
Appendix A – Algorithms 

 

1. Sensitivity/Specificity Imputation Analysis (SS)  

A. Fixed-parameter bias-sensitivity analysis (SS FBA) 

To begin, we estimated the associations between the misclassified smoking status and the 

other variables by fitting the following unconditional logistic regression model to the 

misclassified data: 

   yccycCyYXP YCCY   0,1logit             (1) 

We specified initial values 
0Se  for sensitivity and 

0Sp  for specificity, which were set to 

combinations of the following values: 0Se  (0.7, 0.8, 0.9) and 0Sp  (0.8, 0.9, 1) (Table A1). 

For each combination, FBA was applied according to the following steps: 

i. Estimation of  1*  XP    for each individual using the fitted model (1) 

coefficients and their values of y and c. 

ii. Restriction of 
0Se  and 

0Sp  according to the following equations in order to confine 

 1 TP  to values between 0 and 1 

 *0 ˆ,max SeSe  ;  *0 ˆ1,max  SpSp  

where 
*̂ are the estimates of  *  for each individual obtained in i. 

iii. Calculation of the positive predictive values (PPV) and the negative predictive values 

(NPV) according to the following equations 
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iv. Calculation of the frequencies of subjects in each strata CYT   from PPV and NPV 

v. Estimation of the C-adjusted ln ORTY 



vi. Use of the jackknife procedure[21, 22] to account for the uncertainty in the estimation 

of 
*̂  (reiteration of steps i. to v. for each ‘leave one out’ sample from the original 

data) and calculation of the interval estimate for ln ORTY  from the jackknife standard 

error (SE). 

 

B. Probabilistic bias-sensitivity analysis (SS PBA) 

We assumed that self-reported smoking status was better than chance [18] (i.e. sensitivity and 

specificity were both greater than 0.5). Logit-transformed scaled normal prior distributions 

were therefore specified for sensitivity and specificity so that both parameters would fall in 

the interval [0.5,1]. Specifically, we defined 
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with normal prior distributions on   and  , as specified in Table A1. In order to determine 

the parameters for these prior distributions, we first chose 95% limits for sensitivity and 

specificity, converted these limits into limits for   and   by solving the above equations, 

and calculated prior means and prior standard deviations for   and   from these limits. 

 

The association between misclassified smoking status and the other variables was then 

estimated by again fitting model (1) to the data. 

PBA was implemented via the following MCSA algorithm: 

i. For 10,000 iterations 

a. Estimation of  1*  XP    for each individual using the estimated model 

(1) coefficients 

b. Random draws of 
0Se  and 

0Sp from their prior distributions 



c. Restriction of 
0Se  and 

0Sp :  *0 ˆ,max SeSe  ;  *0 ˆ1,max  SpSp  

where 
*̂ are the estimates of  *  for each individual obtained in a. 

d. Calculation of PPV and NPV for each individual  

e. Calculation of the frequencies of subjects in each strata CYT   from PPV 

and NPV 

f. Estimation of the C-adjusted ln ORTY 

g. Use of the jackknife procedure to account for the uncertainty in the estimation 

of 
*  (reiteration of steps a. to f. for each ‘leave one out’ sample from the 

original data) and calculation of the jackknife standard error of ln ORTY. 

h. Perturbation of ln ORTY with its jackknife standard error: TYRO
~

ln  = random 

draw from a normal distribution with mean = ln ORTY and standard deviation 

= jackknife SE(ln ORTY) 

ii. Computation of the mean, median, and 2.5th and 97.5th percentiles from the 

distribution of the 10,000 ln ORTY and TYRO
~

ln  estimates, and their antilogs. We refer 

to the resulting 2.5th and 97.5th simulation percentiles for ORTY and TYRO
~

 as 95% 

simulation limits (SL) for ORTY, under the given (possibly truncated) priors. 

 

  



Table A1 Priors on sensitivity and specificity for SS 

SS FBA 

  Values for sensitivity and specificity 

Set of priors  se0 sp0 

1  0.7 0.8 

2  0.7 0.9 

3  0.7 1 

4  0.8 0.8 

5  0.8 0.9 

6  0.8 1 

7  0.9 0.8 

8  0.9 0.9 

9  0.9 1 

SS PBA 

 
Priors parameters 

 mean (standard deviation) 
Means [95% limits] for sensitivity and specificity 

Set of priors    se0 sp0 

1 -0.41(0.5) 0.41(0.5) 0.7[0.60,0.82] 0.8[0.68,0.90] 

2 0.41(0.5) 1.39(0.5) 0.8[0.68,0.90] 0.9[0.80,0.96] 

3 0.41(1.5) 1.39(1.5) 0.8[0.54,0.98] 0.9[0.59,0.99] 

4 1.39(0.5) 3.89(0.5) 0.9[0.80,0.96] 0.99[0.97,1.00[ 

 

 

2. Direct Imputation Analysis (DI) 

A. Fixed-parameter bias-sensitivity analysis (DI FBA) 

The probability of being a ‘true’ ever-smoker P(T = 1) was estimated from a logistic 

regression (model (2)). 

   yccyxcCyYxXTP YCCYX   0,,1logit
          

   (2) 

where the xc and xy product terms are omitted because they are zero under nondifferential 

misclassification. 

 

We gave fixed values to all model (2) coefficients as shown in Table A2. The values were 

obtained by translating values for sensitivity, specificity, ln ORTY and prevalences of true 

smokers in strata of Y and C that had been chosen on the basis of published data, surveys and 

our prior assumptions. Details of the calculations are available in Appendix C. Unlike 

sensitivity and specificity, model (2) coefficients have no logical range restrictions.  

The following algorithm was then applied: 

 



i. Computation of ̂ , the estimate of  1TP  from model (2) and calculation of PPV 

and NPV for each individual 

ii. Calculation of the frequencies of subjects in each strata CYT   from PPV and NPV 

iii. Estimation of the C-adjusted ln ORTY and 95% CI. 

 

B. Probabilistic bias-sensitivity analysis (DI PBA) 

The probability of being a ‘true’ ever-smoker P(T = 1) was represented by model (2). 

We then placed normal prior distributions on all model (2) coefficients as shown in Table A2. 

Means and 95% limits for sensitivity, specificity, ln ORTY and prevalences of true smokers in 

strata of Y and C were translated into prior means and standard deviations for model (2) 

coefficients using the equations in Appendix B. In order to allow the comparison between DI 

PBA, SS PBA and the fully Bayesian analysis described next, the prior means, standard 

deviations and correlation for coefficients 0  and X  were estimated by simulation (see 

Appendix D for details). If DI PBA were used alone with no intent to compare it with other 

methods, parameters for the prior distributions of 0  and X  could be specified directly 

based on background information, without simulation. Appendix E provides an approximate 

estimate of the correlation X0  between 0  and X .  

The following MCSA algorithm was then applied: 

i. For 100,000 iterations  

a. Random draw of model (2) coefficients from their respective prior 

distributions 

b. Computation  of ̂ , the estimate of  1TP  from model (2) for each 

individual 

c. Imputation of T from a Bernoulli distribution with probability of success ̂  

d.  Computation of a C-adjusted ln ORTY from the imputed TYC data 



e. Perturbation of ln ORTY with the original XY random error: TYRO
~

ln = random 

draw from a normal distribution with mean= ln ORTY and standard deviation = 

SE(ln ORXY) 

ii. Computation of the mean, median, and 2.5th and 97.5th percentiles from the 

distribution of the 100,000 ln ORTY and TYRO
~

ln  estimates, and their antilogs. 

 



Table A2 Priors on model (2) coefficients for DI 

DI FBA 

 Fixed values Values for sensitivity, specificity, ORTY, ORTC, and prevalence of T=1 

Set of 
values 

 (a) (a) (a)  (a) 
sensitivity specificity ORTY(C=0) ORTC(Y=0) 

ORTY(C=1)/ 
ORTY(C=0) 

P(T=1|Y=0,C=0) 

1 -1.37 2.23 1.94 0.10 0.46 0.7 0.8 6.93 1.11 1.59 0.40 

2 -1.90 3.58 1.94 0.10 0.46 0.8 0.9 6.93 1.11 1.59 0.40 

3 -2.69 6.79 1.94 0.10 0.46 0.9 0.99 6.93 1.11 1.59 0.40 

4 -1.37 2.23 1.25 0.10 0.46 0.7 0.8 3.5 1.11 1.59 0.40 

5 -1.90 3.58 1.25 0.10 0.46 0.8 0.9 3.5 1.11 1.59 0.40 

6 -2.69 6.79 1.25 0.10 0.46 0.9 0.99 3.5 1.11 1.59 0.40 

7 -1.37 2.23 2.64 0.10 0.46 0.7 0.8 14 1.11 1.59 0.40 

8 -1.90 3.58 2.64 0.10 0.46 0.8 0.9 14 1.11 1.59 0.40 

9 -2.69 6.79 2.64 0.10 0.46 0.9 0.99 14 1.11 1.59 0.40 

DI PBA 

Set of 
priors

 

Priors parameters 

Means [95% limits] for sensitivity, specificity, ORTY, ORTC, and prevalence of T=1 
mean (standard deviation) 

Correlation  

(  , ) 

 (a) (a) (a)  (a)  sensitivity specificity ORTY(C=0) ORTC(Y=0) 
ORTY(C=1)/ 
ORTY(C=0) 

P(T=1|Y=0,C=0) 

1 -1.39 (0.23) 2.28 (0.47) 1.94 (0.7) 0.10 (0.35) 0.46 (0.35) -0.80 0.7[0.60,0.82] 0.8[0.68,0.90] 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

2 -1.92 (0.31) 3.64 (0.57) 1.94 (0.7) 0.10 (0.35) 0.46 (0.35) -0.72 0.8[0.68,0.90] 0.9[0.80,0.96] 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

3 -2.08 (0.93) 3.93 (1.66) 1.94 (0.7) 0.10 (0.35) 0.46 (0.35) -0.74 0.8[0.54,0.98] 0.9[0.59,0.99] 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

4 -2.71 (0.40) 6.81 (0.66) 1.94 (0.7) 0.10 (0.35) 0.46 (0.35) -0.65 0.9[0.80,0.96] 0.99[0.97,1.00[ 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

5 -1.92 (0.31) 3.64 (0.57) 1.25 (0.7) 0.10 (0.35) 0.46 (0.35) -0.72 0.8[0.68,0.90] 0.9[0.80,0.96] 3.5 [0.89,13.76] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

6 -1.92 (0.31) 3.64 (0.57) 2.64 (0.7) 0.10 (0.35) 0.46 (0.35) -0.72 0.8[0.68,0.90] 0.9[0.80,0.96] 14[3.55,55.26] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

0 X Y C YC

0 X

0 X Y C YC X0



 

3. Fully Bayesian analysis 

Prior distributions for Bayesian analysis were chosen to allow direct comparison between the 

three methods. The model was modified from Chu et al.[18] to include the sex C. 

We specified prior distributions for two groups of parameters: 

a) The sensitivity and specificity, defining the association between the ‘true’ smoking 

status T  and the misclassified smoking status X  

As in SS PBA, we defined:  
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and we placed normal prior distributions on   and  .  

  



b) The association of T with case/control status Y  and sex C  

The prevalence of ‘true’ smokers in the population was defined as a function of Y and C 

(model (3)).  

   yccycCyYTP YCCY   0,1logit                 (3) 

We placed normal prior distributions on all model (3) coefficients. The values for the 

parameters of these prior distributions were obtained by giving means and 95% limits to ln 

ORTY and prevalences of true smokers in strata of Y and C, and by converting those into prior 

means and standard deviations for 0 , Y , C , YC  using the equations in Appendix B. 

Unlike model (2) in DI, model (3) did not include the misclassified smoking status X as prior 

distributions were already specified for the association between T and X in a). Therefore, 

while DI model (2) coefficients 0 , C , Y  and YC  are functions of X, Y and C, model (3) 

coefficients 0 , Y , C , YC  only depend on Y and C. However, as seen in Table A3, since 

we are considering only nondifferential misclassification, the associations between T and Y 

and between T and C do not depend on X and hence 
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Markov Chain Monte Carlo (MCMC) in WinBUGS was used to sample from the posterior 

distribution. Two Markov chains were run using the block Gibbs sampler with 800,000 

iterations following 10,000 discarded for burn-in.  

 



In the first MCMC analysis, in order to allow direct comparison with SS PBA, we placed the 

same informative prior distributions on   and   as in SS PBA (see Table A1) while we 

placed vague prior distributions on 0 , Y , C  and  YC , as specified in Table A3.  

 

In the second MCMC analysis, in order to allow direct comparison with DI PBA (see Table 

A2), we placed informative distributions on all parameters as specified in Table A3. The 

simulation linking the prior distributions for coefficients  ,   and 0  to the prior 

distributions for DI PBA coefficients 0  and X  is described in Appendix D. We then 

placed the same prior distributions on Y , C , YC  as on Y , C , YC , respectively (Table 

A3). 

 

SAS and WinBUGS codes are available on request. 

 



Table A3 Prior distributions for the Bayesian (MCMC) analyses corresponding to SS PBA (MCMC Analysis 1) and DI PBA (MCMC Analysis 

2)  

 
 

Prior values 
mean (standard deviation) 

Means [95% limits] for sensitivity, specificity, ORTY, ORTC, and prevalence of T=1 

MCMC 
Analysis 

Set of 
priors     

0  
Y  C  YC  sensitivity specificity ORTY(C=0) ORTC(Y=0) 

ORTY(C=1)/ 
ORTY(C=0) 

P(T=1|Y=0,C=0) 

1 1 -0.41(0.5) 0.41(0.5) 0(2) 0(1.5) 0(4) 0(3) 0.7[0.60,0.82] 0.8[0.68,0.90] 1[0.05,18.92] 1[0.00,2540.21] 1[0,378.4] 0.5[0.02,0.98] 

2 0.41(0.5) 1.39(0.5) 0(2) 0(1.5) 0(4) 0(3) 0.8[0.68,0.90] 0.9[0.80,0.96] 1[0.05,18.92] 1[0.00,2540.21] 1[0,378.4] 0.5[0.02,0.98] 

3 0.41(1.5) 1.39(1.5) 0(2) 0(1.5) 0(4) 0(3) 0.8[0.54,0.98] 0.9[0.59,0.99] 1[0.05,18.92] 1[0.00,2540.21] 1[0,378.4] 0.5[0.02,0.98] 

4 1.39(0.5) 3.89(0.5) 0(2) 0(1.5) 0(4) 0(3) 0.9[0.80,0.96] 0.99[0.97,1.00[ 1[0.05,18.92] 1[0.00,2540.21] 1[0,378.4] 0.5[0.02,0.98] 

2 1 -0.41(0.5) 0.41(0.5) -0.39(0.07) 1.94(0.7) 0.1(0.35) 0.46 (0.35) 0.7[0.60,0.82] 0.8[0.68,0.90] 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

2 0.41(0.5) 1.39(0.5) -0.39(0.07) 1.94(0.7) 0.1(0.35) 0.46 (0.35) 0.8[0.68,0.90] 0.9[0.80,0.96] 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

3 0.41(1.5) 1.39(1.5) -0.39(0.07) 1.94(0.7) 0.1(0.35) 0.46 (0.35) 0.8[0.54,0.98] 0.9[0.59,0.99] 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

4 1.39(0.5) 3.89(0.5) -0.39(0.07) 1.94(0.7) 0.1(0.35) 0.46 (0.35) 0.9[0.80,0.96] 0.99[0.97,1.00[ 6.93[1.76,27.44] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

5 0.41(0.5) 1.39(0.5) -0.39(0.07) 1.25(0.7) 0.1(0.35) 0.46 (0.35) 0.8[0.68,0.90] 0.9[0.80,0.96] 3.50[0.89,13.76] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 

6 0.41(0.5) 1.39(0.5) -0.39(0.07) 2.64(0.7) 0.1(0.35) 0.46 (0.35) 0.8[0.68,0.90] 0.9[0.80,0.96] 14.00[3.55,55.26] 1.11[0.56,2.19] 1.59[0.80,3.15] 0.40[0.37,0.44] 



Appendix B – Definition of model (2) (DI) and model (3) (MCMC) coefficients 

Table B1 Definition of model (2) coefficients (DI) 

Coefficient Definition 
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Coefficient Definition 
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Table B2 Definition of model (3) coefficients (MCMC) 

Coefficient Definition 
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Appendix C - Details of the calculation of the values for model (2) 

coefficients in DI FBA 

As mentioned in Appendix B, we assume nondifferentiality i.e. Se00=Se01=Se10=Se11=Se and 

Sp00=Sp01=Sp10=Sp11=Sp, where Seyc and Spyc are the sensitivity and the specificity for Y=y 

and C=c. 

According to the 2009 New Zealand Tobacco Use Survey (NZTUS), the prevalence 

 0,01  CYTP  of ever-smokers (current smokers and ex-smokers) among women in 

New Zealand is 0.403 and the prevalence  1,01  CYTP  of ever-smokers among men 

in New Zealand is 0.428. 

Model (2) coefficients ,  and  are assigned to different sets of values while  

coefficients  and  are set constant. 

Calculation of : 

   
  



















0,011

0,011
ln0

CYTPSp

CYTPSe
   

 Sets of values 1,4,7: 37.1
597.08.0

403.03.0
ln0 












  

 Sets of values 2,5,8: 90.1
597.09.0

403.02.0
ln0 












  

 Sets of values 3,6,9: 69.2
597.099.0

403.01.0
ln0 












  

 

0 X Y

Y YC

0



Calculation of : 

   














SpSe

SpSe
X

11
ln  

 Sets of values 1,4,7: 23.2
2.03.0

8.07.0
ln 












X  

 Sets of values 2,5,8: 58.3
1.02.0

9.08.0
ln 












X  

 Set of values 3,6,9: 79.6
01.01.0

99.09.0
ln 












X  

 

 

Calculation of : 

  0ln  CORTYY   

 Sets of values 1,2,3:   94.193.6ln Y  (where 6.93 is the smoking-lung cancer 

odds ratio for women in our original data) 

 Set of values 4,5,6:   25.15.3ln Y  

 Set of values 7,8,9:   64.214ln Y  

 

Calculation of : 

  

 
 

 
 

10.0

597.0

403.0
572.0

428.0

0,011

0,01

0,111

0,11

0ln 











YCTP

YCTP

YCTP

YCTP

YORTCC  

 

X

Y

C



Calculation of : 

 
 
 

46.0
93.6

03.11

0

1
ln 
















COR

COR

TY

TY
YC  (where 11.03 and 6.93 are the smoking-lung 

cancer odds ratios for men and women, respectively, in our original data)

YC



Appendix D - Details of the calculation of the prior distribution parameters 

for model (2) coefficients in DI PBA 

Let:  

 
sdmeansdmean  ,,,  be the prior means and standard deviations given to MCMC 

analysis 2 parameters   and  , respectively. 

 
mean

0  and 
sd

0 be the prior mean and standard deviation given to MCMC analysis 

2 parameter 0 . 

    
 
 

mean

TY

TYmean

TC

mean

TY
COR

COR
YORCOR

0

1
,0,0




  be the means given to  

, , , respectively. 

    
 
 

lower

TY

TYlower

TC

lower

TY
COR

COR
YORCOR

0

1
,0,0




  be the lower 95% limits 

given to , , , respectively. 

    
 
 

upper

TY

TYupper

TC

upper

TY
COR

COR
YORCOR

0

1
,0,0




  be the upper 95% limits 

given to , , , respectively. 

 

 0OR CTY  0OR YTC

 
 0OR

1OR





C

C

TY

TY

 0OR CTY  0OR YTC

 
 0OR

1OR





C

C

TY

TY

 0OR CTY  0OR YTC

 
 0OR

1OR





C

C

TY
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Calculation of prior mean 
mean

0 and prior standard deviation 
sd

0  for 0 , prior 

mean 
mean

X and prior standard deviation 
sd

X  for X  , and prior correlation X0  

between 0 and X  

i. For 10,000 iterations 

a. Random draw of   from  sdmeanN  ,  

b. Random draw of   from  sdmeanN  ,  

c. Random draw of 0  from  sdmean
N 00 ,  

d. Computation of  expit5.05.0 Se   

e. Computation of  expit5.05.0 Sp  

f. Computation of 
   

  
 

00

1
ln

0,011

0,011
ln  







 





















Sp

Se

CYTPSp

CYTPSe
 

g. Computation of 
   















SpSe

SpSe
X

11
ln  

ii. Computation of 
mean

0 , 
sd

0 , 
mean

X , 
sd

X , X0  from the 10,000 values obtained 

for 0 and X  

 

Calculation of prior mean 
mean

Y  and prior standard deviation 
sd

Y  for  

  mean

TY

mean

Y COR 0ln   

,
96.12




lower

Y

upper

Ysd

Y


  

where   lower

TY

lower

Y COR 0ln   and   upper

TY

upper

Y COR 0ln   

 

Y



Calculation of prior mean 
mean

C  and prior standard deviation 
sd

C  for C  

  mean

TC

mean

C YOR 0ln   

,
96.12




lower

C

upper

Csd

C


  

where   lower

TC

lower

C YOR 0ln   and   upper

TC

upper

C YOR 0ln   

  

Calculation of prior mean 
mean

YC  and prior standard deviation 
sd

YC  for YC  

 
  



















mean

TY

TYmean

YC
COR

COR

0

1
ln  

,
96.12




lower

YC

upper

YCsd

YC


  

where 
 
  



















lower

TY

TYlower

YC
COR

COR

0

1
ln  and 

 
  



















upper

TY

TYupper

YC
COR

COR

0

1
ln  

 



Appendix E – Approximate estimate of the correlation X0  between 0 and 

X  

In model (2), CY  ,  and YC  are pre-specified and y, c and yc are known. 

Let yccyk YCCY   . 

Then, model (2) becomes: 

   xkcCyYxXTP X  0,,1logit  

Using a linear approximation   xku X  0 , which is linear in x, 

we obtain from standard results for linear regression: 








N

i

i

N

i

i

X

Nx

x

1

2

1

0  

 


