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Abstract  1 

Case-control studies are commonly used to evaluate effectiveness of licensed vaccines after deployment 2 

in public health programs. Such studies can provide policy-relevant data on vaccine performance under 3 

‘real world’ conditions, contributing to the evidence base to support and sustain introduction of new 4 

vaccines. However, case-control studies do not measure the impact of vaccine introduction on disease 5 

at a population level, and are subject to bias and confounding, which may lead to inaccurate results that 6 

can misinform policy decisions. In 2012, a group of experts met to review recent experience with case-7 

control studies evaluating the effectiveness of several vaccines; here we summarize the 8 

recommendations of that group regarding best practices for planning, design and enrollment of cases 9 

and controls. Rigorous planning and preparation should focus on understanding the study context 10 

including healthcare-seeking and vaccination practices. Case-control vaccine effectiveness studies are 11 

best carried out soon after vaccine introduction because high coverage creates strong potential for 12 

confounding. Endpoints specific to the vaccine target are preferable to non-specific clinical syndromes 13 

since the proportion of non-specific outcomes preventable through vaccination may vary over time and 14 

place, leading to potentially confusing results. Controls should be representative of the source 15 

population from which cases arise, and are generally recruited from the community or health facilities 16 

where cases are enrolled. Matching of controls to cases for potential confounding factors is commonly 17 

used, although should be reserved for a limited number of key variables believed to be linked to both 18 

vaccination and disease. Case-control vaccine effectiveness studies can provide information useful to 19 

guide policy decisions and vaccine development, however rigorous preparation and design is essential. 20 

Key words: vaccines, case-control studies, evaluation studies   21 
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Introduction  22 

Many new vaccines have been introduced into public health programs over the past decade and 23 

others are under development. Vaccines are generally licensed based on safety and efficacy as 24 

measured in randomized controlled trials. Once vaccines are introduced into public health programs, 25 

their performance under “real world” conditions also needs assessment1, including among populations 26 

with subgroups that may have been excluded from pre-licensure trials (e.g., malnourished or HIV-27 

infected), with more variable dosing schedules (e.g. age at administration, interval between doses, 28 

number of doses), against outcomes not included in randomized clinical trials (e.g. strain-specific 29 

protection or mortality), and over more extended periods of time 30 

Furthermore, some vaccines are licensed based on immunologic correlates of protection2, and 31 

post-licensure evaluations provide important information about protection against disease endpoints. 32 

After vaccines have been introduced, conducting placebo-controlled trials is generally not considered 33 

ethical3. Observational post-licensure evaluations are important to underpin policy decisions on vaccine 34 

introduction, to optimize the vaccine program implementation, and to provide evidence for sustaining 35 

vaccine use and investment from governments and donors. 36 

 37 

Efficacy, effectiveness and impact 38 

‘Efficacy’, ‘effectiveness’ and ‘impact’ are sometimes used interchangeably in everyday 39 

language, but in the context of vaccine studies the terms have come to be used with distinctly different 40 

meanings (although not entirely consistently)4-7.  Their usage in this document is defined below: 41 

Efficacy is the percentage by which the rate of the target disease among those who are vaccinated 42 

according to the recommended schedule is reduced compared to the rate in similar unvaccinated 43 
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persons. This is generally measured in the context of a placebo-controlled randomized trial as the “per 44 

protocol” efficacy (i.e. excluding persons who did not receive the recommended schedule), because the 45 

intention is to establish the biologic performance capacity of the product under optimal conditions.  46 

Effectiveness measures the same percent reduction in the rate of disease as efficacy, but in the context 47 

of routine, real-world use of the vaccine. Vaccine effectiveness may be similar to the efficacy as 48 

measured in clinical trials. However, it often differs in magnitude because in routine use the population 49 

vaccinated includes some who may have a less robust immune response, and program implementation 50 

(e.g. cold-chain maintenance, dosing schedules) is more variable than in clinical trial settings.   51 

Impact quantifies the reduction in disease at a population level following introduction of the vaccine7. 52 

Impact can be expressed as a percentage decline or as an absolute change in the rate of disease. It is 53 

determined by a combination of vaccine effectiveness, vaccine coverage in the population, and any herd 54 

effect (i.e. vaccination of part of the population leading to reduced transmission of the infection in the 55 

community, and thus lowered risk of disease in both vaccinated and unvaccinated persons)8. 56 

Studies of vaccine efficacy, effectiveness, and impact may use non-disease outcomes such as 57 

colonization as endpoints; however disease endpoints are more commonly used. 58 

Observational methods to assess vaccine effectiveness and impact 59 

Several observational epidemiologic methods are used to assess the impact of vaccination 60 

programs and the effectiveness of vaccines in routine use4,5,9. Examination of trends in disease incidence 61 

before and after vaccine introduction measures vaccination program impact. However this approach 62 

requires a stable, unchanged disease surveillance system before and after the introduction of vaccine. 63 

Interpretation of such studies can be challenging because of changes in measured disease incidence or 64 

the true disease incidence unrelated to vaccination.  For example, changes in healthcare seeking 65 
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behaviors can increase or decrease measured disease incidence, concomitant implementation of non-66 

vaccine interventions can reduce disease risk, and natural temporal variation in disease incidence 67 

unrelated to vaccination can also occur.  68 

Vaccine effectiveness is generally measured through either cohort or case-control approaches. 69 

Cohort studies estimate effectiveness by comparing the incidence of disease among vaccinated and 70 

unvaccinated persons. Cohort studies require large samples, may be costly, and accurate data on the 71 

vaccination status and potential confounding variables for an entire population are often not available, 72 

especially in resource-poor settings. The cohort design may not be practical for diseases with low 73 

incidence. Case-control studies assess effectiveness by comparing the odds of antecedent vaccination 74 

among individuals who develop the target disease (cases) and among a group of individuals without the 75 

disease (controls) who are representative of the population from which the cases arise10,11. Because 76 

efforts are focused on accurately ascertaining disease status and vaccination history for a relatively 77 

small number of cases and controls (compared to cohort studies), the method can be resource-efficient 78 

and particularly useful for diseases or outcomes that are relatively uncommon. The screening method, in 79 

which the vaccination status of cases is compared to population-level vaccine coverage, is another 80 

approach for assessing vaccine effectiveness12; however accurate data on the proportion of the 81 

population vaccinated is often not available in resource-poor settings.  82 

 In recent years, case-control studies have been conducted to evaluate the effectiveness of 83 

Haemophilus influenzae (Hib)13-24, pneumococcal25-32, influenza33, rotavirus34-47, and cholera48-50 vaccines. 84 

Despite being widely used to evaluate vaccine performance, the case-control methodology is susceptible 85 

to bias and confounding51,52.  Because vaccine effectiveness estimates often impact policy decisions and 86 

donor support for vaccines their validity is important. In November 2012, a group of experts met to 87 

review recent experience with case-control studies evaluating effectiveness of several vaccines. We 88 
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summarize the recommendations from that group regarding best practices for the preparation and 89 

design of such studies, as well as the enrollment of cases and controls. (Data collection, vaccine status 90 

ascertainment, analysis and reporting of results are discussed in a separate paper [insert reference for 91 

paired manuscript].) While discussions of case-control methodology in general can be found 92 

elsewhere52,53, here we focus on the application of these methods to evaluate vaccine effectiveness in 93 

resource-constrained  settings. 94 

 95 

Methodological aspects of case-control vaccine effectiveness studies 96 

Preparation for case-control vaccine effectiveness studies 97 

Although data collection for case-control vaccine effectiveness studies begins after vaccine 98 

implementation, rigorous study planning and preparation, focused on understanding the local study 99 

context, should begin well before cases and controls are recruited, ideally a year or more beforehand. In 100 

the preparatory period, it is important to assess factors that may affect case ascertainment, such as 101 

healthcare-seeking behavior, barriers to care, determinants of hospitalization and diagnostic capacities. 102 

Different potential sources of control groups should be considered to identify the group least likely to 103 

lead to bias; for example, if cases are identified from a source population that includes large slum areas 104 

and controls are recruited only from more wealthy areas, the controls may be very different from cases 105 

in ways that could bias effectiveness estimation. Preparation should also include assessing vaccine 106 

coverage, factors associated with non-vaccination, and the ability to obtain valid, complete data on 107 

vaccination status among the intended study population. Identifying key potential confounders and the 108 

most accurate ways to measure them are also essential components of study preparation. 109 
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 Prior studies of the outcome of interest in the local study context may inform case definitions 110 

and strategies for recruitment. For example, a “vaccine-probe” study in South Africa found that a widely 111 

used case definition for likely bacterial pneumonia, based on standardized interpretations of pediatric 112 

chest radiographs, underestimated the burden of pneumonia that could be prevented with the 113 

pneumococcal conjugate vaccine54; therefore a subsequent case-control vaccine effectiveness study 114 

used a modified case definition aimed at better capturing probable pneumococcal pneumonia cases in 115 

that setting32. Health care utilization studies provide important information on where cases might be 116 

identified for a case-control vaccine effectiveness study, as well as cases that may be missed by health 117 

facility-based studies55-57. Vaccine coverage surveys or analysis of immunization data from Demographic 118 

and Health Surveys or Multiple Indicator Cluster Surveys can offer insight on the completeness and 119 

timeliness of routine immunization in the intended study population, the availability of documented 120 

vaccine histories, and factors associated with non-vaccination that may be important confounders for a 121 

vaccine effectiveness study58. In the context of a Hib vaccine study in the Ukraine it was noted that 122 

providers considered underlying immunocompromising conditions to be a contraindication for receiving 123 

the vaccine; thus children at increased risk for Hib disease were less likely to receive the vaccine, 124 

potentially leading to an overestimation of the actual effectiveness in the full population23. Identifying 125 

important factors that influence likelihood of vaccination during the planning phase can help avoid bias 126 

during study implementation.  127 

Sample size and feasibility  128 

 During the preparatory phase, the feasibility of achieving adequate enrollment during the 129 

planned study timeline must be assessed. The desired study size is determined by the expected 130 

effectiveness (with lower effectiveness requiring larger sample sizes), anticipated vaccine coverage in 131 

the study population, and the number of controls enrolled per case9. Study size may be based on 132 
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statistical “power” (i.e. testing  the hypothesis that the vaccine is significantly protective) or precision-133 

based (i.e. targeting a certain width of confidence interval)59. Sample size calculations should allow for 134 

missing data, adjustment for confounding, and the expected prevalence of incomplete vaccination (e.g. 135 

one or two doses of a three-dose schedule). Once the desired sample size is determined, an assessment 136 

of the ability to enroll that target number must take into account the potential for declining incidence of 137 

disease over time following vaccine rollout, refusals, age-eligibility for vaccination, and ability to collect 138 

vaccination histories. Thus, simple sample size calculations should be considered as the minimum 139 

necessary number needed to assess the primary outcome, but enrollment beyond that minimum is likely 140 

required for a robust analysis and the ability to address secondary objectives (e.g. effectiveness in 141 

subgroups, effectiveness of incomplete schedule, and strain-specific effectiveness). 142 

Several planned case-control studies of Hib vaccine effectiveness were not completed because 143 

of lower than anticipated enrollment attributable to rapid declines in invasive Hib disease burden 144 

following vaccine introduction (R. Hajjeh, personal communication, November 16, 2012). Case-control 145 

studies may have limited power if the number of available cases is small, which can occur following 146 

introduction of highly efficacious vaccines, in settings that achieve rapid, high coverage and significant 147 

herd effects.  148 

Timing of study and vaccine coverage 149 

Case-control studies are most likely to be useful when the vaccine coverage is between 20-80%9.  150 

At either very low or very high coverage, unvaccinated persons are likely to differ from the general 151 

population in ways that may be associated with increased or decreased risk of disease, independent of 152 

vaccination. These differences may be more pronounced where coverage levels are driven by individual 153 

factors (e.g. lack of access to care, mistrust of medical system) rather than programmatic factors (e.g. 154 

vaccine stock-outs). Results of several rotavirus case-control studies were difficult to interpret due to 155 
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high coverage (>90%) soon after vaccine introduction43,60. Settings with high vaccine coverage (e.g. 156 

greater than 85 to 90%) are not suitable for case-control vaccine effectiveness studies because of the 157 

strong potential for confounding. High coverage also increases sample size requirements because more 158 

observations are required to detect a significant difference in vaccination between cases and controls. 159 

Furthermore, high coverage can lead to a rapid decline in cases of the disease of interest if vaccine 160 

efficacy is high. Thus, in contexts where the coverage is expected to increase quickly following vaccine 161 

introduction, it may be preferable to conduct a study in a short time period after introduction rather 162 

than a prolonged study with a slower rate of enrolment.  163 

Study endpoints  164 

Endpoints for case-control vaccine effectiveness studies range from highly specific for the 165 

vaccine target (e.g. invasive pneumococcal disease caused by a serotype included in the vaccine or 166 

rotavirus diarrhea) to non-specific (e.g. clinical syndromes such as pneumonia or acute gastroenteritis). 167 

Pathogen-specific endpoints have precise case definitions that are generally not open to interpretation 168 

or variability in the field application. Non-specific outcomes, however, may be of greater interest from a 169 

policy perspective because of the larger associated burden of disease, albeit the fraction of that disease 170 

preventable by the vaccine may be low. Yet effectiveness estimates from case-control studies of non-171 

specific outcomes can be confusing or misleading. For example, a systematic review of Hib vaccine 172 

effectiveness noted that case-control studies using radiologically confirmed pneumonia endpoints may 173 

have overestimated effectiveness (compared to clinical trial estimates of efficacy against that same 174 

endpoint), although the reason for the high point estimates is unclear61.  175 

Protection against a non-specific endpoint depends on the proportion of the endpoint that is 176 

attributable to the pathogen targeted by the vaccine; this may vary over time or seasonally, be higher or 177 

lower in certain sub-groups (e.g. young infants, malnourished children) or be affected by outbreaks of 178 
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other pathogens with overlapping clinical symptoms. Such variability can result in inconsistent estimates 179 

of effectiveness against non-specific endpoints between studies. For vaccines that lead to herd effect 180 

(e.g. Hib or pneumococcal conjugate vaccine), the proportion of a non-specific endpoint (e.g. 181 

pneumonia) attributable to the vaccine-preventable pathogen decreases among both vaccinated and 182 

non-vaccinated populations; thus as herd effects increase, effectiveness estimates for non-specific 183 

endpoints will decline. The risk for developing non-specific clinical syndromes such as all-cause 184 

pneumonia or diarrhea may also be strongly affected by individual-level non-vaccine risk factors (e.g. 185 

poverty, maternal education, crowding); such factors are difficult to measure well and may be 186 

associated with vaccination status. Furthermore, non-specific endpoints require enrolling larger 187 

numbers of participants, since effectiveness against non-specific endpoints is lower than that against 188 

specific endpoints10. Because of variability in the vaccine-preventable portion and the strong potential 189 

for bias, case-control vaccine effectiveness studies using non-specific endpoints must be interpreted 190 

with care, and are best conducted only when accompanied by analyses of disease trends over time or by 191 

a nested or parallel evaluation of a more specific endpoint in the same study setting. 192 

Identification and enrollment of cases 193 

Once the study endpoint is decided, the endpoint case definition must be clearly defined to 194 

avoid variable inclusion of cases during study implementation. It is not necessary to enroll all individuals 195 

who develop the disease in a given area or time period for a case-control study10. However, studies 196 

should report the proportion of eligible cases enrolled, since low enrollment may result in selection bias. 197 

Some vaccine effectiveness studies focus on a specific subset of cases because the effectiveness of the 198 

vaccine against the outcome is of particular public health interest (e.g. hospitalized or severe cases). The 199 

generalizability of the vaccine effectiveness will be limited to the types of cases included, and such 200 

restrictions must be taken into account in the interpretation of study findings51. Whenever possible and 201 



11 
 

culturally acceptable, cases among children who have died should be included in case-control vaccine 202 

effectiveness studies, since they represent the most severe spectrum of disease and failing to include 203 

them could bias the effectiveness estimate if their likelihood of vaccination differs than that of cases 204 

who survive. 205 

Sources of controls 206 

In all case-control studies, controls should be representative of the source population from 207 

which the cases are selected51,62-64. A way of exploring this is to ask “If this control had developed the 208 

disease of interest, would he or she have been identified and included in this study as a case?” If the 209 

answer is no, then the control selection method is probably not appropriate. This question should be 210 

asked at the study design phase, when the source of potential controls is being determined.  211 

Community controls 212 

In many contexts, it is good practice to seek controls in the community in which the case 213 

resides, since those living in the community are most reflective of those who would be identified as 214 

cases if they were to fall ill62. The community from which the cases are derived from can be defined in 215 

various ways, depending on the study context and the available options for identifying controls. 216 

Population-based lists, such as birth registries or population-based databases in which the cases are 217 

included, can be used to randomly select potential controls65. For example, in studies of the 218 

pneumococcal conjugate vaccine in the US17 and Brazil66, birth registries were used to select potential 219 

controls, and in a study in Canada, controls were selected from a health insurance registry that included 220 

all residents in a province27.  Such lists should be comprehensive and inclusive, since selecting children 221 

from an incomplete list may limit generalizability62. The basis for the list must not be associated with 222 

receipt of vaccines (e.g. immunization registries that include only vaccinated children). Lists with the 223 

appropriate characteristics often do not exist or are incomplete in many resource-poor settings, 224 
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obviating this method for control selection. If such a list is used to identify controls, then cases not 225 

appearing in the list should be excluded. 226 

Alternatively, community controls may be sought geographically, for example, around a case’s 227 

place of residence. Children from the same geographic area often tend to be comparable with respect to 228 

underlying risk of disease and access to vaccination, and it is possible to match on, or adjust for, distance 229 

to healthcare facilities if there is concern about differential access to care. Matching by neighborhood 230 

can also help control for a variety of potential confounding factors that may be difficult to measure, such 231 

as socio-economic status or other barriers to vaccination65. Geo-mapping of the population in an area 232 

can provide a sample frame from which to select geographically-matched controls, as was done for a Hib 233 

vaccine case-control study in Bangladesh67. A less sophisticated, but more commonly employed, strategy 234 

is to identify the household of the case, and then walk in a random direction (e.g. by spinning a bottle) 235 

from that residence, seeking a suitable control from the nearest neighboring house. This method is 236 

based on the approach developed for vaccine coverage surveys15,21,58. Having standardized procedures 237 

for visiting potential control households is essential for reducing selection bias62. Procedures should 238 

include the requirement to visit non-responsive households multiple times and at different times of day 239 

before excluding their residents as potential controls, since children whose parents are not at home 240 

might be more or less likely to be vaccinated than children whose parents are at home. Enrolling 241 

community controls can be logistically challenging and resource-intensive, particularly when tight age-242 

matching criteria are used. Security concerns can also interfere with recruitment of community controls; 243 

investigators of Hib vaccine effectiveness in Colombia and Pakistan had to alter control recruitment 244 

strategies due to the safety risks associated with seeking neighborhood controls.24,68 Conducting control 245 

recruitment in locations that are safer or more convenient can induce substantial biases in the vaccine 246 

effectiveness measure if residence in those areas is associated with higher likelihood of vaccination.  247 
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Hospital or clinic controls 248 

Another common source of controls for case-control vaccine effectiveness studies are children 249 

hospitalized with illnesses other than the outcome of interest62. The specific inclusion criteria for 250 

hospitalized children to serve as controls must be carefully considered in the design phase of each study 251 

since the local conditions influence the risk of bias. Children who are hospitalized, particularly those with 252 

frequent or prolonged hospitalization, may differ in important ways, including vaccination history, from 253 

the general population; recruiting from among recently admitted children may avoid overenrolling 254 

children with severe prolonged illness as controls. Children hospitalized with vaccine-preventable 255 

diseases should be excluded as controls, as they are probably less likely to be vaccinated in general, 256 

including with the vaccine under study51,62. Where vaccines that protect against the most common 257 

childhood illnesses (e.g. gastroenteritis, pneumonia) are in routine use, and therefore children 258 

hospitalized with these illnesses cannot serve as controls, it may be challenging to identify enough 259 

eligible hospital controls31. In settings where access to health care is limited or hospitalization is largely 260 

restricted to certain subsets of children (e.g. children with malnutrition), then hospital controls may 261 

have the advantage of being relatively comparable to hospitalized cases with regards to access to care62. 262 

However, results of a study in such a context are only generalizable to children who would be 263 

hospitalized when ill.  264 

Controls can also be identified in out-patient clinics that cases would attend if ill65, an approach 265 

used for Hib vaccine effectiveness studies in Colombia68 and Ukraine23. However, if immunizations are 266 

delivered at the clinic, then controls attending the clinic would be more likely to be vaccinated than the 267 

general population, as was found in a study of tuberculosis vaccination in Brazil69. Thus, if outpatient 268 

clinics are to be used as a source of controls, they should be clinics where immunizations are not 269 

routinely provided. 270 
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Controls with same clinical syndrome who are ‘test-negative’ for the pathogen of interest  271 

Another potential source of controls is children who become ill with the same clinical syndrome 272 

as those with the outcome of interest, but whose illness is shown to have an etiologic pathogen not 273 

targeted by the vaccine under evaluation70-72. Examples of this approach include: rotavirus-negative 274 

gastroenteritis as controls for cases of rotavirus36,41,43, influenza-negative respiratory infection for cases 275 

of influenza71, pneumococcal  or non-purulent/Hib-negative meningitis as controls for Hib meningitis 276 

cases18,20, and non-vaccine serotype invasive pneumococcal disease for cases of vaccine-type invasive 277 

disease (also known as the ‘indirect cohort’ or ‘Broome’ method)73-77. This approach requires accurate 278 

diagnostic testing and sample collection at an appropriate time to diagnose the pathogen of interest in 279 

order to avoid misclassification. Imperfect test sensitivity and specificity leads to an underestimation of 280 

effectiveness using test-negative controls78. Some tests, such as culture of blood or cerebrospinal fluid, 281 

are too insensitive to reliably identify test-negative controls; however when such tests detect an 282 

etiology that is not preventable by vaccines included in the national schedule (e.g. pneumococcal 283 

meningitis for evaluation of Hib vaccine [before introduction of pneumococcal vaccine], or non-vaccine-284 

type pneumococcal bacteremia for evaluation of pneumococcal conjugate vaccine), such individuals can 285 

serve as controls. The validity of using test-negative controls has been demonstrated by re-analyses of 286 

data from randomized clinical trials of influenza70 and rotavirus79 vaccines that yielded effectiveness 287 

estimates very similar to the efficacy measured by the original trials.  288 

One major advantage of the test-negative approach is a high degree of comparability between 289 

cases and controls, since controls would have been enrolled as cases if they had the vaccine-preventable 290 

outcome of interest. It also offers logistical and cost advantages, since cases and controls can be 291 

recruited from within a single surveillance system. Also, since test results are often not available at the 292 

time of recruitment, bias in ascertainment of vaccination through knowledge of case-control status is 293 
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less likely. A limitation to this method is that it assumes the vaccine being evaluated has no effect on the 294 

incidence of test-negative cases who will serve as controls. For pneumococcal conjugate vaccines, this 295 

assumption may not be valid, since their widespread use has been associated with increases in non-296 

vaccine type pneumococcal carriage and disease incidence80. However, modeling work conducted in 297 

conjunction with indirect cohort analyses indicates that while increases in non-vaccine type disease (and 298 

carriage) among vaccinated individuals compared with the non-vaccinated can lead to overestimates of 299 

VE, the magnitude of the overestimation is relatively small, particularly if conducted before vaccine 300 

coverage is very high74,76. For influenza vaccine, models have similarly shown that even if influenza 301 

infection is presumed to provide transient non-specific immunity to all respiratory infections (and thus 302 

individuals vaccinated against influenza, who would not benefit from this immunity, would be over-303 

represented among non-influenza respiratory infection cases) the impact on effectiveness estimates 304 

derived from case-control studies using the test-negative design is minor72,81.    305 

Multiple control groups 306 

In some case-control vaccine effectiveness studies two or more types of control group are 307 

enrolled17,19,40,42. However, when the estimates of effectiveness differ by the control group used, the 308 

disparate results are difficult to interpret and communicate63. Multiple control groups may be useful for 309 

evaluation of study methods and identifying bias in different groups. In general, however, it is preferable 310 

to understand the study context well, to consider carefully the best control group before conducting the 311 

study,  and then to use one source of controls62.   312 

Matching 313 

Matching of cases and controls is often used in vaccine effectiveness studies to increase the 314 

statistical efficiency of the analysis and to attempt to control for unmeasured confounders64,65,82. 315 

However, overmatching, which occurs when the matching variable is strongly associated with 316 
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vaccination but not (or only weakly) with the illness, results in a loss of statistical power83.  Matching 317 

also greatly increases the operational complexity of enrolling controls. Matching in case-control vaccine 318 

effectiveness studies is most commonly done at an individual level, where each enrolled control is 319 

matched to a specific case based on certain criteria (e.g. date of birth or geographic region). An 320 

alternative approach is ‘frequency’ or ‘stratum’ matching, in which the group of controls is enrolled 321 

based on the frequency of certain characteristics among all cases (e.g. if 20% of cases are from a certain 322 

neighborhood, then controls are enrolled so that 20% are from that same neighborhood)10. Matching, if 323 

used, should be reserved for a limited number of important variables believed to be linked to both 324 

vaccination and disease (i.e. confounding), since unnecessary matching can lead to reduced efficiency in 325 

the analysis and substantially increases the complexity of study implementation65,82,84.   326 

Control to case ratio 327 

The preferred ratio of controls to cases depends upon the relative ease (and cost) of enrolling 328 

cases and controls. The statistically most efficient approach is equal numbers of cases and controls, if 329 

they are equally easy to enroll. If the number of cases is limited, increasing the number of controls per 330 

case will increase statistical power, but generally little additional power is gained by enrolling more than 331 

four controls per case62. However, for studies using individual matching in contexts where vaccine 332 

coverage is very high or very low, more than four controls per case should be considered, since case-333 

control sets in which all cases and controls have the same vaccination status will not contribute to the 334 

estimates of effectiveness. In contexts where controls are easy to enroll, for example from a population-335 

based registry29, then a higher control to case ratio may be used. 336 

 Timing of control enrollment 337 

For individually matched case-control vaccine effectiveness studies, controls should be enrolled 338 

concurrently (i.e. for each incident case enrolled, one or more new matched controls are enrolled from 339 
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the population at-risk). Rapid enrollment of matched controls can reduce recall bias, minimize difficulty 340 

obtaining compatible vaccination histories for cases and controls, and help ensure comparability 341 

between cases and controls with respect to unmeasured temporal factors that may affect the risk of 342 

developing the outcome of interest (e.g. outbreaks of viral respiratory infections increasing the risk for 343 

pneumococcal pneumonia). However, rapid enrollment of matched controls is not always feasible and 344 

risks regarding vaccine history can be mitigated if there is written documentation, with dates of 345 

administration, of vaccination status so that only doses received before the corresponding case became 346 

ill are considered.  347 

Conclusions 348 

Evidence of the protection afforded by new vaccines in the context of real-world immunization 349 

programs is important for accelerating and sustaining their uptake globally85,86. Case-control vaccine 350 

effectiveness studies, if carefully conducted, can provide such evidence, complementing data from 351 

randomized controlled trials as well as findings from other observational approaches, such as analyses 352 

of trends in disease incidence over time or cohort studies. Relative to other observational methods for 353 

vaccine evaluation, case-control studies have some advantages. They do not require a stable baseline of 354 

disease surveillance data prior to vaccine introduction and are often considerably less expensive to 355 

perform than cohort studies. Case-control vaccine effectiveness studies do not measure the actual 356 

impact of vaccine introduction on disease at a population level. However, when combined with data on 357 

pre-vaccine burden of disease and vaccine coverage, they can be used to provide insight into the public 358 

health impact of vaccines.  359 

The belief that case-control studies are quick and easy to carry out is misplaced.  Case-control 360 

vaccine effectiveness studies are complex and require rigorous planning and implementation. They are 361 

susceptible to various types of bias and, if not conducted rigorously and with careful planning, can 362 
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produce invalid and potentially misleading results. It is imperative that investigators understand the 363 

study context well to minimize bias and correctly interpret results. Case-control vaccine effectiveness 364 

studies are most likely to provide reliable information when assessing outcomes specific to the vaccine 365 

being evaluated (e.g. Hib meningitis rather than all clinical meningitis). Studies using nonspecific 366 

outcomes are particularly challenging and prone to misleading results; such studies should not be 367 

undertaken unless the investigators ensure a high level of rigor and complementary data assessing other 368 

more specific outcomes are available from the same or comparable population. Selection of an 369 

appropriate control group and close attention to potential sources of bias during control enrollment are 370 

crucial. While case-control studies can provide useful information to guide vaccine policy decisions and 371 

vaccine development, they must be thoughtfully planned and rigorously conducted.  372 
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