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Abstract
For most of us the foundations of our understanding of genetics were laid by considering
Mendelian diseases in which familial recurrence risks are high and mutant alleles are both
necessary and sufficient. One consequence of this deterministic teaching is that our
conceptualisation of genetics tends to be dominated by the notion that the genetic aspects of
disease are caused by rare alleles exerting large effects. Unfortunately the preconceptions that flow
from this training are frequently erroneous and misleading in the context of common traits, where
familial recurrence risks are modest and for the most part the relevant alleles are neither rare, nor
necessary or sufficient. For these common traits the genetic architecture is far more “complex”
with susceptibility rather than causality resulting from the combined effects of many alleles each
exerting only a modest effect on risk. None of these alleles are sufficient to cause disease on their
own and none are essential for the development of disease. Furthermore most are carried by large
sections of the population the vast majority of whom don’t develop the disease. One consequence
of our innate belief in the Mendelian paradigm is that we have an inherent expectation that
knowledge about the genetic basis for a disease should allow genetic testing and thereby accurate
risk prediction. There is an inevitable feeling that the same should be true in complex disease, but
is it?

What is the underlying genetic architecture in a complex trait?
The enormous size of the human population coupled with the extreme length of the genome
sequence means that even though any two individuals typically only differ by 0.1% at the
genomic level there are still billions of variants prevalent in the population as a whole.1
International efforts to identify and catalogue human genetic variation, such as Hapmap
(http://www.hapmap.org) and the 1000 genome project (http://www.1000genomes.org),
have provided empirical support for the expected inverse relationship between the frequency
of a variant allele and the number of variant alleles with the same frequency. Common
variants, where both alleles have a frequency of greater than 1%, are far less numerous than
rare variants. On the other hand common variants account for most (90%) of the difference
between any two individuals.1 With approximately 10–15 million common variants and
billions of rare variants in the human population, identifying which are relevant in any given
disease has proven to be extremely challenging.2
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In principle each and every genetic variant is likely to have some effect upon function and
thereby upon the risk of disease; under this ultimate polygenic/biometric model3 all variants
are expected to exert some effect on risk. However, the effects attributable to individual
variants are likely to differ greatly with some exerting much larger effects than others, and
most exerting little or no meaningful effect. Under this model we expect that both rare and
common variants will influence the risk of a disease, with the relative contributions varying
between diseases.4 At a population level the prevalence and familial recurrence risks of a
disease are a reflection of the combined effects of the prevailing risk allelic architecture (see
BOX 1).5, 6 In this context Mendelian disease can be seen to represent an unusual extreme
in which a few rare variants exert profound effects and familial recurrence risks are
maximal.

BOX 1

Consider three populations that differ only in terms of the frequency of a single risk allele
and are equivalent in all other respects (see Fig B1a). In accordance with the number of
individuals carrying the risk allele the prevalence of disease will be highest in population
C and lowest in population A. On the other hand, for reasons which are perhaps less
intuitively obvious, familial recurrence risk will be greatest in population B and
uninfluenced by this particular risk allele in the other two populations. In population A
no-one carries the risk allele, while in population C everyone is homozygous for the
allele. In these populations then the rate of risk allele carriage is unrelated to disease
status and therefore the frequency of this risk allele is no greater in the relatives of
affected individuals than it is for unaffected individuals. In population B, on the other
hand, affected individuals are more likely to carry the risk allele than unaffected
individuals and therefore the recurrence risk will be increased in the relatives of affected
individuals who will necessarily also have a higher rate of carrying this allele. In short
while prevalence reflects the combined burden of risk alleles in the population as a
whole, familial recurrence risk is a reflection of the variation in the risk burden between
individuals. The greater the extent to which individuals vary in terms of their genetically
determined risk the greater will be the extent of familial clustering. For example in a
Mendelian dominant trait the risk varies considerably between individuals, being
effectively zero in individuals who don’t carry the risk allele and complete in those who
do. In this situation disease is effectively only seen in the relatives of affected
individuals. The extent of familial clustering is thus a reflection of the extent to which
genetic risk varies between individuals.

Clayton22 and Pharoah et al.35 have shown that under a biometric model log(risk) in the
population will be approximately normally distributed with a mean (μ) and a variance
(σ2) that are determined by the population prevalence (K) and the sibling recurrence risk
(λs) according to the formulae shown below

The figures in this paper are plotted using these approximations to estimate the
distribution of risk in the population. It is worth noting that the distribution of risk in
cases has the same variance but a mean of loge(K) + σ2/2. The risk profiles of the cases
and controls thus overlap to an extent which is dependent upon λs. Even if λs for multiple
sclerosis were > 40 there would still be a substantial proportion of cases (14%) that had
levels of risk below the 95th percentile risk seen in the general population (see Fig B1b).
The percentage of lower risk cases would only fall below 10% for diseases where λs was
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> 72. At a λs of 10 almost a third of cases have a level of risk below the 95th percentile of
risk seen in the general population.

Risch suggested that λs, the relative recurrence risk in the siblings of an affected individual,
was a useful way to summarise the amount of familial clustering in a disease5 and showed
that this value could easily be partitioned between relevant loci5 and was predictive of the
power to identify linkage.7 By definition λs is the ratio between the lifetime risk of the
disease in the siblings of an affected individual and the lifetime risk of the disease in the
general population. Both of these risks are difficult to measure reliably and Guo has pointed
out that in general the denominator will be underestimated while the numerator will be
overestimated.8 As a result estimates of λs are almost always positively biased. Review
articles frequently specify λs but rarely provide much guidance to the data behind these
quoted values. These data are often remarkably difficult to track down and invariably
associated with wide confidence intervals which are rarely, if ever, acknowledged in
reviews. As epidemiological studies have become larger and more discriminating the value
of λs has fallen in almost all complex traits, including multiple sclerosis (see Fig 1).9–15 In
a recent attempt to integrate available epidemiological evidence relating to multiple sclerosis
Butterworth found that the lifetime incidence in multiple sclerosis is likely to be higher than
previously estimated, a fact which would further reduce the λs.16 The real value for λs
seems likely to be very much less than 10 if not less than 5.

Mathematical model of risk
The relationship between recurrence risk and the degree of relatedness can provide a useful
guide to the mathematical model which most closely reflects the underlying genetic risk
architecture.5 In multiple sclerosis such segregation analysis suggests that a multiplicative
model with one major risk allele and many minor alleles provides the optimal fit.5, 17 This
result is unsurprising given the biometric notion that susceptibility is likely to be determined
by multiple variants, if not to some extent by all variants. In this situation we would expect
log(risk) to be normally distributed, since a normal distribution results from the sum of a
large number of random variables (see BOX 1). In multiple sclerosis the relationship
between relative recurrence risk and relatedness is decidedly non-linear (see Fig 2).10, 12,
13, 18 These data are consistent with a multiplicative model and imply that significant
heterogeneity is unlikely.4 The linkage data in multiple sclerosis concords with these
predictions confirming that there is just one major risk allele in the disease, DRB1*1501.19
Based on the linkage data the locus specific λs for the MHC region as a whole is 1.5 while
all other loci of relevance in multiple sclerosis have a λs of ≪1.2.19

Predicting disease
Prior to any form of assessment all individuals in a population have the same risk of disease
(the population prevalence). In multiple sclerosis this prior risk is low (0.001).20 Although
susceptibility loci have only modest individual effect on this prior probability the ability to
discriminate those who will, from those who will not, develop the disease inevitably
increases with each additional relevant locus considered.21 It turns out, however, that even
if all relevant loci were known and tested disease can only be reliably predicted in relatively
few individuals, unless λs is very large.22 For multiple sclerosis λs is at best 10 indicating
that very few individuals (<0.1%) would have a risk of greater than 10% (see Fig 3). The
distribution of risk shown in the figure reflects the combined effects of all risk alleles
(known and as yet unknown) and thus represents the maximum level of information that
could possibly be defined genetically. It is clear that the vast majority of the population have
a very similar level of risk, indeed on average the relative risk of the disease between any
two individuals is just 11.3, a rather limited value in the context of a disease with a
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prevalence of 0.001. In other words most of the population carry risk alleles but only a very
few individuals carry a substantially larger than average number of these alleles. In principle
an individual could be homozygous for all known risk alleles and thereby have a very high
risk of disease. However, such individuals are extremely uncommon. Most individuals carry
similar levels of genetically determined risk and relatively few individuals can have their
ultimate disease status accurately predicted from genetic testing (see BOX 2).23

BOX 2

It seems reasonable to expect that the ability to predict who will develop multiple
sclerosis would have meaningful clinical benefits, such as allowing expensive, invasive
or potentially dangerous preventative strategies to be reserved for those at greatest risk.
At first sight it also seems possible, if not probable, that genetic testing might enable such
prediction. If all variants influencing susceptibility to multiple sclerosis had been defined
then in principle a “diagnostic chip” could be created which would accurately genotype
all these variants, determine an individual’s genetic risk (genetic profile39) and thereby
discriminate between those who will and those who will not develop the disease.
Unfortunately although this is a seductive logic in practice this approach would be
unlikely to be useful in multiple sclerosis (see Fig 3).

For example if we used this chip to screen a population of 100,000 newborns then on
average we would identify just 64 individuals with a risk of ≥ 10%. Ultimately only 14 of
these would actually develop the disease. Since 100 of the screened individuals would
ultimately be expected to develop multiple sclerosis it is also clear that this genetic
screening effort would have missed most of the eventual cases (86/100). Including
gender in our assessment adds very little extra, in a population of 100,000 (50,000 males
and 50,000 females) we would expect to identify 61 females with a risk of ≥ 10% and 10
males with a risk of ≥ 10%. This total of 71 at risk individuals is greater than the 64 we
were able to identify based on genetics alone, reflecting the extra information we gained
by including gender in the assessment.

The relative proportion of false positives and false negatives clearly depends upon the
threshold we choose to define people as being “at risk”. The Receiver Operating
Characteristic (ROC) curve provides a useful way to summarise such data,40 (see Fig
B2). Considering the ROC for the hypothetical chip described above shows that 50% of
the cases occur amongst the 1.6% of the population that are at greatest risk. At first sight
these figures seem appealing and suggest that perhaps genetic profiling might provide a
useful way to identify a significant proportion of those at risk. However the low absolute
risk of multiple sclerosis (the prevalence, 0.001) implies a low positive predictive value,
meaning that even within this high risk group, those who will ultimately develop the
disease constitute only 3% of the total. If a preventative strategy were applied in this
setting the majority of those treated would be exposed unnecessarily (97%) and the cost
per case prevented would be >30 times the unit cost of the intervention. In considering
these numbers it is worth remembering that this level of risk (3%) is approximately the
same as the familial recurrence risk in close relatives of affected individuals suggesting
that a program in which preventative treatments were simply given to those with a family
history of the disease might be as effective, and would of course completely avoid the
need for genotyping. In other words in multiple sclerosis genetic profiling would add
very little beyond that which could already be deduced from family history, as with other
traits with strong familial clustering.24

For interventions that are safe, non-invasive and cheap (i.e. cost less per person than the
cost of genotyping) screening would be pointless since it would be far more cost effective
to simply apply such interventions to the whole population in an unselected fashion. If
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the cost of an intervention were high, then the absolute cost of a preventative programme
would be prohibitive even if screening by genotyping were free. Clearly there is a middle
ground where a program might be affordable (particularly when weighed against the full
cost of the disease prevented) in this situation screening might provide a means to
maximise the benefit from any investment by identifying those at greater risk. However
the health and financial costs to the large numbers of false positives (treated) and false
negative (un-treated) individuals would have to be very low if this were to be a useful
approach.

In considering the issue of prediction it is also worth remembering that most of the
individuals at very high risk will have a family history of the disease (even if they don’t
eventually develop multiple sclerosis), and thus to some extent this genetic analysis is
adding relatively little additional information that cannot already be inferred from family
history.24 In some sense then this logic has come full circle, those individuals with the
highest genetic risk will largely declare themselves ahead of typing by virtue of the fact that
they will have affected relatives.

To date nine non-MHC susceptibility alleles have been established in multiple sclerosis (see
Table)25–28 with many more expected to follow in the next few years. Together with the
risk attributable to the MHC all known loci account for a λs of approximately 1.6. The
distribution of risk attributable to the currently known susceptibility alleles (MHC and non-
MHC) is considerably more limited than that due to all loci (see Fig 4). It is clear from this
figure that based on current knowledge genetic screening would only be able to identify a
very few individuals with at worst a modest 1% risk of developing the disease.

Can genetic testing help with differential diagnosis or prognosis?
Once an individual develops symptoms consistent with multiple sclerosis the prior
probability of the disease goes up significantly, and we could therefore imagine that genetic
testing might be more useful in helping to refine diagnosis rather than predict disease.
However, in this setting the utility of the testing depends on typing SNPs which differentiate
multiple sclerosis from the alternate diagnoses rather than from the general background
population. It is not clear that susceptibility SNPs will achieve this unless the pathogenesis
of the alternate diagnoses are clearly distinct (have a different underlying genetic
architecture). In the case of clinically isolated syndromes (CIS) for example it seems likely
that those cases which do not progress to multiple sclerosis are simply milder versions of the
same disease process. In this setting it is unlikely that the genetic architecture underlying
cases that do not relapse will be significantly different from that underlying multiple
sclerosis itself. Thus although the prior probability of multiple sclerosis must be higher in
Neurology outpatient clinics the utility of testing susceptibility SNPs is likely to be reduced.
The more distinct the alternate diagnosis the easier it will be to differentiate them from
multiple sclerosis on clinical grounds. In other words in those settings where genetic testing
might help with differential diagnosis it is likely that this will not be so challenging
clinically. Whenever genetic testing might help it seems likely that it won’t be needed.

Once the diagnosis of multiple sclerosis is established we might ask if genetic testing could
help in predicting disease features such as course or severity. Unfortunately available
evidence suggests that the genetic influences on clinical features are significantly less
marked than those influencing susceptibility.29 It is thus unsurprising that there has been
little if any progress in identifying genetic variants that influence the course or the severity
of the disease. It remains possible that such variants could be identified but unless they were
unexpectedly more influential than the effects determining susceptibility it seems unlikely
that testing will be any more productive than in the case of susceptibility.
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One consequence of the biometric model is that affected individuals are inevitably highly
heterogeneous in terms of the particular set of susceptibility alleles they carry.23 In this
setting high levels of clinical heterogeneity might simply reflect the underlying
heterogeneity in the distribution of risk alleles amongst cases. For example severity might
simply correlate with the absolute level of genetic risk. Once sufficient risk alleles are
identified it should be possible to test this theory. If this were confirmed then genetic testing
might contribute some information distinguishing CIS from multiple sclerosis.

Additional non-genetic risk factors
Even without genotyping we know of a number of factors which influence the risk of
developing multiple sclerosis. Gender is the most obvious example. Compared with the
population as a whole (see Fig 3) the risk for females is shifted to the right while that for
males is shifted to the left (see Fig 5). These shifts are modest and have little effect on the
number of individuals at the extreme of risk. In other words supplementing the risk
assessment on the basis of non-genetic risk factors such as gender has little effect on the
extent to which useful inferences about absolute risk can be made. It is clear that combining
extra information from demographic and perhaps ultimately environmental risk factors (e.g.
past history of infectious mononucleosis or smoking) is sure to improve risk prediction but it
seems unlikely that this will compensate for the effects of the low prior probability of
developing multiple sclerosis unless considerable risk could be accounted for or there was
some form of strong interaction between genetic and environmental risk factors.

Conclusion
The logic and conclusions outlined above are probably applicable to most complex traits.
For most λs has almost certainly been over-estimated in the past and is in reality likely to be
≪ 10. In this setting the multiplicative biometric model indicates that very few individuals
will carry a level of genetically determined risk that would allow confident prediction. This
situation is common in medicine where we are familiar with the fact that for many
conditions the majority of cases arise in the very large number of people at modestly
increased risk rather than the few people who are at very high risk (c.f. blood pressure in
stroke or coronary heart disease).30 Of course the utility of genetic testing could be very
much better if in fact susceptibility to multiple sclerosis is determined by a multitude of very
rare alleles each exerting very large effect. However, the available data makes this extremely
unlikely. Segregation analysis is against significant heterogeneity,5, 17 large extended
families are practically unheard31 of and there is no significant evidence for linkage outside
of the MHC.19 Indirect evidence from Genome-Wide Association Studies suggests that the
polygenic/biometric model is likely the most relevant.32 Given the phenomenal progress
made in the genetic analysis of complex disease over the last few years33 it was inevitable,
and appropriate, that researchers should consider what role this new knowledge might play
in matters such as disease prediction. It was equally inevitable that some would anticipate
great benefits34–36 and others recommend caution.22, 23, 37 In multiple sclerosis our
analysis suggests that the relatively low prevalence and modest levels of familial clustering
seen in this disease mean that genetic profiling is unlikely to be of clinical benefit except in
unusual circumstances. It seems to us that we should not be distressed by the fact that no
matter how completely we understand the genetic basis for susceptibility to multiple
sclerosis we will rarely be able to predict who will develop disease: this was never the
primary goal of these endeavours. The extent to which these discoveries influence an
individual’s risk of developing disease is only one, rather unimportant as it turns out,
dimension in which their relevance might be measured. In terms of the Population
Attributable Fraction (PAF) (the proportion of cases which would disappear if a risk factor
were removed from a population38) these loci can be seen to represent enormous effects
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(see table). In considering the value of these new discoveries we should also remember that
to date virtually all that have been identified are associated anonymous variants, and it will
take considerable further work to understand these associations. Efforts at fine mapping to
establish the causal variants and functional studies to fully understand how these variants are
involved in pathogenesis are only just beginning. Ultimately it is these aspects that are likely
to be the most rewarding and enlightening. It is too soon to judge what value these
discoveries will ultimately yield but these benefits seem likely to be profound.

Our discourse is not intended to undermine the entire notion of genetic profiling, only to put
this issue into a more pragmatic and realistic context. For a disease like multiple sclerosis,
where prevalence and λs are modest, it seems unlikely that risk profiling will find any
meaningful role in clinical practice; on the other hand such profiling could prove to be of
much greater value in a research setting. The power of functional studies could be enhanced
by concentrating on controls with lower levels of risk and cases with higher levels of risk.
Similarly unaffected individuals with high risk and affected individuals with low risk could
be especially informative when trying to understand the role of the environment. As genetic
factors influencing natural history and response to treatment emerge, prognostic and
pharmacogenomic profiling might have far more clinical utility. For other diseases with
much higher prevalence or considerably greater λs risk profiling might have clinical utility
especially if prediction could be focused on higher risk subgroups as defined by additional
information from non-genetic testing or demographic features.35
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Figure 1.
The figure shows how estimates of λs in multiple sclerosis have tended to decline over time.
In chronological order the studies shown have come from Sadovnick et al.9, Robertson et al.
10, Carton et al.11, Prokopenko et al.12, Willer et al.13, Nielsen et al.14 and Hemminki et
al.15
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Figure 2.
This figure shows the relative recurrence risks in relation to the degree of relatedness as
observed in three population based studies UK (green line),10 Sardinia (red line)12, 18 and
Canada (blue line).13

Sawcer et al. Page 11

Ann Neurol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The figure shows the probability density (frequency) for differing levels of genetically
determined risk of developing multiple sclerosis. Risk is plotted on the x-axis on a log scale.
In keeping with the assumption that risk is determined by a very large number of
independent risk alleles each exerting a modest multiplicative effect the curve is plotted with
log(risk) normally distributed with a mean determined by the population prevalence (0.001)
and a variance determined by λs (here taken to be 10, a value which is likely to be an
overestimate),22, 35 see BOX 1. The vertical line indicates the risk of disease in all
individuals prior to genotyping, i.e. the prior probability (the population prevalence). As can
be seen from the curve only a very small proportion (<0.1%) of the population have a risk of
greater than 10%. It should be remembered that the approximation to a normal distribution
will breakdown at the extremes where the distribution will become binomial.
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Figure 4.
The figure shows the probability density (frequency) for differing levels of genetically
determined risk attributable to currently known multiple sclerosis susceptibility loci (MHC
plus those in the table). The vertical line indicates the population prevalence (0.001). The
variance in the normal distribution of the plotted curve is based on a λs of 1.6, see BOX 1.
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Figure 5.
The figure shows the probability density (frequency) for differing levels of risk (as
determined genetically and by gender) separately for males (green line) and female (purple
line). These curves were calculated by assuming that the prevalence of disease is 0.0015 in
females and 0.0005 in males. This effectively treats the risk attributable to gender as if it
were due to a known set of “pseudo genetic” factors. This assumes that there is no
interaction between gender and genetically determined risk, i.e. that risk allele frequencies
and odds ratios are the same in males and females, a condition which seems likely to hold.41
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Figure B1.
Figure B1a. The figure depicts three populations which are equivalent in all respects except
for the frequency of a single risk allele which is absent from Population A, has a frequency
of 50% in population B and a frequency of 100% in population C. Plain circles indicated
unaffected individuals while stars indicate affected individuals. Empty shapes are
homozygous for the wild type allele, while full shaded shapes are homozygous for the risk
allele and half shaded shapes are heterozygous. Note within populations A and C this risk
allele would show no evidence of association even if the effect it exerted were enormous
(the allele frequency is the same in cases and controls in these populations). This is an
illustration of why allele frequency is so important in association studies.
Figure B1b. The figure shows the % of cases which will have a risk at or above the 95th

percentile risk seen in the background population for differing levels of λs.
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Figure B2.
This figure shows the ROC for a hypothetical “diagnostic chip” capable of accurately
genotyping all relevant multiple sclerosis susceptibility loci; in terms of prediction this
represents the best scenario we could hope to achieve. This curve indicates how sensitivity
and specificity vary as the threshold for defining individuals as being at risk is changed from
extremely high risk on the left through to extremely low risk at the right. Sensitivity is the
proportion of individuals who will eventually develop the disease that are correctly labelled
as being at risk (plotted on the y-axis). While specificity is the proportion of individuals who
will not develop the disease that are correctly labelled as not being at risk (1-specificity is
plotted on the x-axis). In considering this curve it is important to remember that the
population prevalence of multiple sclerosis is only 0.001. Thus in a population like the UK
the x-axis covers some 60million individuals while the y-axis covers just the 60,000 affected
individuals. The dotted line indicates the null relationship that would occur if the genetic
data had no ability to predict risk of developing disease.
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