 0.001 

3 92.46 0.76 0.002 

4 94.32 0.77 0.006 

5 96.30 0.77 0.013 

6 97.14 0.77 0.016 

7 98.67 0.77 0.024 

8 99.87 0.78 0.031 

9 101.55 0.80 0.045 

10 102.60 0.82 0.051 

11 102.48 0.82 0.041 

12 102.47 0.80 0.034 

13 104.40 0.81 0.049 

14 106.32 0.81 0.069 

15 108.30 0.81 0.095 



102 

 

16 110.27 0.81 0.127 

17 111.93 0.81 0.153 

18 111.44 0.82 0.115 

19 112.63 0.82 0.125 

20 114.49 0.82 0.156 

21 114.93 0.82 0.143 

22 113.50 0.85 0.090 

23 115.49 0.85 0.115 

24 117.38 0.84 0.142 

25 117.49 0.86 0.123 

26 115.72 0.86 0.073 

27 117.19 0.89 0.084 

28 119.06 0.89 0.103 

29 119.30 0.89 0.092 

30 121.07 0.89 0.110 

31 122.66 0.90 0.126 

32 119.52 0.87 0.060 

33 82.00 1.00 < 0.001 
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Figure 4.8. Antibody responses averaged across the top 32 differentially recognised 

antigens. 

Average antibody responses were significantly higher in susceptible individuals but 

combining   responses to 32 antigens significantly increased variation due to 

homogeneity in responses.
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Figure 4.9. Combinatorial antibody responses did not accurately predict susceptibility. 

A) Models including increasing numbers of differentially recognised antigens showed modest increases in specificity and sensitivity. B) 

Randomly selected antigens were as good at predicting susceptibility as antigens individually associated with lack of protection, as determined by 

AUC. Number of antigens included is indicated on the y-axis. C) Thirty-two randomly selected antigens outperformed the top 32 differentially 

recognised antigens when predicting susceptibility. 
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4.2.5. Combinatorial antibody responses identified by multivariate regression do not 

reliably predict susceptibility to infection 

 

Combining differentially recognised antigens identified by univariate analyses did not 

accurately predict susceptibility. A multivariate random forests regression was 

performed including all 441 antigens to determine if evaluating all antigens 

simultaneously identified antibody targets not found in the univariate analysis that could 

predict susceptibility. Antigens were ranked by variable importance, defined as the 

mean decrease in accuracy when classifying individuals using a permutation of a 

variable instead of the real data. Random forests identified twelve antigens with variable 

importance outside 95 % of the normal distribution (Table 4.5 and Figure 4.10). Six of 

these were identified in the univariate analysis. Four of the remaining six were higher in 

susceptible individuals, CT029 and CT630 were higher in protected individuals. A 

multivariate model including these antigens was compared with a model of randomly 

selected antigens, as described previously. A multivariate model including antigens 

determined to be important in classification by random forests regression was not 

significantly better at predicting susceptibility than the average of an equivalent number 

of antigens selected at random (Figure 4.11). 

 

Table 4.5. Most important antigens for classification by random forests regression. 

A multivariate random forests regression was performed with all 441 antigens. These 12 

antigens were in the top 2.5 % based on variable importance. 

ANTIGEN VARIABLE 

IMPORTANCE 

CT449 0.29 

CT694 0.22 

CT381 0.21 

CT545 0.18 

CT630 0.18 

CT118 0.18 

CT664 0.18 

CT719 0.17 
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CT728 0.17 

CT073 0.16 

CT029 0.16 

CT067 0.16 

 

Figure 4.10. Ranked variable importance from random forests regression. 

The Gini index was used to calculate variable importance. Antigens in the top 2.5 % of the 

distribution are indicated by the red line. 
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Figure 4.11. Multivariate regression did not identify antigens able to predict 

susceptibility. 

The top 12 antigens by variable importance from a random forests regression were 

included in a generalised linear model. A) AUC of the model including random forests-

selected antigens in a step-wise manner was no better than a model of randomly selected 

antigens. B) A model of the top 12 antigens was not significantly more sensitive or 

specific than a model of randomly selected antigens. 
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4.2.6. Individuals with a more focussed antibody profile are associated with protection  

 

Approximately 10 % (42/441) of arrayed antigens included after quality filtering 

(Chapter 4.2.2) had significantly higher antibody responses in susceptible individuals, 

this boosting of a broad range of antibody responses in individuals who had repeated or 

long duration infections in the following six months was unexpected. The increased 

breadth and diversity in susceptible individuals suggested more focussed antibody 

responses may be protective. To investigate this, the responses of the 90 individuals 

were divided about the median response across all antigens to form two groups. These 

groups were classified as ‘globally higher’, an average response greater than the median 

of all antigens, and ‘globally lower, an average response lower than the median of all 

antigens.  Univariate analysis described above was then repeated. 

 Twenty-six differential antibody responses were found in the group who had 

higher global antibody responses. Responses to each of these antigens were, all higher 

in susceptible individuals. Twenty-nine differential antibody responses were found in 

the group with lower global responses. The majority (27/29) were higher in susceptible 

individuals, but two were significantly higher in protected individuals (a further three 

were of borderline significance (Table 4.6). Of these CT029 and CT630 were both 

independently identified as important from the multivariate random forests regression 

described above. 

 

Table 4.6. Five antigens associated with protection from infection. 

Univariate analysis of all 441 antigens in individuals classified as ‘globally lower’ 

identified five responses associated with protection. Higher antibody responses to these 

antigens associated with protection from infection. 

ANTIGEN P-VALUE P* T SE(T) OR 95% CI AUC 

CT334 0.038 0.026 -12.73 6.14 0.03 0.00-0.48 0.70 

CT029 0.043 0.041 -14.31 7.10 0.06 0.00-0.68 0.72 

CT629 0.062 0.066 -15.87 8.51 0.09 0.01-0.89 0.69 

CT391 0.065 0.063 -8.89 4.82 0.16 0.02-0.96 0.72 

CT630 0.072 0.075 -17.70 9.84 0.05 0.00-0.86 0.77 
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The antigens identified in these three univariate analyses had surprisingly little overlap 

(Figure 4.12). Two antigens were found in all analyses with 40.48 %, 69.23 % and 

27.59 % of targets being unique to the complete set and the two groups split around the 

median. CT029 was the only antigen which showed variable association with outcome. 

In the ‘globally higher’ group it was associated with susceptibility to infection with the 

opposite protection-association in the ‘globally lower’ group.  

Figure 4.12. Differentially recognised antigens from the complete set, 'globally 

higher' individuals and 'globally lower' individuals had limited overlap. 

Antigens identified in the three univariate analyses as being differentially 

recognised were examined for overlap. This Venn diagram was produced using 

Venny 2.0 (http://bioinfogp.cnb.csic.es/tools/venny/). 
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4.2.7. Selective ELISA testing of differentially recognised antigens  

 

As described in chapter 1.4.4, follow-up work to validate results from large-scale arrays 

of this kind is critical. Through in-house ELISA a selection of antigens which had 

differential responses between protected and susceptible individuals were selected. Five 

of the 42 targets identified in the complete univariate analysis were inclusion membrane 

proteins (Incs), these are at the interface of host-Ct interactions and are plausible 

candidates as immune targets. Three Incs which had been previously identified as 

immunogenic were selected; CT813, available as a full-length GST-fusion construct, 

and CT118 (IncG) and CT119 (IncA), produced as peptides previously shown to be 

immunogenic (Prof. Bernhard Kaltenboeck personal communications, both within host-

cytosol exposed regions of the proteins)204. Nine of the 42 targets identified were known 

to be secreted into the host cytosol, similarly to Incs localisation of these proteins 

facilitates interaction with the host immune system. Three were selected which had been 

identified as immunogenic previously; CT089 (CopN) and CT875, available as a full-

length His-tagged proteins, and CT795, available as a full-length GST-fusion construct. 

Pgp3 was included as an immunodominant positive control not included on the protein 

microarray. Pgp3 antibody responses are purportedly related to Ct exposure and 

therefore should be frequently recognised in children from trachoma-endemic 

communities285, 286. 

 CT089 and CT875 were produced as full-length His-tagged proteins as 

previously described172, provided by Prof. Steve Reed, University of Washington 

(Figure 4.13). CT118 (IncG) and CT119 (IncA) were synthesised as biotinylated 16-mer 

peptides by thinkpeptides, with purities of 92.40 % and 90.63 % respectively.  
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Figure 4.13: Coomassie blue stained SDS-PAGE gel of CT089 and CT875. 

The molecular weight markers on the left are in kDa. 

 

CT795 and CT813 were both available as GST-fusion constructs. Due to high levels of 

non-specific binding from the anti-GST antibody, even when used 10-fold more dilute 

then recommended, bands of interest were highlighted in red when there was no clear 

dominant band. Expression of both CT795 and CT813 was inducible in initial trials at 

37 °C (Figure 4.14A). CT795 aggregated and CT813 aggregated or was found in 

insoluble inclusion bodies using the recommended conditions for induction (Figure 4.14 

parts B and C); 30 °C for 3 hours with 0.2 mM IPTG. This was unsurprising for the 

membrane-localised CT813 but not for CT795 which is secreted by Ct.  

These proteins were co-expressed with molecular chaperones to try and improve 

expression and solubility202, 203. These chaperones are expressed from plasmids 

previously transformed into competent E. coli prior to transformation with the GST-

fusion constructs. CT795 was still commonly aggregated however some protein was 

also soluble using the pKJE7 (Figure 4.15A lanes 10-12) or the pTf16 (Figure 4.15A 

lanes 7-9) plasmids, expression levels were significantly higher using the latter. CT813 

was no longer within inclusion bodies, with both plasmids it was equal parts aggregated 

and soluble (Figure 4.15A lanes 1-6). CT795 was able to be purified using glutathione 

beads from the soluble fraction after co-expression with the pTf16 plasmid, CT813 was 

able to be purified from the soluble fraction after co-expression with either plasmid, 
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expression levels were marginally higher with pKJE7 (Figure 4.15B). Subsequently the 

GST-fusion was cleaved during purification to try and minimise the impact of non-

specific binding and reactivity in subsequent serological work. CT795 was co-expressed 

with pTf16 and CT813 was co-expressed with pKJE7, they were successfully purified 

with cleavage of the GST-fusion however there were still many non-specific bands 

present (Figure 4.15C). These bands were likely a mixture of bacterial contaminants and 

the molecular chaperones, size exclusion chromatography was performed using a 

Superdex 200 column with an Äkta Purifier to try and separate out the Ct proteins. 

There was a small reduction in contaminants however the chaperones were still present 

post-purification, due the abundance of the chaperones after purification and their 

unknown immunogenicity they were deemed unsuitable for the following serology. 

Time-constraints and the availability of other proteins from the array meant no further 

attempts were made to purify CT795 and CT813. 
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Figure 4.15: expresse 8/7, aggregate mostly 7, aggregate and insoluble 8 Figure 4.14. Expression trials of CT795-GST and CT813-GST. 

Western blots were incubated with an anti-GST monoclonal antibody to bind the GST-fusion 

moiety. The lysates were separated by ultra-centrifugation into aggregate (AGG), soluble 

(SOL) and insoluble fractions (INS). The relevant bands are highlighted in red. A) Successful 

expression of CT795-GST and CT813-GST after IPTG induction in E. coli lysates. B) 

CT795-GST was primarily aggregated when induced at 30 °C for 3 hours with 0.2 mM IPTG. 

C) CT813-GST was aggregated or insoluble when induced under the same conditions. 
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Figure 4.15. Co-expression trials of CT795-GST and CT813-GST with chaperone 

plasmids. 

Western blots were incubated with an anti-GST monoclonal antibody to bind the GST-

fusion moiety. The lysates were separated by ultra-centrifugation into aggregate (AGG), 

soluble (SOL) and insoluble fractions (INS). The relevant bands are highlighted in red. 

A) Expression was trialled using the pKJE7 and pTf16 chaperone-expressing plasmids. 

Both proteins were partially soluble with either chaperone set, CT795-GST expression 

was significantly greater with pTf16. B) Both proteins were successfully purified using 

glutathione beads, non-highlighted dominant bands indicated co-purification of the 

molecular chaperones. C) Both proteins were successfully purified after cleavage of the 

GST-fusion moiety, the chaperones were still present at high levels. 
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Pgp3 was soluble using the recommended induction conditions described above both 

with and without cleavage of the GST-fusion (Figure 41.6 parts A and B).  Pgp3 was 

purified further by size-exclusion chromatography. No non-specific bands were 

detectable by silver staining after this purification (Figure 41.6C). When compared with 

the original purification of Pgp3 little difference was detectable using Coomassie-blue 

staining (Figure 4.16D), however there was a clear difference in purity when examined 

by silver staining (Figure 4.16E).  
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Figure 4.16. Expression and purification of Pgp3 

A) Coomassie-blue stained SDS-PAGE gel of Pgp3-GST was expressed in a soluble 

form when induced at 37 °C for 3 hours with 0.2 mM IPTG and was purified using 

glutathione beads. B) Coomassie-blue stained gel Pgp3 was purified after cleavage of 

the GST-fusion moiety. C) Impurities were removed from Pgp3 by size exclusion-based 

chromatography. No non-specific bands were detectable by silver staining. D) Pgp3 pre 

(left) and post-AKTA purification had similar purity was Coomassie-blue staining. E) 

Silver staining showed greater purity of Pgp3 after further purification by size 

exclusion-based chromatography. 
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4.2.8. ELISA validation showed variable association with a lack of protection 

 

The initial ELISA protocol was adapted from methods used previously in trachoma or 

urogenital Ct infection140, 161. Randomly selected sera were used from three different 

study populations to optimise conditions with a positive control Pgp3 (chapter 3.4). A 

serum dilution of 1/500 combined with a Pgp3 concentration of 1 μg/ml produced the 

greatest breadth of responses (Figure 4.17 parts A and B). When tested with these 

conditions a secondary antibody dilution of 1/ 30000 had the strongest discriminatory 

power (Figure 4.17C). Responses against GST-cleaved Pgp3 and Pgp3-GST had 

minimal difference in absorbance when tested on a small set of sera. 
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Figure 4.17. Optimisation of an in-house ELISA protocol. 

All optimisation was performed with Pgp3. A) A serum dilution of 1/500 produced the greatest 

breadth of responses. B) Pgp3 concentration of 1 μg/ml (dashed line) produced the greatest 

breadth of responses. C) A secondary antibody dilution of 1/30000 provided the greatest 

breadth without a high background response. 
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The ELISA protocol was validated by visually inspecting how Pgp3 responses changed 

with age and by comparing results with two published Pgp3-based ELISA protocols 

(chapter 3.5). The median Pgp3 response increased significantly from children (one to 

nine years) to teenagers and young adults (ten to nineteen years) and from this group to 

adults (twenty years and above) in a trachoma-endemic community in The Gambia, p-

values of 0.003 and 0.006 respectively (Figure 4.18A). The ELISA results were not 

strongly correlated with those from a Pgp3-ELISA developed independently by Dr 

Myra McClure’s group at Imperial College London234, rho value 0.14 and a p-value of 

0.440. (Figure 4.18B). In this small set of sera, samples with strong Pgp3 responses 

were correlated. Correlation was weaker in samples with Pgp3 responses less than 0.5 

OD, these responses were mostly non-specific background absorbance. The Pgp3 

ELISA had very strong correlation with a Pgp3-ELISA developed independently by Dr 

Diana Martin at Center for Disease Control (CDC), Atlanta286, rho value 0.88 and a p-

value < 0.001 (Figure 4.18C). This was tested on a significantly larger set of samples 

with a greater range of Pgp3 responses. The Pgp3-ELISA methodology developed for 

this study performed comparably with these published tests. 
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Figure 4.18. Validation of an in-house Pgp3 ELISA. 

The ELISA methodology was validated by; A) examining if Pgp3 response increased with age and 

B) and C) comparing results with two published Pgp3-ELISA protocols. A linear model of ELISA 

results from the in-house and the two published methods was used to fit the line (red). 
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For the protein microarray validation, 90 serum samples that were previously tested by 

microarray were retested by ELISA.  A further 40 samples were included from the 

baseline of the cohort sample that had insufficient follow-up data for inclusion in the 

longitudinal analysis. The total 130 sera had a similar make-up in terms of age, gender 

and village of participants (Table 4.7). These sera were tested for antibody responses to 

CT089, CT875, IncG, IncA and Pgp3. 

 

Table 4.7. Patient demographics in protected and susceptible groups, complete sera set. 

Associations with susceptibility to infection were determined using a generalised linear 

model. 

 PROTECTED 

(IMMUNE) 

SUSCEPTIBLE 

(NON-IMMUNE) 

P-VALUE 

NUMBER 95 35 NA 

AGE IN YEARS  

(95% CI) 

9.00 (2.00-14.00) 9.00  (1.85-13.15) 0.982 

FEMALE (N [%]) 42 (44.21) 13 (37.14) 0.470 

VILLAGE (N [%]) 

- 1 

- 2 

- 3 

- 4 

- 6 

- 7 

- 8 

 

13 (13.68) 

10 (10.53) 

1 (1.05) 

14 (14.74) 

14 (14.74) 

34 (35.79) 

9 (9.47) 

 

18 (51.43) 

2 (5.71) 

0 (0.00) 

3 (8.57) 

5 (14.29) 

6 (17.14) 

1 (2.86) 

0.002 

 

ELISA responses for CT089 and CT875 were poorly correlated with responses from the 

array, rho values of 0.14 and 0.19 and p-values of 0.203 and 0.014 respectively (Figure 

4.19A and 4.20A). ELISA responses for both IncG and IncA had almost no correlation 

with responses from the array, rho values of 0.01 and < -0.01 and p-values of 0.948 and 

0.972 respectively (Figures 4.21A and 4.22A). Despite this, responses to all four were 

still significantly higher in unprotected individuals, p-values of 0.003, 0.015, 0.005 and 

0.008 respectively (Figures 41.9B, 4.20B, 4.21B and 4.22B). The positive control Pgp3 

was also significantly higher in unprotected individuals, p-value < 0.001 (Figure 4.23).
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Figure 4.19. CT089 correlation between ELISA and array results. 

Responses to CT089 were retested in 90 arrayed serum using and in-house ELISA. A) 

Correlation between ELISA and array results was variable. B) Higher responses to 

CT089 remained associated with susceptibility to infection. A linear model of results 

from the ELISA and array was used to fit the line (red). 
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Figure 4.20. CT875 correlation between ELISA and array results. 

Responses to CT875 were retested in 90 arrayed serum using and in-house ELISA. A) 

Correlation between ELISA and array results was poor. B) Higher responses to CT875 

remained associated with susceptibility to infection. A linear model of results from the 

ELISA and array was used to fit the line (red). 
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Figure 4.21. IncG correlation between ELISA and array results. 

Responses to IncG were retested in 90 arrayed serum using and in-house ELISA. A) 

There was no correlation between ELISA and array results for IncG. B) Higher 

responses to IncG remained associated with susceptibility to infection. A linear model 

of results from the ELISA and array was used to fit the line (red). 
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Figure 4.22. IncA correlation between ELISA and array results. 

Responses to IncA were retested in 90 arrayed serum using and in-house ELISA. A) 

There was no correlation between ELISA and array results for IncA. B) Higher 

responses to IncA remained associated with susceptibility to infection. A linear model 

of results from the ELISA and array was used to fit the line (red). 
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Figure 4.23. Pgp3 responses in 90 arrayed sera. 

Responses to Pgp3 were tested in 90 arrayed serum using and in-house ELISA. Higher 

Pgp3 responses were significantly associated with susceptibility to infection. 

 

Discrepancy between ELISA responses and those from the array were investigated 

using CT089 and CT875 as examples. In both cases but most notably for CT089 there 

were two populations of responses, one was concordant between the ELISA and the 

array the other was discordant. These were approximately split around the line of best 

fit (Figure 4.19A). The discordant results were all low by ELISA but varied from low to 

high on the array, meaning they were caused by either poor ELISA sensitivity or poor 

array specificity. Those deemed discordant by CT089 and CT875 were compared and 

classified as; “concordant” where responses between ELISA and the array were 

correlated, “both discordant” where responses were not correlated for either antigen or 

“one discordant” where responses to only one antigen were not correlated between the 

tests (Table 4.8 and Appendix Figure 2).  
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Table 4.8. Agreement of concordant and disconcordant sera from CT089 and CT875. 

 CT089 ELISA VS ARRAY 

CT874 ELISA  

VS ARRAY  

 CONCORDANT DISCORDANT 

CONCORDANT 19 8 

DISCORDANT 12 51 

 

 

ELISA responses to all five antigens were compared between these groups. Responses 

within the “both discordant” group were significantly lower than both other groups for 

all antigens (Figure 4.24). This suggested a problem with these sera rather than the 

array, potentially due to differential storage with/without glycerol since collection. A 

three-fold cross-validation of the generalised linear model described earlier was used to 

test if these discordant sera were producing false associations, the data were split to 

maintain the 2:3 ratio of protected to unprotected in the training and validation sets. 

Eighty-eight percent (37/42) of the antigens identified as differentially recognised 

previously were significantly associated with a lack of protection, combined p-values 

<=0.05. This means the lack of concordance was due to sera upon retesting by ELISA 

not recognition or reactivity on the protein microarray. Excluding these discordant sera, 

correlation was improved for all four arrayed antigens. Responses remained higher in 

susceptible individuals and this was significant for CT089 and CT875 (Table 4.9). 

 

Table 4.9. ELISA and array results after excluding “both discordant” sera. 

Associations with susceptibility to infection were retested. The association was 

calculated excluding the sera classified as “both discordant”. The odds ratio and 

confidence intervals were calculated from the array results. 

 

ANTIGEN SPEARMAN’S 

RHO 

ELISA 

P-VALUE 

GLM 

P-VALUE 

OR 

(95 % CI) 

CT089 0.62 < 0.001 0.022 56.53 

(2.82-3486.86) 

CT875 0.67 < 0.001 0.027 4.75e13 
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(3.74e4-3.07e28) 

INCG 0.27 0.094 0.078 5.81 

(0.92-52.13) 

INCA 0.32 0.042 0.191 3.60 

(0.55-2.86) 
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Figure 4.24. ELISA responses in “both discordant” sera were lower for all antigens. 

ELISA results for each antigen were grouped using the definitions from Table 4.8. Responses were lower in “both discordant” for all tested 

antigens; A) CT089, B) CT875, C) IncG, D) IncA and E) Pgp3. 
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To further test the association of these antigens with susceptibility to infection, we 

tested the complete 130 samples from the longitudinal cohort both with and without the 

discordant sera described previously (Table 4.10). Associations were consistent with 

results from the array for all four antigens. 

 

Table 4.10. ELISA results from the complete 130 sera. 

The four arrayed antigens were tested on the complete set of 130 sera (COHORT) and 

excluding “both discordant” sera (COHORT*). Higher responses to all antigens 

remained significantly associated with susceptibility to infection. 

ANTIGEN SERA PROTECTED 

MEDIAN 

(IQR) 

SUSCEPTIBLE 

MEDIAN 

(IQR) 

P-

VALUE 

OR 

(95% CI) 

CT089 COHORT 

 

COHORT* 

0.29 

(0.22-0.41) 

0.33 

(0.24-0.46) 

0.36 

(0.27-0.70) 

0.60 

(0.33-0.81) 

0.027 

 

0.007 

10.47 

(1.47-101.25) 

37.35 

(3.42-709.96) 

CT875 COHORT 

 

COHORT* 

0.09 

(0.07-0.11) 

0.10 

(0.08-0.12) 

0.12 

(0.08-0.15) 

0.13 

(0.11-0.18) 

0.008 

 

0.004 

4.97e4 

(36.78-3.10e8) 

3.43e10 

(2.53e4-5.00e18) 

INCG COHORT 

 

COHORT* 

0.37 

(0.22-0.69) 

0.37 

(0.23-0.79) 

0.96 

(0.58-1.16) 

0.96 

(0.60-1.21) 

0.002 

 

0.026 

5.85 

(2.09-19.25) 

4.40 

(1.27-18.03) 

INCA COHORT 

 

COHORT* 

0.35 

(0.22-0.68) 

0.35 

(0.22-0.83) 

0.97 

(0.68-1.23) 

0.97 

(0.70-1.24) 

0.002 

 

0.042 

5.15 

(1.90-15.74) 

3.79 

(1.10-14.95) 
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4.3. Discussion 

 

In this study ocular Ct infection data were used from a six-month longitudinal cohort in 

Gambian children from a trachoma-endemic community. To attempt to identify 

correlates of immunity, individuals who were able to successfully resolve infection 

were compared with those who were susceptible to repeated or long durations infection 

over the following six months. From screening the Ct protein microarray for antibody 

responses in this cohort the relationship between individual serological immune 

responses and the variable acquisition and resolution of ocular Ct infection was 

characterised. Antibody responses were significantly more focussed in children who 

were able to resolve infection while heightened responses to 42 antigens were 

associated with susceptibility to infection and longer durations of infection. By 

focussing on children with less diverse global antibody profiles, 6 antigens were 

identified where heightened responses were associated with ability to resolve infection. 

Independent validation of these antigens associated with long-term Ct infection 

outcome through further serological testing was variably successful, highlighting the 

need for substantiation of findings from large-scale array-based techniques as described 

here. 

 

4.3.1. Longitudinal evidence of Ct infection reflects differences in immunity 

 

Studies of ocular Ct infection and trachoma have identified host, chlamydial and 

environmental factors that are important in heterogeneous responses and outcomes 

observed in trachoma-endemic communities. Partial immunity does develop and is 

demonstrated by reduced frequency and duration of Ct infections and inflammatory 

disease with age. No study has identified a correlate that consistently indicates 

immunity to Ct infection. To mimic immunity that occurs naturally and represent the 

variation in the longitudinal data collected, individuals were split based on the 

frequency and duration of Ct infections during the six-month follow up. Individuals 

who had no or infrequent infections or were able to resolve within two weeks were 

considered immune, those who had frequent or long duration infections were considered 

non-immune. A previous study in The Gambia found that the median duration of ocular 

Ct infection drops from 3.8 weeks in children aged 0-4 years to 2.1 weeks in those aged 
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5-14 years8. This supports the classification of individuals who resolved infection 

within two weeks as being partially immune. 

This study was designed and undertaken to best control for confounding risk 

factors for differences in immunity, primarily age, gender and variable history of 

exposure. The median ages of the protected and susceptible groups were 9 years (2-12) 

and 8 years (1-12) respectively. Females accounted for 40 % and 43 % of the two 

groups. At baseline in the study area the ocular Ct prevalence was 20.9 % and the active 

trachoma prevalence was 21.5 %, indicating meso-endemicity and ongoing 

transmission128. Village membership was different between protected and susceptible 

individuals, however study sites were selected based on active trachoma prevalence in 

excess of 20 %. Therefore there was no systematic difference in history of exposure. 

Results were adjusted for age, gender and village of individuals to eliminate bias. The 

common demographics of the protected and susceptible groups give confidence that 

observed differences in antibody responses are due to variable development of 

immunity. 

 

4.3.2. More focussed antibody responses protect from acquisition and long duration of 

infection 

The breadth and diversity of antibody responses was significantly higher in individuals 

susceptible to infection. A more focussed response targeted against a smaller number of 

antigens protected from infection. Lower breadth means generating antibody responses 

against fewer antigens was protective. Lower diversity means within targeted antigens, 

making stronger responses against a reduced subset was protective. 

 Ct is known to stimulate strong B-cell and antibody responses, both systemically 

and in local sites of infection287, 288. Low-dose Ct infections in vitro induce a 

predominantly B-cell driven response289, ocular infections are lower load than 

urogenital infections therefore may promote a similar response. The development of 

neutralising antibodies has been demonstrated in vitro and in mouse and non-human 

primate models132, 290, 291. It is logical that an antibody response targeted against a small 

number of antigens capable of neutralising Ct infectivity would be protective. 

B-cell proliferation and subsequent production of antibodies by plasma cells is 

resource-limited and also dependent on the levels of the recognised antigen and T-cell 

help. As B-cells recognise more antigens the availability of these will be reduced, 
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limiting the generation of new antibody responses. This is equally true for maintenance 

of plasma cells after initial activation during primary infection. Plasma cells have to 

compete for survival niches, the ability of these cells to be long-lasting is dependent on 

the initial levels of antigen-specific plasma cells and how often they encounter and are 

reactivated by the relevant antigen292. In individuals susceptible to Ct infection the 

development of antibody responses against a broad range of antigens may limit the 

initial proliferation and subsequent persistence of potentially protective antigen-specific 

plasma cells while simultaneously wasting resources on targeting of irrelevant and non-

protective antigens. 

 Partial immunity to trachoma increases with age, therefore it requires time and 

presumably repeated exposures to Ct to progress. Development of neutralising 

antibodies as part of this immunity would require repeated reactivation of antigen-

specific plasma cells and affinity maturation of the targeting antibodies, as seen with 

neutralising antibodies in HIV293-295 and non-human primate models of trachoma136. 

Affinity maturation is the process by which antibody affinity to its specific inducing 

antigen increases. This involves somatic hypermutation of variable regions within 

surface-bound antibodies on B-cells, which are then selected for based on their new 

affinity for the inducing antigen which are trapped and presented within lymphoid 

follicles. In susceptible individuals where antibody responses have been produced 

against a greater number of antigens it follows that high levels of diverse antigens will 

be presented within follicles. This means B-cells with lower affinity will have a greater 

chance of binding antigen and therefore will survive and proliferate. This would weaken 

the power of selection to remove weak-binding antibodies and would maintain the 

initial diverse antibody profile. Enhanced survival and expansion of a large pool of 

antigen-specific B-cells would also put a strain on the resources described above. 

 

4.3.3. Higher responses to 42 antigens were associated with susceptibility to infection 

 

Since diverse antibody responses were shown to increase susceptibility to infection, it 

was expected that protected individuals with partial immunity would produce stronger 

responses against a small number of potentially protective antigens. Univariate analyses 

identified 42 antigens which were differentially recognised between protected and 

susceptible individuals, however higher responses against these antigens were 
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associated with susceptibility. This means within the previously discussed diverse 

antibody profile, non-immune individuals also produce strong responses which 

individually associate with a lack of protection. The majority of these antigens remained 

significantly associated with susceptibility after adjusting for current infection or active 

disease, therefore they were not markers of ongoing infection or inflammatory 

environment. Antibody responses against these antigens were increasing susceptibility 

to infection.  

 In vitro studies have shown that antibodies against specific Ct antigens can 

block the activity of other Ct antigen-specific antibodies. Crane et al showed that PmpD 

antiserum could neutralise Ct infectivity in ocular, urogenital and LGV serovars134. Pre-

incubation of Ct EBs with antibodies specific to the immunodominant antigens MOMP 

and LPS effectively blocked the neutralising ability of PmpD, addition of these antigens 

following PmpD incubation did not impact neutralisation. This shows that the order in 

which the host produces antibodies and how they are able to contact Ct impacts their 

protective capacity. A similar phenomenon has been described in the fungal pathogen 

Candida albicans, antibodies against immunodominant cell-surface antigens blocked 

the protective effect of antibodies against underlying β-glucans in the inner cell wall296. 

Three of the 42 antigens associated with susceptibility are localised to the Ct outer 

membrane; CT017 (Ctad1), CT541 (MIP) and CT579. MIP and CT579 are 

immunodominant antigens297, 298, high levels of antibodies against these antigens in 

susceptible individuals may bind to the surface of Ct. This could block the binding and 

neutralisation of infectivity induced by antibodies against PmpD or other targets of 

protective antibodies. MIP antibodies can also neutralise infection in vitro297, implying 

it may function similarly to MOMP which has some serovar-specific neutralising 

epitopes but can block protective antibodies as described above. 

Ctad1 has not been previously identified as immunodominant, it could still block 

binding of protective antibodies. Ctad1 is known to be involved in EB attachment and 

induction of host-cell signals required for invasion299. It is plausible antibodies binding 

Ctad1 could improve CT infectivity and promote longer survival in individuals, 

increasing susceptibility to frequent and longer duration infections. 

 The majority of the 42 antigens preferentially recognised in non-immune 

individuals are not localised to the outer membrane, therefore they must have a different 

method of increasing susceptibility to infection. A large pool of Ct antigens appears to 

be accessible by the host immune system. Antibodies targeting the majority of these are 
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not protective. Heightened responses to a diverse panel of these irrelevant antigens 

divert the humoral immune response, or at least a significant portion of it, away from 

protective antigens and epitopes. The frequent recognition of these non-protective 

antigens, demonstrated by their strong associations with susceptibility, means 

presentation of these antigens to the host may be a deliberate evasive tactic by Ct. Ct 

readily presents these antigens to the host immune system to serve as decoys. 

Individuals who do not frequently recognise these irrelevant antigens are better 

protected from Ct infection. In this ‘decoy’ hypothesis individual antigens would not to 

be expected to be capable of predicting susceptibility to infection, because this evasion 

tactic relies on a broad antibody response to limit development of protective antibodies. 

In susceptible individuals, a broad antibody response with heightened responses to a 

number of Ct antigens associated with a lack of protection. 

 

4.3.4. Presentation of non-surface antigens to the humoral immune system 

 

An unanswered question from the described ‘decoy’ hypothesis is how Ct is able to 

present a large number of non-surface antigens to the immune system. Ct induction of 

non-surface antigens is not a novel finding, protein-based arrays of sera from patients 

with urogenital Ct infection have had similar results and in vitro studies from the 1980s 

often described a high prevalence of antibodies that do not bind the EB surface. Bard 

and Levitt determined that less than 1 % of the total antibody response induced by Ct 

was targeted against EB surface antigens287. The in vitro defined Ct developmental 

cycle provides some clues as to the source of non-surface antibodies300. 

Infectious EBs are adapted to resist environmental stresses but they cannot 

survive outside cells for a long time. Approximately 40 % of EBs are viable 4 hours 

after host cell lysis and only 3 % by 24 hours101. Survival time is improved by extrusion 

of EBs to 76 % at 4 hours and 32 % at 24 hours, however in vivo the extracellular stage 

of the Ct developmental cycle is likely to be short. The opportunity for antibodies to 

bind EB surface antigens is therefore limited, particularly those released within 

extrusions. In contrast when infected cells lyse any Ct antigen localised outside of the 

bacteria could be targeted, particularly those secreted into the host cytosol which were 

over-represented in the 42 susceptibility associated antigens. 
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Extrusions are the double-membrane structures EBs reside within after 

extrusion. The membrane of these extrusions seem to be made up of both host plasma 

membrane and inclusion membrane factors. These extrusions are reported to improve 

survival and transmission of Ct through phagocytic uptake into macrophages for 

dissemination, although this effect is more pronounced in LGV strains compared to 

urogenital and ocular strains72. A recent study of extrusions suggested that the outer 

membrane is entirely derived from the host plasma membrane, with the inclusion 

membrane inside. The integrity of this membrane in the extracellular space is not 

known. The electron microscopy images from this study show limited evidence of the 

double membrane structure101, additionally phagocytosis relies upon recognition of non-

self. This suggests inclusion membrane proteins (Incs) may form a part of the surface of 

extrusions or become exposed prior to infection of new cells. Localisation predictions of 

Incs are variable, but 5 which have been demonstrated to localise to the inclusion 

membrane were found to be susceptibility associated. Five out of 42 is a two-fold higher 

proportion than Incs in the complete proteome, predicted to be 58 out of 890 to 950 

open reading frames depending on Ct serovar301. Incs incorporated into the membrane 

of extrusions would be exposed to the extracellular environment for considerably longer 

than EB surface antigens providing access to B-cells and antibodies. 

Ct can also generate membrane vesicles, these are derived from the bacterial cell 

envelope and are released from within inclusions302. They have been seen in the host 

cytosol adjacent to the inclusion and extracellularly. They are involved in responses to 

stress and stimulating innate immunity303. The composition of these membrane vesicles 

is not uniform but independent studies have identified Ct immunodominant antigens 

including MOMP, Pgp3 and CPAF in these structures304. Incs have also been associated 

with these membrane vesicles, specifically IncA (CT119), IncF (117) and IncG 

(CT118)302. IncA and IncG were both identified as susceptibility associated, 

extracellular release through membrane vesicles may provide another mechanism for 

antibody responses to target these and other antigens. 

 

4.3.5. Limited identification of antigens associated with protection 

 

This study identified antibody profiles and individual responses which enhance 

susceptibility to Ct infection and showed that more focussed responses were associated 
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with protection. There was limited evidence of individual, focussed antibody responses 

which would support the observed partial immunity. A common feature of human 

pathogens is the slow development of partial or complete immunity. Repeated exposure 

to the pathogen is generally the driving force, for example immunity to malaria 

develops more slowly in areas of lower-endemicity305. This study included children 

from a trachoma-endemic community aged 1 to 12. While immunity to Ct infection 

begins to develop from the first exposure, it is possible that development of neutralising 

antibodies such that they can be detected serologically requires further exposure and 

subsequent boosting of these antibodies.  

 The ‘decoy’ hypothesis proposed may also be involved in limited detection of 

antigens associated with protection. The results from this study do not support a 

dichotomy in which individuals with broad antibody responses are completely 

susceptible and those with focussed responses are entirely protected. This study 

supports a spectrum of responses where the breadth and diversity of an individual’s 

antibody response is indicative of differential immunity. Protected individuals produce 

antibody responses against some of the antigens associated with susceptibility, but not 

to the same extent as non-immune individuals. With repeated exposure protected 

individuals with more focussed responses are likely to boost protective antibodies while 

those against the decoys are selected out. In children where immunity is still 

developing, protective responses are likely produced but diluted down by non-protective 

responses. In support of this, responses from individuals with a more focussed antibody 

profile, classified as ‘globally low’, highlighted 5 antigens in which heightened 

responses were associated with protection. 

 How closely in vitro protein expression on this array represents native structure 

is an unknown factor which could have impacted identification of protective responses. 

Focussing on MOMP and PmpD, they are large, multimeric, membrane-spanning 

proteins capable of inducing neutralising antibodies in vitro and in animal models306, 307. 

PmpD is also cleaved into a smaller soluble form. The antigenic and neutralising 

epitopes on these proteins have been well characterised, it is unclear when expressed as 

monomers on a micro-array whether these epitopes are exposed. PmpD was included in 

the 441 filtered antigens, MOMP was not and therefore was recognised infrequently. 

MOMP is an immunodominant protein in urogenital and ocular Ct infection, its role in 

protection is not fully understood but it should be commonly recognised in this 

population. It is possible that neutralising antibodies targeting epitopes within MOMP 
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and PmpD arise infrequently in natural infections. That would not preclude antibodies 

targeting these antigens from being protective, it would help explain why immunity is 

slow to arise and only ever partial. 

 Protein expression and antibody responses from the array were validated by 

retesting 4 antigens identified, as susceptibility associated using an in-house ELISA. A 

subset of sera had systematically lower responses to all antigens by ELISA including 

the positive control Pgp3, these were excluded. CT089 and CT875 were expressed and 

purified using a histidine-tag. Results from the array and ELISA were strongly 

correlated. CT118 (IncG) and CT119 (IncA) were synthesised as biotinylated 16mer 

peptides. Results from the array and ELISA were not correlated. The lack of correlation 

for IncG and IncA was most likely due to the use of short peptides rather than full-

length proteins. All 4 antigens remained associated with susceptibility in the 90 arrayed 

sera and in the complete set of 130. These results validate this micro-array and the 

antibody responses identified. Array-based methods are valuable tools for examining 

global antibody profiles and for target discovery.  

 

4.4. Conclusions and future work 

 

This study identified focussed antibody responses as a correlate of immunity in children 

who were protected from acquisition of Ct infection or quickly resolved infection. 

Children who were susceptible to frequent and long duration infection had less focussed 

antibody responses. Strong antibody responses against 42 Ct antigens were associated 

with this lack of protection. Ctad1, MIP and CT579 are EB outer membrane proteins 

that may increase susceptibility to infection by blocking of protective responses or by 

enhancing Ct attachment and infectivity. The majority of susceptibility associated 

antigens are non-surface antigens. These are hypothesised to be presented by Ct to the 

host immune system as non-protective decoys, diverting antibody responses away from 

protective antigens and epitopes.  

Future work should aim to validate the decoy hypothesis and individual surface-

exposed antigens through further study of longitudinal antibody responses. A previous 

longitudinal study in The Gambia identified antibodies against MOMP in tears to be 

associated with an increased incidence of active trachoma280. Prevalence of active 

trachoma was high at the time of this study, therefore antibody responses indicative of 
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the decoy type identified would be expected. This study also demonstrated that tear and 

serum antibodies may not be correlated in trachoma. Tear samples were collected at 

every visit for the study described in this section. Micro-array screening should be used 

for identification of decoy antibody responses through determination of diversity 

metrics. Use of protein fragments or peptides should be considered for large, multimeric 

Ct proteins to try to improve reliability of the array. If this is not possible, immunoblots 

or single-antigen ELISA should be used for antigens likely to be poorly expressed on 

micro-arrays. Micro-array screening with tear samples would be difficult because 

antibody levels are generally low and therefore hard to detect. Individual targets which 

were associated with susceptibility should be tested using tear samples by ELISA to see 

if they correlate with serum antibody responses and to determine the impact of incident 

Ct infection on these antibodies. Finger-prick blood samples were collected at the end 

of a more recent 4-year longitudinal study of children in Tanzania (chapter 3.4.6). 

Individual antigens should be tested in these samples to investigate if the antibody-

based correlates of immunity identified here are present in a geographically and 

culturally distinct trachoma-endemic population. 
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5. Global profiling of Chlamydia trachomatis-

specific antibody responses in Trachomatous 

Trichiasis 
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5.1. Introduction 

 

5.1.1. Progressive scarring in trachoma and associated risk factors 

 

The previous chapter examined the antibody profile of children in a trachoma-endemic 

community to try and identify correlates of humoral immunity which could limit and 

resolve ocular Ct infection. Clinical signs of inflammation as a result of Ct infection are 

significant risk factors for progression from active trachoma to conjunctival scarring273, 

308-310. Deposition of scar tissue in the conjunctiva can cause deformation of the eyelid, 

causing it tighten and be pulled inwards causing the rim of the eyelid and/or the 

eyelashes to contact the surface of the eye (entropion/trichiasis). Trichiasis can cause 

pain and physical abrasions to the cornea with the potential for corneal opacities and 

blindness143.  

The majority of people in trachoma-endemic communities do not progress to 

these latter stages of trachomatous disease and levels of pathology differ significantly 

within those that do progress. This heterogeneity seems in part due to the impact of 

prolonged infection and inflammation, however other risk factors have also been 

identified310. Increasing age is associated with progression both to scarring and 

worsening of scarring pathology271, 310, 311. Females are generally found to be at greater 

risk of developing scarring, however continued progression of established scarring  

seems to be independent of gender279, 310. The presence and quantity of other bacteria, 

both commensal and pathogenic, is also associated with scarring trachoma27, 146, 312. This 

is believed to be due to and subsequently playing a role in continued inflammation. 

Damage to the conjunctival tissue, specifically goblet cells313, in scarring can cause a 

decline in tear secretion leading to increased tear film instability. This is known as dry 

eye and can itself cause damage to the conjunctival tissue worsening scarring 

progression314, 315.   

 

5.1.2. Dysregulation of inflammation and wound healing promote scarring  

 

As described in chapter 1.3, chronic inflammation that results in conjunctival scarring is 

driven by dysregulation of both innate and adaptive immune responses. Scarred 
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conjunctival tissue is marked by inflammatory cell infiltrate, disruption and 

accumulation of collagen and numerous cytokines and host factors involved in tissue 

remodelling 127, 143, 145, 316, 317. The differential expression of microRNAs involved in 

regulation of inflammation and tissue remodelling highlight the importance of these 

processes in development and progression of scarring in trachoma 55. These innate 

factors involved in conjunctival scarring are likely enhanced by the aforementioned 

non-chlamydial bacteria.  

Dysregulation of T-cell responses has also been associated with trachomatous 

scarring318, 319. This was initially thought to be driven by delayed-type hypersensitivity 

(DTH) reaction against Ct antigens, most prominently HSP60138-140. In opposition to 

this, Th1-type lymphoproliferative responses appear to be depressed in adults with 

scarring141. HSP60 stimulation induced IL-4 from T-cells of scarring adults, suggesting 

weakened Th1 responses may be involved in scarring pathology319. Evidence from 

conjunctival transcriptomics have implicated both regulatory T-cells and Th17 cells in 

scarring trachoma142, 309, supporting regulation of T-cells as important in pathology. 

 

5.1.3. Association between scarring and antibody responses 

 

IgG antibodies against Ct elementary bodies (EBs) have been shown to be significantly 

higher in individuals with scarring trachoma138, 141, 266, as frequent and persistent 

infections are associated with scarring this suggests development of these antibodies 

does not protect from progression. One of these studies found an identical result for the 

Ct antigen HSP60 independent of antibody responses against EBs, implying it is not 

simply a marker of increased exposure. This association has not been found consistently 

in further studies of scarring trachoma and trachomatous trichiasis (TT)139, 140, however 

one of these studies did find IgG antibodies against another Ct antigen, CPAF, were 

significantly increased in TT140. Antibody responses have also been implicated in 

scarring pathologies resulting from urogenital Ct infection, similarly against EBs and 

certain antigens including HSP60167, 168, 320, 321.  

 It is unclear how common these scarring-associated antibody responses are in 

trachoma endemic communities and if they are directly involved in the scarring process. 

It is possible via opsonisation that Ct-antibodies could facilitate greater Ct infectivity in 

early life promoting frequent and prolonged infections that are known to be a risk factor 
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for scarring. Equally they may be coincidental serological markers of infection. Serum 

from individuals with scarring trachoma most of which also had TT, were used to 

screen a Ct D/UW3 proteome array of 908 genomic and plasmid ORFs to elucidate the 

role of antibodies in scarring trachoma.  

 

5.1.4. Study design and initial analysis 

 

The study was performed as described in chapter 3.2.1 and Lu et al162. Briefly, 61 cases 

of scarring trachoma with trichiasis (TT) and 61 age, sex and location-matched controls 

with normal healthy eyes were collected in The Gambia between May 2006 and 

February 2009. Thirty-four cases and 25 controls were screened on the serovar D Ct 

proteome array as described previously161, 169, performed on 96 well microtitre plates. 

This study identified ten antigens that were recognised by over half of the 59 samples 

tested, of greater interest was the discovery of four antigens preferentially recognised by 

those with trichiasis and eight recognised by healthy controls (Table 5.1). These 

included CT117 (IncF), CT442 and CT556 which are Chlamydia-specific as well as 

being reportedly immunogenic and protective 162. IncF and CT442 are both inclusion 

membrane proteins. IncF has a putative role in bridging interactions between RBs and 

the host cytosol163, 322 and CT442 had previously been identified as immunogenic in 

women with urogenital Ct infection169. However, there were a number of limitations in 

the study both in terms of the generation of the laboratory data and the statistical 

analysis of the data.  

The recombinant proteins on the micro titre array were not purified to a high 

standard, expression of the target protein was confirmed but various other proteins 

and/or fragments were also present. This impurity meant the proteins were not 

quantified prior to use on the array, thus the amount and specificity of protein bound on 

the plates was unclear. Capturing the GST-fusion proteins with immobilised glutathione 

and limited background correction would have reduced some non-specific binding but 

not all and not in a repeatable way. In addition it is unclear how the large GST-

expression tag (approximately 26 kDa) would have impacted native confirmation of the 

proteins164, 165. Certain chlamydial antigens known to induce antibody responses in 

ocular Ct infection and trachoma were not commonly recognised in this screen, notably 

MOMP (CT681), HSP60 (CT110), OmcB (CT443) and most polymorphic membrane 
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proteins (Pmps). It is possible the purity and protein folding issues described above may 

have impacted their recognition as they are large, surface exposed proteins in vivo with 

complex tertiary and quaternary structures possibly required for antibody binding306, 307, 

323, 324. Except for MOMP these proteins are also variably processed to soluble secreted 

forms, further complicating understanding of how and in what form the immune system 

recognises these antigens306, 325, 326. 

Aside from these technical issues there were also problems with sample 

selection and analysis. Out of 61 matched trichiasis cases and healthy controls available 

only 59 with the highest antibody titre against Ct ocular serovar EBs (A – C) were 

screened on the complete array, 34 cases and 25 controls. This reduced the number of 

samples tested and therefore the amount of natural variation in responses was 

insufficiently examined. By filtering on responses to EBs, essentially a small pool of 

immunodominant antigens, people with non-classical or differentially targeted immune 

responses may have been excluded. Common methods for analysing array-type data 

were also not utilised. No attempt was made to normalise across the 908 antigens, 

despite this results were analysed using tests that assume normality. No correction for 

multiplicity of testing was applied and false positives were not accounted for166. The 

expected number of false positives was calculated using only the 19 antigens which had 

statistically significant (p-value <= 0.05) associations rather than the complete 908, 

which from their calculations would have meant 45 potential false positives. These 

issues highlight the need for validation both within this Gambian population and in 

other trachoma-endemic communities. 

 A more robust analysis of results from this array including examination of 

global patterns of antibody responses, similar to Chapter 4 was performed. The array as 

a whole and specific immune targets associated with scarring or healthy controls were 

subjected to further independent serological testing. 

 

 

 



145 

 

Table 5.1. Patient demographics in protected and susceptible groups. 

Associations were determined using a generalised linear model. 

 HEALTHY 

CONTROLS 

SCARRED 

CASES 

ASSOCIATED 

P-VALUE 

NUMBER 25 34 NA 

AGE IN YEARS  

(95% CI) 

60.00 (32.40-75.00) 61.00 (34.83-

80.87) 

0.357 

FEMALE (N 

[%]) 

19 (76.00) 21 (61.76) 0.251 

 

5.2. Results 

 

5.2.1. Array Normalisation and filtering  

 

The raw optical density intensity data was slightly positively skewed, p-value 0.018 

(Figure 5.1A). Transformation and normalisation of the array was assessed using 

relative rank deviation (RRD)206. The most suitable data transformation technique was 

inverse hyperbolic sine transformation, which reduced RRD primarily in antigens with 

the highest signal intensities (Figure 5.1B). Mean-centring and trimmed means of 2 and 

10% were tested to normalise the data. A trimmed mean of 2% performed better than 

10%, and mean-centring reduced the RRD compared to both (Figure 5.1C). 

 Antigens were the filtered by excluding any with mean optical density lower 

than the global mean across all antigens, this removed infrequently recognised antigens 

which would add noise to the data. The normalised data of 59 serum samples were then 

analysed against 230 antigens. This data set was still positively skewed, p-value 0.020, 

so non-parametric tests were deemed more appropriate and used throughout (Figure 

5.1D). 
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Figure 5.1. Transformation and normalisation of the raw array data. 

A) Histogram showing positively skewed distribution of the raw data. B) Significantly reduced deviation (RRD) in the data after inverse hyperbolic-

sine transformation (red) compared with the raw data (black). C) Reduced deviation in the data after mean-centring (black) compared with 

normalisation by trimmed-mean at 2 % (red) and 10 % (blue). D). Histogram of normalised data still showing a slight positive skew. 
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The normalised continuous data was used for all possible analyses, for methods which 

required categorical data samples were divided into groups on a per antigen basis as 

described in the previous study. Binary classification into positive and negative samples 

per antigen was the desired outcome and empirically was better than all other cluster 

sizes up to ten, p-value < 0.006 (Appendix Figure 3). K-medoids clustering was the 

worst performer for a cluster size of two across all 230 antigens. The remaining 

methods performed well, a median average silhouette width between 0.7 and 0.8, with 

hierarchical clustering performing best on average (Figure 5.2).  Clustering method for 

each antigen was selected using their highest individual average silhouette width from 

the five methods, this was significantly better than using one method for all, p-value < 

0.011, except for hierarchical clustering, p-value 0.385 (Figure 5.2). 

 

Figure 5.2. Average silhouette widths for clustering method trialled for all 441 antigens.  

'Best' method had the highest median across all antigens. Clustering methods are 

detailed on the left-hand side. Red lines indicate the median. Notches were calculated as 

median +/- 1.57 x IQR/sqrt of n, where IQR is the interquartile range and n is the 

number of samples. The whiskers were calculated by adding 1.5 times the IQR to the 75 

percentile and subtracting 1.5 times the IQR from the 25 percentile. 

 



148 

 

5.2.2. Antibody responses were focussed on proteins expressed early and late during the 

developmental cycle and localised to interact with the host 

 

Comparing the 230 antigens remaining after filtering with the 908 proteins screened on 

the array, there was a significant over-representation of genes whose peak expression is 

either very early or very late in the developmental cycle, likely representing antigens 

important in entry and those exposed at exit, p-values 0.003 and 0.025 (Figure 5.3). 

Proteins predicted to be extracellular/secreted, or localised to the outer membrane and 

periplasm were also over-represented in the immunogenic antigens, p-value < 0.001 

(Figure 5.4). 
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Figure 5.3. Over-representation of late and very early expressed proteins in 

immunogenic antigens. 

Proteins identified through transcriptomics as expressed late or very early in the Ct 

developmental cycle were over-represented in the 230 immunogenic antigens (grey) 

compared with the total unfiltered 908 (black). 



150 

 

 

 

Figure 5.4. Over-representation of proteins extracellular, outer membrane and periplasm 

in immunogenic antigens. 

Proteins with a consensus localisation prediction of extracellular, outer membrane and 

periplasm were over-represented in the 230 immunogenic antigens (grey) compared 

with the total unfiltered 908 (black). 
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Next the global profile of antibody responses was determined in scarred and healthy 

individuals. Breadth of response tended to be higher in scarred individuals however it 

was highly variable and did not reach significance, p-value 0.620 (Figure 5.5). 

 

Figure 5.5. No difference in breadth of antigens recognised between adults with and 

without scarring. 

Measured as the number of antigens an individual had a positive response to. 

 

Diversity measured as Hill numbers dropped significantly with increasing order of 

diversity supporting uneven antibody profiles with a few immunodominant targets 

(Table 5.2), there was no difference between scarred and healthy individuals. Simpson’s 

diversity index was skewed by a few individuals with very focussed responses and 

showed no difference between groups, p-value 0.451 (Figure 5.6A). Shannon’s diversity 

index, similar to measures of breadth, tended to be lower in healthy individuals but the 

difference was not significant, p-value 0.130 (Figure 5.6B). 
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Table 5.2. Uneven antibody responses in adults with and without scarring, as 

determined by Hill numbers. 

Associations were determined using a generalised linear model. 

 

ORDER OF 

DIVERSITY 

HEALTHY 

MEDIAN (IQR) 

SCARRED P-VALUE 

2 47044.51 

(19236.44-1258563.84) 

43671.46 

(12028.61-197223.87) 

0.943 

3 3195.34 

(1615.14-37337.26) 

3020.98 

(1148.38-9312.23) 

0.719 

4 1303.18 

(708.39-11569.11) 

1240.12 

(524.87-3368.23) 

0.639 

5 832.37 

(469.29-6441.03) 

794.55 

(354.85-2025.98) 

0.599 
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Figure 5.6. No significant differences in diversity of antibody responses between adults 

with and without scarring. 

Diversity was measured using A) Simpson’s diversity index and B) Shannon’s diversity 

index. 
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5.2.3. Individual antibody responses are associated with cross-sectional evidence of 

conjunctival scarring 

 

Association of responses to individual antigens with evidence of conjunctival scarring 

was determined using a generalised linear model adjusting for age and gender of the 

individuals. Nine differential antibody responses were identified between adults with 

and without scarring, p-values <= 0.1 were included to include antigens outside the 95 

% distribution that were close to the 0.05 threshold for significance (Table 5.3). All 

antigens except CT442 had higher responses in scarred individuals (Figure 5.7 parts A 

and B). None of the differentially recognised antigens had good predictive value.  

 

Table 5.3. Differentially recognised antigens between adults with and without scarring. 

Univariate associations were determined using a generalised linear model. Variables 

were resampled 10,000 times and remodelled to determine permuted p-values (P*). 

ANTIGEN P-VALUE P* T SE (T) OR 95% CI AUC 

CT667 0.013 0.005 0.78 0.32 2.19 1.28-4.43 0.64 

CT645 0.036 0.029 0.56 0.27 1.76 1.09-3.16 0.63 

CT314 0.040 0.012 0.42 0.21 1.52 1.09-2.43 0.66 

CT698 0.049 0.037 0.55 0.28 1.72 1.05-3.16 0.59 

CT471 0.051 0.023 0.59 0.30 1.80 1.08-3.49 0.62 

CT442 0.054 0.019 -0.12 0.06 0.89 0.77-0.98 0.63 

CT679 0.057 0.011 0.66 0.35 1.94 1.11-4.28 0.61 

CT425 0.070 0.049 0.51 0.28 1.66 1.04-3.16 0.54 

CT706 0.098 0.064 0.32 0.19 1.37 1.03-2.19 0.57 
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When combined these 9 antigens were significantly better at predicting clinical 

outcome, at each step the model was significantly better than a model including just age 

and gender, p-values < 0.002 (Table 5.4). The model with the strongest predictive value 

included all nine antigens, however this was not significantly better than use of seven or 

eight antigens in combination (Figure 5.8A). The predictive value of the multivariate 

model additively including univariate associated antigens was significantly better than 

models using randomly selected antigens from one to nine antigens (Figure 5.8B). The 

Figure 5.7. Differential antibody responses between adults with and without scarring. 

Individual responses were averaged across the 8 scarring associated antigens (A) and the 

single antigen associated with lack of scarring (B). 
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specificity and sensitivity of the model improved with addition of antigens, 9 antigens 

had 100 % specificity and 47.06 % sensitivity. At 100 % sensitivity these were only 

48.00 % specific (Figure 5.8C). A best case scenario balancing specificity against 

sensitivity from this model yielded 88.00 % specificity and 76.47 % sensitivity. This 

minimalised false positives, which is of greater value in communities where Ct and 

active trachoma prevalence is declining. 

 

Table 5.4. Combinatorial antibody responses increased predictive power. 

Generalised linear models including antigens in a step-wise manner increased as more 

antigens were included, determined by model quality (AIC) and likelihood ratio test 

comparing with the null model including only covariates (P-VALUE). Predictive value 

(AUC) showed modest progressive improvement. 

 

NUMBER OF ANTIGENS INCLUDED AIC P-VALUE AUC 

1 76.50 0.0017 0.64 

2 76.24 0.0023 0.65 

3 75.35 0.0018 0.72 

4 76.86 0.0038 0.70 

5 77.41 0.0046 0.71 

6 72.22 0.0005 0.77 

7 71.22 0.0003 0.80 

8 71.25 0.0003 0.77 

9 71.33 0.0003 0.83 
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Figure 5.8. Combinatorial antibody responses did not accurately predict presence of scarring. 

A) Models including increasing numbers of differentially recognised antigens showed modest increases in specificity and sensitivity. B) Antigens 

individually associated with scarring were significantly better at predicting scarring than antigens chosen at random, as determined by AUC. 

Number of antigens included is indicated on the y-axis. C) The 9 differentially recognised antigens outperformed 9 randomly select antigens when 

predicting scarring. 
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5.2.4. Combinatorial antibody responses identified by multivariate regression did not 

improve predictions of conjunctival scarring 

 

A multivariate random forests regression was performed including all 230 antigens to 

determine if evaluating all antigens simultaneously identified antibody targets not found 

in the univariate analysis. Six antigens had variable importance outside 95 % of the 

normal distribution, measured as the mean decrease in accuracy of trees split on each 

variable, and a further 3 were within 1 standard deviation of these (Table 5.5 and Figure 

5.9). Four of these were also associated with scarring outcome in the univariate 

analyses. A multivariate model including either 6 or 9 antigens was again significantly 

better than randomly selected antigens, the model including 9 outperformed the model 

including 6 based on AUC (Figure 5.10). 

 

Table 5.5. Most important antigens for classification by random forests regression. 

A multivariate random forests regression was performed with all 230 antigens. These 9 

antigens were in the top 2.5 % based on variable importance. 

 

ANTIGEN VARIABLE IMPORTANCE 

CT471 0.32 

CT635 0.25 

CT230 0.23 

CT695 0.20 

CT442 0.19 

CT610 0.19 

CT314 0.18 

CT855 0.18 

CT667 0.18 
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Figure 5.9. Ranked variable importance from random forests regression. 

The Gini index was used to calculate variable importance. Antigens in the top 2.5 % of 

the distribution are indicated by the red line. 
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 Figure 5.10. Multivariate regression identified antigens with modest predictive power. 

The top 6 (A and C) or 9 (B and D) antigens by variable importance from a random forests regression were included in a generalised linear model. 

A and B) AUC of the models including 6 or 9 random forests-selected antigens in a step-wise manner were better than a model of randomly 

selected antigens. C and D) Models of the top 6 or 9 antigens were significantly more sensitive and specific than a model of randomly selected 

antigens. 
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5.2.5. Selective expression identified antigens and independent repeat ELISA testing of 

differentially recognised antigens 

 

To validate the antigens recognised in the microtitre plate array as a whole and 

individual targets, three antigens were selected for further testing by ELISA. There was 

no clear pattern of localisation or function in the 9 differentially recognised antigens, for 

this reason antigens selected for further testing were selected using a combination of 

homology to proteins of known function and previously published information. CT442 

was selected for follow-up because of its potentially interesting intracellular biology as 

an inclusion membrane protein (Inc) known to induce T-cell responses and the only 

target with greater responses in healthy individuals195. CT667 was selected as it is a 

homologue of CdsG, a conserved bacterial protein involved in type-three secretion 

(T3S)327. It’s homologue in other bacteria acts as a chaperone for the T3S-needle protein 

and CT667 has been localised to the host cytosol and around the inclusion membrane, 

depending on host cell type and stage of the Ct developmental cycle328. CT706 was 

selected as a homologue from C. muridarum has been previously identified as 

immunogenic. All 3 were available as GST-fusion constructs. Pgp3 was included as an 

immunodominant positive control. 

 CT442 was successfully expressed using the recommended conditions described 

in chapter 3.2.1, however it was contained in insoluble E. coli inclusion bodies (Figure 

5.11A). Increasing the time of induction incrementally from 3 hours up to 16 hours and 

reducing the range of temperature of induction from 30 °C to 16 °C was trialled, but 

CT442 remained insoluble and expression levels were low (Figure 5.11B). CT442 is 

known to reside in the inclusion membrane therefore given its predicted structure it is 

not surprising it was insoluble in aqueous conditions, even when expressed with the 

GST-fusion which can improve solubility. A panel of zwitterionic and non-ionic 

detergents were tested to extract the protein from insoluble inclusion bodies. CT442 was 

partially soluble with ASB-14, DDM and LDAO (Figure 5.11C lanes 4,8 and 10). When 

this was repeated with a larger culture volume, CT442 was partially solubilised with 

these detergents. Expression levels were poor and CT442 could not be purified from 

these samples using glutathione-beads (Figure 5.11D). Co-expression with molecular 

chaperones as described in chapter 3.1 had a similar result with some increased 

solubility but low expression levels (Figure 5.11E). It was not possible to purify CT442 

when co-expressed with either pKJE7 or pTf16 (Figure 5.11F). 
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Figure 5.11. Expression trials of CT442-GST. 

Western blots were incubated with an anti-GST monoclonal antibody to bind the GST-

fusion moiety. The lysates were separated by ultra-centrifugation into aggregate 

(AGG/A), soluble (SOL/S) and insoluble fractions (INS/I). The relevant bands are 

highlighted in red. A) Aggregated and insoluble expression of CT442-GST. B) CT442-

GST remained insoluble when induced at 16 °C for 2, 4 and 6 hours with 0.2 mM IPTG. 
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C) CT442-GST was partially soluble in ASB-14 (A14), DDM and LDAO (LDA) but 

not CHAPS (CHP) or octyl-β-D-1-thioglucopyranoside (OBT). D) CT442-GST 

expression was low when co-expressed with molecular chaperones, the protein was 

partially soluble. E) CT442-GST could not be purified from these samples using 

glutathione beads. 

 

Due to problems with the expression and purification of CT442, expression of two 

partial-length CT442 constructs, CT442N and CT442C which contained the N-terminal 

half and C-terminal half of the protein respectively was trialled. Using recommended 

conditions CT442N expression was undetectable (Figure 5.12A lanes 1-3), CT442C had 

high expression levels although still primarily aggregated or formed insoluble 

inclusions (Figure 5.12A lanes 4-6). CT442C did appear to be partly soluble, but the 

very prominent bands in the neighbouring wells/lanes made it unclear if this was an 

artefact of the western blot. A detergent screen using only the 3 detergents found to 

improve solubility of the full-length protein showed ASB-14 was able to partially 

solubilise CT442C (Figure 5.12B). To reduce aggregation and formation of insoluble 

inclusion bodies CT442C was induced at 25 °C for 5 hours followed by ASB-14 

solubilisation of the insoluble portion. The majority of CT442 was still aggregated, 

however ASB-14 solubilised nearly all detectable insoluble protein (Figure 5.12C). 

Purification of soluble CT442C using glutathione-beads from the soluble fraction 

(Figure 5.12D lanes 1-3) and after ASB-14 solubilisation (Figure 5.12D lanes 4-5) 

showed mixed success. Most of the protein was unbound, however some was purified 

successfully from the soluble fraction.  

The C-terminal CT442 construct was approximately 16 kDa and the GST-fusion 

moiety was approximately 29 kDa. The effects of this relatively large tag on recognition 

of CT442C in serological work was unknown, therefore cleavage of the GST-fusion 

was performed. CT442C could not be purified after cleavage of the GST-fusion. Due to 

these problems a CT442 C-terminal peptide, which had been previously shown to be 

immunogenic (personal communications Bernhard Kaltenboeck) was synthesised as a 

biotinylated 16-mer peptide. This peptide was produced by thinkpeptides (ProImmune, 

Oxford, UK) and had a purity of 89.69 %. 
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Figure 5.12. Expression trials of CT442N-GST and CT442C-GST. 

Western blots were incubated with an anti-GST monoclonal antibody to bind the GST-fusion 

moiety. The lysates were separated by ultra-centrifugation into aggregate (AGG), soluble 

(SOL) and insoluble fractions (INS). The relevant bands are highlighted in red. A) 

Expression of CT442N was undetectable, CT442C was primarily aggregated and insoluble 

when induced at 30 °C for 3 hours with 0.2 mM IPTG. B) ASB-14 (A) partially solubilised 

CT442C-GST, DDM (D) and Triton X-100 (T) did not. C) CT442C-GST was partially 

soluble when induced at 25 °C for 5 hours with 0.2 mM IPTG. D) CT442C-GST was 

primarily unbound after incubation with glutathione beads (UB), some protein was 

successfully purified from the soluble fraction (CT442C-GST). 
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CT667 was soluble using recommended conditions for induction and could be purified 

with and without cleavage of the GST-moiety (Figure 5.13 parts A and B). Purification 

after cleavage reduced the number of non-specific bands, however this may have been 

caused by the reduced concentration of the cleaved CT667 (Figure 5.13C). Size-

exclusion chromatography was used to ‘clean-up’ the purified sample, after which very 

few non-specific bands were then detectable by silver staining (Figure 5.13D). CT667, 

following chromatography, was judged to be ‘cleaner’ by both Coomassie blue and 

silver staining (Figures 5.13E and 5.13F), however non-specific bands were still 

present. The most prominent band not corresponding to the expected size of CT667 (16 

kDa) was approximately 30 kDa suggesting it may be a dimer rather than a bacterial 

contaminant. 

 CT706 was insoluble using recommended conditions rather than aggregated so 

the ability of a panel of detergents to solubilise the protein was tested (Figure 5.14A 

lane 1). CT706 was solubilised by a number of detergents. ASB-14 and LDAO were the 

most effective (Figure 5.14A lanes 2-3 and 8-9). The protein was successfully purified 

from both of these samples with and without GST-fusion cleavage (Figure 5.14B).  

More non-specific bands were present in CT706 than in CT667, therefore further 

purification was needed. Size-exclusion chromatography successfully purified CT706 

removing the non-specific bands observed previously (Figure 5.14C). This reduction in 

impurities was observed by both Coomassie blue and silver staining (Figure 5.14 parts 

D and E). 
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Figure 5.13. Expression trials of CT667-GST. 

Western blots were incubated with an anti-GST monoclonal antibody to bind the GST-fusion moiety. The 

lysates were separated by ultra-centrifugation into aggregate (AGG), soluble (SOL) and insoluble fractions 

(INS). The relevant bands are highlighted in red. A) CT667-GST was soluble and successfully purified 

using the recommended conditions described previously. B) CT667 was successfully purified after cleaving 

the GST-fusion moiety. C) Comparison of CT667-GST and CT667. D) Silver stain of CT667 after size-

exclusion based chromatography purification (CT667AKTA). E) Comparison of CT667 pre and post-

purification through size-exclusion based chromatography. F) Silver stain comparison of CT667 pre and 

post-purification through size-exclusion based chromatography 
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Figure 5.14. Expression trials of CT706-GST. 

Western blots were incubated with an anti-GST monoclonal antibody to bind the GST-fusion moiety. 

The lysates were separated by ultra-centrifugation into aggregate (AGG), soluble (SOL) and insoluble 

fractions (INS). The relevant bands are highlighted in red. A) CT706-GST was solubilised by ASB-14, 

CHAPS and LDAO but not DDM, octyl-β-D-1-thioglucopyranoside (OBDT) and polyoxyethylene (10) 

tridecyl ether (P10E). B) CT706-GST was successfully purified after ASB-14 solubilisation. C) Silver 

stain of CT706 after size-exclusion based chromatography purification (CT706AKTA). D) Comparison 

of CT706 pre and post-purification through size-exclusion based chromatography. E) Silver stain 

comparison of CT706 pre and post-purification through size-exclusion based chromatography. 
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5.2.6. ELISA validation of antibody responses associated with scarring 

 

Initially the selected antigens were retested on the 59 sera screened with the array, 

excluding one sample which we no longer had serum, and the complete set of 126 sera 

available from the original study (Table 5.6). 

 

Table 5.6. Patient demographics in adults with and without scarring, complete set of 

116 sera. 

Associations were determined using a generalised linear model. 

 HEALTHY 

CONTROLS 

SCARRED 

CASES 

ASSOCIATED 

P-VALUE 

NUMBER 58 58 NA 

AGE IN YEARS  

(95% CI) 

55.50 (30.43-73.73) 60.00 (34.00-

77.88) 

0.199 

FEMALE (N 

[%]) 

40 (68.97) 39 (67.24) 0.842 

 

The positive control anti-Pgp3 results from the ELISA were very strongly correlated 

with those from the array, rho 0.91 and p-value < 0.001 (Figure 5.15). The remaining 

three antigens CT442, CT667 and CT706 had correlations with rho values of 0.26, 0.59 

and 0.58 and p-values of 0.046, < 0.001 and < 0.001 respectively (Figures 5.16, 5.17 

and 5.18). All three trended towards the same healthy or scarring-association identified 

from the micro-array, however only CT667 was significantly associated with scarring 

(p-values 0.252, 0.024 and 0.169).  It is important to note the 1 sample lost with no 

remaining sera was one of the 3 individuals who had a strong antibody response against 

CT442. None of these differentially recognised antigens were associated with healthy or 

scarred individuals when tested on the complete set of 116 samples (Figure 5.19), with 

p-values of 0.368, 0.169 and 0.289 respectively. The strongest responses to CT442 and 

CT667 were found in healthy individuals, but no clear association with protection was 

found. 
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Figure 5.15. Pgp3 correlation between ELISA and array results. 

Responses to Pgp3 were retested in 59 arrayed serum samples using and in-house 

ELISA. A) Correlation between ELISA and array results was high. B) Responses to 

Pgp3 were not associated with scarring. A linear model of results from the ELISA and 

micro titre plate array was used to fit the line (red). 
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Figure 5.16. CT442 correlation between ELISA and microtitre plate array results. 

Responses to CT442 were retested in 59 arrayed serum samples using and in-house ELISA. 

A) Correlation between ELISA and array results was poor. B) Responses to CT442 were not 

associated with a lack of scarring by ELISA. A linear model of results from the ELISA and 

array was used to fit the line (red). 
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Figure 5.17. CT667 correlation between ELISA and array results. 

Responses to CT667 were retested in 59 arrayed serum samples using and in-house ELISA. 

A) Correlation between ELISA and array results was high. B) Responses to CT667 were 

consistently associated with scarring by ELISA. A linear model of results from the ELISA 

and array was used to fit the line (red). 
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Figure 5.18. CT706 correlation between ELISA and array results. 

Responses to CT706 were retested in 59 arrayed serum samples using and in-house ELISA. 

A) Correlation between ELISA and array results was high. B) Responses to CT706 were not 

associated with scarring by ELISA. A linear model of results from the ELISA and array was 

used to fit the line (red). 
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 Figure 5.19. ELISA responses against CT442, CT667 and CT706 in the complete set of 116 sera. 

None of the three antigens were associated with the presence or absence of scarring in adults from the complete set of 116 samples. 
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To test if the responses to these 3 antigens were associated with trachomatous pathology 

further testing in independent collections of sera from scarred cases and controls was 

conducted. A total of 231 individuals from a scarring case-control study collected in 

The Gambia in 1995 and 90 individuals from a similar study in The Gambia in 2011 

were used. These studies were cross-sectional collections of cases with scarring and 

matched controls (chapter 3.4.1 and 3.4.5). 

 All 3 antigens showed mixed or minimal association with scarring in these 

studies (Table 5.7). CT442 was significantly associated with scarring in adults from the 

Gambian study from 2011, this was inconsistent with its association with healthy adults 

from the microtitre plate-array results.  

 

Table 5.7. ELISA results from the complete 116 sera and two further scarring case-

control studies. 

The 3 arrayed antigens were tested on the complete set of 116 sera (2006), 231 samples 

from a previous scarring case-control study in The Gambia (1995) and a subsequent 

scarring case-control study in The Gambia (2011). CT442 showed no association with 

the absence of scarring, and CT667/CT706 were not associated with scarring. 

 

ANTIGEN SERA HEALTHY 

MEDIAN 

(IQR) 

SCARRED 

MEDIAN 

(IQR) 

P-

VALUE 

OR (95% CI) 

CT442 2006 0.24 

(0.19-0.33) 

0.27 

(0.18-0.33) 

0.368 0.33  

(0.02-3.36) 

1995 0.29 

(0.18-0.43) 

0.30 

(0.15-0.46) 

0.990 1.00 

(0.46-2.13) 

2011 0.31 

(0.22-0.38) 

0.36 

(0.24-0.48) 

0.023 36.19 

(2.20-1109.21) 

CT667 2006 0.04 

(0.03-0.06) 

0.04 

(0.03-0.07) 

0.169 2766.28 

(0.06-6.20e8) 

1995 0.14 

(0.05-0.23) 

0.12 

(0.03-0.23) 

0.344 0.59  

(0.18-1.68) 

2011 0.03 0.03 0.802 0.23 
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(0.02-0.06) (0.02-0.07) (2.47e-6-

24634.90) 

CT706 2006 

 

0.05 

(0.03-0.07) 

0.04 

(0.03-0.06) 

0.289 

 

42.59 

(0.07-1.26e5) 

1995 0.14 

(0.06-0.23) 

0.12 

(0.04-0.23) 

0.307 0.58  

(0.18-1.57) 

2011 0.02 

(0.02-0.06) 

0.03 

(0.02-0.08) 

0.940 1.24 

(0.005-619.41) 

 

5.2.7. Progression of scarring in a longitudinal cohort 

 

Serum was obtained from a total of 311 individuals from a longitudinal cohort study in 

Moshi district, Northern Tanzania collected between 2012 to 2016 (chapter 3.4.6 and 

Table 5.8). This was a four-year study investigating factors related to scarring 

progression. All children aged 6-10 years were recruited from 3 neighbouring villages, 

616 children were enrolled of which 506 were seen at the first time point. At baseline 

and every 3 months, conjunctival swabs were taken for Ct infection testing alongside 

clinical grading for trachoma. Finger prick bloodspots were taken at the 4-year time 

point.  

 

Table 5.8. Demographics of children sampled at the end of a 4-year longitudinal cohort 

of scarring progression in Tanzania. 

Associations were determined using a generalised linear model for continuous data and 

a Χ2 test for categorical data.  

 NO PROGRESSION PROGRESSION P-VALUE 

NUMBER 243 68 NA 

AGE IN YEARS  

(95% CI) 

11.00 (9.00-16.00) 11.00 (9.00-15.33) 0.465 

FEMALE 

(N [%]) 

139 (57.20) 46 (67.65) 0.123 

BASELINE CT+ (N 

[%]) 

28 (13.53) 12 (20.69) 0.181 
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VISITS WITH F 

SCORE > 1 (N [%]) 

0 

1-2 

> 2 

 

 

116 (47.74) 

64 (26.34) 

63 (25.92) 

 

 

24 (35.29) 

15 (22.09) 

29 (45.31) 

0.027 

VISITS WITH P 

SCORE > 1 (N [%]) 

0 

1-2 

> 2 

 

 

165 (67.90) 

55 (22.63) 

23 (9.47) 

 

 

20 (29.41) 

21 (30.89) 

27 (39.71) 

< 0.001 

BASELINE 

SCARRING GRADE 

(N [%]) 

0 

1 

2 

3 

 

 

 

171 (70.37) 

21 (8.64) 

4 (1.65) 

11 (4.53) 

 

 

 

25 (36.76) 

15 (22.06) 

7 (10.29) 

11 (16.18) 

< 0.001 

FINAL SCARRING 

GRADE (N [%]) 

0 

1 

2 

3 

 

 

219 (90.12) 

12 (4.94) 

4 (1.65) 

8 (4.94) 

 

 

0 (0.00) 

17 (25.00) 

13 (19.12) 

38 (55.88) 

< 0.001 

 

Higher responses to CT442 were associated with a lack of scarring progression from 

baseline to four years in the Tanzanian cohort (Figure 5.20 and Table 5.9). This 

association was independent of baseline ocular Ct infection but not persistent active 

disease, p-values 0.047 and 0.120. CT667 antibody responses were not significantly 

associated with progression (Table 5.9). CT706 antibody responses were higher in 

individuals whose scarring progressed from baseline to four years (Figure 5.21 and 

Table 5.9). This was independent of persistent inflammation but not baseline Ct 

infection, p-values 0.010 and 0.056. The positive control Pgp3 was not associated with 

progression, p-value 0.988. 
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Table 5.9. ELISA results from the 311 children followed as part of a 4-year longitudinal 

study of scarring progression in Tanzania. 

 

ANTIGEN NO PROGRESSION 

MEDIAN (IQR) 

PROGRESSION 

MEDIAN (IQR) 

P-VALUE OR  

(95% CI) 

CT442 0.53 

(0.45-0.65) 

0.46 

(0.40-0.58) 

0.035 0.19 

(0.03-0.75) 

CT667 0.07 

(0.6-0.09) 

0.08 

(0.06-0.10) 

0.304 0.07 

(0.00-4.86) 

CT706 0.12 

(0.09-0.17) 

0.14 

(0.10-0.19) 

0.030 

 

43.50 

(1.56-1558.37) 

 

 

Figure 5.20. CT442 antibody responses were significantly higher in children whom 

conjunctival scarring had not progressed. 
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Figure 5.21. CT706 antibody responses were significantly higher in children whom 

conjunctival scarring had progressed. 

 

5.3. Discussion 

 

In this study clinical identification of scarring trachoma in a case-control study of adults 

from a trachoma-endemic community in The Gambia was utilised to examine the 

relationship between antibody responses to Ct antigens and trachomatous scarring. 

Antibody responses were focussed on extracellular, outer membrane and periplasmic 

proteins. Global antibody responses determined through screening of the Ct proteome 

were less informative than was found previously where responses to Ct infection were 

used, however there was still a trend towards more focussed responses in adults without 

conjunctival scarring. Heightened responses to 8 antigens were associated with the 

presence of scarring, only antibody responses to CT442 were associated with a lack of 

scarring. Independent validation of three of these antigens was achieved through further 

independent serological testing. CT667 and CT706 were not associated with scarring in 

adults in independent scarring case-control studies from the Gambia. CT706 responses 

were associated with progression of scarring in children during a 4-year longitudinal 

study in Tanzania. However, unlike in the initial microtitre plate array studies, CT442 

responses were not associated with an absence or protection from scarring in adults in 
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the independent studies. Nevertheless, intriguingly CT442 antibody responses were 

associated with protection from scarring progression in a 4-year longitudinal cohort of 

Tanzanian children.  

 

5.3.1. Adults have more focussed antibody responses 

 

The number of immunogenic antigens, those which passed initial filtering, and the 

number of commonly recognised antigens, determined by breadth, were both lower in 

this study of adults than in children. This reflects the reduced frequency and duration of 

Ct infection and active trachomatous disease in older individuals. It also demonstrates   

a time dependent focussing of antibody responses. These individuals have had a lifetime 

of exposure to Ct promoting selective activation and maintenance of high affinity 

antibodies. As frequency and duration of Ct infection decreases, the opportunity for 

restimulation of Ct-specific plasma cells is reduced. Without reactivation these plasma 

cells will not be maintained. This can put antigens commonly exposed to the 

extracellular space and B-cells at a selective advantage. Antibodies specific to these 

antigens are more likely to be activated during infrequent episodes of Ct infection, 

promoting their activation and affinity maturation. This focussing of antibody responses 

was reflected in the common recognition of antigens expressed at similar stages of 

chlamydial development or their cellular localisation in both scarred and healthy 

individuals.  

 Proteins expressed very early and late in the Ct developmental cycle were over-

represented. It is during these periods that Ct in the form of infectious EBs is most 

exposed to the humoral immune system. Potential targets may be EB outer membrane 

proteins, proteins in the membrane of extrusions and a more unpredictable group of 

proteins exposed to the extracellular environment upon Ct lytic exit from cells. This was 

supported by the over-representation of chlamydial outer membrane, extracellular and 

periplasmic proteins in the complete list of immunogenic antigens. Antibody responses 

of children were not focused on these antigens, suggesting an age dependent maturation 

of antibody repertoire. 

 Diversity of antibody responses was not significantly different between adults 

with and without trachomatous scarring. There was a trend towards increased diversity 

in scarred adults by Shannon’s diversity index, this was not supported by Simpson’s 
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diversity index. This reinforces the finding that adults in general had more focussed 

antibody responses. This suggests that lifetime exposure in an endemic community 

focuses responses on a few immunodominant antigens and gradually drives out 

diversity of antibody responses. 

 

5.3.2. Few antigens were differentially recognised between individuals with and without 

scarring trachoma 

 

There was no global difference in antibody responses between adults with and without 

scarring, however a small panel of antigens was differentially recognised between these 

groups. Antibody responses to 8 antigens were associated with scarring and responses to 

a single antigen were associated with a lack of scarring. The low number of 

differentially recognised antigens supports a focussing and reduced heterogeneity of 

antibody responses in older individuals. Three of these antigens were identified as 

differentially recognised in the initial analysis of this array, CT442, CT667 and CT706. 

Of the 7 antigens previously identified that were not supported following independent 

analysis, 6 had been originally differentially associated by Fishers’ exact test comparing 

the number of positive responses between adults with and without scarring. A more 

objective definition of positivity was used in the follow-up independent analysis leading 

to no significant differentially recognised antigens being identified. 

 Limited published information was available for these antigens. CT314, CT425 

and CT442 have been identified as immunogenic in patients with urogenital Ct or 

related disease169, mouse models have shown CT442 can also induce CD8+ T-cell 

responses195. No functional studies have been undertaken of these antigens, although 

some of them share homology with bacterial proteins of known functions. These relate 

to cell division (CT471 and CT697), transcription (CT314), protein quality control 

(CT706) and type-3 secretion (CT667). These homologues and localisation predictions 

suggest they likely reside within the inclusion, meaning they would only be exposed to 

B-cells upon cell lysis. There is evidence that some of these targets may be more easily 

accessible to the host immune system. Proteomic analysis of Ct EBs identified CT314 

as a component of the outer membrane complex329. CT442 has been localised to the 

inclusion membrane195 and during early stages of the Ct developmental cycle, CT667 

appears to reside in the cytosol328. CT706 is a homologue of clpP proteases, proteases 
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including CPAF and HtrA which were also predicted to reside within the inclusion are 

known to be secreted into the host cytosol and can induce antibody responses330, 331. 

 If these antigens can induce antibody responses this poses the question, how 

could these be associated with the presence of conjunctival scarring. Development and 

progression of scarring is linked to the frequency and duration of inflammation as a 

result of ocular Ct infection. If antibody responses can impact scarring they likely 

function at earlier stages of active disease during the development of scarring and its 

inflammation driven progression. 

CT442 is an Inc and therefore could be localised to the surface of extrusions101, 

these are EB-containing membranous compartments released from Ct-infected cells. 

Antibodies specific to CT442 could bind the surface of extrusions promoting 

destruction of these infectious bodies. Reduced survival and transmission of Ct would 

lessen inflammatory responses, minimising conjunctival damage related to scarring. 

Heightened antibody responses against CT442 could also indicate upregulated 

expression or increased availability of this antigen to the immune system. Expression of 

Incs is known to vary between serovars of Ct332, it is therefore possible there are 

differences within ocular serovars and strains. In this scenario CT442 could also be 

inducing CD8+ T-cell responses which have been demonstrated in mouse models. A 

non-human primate model of trachoma recently identified CD8+ T-cells as important in 

protective immunity to Ct infection after vaccination with a plasmid-deficient live-

attenuated Ct strain200. It is plausible that heightened CT442 antibody responses in 

adults with scarring are indicative of increased accessibility to this antigen promoting 

protective CD8+ T-cell responses. 

 The scarring associated antigens may be related to diversity of antibody 

responses in children which delay the development of partial immunity, allowing more 

frequent and longer episodes of Ct infection. Based on the previously described decoy 

hypothesis, antibodies against these antigens would therefore facilitate Ct infection by 

diverting responses away from protective antigens, supporting prolonged and intense 

inflammation of the conjunctiva. Selective reactivation of plasma cells specific for these 

antigens would occur through repeated exposure to Ct, due to the diversity of antigens 

targeted. In this hypothesis, boosting of these targets would not be seen in all adults 

with scarring. In support of this, strong antibody responses against these antigens were 

infrequent but often exclusive to adults with scarring. This would also match the finding 
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that responses against the three differentially antigens tested from different studies of 

adults with and without scarring did not support their association with disease outcome. 

CT314 is localised to the outer membrane complex of Ct EBs329. It is possible 

that antibodies against CT314 enhance Ct infectivity or block the neutralising ability of 

protective antibodies, as described in chapter 4. This would prolong infections and 

associated inflammation possibly increasing the development of conjunctival tissue 

damage and scarring. 

Secreted bacterial proteases function to enhance Ct survival in vitro, CPAF can 

neutralise complement and antimicrobial peptides333, 334. CT706 is a conserved protease 

and could also be functionally important for Ct survival, as described for CT442 above 

antibody responses against CT706 could be indicative of increased expression or 

accessibility rather than being directly pathogenic.  

 

5.3.3. CT442 and CT706 antibody responses are associated with differential scarring 

progression 

 

Examination of antibody responses in children at the end of a 4-year study of scarring 

progression in Tanzania identified heightened responses to CT442 in non-progressors 

and CT706 in progressors. This supports the suggestion that antigens associated with 

scarring likely function at an early time point in the development of scarring and its 

progression. 

 CT442 antibody responses were heightened in children in whom conjunctival 

scarring did not progress during the 4-year study. This effect was independent of Ct 

infection at baseline but not recurrent inflammation throughout the 4 years. Children 

with strong antibody responses against CT442 also had low levels of inflammation, both 

follicular and papillary hypertrophy, during the study. CT442 antibody responses could 

be indirectly associated with this phenotype or they could be actively involved in 

reduced inflammation through control of infection and infectious load. The two 

hypotheses discussed earlier in which CT442 antibody responses either promote Ct 

clearance directly or indicate increased CT442-specific CD8+ T-cell responses could 

both explain fewer inflammatory episodes. 
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 CT706 antibody responses were heightened in children in whom conjunctival 

scarring progressed during the 4-year study. This effect was independent of recurrent 

inflammation and only partly explained by baseline Ct infection. Children with strong 

antibody responses against CT706 were at greater risk of scarring progression, 

irrespective of their inflammatory phenotype. The function and localisation of CT706 is 

unknown therefore it is difficult to speculate how antibody responses against it could be 

involved or indicative of conjunctival tissue damage and subsequent scarring. Bacterial 

homologues of this protein are important in degradation of misfolded proteins which in 

Mycobacterium tuberculosis has been postulated to regulate levels of potentially toxic 

cellular proteins335. A homologue in Listeria monocytogenes can enhance survival in 

macrophages through phagosome exit335. It is possible antibody responses against 

CT706 indicate changes in expression and accessibility as discussed previously, rather 

than being directly important. 

 

5.4. Conclusions and future work 

 

Antibody responses against Ct antigens were more focussed in adults, there was 

considerable homogeneity between those with and without conjunctival scarring. Only 9 

antigens were differentially recognised between the two groups, of which only one 

(CT442) was associated with a lack of scarring. Limited localisation and functional 

information available for these antigens means predictions of how they might be 

targeted by antibodies and how this could impact scarring are difficult. CT442 is an 

inclusion membrane protein and therefore potentially accessible to B-cells through Ct 

cell exit via extrusions. The importance of CT442 antibody responses was strengthened 

by the finding of increased responses in children whose conjunctival scarring had not 

progressed in the previous 4 years. CT706, identified in the micro-array as scarring 

associated, was more frequently recognised in children whose conjunctival scarring had 

progressed in the previous 4 years.  

 Future work should examine whether the responses identified here in children 

with differential progression of scarring are present in adults with and without scarring 

in these communities. A greater understanding of the potential functions of targets 

identified here should also be a priority. As CT442 antibody responses were protective 

the ability of these antibodies to impact Ct infectivity and survival should be examined 
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in vitro, specifically testing in macrophages and with peripheral blood mononuclear 

cells if they are able to promote phagocytosis or cytolytic responses. 
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6. Identification of Chlamydia trachomatis 

genes under selection using whole genome 

sequencing and correlation with serological 

immunogenicity  
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6.1. Natural selection, pathogen adaptation and antigenic variation 

 

6.1.1. Natural selection as an evolutionary process 

 

Natural selection is the evolutionary process by which allele frequencies change over 

time in a population dependent on whether they are advantageous or deleterious for an 

organism’s fitness. Fitness in this context broadly refers to the variable ability of 

individuals within a population to survive and reproduce. Mutations which change 

alleles arise randomly and for the most part are neutral253, meaning they neither benefit 

nor harm an individual’s fitness. Mutations which impact fitness are subject to selection 

pressures which can be classified as either balancing selection or directional selection. 

Balancing selection maintains two or more variant alleles at one locus336. Directional 

selection is where one allele is favoured over another; this can increase the frequency of 

advantageous alleles (positive selection) or decrease the frequency of deleterious alleles 

(purifying selection)337. 

 Host-pathogen interactions present a complex picture in terms of selection, both 

host and pathogen have co-evolved with pressure from one driving selection in the 

other. In what is often described as an evolutionary ‘arms race’ hosts select for traits 

which limit or control pathogen infectivity while pathogens simultaneously select for 

traits which promote their survival and transmission337. In the case of humans and their 

pathogens, the significantly reduced lifespan of pathogens allows adaptation on a far 

quicker scale than humans 338. This is most clearly seen in the rapid and ongoing rise of 

antibiotic and drug-resistance in human and zoonotic pathogens. 

 The strongest single force of selection acting on pathogens is driven by host 

innate and immune responses. Pathogen survival and ability to reproduce and transmit is 

directly dependent on the host immune response. Immune responses act to eliminate 

pathogens and prevent reinfection through a plethora of cellular and humoral pathways, 

this puts strong selection pressure on pathogen genes which can influence manipulation 

or evasion of host immunity338. This can cause changes in genes involved in infectivity 

and pathogenesis, particularly for intracellular pathogens where efficient entry and 

survival in cells is pivotal to fitness339, 340. This immune response-driven selection most 

commonly manifests in variation in genes which are targeted by the host immune 

response. 
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6.1.2. Antigenic diversity as natural selection 

 

To survive and transmit in hosts with highly evolved immune systems, pathogens have 

and continue to adapt to avoid mechanical clearance, immune system recognition and 

subsequent destruction339. This adaptation happens both within and between hosts338. 

Within-host mechanisms are systematic changes in proteins presented to the host 

through a combination of phase and antigenic variation; this involves changes in gene 

expression and translation, multi-copy variable gene families and recombination to 

express previously silent genes or create mosaic transcripts339. Between-host 

mechanisms primarily involve allelic polymorphism, in this scenario copy number and 

expression patterns do not necessarily change but multiple allelic forms of 

immunodominant surface antigens are present in the population. These polymorphic 

alleles typically have cyclical frequencies driven by host immune recognition, as alleles 

are recognised and targeted by the immune system they are selected against. Rare alleles 

increase in frequency until they are recognised by the immune system and are selected 

against. 

 Unlike within-host mechanisms, allelic polymorphism is directly driven by host 

immune responses in previously exposed hosts. Alleles recognised by the immune 

system are selected for if responses against them benefit the pathogen, for example 

opsonisation can improve cellular uptake of some intracellular bacteria, or selected 

against if responses promote pathogen destruction. Ability to reinfect previously 

exposed hosts is vital for pathogens to maintain a large enough susceptible population 

and to allow genetic exchange through recombination with other strains339. Polymorphic 

alleles under selection can be detected by searching for ‘signatures’ of selection in 

pathogen sequences337. 

 

6.1.3. Markers of selection in human pathogens 

 

The advent of whole-genome sequencing has allowed identification of regions which 

show local changes in variation not consistent with the rest of the genome, a number of 

tests have been developed to test for evidence of non-neutral mutations and predict 

genes under selection. These tests mostly fit into two categories; those which examine 

variation in allele frequency such as Tajima’s D253, Fu and Li’s D and F341 and Fay and 
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Wu’s H255, and those which compare haplotype lengths such as integrated haplotype 

scores (iHS)256. The former compare the prevalence of low, intermediate and high 

frequency alleles to detect if selection is acting. In combination, they can determine 

whether this is positive, purifying or balancing selection (Table 6.1). The latter compare 

haplotype lengths around polymorphic sites between ancestral and derived sequences 

where changes in length indicate selection in action. The methods underlying these 

metrics are detailed in chapter 3.6. 

Table 6.1: Evidence of natural selection by combining Tajima’s D, Fu and Li’s D*/F* 

and Fay and Wu’s H 

Positive and negative indicated values significantly different from zero, determined 

using values at every position on the chromosome. ‘Any’ indicates all possible values. 

‘~ zero’ indicates values not significantly different from zero. Drift is defined as no 

evidence of natural selection. 

TYPE OF 

SELECTION 

TAJIMA’S D FU AND LI’S 

D*/F* 

FAY AND WU’S H 

POSITIVE NEGATIVE NEGATIVE NEGATIVE 

PURIFYING NEGATIVE NEGATIVE POSITIVE 

BALANCING POSITIVE POSITIVE POSITIVE/NEGATIVE 

DRIFT ANY ~ ZERO ~ ZERO 

 

 Genome-wide analyses of selection have been conducted on a number of human 

pathogens and they have invariably identified host immune targets as frequently under 

selection. Plasmodium falciparum the most common causative parasite of malaria is 

perhaps the best studied in this respect, several studies examining isolates from Africa 

and South East Asia have identified genes under varying forms of selection342-346. Initial 

studies examined candidate genes believed to be important in host immune responses. 

Conway et al sequenced the variable surface antigen MSP1 and a selection of putatively 

neutral loci from 547 African P. falciparum isolates, they identified the block 2 region 

as having significant within population diversity and demonstrated that antibody 

responses against the most common block 2 genotype in a Gambian population were 

associated with reduced risk of malaria in the following six months342. Related studies 

focussing on other P. falciparum surface antigens AMA1 and MSP3 have shown them 
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to be under balancing selection within malaria-endemic populations347, 348. More recent 

genome-wide scans for selection have validated these results with AMA1, MSP1, MSP3 

and other surface antigens under balancing selection343, 346. Membrane proteins and 

genes expressed at the extracellular merozoite stage are overrepresented in genes that 

are under balancing and positive selection, supporting the influence of immune 

response-driven pressure. 

 Genome-wide studies in pathogenic bacteria including Helicobacter pylori349, 

Staphylococcus aureus350 and Streptococcus pneumonia351 have similarly highlighted 

cellular and humoral immune targets, cell surface proteins and known host-interactors 

as overrepresented in genes under both balancing and positive selection. This finding 

was further vindicated by a comprehensive study using 184 population datasets from 84 

bacterial species352. While the majority of each genome contained an abundance of rare 

nonsynonymous mutations gradually being driven out by purifying selection, as 

predicted for ecologically restricted organisms with small populations340, surface-

exposed proteins consistently had evidence of balancing selection indicated by a lack of 

low frequency mutations. Studies in HIV-1 showed positive selection to be focussed in 

B-cell and CD4+ T-cell epitopes353, while evidence of positive selection in the two key 

surface glycoproteins of H1N1 influenza was similarly found primarily in B-cell and T-

cell epitopes354. 

 

6.1.4. Genes under selection in Chlamydia trachomatis 

 

Genome-wide studies of the kind described above have been sparse in Ct. Until recently 

the number of sequenced genomes has been low and they have been collected from 

ecologically disparate sites over a timespan of approximately 50 years. There have been 

few if any populations of Ct isolated which could truly reflect the impact of selection 

within communities which have distinct evolutionary driving forces, particularly within 

ocular Ct. Studies comparing across the species and within variant tropisms where 

possible have identified some common targets of selection.  

 The first genome-wide study of this kind looked for evidence between two LGV 

isolates and either A/Har-13, an ocular isolate collected from Egypt in 1958, or D/UW3, 

a urogenital isolate collected from the USA in 1965114. Fifty-five and 63 genes had 

evidence of positive selection in the respective comparisons. Common to these were 
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known host-interactors which are either surface-exposed or secreted into the host 

cytosol such as; inclusion membrane proteins (Incs) D, F and G, polymorphic 

membrane proteins (Pmps) B, C and H and translocated actin-recruiting phosphoprotein 

(TARP). Two studies from Joseph et al in 2011115 and 2012355 utilising 12 and 32 

genomes respectively looked within the Ct biovars for evidence of selection, identifying 

18 and 49 ocular genes under positive selection. Immune targets and virulence factors 

were again overrepresented, particularly the Pmps and Incs, with the major outer 

membrane protein (MOMP) and heat shock protein 60 (HSP60) also highlighted. 

Similar results were found in a more recent study of 59 Ct isolates where they tested for 

selection related to ability to infect the conjunctiva and selection responsible for 

differences in ocular virulence356. Selection in 9 Pmps113 and 48 Incs332 was 

independently tested using 19 and 51 Ct isolates respectively. Ten Incs and PmpB had 

significant evidence of positive selection, supporting these immunogenic virulence 

factors as being important in Ct infectivity and survival. 

 These studies invariably used between four and eight ocular Ct isolates from 

Egypt, The Gambia, Taiwan, Tanzania and Saudi Arabia which are historical isolates. 

These have been cultured extensively which may have introduced mutations not seen in 

vivo357, 358. The genes they highlighted are likely important in differential tropism but it 

is unclear whether they reflect genes under selection within populations of Ct occupying 

the same ecological niche of the eye in trachoma-endemic communities. Such a 

population of Ct isolates was collected from Rombo District, northern Tanzania in the 

early 2000’s17. These isolates were cultured prior to sequencing, as described above this 

appears to introduce changes not seen naturally due to selection pressures introduced by 

culture conditions. This chapter utilises isolates collected and direct-sequenced from 

conjunctival swabs as part of a study by Anna Last in the Bijagos Archipelago, Guinea-

Bissau24, 240. Prior to these studies, no such population was available and the only 

related studies focussed on ompA, which encodes for the immunodominant MOMP. 

Two populations of Ct isolates from trachoma-endemic communities in The Gambia 

and Tanzania had their ompA gene sequenced to search for polymorphisms and 

evidence of selection. The Tanzanian sequences were 63 % serovar A and 36 % B/Ba, 

they had dN/dS of 0.57 and 1.71 respectively indicating purifying and positive selection 

within these serovars109. The Gambian sequences were 95 % serovar A and 5 % B with 

evidence of directional selection108. A lack of balancing selection in this 

immunodominant antigen, which is a target of neutralising antibodies, is surprising in 
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the context of results from other pathogens. Genotypes were unchanged for 59 and 78 % 

of individuals who were Ct-positive in follow-up at 6 years (Tanzania) and two months 

(The Gambia) respectively. In Tanzania polymorphic ompA sequences were associated 

with a lack of clearance, while in The Gambia the serovar A genotype which accounted 

for 74 and 90 % of all sequences at baseline and follow-up was associated with lower 

load and less active clinical disease. 

 This homogeneity of ompA genotypes both with and without treatment over 

months and years, and mixed evidence of purifying and positive selection highlight the 

need for genuine population-based studies of genes under selection in ocular Ct isolates 

in order to better understand the interactions between Ct and the host immune system. 

Therefore 126 ocular Ct whole genome sequences obtained from discrete trachoma-

endemic communities in the Bijagos Archipelago collected over the period of a single 

survey (i.e. representing contemporary strains in current circulation) were used in tests 

of population genetic selection to determine which genes or regions of the genome are 

under selection. This study aimed to provide an integrated overview of genomic 

identification of genes under selection with those immune targets identified through 

screening humoral responses across the proteome from chapters 4 and 5. Previous data 

from a variety of other pathogens have shown host immune pressure is a key driving 

force in pathogen adaptation. This analysis was combined with B-cell epitope 

predictions determined using bioinformatics tools, a well-tested system for identifying 

immunogenic regions in protein sequences359-361. Regions that were immunogenic were 

compared with those under selection to both examine known targets, identify potential 

new targets and to narrow or focus on potential clinically important immune targets of 

antibody based immunity. 

 

6.2. Results 

 

6.2.1. Prediction of immunogenicity 

 

Potential B-cell epitopes in our previously identified immune targets from chapters 4 

and 5 were predicted using a combination of bioinformatics tools which utilise defined 

epitopes and structure-based predictions of immunogenicity (Table 6.2). Epitopes were 

identified in 35/55 targets from chapters 4 and 5. The majority of those with no 
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predicted epitopes were expected to localise within the inclusion, suggesting they are 

unlikely to be frequently exposed to the host immune system and therefore may be 

artefacts of the microarray. Twenty of these 35 also had CD4+ or CD8+ T-cell epitopes 

predicted to overlap B-cell epitopes.  A literature search was performed using PubMed 

to identify studies where the localisation of these proteins had been determined 

empirically, either through proteomics of Ct infected cells or through in vitro studies 

using protein-specific antibodies. Empirically defined localisation of these proteins 

showed mixed agreement with software predictions, a number of those known to be 

secreted or reside in the outer membrane were incorrectly classified as remaining inside 

the inclusion. Inclusion membrane proteins (Incs) were commonly misclassified, 

however they are likely secreted by Ct prior to insertion into the inclusion membrane by 

an as yet undefined mechanism which may explain the difficulties in accurately 

predicting localisation. 

 

Table 6.2. Predictions of immunogenic epitopes, transmembrane domains and cellular 

localisation of immune targets from chapters 4 and 5 

B-cell epitopes were defined using ABCpred, BepiPred and IEDB antibody epitope 

predictions (chapter 3.3). T-cell epitopes were defined using SYFPEITHI, NetMHC, 

IEDB-SMM and ProPred (chapter 3.3). Transmembrane domains were defined using 

Membraind, Phobius and TMHMM (chapter 3.3) Predicted localisations were defined 

suing LocTree, Cello and psortB (chapter 3.3). 

ID B-

CELL 

T/B-

CELL 

MEMBRANE 

DOMAINS 

PREDICTED 

LOCALISATION 

EXPERIMENTAL 

LOCALISATION 

CT017 1 1 0 Cytoplasmic Outer membrane 

CT021 0 0 0 Cytoplasmic  

CT023 5 1 0 Secreted  

CT051 6 1 0 Cytoplasmic Inclusion lumen 

CT073 3 1 0 Secreted  

CT078 2 0 0 Secreted  

CT089 10 3 0 Cytoplasmic Secreted 

CT097 5 0 0 Secreted  

CT106 3 3 0 Cytoplasmic  

CT118 1 1 2 Cytoplasmic Inclusion membrane 
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CT119 2 0 2 Secreted Inclusion membrane 

CT123 2 2 0 Inner membrane  

CT142 3 0 0 Cytoplasmic Secreted 

CT168 0 0 0 Secreted  

CT181 2 1 0 Cytoplasmic  

CT223 1 0 2 Secreted Inclusion membrane 

CT228 2 0 2 Inner membrane Inclusion membrane 

CT237 1 0 0 Inner membrane  

CT284 5 0 0 Cytoplasmic  

CT316 1 0 0 Cytoplasmic  

CT381 1 0 0 Cytoplasmic  

CT494 1 0 1 Secreted  

CT502 1 0 0 Inner membrane  

CT541 3 0 0 Cytoplasmic Outer membrane 

CT545 8 5 0 Periplasmic  

CT570 1 1 3 Cytoplasmic Periplasmic 

CT579 5 2 0 Inner membrane Outer membrane 

CT584 0 0 0 Secreted Secreted 

CT592 8 1 0 Cytoplasmic  

CT642 0 0 2 Periplasmic  

CT664 9 0 1 Inner membrane  

CT668 3 0 0 Cytoplasmic Secreted 

CT694 7 4 0 Secreted Secreted 

CT695 4 0 0 NA Secreted 

CT703 3 0 0 Cytoplasmic  

CT728 1 0 4 Cytoplasmic  

CT764 0 0 1 Inner membrane  

CT795 1 0 0 Inner membrane Secreted 

CT806 8 3 0 Inner membrane  

CT813 3 0 2 Periplasmic Inclusion membrane 

CT841 5 0 2 Cytoplasmic  

CT875 3 0 0 Inner membrane Secreted 

      

CT029 0 0 0 Cytoplasmic  



194 

 

CT334 6 1 0 Cytoplasmic  

CT391 0 0 0 Periplasmic  

CT630 1 0 0 Cytoplasmic  

      

CT314 8 2 0 Cytoplasmic  

CT425 8 2 0 Cytoplasmic  

CT442 2 0 2 Outer membrane Inclusion membrane 

CT471 0 0 1 Cytoplasmic  

CT645 0 0 2 Inner membrane  

CT667 1 1 0 Cytoplasmic  

CT679 2 1 0 Cytoplasmic  

CT698 2 0 0 Cytoplasmic  

CT706 2 0 0 Cytoplasmic  

 

6.2.2. Genome-wide evidence of purifying and positive selection, with minimal 

balancing selection 

 

Sequence data from 126 ocular Ct isolates from the Bijagos Islands, Guinea-Bissau was 

examined for evidence of departures from non-neutral selection. These isolates were 

collected and sequenced as described previously (chapter 3.6)240. Briefly, a cross-

sectional population-based survey was undertaken in trachoma-endemic communities 

on the Bijagós Archipelago of Guinea Bissau. Conjunctival swabs were obtained from 

the left upper tarsal conjunctiva of each participant. For eight individuals, whole 

genome sequence (WGS) data was obtained following Ct isolation in cell culture. For 

the remaining individuals (118), WGS data were obtained directly from clinical 

samples. 

Tajima’s D values were negative or zero for 910/953 (95.49 %) of genes, the 

median was -1.39 [95 % CI -2.39-0.30] (Figure 6.1). One hundred and ninety-eight 

genes showed significant departure from neutrality based on a minimum number of 

calls per site of 50 (2.044 =< D <= -1.8)253, all of which returned negative D values. 

This showed an excess of low frequency mutations, indicative of either population 

expansion or directional selection. There was no clear evidence of balancing selection. 
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 Tajima’s D values correlated strongly with Fu and Li’s D* and F*254 (rho values 

0.80 p-value < 0.001and 0.85 p-values < 0.001 respectively). Both D* and F* had a 

significantly lower median, -2.78 and -2.75 respectively, suggesting an excess of 

singleton mutations which are found in only one isolate (Figure 6.2).
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Figure 6.1. Histogram of the genome-wide distribution of Tajima’s D. 

The median was -1.39 (dashed red line), significant values were determined at the 0.05 level defined previously (blue lines). 
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Figure 6.2. Genome-wide distributions of Tajima’s D, Fu and Li’s D* and F*. 

The median values were -1.39, -2.78 and -2.75 respectively (dashed red lines). 
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Tajima’s D values were also determined using a sliding window analysis with a window 

size of 42 base pairs, which equates to the common length of antibody epitopes of 

sixteen amino acids. Tajima’s D values were negative or zero for 296059/304525 (97.22 

%) windows, the median was -1.04 [95% CI -1.55-0.97]. Four hundred and twenty-one 

windows across 27 genes showed significant departure from neutrality, similar to gene-

level results they were all negative (Figure 6.3). This supported an excess of low 

frequency mutations across the genome, again supporting either population expansion 

or directional selection. Most windows with evidence of selection were found within 

genes with evidence of selection at gene-level. 
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Figure 6.3. Genome-wide evidence of selection by Tajima’s D. 

There was clear overlap of genes with significantly negative D values (black dots) and 42 nucleotide windows with significantly negative D 

values (red lines). The median value of sliding windows was -1.04. 
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Twenty-two of 198 genes with evidence of selection were outside the 95 % distribution 

of the Ct genome (Table 6.3). These include a number of genes previously identified as 

polymorphic, notably 3 members of the polymorphic membrane protein (pmp) family. 

CT642 and CT442 to which antibody responses were previously shown to associate 

with susceptibility to infection and scarring progression respectively, also had evidence 

of selection. Secreted and outer membrane proteins were over-represented in the genes 

under selection, p-value 0.003 (Figure 6.4A). 

All 27 genes with evidence of selection at the epitope-level were outside the 95 

% distribution (Table 6.3). Twelve of these genes had gene-level evidence of selection 

outside the 95 % distribution, a further 11 were within the 95 % distribution but 

significantly different from neutrality. Secreted and outer membrane proteins were also 

over-represented in the genes under selection, p-value 0.003 (Figure 6.4B). 

No genes or windows had evidence of balancing selection at the significance 

level of 0.05. To investigate genes different from the rest of the genome but not 

significant at this level the accepted significance level was extended to 0.1 (1.723 =< D 

<= -1.570). This identified a single gene and 119 windows across 18 genes which had 

evidence of balancing selection at the significance level of 0.1 (Table 6.4).  
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Table 6.3. Genes under selection identified by Tajima’s D. 

The top 22 genes had gene-level evidence of selection. The bottom 15 had epitope-level 

evidence of selection. Twelve of those with gene-level evidence of selection also had 

epitope-level evidence. Theta was calculated as the pairwise nucleotide diversity per 

site. Tajima’s D SW indicates the number of sliding windows with significant evidence 

of selection in the respective genes. 

ID NAME NUMBER 

OF SNPS 

THETA TAJIMA’S 

D 

TAJIMA’S 

D SW 

CT872 pmpH 68 0.005 -2.85 108 

CT674 yscC 51 0.004 -2.85 34 

CT652 recD_2 33 0.004 -2.64 4 

CT050  45 0.005 -2.64 42 

CT651  51 0.006 -2.63 21 

CT643 topA 21 0.002 -2.62 3 

CT604 groEL_2 27 0.004 -2.61  

CT049  29 0.004 -2.61 14 

CT605  22 0.004 -2.61  

CT874 pmpI 20 0.002 -2.57  

CT852  19 0.006 -2.55 14 

CT682 pbpB 18 0.001 -2.55  

CT675 karG 17 0.003 -2.52  

CT442 crpA 28 0.012 -2.52 30 

CT414 pmpC 41 0.002 -2.48 14 

CT868  19 0.003 -2.48  

CT676 Dub1 17 0.006 -2.47 7 

CT642  20 0.005 -2.47  

CT760 ftsW 17 0.003 -2.42  

CT762 murC 19 0.002 -2.41 3 

CT311  14 0.004 -2.41  

CT639  20 0.001 -2.40  

      

CT641 ygeD 42 0.005 -2.38 2 

CT640 recC 31 0.002 -2.38 12 

CT649 ygfA 12 0.004 -2.38 9 
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CT607 ung 14 0.004 -2.37 1 

CT623  12 0.002 -2.37 2 

CT159  19 0.004 -2.28 23 

CT105  45 0.006 -2.27 13 

CT242  9 0.003 -2.24 13 

CT681 ompA 25 0.004 -2.20 11 

CT470 recO 8 0.002 -2.17 5 

CT157  28 0.005 -2.13 1 

CT622  47 0.005 -1.66 13 

CT147  32 0.001 -1.33 1 

CT046 hctB 39 0.013 -1.33 12 

CT680 rs2 13 0.003 -1.12 9 

 

Table 6.4. Genes under balancing selection by Tajima’s D. 

Genes were ordered by position in the Ct D/UW3 genome.  

ID NAME NUMBER 

OF SNPS 

THETA TAJIMA’S 

D 

TAJIMA’S 

D SW 

CT003 gatA 6 < 0.001 -1.13 9 

CT004 gatB 2 < 0.001 1.83  

CT047  7 0.001 -0.61 2 

CT151  12 0.002 -1.83 14 

CT294 sodM 5 0.002 -0.84 7 

CT374 arcD 3 0.001 -0.14 1 

CT404  8 0.002 -1.34 2 

CT464  2 < 0.001 0.46 1 

CT526 r123 2 0.001 1.30 14 

CT529  7 0.002 -1.20 14 

CT534 cutE 9 0.001 -0.78 4 

CT542 aspS 11 0.001 -1.46 14 

CT570 gspF 6 0.001 -0.75 14 

CT632  10 0.001 -0.62 5 

CT650 recA 6 0.001 -0.67 14 

CT657  7 0.004 -1.27 4 



203 

 

CT798 glgA 9 0.001 -1.25 14 

CTA_0934  3 0.002 -0.16 14 

CT859 lytB 6 0.001 -0.48 3 

 

Significant values of D can be caused by population changes as well as natural 

selection, to identify genes genuinely under selection and to distinguish between 

purifying and positive selection an outgroup was used, A/Har 13, to calculate Fay and 

Wu’s H. The median of all H values was 0.06 [95 % CI -3.85-0.72]. This suggests the 

majority of negative D values were caused by population expansion rather than any 

force of selection. Forty-eight genes were outside the genome-wide 95 % distribution 

for H values (Figure 6.4). Ten genes with significantly negative H values had 

significantly negative D values and 9 genes with significantly positive H values had 

significantly negative D values, suggesting these genes are under positive and purifying 

selection respectively (Figure 6.5 and Table 6.5). An additional 2 genes with the lowest 

H values had borderline significant evidence of selection from Tajima’s D and may also 

be under positive selection.  

 

Figure 6.4. Genome-wide distribution of Fay and Wu’s H. 

The median value was 0.06 [95 % CI -3.85-0.72] (dashed red lines). 
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Figure 6.5. Correlation of Tajima’s D and Fay and Wu’s H. 

Values significantly different from zero are indicated for each measure (dashed red lines). Type of selection is indicated (shaded areas). 
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Table 6.5. Genes under selection identified by Tajima’s D and Fay and Wu’s H. 

The top 10 genes had evidence of positive selection. The bottom 9 genes had evidence 

of purifying selection. 

ID NAME NUMBER OF 

SNPS 

FAY AND 

WU’S H 

TAJIMA’S D 

CT033 recD_1 15 -5.41 -2.29 

CT082  12 -9.32 -2.12 

CT288  12 -12.55 -1.88 

CT359  8 -5.55 -1.83 

CT386  7 -7.75 -2.07 

CT622  47 -48.13 -1.66 

CT686 sufD 20 -19.50 -1.78 

CT688 parB 7 -5.71 -1.96 

CT694  14 -6.89 -2.21 

CT868 Dub1 19 -9.36 -2.48 

     

CT105  45 2.40 -2.27 

CT223  15 0.91 -1.87 

CT394 hrcA 15 0.73 -2.01 

CT621  16 0.90 -1.93 

CT624 mviN 17 0.91 -2.00 

CT636 greA 15 0.73 -2.07 

CT641 ygeD 42 1.13 -2.38 

CT674 yscC 51 1.30 -2.85 

CT872 pmpH 68 1.99 -2.85 

 

Fay and Wu’s H was analysed across windows of 42 nucleotides as described for 

Tajima’s D. Windows with no mutations were automatically assigned a value of zero 

when determining H values, since the majority of windows had a value of zero the 

median was zero (95 % CI 0.00-0.11). To determine windows with significant evidence 

of selection the 95 % distribution was calculated excluding these zero values, the 

median of the non-zero windows was 0.02 (95 % CI -1.95-0.25). Six hundred and sixty-

one windows across 47 genes had significantly negative values of H and 606 windows 
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across 58 genes had significantly positive values of H, 10 (positive) and 6 (purifying) of 

these had evidence of selection by Tajima’s D (Figure 6.6 and Table 6.6).  

 

Table 6.6. Genes with sliding window-level evidence of selection by Tajima’s D and 

Fay and Wu’s H. 

Type of selection is indicated. Windows under selection indicates the number of sliding 

windows with significant evidence of selection in the respective genes. 

 

ID NAME WINDOWS UNDER 

SELECTION 

TYPE OF 

SELECTION 

CT046 hctB 2 Purifying 

CT082  1 Positive 

CT105  13 Purifying 

CT147  24 Positive 

CT159  4 Positive 

CT249  1 Purifying 

CT359  1 Positive 

CT414 pmpC 16 Purifying 

CT442 crpA 17 Purifying 

CT456 tarP 8 Positive 

CT539  2 Positive 

CT622  4 Positive 

CT681 ompA 13 Purifying 

CT686 sufD 21 Positive 

CT688 parB 3 Positive 

CT694  6 Positive 
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Figure 6.6. Correlation of Tajima’s D and Fay and Wu’s H from sliding-window analysis. 

Values significantly different from zero are indicated for each measure (dashed red lines). Type of selection is indicated (shaded areas). 
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6.2.3. Integrated haplotype scores identify three genomic regions under positive 

selection 

 

A genome-wide scan was performed to calculate integrated haplotype scores (iHS) for 

SNPs to validate genes under positive selection and to identify regions under positive 

selection. To minimise loss of SNPs missing calls were imputed using the distance-

based method described in chapter 3.6. Briefly missed calls were imputed by assigning 

a score to each non-missing call based on the pairwise genetic distance between the 

isolate with the missing call and all isolates with a call. The scores were summed over 

the ancestral and derived alleles respectively, the allele with the lowest score was used 

to reclassify the missing call as it was deemed more closely related to the isolate with 

the missing call. Resulting iHS scores were broadly correlated with those from the raw 

data (Appendix Figure 4). Since there was no previous data to compare results with 

intrinsic biases in the results before and after imputation was used. Imputations did not 

significantly alter the MAF and there was no association between MAF and iHS score 

before or after imputation (Appendix Figure 5A). Non-imputed scores showed an 

inconsistent association with number of missed calls, imputed scores were higher and 

more variable when SNPs had greater than 15 missed calls (Appendix Figure 5B). Since 

there was no bias in iHS scores using imputed genotypes this data was used going 

forward, SNPs with greater than fifteen missed calls were excluded. The analysis 

included 2147 SNPs from 81 isolates, after removing sites with a minor allele frequency 

(MAF) less than 0.05. 

iHS was determined through the rehh package in R, WHAMM, and Selscan. All 

3 were strongly correlated (rho values of 0.99 and 0.55 and p-values of < 0.001 

Appendix Figure 6) iHS determined by rehh is shown. The median score was 0.66 (95 

% CI 0.03-2.18), 31 SNPs had scores in the top 2.5 % and 13 in the top 1 % of the 

genome (Figure 6.7). These SNPs highlight 3 loci which are likely recently under 

positive selection (Table 6.7). The top 2.5 % identified very large loci in the context of 

the Ct genome, the top 1 % identifies similar but more precise loci including a region 

covering tarP and pmp family members and a region within the Ct plasticity zone. 

Three genes identified under selection by Tajima’s D and Fay and Wu’s H were within 

these regions, CT049, CT050 and CT622. There is a clear overlap of regions under 

selection from these different methods, particularly when comparing Fay and Wu’s H 

and iHS (Figure 6.8). 
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Table 6.7. Regions under positive selection identified by iHS. 

The top 3 regions were identified using the top 2.5 % of SNPs, the second 3 regions 

were identified using the top 1 % of SNPs. 

WINDOW START 

(KB FROM 

ORIGIN) 

WINDOW END 

(KB FROM 

ORIGIN) 

REGION 

LENGTH 

(KB) 

NUMBER  

OF SNPS 

GENES 

WITHIN 

REGION 

5863 257279 251.42 17 CT005-CT228 

258295 536643 278.35 4 CT229-CT456 

708681 1015110 306.43 10 CT674-CT937 

     

54660 89333 34.67 2 CT048-CT074 

180250 180280 0.03 7 CT154-CT155 

536643 708681 172.04 2 CT456-CT625 
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Figure 6.7. Genome-wide evidence of SNPs and loci under positive selection by iHS. 

Genes in the top 2.5 % of values are indicated (dashed red line). Regions (blue lines) and genes (shaded blue area) under positive selection are 

indicated. 



211 

 

 

Figure 6.8. Overlap of regions under selection by Tajima’s D or Fay and Wu’s H 

with iHS. 

There was clear overlap of regions under selection by sliding window analysis of D 

(A) and H (B) with integrated haplotype scores (red lines). 
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To support the results, previous data for Ct genes shown to be under selection were 

used. Due to the lack of Ct populations reflecting isolates currently in circulation, 

particularly within the trachoma biovar, only one study has previously employed 

Tajima’s D to examine within population diversity. Andreasen et al108 looked 

exclusively at ompA (CT681) in a population of 77 ocular Ct isolates from a trachoma-

endemic community in The Gambia. They found significant evidence of selection in 

ompA (D -1.76), these results had a similar but larger deviation from neutrality (D -

2.20). A related study of ompA genotypes in Tanzania found an overall dN/dS of 0.57 

which was indicative of purifying selection109, this study did not find gene-level 

evidence of selection however the epitope within the surface-exposed variable domain 1 

with the strongest evidence of selection was under purifying selection, D -1.99 and H 

0.46. Two further studies tested for selection within the biovars, using just 3 and 9 

ocular isolates respectively115, 356. Both studies identified members of the pmp family as 

under positive selection, pmpB, pmpE and pmpF within the trachoma biovar. This study 

found variable evidence of selection in these genes (D -2.12, 0.08 and -1.16, H -0.21, -

3.86 and 0.12). This study did find evidence of purifying and positive selection in pmpH 

and pmpI respectively (D -2.85 and -2.57, H 1.99 and -3.47). Borges et al 356 also 

identified CT050, CT115 and CT456 under positive selection, these results mostly 

agreed with this interpretation (D -2.64, -2.33 and -1.62, H -1.66, 0.22 and -6.84). 

Joseph et al 115 identified a further 11 genes under selection, all of these had D values 

less than zero and 6 had significant evidence of selection at either the gene or epitope 

level in these data. 

 In this Ct population 48 genes were identified with evidence of selection by 

either a combination of Tajima’s D and Fay and Wu’s H, at the gene or epitope level, or 

by iHS. Secreted and outer membrane proteins were significantly over-represented in 

these targets, as were genes with peak expression levels very early or very late in the 

developmental cycle (Figure 6.9). Expression at these pivotal stages of infection and 

localisations, which would facilitate host interaction support these genes as important 

factors in Ct survival and pathogenesis.  

Fifteen of these gnes under selection have been previously identified as 

immunogenic including; CT681 (ompA) the immunodominant major outer membrane 

protein, CT694 which is utilised in trachoma serology in combination with Pgp3 and 

CT872 (pmpH) another outer membrane protein. This supports our assertion that 

evidence of selection may help identify genuine host immune targets. 
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Figure 6.9. Over-representation of genes expressed early or late in the developmental 

cycle and localised to the outer membrane or secreted in genes under selection. 

Proteins identified through transcriptomics as expressed late or very early in the Ct 

developmental cycle were over-represented in the 48 genes under selection (grey) 

compared with the whole genome (black). Proteins with a consensus localisation 

prediction of extracellular or outer membrane were over-represented in the 48 genes 

under selection (grey) compared with the whole genome (black).  
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6.2.4. Variable evidence of selection acting on target genes 

 

This Ct population was used to examine for evidence of selection within the list of 

targets identified in Chapters 4 and 5. The majority of targets from both sections had 

negative Tajima’s D values, only two were above zero but these were not significant 

(Figures 6.10A and 6.11A). Of those with negative D-values, most had little evidence of 

selection by Fay and Wu’s H (Figures 6.10A and 6.11A). One target, susceptibility-

associated CT228, contained a SNP under positive selection by iHS (Figures 6.10B and 

6.11B).  

Seven of 42 targets associated with susceptibility to infection (chapter 4) had 

gene-level evidence of selection by Tajima’s D of which 4 were supported by Fay and 

Wu’s H, 10 were within regions under positive selection by iHS (Table 6.8). Three were 

both under selection and within a region under positive selection. CT694 and CT695, 

had evidence of positive selection at the epitope level supported by D and H values. 

CT545 and CT806 had evidence of purifying selection at the epitope level. CT570 had 

sliding-window level evidence of selection by Tajima’s D. None of the 5 targets 

associated with protection from infection had any evidence of selection.  

CT314 was the only one of 8 scarring-associated targets which had evidence of 

selection, positive H values suggested it was likely under purifying selection. CT442, 

the only target associated with protection from scarring, had strong evidence of 

selection both at the whole-gene and epitope-level. H values suggested different 

epitopes within this gene were under positive and purifying selection.
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Figure 6.10. Evidence of selection in antibody targets associated with protection from or 

susceptibility to infection. 

Genes under selection by A) D and H values or B) iHS are shown, association with 

protection from (green) or susceptibility to (red) infection is indicated. Values 

significantly different from zero are indicated for each measure (dashed red lines). Type 

of selection is indicated (shaded areas).
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Figure 6.11. Evidence of selection in antibody targets associated the presence or lack of 

scarring in adults. 

Genes under selection by A) D and H values or B) iHS are shown, association with the 

presence of (red) or lack of (green) scarring is indicated. Values significantly different 

from zero are indicated for each measure (dashed red lines). Type of selection is 

indicated (shaded areas).
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Table 6.8. Evidence of selection in immune targets identified in chapters 4 and 5. 

Genes were ordered by position in the Ct D/UW3 genome. iHS indicates if the gene fell 

within the three regions identified as under positive selection using the top 1 % of 

SNPs. Association from chapters 4 and 5 is indicated. 

ID NO. 

SNPS 

THETA TAJIMA’S 

D 

TAJIMA’S 

D SW 

FAY 

AND 

WU’S 

H 

FAY 

AND 

WU’S 

H SW 

IHS  ASSOCIATION 

CT017 8 0.001 -1.78  0.12  N Susceptible 

CT021 8 0.002 -1.16  0.37  N Susceptible 

CT023 8 0.001 -0.61  0.03 14 N Susceptible 

CT051 11 0.001 -1.43  0.30  Y Susceptible 

CT073 7 0.001 -1.24  -0.66 14 Y Susceptible 

CT078 4 0.001 -1.13  -2.72  N Susceptible 

CT089 7 0.001 -1.27  0.29  N Susceptible 

CT097 5 0.001 -0.86  -2.77 7 N Susceptible 

CT106 5 0.001 -1.74  0.49  N Susceptible 

CT118 4 0.002 -0.12  0.18 19 N Susceptible 

CT119 1 < 0.001 -1.04  0.57  N Susceptible 

CT123 2 0.001 -1.31  0.02  N Susceptible 

CT142 4 0.001 -1.77  0.06  N Susceptible 

CT168 4 0.002 -1.73  0.09  N Susceptible 

CT181 3 0.001 -1.61  0.10  N Susceptible 

CT223 3 0.001 -0.81  0.07  N Susceptible 

CT228 8 0.003 0.069  -1.18  N Susceptible 

CT237 3 0.001 -1.62  -1.30  N Susceptible 

CT284 6 0.001 -1.58  0.07 6 N Susceptible 

CT316 1 < 0.001 -1.03  -3.09  N Susceptible 

CT381 0 0.000 NA  0.02  N Susceptible 

CT494 5 0.001 -1.86  0.00  Y Susceptible 

CT502 1 < 0.001 -1.03  0.13  Y Susceptible 

CT541 2 0.001 -0.11  0.02  Y Susceptible 

CT545 9 < 0.001 -1.82  0.27 14 Y Susceptible 

CT570 6 0.001 -0.75 14 0.44  Y Susceptible 
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CT579 8 0.001 -2.15  0.03  Y Susceptible 

CT584 0 0.000 NA  0.18  Y Susceptible 

CT592 11 0.001 -1.83  0.00  Y Susceptible 

CT642 20 0.005 -2.47  0.59  N Susceptible 

CT664 7 0.001 -1.41  0.59  N Susceptible 

CT668 6 0.002 -1.58  0.52  N Susceptible 

CT694 14 0.003 -2.21  0.31 13 N Susceptible 

CT695 7 0.001 -0.77  -6.89 14 N Susceptible 

CT703 3 < 0.001 -1.62  -2.56  N Susceptible 

CT728 2 0.001 -1.38  0.48  N Susceptible 

CT764 2 < 0.001 -1.38  0.42  N Susceptible 

CT795 1 < 0.001 0.24  0.04  N Susceptible 

CT806 12 0.001 -1.83  0.20 5 N Susceptible 

CT813 2 < 0.001 -0.52  0.67  N Susceptible 

CT841 7 0.001 -1.10  0.22  N Susceptible 

CT875 9 0.001 -1.27  -0.09  N Susceptible 

         

CT029 10 0.003 -1.74  -0.87  N Protected 

CT334 4 < 0.001 -1.79  0.09  N Protected 

CT391 5 < 0.001 -1.55  0.25  N Protected 

CT630 2 < 0.001 -0.51  -1.24  N Protected 

         

CT314 23 0.001 -1.68  -1.63 14 N Scarred 

CT425 10 0.001 -1.74  0.58  N Scarred 

CT442 28 0.012 -2.52 30 -0.86 17 N Healthy 

CT471 6 0.002 -0.80  -0.76  N Scarred 

CT645 0 0.000 NA  0.00  N Scarred 

CT667 0 0.000 NA  0.00  N Scarred 

CT679 6 0.001 -1.42  0.39 2 N Scarred 

CT698 12 0.002 -1.89  -0.81  N Scarred 

CT706 1 0.000 -1.04  0.02  N Scarred 
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6.2.5. Evidence of selection in predicted epitopes 

 

To further investigate the relationship between evidence of selection and host immune 

targets predicted epitopes and windows under selection were mapped onto the 7 targets 

with the strongest evidence of selection. Predictions of membranous regions were also 

included to highlight areas that are less likely to be accessible to the host immune 

system. ompA was used as a positive control to evaluate this methodology as its 

immunogenic epitopes have been extensively mapped. For ompA the positions 

highlighted in red correspond to the four variable domains (VD)34, known to be surface-

exposed and contain the majority of the immunogenic epitopes (Figure 6.12). Three of 

the 5 regions with non-zero D values were within the VD, however, most were not 

supported by corresponding H values. The region with strongest evidence of selection 

was found within VD1, this has a negative D value and a positive H value indicating 

purifying selection. VD1 is known to be immunogenic and contain a neutralising 

epitope in the trachoma biovar107. This suggests host-immune targeting of this region 

may be driving selection. The only other region with evidence of selection was found 

toward the C-terminus, this highlighted a transmembrane region which appeared to be 

under positive selection. Selection pressure in this region is likely not driven by immune 

targeting. 
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Figure 6.12. Evidence of selection in CT681 (ompA). 

Values of D (black) and H (blue) across the gene based on sliding windows of 42 

nucleotides are shown. Variable domains are indicated (red). Predicted transmembrane 

domains are indicated (dashed light blue). 

 

This methodology was further validated using CT868 (Dub1), a secreted effector 

identified as under selection in this population. B-cell epitopes were predicted as 

described previously. A number of regions had evidence of selection by D-values, 2 of 

these were supported by significantly negative H values (Figure 6.13). The second of 

these, close to nucleotide 1100, had strong evidence of positive selection and 

overlapped with 3 predicted epitopes. Similarly to ompA, not all selection in this gene 

was being driven by immune pressure, but combining epitope predictions and evidence 

of selection identified potentially important immunogenic epitopes around nucleotide 

1100. 
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Figure 6.13. Evidence of selection in CT868 (Dub1). 

Values of D (black) and H (blue) across the gene based on sliding windows of 42 

nucleotides are shown. Predicted B-cell epitopes are indicated (red).  

 

CT442, which had the strongest evidence of selection in the targets studied in this thesis 

through expression and ELISA, showed limited overlap between regions under selection 

and B-cell epitopes (Figure 6.14). The two regions under purifying selection, indicated 

by a negative D and positive H, contained no predicted epitopes. The region under 

positive selection also contained no epitope and was predicted to form part of a 

transmembrane helix. A third region with non-significant negative D value did overlap 

with a predicted B-cell epitope, this region is around the beginning of the immunogenic 

epitope used in chapter 7. 

 CT228 was the only target to have evidence of positive selection by iHS and 

showed variable overlap between regions under selection and B-cell epitopes (Figure 

6.15). Three regions of which one had a significantly negative D value, at the 0.01 level, 

had no overlap with predicted epitopes. The third region did contain one of the sites 

identified as under positive selection and had two short predicted epitopes immediately 

before and after it. The two regions with positive D values approaching significance 
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both overlapped with predicted epitopes, the second of which had a significantly 

negative H value suggesting there may be balancing selection acting within this region. 

 CT694 had extensive regions predicted to be potential B-cell epitopes, these 

regions had mixed overlap with evidence for selection (Figure 6.16). Three regions were 

predicted to be under positive selection, two of which were significant by both D and H 

values. The one non-significant region and one of the significant regions under positive 

selection overlapped with predicted epitopes, the C-terminal located epitope of these 

appeared to be under strong selection. 

The remaining 4 targets had limited overlap between regions under selection and 

B-cell epitopes, or they had epitopes predicted across a proportion of their sequence to 

large be deemed reliable (Appendix Figure 7). 

 

Figure 6.14. Evidence of selection in CT442 (crpA). 

Values of D (black) and H (blue) across the gene based on sliding windows of 42 

nucleotides are shown. Predicted epitopes are indicated (red). Predicted transmembrane 

domains are indicated (dashed light blue). 
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Figure 6.15. Evidence of selection in CT228. 

Values of D (black) and H (blue) across the gene based on sliding windows of 42 

nucleotides are shown. Predicted epitopes are indicated (red). Predicted transmembrane 

domains are indicated (dashed light blue). 

Figure 6.16. Evidence of selection in CT694. 

Values of D (black) and H (blue) across the gene based on sliding windows of 42 

nucleotides are shown. Predicted epitopes are indicated (red).  
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6.3. Discussion 

 

This study combined bioinformatics tools for predicting immunogenicity with sequence 

data from 126 ocular Ct isolates collected from trachoma-endemic communities on the 

Bijagos Islands, Guinea-Bissau to test for evidence of natural selection and examine 

potential overlap with known and putative immune targets. Tajima’s D, Fay and Wu’s 

H and the more recently described integrated haplotype score were used to test 

independently for selection and to cross validate results from the different methods. 

These techniques identified a number of genes and regions of the Ct genome under 

purifying and positive selection, these regions were focussed in immunogenic proteins 

and those localised to interact directly with the host. There was limited significant 

evidence of balancing selection in immunodominant proteins or across the genome, 

suggesting Ct may employ different strategies for immune evasion than those 

commonly seen in other pathogenic organisms. Evidence for selection within the 

potential immune targets identified in chapters 4 and 5 was variable, 7/55 had 

significant evidence of selection by at least one method. Regions under natural selection 

overlapped with predicted B-cell epitopes in CT228 and CT694, indicating immune 

pressure might have been the driving force in variation of these two genes. This overlap 

was not as clear for the remaining 5 genes, meaning other forces of selection were likely 

driving the observed genotypes. 

 

6.3.1. Genome-wide evidence of purifying and positive selection 

 

Genome-wide, the median of Tajima’s D was -1.39 and the median of Fu and Li’s F* 

was -2.75. This indicates an excess of low frequency alleles, many of which were found 

just once in the 126 ocular Ct isolates. The genome-wide median of Fay and Wu’s H 

was 0.06. Combined, this means the majority of genes with negative values of D and F* 

had values of H close to zero. This means these low frequency alleles were likely 

caused by population expansion and are not being driven by natural selection. 

Therefore, as expected the majority of genes are evolving under neutrality. 

 In total, 17 genes had significant evidence of selection at the gene-level. Positive 

selection was acting on 8 of these, indicated by negative values of D and H. Purifying 

selection was acting on 9 of these, indicated by negative values of D and positive values 
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of H. A further 6 genes had evidence of positive selection at the epitope-level and 9 had 

evidence of purifying selection at the epitope level. Only 3 genes had evidence of 

selection at both levels. CT105 and CT641 were under purifying selection at both 

levels, CT622 had gene-level evidence of positive selection but contained epitopes 

evolving under both positive and purifying selection. These results show the importance 

of searching at different levels for signatures of selection, because opposing signatures 

of selection in different regions of a gene can mask one another when viewed at the 

gene-level. Equally a short region under selection could be missed. There was no 

significant evidence of balancing selection at the gene or epitope-level. 

 Integrated haplotype scores identified 3 regions of the Ct genome under positive 

selection based on the top 1 % of SNPs ranked by iHS score; CT048-CT074, CT154-

CT155 and CT456-CT625. Peak signals of selection from Tajima’s D and more clearly 

Fay and Wu’s H overlapped with high scoring SNPs by iHS. Only 3 genes identified by 

a combination of Tajima’s D and Fay and Wu’s H were within these regions; CT049, 

CT050 and CT622. This discrepancy is likely due to the different comparisons these 

methods utilise. Tajima’s D examines exclusively within the population being studied, 

comparing the frequency of low and intermediate frequency alleles in genes or 

windows. Integrated haplotype scores compare haplotypes that have arisen within the 

population to an ancestral haplotype from outside the population. Fay and Wu’s H is 

related to both measures, comparing the frequency of high and intermediate frequency 

alleles in genes or windows and utilising an ancestral sequence to determine if alleles 

have arisen within the population. It is therefore not surprising that Fay and Wu’s H 

correlated with both Tajima’s D and iHS, while D and iHS were less strongly 

correlated.   

  

6.3.2. Secreted proteins, outer and inclusion membrane proteins are under strong forces 

of selection 

 

Evidence of selection in genes suggests they are important for Ct survival and continued 

transmission, changes in these genes impacts the genetic fitness of individual isolates 

providing a selective advantage or disadvantage. It is reassuring that genes that encode 

outer and inclusion membrane proteins and secreted proteins are over-represented in 

those under selection in this population. Combined with the over-representation of very 
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early and late expressed genes, these localisations are pivotal points of interaction with 

the host. Genes under selection included outer membrane proteins (CT396, CT681 and 

CT872), type-3 secreted effectors (including CT053, CT456 and CT694), Incs 

(including CT147, CT223 and CT228) and other known virulence factors (CT868). The 

plasticity zone, which is known to be variable and important in pathogenicity, also 

contained three genes under selection. This demonstrates that these host-interacting 

proteins are important in differences between the biovars but also within biovars and 

individual populations of Ct. 

For genes under positive selection changes are being favoured. These changes could 

prevent or delay recognition by the immune system or they could improve infectivity or 

intracellular survival. CT694 is under positive selection in this population. CT694 is a 

type-3 secreted effector which is thought to be important during Ct invasion of host 

cells63, 362, it is also a common antibody target in trachoma-endemic populations286. 

Mutations in CT694 may delay immune recognition of isolates with epitopes a host 

hasn’t been exposed to previously, providing a selective advantage. Equally for this 

gene and CT456 (tarp) which is also under positive selection, mutations could alter 

their binding efficiency for their host targets. These proteins are both important in early 

invasion events363, as such small changes could impact the initial events in Ct 

intracellular survival providing mutated isolates an advantage. 

 For genes under purifying selection, polymorphism is being driven out of the 

population. These changes could be in conserved genes where an essential function is 

impacted. CT223 is under purifying selection in this population. CT223 is an Inc 

involved in Ct reprogramming of the host microtubule87, without which bacterial 

infectivity is severely reduced. Mutations in this gene may impact its ability to recruit 

the host protein CEP170 which is required for Ct control of microtubules. Purifying 

selection is not normally seen in immunodominant antigens, but if responses against 

these antigens benefitted the bacteria then it is possible that mutations changing the 

sequence would be selected against. As described previously, antibodies against MOMP 

and LPS can block neutralising antibodies directed against PmpD in vitro134. If this 

phenomenon occurs in vivo it is plausible that Ct isolates with common MOMP or LPS 
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epitopes that hosts frequently recognise and generate blocking antibodies against would 

be at a selective advantage. Variable domain (VD) 1 of ompA, the gene which codes for 

MOMP, had evidence of purifying selection in this population. This domain has been 

shown to be immunogenic364. Therefore, antibodies targeted against this region may be 

providing a selective advantage in this population, which could be related to the in vitro 

demonstration of blocking antibodies.  

Anti-MOMP antibodies can also enhance Ct infectivity through FcγRIII in vitro 

and in mice 133, 365, 366. Ctad1 is involved in EB attachment and induction of host-cell 

signals required for invasion 299. It is plausible that antibodies binding Ctad1 could 

target EBs to host cells or directly induce uptake through cross-linking of Fc receptors. 

 

6.3.3. Limited evidence of balancing selection and Ct immune evasion 

 

Balancing selection is a common method of immune evasion employed by human 

pathogens343, 350, 367, 368. This form of selection maintains multiple allelic forms of 

immunodominant genes in a population such that when immune responses recognise 

and clear isolates with one allele it provides a selective advantage for isolates presenting 

a different allele. This process continues cyclically as each allele becomes common and 

is therefore selected against, with the simultaneous selective advantage for all other 

alleles maintaining diversity however there was no significant evidence of balancing 

selection in this population. The genes identified as potentially under balancing 

selection based on Tajima’s D after lowering the threshold for significance were not 

supported by Fay and Wu’s H. Ct is a successful pathogen, able to repeatedly reinfect 

individuals within households and communities, immunity develops slowly and may 

only be partial, therefore Ct must utilise different strategies for immune evasion. 

 One possibility is that antibodies against some EB surface antigens can block 

protective and neutralising antibodies as discussed previously. In this scenario antigens 

which induce blocking antibodies should be under purifying selection. Antigens which 

induce neutralising antibodies should be under positive selection, because even if they 
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are being partially blocked the development of neutralising antibodies against an isolate 

would put them at a disadvantage. In ompA there is evidence of purifying selection in a 

known immunogenic region, but pmpD has no significant evidence of positive selection.  

 Another possibility is the decoy hypothesis described in chapter 4, where Ct 

presents an extensive panel of irrelevant antigens to the host immune responses. 

Antibody responses against these are not protective and actively divert responses away 

from potentially protective epitopes. This would possibly drive purifying selection in 

some of the non-protective antigens due to the advantage they provide in evading 

clearance by the host immune response, however since it proposes that a wide array of 

antigens are involved there may be not strong signs of selection pressure in any one 

gene. 

 

6.3.4. Evidence of selection in susceptibility and scarring associated antigens identifies 

candidate immune targets 

 

Of the 55 potential immune targets identified in chapters 4 and 5, only 7 had evidence 

of selection in this Ct population. This supports the ‘decoy’ hypothesis because 37/42 of 

the antigens associated with susceptibility to Ct infection had no evidence of selection 

and therefore are not individually inducing responses which provide a selective 

advantage or disadvantage. Two of the susceptibility associated antigens which had 

evidence of selection were under purifying selection, which is also possible in this 

hypothesis. The three susceptibility associated antigens with evidence of selection were 

CT228, CT694 and CT695. Regions under positive selection in CT695 did not overlap 

with predicted B-cell epitopes, as a secreted effector, functional interactions with the 

host may be driving this selection.  

 CT694 is an immunodominant antigen in trachoma-endemic populations, but 

also functions early in Ct invasion of host cells. It is thought to be involved in reversing 

some of the actin cytoskeleton changes induce by TARP upon entry. CT694 had two 

regions with evidence of positive selection, one of which overlapped with predicted 

epitopes. This suggests that this gene may be under selection driven by immune 

responses and differences in Ct intracellular survival and transmission.  
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 CT228 is an Inc involved in regulating release of CT from host cells99. CT228 

had evidence of positive selection by iHS and weaker evidence of balancing selection 

by Tajima’s D and Fay and Wu’s H. The region potentially under balancing selection 

overlapped with a predicted epitope, whereas the region under positive selection did not 

contain a predicted epitope. Similarly to CT694, these signatures of selection may have 

separate driving factors. The most likely way for CT228 as an Inc to be targeted by 

antibodies would be through exposure on the surface of extrusions101. It is possible that 

the function of CT228 in directing Ct cell exit to either lysis or extrusion could be 

related to the development of antibody responses against itself. Extrusion provides a 

selective advantage for CT because it prolongs extracellular survival and protects EBs 

from immune recognition. If CT228 is exposed on the surface of extrusions antibodies 

targeting this protein could enhance CT clearance and therefore select against extrusion 

or at least isolates which contain a CT228 allele commonly recognised by the host 

immune responses. A combination of these factors may be driving the varied selection 

seen in CT228. 

 CT314 is found in the outer membrane complex of Ct EBs329, antibody 

responses were associated with TS in adults. CT314 was under purifying selection in 

this study. This would fit with either function postulated in chapter 5. Antibodies 

targeting this antigen could enhance infectivity via Fc receptor-mediated uptake or they 

could block neutralising activity of protective antibodies. In both situations responses 

against CT314 would provide a selective advantage to isolates presenting a commonly 

recognised epitope, therefore driving out diversity through purifying selection. There 

was no observed overlap of regions under selection and predicted B-cell epitopes, 

therefore immune responses may not be the driving force for selection in CT314. 

 CT442 is an Inc, antibody responses were higher in children whose conjunctival 

scarring had not progressed in the previous 4 years. One region within CT442 was 

under positive selection in this population, however this was found within a predicted 

transmembrane domain and therefore this is unlikely to be immune driven. Two regions 

were under purifying selection, this does not fit with the protective effects of CT442 

antibodies and these regions did not overlap with predicted B-cell epitopes. These 

strong signatures of selection in CT442 do not seem to be immune response-driven. The 

functional importance of CT442 is not known, the results from this Ct population 

suggest mutations in its sequence may have negative effects on Ct survival and 

transmission. 
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6.4. Conclusions and future work 

 

Signatures of selection in this population of Ct isolates from the Bijagos Islands, 

Guinea-Bissau were concentrated in genes with critical functions in cell entry, 

intracellular survival and continued transmission. There was evidence of positive and 

purifying selection, but limited balancing selection was detected. Ct evasion of host 

immune responses therefore does not rely on balancing selection in a few 

immunodominant antigens. Evasion may instead utilise previously described blocking 

antibodies, which interfere with potentially neutralising antibodies, or a mechanism 

described here as the decoy hypothesis, where antibody responses against a large panel 

of non-protective antigens diverts the immune response away from potentially 

protective epitopes. Seven of the potential immune targets identified in chapters 4 and 5 

had evidence of selection, although most of these are also functionally important for Ct 

survival therefore selection is not definitively immune response-driven. 

 Future work should focus on validation of genes identified as under selection in 

independent populations of Ct isolates. Genes under selection driven by impact on Ct 

survival should be common to ocular Ct populations, those under immune response-

driven selection may vary depending on the levels of transmission and endemicity. The 

apparent absence of balancing selection in this population and its implications for Ct 

evasion of the host immune responses should also be investigated further. Both through 

whole-genome approaches as described here but also through targeting sequences of 

immunodominant antigens believed to be important in immunity to Ct, as has been done 

previously for ompA. 
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7. Functional studies of CT442 a candidate 

antigen associated with protection from 

scarring trachoma 
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7.1. Introduction 

 

7.1.1. Functional importance of inclusion membrane proteins 

 

Inclusion membrane proteins (Incs) are a family of type-3 secreted effectors unique to 

Chlamydia, despite having minimal sequence homology they have a common bi-lobed 

hydrophobic region approximately 60 amino acids in length which is believed to the 

span the inclusion membrane83. Fifty-five to 62 Ct proteins are predicted to be Incs, of 

which 23 are shared across the genera301, 369. Approximately half of these have been 

demonstrated to localise to the inclusion membrane, several have been localised within 

the inclusion and some remain undefined370. Incs account for 2.7 % of the Ct genome 

and 4 % of its coding capacity, suggesting they are important for Ct survival. 

 Host organelles including Golgi-derived vesicles84, multi-vesicular bodies85, 

lipid droplets86, rough endoplasmic reticulum76 and centrosomes87 are recruited to the 

inclusion and are important in its development, acquisition of nutrients and Ct survival 

and transmission. Until recently only a few Incs had been functionally investigated, 

reviewed in chapter 1. In 2015 Mirrashidi et al performed large-scale affinity 

purification-mass spectrometry on 58 predicted Incs, host interactions were identified 

for 38 and showed global functionality in endocytosis, ubiquitination, apoptosis, cell 

division and DNA damage/repair96. This methodology did not identify all known Inc 

interactors but it did provide a broad map highlighting organelles and pathways 

previously identified as important in Ct intracellular development (Inc-interactome). 

CT442 was one of the Incs with defined host interactors from this study. 

 

7.1.2. Limited previous characterisation of CT442 

 

CT442 was first identified as a 15 kDa band from polyacrylamide gels of serovar L2 Ct-

infected HeLa cells371. It was originally defined as a cysteine-rich protein (crpA) of the 

outer membrane despite not being cross-linked by disulphide bonds as seen with known 

Ct outer membrane proteins372. Subsequent studies showed it only contained four 

cysteine residues195, the crpA nomenclature has frequently remained in use in the 

literature. Expression was confirmed in urogenital and ocular Ct isolates, serovar E and 
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C strains were shown to have 17 and 14 single nucleotide polymorphisms (SNPs) 

compared with an L3 strain373, 374. These SNPs meant antibodies against different 

regions of CT442 were both biovar and species-specific in vitro372. In early studies, 

CT442 was first detectable at 30 hours post-infection (HPI) and continued to increase 

up to 40 HPI371. More recent transcriptomic studies defined it as mid-late expressed, it 

was detectable as early as 8 HPI with peak levels at 18 HPI and steady expression 

beyond this point212, 213. This pattern of expression was consistent between strains from 

each biovar but overall levels dropped significantly from LGV to urogenital and from 

urogenital to ocular isolates375. CT442 expression was strongly down-regulated during 

IFNγ-induced persistence at all time-points post-infection105. 

 CT442 was predicted to be an Inc based on the classical bi-lobed hydrophobic 

secondary structure pattern and this has been independently confirmed in cell-culture 

models83, 370, 376, although currently no publication has shown localisation data. CT442 

is unique to Chlamydia and its function is unknown377. Recent data from the Inc-

interactome96 and identification of CT442 in association with lipid-droplets during Ct 

infection93 have provided some clues towards its possible function(s). In the latter, lipid 

droplets recruited and eventually translocated into the inclusion were examined by 

mass-spectrometry, this showed an upregulation of lipid biosynthesis in Ct infection and 

potential interactions with a subset of Incs. Depletion of lipid droplets significantly 

reduced Ct progeny formation. Despite identification of few strong interactors with 

CT442, enrichment-analyses from the Inc-interactome showed an upregulation of host 

targets including kinases and proteins involved in vesicular and phagosomal pathways. 

 

7.1.3. CT442 is a cellular and humoral immune target under natural selection 

 

CT442 has been studied relatively extensively with regards to Ct immunology and its 

recognition by the host immune system. A Chlamydia expression library was screened 

to identify peptides that stimulated Ct-specific CD8+ T-cells from murine Ct infections, 

after sequencing of reactive peptide pools and retesting, a peptide from CT442 (AA 63-

72) was identified which stimulated lytic activity from Ct-specific CD8+ T-cells195. 

These CT442-specific T-cells accounted for 4 % of splenic CD8+ T-cells at their peak 

6/7 days post-infection, increasing frequency of these cells was negatively correlated 

with Ct infection forming units (IFU) per spleen. Immunisation with a Vaccinia virus 
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vector expressing this peptide induced high levels of CT442-specific memory T-cells 

and reduced IFU per spleen equivalently to immunisation with Ct. Reactivation of 

CT442-specific memory T-cells was observed upon secondary Ct challenge, despite Ct-

induced dampening of memory T-cell responses378. 

Generation of antibodies was demonstrated in vitro as mentioned above372, in 

vivo anti-CT442 antibodies were first demonstrated from a study of 99 women with 

current urogenital Ct infection169. CT442 responses were detectable in over half these 

women. This finding was corroborated by screening of serum from women with and 

without tubal factor infertility against a micro-array of Ct antigens(TFI)168. Responses 

were higher in women with TFI, however the Ct status and history of the patient groups 

was unknown therefore these results may have simply reflected previous exposure. C-

terminal derived CT442 peptides were also shown to be immunogenic and variably able 

to distinguish between Chlamydia species204 (personal communications, Dr Bernhard 

Kaltenboeck). In a non-human primate model of trachoma animals that were partially 

immune to Ct re-challenge showed a marked antibody recall response, this included 

recognition of a 15 kDa protein from Ct136. This was not proven to be CT442 but 

previous evidence suggests it is likely. In chapter 5 it was found that antibody responses 

against CT442 were often heightened in individuals protected from scarring trachoma 

and scarring progression in two geographically and culturally distinct trachoma-

endemic populations. 

 

7.1.4. Polymorphism and selection in CT442 

 

CT442 has greater polymorphism than the majority of Ct genes and most Incs369, 374. In 

chapter 6 it was discovered that CT442 had the second highest per site nucleotide 

diversity from a genome-wide scan of 126 ocular Ct isolates. Three regions of the gene 

were identified as under different forms of natural selection. Two regions under 

purifying selection were located, one within the cytosolic C-terminus and one 

overlapping the cytosolic N-terminus and first predicted transmembrane domain. A 

single region under positive selection was found entirely within the first predicted 

transmembrane region. These showed limited overlap with predicted B-cell epitopes, 

suggesting the driving force for selection in these regions may not be recognition by 

antibodies. The region under positive selection does partially overlap with the defined 
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CD8+ T-cell epitope, suggesting host cellular immunity may be driving selection. Six 

amino acids in CT442 were previously shown to under positive selection exclusively 

within invasive lymphogranuloma venereum (LGV) isolates375. One of these falls 

within the region under positive selection, while another lies within the C-terminal 

region under negative selection. This supports previous evidence from small numbers of 

Ct isolates that different ecological niches of Ct lead to distinct signatures of natural 

selection356. This highlights the value of within-population genomic studies to 

understand variation in Ct survival and pathogenicity. 

 The two publicly available serovar C Ct genomes both have truncating 

mutations in CT442379. C/TW3, originally isolated from a Taiwanese conjunctival 

sample in 1959, has a single adenosine inserted after nucleotide 39. The resulting frame-

shift introduces a stop codon at amino acid 22. C/UW-1, originally isolated from a 

conjunctival sample in Seattle, Washington in 1965, has a four nucleotide deletion after 

nucleotide 39. The resulting frameshift also introduces a stop codon at amino acid 23. 

More detailed analysis of C/TW3 identified a further fifteen pseudogenes of which 9 

have been seen before in ocular strains. Serovar C strains have rarely been found in 

contemporary trachoma endemic communities or in sub-Saharan Africa trachoma 

endemic communities107-109, 380, 381 . They also appear to possess no detectable in vitro 

growth defects382, 383. It is plausible that truncated genes and as yet unidentified SNPs 

are factors in the relatively low detection of serovar C ocular Ct isolates in current 

trachoma endemic populations. 

 Previous studies and work in chapters 5 and 6 have shown that CT442 is 

targeted by both cellular and humoral immune responses in ocular and urogenital Ct 

infections. In LGV isolates and a trachoma-endemic population of Ct isolates, variation 

in CT442 appears to be driven by natural selection which is only partly due to host 

immune pressure. As an Inc, CT442 is expressed and localised to the inclusion 

membrane which facilitates interactions with the host during the intracellular stage of 

the Ct developmental cycle. It is plausible that some of the signatures of selection 

evident in CT442 are driven by its as yet undefined role in Ct intracellular survival and 

transmission. In this chapter cell-culture models of Ct infection were used investigate 

CT442 localisation to the inclusion membrane and identify host proteins and pathways 

with which it interacts. 
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7.2. Results 

 

7.2.1. CT442 sequence homology and predicted structure 

 

CT442 is predicted to have a bi-lobed double transmembrane structure, typical of the 

majority of Incs. The structure consists of 40 cytosolic amino acids at the N-terminus 

followed by the first 23 amino acid transmembrane helix passing through the inclusion 

membrane, after a short intra-inclusion linker region the second 22 amino acid helix 

passes back through the membrane with a further 60 cytosolic amino acids at the C-

terminus (Figure 7.1). 

 

Figure 7.1. Schematic of the predicted structure of CT442. 

This representation of CT442 was based on predicted transmembrane domains. 

 

Homologues of CT442 are found within all strains of Ct with polymorphisms found in 

both membranous and cytosolic regions (Figure 7.2), the mutations causing expression 

of a truncated protein in serovar C (TW3 and UW-1) are indicated by the gap in the 

nucleotide alignment just prior to nucleotide 50 (Appendix Figure 8). A truncating 

mutation was uncovered in one of the Ct isolates collected in Guinea-Bissau, 
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9471_4_86. Unlike serovar C this was caused by a single nucleotide polymorphism at 

nucleotide 300 that truncated CT442 after amino acid 99. This isolate could potentially 

still express both transmembrane domains but would not have the majority of the C-

terminal cytosolic domain. 

There is variable CT442 (crpA) homology in other Chlamydia species; 64 % C. 

suis, 58 % C. muridarum and 44-45 % in C, abortus, C. caviae, C. felis and C. psitacci. 

C. muridarum and C. suis orthologues of CT442 are homologous across the complete 

sequence. The remaining species have homology from amino acids 29 to 125, covering 

the predicted transmembrane regions and parts of the cytosolic domains.  
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Figure 7.2. Amino acid alignment of CT442 from serovar-representative strains.  

The two predicted transmembrane domains are indicated (TM1 and TM2). The region against 

which the anti-CT442 antibody was generated is indicated (AB). The ‘identity’ sequence 

shows relative conservation of sequence, from identical (green) to increasing levels of 

variation (lighter shades of green). This was produced using Geneious. 
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7.2.2. CT442-His construct design and expression 

 

In addition to the CT442 GST-fusion utilised for immunological work, there was a need 

for different CT442 constructs. CT442-green-fluorescent protein (GFP) for localisation 

studies (already been produced) and a CT442-C-terminal six-histidine (His) tag for 

further immunological studies hopefully resembling more native conformation, 

  Production of a CT442-His construct was problematic in both cloning and 

subsequent expression of soluble protein. The problems in cloning were not an unusual 

feature for chlamydial membrane proteins, particularly those expressed in the inclusion 

membrane which have caused similar problems. To overcome these difficulties a 

CT442-His construct was produced by GenScript (Piscataway, NJ, USA).  

 Colony PCR of the CT442-His construct transformed into competent E. coli 

produced bands of appropriate size, pET22b had no bands (Figure 7.3A). Expression of 

the CT442-His protein was confirmed by comparing IPTG-induced and non-induced 

cultures of inoculated-LB, a band just below 17 kDa was close to the expected size of 

16 kDa (Figure 7.3B). Growth in LB produced better expression than TB or YT 

medium, although much of the protein was aggregated after bacterial cell lysis and 

centrifugation (Figure 7.3C). All detectable protein was aggregated from initial growth 

and induction at 37 °C for 3 hours with 1 mM IPTG (Figure 7.3D).  
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Figure 7.3. Expression trials of CT442-His. 

Presence of the CT442-insert in the construct was confirmed by colony PCR (A) from 

colonies on LB plates (lanes 1 and 2) and a frozen stock of transformed E. coli (lane 4). 

The pET22b+ plasmid without the CT442 insert was included as a negative control 

(NC). Western blots were incubated with an anti-His monoclonal antibody to bind the 

six-histidine tag. The lysates were separated by ultra-centrifugation into aggregate 

(AGG), soluble (SOL) and insoluble fractions (INS). B) Bacterial lysates from cultures 

grown and induced at 37 °C for 3 hours with I mM IPTG or no IPTG showed successful 

expression of CT442. C) Expression of CT442 was best when grown with LB media, 

protein was aggregated and insoluble in a culture volume of 50 ml. D) CT442 was 

entirely aggregated grown in a culture volume of 1 L. 
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Protein expression was tested at 30, 20 and 10 °C for 2, 4 and 16 hours with 0.1, 0.2, 0.6 

and 1 mM IPTG. No CT442-His was detectable when induced at 10 or 20 °C. CT442-

His was detectable at 30 °C. After 2 and 4 hours regardless of IPTG concentration 

CT442-His was in the aggregate and insoluble fractions as expected for a membranous 

protein (Figures 7.4A and 7.4B). After 16 hours CT442-His was concentrated in the 

aggregate fraction, expression was highest with 0.2 mM IPTG (Figure 7.4C).  

 

 

Figure 7.4. Induction trials of CT442-His. 

Western blots were incubated with an anti-His monoclonal antibody to bind the six-

histidine tag. The lysates were separated by ultra-centrifugation into aggregate (AGG), 

soluble (SOL) and insoluble fractions (INS). Protein expression was tested at 30 °C for 2 

(A), 4 (B) and 16 (C) hours. IPTG concentration in mM is indicated above each blot. 
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Further conditions were trialled at 30 °C for 4 hours, IPTG concentration was reduced 

to limit protein aggregation. The protein was primarily found in the aggregate and 

soluble fractions with both 0.1 and 0.6 mM IPTG, aggregation was significantly 

reduced with 0.1 mM (Figure 7.5A). This unexpected result was confirmed by repeating 

the experiment with 0.1 mM, however, with 0.6 mM expression was undetectable 

(Figure 7.5B). 

 

Figure 7.5. Further induction trials of CT442-His. 

Western blots were incubated with an anti-His monoclonal antibody to bind the six-

histidine tag. The lysates were separated by ultra-centrifugation into aggregate (AGG), 

soluble (SOL) and insoluble fractions (INS). Non-induced cultures were included as 

controls (NI). IPTG concentration in mM is indicated above each blot. Protein 

expression was tested at 30 °C for 4 hours and CT442 was detected in the soluble 

fraction (A). This soluble expression was repeatable (B). 
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Purification of CT442-His from the soluble fraction was attempted by affinity 

chromatography using a HisTrap and ÄKTA purifier size exclusion chromatography 

system. Four elutions from 3 peaks on the chromatograms from 2 runs were examined 

(Appendix Figure 9 parts A and B). Bands around the expected size for a CT442-His 

monomer and dimer respectively were detectable, however they were very faint and 

were possibly present in pre-elution column washes (Figure 7.6A). The expected band 

was not detectable by Coomassie staining, many bands were detectable by silver 

staining but a dominant band at the expected size was absent (Figure 7.6B).  
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Figure 7.6. Size exclusion-based chromatography for CT442-His purification. 

Western blots were incubated with an anti-His monoclonal antibody to bind the six-

histidine tag. A) No clear bands were detectable in the elution from peaks in absorbance 

(EL) or column washes (W). Some unclear bands were observed close to the expected 

molecular weight, they were present in elution and washes. B) Silver staining of the 

same samples showed no clear CT442 band in elution, but numerous non-specific 

impurities.   

 

To improve expression of the protein plasmids designed to express a number of 

molecular chaperones were tested. These chaperone-plasmids, specifically pKJE7 and 

pTf16, were transformed into competent E. coli and used to make stocks of 

transformed-competent cells. The chaperone-expressing plasmids were transformed into 

E. coli and these competent cells were transformed with the CT442-His construct. 
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Expression was not detectable with the pKJE7 plasmid, expression with the pTf16 

plasmid was similar to the construct alone, mostly resulting in aggregate with some 

recombinant protein appearing soluble (Figure 7.7A). HisTrap purification from this 

soluble fraction produced 2 clear peaks on the chromatogram (Appendix Figure 9C), 

however no protein was detectable in these 2 elutions (Figure 7.7B). Following this, 

attempts to express CT442-His were halted due to time-constraints and the need to 

focus on other areas of investigation. 

 

Figure 7.7. Co-expression of CT442-His with molecular chaperones. 

Western blots were incubated with an anti-His monoclonal antibody to bind the six-

histidine tag. The lysates were separated by ultra-centrifugation into aggregate (AGG), 

soluble (SOL) and insoluble fractions (INS). A) CT442 was detectable and partially 

soluble with pTf16. B) No CT442 was detectable in peaks of absorbance from size 

exclusion-based chromatography. 
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7.2.3. CT442-GFP localised to the endoplasmic reticulum 

 

Published experimental data and secondary structure homology to known Incs strongly 

suggested that CT442 is an Inc, however there are as yet no images or formal 

experimental proof. For purposes of independent verification, the first step in examining 

the biology of CT442 was the determination of its intracellular localisation. To 

ectopically express CT442-GFP in HeLa cells, the CT442-GFP construct was 

transfected into the cells using TurboFect (Thermo Scientific).  

CT442-GFP transfected into uninfected HeLa cells localised primarily in the 

endoplasmic reticulum (ER) membrane, demonstrating its membrane localisation as 

seen with known Incs (Figure 7.8). Occasionally CT442 formed vesicular structures in 

the cytosol, which are believed to be related to the acquisition of lipids. In Ct infected 

HeLa cells the protein also localised to the ER membrane, but the ER focussed at the 

inclusion membrane (Figure 7.9). This was similar to the results seen with another 

inclusion membrane protein, IncB, and in contrast to NUE and GFP which maintained 

their staining of the nucleus and whole cell respectively (Figure 7.8 and Appendix 

Figures 10 and 11).  
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Figure 7.8. Localisation of GFP and CT442-GFP in HeLa cells. 

HeLa cells were transfected with GFP and CT442-GFP and fixed after 24 hours. Cells were 

stained for DNA (A, blue in merged panel) and GFP (B, green in merged panel). 
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Figure 7.9. Localisation of GFP and CT442-GFP in Ct-L2 infected HeLa cells. 

HeLa cells were transfected with GFP and CT442-GFP and infected with Ct-L2, cells 

were fixed 24 hours post infection (HPI). Cells were stained for DNA (A, blue in merged 

panel) and GFP (B, green in merged panel). Inclusions are indicated (yellow arrows). 

 



249 

 

ER-membrane localisation was confirmed by co-staining with an ER marker 

(calreticulin). CT442-GFP expression in transfected cells co-stains with the ER-marker 

in uninfected and Ct-infected cells (Figure 7.10).  
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Figure 7.10. Localisation of calreticulin and CT442-GFP in HeLa cells. 

HeLa cells were transfected with CT442-GFP and fixed after 24 hours or then 

infected with Ct-L2 and fixed 24 HPI. Cells were stained for DNA (blue in merged 

panel), calreticulin (A, red in merged panel) and GFP (B, green in merged panel). 

Inclusions are indicated (yellow arrows). 
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7.2.4. CT442 localised in the inclusion membrane from mid-cycle onwards 

 

The CT442 peptide synthesised for serological work in chapter 5 was selected based on 

previously demonstrated immunogenicity of this region (personal communications, Dr 

Bernhard Kaltenboeck), this peptide was used to produce CT442 antisera to examine 

endogenous localisation of the protein. For this rabbits were immunised with the peptide 

and anti-CT442 antibodies were affinity purified (Genscript).  Pre-immune serum was 

collected as a control. Specificity of the antibody to CT442 was confirmed with lysates 

from HeLa cells transfected with CT442-GFP (Figure 7.11). 

 

Figure 7.11. Anti-CT442 antibody binds CT442 from Ct-infected HeLa cells.  

Western blots were incubated with anti-CT442 antibody to bind CT442. Lysates from 

CT442-GFP transfected HeLa cells were used to confirm the specificity of the antibody 

for CT442. The dominant band was between 38 and 52 kDa, the predicted molecular 

weight of CT442-GFP is 42 kDa. 
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Initially Ct-LGV2 infected HeLa cells fixed in 4 % PFA were stained with the anti-

CT442 antibody at a dilution of 1/100,  there was clear staining of the inclusion 

membrane but also significant background staining (Figure 7.12A). Addition of a BSA 

blocking step before primary antibody staining significantly reduced background 

staining (Figure 7.12B), further dilution of anti-CT442 to 1/200 reduced non-specific 

staining without diminishing staining of the inclusion membrane (Figure 7.12C). In 

methanol fixed cells the antibody stained the inclusion membrane, however the 

morphology was aberrant (Figure 7.12D). All further images were from PFA-fixed 

cells, blocked with 10 % BSA and stained with anti-CT442 at a dilution of 1/200. The 

rabbit pre-immune sera showed no discernible staining pattern in uninfected or infected 

HeLa cells. 

 To confirm the antibody was specifically binding to CT442, HeLa cells 

previously transfected with the CT442-GFP construct were stained. In uninfected cells 

anti-CT442 staining closely matched GFP, while also supporting the existence of 

CT442-GFP derived vesicular structures in the host cell cytosol (Figure 7.13 parts A to 

C). In infected cells anti-CT442 staining matched GFP but the inclusion membrane was 

also stained similar to that seen with the antibody in cells without transfection (Figure 

7.13 parts D to F). This demonstrated that the anti-CT442 antibody was specifically and 

consistently staining exogenous and endogenous CT442. 

 Temporal expression of CT442 throughout the Ct developmental cycle was 

investigated. No staining was observed at 2, 4, 6 or 12 HPI. Staining of the inclusion 

membrane was observed from 24 HPI and persisted at 48 and 72 HPI (Figure 7.14), this 

matched its mid-late cycle gene expression profile. Anti-CT442 uniformly stained the 

inclusion membrane and occasional fibrous-like extensions could be seen extending 

from the membrane (Figure 7.14 parts C and F). 
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Figure 7.12. Anti-CT442 antibody staining of the inclusion membrane in Ct-L2 infected 

HeLa cells. 

HeLa cells were infected with Ct-L2 and fixed 24 HPI with 4 % PFA (A-C) or methanol (D). 

Fixed cells were incubated with anti-CT442 antibody at a dilution of 1/100 (A and B) or 

1/200 (C and D) after no blocking (A) or blocking with 1 % (B and D) or 10 % BSA (C). 

Anti-CT442 staining was confined to the inclusion membrane. 



254 

 

 

Figure 7.13. Anti-CT442 stains CT442-GFP in HeLa cells. 

HeLa cells were transfected with CT442-GFP and fixed after 24 hours (A-C) or then 

infected with Ct-L2 and fixed 24 HPI (D-F). Cells were stained for DNA (blue in merged 

panel), CT442 (A, red in merged panel) and GFP (B, green in merged panel). Inclusions 

are indicated (yellow arrows). 
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Figure 7.14. Anti-CT442 antibody staining of the inclusion membrane sustains from 24 

HPI to 72 HPI. 

HeLa cells were infected with Ct-L2 and fixed 24 (A), 48 (B) or 72 (C) HPI with 4 %. 

Fixed cells were incubated with anti-CT442 antibody at a dilution 1/200 after blocking 

with 10 % BSA. Anti-CT442 staining was detectable from 24 HPI onwards and remained 

at 72 HPI. Inclusions are indicated (yellow arrows). 
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7.2.5. Mass-spectrometry of CT442-GFP Co-IP identified potential interactors 

 

Co-immunoprecipitation of CT442-GFP from HeLa cells was used to identify 

interactors with CT442 and to highlight particular pathways or cellular functions. 

CT442-GFP and GFP alone were co-immunoprecipitated from uninfected and Ct 

infected HeLa cells 48 hours after infection and bound proteins were characterised by 

mass-spectrometry (MS). Successful purification of CT442-GFP and GFP alone was 

confirmed prior to MS of the samples (Figure 7.15). 

 

Filtering of proteins identified from mass-spectrometry is detailed in chapter 3.7.6 

(Table 7.1 and Figure 7.16). Briefly, an initial list of 1347 proteins was reduced to 291 

by excluding all hits found with GFP. Keeping those found in CT442-GFP transfected 

and Ct infected cells and those found in CT442-GFP transfected cells both with and 

without Ct infection, 127 and 164 respectively. Proteins with scores below 50 were 

excluded to remove infrequently found proteins leaving 75 filtered targets (Tables 7.2 

Figure 7.15. Confirmation of GFP and CT442-GFP co-immunoprecipitation. 

Western blots were incubated with anti-CT442 antibody to bind CT442. Samples 

from co-immunoprecipitations of GFP and CT442-GFP transfected HeLa cells 

were used to confirm the specificity of the antibody for CT442. The experiment 

was performed for uninfected (UNINF) and Ct-L2 infected (INF) HeLa cells. 
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and 7.3). Forty-nine  out of 75 of these were immunoprecipitated by less than five other 

Incs in a study of the Inc-interactome, this threshold was based on the previously 

demonstrated presence of 4 Incs together in micro-domains97, 376. Sixteen hits 

overlapped between these and CT442 results from the published Inc-interactome, only 

one target was a strongly identified in both and immunoprecipitated by less than five 

other Incs. This was HYOU1, hypoxia upregulated 1, an ER-localised heat-shock 

protein involved in protein folding and secretion and protecting cells from hypoxia-

induced apoptosis. Additionally, 28/75 proteins were enriched in samples of purified Ct 

inclusions and 8/75 were enriched in lipid droplets purified from Ct infected cells. 

 

Table 7.1. Grouping of proteins identified by mass spectrometry. 

Proteins were identified from uninfected (UNINFECTED) or Ct-L2 infected 

(INFECTED) HeLa cells by co-immunoprecipitation of GFP or CT442-GFP. A ‘+’ 

indicated presence of a protein in the individual co-immunoprecipitations. These 

groupings were used in filtering of proteins described in Figure 7.16. 

GROUP UNINFECTED 

GFP 

 

CT442-

GFP 

INFECTED 

GFP 

 

CT442-

GFP 

DESCRIPTION 

1 + - + - GFP only 

2 + + + + Ubiquitous 

3 + + - - Uninfected only 

4 - - + + Infected only 

5 - + - - CT442-

uninfected 

6 - + - + CT442-

ubiquitous 

7 - - - + CT442-infected 
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1347 PROTEINS 

291 PROTEINS 

288 PROTEINS 

SCORES > 50 

75 PROTEINS 

SCORES > 50 

AND INC-

INCTERACTOME <5 

49 PROTEINS 

REMOVE GROUPS 1, 2, 3 

AND 4 

REMOVE GROUP 5 

REMOVE PROTEINS WITH 

MS SCORE < 50 

REMOVE PROTEINS CO-

IMMUNOPRECIPITATED 

BY > 4 INCS PREVIOUSLY 

Figure 7.16. Filtering of proteins identified by mass-spectrometry from 

co-immunoprecipitation of GFP or CT442-GFP. 

Black boxes indicate number of proteins after each stage of filtering. Red 

boxes indicate how proteins were filtered at each step. The two sections in 

bold are the lists of proteins used for subsequent analyses. 
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Table 7.2. Summary of number of proteins identified after filtering. 

Number of proteins and scores from mass spectrometry of CT442-GFP co-

immunoprecipitated from Ct-L2 infected HeLa cells. 

 CT442-GFP 

UNINFECTED 

CT442-GFP CT-LGV2 

INFECTED 

NUMBER OF HUMAN 

PROTEINS 

876 855 

MEDIAN SCORE (IQR) 46.04 

(34.96-91.49) 

43.76 

(29.86-73.99) 

NOT FOUND WITH GFP 318 290 

NOT FOUND IN CT442 

UNINFECTED 

NA 217 

NUMBER OF CT 

PROTEINS 

2 6 

MEDIAN SCORE (IQR) 247.48  

(152.28-342.67) 

35.34 

(34.76-53.97) 

NOT FOUND WITH GFP 2 4 

NOT FOUND IN CT442 

UNINFECTED 

NA 5 
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Table 7.3. Details of filtered proteins with a mass spectrometry score greater than 50. 

Proteins are identified by their UNIPROT id (ID). The number of times a protein was identified in the host-Inc interactome described 

previously was indicated (INC-INTERACTOME)96. The presence of a proteins in proteomic analysis of Ct inclusions (INCLUSION-

ENRICHED)258 and inclusion-associated lipid droplets was indicated (LIPID-DROPLET ENRICHED)93. Function was assigned manually 

based on UNIPORT descriptions and a PubMed literature search (FUNCTION). 

ID INFECTED 

SCORE 

UNINFECTED 

SCORE  

INC-

INTERACTOME 

INCLUSION-

ENRICHED 

LIPID 

DROPLET-

ENRICHED 

FUNCTION 

PPIA 158.23 84.72 60  Yes Protein folding 

GAPDH 137.97 80.62 62 Yes Yes Glycolysis and nuclear functions 

RAB7A 120.02 105.31 4  Yes Endo-lysosomal trafficking 

PDCD6 118.95 21.58 0   Multivesicular body pathway 

CANX 95.23 178.14 39 Yes Yes Protein assembly 

EIF3 94.11  36   Part of eIF-3 complex, protein synthesis 

initiation 

VDAC1 92.35 22.43 14   Membrane channel 

SRPRB 90.11 74.61 12 Yes  Part of SRP receptor, protein targeting 

DAD1 87.48 100.06 5 Yes  Part of N-OST complex, glycosylation 

S100A11 84.73 100.81 7   Regulation of differentiation and cell 

cycle progression 

NCLN 79.95 53.39 1   Part of Nodal-modulator complex 

GLRX3 79.66 41.91 0   Regulation of cellular iron homeostasis 
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UCK2 75.61 39.32 2   Nucleotide phosphorylation 

MRPL14 73.94  4   Part of ribosome 

CYB5R3 72.06 125.53 1   Fatty acid and cholesterol biosynthesis 

RAB18 71.40 55.61 6  Yes Endocytosis and recycling 

CLIC1 71.29 89.22 0   Chloride ion channel 

SPTLC1 70.57  22   Part of SPT complex 

FSCN1 69.26 57.74 0 Yes  Filamentous actin bundling 

ESYT2 68.51 77.10 13   Endocytosis and lipid transport 

PACSIN2 67.30 45.57 0   Vesicle-mediated transport 

RTN4 66.91 121.56 3 Yes  Membrane trafficking 

LMAN1 63.73 79.04 0 Yes  Sorting and recycling of proteins and 

lipids 

SCAMP3 63.04 33.01 8 Yes  Post-Golgi recycling 

RBBP4 63.03  49   Chromatin regulation 

PTGES 60.87 49.99 0 Yes  Prostaglandin synthesis 

SORD 60.14 58.39 0   Carbohydrate metabolism 

LPGAT1 59.09 76.73 1   Lipid biosynthesis 

ITGB1 58.76 87.76 0   Membrane receptor 

WDR1 58.75 20.50 0   Actin organisation 

GPX8 58.68 37.94 0   Regulates oxidative damage 

EMC1 57.67 62.14 3 Yes  Protein folding 

NAP1L1 56.83 24.38 37   Chromatin regulation 
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TMEM9  55.20 50.79 13   Intracellular transport 

RAB31 55.18 42.81 0  Yes Trans-Golgi network (TGN) trafficking 

PSMD12 54.41  44   Part of 26S proteasome 

CLPTM1L 54.31 100.24 1   Apoptosis 

SHMT2 53.82 74.23 3   Amino acid biosynthesis 

YIPF5 53.31 60.56 13   ER-Golgi transport 

HYOU1 53.08 110.98 3 Yes  Protein folding and responses to hypoxia 

ELOVL1 52.01 89.11 2 Yes  Fatty acid synthesis  

TMED10 51.42 74.26 15 Yes  Vesicular protein trafficking 

RAB13 51.27 42.59 4 Yes  TGN trafficking and tight junction 

assembly 

AGPS 51.06 26.86 5   Phospholipid biosynthesis 

PGRMC2 50.16  17 Yes  Steroid receptor 

HMOX2 47.66 60.81 11 Yes  Cellular iron ion homeostasis 

AGPAT1 46.45 75.86 0   Phospholipid biosynthesis 

ALG1 45.70 100.95 2 Yes  Protein glycosylation 

JUP 44.05 62.75 13 Yes  Cytoskeleton organisation and function 

UBAC2 42.32 52.47 10   ER-associated degradation 

POR 42.31 161.55 0 Yes  Electron transfer 

MGST1 42.03 73.65 2   Glutathione transferase 

ALDH3A2 41.58 66.14 11 Yes  Fatty acid synthesis 

KPNA6 39.85 52.37 1   Nuclear protein import 
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ACTR2 39.61 108.4 5 Yes  Part of ARP2/3 complex, regulates actin 

polymerisation 

ARAP1 39.46 54.03 0   Actin remodelling 

GALNT2 38.80 93.06 0   Protein glycosylation 

TMCO1 38.45 52.10 3   ER-membrane channel 

RAB11A 38.28 78.57 2   Intracellular trafficking 

C4A 37.76 60.90 0   Part of complement pathway 

ATP13A1 35.92 63.58 0 Yes  Manganese homeostasis 

CD97 33.76 92.54 0   Transmembrane signalling 

FDPS 32.59 69.96 0   Cholesterol biosynthesis 

PTDSS1 30.58 57.12 7   Lipid biosynthesis 

RAB32 28.46 77.27 0  Yes Regulates mitochondria-associated 

membrane (MAM) properties 

USP5 28.28 63.88 0   Ubiquitin disassembly 

MBOAT7 27.68 67.56 4 Yes  Phospholipid biosynthesis 

SEC22B 26.24 89.32 11 Yes  ER-Golgi and Golgi-derived retrograde 

transport 

DHCR7 25.98 59.68 21 Yes  Cholesterol biosynthesis 

TMX1 25.44 54.07 27 Yes  Redox  homeostasis 

ACADVL 24.33 71.42 0   Fatty acid synthesis 

RAB2A 23.22 59.94 3 Yes Yes ER-Golgi transport 

RDH11 22.88 116.90 1 Yes  Retinol metabolism 
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VASP 20.58 57.19 0   Cell motility 

TNPO1 15.97 52.08 17   Nuclear protein import 
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7.2.6. Pathway enrichment and network analyses highlight intracellular vesicular 

trafficking 

 

Interactions within the filtered targets were analysed to identify over-represented 

functions or pathways associated with CT442-GFP, quoted p-values were Bonferroni 

corrected results from χ2 tests comparing the filtered list with the complete human 

proteome. Analyses were done in duplicate using 75 filtered targets and 49 further 

filtered by excluding proteins found with five or more Incs. These two lists will be 

referred to as ‘Scores > 50’ and ‘Scores > 50 and Inc-interactome <5’. 

 Gene Ontology-term biological process analysis highlighted intracellular vesicle 

trafficking, particularly trafficking involved Rab-proteins, which was supported by GO-

term function analysis (Table 7.4). GTPase activity linked with Rab-proteins was also 

highlighted by protein domain analysis through Pfam and InterPro (Table 7.5). The lists 

containing 79 and 45 targets were comparable in these analyses. 

 Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis highlighted 

metabolic pathways, protein trafficking related to endocytosis and protein processing 

(Table 7.6). Protein processing was also identified through Reactome analysis, this 

database only included information for 60/75 and 42/49 proteins respectively which 

may explain the limited functions identified. The 2 lists of targets were broadly 

comparable, except for Reactome which failed to identify any over-represented 

pathways. 
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Table 7.4.GO-term process and function enrichment of Rab proteins and protein transport. 

GO 

METRIC 

SCORES > 50  SCORES > 50 & INC-INTERACTOME < 5 

 TERM DESCRIPTION NUMBER ADJUSTED 

P-VALUE 

TERM DESCRIPTION NUMBER ADJUSTED 

P-VALUE 

PROCESS GO.0032482 Rab protein 

signal 

transduction 

7 < 0.001 GO.0032482 Rab protein 

signal 

transduction 

7 < 0.001 

 GO.0016192 vesicle-mediated 

transport 

16 0.006 GO.0007264 small GTPase 

mediated signal 

transduction 

10 0.007 

 GO.0006886 intracellular 

protein transport 

12 0.024 GO.0030036 actin 

cytoskeleton 

organization 

8 0.007 

 GO.0015031 protein transport 15 0.034     

 GO.0007264 small GTPase 

mediated signal 

transduction 

11 0.036     

FUNCTION GO.0016491 oxidoreductase 

activity 

13 0.002 GO.0003924 GTPase activity 7 0.005 

 GO.0003924 GTPase activity 7 0.033 GO.0043168 anion binding 19 0.005 

 GO.0005525 GTP binding 8 0.033 GO.0019003 GDP binding 4 0.008 
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 GO.0019003 GDP binding 4 0.033 GO.0043167 ion binding 28 0.017 

 GO.0043168 anion binding 22 0.033 GO.0005525 GTP binding 7 0.018 

 

Table 7.5. Protein domain enrichment of GTPases. 

DATABASE SCORES > 50  SCORES > 50 & INC-INTERACTOME < 5 

 DOMAIN DESCRIPTION NUMBER ADJUSTED 

P-VALUE 

DOMAIN DESCRIPTION NUMBER ADJUSTED 

P-VALUE 

PFAM PF00071 Ras family 6 0.007 PF00071 Ras family 6 < 0.001 

INTERPRO IPR003579 Small GTPase 

superfamily, Rab 

type 

6 0.005 IPR003579 Small GTPase 

superfamily, Rab 

type 

6 < 0.001 

 IPR001806 Small GTPase 

superfamily 

6 0.008 IPR001806 Small GTPase 

superfamily 

6 < 0.001 

 IPR002041 Ran GTPase 4 0.012 IPR005225 Small GTP-

binding protein 

domain 

6 0.001 

 IPR005225 Small GTP-

binding protein 

domain 

6 0.012 IPR002041 Ran GTPase 4 0.002 

     IPR003578 Small GTPase 

superfamily, Rho 

type 

4 0.014 
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Table 7.6. Pathway analysis enrichment of metabolic pathways and processes related to intracellular trafficking. 

The two pathways identified by Reactome were involved in the unfolded protein response related to the ER. 

DATABASE SCORES > 50  SCORES > 50 & INC-INTERACTOME < 5 

  PATHWAY NUMBER ADJUSTED 

P-VALUE 

 PATHWAY NUMBER ADJUSTED  

P-VALUE 

KEGG  Metabolic pathways 17 < 0.001  Metabolic pathways 10 < 0.001 

  Glycerophospholipid 

metabolism 

4 0.001  Endocytosis 4 0.002 

  Phagosome 4 0.010  Glycerophospholipid 

metabolism 

3 0.002 

  Protein processing in ER 4 0.010  Leukocyte 

transendothelial migration 

2 0.048 

  Endocytosis 4 0.016     

REACTOME  XBP1(S) activates 

chaperone genes 

6 0.028     

   IRE1alpha activates 

chaperones 

6 0.028     
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Pathway analyses were supported by looking for interacting partners within the two lists 

using the Search Tool for Recurring Instances of Neighbouring Genes (STRING). 

STRING identified 50 and 15 interactions respectively which were both higher than 

expected p-values of 0.003 and < 0.001. Thirty-five and 9 of these had interactions with 

scores greater than 0.5 (Table 7.7). Interactions involving Rab proteins, specifically 

Rab7A, were the highest alongside other proteins involved in intracellular trafficking 

between the ER and Golgi. In the shorter list filtered using results from the host-Inc 

interactome, interactions related to glutathione metabolism were also prevalent.  

The network analyses for the list of 75 targets focussed around calnexin 

(CANX) and GAPDH. It involved ER-related trafficking proteins including Rab2, 7, 11 

and 13 and less closely those involved in glutathione metabolism (Figure 7.17). In this 

figure the size of the nodes reflects the score of the individual hit from the MS and the 

thickness of edges reflects the strength of the interaction indicated by STRING. Both 

calnexin and GAPDH were not in the list of 49, because they were common in MS 

results from the Inc-interactome. The network from this further filtered list lacked a 

clear node, 2 strong routes of interaction remained (Figure 7.18). Three proteins 

involved in glutathione metabolism were linked and most prominently 4 Rab proteins, 

including Rab31 whose interaction score with Rab7A was less than 0.5, and ARAP1 

which are all involved in intracellular trafficking. 

 

Table 7.7. Ranked protein-protein interactions identified by STRING. 

Scores > 50 Scores > 50 & Inc-interactome < 5 

  SCORE   SCORE 

RAB7A RAB11A 0.98 RAB7A RAB11A 0.98 

RAB2A GAPDH 0.97 RAB13 RAB11A 0.92 

RAB13 RAB11A 0.92 GPX8 MGST1 0.90 

YIPF5 RAB11A 0.90 ITGB1 VASP 0.84 

GPX8 MGST1 0.90 PDCD6 ALG1 0.76 

LMAN1 CANX 0.89 ARAP1 RAB13 0.75 

ITGB1 CANX 0.84 LPGAT1 AGPAT1 0.70 
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ITGB1 VASP 0.84 LPGAT1 NCLN 0.64 

RBBP4 NAP1L1 0.83 FDPS SORD 0.54 

HYOU1 CANX 0.83    

SHMT2 SPTLC1 0.81    

SHMT2 GAPDH 0.80    

VDAC1 CANX 0.76    

PDCD6 ALG1 0.76    

ARAP1 RAB13 0.75    

LPGAT1 AGPAT1 0.70    

PPIA GAPDH 0.69    

TMX1 CANX 0.64    

LPGAT1 NCLN 0.64    

VDAC1 GAPDH 0.64    

ELOVL1 SPTLC1 0.63    

TMED10 DAD1 0.63    

RAB13 YIPF5 0.63    

RAB11A CANX 0.60    

CANX GAPDH 0.60    

FDPS DHCR7 0.57    

SHMT2 JUP 0.57    

UCK2 JUP 0.55    

RAB11A GAPDH 0.55    

ITGB1 GAPDH 0.55    

SRPRB MRPL14 0.54    

FDPS SORD 0.54    
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TMED10 LMAN1 0.53    

HYOU1 GAPDH 0.51    

KPNA6 TNPO1 0.51    
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Figure 7.17. A visualisation of protein-protein interactions identified from CT442-GFP co-

immunoprecipitation by STRING. 

Protein UNIPROT identifiers are indicated within each circle. The size of the circles reflects the 

proteins score from the mass spectrometry, the larger the circle the higher the score. The thickness of 

the edges reflects the strength of the interactions identified by STRING, the thicker the edge the higher 

the score. This was based on the list of 75 proteins, including all interactions not just those with a score 

above 0.5 as in Table 7.6. 
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Figure 7.18. A visualisation of protein-protein interactions identified from CT442-GFP co-

immunoprecipitation by STRING. 

Protein UNIPROT ids are indicated within each circle. The size of the circles reflects the proteins score from 

the mass spectrometry, the larger the circle the higher the score. The thickness of the edges reflects the 

strength of the interactions identified by STRING, the thicker the edge the higher the score. This was based 

on the list of 49 proteins, including all interactions not just those with a score above 0.5 as in Table 7.6. 
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7.2.7. Chlamydial targets link with human pathway enrichment of vesicular trafficking 

 

Six hits were found in the NCBI Ct protein database, after removing CT442 and those 

found with GFP or in uninfected cells 3 remained (Table 7.8). CT049 which is 

inclusion-associated384, CT147 which is an Inc and CT853 which resides in the Ct inner 

membrane. Functions of these 3 were not known, however, CT147 is a homologue of 

early endosomal antigen 1 (EEA1)212, a eukaryotic protein involved in endosomal 

trafficking known to interact with Rab proteins385.  

 

Table 7.8. Ct proteins identified through CT442-GFP co-immunoprecipitation. 

Ct D/UW3 nomenclature was used (ID). Localisation and function were assigned 

manually based on a PubMed literature search. 

ID INFECTED 

SCORE 

LOCALISATION FUNCTION 

CT049 35.68 Inclusion lumen Pmp-like 

CT147 34.99 Inclusion membrane EEA1 homologue 

CT853 34.68 Inner membrane MarC homologue 

 

7.2.8. Confirmation of Rab7 immunoprecipitated by CT442-GFP 

 

Co-immunoprecipitation of Rab7 by CT442-GFP was selected for investigation due to 

its strong mass-spectrometry score and key involvement in the highlighted pathways 

and interactions focussed around Rab proteins and vesicular trafficking.  

 Specificity of the anti-Rab7 antibody was confirmed by western blotting of 

HeLa cells lysates (Figure 7.19A). Samples from the co-immunoprecipitation CT442-

GFP, blotted previously in Figure 7.15, were examined by western blot for the presence 

of Rab7. Rab7 was detectable in co-immunoprecipitations of CT442-GFP from 

uninfected and Ct-infected HeLa cells (Figure 7.19B).  
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Figure 7.19. Confirmation of Rab7 co-immunoprecipitation with CT442-GFP. 

Western blots were incubated with anti-Rab7 antibody to bind Rab7. A) Anti-Rab7 

antibody specificity was confirmed in HeLa cell lysates, a band at the expected 

molecular weight (23 kDa) was detected. B) Rab7 co-immunoprecipitation with CT442-

GFP was confirmed in uninfected (UNINF) and Ct-L2 infected (INF) HeLa cells. 

 

7.3. Discussion 

 

In this study cell-culture models were used to examine the intracellular localisation, 

trafficking and potential interactions of the previously identified immune target CT442. 

The membranous nature of the protein and its localisation to the Ct inclusion membrane 

during infection of mammalian cells were confirmed initially using a GFP-tagged 

CT442 construct and later an affinity-purified monoclonal CT442 antibody. Co-

immunoprecipitation using the GFP-tagged construct and subsequent mass spectrometry 

analysis of bound proteins allowed identification of potential CT442-interactions. 

Protein domain and pathway analyses found few over-represented pathways but 
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generally agreed on the presence of proteins involved in varying forms of intracellular 

trafficking and endosomal cycling. Examining interaction pairs and strings supported 

this and highlighted Rab7A, amongst other Rab family proteins, as being the most 

abundant constituent of proteins immunoprecipitated alongside CT442. This was 

strengthened further by one of only 3 Ct proteins that were identified being CT147, 

another Inc, which is a homologue of the mammalian protein EEA1 involved in 

endosomal trafficking.  

 

7.3.1. CT442 is polymorphic and it is not essential for Ct survival 

 

Nucleotide and amino acid sequence analysis of CT442 in the Chlamydia genus found 

conservation of the predicted transmembrane helices, the N-terminal and C-terminal 

exposed regions were not conserved. This suggests localisation to the inclusion 

membrane may be a conserved feature, but functional interactions may vary. Within Ct 

there was polymorphism in the predicted transmembrane helices and the cytosol-

exposed termini.  This supports the findings from chapter 6 where within a population 

of ocular Ct isolates CT442 had evidence of selection in three regions, overlapping each 

termini and the first transmembrane helix respectively. Selection in the cytosol-exposed 

termini could be explained by immune targeting of these domains or polymorphisms 

affecting currently undefined functional interactions. There was evidence of both 

purifying and positive selection within the first transmembrane domain. 

Both forms of selection have been observed previously in transmembrane 

domains, although the pressure driving positive selection has not been examined386, 387. 

This domain contains an epitope capable of inducing CD8+ T-cells in murine Ct 

infections195. How Incs are inserted into the inclusion membrane is currently not known. 

It is possible that between type-3 secretion from within the inclusion lumen and 

insertion into the inclusion membrane CT442 could be diverted to pathways involved in 

antigen presentation and subsequently induce T-cell responses.  

This study identified a novel truncation mutant of CT442 in an ocular Ct isolate 

from the Bijagos Island, Guinea-Bissau. This truncated the protein after amino acid 99, 

considerably later than two previously observed truncation mutations in two serovar C 

strains. This is the first evidence of a CT442 truncated mutant outside of serovar C. 

These mutations show that CT442 is not essential for Ct survival. Serovar C strains are 
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rarely found in trachoma-endemic communities of sub-Saharan Africa, although they 

have no growth defects in vitro despite possessing several other truncated genes as 

described previously382, 383. It is not known if these truncations and specifically those in 

CT442 are related to low prevalence. 

 

7.3.2. CT442 localised to the inclusion membrane from 24 hours post infection 

 

CT442 ectopically expressed in mammalian cells by transfection of the CT442-GFP 

construct localised primarily to the endoplasmic reticulum membrane, confirming the 

membranous nature of CT442. Anti-CT442 antibody directed against a C-terminal 

epitope bound this ectopically expressed CT442. This means the termini which in vivo, 

are predicted to be exposed to the cytosol, were oriented this way in this expression 

system. This was important for interpretations of CT442-interacting proteins identified 

by co-immunoprecipitation from cells expressing CT442. 

 In Ct infected HeLa cells anti-CT442 antibody stained the inclusion membrane. 

This staining was not detectable prior to 24 hours post infection (HPI). Following 24 

HPI, staining was detectable up to and including 72 HPI. This confirms transcriptional 

profiling of CT442, in which expression began at 16 HPI and peaked between 24 and 36 

HPI212, 213. This pattern of expression is similar to 8 other Incs previously studied, 

including IncA and 3 Incs which localise to discrete microdomains163, 388.  

Anti-CT442 antibody staining was uniformly distributed around the inclusion, 

no intra-inclusion or cytosolic staining was seen. This data confirms CT442 is a mid-

late cycle expressed Inc, localising exclusively to the inclusion membrane in HeLa cells 

and not to other microdomains.  

 

7.3.3. Co-immunoprecipitation of CT442-GFP from Ct infected cells identifies 

intracellular trafficking and Rab proteins  

 

Proteins potentially interacting with CT442 in mammalian cells were identified by co-

immunoprecipitation of CT442-GFP from HeLa cells both uninfected and Ct-L2 

infected and mass spectrometry analysis of the samples. After filtering out proteins 

identified in control experiments using GFP alone, 75 proteins were found. Proteins 
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identified in co-immunoprecipitations of more than 4 Incs from a previous study of Inc-

host interactions were excluded, 49 proteins remained. Analysis of the 49 and 75 

proteins found mostly similar results. 

 Rab proteins involved in signal transduction were over-represented in both lists 

by GO-term process analysis. This was supported by GO-term function which showed 

enrichment of GTPase activity. Protein domain analysis through Pfam and interpro 

identified enrichment of the Rab and Ras families, further strengthening the over-

representation of Rab proteins. Pathway enrichment analysis through KEGG and 

Reactome identified metabolic pathways, endocytosis and protein trafficking. The latter 

two of these support the importance of Rab proteins. 

 Protein-protein interactions identified by STRING showed greater discrepancy 

between the two lists of 49 and 75 proteins. The interactions involving the 75 proteins 

were centred around CANX (calnexin), GAPDH (glyceraldehyde 3-phosphate 

dehydrogenase) and PPIA (peptidylprolyl isomerase A). These were identified in a high 

number of Inc interactors. They are probably artefacts of the co-immunoprecipitation 

not genuine CT442 interactors. The interactions involving the 49 proteins had two 

strings with more than two proteins with an interaction score greater than 0.5. One 

involved NCLN (nicalin precursor), LPGAT1 (acyl-CoA:lysophosphatidylglycerol 

acyltransferase 1) and AGPAT1 (1-acylglycerol-3-phosphate O-acyltransferase 1). 

These interactions are indicative of metabolic pathways highlighted by KEGG. The 

other involved Rab7, Rab11, Rab13 and ARAP1 (ArfGAP With RhoGAP Domain, 

Ankyrin Repeat And PH Domain 1). These interactions were related to the Rab proteins 

and protein trafficking pathways highlighted previously. 

 Ct proteins identified in the mass spectrometry supported the enrichment of 

intracellular trafficking pathways and Rab proteins. Two of the 3 identified Ct proteins 

localise within the inclusion, the other was an Inc CT147. CT147 is a homologue of 

human early endosomal antigen 1 (EEA1). This protein is involved in endosomal 

trafficking and fusion in conjunction with Rab5385, 389. CT147 is homologous in the 

regions involved in endosome tethering but lacks homology in the regions for 

endosomal fusion. This finding and expression as early as 1-hour post infection have led 

to speculation that CT147 is involved in the non-fusogenic properties of Ct212. The 

function of CT147 is unknown but co-immunoprecipitation of this protein with CT442-

GFP supports the involvement of intracellular vesicular trafficking and Rab proteins 

with CT442’s potential functions. Co-immunoprecipitation of Rab7 by CT442-GFP was 



279 

 

confirmed by western blot an anti-Rab7 antibody in both uninfected and Ct-L2 infected 

HeLa cells. 

  

7.3.4. Rab proteins and Chlamydia trachomatis 

 

Rab proteins are a large family of GTPases which function in all forms of membrane 

trafficking within cells, more than 60 mammalian Rab-GTPases have been identified390. 

Through interactions with a plethora of host factors these proteins control endosomal 

trafficking between a number of host organelles including; the plasma membrane and 

early endosomes (Rab4 and Rab5), early and late endosomes (Rab7), the ER and Golgi 

(Rab1 and Rab6) and endosomes and Golgi (Rab9 and Rab11)390, 391. Ct exploits host 

membrane trafficking pathways for initial invasion and avoidance of lysosomal fusion 

and for recruitment of organelles required for intracellular development and survival73, 

392. Therefore, Ct likely interacts extensively with Rab proteins. 

 Preliminary investigations of Rab proteins in Ct identified Rab 1, 4, 6 and 11 

enriched at the periphery of the inclusion90. This localisation was observed as early as 1 

HPI. Since then several Rab proteins have been studied independently in Ct infection. 

Rab4 was found co-localised with the Inc CT229 at 2 HPI393. Rab11 partially co-

localised with IncG90, which has been implicated in Ct-resistance to apoptosis via 

sequestration of pro-apoptotic BAD through 14-3-3β94. Rab11 and also Rab6 also 

function in Ct-driven Golgi fragmentation and related nutrient acquisition91. Similarly, 

the Golgi-associated Rab14 is involved in delivery of sphingolipids to the inclusion394. 

Initial examination of Rab7 in Ct infected cells did not show the inclusion-peripheral 

staining described for other Rab proteins, however Rab7-staining did appear to cluster 

in one region of the cells90. It is possible that Rab7 has a role in Ct infection without 

being directly recruited to the inclusion. 

 Rab7 is primarily associated with late endosomes. It was first identified in the 

transition from early endosomes to late endosomes, which occurs through the 

downregulation of Rab5 and upregulation of Rab7395. However it has now known to 

function in retrograde trafficking between endosomes and the Golgi396, recruitment of 

the proteasome and nutrient transport through lipid trafficking. Rab7 also regulates 

phagosomal maturation post-phagocytosis. For this reason, intracellular pathogens have 

developed a number of strategies to modulate Rab7 and therefore phagosomal 
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maturation. These can be broadly grouped into two strategies397. Pathogens can 

downregulate Rab7 to prevent recruitment to and subsequent maturation of 

phagosomes, utilised by Mycobacterium and Leishmania donovani. Alternatively, 

pathogens can partially recruit Rab7 leading to formation of a compartment that is both 

late endosomal and phagosomal but crucially not lysosomal, utilised by Salmonella 

enterica and Helicobacter pylori. Ct infection of macrophages leads to suppressed 

growth due to lysosomal targeting, this follows rapid association of intracellular Ct with 

Rab7 and LAMP1, another marker of late endosomes398. Avoidance of lysosomal 

degradation by Ct in epithelial cells therefore likely requires some form of Rab7 

modulation. 

` Rab11, Rab13 and ARAP1 were also co-immunoprecipitated by CT442-GFP, 

and identified by STRING as interacting with one another. Rab11 and Rab13 are 

involved in recycling endosomes from the Golgi to the plasma membrane, Ct does not 

fuse with recycling endosomes but they do associate with the inclusion90, 399. ARAP1 

regulates endocytosis and trafficking of epidermal growth factor receptor (EGFR), 

which is involved in Ct attachment and inclusion development400. ARAP1 interactions 

precede the association of EGFR with EEA1-positive early endosomes and prevent its 

degradation401, which downstream is regulated by Rab7402. It is possible CT442 is 

involved in the recruitment of recycling endosomes via Rab11/13 or EGFR-positive 

endosomes through ARAP1, currently this is unknown.  

 

7.3.5. Lipid droplets and Chlamydia trachomatis 

 

Lipid droplets are host organelles primarily involved in lipid storage. Recent studies 

have demonstrated they are recruited to the inclusion and can be translocated into the 

inclusion lumen86. The mechanisms and importance of this are unknown, however 

enrichment of lipid metabolism in these organelles and recruitment to the inclusion 

periphery was essential for Ct replication93.  

Apart from the previously described intracellular trafficking, lipid metabolism 

was the only other commonly over-represented pathway in proteins potentially 

interacting with CT442. Proteomic analysis of lipid droplet during Ct infection of 

mammalian cells identified four associated Incs, including CT442. Many host proteins 

were enriched as well, including several Rab proteins such as Rab7, Rab11 and 
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Rab3193. The association of lipid droplets with the inclusion is first detectable 18 HPI, 

this matches the mid-late cycle expression of CT44286. The interactions which recruit 

lipid droplets to the inclusion and are involved in lipid acquisition are not clearly 

defined. It is possible CT442 and the Rab proteins identified here are involved in these 

processes. 

 

7.4. Conclusions and future work 

 

A currently circulating Ct isolate with a CT442 truncation showed that it is not essential 

for Ct survival. Evidence of selection acting on this gene within a population of ocular 

Ct isolates suggested that mutations in CT442 do have an impact on Ct survival and 

transmission. CT442 was confirmed to be a mid-late cycle expressed inclusion 

membrane protein. Co-immunoprecipitation of CT442-GFP from mammalian cells 

highlighted Rab proteins, including Rab7, and others involved in intracellular 

trafficking as important for the function of CT442. Co-immunoprecipitation of Rab7 by 

CT442-GFP was confirmed, this work therefore found potential CT442-host 

interactions which require in depth investigation. 

 Future work should initially utilise the anti-CT442 antibody to co-

immunoprecipitate endogenous CT442 from mammalian cells to validate proteins 

identified using exogenously expressed CT442 through transfection of CT442-GFP into 

host cells. Anti-Rab7 antibody should be used to determine if endogenous CT442 also 

interacts with Rab7. If the interaction is confirmed the localisation of Rab7 should be 

investigated in Ct infected mammalian cells. Rab7 interactions with other bacteria have 

been shown to vary considerably with different tissues and species397. Therefore, 

localisation should be investigated in conjunctival and genital epithelial cell lines with 

ocular and urogenital serovars, including serovar C isolates expressing a truncated 

CT442. The impact of expression of a Rab7 dominant negative mutant on Ct infectivity 

should also be investigated. The reported association of Rab7 and lipid droplets during 

Ct infection should be investigated in a similar fashion as another potential route of 

interaction between CT442 and Rab proteins. 
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8. Discussion 
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8.1. Natural selection within a population of ocular Ct isolates 

 

In this study 126 ocular Ct isolates collected from trachoma-endemic communities on 

the Bijagos Islands, Guinea-Bissau were screened for genome-wide signatures of 

selection. In total, 31 genes had evidence of selection at the gene or epitope-level by a 

combination of Tajima’s D and Fay and Wu’s H. Eleven of these were under positive 

selection, 16 were under purifying selection and 4 had regions under both positive and 

purifying selection. A further 20 genes had evidence of positive selection determined 

using integrated haplotype scores. 

 

8.1.1. Selection validates Ct host-interactors 

 

Positive selection acting on genes suggests mutations in them provide Ct with some 

fitness advantage. Conversely, purifying selection suggests mutations in the relevant 

genes puts Ct at a disadvantage. These genes would be expected to have important 

functions in Ct infectivity, survival and transmission as these results found.  

Genes expressed very early and very late in the Ct developmental cycle were 

over-represented in those identified as under selection. Studies of Ct and the host have 

identified these stages as pivotal in determining the success of Ct infection. The most 

strongly associated SNP from a genome-wide association study of scarring trachoma 

fell in PREX2403. The protein encoded by this gene activates Rac1, a signalling protein 

known to be important for TARP-induced changes in the actin cytoskeleton upon Ct 

invasion of host cells61, 404. This suggested to the authors that scarring trachoma, which 

is driven by repeated Ct infection and persistent inflammation, is linked to the ability of 

Ct to efficiently infect epithelial cells. In this thesis I found evidence of positive 

selection in translocated actin-recruiting phosphoprotein (TARP) and the inclusion 

membrane protein (Inc) CT147. TARP is type-3 secreted into the cytosol of host cells 

upon contact of EBs with the plasma membrane, following this TARP induces 

reorganisation of the actin cytoskeleton and downstream signalling which underlies Ct 

invasion53, 363. CT147 is a homologue of the mammalian protein early endosomal 

antigen 1 (EEA1)212. This protein is involved in endosome tethering and fusion, linking 

early endosomes with the late endosomal and lysosomal pathways385. CT147 is 

expressed as early as 1-hour post infection and is thought to be important in Ct 
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avoidance of fusion with the lysosomal and therefore continued intracellular survival. 

Mutations in these genes likely impact their interactions with host factors, improving 

efficiency of invasion and early intracellular events. CT147 also had evidence of 

purifying selection, this could indicate a region of structural importance or where 

precise functional conservation is important. 

In Ct the mode of exit from cells has been linked to improved survival and 

dissemination72. Approximately 76 % and 32 % of Ct EBs which exited cells within 

membrane-bound extrusions were viable at 4 and 24 hours, compared with 40 % and 3 

% for EBs which exited via cell lysis101. These extruded EBs are also reportedly able to 

survive within macrophages, providing a further advantage for transmission. This 

indicates that the balance of mechanisms controlling cell exit of Ct are important in 

continued survival and transmissibility in the host. I found evidence of positive 

selection in CT228 an Inc. CT228 appears to selectively recruit and activate proteins of 

the myosin phosphatase pathway99. Through downstream activation of different myosin 

motor proteins this interaction regulates Ct exit, favouring extrusion of cell lysis. The 

ability of CT228 to recruit these proteins may therefore be directly related to how Ct 

exits cells and subsequently its ability to reinfect. Mutations in CT228 may be altering 

the balance of exit by extrusion or cell lysis. 

Genes under selection were also over-represented by proteins localised to the 

outer membrane, inclusion membrane and proteins secreted into the host cytosol. This 

further supported the enrichment of signatures of selection in Ct factors interacting with 

the host. Twenty-one secreted proteins had evidence of selection, 20 of which were 

type-3 secreted effectors. These included CT694 and CT868 (ChlaDub1), both had 

evidence of positive selection. CT694 is a commonly recognised antibody target in 

trachoma-endemic communities286, 405 and is secreted into host cells by Ct early during 

invasion63. CT694 associates with the host plasma membrane where it interacts with 

AHNAK63. Through this it is hypothesised to alter actin dynamics, effectively reversing 

TARP-dependent actin rearrangements406. ChlaDub1 is a deubiquitinating and 

deNeddylating protease407. Through binding and stabilising of the inhibitory subunit of 

NFκB, ChlaDub1 can inhibit induction of numerous pro-inflammatory signals408. 

Half of the 20 T3S effectors are Incs. Selection in these proteins was variable; 5 

had evidence of positive selection, 4 had evidence of purifying selection and CT147 had 

evidence of both. CT229 had evidence of positive selection. This Inc interacts with 

Rab489, a recycling-endosome related protein, and is therefore thought to be involved in 
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the intracellular trafficking of the inclusion. CT116 (IncE) was also under positive 

selection. IncE recruits the retromer components sorting nexins 5 and 6 to the 

inclusion96. This interruption of retrograde trafficking was demonstrated to enhance Ct 

progeny formation. CT223 (IPAM) had evidence of purifying selection. IPAM is 

critical for Ct control of the host microtubule network through interactions with 

CEP17087. This interaction is required for Ct intracellular development and survival. 

The implication from this is that CT223 cannot sustain sequence mutations without 

impairment of its essential function. 

Four EB outer membrane proteins had evidence of selection. CT396 had 

evidence of positive selection, CT414 (polymorphic membrane protein [pmp] C), 

CT681 (ompA) and CT872 (pmpH) had evidence of purifying selection. The functions 

of these proteins are not known. It is possible that some of them are structurally 

important for the EB, which could explain purifying selection. In the evolution of 

transmembrane domains there appears to be considerable evidence of this form of 

selection386, 387.   

  

8.1.2. Selection identifies genes coding for immunogenic proteins 

 

The previously mentioned outer membrane proteins shared another common feature, 

they are all immunogenic in one of or both urogenital and ocular Ct infection170, 191, 364, 

409. Fifteen of the 31 genes under selection were known to be immunogenic, supporting 

immune responses as a key driving factor of selection within this population of ocular 

Ct isolates. Excluding the outer membrane proteins, these included 6 Incs and 5 secreted 

proteins. 

 Considerable work has been undertaken to identify antibody targets in Ct 

infection, particularly those with associations to clinical outcomes of infection. The 

abundance of antibodies not targeted to the EB surface is not a new finding287, however 

almost no work has been done to investigate how antigens not exposed on the surface 

are targeted by antibodies. Based on the in vitro developmental cycle there are three 

possible routes where intracellular antigens could enter the extracellular space and 

become exposed to antibodies; membrane vesicles, cell lysis and extrusions. 
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 Membrane vesicles are the most limited of these pathways (Figure 8.1A). They 

are vesicular bodies derived from the Ct cell envelope302 and after release from the 

inclusion they have been observed in association with the inclusion, the plasma 

membrane and extracellularly303. Proteomic analyses of these vesicles have identified 

MOMP, Pgp3, CPAF, CT159 and Inc, F and G302, 304. These are all known to be 

immunogenic while only MOMP is expressed on the EB surface, supporting membrane 

vesicles as a method for generation of antibodies against intracellular targets. 

Composition of these vesicles is not entirely uniform, it is possible that further antigens 

could be presented through this mechanism. 

 The second and third methods are centred on exit of Ct from infected cells. Cell 

lysis was previously thought to be the only mechanism for exit by Ct. Lytic exit is 

marked by complete rupturing of the inclusion followed by the cell membrane (Figure 

8.1B)72. This theoretically would allow the antibodies to target any protein not 

contained within the bacteria, including secreted proteins, Incs and proteins found in the 

inclusion lumen.  

 Similarly to membrane vesicles, the repertoire of antigens that could be 

presented by extrusions is likely more limited. Extrusion is defined as the packaged 

release of EBs from infected cells (Figure 8.1C)72. This is an active process requiring 

actin polymerisation whereby the whole or a portion of an inclusion pinches off from 

cells into a membranous extrusion. Extrusion appears to be conserved amongst 

Chlamydia species and may facilitate greater survival and transmission of the 

bacteria101. As described previously, extruded EBs were viable considerably longer post 

cell exit than EBs released through lysis. They can also promote uptake into and 

survival within macrophages, potentially allowing increased dissemination. The in vivo 

existence and potential prevalence of extrusion is not known, however they do provide a 

potential mechanism for Incs to be targeted by antibodies. A recent study of extrusions 

reported that they have a double membrane structure consisting of an intact layer of 

plasma membrane with the intact EB-containing inclusion 101. Electron microscopy 

images showed limited evidence of this double membrane and staining of extrusions 

with IncA and a plasma membrane marker seemed to be indistinguishable, suggesting 

the membrane may be a hybrid of host and Ct proteins. Furthermore, the demonstrated 

phagocytic-uptake of extrusions would require non-self recognition, supporting the 

exposure of Incs on the surface. Incs exposed in this way would be readily targetable by 

antibodies. Based on the enhanced extracellular survival of extrusions they would also 
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be exposed for longer than EB surface proteins. This method for intracellular antigens 

to become antibody targets also provides the clearest hypothesis for how induced 

antibodies could impact Ct survival. Extrusion-targeted antibodies could bind the 

surface promoting uptake into immune cells for destruction or epithelial cells for 

reinfection. 
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Figure 8.1. Extracellular exposure of non-surface Ct antigens. 

Exposure could be achieved through membrane vesicles (MV) releasing select antigens 

(A), cell lysis releasing many antigens (B) and extrusions presenting Incs (C). 

A 

B 

C 
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A surprising finding from these genes under selection was a lack of balancing selection, 

particularly in the immunodominant EB surface proteins. Balancing selection is a 

common method of immune evasion employed by human pathogens343, 350, 367, 368. 

Balancing selection maintains multiple allelic forms of immunodominant genes in a 

population through cyclical presentation of variable forms of antigens, allowing 

continued avoidance of the host immune response338. In this situation there are multiple 

allelic forms of an antigen in a population at the same time. When the host generates 

and antibody response against a high frequency form this selects against isolates 

expressing this form reducing their frequency in the population. This simultaneously 

allows expansion of isolates expressing different allelic forms of the antigen. When this 

form reaches a high frequency it will again be selected against allowing expansion of 

another allelic form, the cycle can continue ad nauseam. Limited evidence of balancing 

selection at the epitope-level in this population identified by significantly positive 

values of Tajima’s D was not supported by significantly negative values of Fay and 

Wu’s H. Ct isolates are able to reinfect within households and communities with 

immunity only partial and being slow to develop. This means Ct is evading the host 

immune response, but not by balancing selection in a few immunodominant antigens. 

Therefore Ct must employ a currently unknown strategy for immune evasion. 

 

8.2. Antibody responses and susceptibility to Ct infection 

 

In this study serum from Gambian children with longitudinal evidence of infection and 

Gambian adults with trachomatous scarring were screened against microarrays of 908168 

and 894205 proteins of serovar D Ct to identify correlates of immunity in trachoma-

endemic populations. In children diverse antibody responses, characterised by responses 

against a high number of antigens with no clear immunodominant targets, were 

associated with susceptibility to frequent and long duration ocular Ct infections. These 

non-immune children also had heightened responses against a panel of 42 antigens 

which associated with susceptibility to infection. Children with partial immunity to Ct 

infection had more focussed antibody responses, within these more focussed responses 

5 potentially protective antibody responses were identified. 

 In adults with or without trachomatous scarring, antibody responses were more 

focussed than observed in children. This was highlighted by the targeting of antibody 
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responses against EB outer membrane proteins and proteins secreted into the host 

cytosol. These changes in antibody profile with age suggested long-term repeated 

exposure to Ct infection was driving out diversity and contributing to the development 

of only partial immunity. Heightened responses against 8 antigens were associated with 

scarring trachoma in this population, responses against just 1 antigen were associated 

with a lack of scarring. 

 These findings showed that antibody responses in trachoma-endemic 

populations change with exposure and are correlated with differential development of 

immunity to Ct infection. Despite the observation that antibody profiles are indicative of 

immunity, there was limited evidence of protective antibodies in children or adults. 

Notably, responses against MOMP and PmpD, which have been shown in vitro, to 

induce antibodies able to neutralise Ct infectivity132, 134, were absent or infrequent. The 

lack of protective antibodies in a setting where antibody responses associated with the 

differential acquisition of immunity to Ct infection, combined with the absence of 

balancing selection, suggests that Ct employs a different strategy for immune evasion. 

 The results suggest two potential routes of immune evasion which would allow 

Ct reinfection while continuing to slow the development of immunity. These are the 

blocking hypothesis and the decoy hypothesis. 

 

8.2.1. The blocking hypothesis 

 

The blocking hypothesis is centred around the finding that of the 42 heightened 

responses which associated with susceptibility to infection in children, 3 were EB outer 

membrane proteins. The hypothesis is that antibody responses targeted against these 

surface proteins block the binding of protective and potentially neutralising antibodies 

(Figure 8.2). 

 Blocking antibodies have been found previously in Ct and others infections. A 

study of the pathogenic fungus Candida albicans identified differences in protection 

afforded by antibodies against cell-surface mannoproteins compared with antibodies 

targeted against the underlying β-glucans in mouse models296. Exposure of the β-

glucans generated protective antibody responses which could be blocked by antibody 

responses targeted to the surface mannoproteins. Crane et al described a similar 
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phenomenon in Ct infection. Initially they showed that PmpD antiserum had pan-

neutralising ability for Ct infectivity in ocular, urogenital and LGV serovars134. This 

neutralising ability was severely diminished by pre-incubation of Ct EBs with 

antibodies specific to the immunodominant antigens MOMP or LPS, suggesting these 

antibodies could block the protective effects of PmpD antibodies. If anti-PmpD 

antibodies were incubated with Ct EBs prior to addition of anti-MOMP or anti-LPS 

antibodies, PmpD antibodies retained their neutralising ability. This demonstrated the 

presence of blocking antibodies in Ct and highlighted the importance of the interplay 

between antibodies, as the order in which the antibodies contacted the EBs significantly 

impacted their function. 

 The three susceptibility associated antigens were CT017 (Ctad1), CT541 (MIP) 

and CT579. The blocking hypothesis is that high levels of antibodies generated against 

these antigens in susceptible individuals bind the surface of Ct EBs, therefore blocking 

the binding and neutralisation of antibodies induced against PmpD or other unidentified 

targets of protective antibodies. Blocking of protective antibodies would increase 

susceptibility to long duration Ct infections and subsequent reinfection. In support of 

this, both MIP and CT579 have previously been identified as immunodominant 

antigens297, 298. Neutralising antibodies targeting MIP have been demonstrated in vitro, 

it is possible that antibody responses against this protein are similar to those seen with 

MOMP. Antibodies targeting certain MOMP epitopes have some serovar-specific 

neutralising ability, but can block antibodies which afford greater pan-specific 

protection.  

Another possibility within this hypothesis is that antibodies against some EB 

surface proteins could enhance Ct infectivity, which would promote longer survival in 

individuals. Ctad1 is known to be involved in EB attachment and induction of host-cell 

signals required for invasion299. It is plausible that antibodies binding Ctad1 could target 

EBs to host cells or directly induce uptake through cross-linking of Fc receptors. 

One of the 8 antigens associated with trachomatous scarring in adults was 

CT314, proteomic analysis has identified this protein in the outer membrane complex of 

Ct EBs329. As a surface protein CT314 could induce blocking antibodies or antibodies 

which enhance infectivity. This would prolong Ct survival in individuals, driving 

persistent conjunctival inflammation which is the strongest risk factors consistently 

identified in the progression of trachomatous scarring. 
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 In the blocking hypothesis, antibodies generated against these surface proteins 

provide a survival advantage for Ct. Therefore, mutations that change these surface 

proteins should be under purifying selection, because it is of benefit to Ct for the host 

immune response to recognise these antigens.  Three of four outer membrane proteins 

with strong evidence of selection were under purifying selection. These were PmpC, 

PmpH and MOMP. The MOMP region with the clearest signal of purifying selection 

was found within variable domain 1 (VD1). An epitope in this region has previously 

been shown to induce neutralising antibodies against ocular Ct serovars132, 364. This 

strongly suggests that in vivo if antibodies against this region are being generated they 

are not helping clear Ct infection, purifying selection in VD1 supports the blocking 

hypothesis. There was no clear evidence of selection in the 3 susceptibility associated 

surface antigens. Scarring-associated CT314 had evidence of purifying selection, which 

supports this antigen as a target of blocking antibodies. 

 In this hypothesis surface antigens which induce protective and neutralising 

antibodies would benefit the host, therefore mutations in the encoding genes should be 

under positive selection to evade immune recognition. There was no clear evidence of 

selection in PmpD. The only other outer membrane protein with evidence of selection 

was CT396 (HSP70), this gene was under positive selection. HSP70 is immunogenic in 

urogenital infection and unlike HSP60 responses does not seem to associate with tubal 

pathology170, 410. It is possible HSP70 antibody responses can be protective in trachoma-

endemic populations, although it is only a minor component of the EB surface411.  
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Figure 8.2. Blocking and enhancing antibodies. 

Blocking antibodies (bAB) can physically block the binding of neutralising antibodies 

(nAB). These antibodies may also enhance infectivity of Ct through Fc receptors (FcR). 

 

8.2.2. The decoy hypothesis 

 

The majority of the 42 susceptibility associated and 7/8 of the scarring-associated 

antigens were not localised to the EB surface, therefore their role in Ct infection and 

disease cannot be explained by the blocking hypothesis. These responses show that a 

high number of Ct antigens are accessible by the host immune system, likely through 

release of Ct proteins as a result of cell lysis. Antibody responses against the vast 

majority are not protective. The decoy hypothesis is that heightened responses to a 

diverse panel of irrelevant antigens diver the humoral immune response, or at least a 

significant portion of it, away from potentially protective antigens. The frequent 

recognition of these non-protective antigens was reflected in their associations with 

susceptibility and scarring, suggesting these are not random but are deliberately 

presented by Ct to the host. Ct presents a diverse panel of antigens to the host to act as 

decoys, limiting development of protective antibody responses and diluting the effect of 

those that do develop (Figure 8.3). 

This decoy evasion tactic relies on broad antibody responses to limit the 

development of protective antibodies, therefore individual responses would not be 
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expected to predict susceptibility to infection and downstream sequelae. This was 

supported by data from screening of sera from children and adults. Several antigens 

were identified where antibody responses were associated with susceptibility to 

infection or trachomatous scarring, however a combination of multiple responses was 

required to explain the observed differences in immunity.  

Part of how this diverse antibody response may limit production of protective 

antibodies is related to the limitation of resources for B-cell proliferation and 

downstream impact on affinity maturation of anti-Ct antibodies. B-cell proliferation and 

production of antibodies is resource-limited and dependent on T-cell help. In 

individuals susceptible to infection where decoy antigens are stimulating broad antibody 

responses, resources are being ‘wasted’ on non-protective responses. This would limit 

the initial proliferation of B-cells stimulated by protective antigens. This is equally true 

for reactivation of plasma cells upon reinfection. Plasma cells have to compete for 

survival niches, the ability of these cells to be long-lasting is dependent on the initial 

levels of antigen-specific plasma cells and how often they encounter and are reactivated 

by the relevant antigen292. If the initial proliferation of plasma cells is limited this would 

affect maintenance of these cells in the future, showing how initially diverse antibody 

responses could impact responses to reinfection and the development of immunity. 

Affinity maturation is the process by which antibody affinity to its specific 

inducing antigen increases. This involves somatic hypermutation of variable regions 

within surface-bound antibodies on B-cells, which are then selected for based on their 

new affinity for the inducing antigen which are trapped and presented within lymphoid 

follicles. The slow development of immunity in Ct suggests considerable re-exposure 

and reactivation of antigen-specific cells is required. Affinity maturation of protective 

antibodies may well be important in this process, as seen with neutralising antibodies in 

HIV293-295 and also suggested by non-human primate models of trachoma136. The decoy 

hypothesis is based upon the ready availability of high numbers of antigens and 

extensive production of antibodies. This abundance of antigens would significantly 

impact the threshold for affinity-based selection of B-cells in follicles during affinity 

maturation, weakening the power of selection to remove those with low affinity. 

Therefore, the diverse antibody response induced in the decoy hypothesis would also be 

partially self-sustaining through expansion of a large pool of non-protective B-cells, 

rather than affinity maturation of selective high-affinity protective responses. 
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Validation of the decoy hypothesis through evidence of natural selection is more 

challenging than for the blocking hypothesis. The diverse antibody profile would 

provide an advantage for the bacteria, however the number of antigens targeted and the 

inherently random nature of them implies no one gene would show strong evidence of 

selection. If selection was acting upon antigens targeted in this way, it would be 

expected to be purifying as recognition by the host immune system is beneficial for the 

bacteria. 

In support of the decoy hypothesis 37/42 of the susceptibility associated antigens 

and 7/8 of the scarring associated antigens had no strong evidence of selection. The only 

scarring associated antigen under selection was CT314, as described previously this was 

under purifying selection. Two of the susceptibility associated antigens, CT545 and 

CT806, were also under purifying selection. CT228, CT694 and CT695 were the only 

susceptibility associated antigens with evidence of positive selection. In CT695 the 

regions under selection did not contain predicted epitopes. CT228 and CT695 had some 

overlap with regions under selection and predicted epitopes. As described previously 

they are both immunogenic but also functionally important for Ct exit and entry 

respectively. One limitation with detecting signatures of selection in genes involved in 

Ct survival is that determining the driving force of selection is difficult. For these two 

proteins it cannot be determined whether immune recognition or changes in Ct 

infectivity and transmission are the cause of selection. Overall, the antigens associated 

with sustained Ct infection and trachomatous scarring showed limited evidence of 

selection, supporting their group function as part of a panel of decoy antigens. 
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Figure 8.3. Decoy antigens divert antibody responses from protective antigens. 

Ct presents a large pool of decoy antigens (dAg) to the immune system to divert 

antibody responses away from potentially protective antigens (pAg) (A). An excess of 

Ct dAg presented by follicular dendritic cells (DCs) and the ready availability of T-cell 

help (TFHC) in follicles induced by Ct infection, weakens the selectivity in affinity 

maturation and clonal expansion of B-cells (BC) (B).  

 

 

 

A 
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8.2.3. Limitations of the natural immune response to ocular Ct infection 

 

From studying children with differential evidence of immunity to Ct infection and 

adults with and without trachomatous scarring, there was limited detection of antibody 

responses associated with protection. The decoy hypothesis likely plays a role in this, by 

diverting host humoral immune responses from protective antigens. However even after 

grouping individuals based on this diverse antibody profile, children with more 

focussed responses still had limited evidence of protective antibodies. The five antigens 

putatively associated with protection from infection were not surface-exposed or 

localised to facilitate interaction with the host, they had also not been previously 

identified as immunogenic which casts doubts on their protective capacity. In adults 

who had no evidence of scarring there was still only one antigen, CT442, which was 

associated with a lack of scarring. 

 Individually protective and neutralising antibody targets have been found in 

vitro and through non-human primate models, little evidence from studies in humans 

from trachoma-endemic communities have corroborated these findings in vivo. This 

may in part be due to limitations of the micro-array approach for identifying candidate 

antigens. Using MOMP and PmpD as examples of antigens capable of inducing Ct 

infectivity neutralising antibodies, little reactivity was found against MOMP in 

particular in both studies. They are large, multimeric proteins which localise to the EB 

outer membrane in vivo306, 307, PmpD also appears to undergo post-translational 

modifications resulting in expression of a smaller soluble form. It is unclear how the in 

vitro expression of these proteins on the micro-arrays resembles their natural 

confirmation, which may impact the exposure of certain epitopes.  

While MOMP is clearly immunodominant, there has been limited evidence from 

human studies that protective antibody responses are stimulated in vivo. A longitudinal 

study from The Gambia approximately 10 years prior to the study described in chapter 4 

found that heightened anti-MOMP IgG levels in tears were associated with acquisition 

of Ct infection280. This raises the question of how often antibodies against the protective 

and/or neutralising epitopes of MOMP and PmpD are stimulated in natural infection. 

Combined with the described impact of diverse antibody responses on immunity to Ct 

infection, an absence of these antibodies in natural infection within trachoma-endemic 

communities would help explain the slow and partial development of immunity. This 

poor development of natural immunity is supported by the observation that when 
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observed longitudinally, every 2 weeks for 13 visits, a quarter of adults in a Gambian 

trachoma-endemic community had one or more episodes of infection and these were 

associated with an increased proportion of intense inflammatory episodes compared 

with children aged under 15 years8. Therefore, while partial immunity to Ct may reduce 

the frequency and duration infections, it does not ablate them and does not effectively 

control resulting inflammation. If immunity led to the development of protective and 

neutralising antibodies, rather than the improved focussing and reduced diversity of 

antibody responses as proposed here, stronger evidence of protection from Ct infection 

would be expected. 

 

8.3. CT442, Rab proteins and intracellular trafficking 

 

Previous studies of the Inc CT442 have focussed on its role in host immune responses to 

Ct. In mouse models a CT442-derived peptide can stimulate cytolytic activity from 

CD8+ T-cells195. After immunisation of mice with a Vaccinia virus vector expressing 

this peptide, CT442-specific CD8+ T-cells were stimulated and upon reactivation by Ct 

could provide a level of protection equivalent to immunisation with Ct-EBs378. 

Antibody responses against CT442 have also been demonstrated in women with current 

or a previous Ct infection168, 169. A non-human primate model of trachoma in which 

animals were partially immune to Ct re-challenge found reactivated antibody responses 

to be important, this included antibodies against a 15 kDa protein which was 

unidentified but could potentially be CT442. In contrast, CT442 functional 

characterisation has been minimal. It is known to be expressed mid-late during the Ct 

developmental cycle212, 213 and localised to the inclusion membrane83, but no known 

functions have been described. 

CT442 was highlighted here through serological studies and population genetics 

as being an important Ct protein in immunity and Ct fitness in trachoma-endemic 

populations. In The Gambia, heightened CT442 antibody levels were associated with an 

absence of scarring in adults. In Tanzania CT442 antibody responses were heightened in 

children whose conjunctival scarring had not progressed over a period of 4 years. 

Within a population of ocular Ct isolates collected on the Bijagos Islands, Guinea-

Bissau240, CT442 was shown to contain regions under both positive and purifying 

selection. 
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8.3.1. CT442 is evolving under non-neutral selection 

 

In the Ct population studied here CT442 is evolving under non-neutral selection, the 

forces driving this selection are difficult to identify. There are two regions within the 

gene under strong forces of selection. Positive selection is acting within the first 

predicted transmembrane domain. Purifying selection is acting within a C-terminal 

region predicted to be exposed to the host cytosol during Ct infection.  

An absence of positive selection in an exposed region of CT442 was surprising, 

given the association of antibodies with a lack of scarring in adults and reduced scarring 

progression in children. If antibody responses against CT442 can limit scarring 

progression the most plausible method for this would be through antibody recognition 

of CT442 on the surface of extrusions. If CT442 was exposed on extrusions, antibodies 

could target these for destruction. This would reduce Ct transmission and therefore 

duration of infection, presumably helping to minimise damaging conjunctival 

inflammation. If this was the case mutations that help evade antibody recognition would 

be favoured, supporting positive selection of new alleles. Heightened antibody 

responses against CT442 could also indicate upregulated expression or increased 

availability of this antigen to the immune system generally, as expression of Incs is 

known to vary between serovars of Ct332 and therefore may vary within ocular strains. It 

is plausible that heightened CT442 antibody responses in adults with scarring are 

indicative of increased accessibility to this antigen promoting aforementioned CD8+ T-

cell responses. In support of this, CD8+ T-cells were recently identified as important in 

immunity against Ct in non-human primates previously vaccinated with a plasmid-

deficient live-attenuated Ct strain200. 

 In relation to this hypothesis, the region of positive selection in CT442 could be 

related to the CD8+ T-cell inducing peptide found in mice. Ability to induce this 

response in humans has not been proven, however the peptide falls within the region 

under positive selection within this Ct population. Incs are believed to be secreted from 

the inclusion into the host cytosol prior to insertion into the inclusion membrane. This 

could provide an opportunity for CT442 to interact with the antigen presentation 

pathway for MHC-Class 1. If this CT442 peptide can induce cytolytic responses it is 

plausible that mutations in this peptide interfere with recognition, therefore providing a 

selective advantage to isolates with the new CT442 alleles driving these alleles to 

fixation as in positive selection. 
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 The region of purifying selection did not overlap with predicted B-cell epitopes 

and was found in the putatively host-cytosol exposed C-terminal region. If immune 

responses are not driving this selection, this region may be important for the 

intracellular function of CT442.  

 

8.3.2. Potential interactions of CT442 

 

Co-immunoprecipitation of CT442-GFP from Ct-L2 infected cells identified a number 

of proteins and pathways that potentially interact with CT442. Intracellular trafficking 

was the strongest supported pathway and within this Rab proteins were the most 

abundant class of proteins.  

 Several Rab proteins have been shown to localised peripheral to the inclusion in 

Ct-infected cells, recent proteomic analysis of inclusions isolated from mammalian cells 

further supported the involvement of Rab proteins in Ct intracellular trafficking and 

interactions with host organelles. Currently few specific interactions are known. Rab11 

interacts with IncG90, which is thought to important for Ct-resistance to apoptosis94. 

Rab11 together with Rab6 is also required for Ct-induced Golgi fragmentation and 

related nutrient acquisition91. Rab14 has been implicated in the delivery of 

sphingolipids to developing inclusions394.  

 Rab7 had one of the strongest scores from mass spectrometry analysis of 

proteins co-immunoprecipitated by CT442-GFP. Rab7 is traditionally associated with 

late endosomes and fusion with lysosomes395, it is now known to function in retrograde 

trafficking between endosomes and the Golgi396, recruitment of the proteasome and 

nutrient transport through lipid trafficking397. Rab7 is also involved in phagosomal 

maturation, different pathogens have developed novel ways to manipulate recruitment 

and expression of Rab7 to avoid lysosomal fusion and destruction397. If Ct infects 

macrophages Rab7 and LAMP1, another late endosomal marker, rapidly associate with 

the bacteria and suppress its growth398. It is possible CT442 functions in the exclusion 

of Rab7 from the inclusion during intracellular trafficking, although its mid-late cycle 

expression implies its functions later in the developmental cycle. 

 A recent study identified CT442 in the proteome of Ct-recruited lipid droplets. 

Lipid droplets are host organelles primarily involved in lipid storage, they appear to be 
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recruited to the inclusion and actively translocated across the inclusion membrane 

during Ct infection86. Enrichment of lipid metabolism in these organelles and 

recruitment to the inclusion periphery was essential for Ct replication93. Rab proteins 

Rab7, 11 and 31 were also identified in the Ct-lipid droplet proteome. All of these Rab 

proteins were co-immunoprecipitated by CT442-GFP. Lipid droplet recruitment is first 

detectable around 18 hours post infection, this matches the earliest expression stage of 

CT442. These three Rab proteins and another potential CT442-interactor Rab13 have all 

been implicated in endosomal trafficking to and from the trans-Golgi network involving 

recycling endosomes90, 399. It is possible CT442 engages this pathway and/or lipid 

droplets through Rab proteins for nutrient acquisition and therefore Ct intracellular 

development. 

 

8.4. Implications  

 

8.4.1. Implications for a Chlamydia trachomatis vaccine 

 

These studies identified focussed antibody profiles as associated with protection from 

Ct infection. Conversely individuals who developed a diverse antibody response against 

primarily non-protective antigens were susceptible to repeated and sustained Ct 

infections. Antibody responses became more focussed with age and the development of 

partial immunity. However, the non-surface localisation and lack of evidence of 

selection in antigens associated with scarring in adults suggests early development of 

ineffective antibody responses may be a driving factor in the repeated infections and 

subsequent persistent inflammation that drive trachomatous conjunctival scarring. 

 The limited observation of protective antibodies, notably targeting 

immunodominant antigens such as MOMP and PmpD which can induce neutralising 

antibodies in vitro, raised questions about the partial immunity to Ct which develops in 

trachoma-endemic communities. Natural immunity to ocular Ct infection is slow to 

develop and never fully protects from infection or conjunctival inflammation. Children 

who had partial immunity or were at least better protected than other children in this 

study had more focussed global responses, however they had little evidence of 

protective antibodies that would be expected from in vitro data. This discrepancy 
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between natural responses to Ct infection and the immune responses believed to help 

clear Ct has important implications for vaccine design. 

 Current developments towards a Ct vaccine can be broadly grouped into those 

which utilise a modified or inactivated form of Ct-EBs and those which use whole or 

sub-units of immunogenic proteins. Studies in mice and non-human primates have 

shown partial protection from re-challenge with Ct using UV-inactivated Ct and 

plasmid-deficient Ct respectively136, 189, 200, 201. Both methods have identified T-cells as 

important, the latter also showed reactivation of antibody response against a panel of Ct 

antigens to be important in protection. Whole protein or sub-unit vaccines almost 

exclusively utilise MOMP191, 412 and Pmp’s specifically PmpC187 and PmpD192. These 

studies have found induction of both cellular and humoral immune responses to be 

important in clearance. They have also found the development of antibodies against 

these antigens can neutralise Ct infectivity. 

 The results presented here strongly support the use of a sub-unit based vaccine 

for future Ct development. Natural exposure to Ct-EBs does not generate a protective 

response similar to that seen in mouse models. A vaccine based on inactivated or 

modified EBs would likely induce variable outcomes in different individuals, as seen 

with natural infection. Additionally, as highlighted and previously shown, antibody 

responses against EB-surface antigens are not universally protective. Antibodies 

targeting outer membrane proteins were associated with susceptibility to infection 

children and the presence of scarring in adults. The encoding genes either had evidence 

of purifying selection or none at all, indicating at best that responses against don’t 

benefit the host and at worst that they facilitate enhanced Ct infectivity and survival. 

 The limited evidence of individually protective antibodies in these studies means 

the potential efficacy of sub-unit vaccines can only be speculated upon. They would 

promote a highly focussed and targeted immune response. Evidence presented here 

suggests that the diversity of antibody responses is negatively correlated with protection 

from infection. Therefore a vaccine which induces responses against one or a few 

protective antigens would likely have a greater chance of inducing long-lived immunity. 
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8.4.2. Implications for Ct genomics 

 

The use of population genetics to identify signatures of selection within 126 ocular Ct 

isolates from the Bijagos Islands, Guinea-Bissau was the first of its kind in Chlamydia. 

Previous studies have utilised from 3 to 59 Ct genomes to look for positive selection in 

Ct as a whole and within the biovars114, 115, 355, 356, however discovery of genes under 

selection within a restricted, currently circulating Ct population is a novel study and 

result. Genes under positive selection in this study suggests they are providing a 

selective advantage for Ct survival and transmission within this population.  

 In an era when whole-genome sequencing is becoming increasingly affordable 

and accessible, this study has important implications for the study of Ct transmission 

dynamics and evolution. Studies historically sequenced ompA to study the transmission 

of Ct in communities107-109. The evidence for purifying selection found here and 

previous evidence showing frequent recombination involving this locus suggests that 

changes in ompA do not reflect the ongoing diversification in Ct populations. This study 

suggests it may be possible to track transmission through panels of genes known to be 

evolving under natural selection. 

 Population genetics may become a tool for identifying candidate virulence 

factors or immunologically important targets. Genes under selection in this population 

included outer membrane proteins, secreted effectors and inclusion membrane proteins 

which are known to be important in Ct invasion, intracellular development and 

transmission. Many of those under selection have no known function but are localised 

to facilitate interactions with the host. Evidence of selection in these targets highlights 

these genes as important factors in Ct fitness, suggesting they should be targeted for 

functional studies. Similarly evidence of selection can highlight and validate immune 

targets. Combined with micro-array identification of proteins which stimulate antibody 

responses, evidence of selection can filter out antigens where responses against them 

provide a demonstrable advantage or disadvantage for Ct. 

 

 

 



304 

 

8.5. Limitations 

 

8.5.1. Microarray limitations 

 

Chapters 4 and 5 highlighted the importance of validation of targets from high-

throughput, serological microarrays. Antibody responses from independent testing, by 

ELISA, of target antigens showed mixed correlation with microarray results. 

Furthermore, testing of serum from independent but clinically related individuals did 

not consistently support the association of specific antibody responses with clinical 

outcomes. These results suggest some of the differentially recognised antigens 

identified were likely false-positive artefacts from screening of small numbers of sera 

on the array. These results demonstrated the problems of small sample sizes, a common 

issue due to the relatively high cost of arraying samples versus single-antigen ELISA. 

They also underline the need for clearly defined clinical phenotypes in human studies of 

humoral immunity to improve the reliability of statistical associations and reduce the 

influence of outliers. 

A further limitation of the microarrays was the failure to identify responses against 

known Ct immunodominant surface antigens. MOMP and the majority of polymorphic 

membrane proteins (pmp) were minimally immunogenic, since they did not pass initial 

filtering of recognised antigens. This was likely due to poor expression of these 

proteins, as they are large, structurally complex proteins. PmpC (CT414) and PmpD 

(CT812) were the only Pmp's frequently recognised and both were expressed as 

fragments, not full-length proteins. This suggests large, multimeric proteins such as 

these should be expressed as fragments or peptides alongside full-length proteins in 

microarrays. Single/multi-antigen ELISA or immunoblotting against Ct EBs should also 

be considered for known, immunodominant antigens whose microarray expression is 

predicted to be unable to capture their target antibodies.  

 

8.5.2. Influence of urogenital chlamydial infection 

 

Urogenital Ct infection, and possible maternal antibodies, should not be a factor in 

chapter 4, since the participants were mostly aged between 6 and 12 years. In contrast, 
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present and more likely past urogenital infections may have had some impact on the 

antibody responses determined in individuals studied in chapter 5, who were aged 

between 30 and 80 years. High levels of sequence conservation for the majority of Ct 

proteins, demonstrated by approximately 99% sequence identity of currently sequenced 

isolates, may lead to cross-reactivity of antibodies generated against ocular and 

urogenital infections.  

There are reasons to believe the potential effect of antibodies generated against 

urogenital Ct infection were not a significant confounder in this work. Historically 

minimal evidence of urogenital Ct infection in The Gambia is the primary support for 

this belief, although there is not much literature on the subject. Studies from The 

Gambia413 and a rural region of Senegal414 found urogenital Ct infection levels to be < 

2%. Similarly, a broader study of low-middle income countries estimated urogenital Ct 

prevalence at 2.7%415. Urogenital infection at this prevalence would be unlikely to have 

significantly influenced the results here. Furthermore, survey designs and adjusting for 

age and gender should have reduced the likelihood for systematic differences in 

urogenital exposure to exist between the scarring cases and healthy controls studied in 

chapter 5. 

 Since there is not equivalently well-described history of urogenital infection for 

The Gambia, this should be considered further in the future. It may be possible, by 

evaluating antibody responses against serovar specific antigens, to adjust for exposure 

to urogenital Ct. Previously the MIF test has been used for this purpose, however there 

is known to be considerable cross-reactivity between ocular and urogenital serovars and 

with other chlamydial species416. An assay utilising shorter peptides may be able to 

provide greater resolution, a collaborator is currently investigating this204.  

 

8.5.3. Interplay of humoral and cellular immunity 

 

The weight of literature in Ct infections clearly identifies the importance of the cell-

mediated immune responses in the resolution of infection. CD4+ and CD8+ T-cell anti-

Ct responses have been identified as important in infection resolution125, 126, 129, 200, 417 

and differential progression of scarring pathology126, 418 by longitudinal studies of ocular 
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and urogenital Ct. In contrast, the role of humoral responses in human cohort studies is 

less clear. Levels of local mucosal and serum anti-Ct antibodies are higher in children 

who experience increased rates of ocular reinfection279, 280 and more severe 

trachomatous inflammation271, 279, 419. 

However, there is considerable evidence from animal models suggesting 

antibody responses are also necessary for long-term protection and immunity from 

infection. Olsen et al demonstrated the development of Ct-infection neutralising 

antibodies, dependent on CD4+ T-cells, in a murine model following mucosal 

vaccination of a MOMP-based vaccine 188. This corroborated earlier murine studies 

which found B-cells and antibodies to be necessary for a complete cell-mediated 

immune response and associated long-term protection. In agreement with findings from 

our study, Teng et al showed Th1-favouring C57BL/6 mice, which are more resistant to 

chlamydial infection420-422, had a more focussed antibody profile after C. muridarum 

infection423. Similarly in non-human primates, partial immunity to ocular infection was 

concurrent with development of a focussed antibody recall response136. 

The non-protective antibody responses identified cannot completely explain 

observed differences in immunity, as evidenced by the heterogeneity of antibody 

profiles within the protected and susceptible groups in chapter 4. Studies of cell-

mediated responses in Ct infection have similarly not identified correlates of immunity 

which can completely explain observed variability of outcomes. Previous work on the 

cohort studied in chapter 4 found increased conjunctival expression of IFNγ, TNFα and 

IL-10235 and detectable MOMP-specific CD8+ T-cells424 associated with longer duration 

of infections. Together, the results reflect the complex relationship between cell-

mediated immune responses, which are necessary for initial clearance of Ct and those 

required for long-term protection. The results presented here support the importance of 

antibody responses in human immunity to Ct infection but as expected they cannot fully 
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account for the complete immunological picture in the absence of combined measures 

of cell-mediated immune responses. 

 

8.6. Future work 

 

8.6.1. Serological validation 

 

Future work should aim to validate the blocking and decoy hypotheses proposed. This 

work should be focussed on longitudinal studies, the temporal information they provide 

is necessary in understanding how antibody responses and immunity develop in relation 

to Ct exposure and trachomatous disease. The blocking hypothesis should be tested 

using a selection of EB surface antigens, including scarring-associated CT314. In vitro 

studies similar to those which identified blocking antibodies against PmpD should be 

paired with serological identification of responses against these antigens in trachoma-

endemic populations. 

 Testing of the decoy hypothesis likely requires further large-scale micro-array 

screening of children from trachoma-endemic communities. An earlier longitudinal 

study from The Gambia could be used initially280, if global antibody profiles maintain 

their association with differential evidence of immunity then new populations would 

need to be tested. This previous longitudinal study also showed that tear and serum 

antibodies may not be correlated in trachoma. Tears were collected and are available 

from every 2 week visit from the study described in chapter 4. Micro-array screening of 

tears is not practical because of low antibody levels, initial studies focussing on a few 

specific targets should be performed. 

 While identification of individually protective responses was limited, two 

antigens associated with susceptibility to infection (CT694 and CT228) and the only 

antigen associated with protection from progressive scarring (CT442) had evidence of 

selection suggesting they should be investigated further. CT228 and CT442 also 

highlight the need for investigation of how Incs are targeted by the humoral immune 

response. Several Incs appear to be immunogenic in urogenital and/or ocular Ct 

infection370, yet no work has been undertaken to understand how they are exposed to the 

extracellular space to be targeted by antibodies. 
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8.6.2. Independent populations for Ct genomics 

 

Future population genomics studies should be undertaken in populations of ocular Ct 

isolates to determine whether genes under selection are shared. A limitation of the 

present study is that understanding the driving force of selection in these genes is 

difficult and necessarily involves a level of speculation based on the available 

information for each gene and the proteins they encode. Identification of genes under 

selection in other ocular Ct populations could help decipher what is driving selection. 

Genes under selection driven by impact on Ct survival should be common to ocular Ct 

populations, those under immune response-driven selection may vary depending on the 

levels of transmission and endemicity. 

 The lack of clear evidence for balancing selection in this population should also 

be investigated further as it has important implications for understanding Ct evasion of 

host immune responses. As well as whole-genome scans, antigens known to be 

immunodominant in Ct should also be investigated by targeted sequencing, as has been 

done previously for ompA.  

 

8.6.3. Understanding the role of CT442 in the Ct developmental cycle 

 

The first step in further characterisation of CT442 should utilise the anti-CT442 

antibody to co-immunoprecipitate endogenous CT442 from mammalian cells to validate 

proteins identified using exogenously expressed CT442 through transfection of CT442-

GFP into host cells. Anti-Rab7 antibody should be used to determine if endogenous 

CT442 also interacts with Rab7. Dependent on the outcome of this initial validation 

step, either Rab7 or interactions with lipid droplets should be pursued. 

 If the interaction is confirmed the localisation of Rab7 should be investigated in 

Ct infected mammalian cells. Rab7 interactions with other bacteria have been shown to 

vary considerably with different tissues and species397. Therefore, localisation should be 

investigated in conjunctival and genital epithelial cell lines with ocular and urogenital 
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serovars. The impact of expression of a Rab7 dominant negative mutant on Ct 

infectivity should also be investigated.  

 To examine interactions with lipid droplets, these organelles should be induced 

as described previously and examined in cells stained with anti-CT442 antibody to 

determine any co-localisation. This work and the proposed studies with Rab7 should 

also be performed using serovar C Ct strains which appear to express a truncated 

CT442. Interpretations from these studies would however be complicated because other 

genes contain truncating mutations in these strains, and there may be a redundancy of 

function in strains without a functional CT442. 

 

8.7. Summary 

 

In children from trachoma-endemic communities in The Gambia, the global profile of 

anti-Chlamydia trachomatis was correlated with development of immunity to Ct 

infection. Children with diverse antibody responses are more susceptible to recurrent 

and longer duration ocular Ct infections. Children who had more focussed antibody 

profiles were protected from infection. Breadth and diversity of antibody responses 

were driven by the deliberate presentation of large numbers of irrelevant, non-protective 

antigens to the humoral immune system by Ct to act as decoys, diverting antibody 

responses and associated resources away from potentially protective epitopes. This 

susceptibility-associated global profile was worsened by the induction of antibodies 

against non-protective EB surface antigens, which block the binding and neutralising 

ability of protective antibody responses. Evidence of purifying selection in EB surface 

antigens and an absence of selection in the majority of antigens associated with 

susceptibility to infection supported the decoy and blocking hypotheses as explanations 

for how antibody responses against Ct develop during natural ocular infection. 

 Continued re-exposure with age was characterised by a focussing of antibody 

responses in adults with and without trachomatous scarring. The limited identification 

of individual antibody responses which distinguished between adults with and without 

scarring suggested the differential development of antibody responses in early life, 

specifically through the recognition of antigenic decoys, was important in driving 

conjunctival scarring. In support of this a scarring-associated antigen (CT706) was 

associated with conjunctival scarring progression in children from a geographically 
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distinct trachoma-endemic population in northern Tanzania. CT442 which protected 

from scarring was associated with protection from progression in children in this study. 

There was no evidence of selection in the scarring-associated antigens, except a single 

EB-surface antigen (CT314) which was under purifying selection, further supporting the 

decoy and blocking hypotheses. 

 The discovery of genes under selection within a restricted, currently circulating 

Ct population was a novel finding. Evidence of selection validated well characterised Ct 

virulence factors, including TARP, CT223, and immunologically relevant antigens, 

including MOMP and CT694. This scan also identified likely virulence factors which 

are currently not characterised. Balancing selection was notably limited in this 

population, suggesting Ct employs different strategies for immune evasion including the 

use of decoy antigens and blocking antibodies. Several genes had evidence of both 

positive and purifying selection implying multiple driving forces of selection were 

acting, these included CT442 which was associated with protection from trachomatous 

and progressive trachomatous scarring. 

 CT442 was confirmed as an inclusion membrane protein with potential 

interactions focussed in intracellular trafficking and Rab proteins. Evidence of selection 

in CT442 did not appear to overlap with B-cell epitopes, meaning selection pressure 

related to impacts on Ct intracellular survival and transmission were most likely the 

driving force in evolution of CT442 in this population. 
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Appendix 

 

Buffers 

Blocking buffer A; 0.05 % Triton X-100 and 2.5 % skimmed milk in phosphate-

buffered saline (PBS) at pH 7.5. 

Blocking buffer B; 0.05 % Triton X-100 and ten % skimmed milk in PBS at pH 7.5. 

Blocking buffer C; ten % Escherichia coli lysate (McLab, San Francisco, CA) in protein 

array blocking buffer (Whatman, Piscataway, NJ). 

Blocking buffer D; 0.05 % Triton X-100 in Tris-buffered saline (TBS) at pH 7.4. 

Cleavage buffer; 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA and 1 mM DTT in 

PBS at pH 7.5. 

Co-immunoprecipitation buffer; 25 mM Tris-HCl, 1 mM EDTA, 1 mM EGTA, 100 

mM NaCl, 0.1 % Triton X-100, 0.1 % NP40, 0.1 % ASB-14 and 1 % Protease inhibitor 

cocktail (Sigma Aldrich) in H2O. 

Coating buffer A; 0.05 M carbonate-bicarbonate in PBS at pH 9.6.  

Coating buffer B; 0.1 % bovine serum albumin (BSA) and 0.1 % sodium azide in PBS 

at pH 7.5. 

Culture medium A; 10 % foetal calf serum (FCS) and 1 % PenStrep in DMEM. 

Elution buffer A; 50 mM Tris-HCl and 10 mM reduced glutathione in PBS at pH 8. 

Elution buffer B; 100 mM Tris-HCl, 200 mM EDTA and 2 % sodium dodecyl sulphate 

(SDS) in H2O. 

Infection medium; 10 % FCS and 1 % gentamycin in DMEM. 

Laemmli buffer; four % SDS, 20 % glycerol, 120 mM Tris-Cl (pH 6.8) and 0.02 % 

bromophenol blue in H2O 

Transfection medium; 1.4 % TurboFect (Thermo Fisher Scientific) in DMEM. 

Triton lysis buffer (Sharma 2006); 1 % Triton X-100, 1 mM phenylmethylsulfonyl 

fluoride (PMSF), 75 IU/ml aprotinin, 20 μM leupeptin and 1.6 μM pepstatin in PBS at 

pH 7.5. 
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Washing buffer A; 0.05 % Triton X-100 in PBS at pH 7.5. 

Washing buffer B; 0.05 % Triton X-100 and 5 % skimmed milk in TBS at pH 7.4. 

 

Table 0.1. Summary of previous Ct micro-array antigen identification. 

Ct D/UW3 nomenclature was used. T and B-cell recognition numbers were the how 

often they were found to be immunogenic in 8 previous Ct micro-arrays. 

ID NAME T-CELL 

RECOGNITION 

B-CELL 

RECOGNITION 

CT004 GatB 1 0 

CT015 PhoH 1 0 

CT016 Hypothetical 1 0 

CT019 IleS 0 1 

CT022 RpmE2 0 1 

CT035 BPL 1 0 

CT043 Hypothetical 2 0 

CT049 Hypothetical 0 1 

CT067 YtgA 0 2 

CT082 Hypothetical 0 1 

CT089 CopN 0 6 

CT101 Hypothetical 0 1 

CT110 GroEL1 (HSP60) 1 4 

CT111 GroES 1 0 

CT114 Hypothetical 1 0 

CT116 IncE 0 1 

CT117 IncF 0 1 



337 

 

CT118 IncG 0 1 

CT119 IncA 1 4 

CT142 Hypothetical 0 2 

CT143 Hypothetical 0 2 

CT147 Hypothetical 0 4 

CT153 Hypothetical 1 2 

CT168 Hypothetical 1 0 

CT184 YqgF 1 0 

CT226 Hypothetical 0 1 

CT228 Hypothetical 0 1 

CT240 RecR 0 1 

CT255 Hypothetical 1 0 

CT279 Nqr3 1 0 

CT301 PknD 0 1 

CT315 RpoB 1 0 

CT316 R17 0 1 

CT322 TuEF 1 3 

CT341 DnaJ 1 0 

CT342 Rs21 1 0 

CT355 Hypothetical 0 1 

CT372 Hypothetical 1 0 

CT376 MdhC 0 2 

CT381 ArtJ 0 4 

CT396 DnaK (HSP70) 2 1 

CT414 PmpC 0 2 
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CT415 YebL 0 1 

CT442 CrpA 0 4 

CT443 OmcB 3 6 

CT456 TARP 0 3 

CT460 SWIB 1 0 

CT480 DppA 1 0 

CT492 YacE 1 0 

CT509 RS13 1 0 

CT529 Cap1 0 3 

CT553 Fmu 0 1 

CT556 Hypothetical 0 1 

CT557 LpdA 0 2 

CT559 YscJ 0 1 

CT571 GspE 0 1 

CT587 Eno 1 0 

CT589 Hypothetical 0 1 

CT600 Pal 1 0 

CT601 PapQ 1 0 

CT603 TSA 1 1 

CT611 Hypothetical 1 0 

CT619 Hypothetical 0 1 

CT622 CHLPN homologue 0 1 

CT667 Hypothetical 0 1 

CT681 MOMP 2 5 

CT694 Hypothetical 1 3 
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CT695 Hypothetical 0 3 

CT702 Hypothetical 0 1 

CT706 ClpP2 0 1 

CT709 MreB 0 1 

CT711 Hypothetical 1 0 

CT716 Hypothetical 1 0 

CT733 Hypothetical 1 0 

CT734 Hypothetical 1 0 

CT755 GroEL3 1 1 

CT795 Hypothetical 0 3 

CT798 GlgA 0 2 

CT806 Ptr 0 2 

CT812 PmpD 1 2 

CT813 Hypothetical 0 2 

CT823 HtrA 1 2 

CT828 NrdB 0 1 

CT841 FtsH 0 1 

CT858 CPAF 1 4 

CT866 GlgB 0 1 

CT871 PmpG 1 0 

CT872 PmpH 1 0 

CT875 Hypothetical 1 3 

PCT03 Pgp3 0 2 
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Table 0.2. CT442-his primers for cloning into pET22(b)+. 

RESTRICTION 

SITE 

SEQUENCE (RESTRICTION SITE UNDERLINED)  

BAMHI GGCGCCGGATCCATGAGCACTGTACCCGTTGTTCAAG 

XHOI GGCCGCCTCGAGTTGGGTCTGATCCACCAGACTATTTC 
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Figure 1. Average silhouette width comparison of number of clusters for chapter 4. 

Number of clusters are on the left-hand side, from 2 to 10. Clustering methods trialled were A) K-means, B) K-medoids, C) Fuzzy c-means, D) 

Mixtures model and E) Hierarchical clustering. 
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Figure 2. Comparison of ELISA and array results for 90 longitudinal sera. 

Results were compared and sera with discordant results for CT089 and CT875 

respectively were indicated (both discordant, red), or discordant for just one of CT089 

or CT875 (one discordant, green). 
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Figure 3. Average silhouette width comparison of number of clusters for chapter 5. 

Number of clusters are on the left-hand side, from 2 to 10. Clustering methods trialled were A) K-means, B) K-medoids, C) Fuzzy c-means, D) 

Mixtures model and E) Hierarchical clustering. 
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Figure 4. Integrated haplotype scores pre- and post-imputation. 

A loess regression was fitted to compare the data (red line), with 95 % confidence 

intervals (dashed red lines).  
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Figure 5. Comparison of iHS scores by minor allele frequency (MAF) and percentage missed calls. 

The distribution of iHS scores by MAF (A and B) and percentage missed calls (C and D) were compared pre- (A and C) and 

post-imputation (B and D) of missed calls. There was no systematic difference in scores by MAF. Scores increased above 15 % 

missed calls post-imputation, these SNPs were excluded.  
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Figure 6. Comparison of iHS scores from different software. 

High scoring regions were common using all software (A); rehh (black), WHAMM (blue) and Selscan (green). Correlation 

between rehh and WHAMM was strong (B). Correlation between Selscan and rehh (C) and WHAMM (D) was moderate. A 

loess regression was fitted to compare the data (red line), with 95 % confidence intervals (dashed red lines).  
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Figure 7. Evidence of selection in CT314, CT545, CT695, CT806. 

Values of D (black) and H (blue) across the gene based on sliding windows of 42 nucleotides are shown. Predicted epitopes are 

indicated (red). A) CT314. B) CT545. C) CT695. D) CT806. 
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Figure 8. Nucleotide alignment of CT442 from serovar-representative strains.  

The ‘identity’ sequence shows relative conservation of sequence, from identical (green) 

to increasing levels of variation (lighter shades of green). This was produced using 

Geneious. 
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Figure 9. ÄKTA size exclusion-based chromatograms for CT442-His. 

UV absorbance (y-axis) shows amount of protein being eluted, concentration of 

imidazole was indicated (blue line, 0-100 %). A) One wash and two peaks (EL1 and 

EL2 from Figure 7.6). B) Two washes and two peaks (EL3 and EL4 from Figure 7.6). 

C) Two peaks (Figure 7.7). 
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Figure 10. Localisation of IncB-GFP in HeLa cells. 

HeLa cells were transfected with IncB-GFP and fixed after 24 hours or then infected 

with Ct-L2 and fixed 24 HPI. Cells were stained for DNA (A, blue in merged panel) 

and GFP (B, green in merged panel). Inclusions are indicated (yellow arrows). 
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Figure 11. Localisation of NUE-GFP in HeLa cells. 

HeLa cells were transfected with NUE-GFP and fixed after 24 hours or then infected 

with Ct-L2 and fixed 24 HPI. Cells were stained for DNA (A, blue in merged panel) 

and GFP (B, green in merged panel). Inclusions are indicated (yellow arrows). 


