
Birth characteristics and all-cause mortality      1 

Birth characteristics and all-cause mortality: A sibling analysis 

using the Uppsala Birth Cohort Multigenerational Study 

 
 

Sol Juárez1,2, Anna Goodman,1,3 Bianca De Stavola3, Ilona Koupil1,4 

 

1 Centre for Health Equity Studies (CHESS), Stockholm University/Karolinska Institute, 

Stockholm, Sweden 

2 Division of Occupation and Environmental Medicine, Lund University, Lund, Sweden 

3 London School of Hygiene and Tropical Medicine, London, UK 

4 Department of Public Health Sciences, Karolinska Institute, Stockholm, Sweden 

 

Corresponding author:  S. Juárez, Centre for Health Equity Studies, Stockholm 

University/Karolinska Institute, Sveavägen 160, Sveaplan, Stockholm, Sweden. (Email 

sol.juarez@chess.su.se) 
 

Note: this is a personal version, created by Anna Goodman, of the text of the accepted 

journal article.  It reflects all changes made in the peer review process, but does not 

incorporate any minor modifications made at the proof stage.  The complete citation for 

the final journal article is:   

 Juárez, S., Goodman, A., De Stavola, B. & Koupil, I. 2016a. Birth characteristics 

and all-cause mortality: a sibling analysis using the Uppsala birth cohort 

multigenerational study. J Dev Orig Health Dis, 7, 374-83 

 DOI: 10.1017/S2040174416000179 

 
Copyright © and Moral Rights for this paper are retained by the individual authors and/or 

other copyright owners 

 

 

mailto:sol.juarez@chess.su.se


Birth characteristics and all-cause mortality      2 

Abstract 
 

This paper investigates the association between perinatal health and all-cause mortality 

for specific age intervals, assessing the contribution of maternal socioeconomic 

characteristics and the presence of maternal-level confounding. Our study is based on a 

cohort of 12,564 singletons born between 1915 and 1929 at the Uppsala University 

Hospital. We fitted Cox regression models to estimate age-varying hazard ratios of all-

cause mortality for absolute and relative birthweight and for gestational age. We found 

that associations with mortality vary by age and according to the measure under scrutiny, 

with effects being concentrated in infancy, childhood or early adult life. For example, the 

effect of low birthweight was greatest in the first year of life (HR 2.82) and then 

continues up to 44 years of age (HR between 1.19 and 1.51). These associations were 

confirmed in within-family analyses, which provided no evidence of residual 

confounding by maternal characteristics. Our findings support the interpretation that 

policies oriented towards improving population health should invest in birth outcomes 

and hence in maternal health. 

 

Keywords: mortality, life-course, birth weight, fetal development, Sweden. 

 

Abbreviations: CI, confidence interval; OR, odd ratio; LBW, low birthweight; SGA, 

small-for-gestational age; LGA, large-for-gestational age; AGA, adequate birthweight-

for-gestational age; pyar, person-years  
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Introduction 

 
Birthweight is both a maternal reproductive health outcome and a neonatal health 

indicator, and has been shown to be associated with several outcomes later in life. 

Birthweight (mainly in the form of low birthweight (LBW)) has been associated with 

intellectual impairment 1,2, and with specific morbidities including obesity, coronary heart 

disease, type-2 diabetes, hypertension, and metabolic syndrome, among others 3-6. 

Moreover, extensive literature shows an association between birthweight and mortality; 

LBW individuals have a higher probability of dying earlier compared to those with 

normal birthweight 7-13. The fact that this association is not confined to early life 

mortality7,11,12,14,15  but is also observed in adulthood 7,8,11-13,16,17suggests that the early-

life environment may alter susceptibility to develop a disease across the life-course18. 

These findings are interpreted as evidence of the ‘Developmental Origins of Health and 

Diseases’ (DOHaD)19.  

 

Despite the abundant evidence showing an association between birthweight and 

mortality, there still remain some important knowledge gaps and questions. For example, 

due to data limitations, most studies only explore associations using very wide age 

intervals13,17,20 and with few exceptions7,13,17 have been conducted in young 

cohorts9,11,12,20. For example, a recent meta-analysis 8  concluded that birthweight appears 

to be a predictor of all-cause mortality at fairly young to middle adult ages, but was 

unable to examine whether this was also the case at older ages because of a lack of 

studies. 

 

The potential confounding role of social determinants is another aspect requiring further 

investigation21. Birthweight is considered to be a result of both biological and social 

determinants that interact in the womb when human nature is particularly “plastic” 

(sensitive) to environmental stimuli22,23. Thus, early-life socioeconomic characteristics 

may be associated with a higher risk of mortality through “fetal programming”3 or other 

mechanisms associated with unequal opportunities and material disadvantages 24. Very 

few studies,16 however, explicitly examine the contribution (as confounders or modifiers) 

of early-life social characteristics to the association between perinatal health and all-

cause mortality. In addition, although some studies12,16 adjust for social characteristics in 

childhood, such information might be incomplete leading to residual confounding. This 

relates to a broader challenge in population-based studies, namely to establish how far 

associations between perinatal health and mortality reflect confounding by unmeasured 

(or mismeasured) environmental or genetic characteristics related to the mother. A 

previous study estimated that 49% of the total individual variance in birthweight was 

explained by maternal-level characteristics,25 and attempting to minimise maternal 

confounding is therefore crucial. One way to deal with such confounding, and to 

strengthen the evidence for causality, is to compare siblings with discordant exposures 

(e.g., one was born low birthweight and the other was not). 

 

Our study aims to address these gaps by studying the association between perinatal health 

indicators (gestational age, absolute and relative birthweight-for-gestational age) and all-

cause mortality during different age intervals in cohorts followed between 1915 and 
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2009. This study further aims to assess the contribution of socioeconomic factors to these 

relationships, and use sibling analyses to investigate the potential contribution of 

unmeasured family-level confounding. 

 

Methods 

 
Study population 

 

Our study is based on the first generation of the Uppsala Birth Cohort Multigenerational 

Study (UBCoS Multigen) (www.chess.su.se/ubcosmg/), which comprises all live births at 

Uppsala University Hospital between 1915 and 1929.26,27 Follow-up started from birth 

and continued until death, emigration or December 31, 2009, whichever was earliest. 

From a total of 14,192 live births, we excluded multiple births (n = 444), as their growth 

rate is reduced in the final trimester.28 We additionally excluded 6% of singleton births 

because of missing data on birthweight (n=101), gestational age (n=398), parity (n=1), 

maternal age (n=1), marital status (n=29) and parental occupation (n=370). We further 

excluded subjects if the recorded gestational age was below the biological viability 

threshold of 22 weeks (n=2) or if the individual could not be traced after their birth 

(n=282). The total sample size was 12,564 subjects (89% of all live births) of whom 53% 

were males. 

 

Explanatory variables 

 

Table 1 presents the exposure variables of interest. Birthweight was classified into lower 

weight (<3000 g), normal weight (3000-3999 g) and macrosomia (>4000 g). Gestational 

age was categorized into preterm (<37 gestational weeks), term (37-41 weeks) and post-

term (>42 weeks). Relative birthweight (birthweight for gestational age) was calculated 

by standardising birthweight on a week-by-week basis, standardising separately for males 

and females. We used the means and standard deviations observed in UBCoS for the 

13,599 members of the total cohort who were born at 30 or more completed weeks (i.e. 

an internal reference).  For the 86 children born at 22-29 weeks we used external 

reference data29 adjusted for birth weight distributions observed within our cohort; full 

details available in the Supplementary Material. We then categorized birthweight for 

gestational age using standard percentile thresholds: infants below the 10th percentile 

were “small-for-gestational age” (SGA), infants between the 10th and the 90th percentiles 

were “adequate-birthweight-for gestational age” (AGA), and infants above the 90th 

percentile were “large-for-gestational age” (LGA). Family socioeconomic information 

was derived based on the Swedish socio-economic classification scheme,30 using father’s 

occupation if recorded (80%) or otherwise using mother’s occupation (20%).31 

Occupational social class was categorized into higher and intermediate non-manual 

workers (including e.g. physicians, academic professions, teachers and engineers), 

entrepreneurs and farmers, lower non-manual, skilled manuals, unskilled manuals 

(manufacturing sector), unskilled manuals (service sector) and house-daughters (women 

who live with their parents at the moment of giving birth). Marital status was classified 

into two groups: married and single/divorced/widowed. Mother’s age was categorized 

http://www.chess.su.se/ubcosmg/
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into four groups <24, 25–29, 30-34 and 35+ years old. Parity was assessed as 1, 2, 3, and 

>4, and birth years into three groups: 1915-1919, 1920-1924 and 1925-1929. 

 

Statistical Analysis  

 

We fitted Cox regression models defined on the age time scale. Because of expected time 

varying effects of the exposures of interest (absolute and relative birthweight, and 

gestational age) we allowed for interactions between the exposures and categorised age, 

with bands: <1, 1-4, 5-29, 30-44, 45-59, 60-69, 70-79 and 80+ years.  These age bands 

follow the categorization used by the World Health Organisation,32 with two 

modifications.  First, we disaggregated the first age interval (0-4) into two groups in order 

to investigate infant mortality (<1) and child mortality (1 to 4) separately. Second, to 

increase power, we collapsed the central age groups (5-14 and 15-29) which contained 

only small number of deaths and there was no evidence of heterogeneity between these 

age groups. From these Cox regression models we derived estimates of age-band specific 

hazard ratios of overall mortality, with 95% confidence intervals derived from robust 

standard errors to account for within family correlations. We performed random effects 

meta-analysis to estimate l-squared statistics, and used this to test whether there was 

evidence of heterogeneity between the effects estimated at different ages.  

 

To assess the extent to which family socioeconomic characteristics confounded the 

association between each exposure and mortality, we first estimated models with minimal 

adjustment (adjusted for sex, birth year and mutual adjustment for birthweight and 

gestational age); secondly we included maternal age and parity; and finally we included 

socioeconomic information (i.e., parental socioeconomic status and marital status). We 

also assessed whether the associations between perinatal variables and mortality were 

modified by socioeconomic status or gender. The significance of exposure effects and 

their interactions with age, gender and socio-economic status were assessed using Wald 

tests 33.  

 

In order to explore whether unobserved maternal-level confounding affected the results, 

we additionally conducted within-family (sibling) analyses by comparing outcomes of 

siblings born to the same mother (i.e., 5,843 (47%) newborns nested in 2,323 mothers). 

This approach was originally designed34 and used in previous studies35 for linear 

predictor variables. This paper uses an extension for binary predictor variables. To do this 

we first assigned each cohort member a binary variable for a predictor in question, e.g. 0 

for ‘not SGA’ and 1 for ‘SGA’. We then created for each subject a ‘between-mother’ 

variable representing the average across all the mother’s offspring (e.g. the proportion of 

their children who were SGA) and a ‘within-mother’ variable representing the departure 

of each individual from that mean (e.g. the cohort member’s own SGA status minus the 

mother’s average: equations in the Supplementary Material).  We then used Wald tests to 

compare the effect sizes of these two variables when entered simultaneously into Cox 

regression analyses: if they differed significantly we interpreted this as evidence of 

residual maternal-level confounding 34. If associations were entirely the product of such 

confounding, one would expect the within-mother effect to be (i) significantly weaker 

than the between-mother effect (in the case of positive confounding) or stronger than the 
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between mother (if the confounding is driven by negative confounding) and (ii) not 

significantly different from zero. When comparing the between and within mother effect 

sizes  we adjusted for sex, year of birth, mother’s age, parity, and other birth information 

in order to control for those characteristics which may differ between siblings (i.e., 

temporal confounding).36  

 

We present descriptive statistics stratified by gender, but pool males and females in our 

main analyses as there was never convincing evidence of interactions between birth 

outcomes and gender with respect to mortality were not significant (all p≥0.15 in tests for 

interaction in the total sample; all p≥0.04 in tests for interaction in specific age strata). 

Combining the genders also had the advantage of increasing statistical power.  

 

All analyses were performed using Stata, version 13, software (StatCorp, LP, College 

Station, Texas). This study was approved by the Regional Ethics Committee in 

Stockholm. 

 

Results  
 

Table 1 shows the distribution of the number of subjects at risk, deaths from all causes, 

and death rates per 1000 person-years (pyar) by different levels of the explanatory 

variables. As expected, higher death rates were observed among lower birthweight and 

SGA subjects (≈11/1000 pyar) as well as among preterm subjects (13/1000 pyar). The 

death rate was higher among males than females (11/1000 pyar vs 9/1000 pyar) and it 

progressively increased with parity. Offspring from mothers younger than 24 and older 

than 35 had higher death rates (≈10/1000 pyar) than those at central ages. As expected, 

there was a higher death rate among offspring of unmarried mothers (12/1000 pyar) and 

of mothers with low socioeconomic status (≈10/1000 pyar). Figure 1 shows lower 

survival curves for lower birthweight, SGA, and preterm subjects in all ages. Preterm was 

the exposure with the highest survival differences relative to the reference category. 
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Table 1. Characteristics of the analyzed population, number and proportion of deaths, and mortality 

rates. Uppsala Birth Cohort Multigenerational study, 1915-1929 (N=12,564) 
  Male (6,600; 53%)   Female (5,964; 47%)   

  
No. 

participants 

(%) 

No. 

deaths 

by end 

of 

follow-

up 

Rate per 1000 

(95% CI)  

No. 

participants 

(%) 

No. 

deaths 

by end 

of 

follow-

up 

Rate per 1000 

(95% CI)  

Birthweight (g)             

Lower  942 (14%) 728 13.5 (12.6,14.6) 1211 (20%) 765 9.8 (9.1,10.5) 

Normal  4559 (69%) 3369 10.9 (10.6,11.3) 4109 (69%) 2443 8.2 (7.9,8.5) 

Macrosomia 1099 (17%) 795 10.7 (9.9,11.4) 644 (11%) 394 8.6 (7.8,9.4) 

Birthweight/Gestational age             
SGA 670 (10%) 516 12.8 (11.7,13.9) 589 (10%) 366 9.4 (8.6,10.5) 

AGA 5243 (79%) 3877 11.1 (10.7,11.4) 4807 (81%) 2883 8.4 (8.1,8.7) 

LGA 687 (10%) 499 10.6 (9.8,11.7) 568 (10%) 353 8.6 (7.8,9.6) 

Gestational age (weeks)             

Preterm 548 (8%) 441 15.0 (13.7,16.5) 449 (8%) 307 11.5 (10.3,12.8) 

Term 5298 (80%) 3891 10.9 (10.6,11.3) 4749 (80%) 2831 8.3 (8.0, 8.6) 

Post-term 754 (11%) 560 10.9 (10.0,11.9) 766 (13%) 464 8.6 (7.8,9.4) 

Parity             

1 2582 (39%) 1901 11.0 (10.5,11.5) 2333 (39%) 1380 8.3 (7.8,8.7) 

2 1544 (23%) 1148 11.2 (10.6,11.9) 1407 (24%) 834 8.2 (7.7,8.8) 

3 852 (13%) 618 11.0 (10.1,11.9) 821 (14%) 511 8.9 (8.2, 9.7) 

>4 1622 (25%) 1225 11.6 (11.0,12.3) 1403 (24%) 877 9.1 (8.5,9.7) 

Maternal age (years)             

<24 2111 (32%) 1601 11.5 (11.0,12.1) 1975 (33%) 1186 8.4 (8.0,8.9) 

25-30 1878 (28%) 1383 10.9 (10.4,11.5) 1627 (27%) 995 8.6 (8.1,9.1) 

30-34 1308 (20%) 945 11.0 (10.3,1.7) 1213 (20%) 718 8.2 (7.7,8.9) 

>35 1303 (20%) 963 11.2 (10.5,12.0) 1149 (19%) 703 8.8 (8.2,9.5) 

Marital status             

Married 5286 (80%) 3846 11.0 (10.5,11.2) 4741 (79%) 2837 8.4 (8.1,8.7) 

Single/divorced/widowed 1314 (20%) 1046 12.6 (11.8,13.4) 1223 (21%) 765 9.0 (8.4,9.7) 

Maternal SES              

Higher and mediate non-

manual 
584 (9%) 382 9.7 (8.9,10.7) 

493 (8%) 272 7.6 (6.8,8.6) 

Entrepreneurs and farmers 1202 (18%) 833 10.2 (9.5, 10.9) 1019 (17%) 573 7.9 (7.2, 8.5) 

Lower non-manual 462 (7%) 353 11.7 (10.6,13.0) 415 (7%) 252 8.6 (7.6, 9.8) 

Skilled manuals 906 (14%) 679 11.2 (10.4,12.0) 875 (15%) 546 8.7 (7.8, 9.4) 

Unskilled manuals, 

production 
1839 (28%) 1411 11.7 (11.1,13.6) 

1660 (28%) 1044 9.0 (8.4,9.5) 

Unskilled manuals, 

service 
1260 (19%) 962 11.7 (11.0,12.5) 

1153 (19%) 709 8.7 (8.0,9.3) 

House-daughters 347 (5%) 272 12.1 (10.8,13.6) 349 (6%) 206 8.7 (7.6,9.9) 

Birth year             

1915-1919 1720 (26%) 1584 14.0 (13.4,14.7) 1540 (26%) 1272 11.5 (10.9,12.12) 

1920-1924 2236 (34%) 1730 11.5 (11.0,12.1) 2029 (34%) 1272 8.9 (8.4, 9.4) 

1925-1929 2644 (40%) 1578 9.0 (8.6,9.5) 2395 (40%) 1058 6.3 (5.9,6.7) 

Abbreviations: SES: Socio-economic status     
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Fig. 1. Kaplan–Meier survival curves by absolute (a), relative(b) birth weight and gestational age (c) 

stratified by gender. 
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Table 2 shows the estimated associations between absolute birthweight and all-cause 

mortality at different ages with different levels of adjustment. Lower birthweight 

offspring had a higher rate of death than those with normal weight overall, but there was 

strong evidence that the strength of this effect differed according to age group (p<0.001 

for heterogeneity).  Specifically, the effect was largest in the first year of life and then 

continued up to 44 years of age (although it did not reach significance at the interval 1-4 

years, plausibly because of low statistical power). These results were similar after partial 

and further adjustment for maternal and family characteristics. There was also never 

evidence in the sibling analysis that the between-mother and within-mother effect size 

differed for those age groups that show a higher risk (Fig. 2). In other words, among 

offspring of the same mother, the risk of increased mortality was specific to the infant 

born at lower birthweight and not to his or her siblings born at a normal birth weight. 

This provides evidence that the effects observed in Table 2 do not include residual 

maternal-level confounding, and supports the interpretation that lower birthweight has a 

causal effect on all-cause mortality.  

 

 
Table 2. Survival analysis (Hazard Ratios, 95% Confidence Intervals) for absolute birthweight (ref. 

3000-3999 gr) and all-cause mortality by age intervals and level of confounding control.  

    Lower birthweight 
 

Macrosomia 
 

   Total no. Minimal Adj. 1 Adj.2 Minimal Adj. 1 Adj.2 

  subjects HR HR HR HR HR HR 

  (no. failures) CI-95% CI-95% CI-95% CI-95% CI-95% CI-95% 

All ages 12,564 (8494) 1.18*** 1.20*** 1.20*** 0.99 0.98 0.98 

    (1.11,1.26) (1.12,1.28) (1.12,1.27) (0.93,1.06) (0.91,1.04) (0.92,1.04) 

By age intervals  
      

<1 12564 (765) 2.82*** 2.88*** 2.86*** 1.24 1.18 1.17 

    (2.41,3.29) (2.45,3.37) (2.43,3.35) (0.97,1.58) (0.92,1.50) (0.91,1.49) 

1-4 11792 (266) 1.19 1.28 1.28 0.71 0.64 0.64* 

    (0.87,1.64) (0.93,1.77) (0.92,1.77) (0.47,1.07) (0.43,0.97) (0.42,0.97) 

5-29 11516 (376) 1.41* 1.46** 1.46** 1.14 1.08 1.09 

    (1.07,1.84) (1.11,1.92) (1.11,1.92) (0.86,1.52) (0.81,1.45) (0.081,1.45) 

30-44 11087 (258) 1.51* 1.59** 1.58** 1.52* 1.47* 1.46* 

    (1.08,2.11) (1.13,2.23) (1.13,2.22) (1.10,2.09) (1.06,2.02) (1.06,2.02) 

45-59 10796 (838) 0.91 0.93 0.92 0.88 0.86 0.87 

    (0.74,1.12) (0.75,1.15) (0.74,1.13) (0.73,1.08) (0.71,1.05) (0.71,1.07) 

60-69 9915 (1288) 1.06 1.06 1.07 1.01 1.00 1.01 

    (0.90,1.24) (0.91,1.25) (0.91,1.26) (0.86,1.19) (0.85,1.18) (0.86,1.19) 

70-79 8602 (2322) 1.00 1.00 0.99 0.97 0.97 0.98 

    (0.88,1.13) (0.88,1.13) (0.87,1.12) (0.86,1.09) (0.86,1.10) (0.87,1.11) 

>80 6274 (2381) 1.01 1.02 1.01 0.95 0.94 0.93 

    (0.90,1.14) (0.90,1.15) (0.89,1.14) (0.84,1.07) (0.83,1.06) (0.83,1.06) 

Test for heterogeneity 

 across age bands in  

minimally-adjusted analyses    I2 = 90%, p<0.001                                                 I2 =  40%, p=0.114 

* p<0.05, ** p<0.01, *** p<0.001. Minimal (birth year, sex, and gestational age), Adjusted 1 (minimal +  

parity and maternal age), Adjusted 2 (Adj.1 + marital status and socioeconomic status).  

Abbreviations: Hazard ratios (HR), CI (Confidence Intervals). 
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Fig. 2. Sibling analysis for the effect of lower v. normal birth weight by age band. Log, logarithm; 

HR, hazard ratio 

 
 

Pooling all age ranges, the effects of macrosomia on mortality were not significant 

(p=0.11) and there was no very clear pattern to the age-specific estimates. There was an 

indication of higher mortality rates in the age group 30-44 but the null result of the test 

for heterogeneity suggests that this may be due to chance. As such, we believe that the 

pooled effect estimate is the more appropriate effect estimate for macrosomia.   

 

Table 3 shows the associations between birthweight-for-gestational age and all-cause 

mortality at different ages with different levels of adjustment. There was strong evidence 

of heterogeneity by age group in the effects of SGA (p<0.001 for heterogeneity). 

Compared to AGA subjects, SGA subjects showed a trend towards a higher mortality rate 

up to 44 years of age, although the differences were larger during the first year of life, 

and were only statistically significant during the first year of life. The sibling analysis 

indicated that there was no evidence that residual maternal-level confounding explained 

the higher rate of mortality among SGA subjects at all these ages (Fig. 3).  
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Table 3. Survival analysis for relative birthweight (reference AGA) and all-cause mortality by age 

intervals. 

    SGA 
  

LGA 
  

   Total no. Minimal Adj. 1 Adj.2 Minimal Adj. 1 Adj.2 

  subjects HR HR HR HR HR HR 

  (no. failures) CI-95% CI-95% CI-95% CI-95% CI-95% CI-95% 

All ages 12,564 (8903) 1.19*** 1.21*** 1.20*** 0.96 0.94 0.95 

    (1.11,1.29) (1.12,1.30) (1.12,1.30) (0.90,1.03) (0.88,1.01) (0.88,1.02) 

By age intervals  
      

<1 12564 (765) 2.56*** 2.60*** 2.58*** 0.92 0.88 0.87 

    (2.15,3.06) (2.17,3.11) (2.15,3.08) (0.70,1.19) (0.67,1.14) (0.67,1.13) 

1-4 11792 (266) 1.26 1.35 1.35 0.62 0.56* 0.56* 

    (0.87,1.84) (0.93,1.97) (0.92,1.97) (0.38,1.01) (0.34,0.92) (0.34,0.92) 

5-29 11516 (376) 1.20 1.25 1.25 0.95 0.90 0.90 

    (0.87,1.67) (0.90,1.74) (0.90,1.74) (0.67,1.34) (0.63,1.28) (0.63,1.28) 

30-44 11087 (258) 1.31 1.39 1.39 1.10 1.05 1.05 

    (0.89,1.93) (0.94,2.04) (0.94,2.05) (0.74,1.63) (0.70,1.56) (0.70,1.57) 

45-59 10796 (838) 1.01 1.03 1.02 0.91 0.89 0.90 

    (0.80,1.28) (0.81,1.31) (0.80,1.30) (0.73,1.15) (0.71,1.12) (0.71,1.13) 

60-69 9915 (1288) 1.03 1.04 1.04 1.01 1.00 1.01 

    (0.86,1.25) (0.86,1.25) (0.86,1.26) (0.85,1.21) (0.83,1.20) (0.84,1.22) 

70-79 8602 (2322) 1.01 1.02 1.00 0.91 0.91 0.92 

    (0.88,1.17) (0.88,1.17) (0.87,1.15) (0.79,1.05) (0.79,1.05) (0.80,1.06) 

>80 6274 (2381) 1.10 1.10 1.09 1.05 1.04 1.04 

    (0.95,1.26) (0.95,1.27) (0.94,1.26) (0.92,1.19) (0.91,1.18) (0.91,1.18) 

Test for heterogeneity 

 across age bands in  

minimally-adjusted analyses         I2 =  84%, p<0.001                                          I2 =  9%, p=0.357 

* p<0.05, ** p<0.01, *** p<0.001. Minimal (birth year, sex and gestational age), adjusted 1 (minimal + 

parity and maternal age), adjusted 2 (adj.1 + marital status and socioeconomic status).  

Abbreviations: Hazard ratios (HR), CI (Confidence Intervals), Adequate birthweight-for-Gestational-Age 

(AGA), Small-for-Gestational-Age (SGA), Large-for-Gestational-Age (LGA). 
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Fig. 3. Sibling analysis for the effect of small age v. adequate for-gestational age by age band. Log, 

logarithm; HR, hazard ratio. 

 
Table 4 shows the association between categories of gestational age with different levels 

of adjustment. There was strong evidence that this effect differed across different age 

groups (p<0.001 for heterogeneity), with this being driven by an increased mortality risk 

among infants born preterm during the first year of life. There was also a trend towards 

an increased risk between ages 1-4, although this was not statistically significant, 

suggesting a weakening effect of preterm birth as age increases. Above age 4 there was 

generally little or no evidence of an increase in mortality. As was the case for lower 

birthweight and SGA, the sibling analysis indicated that the higher risk of mortality 

among preterm subjects did not reflect residual confounding at the maternal level (Fig. 

4).   
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Table 4. Survival analysis for gestational age (reference= term births) and all-cause mortality by age 

group.  

    Preterm 
  

Post-term 
  

  Total no. Minimal Adj.1 Adj.2 Minimal Adj.1 Adj.2 

  subjects HR HR HR HR HR HR 

  (no. failures) CI-95% CI-95% CI-95% CI-95% CI-95% CI-95% 

All ages  12,564 (8903) 1.31*** 1.31*** 1.28*** 1.06 1.05 1.04 

    (1.20,1.43) (1.20,1.43) (1.17,1.40) (0.99,1.13) (0.99,1.12) (0.97,1.11) 

By age intervals  
      

<1 12564 (765) 3.13*** 3.10*** 3.04*** 1.09 1.07 1.06 

    (2.64,3.72) (2.61,3.68) (2.56,3.61) (0.85,1.39) (0.84,1.38) (0.83,1.36) 

1-4 11792 (266) 1.38 1.37 1.33 1.04 1.01 1.00 

    (0.91,2.09) (0.91,2.08) (0.88,2.02) (0.71,1.52) (0.69,1.47) (0.68,1.46) 

5-29 11516 (376) 0.90 0.89 0.88 1.02 1.02 1.01 

    (0.59,1.36) (0.58,1.36) (0.58,1.34) (0.75,1.39) (0.74,1.38) (0.74,1.37) 

30-44 11087 (258) 0.90 0.89 0.88 1.07 1.06 1.05 

    (0.53,1.51) (0.53,1.49) (0.52,1.48) (0.75,1.53) (0.74,1.52) (0.73,1.50) 

45-59 10796 (838) 1.16 1.15 1.12 1.01 1.00 0.99 

    (0.88,1.52) (0.88,1.51) (0.86,1.47) (0.82,1.25) (0.81,1.24) (0.80,1.23) 

60-69 9915 (1288) 1.22 1.21 1.19 1.03 1.02 1.01 

    (0.98,1.51) (0.98,1.50) (0.96,1.48) (0.86,1.22) (0.86,1.21) (0.85,1.20) 

70-79 8602 (2322) 0.90 0.89 0.88 1.08 1.08 1.06 

    (0.74,1.08) (0.74,1.08) (0.73,1.06) (0.96,1.22) (0.95.1.22) (0.94,1.20) 

>80 6274 (2381) 1.17 1.17 1.16 1.07 1.06 1.05 

    (1.00.1.38) (1.00,1.38) (0.98,1.36) (0.94,1.21) (0.94,1.21) (0.93,1.19) 

Test for heterogeneity 

 across age bands in  

minimally-adjusted analyses         I2 =  89%, p<0.001                                            I2 =  0%, p=0.999 

* p<0.05, ** p<0.01, *** p<0.001. Minimal (birth year, sex and birthweight), adjusted 1 (minimal + parity 

and maternal age), adjusted 2 (adj.1 + marital status and socioeconomic status). Abbreviations: Hazard 

ratios (HR), CI (Confidence Intervals). 
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Fig. 4. Sibling analysis for preterm v. term by age band. Log, logarithm; HR, hazard ratio. 

 
 

Finally, subjects born LGA or born post-term did not show a statistically significant 

different mortality rate compared to those born at term, and this was consistent across 

age-bands (both p=0.99 for heterogeneity). 

 

With regard to these effects on mortality in the pooled sample, neither socioeconomic 

status nor gender showed evidence of an interaction with absolute birthweight, relative 

birthweight or gestational age (all p-values >0.05, and most p>0.2). There was likewise 

no convincing evidence of interactions in equivalent analyses stratified by age group, 

with the exception of marginal evidence in the age group 5-29 that the effects of a) 

relative birthweight and b) gestational age were stronger in women (both p=0.04). In the 

context of multiple testing, however, this is likely to be a chance finding. We also tested 

for statistical interactions between perinatal health and socioeconomic characteristics on 

mortality but found no effect modification was found (p value>0.05).  

 

Discussion 
 

Summary of results 

 

This study provides evidence that both absolutely and relatively small newborns, as well 

as those born preterm, have a higher risk of mortality. However, these associations 

significantly differ by age intervals and according to the measure under scrutiny. Thus, 

while preterm birth is associated to a higher rate of all-cause mortality up to 4 years of 

age, lower birthweight and SGA appear to be associated with a higher mortality rate up 

until 44 years of age. We did not find evidence that observable early-life socioeconomic 

disadvantage explains or modifies the association between perinatal health and mortality. 

Our sibling analyses support this conclusion, and also indicate that the observed effects 

are not likely to reflect residual confounding at the maternal level.  

 

Consistency with other research 

 

Like many other studies,7-9,11-14 we found that birthweight was associated with all-cause 

mortality. Our results support a previous hypothesis that birthweight specifically predicts 
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mortality at fairly young to middle adult ages, rather than at older ages,8 since lower 

birthweight and SGA was associated to mortality up to 44 years of age. The effect 

observed in younger adult ages is consistent with one previous study which found a 

higher risk of all-cause mortality between 15-49 years16.  

 

In line with another Swedish study carried out in a more contemporary context (Swedish 

men and women born 1973-2008)20, we did not find a U-shaped association between 

birthweight and all-cause mortality at all ages – that is, we did not find a higher overall 

mortality rate among macrosomic subjects. There was some indication of a U-shaped 

association between birthweight and mortality in the age interval 30-44 which is 

consistent with another study (using the Danish School-based cohort, 1936-1979) 9, that 

found similar evidence in a larger age window 25-68. Our finding of an effect at age 30-

44 should, however, be interpreted with caution as the test for heterogeneity suggests that 

it may simply be due to chance.  

 

The association between preterm birth and mortality in infancy and early childhood (up 

to 4 years of age) is consistent with a previous study conducted in Norway37, although 

unlike that study we did not find any effect for an effect of post-term birth in these age 

bands.      

 

Like previous studies9,20,38, we do not present analyses stratified by gender, because we 

did not find evidence of effect modification after testing for interactions of perinatal 

health and gender in their effect on mortality. Finally, in accordance with earlier 

studies12,16,20 the inclusion of observable early-life socioeconomic characteristics does not 

explain the association between perinatal health and all-cause mortality.  

 

Originality 

 

Our study is unique in assessing the association between birthweight and all-cause 

mortality with a focus on specific age intervals. Moreover, we investigated the potential 

contribution of unobserved familial confounding using a sibling design. Although one 

previous study 20 assessed this association looking for evidence of family-level 

confounding, the latter used fixed-effect models while we applies an approach that 

allowed formal statistical comparisons of between-mother versus within-mother effects. 

Our study is also original in that it focuses on the specific contribution of socioeconomic 

circumstances, not only as a possible confounder, but also as a modifier of the association 

between birthweight and all-cause mortality.  

 

Strengths and limitations 

 

The study is based on a unique historical data source which allows us to follow an almost 

complete cohort across their life-span. Although restricted to births in one hospital in 

Uppsala, this data has been shown to be representative of Sweden in 1915-1929.39  

Moreover, this cohort provided us with the possibility to better assess the association 

between macrosomia and mortality since, in contrast to studies based in contemporary 

settings, birthweight was not affected by obstetric interventions such as today’s planned 
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caesarean-sections in cases of suspected macrosomia 40. Other strengths include 

systematically testing for gender interactions, and examining associations not only with 

absolute birthweight but also with relative birthweight and with gestational age.  The use 

of a family-based design is another important strength that benefits from the large 

numbers of siblings that we have in our cohort.  

 

A potential limitation of this study is that observable socioeconomic characteristics may 

provide partial information, insofar as some parents of our cohort members were young 

adults who might still be consolidating their occupational position. Moreover, on other 

relevant confounders (e.g, maternal health status) we lack data altogether.  Although 

these limitations are mitigated by our application of a sibling design, we cannot exclude 

the existence of residual temporal confounding (i.e., confounding by factors that differ 

between siblings). In addition, insofar as we identify siblings based on sharing the same 

biological mother, some heterogeneity will be introduced by the presence of half-siblings. 

 

Another drawback in our design is that some decisions were driven by sample size 

limitations. Thus, we could not use the usual definition of low birthweight fixed at 

<2,500g. and we used instead a higher cut of point (<3,000g). Likewise, small numbers 

meant that we had to create a heterogeneous category of ‘unmarried mothers’ that 

combined single, divorced and widowed mothers. 

 

Implications for future research 

 

Our findings open new questions and hypotheses. Further studies focusing on specific 

causes of death by age intervals are needed. Such studies will allow assessment of 

whether the lack of association observed in this study between birth characteristics and 

mortality at older ages could reflect the offsetting effect of disease-specific associations 

in opposite directions. Previous studies, including ones also using the UBCoS Multigen 

dataset, suggest this might be the case; lower birthweight and SGA have been associated 

with higher rates of cardiovascular disease7,38, while macrosomia has been associated 

with a higher rate of breast, prostate, endometrial and colon cancer  4,15,41-43.  

 

Our study suggests that the effect of lower birthweight and SGA, lasts longer across the 

life course (up to age 44) than the effect of preterm birth, although the effect of preterm is 

stronger during the first year of life. Further investigation is needed to confirm this 

evidence, which contradicts the general expectation, that gestational age is a stronger 

predictor of short and long-term survival than birthweight 37,44.   

 

Conclusion 

 

Light, small, and preterm newborns have a higher rate of mortality. These associations 

vary by age and measure under scrutiny. The associations with birthweight and 

gestational age were mostly confirmed in the sibling analysis, indicating that any residual 

maternal confounding is limited. Our findings support the message that policies oriented 

towards improving population health should invest in improving birth outcomes and 

hence, in maternal health. 
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Appendix 1 - Supplementary Material 

 
Standardised birthweight for gestational age 

 

We first cleaned the data to identify infants with implausibly large birthweights given 

their gestational age. Following Ekholm et al. (2005) these were defined as gestational 

age ≤28 completed weeks and birthweight >2000g, gestational age 29-30 weeks and 

birthweight >2500g, gestational age 31-32 weeks and birthweight >3000g, and 

gestational age 33 or 34 weeks and birthweight >3500g.  We also added a further 

exclusion category of gestational age ≤25 weeks and birthweight >1500g. This identified 

a total of 83 children with incompatible birthweights and gestational ages, for whom we 

recoded both birthweight and gestational age as missing.   

 

We then calculated standardised birthweight for gestational age on week-by-week basis 

separately for males and females.  This was done using the observed mean and standard 

deviation for that week within the UBCoS cohort for the 13 599 infants born at 30 or 

more completed weeks (i.e. an internal reference).  For the 86 children born at 22-29 

completed weeks, there were insufficient numbers of children in each category to use this 

internal reference method and we therefore used external reference data. Because no 

normative data for this range of gestational lengths exists for this historical population we 

instead used data from a large population-based sample of Canadian births from 1994-6 

(Kramer et al., 2001).  This was selected as the only reference data we could find which 

presents means and standard deviations for as low as 22 weeks; by contrast the youngest 

reference data we could find from Swedish reference data was 28 weeks (Niklasson et al., 

1991).  The Canadian data also has the advantaged of presenting the results separately by 

sex and in tables (and not just in graphs) and of having used sophisticated techniques to 

clean and smooth the data.  The infants in this Canadian reference data weighed an 

average of 162g less than the Uppsala sample, however, with no evidence of a difference 

in the size of this offset across the 22-29 week range or between boys and girls (p-values 

for interaction>0.7).  We therefore again followed the methodology of Ekholm et al. 

(2005) in always adding 162g to the mean of the Canadian reference data before 

calculating birthweight for gestational age in our cohort, but leaving the value of the 

standard deviations unchanged.  For the six infants born at 21 completed weeks or less, 

we left their birthweight for gestational age as missing. 

 

References 
Ekholm, K., J. Carstensen, O. Finnstrom, and G. Sydsjo. 2005. The probability of giving birth among 

women who were born preterm or with impaired fetal growth: a Swedish population-based registry study. 

Am J Epidemiol 161:725-33. 

Kramer, M.S., R.W. Platt, S.W. Wen, K.S. Joseph, A. Allen, M. Abrahamowicz, B. Blondel, and G. Breart. 

2001. A new and improved population-based Canadian reference for birth weight for gestational age. 

Pediatrics 108:E35. 

Niklasson, A., A. Ericson, J.G. Fryer, J. Karlberg, C. Lawrence, and P. Karlberg. 1991. An update of the 

Swedish reference standards for weight, length and head circumference at birth for given gestational age 

(1977-1981). Acta Paediatr Scand 80:756-62. 

 



Birth characteristics and all-cause mortality      21 

Comparison of between-mother and within-mother effects 

 

Among our explanatory variables, maternal age and the offspring birth characteristics are 

primarily properties of individual children not families. This allowed us to make within-

family comparisons of the effect of  these characteristics, and so examine whether any 

overall associations we saw might reflect residual confounding by family (mostly 

maternal) characteristics. To do this we created two versions of each child variable to be 

included into Cox proportional hazards models, a ‘between-mother’ version representing 

the average characteristic of all the offspring of each mother (e.g. their mean gestational 

age) and a ‘within mother’ version representing the departure of each child from that 

mean. The general form of the fitted Cox proportional hazards model for these analyses 

is: 

hjk(t) = h0(t) exp (β1ӯj + β2(yjk – ӯk) + α1Z1jk + α2Z2jk +... ) 

where hjk(t)’ represents the hazard of dying at age t for child j in family k, h0(t) is the 

baseline hazard at time t; ӯk is the average value of y (the variable of interest, for 

example: birthweight categorized into 1 ‘LBW’- and 0 ‘not LBW’) across the kth 

mother’s offspring (range 0 to 1, equivalent to the proportion of mother’s offspring born 

with LBW); (yjk – ӯk) is the departure of the jth child of the kth mother from that average 

(range -1 to 1, and is necessarily zero for children with no siblings); andZ1jk , Z2jk , etc. are 

other variables adjusted for in the model, while  β1, β2, α1, etc are  associated coefficients. 

In this model, β1 captures the between-mother effect of y and β2 captures the within-

mother effect.  

 

To test for residual confounding due to maternal characteristics we compared the 

estimated effects of the between-mother and within-mother variables, that is we tested 

whether β1=β2.  If the within-mother effect was significantly different from the between-

mother effect we interpreted this as evidence of residual maternal-level confounding 

(Mann et al 2004).  If maternal-level confounding were generating spurious associations 

due to positive confounding for example, then one would expect the within-mother effect 

(β2) to be weaker than the between-mother effect; if maternal-level confounding were the 

entire explanation for any association, one would expect β2 to be non-significantly 

different from zero.  
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Birthweight cross-tabulated against gestational age 

Gestational 

Age N Mean 

Standard 

deviation Min Max P10 p90 

22 7 709 182 510 1000 510 1000 

23 2 780 141 680 880 680 880 

24 4 845 245 560 1150 560 1150 

25 6 970 158 840 1240 840 1240 

26 9 1020 133 750 1200 750 1200 

27 7 1203 174 1010 1440 1010 1440 

28 12 1331 237 990 1700 1030 1680 

29 19 1537 425 900 2400 1060 2400 

30 15 1788 311 1200 2400 1510 2230 

31 35 1924 537 1050 2970 1290 2850 

32 41 2190 463 1360 2990 1570 2790 

33 85 2423 537 1120 3495 1730 3170 

34 135 2567 485 1300 3500 1950 3230 

35 210 2980 591 1080 4910 2260 3790 

36 410 3053 518 1250 5250 2430 3700 

37 742 3194 478 1400 4490 2610 3800 

38 1472 3307 466 1400 5370 2730 3880 

39 2675 3439 445 1960 5350 2890 4000 

40 3159 3546 456 1830 5350 3000 4140 

41 1999 3624 476 1990 5500 3050 4210 

42 905 3655 494 2260 5300 3020 4310 

43 342 3613 508 2310 4850 3000 4335 

44 155 3612 534 1870 5300 2900 4260 

45 78 3631 510 2090 5500 3050 4220 

46 36 3739 620 2600 5260 3010 4600 

47 4 3715 600 3150 4520 3150 4520 

Total 12564 3431 553 510 5500 2790 4100 

 

 

 

 

 

 


