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Abstract 

Purpose: Measurement error is an important source of bias in epidemiological studies. We 

illustrate three approaches to sensitivity analysis for the effect of measurement error: 

Imputation of the ‘true’ exposure based on specifying the sensitivity and specificity of the 

measured exposure (SS), Direct Imputation (DI) using a regression model for the predictive 

values, and adjustment based on a fully Bayesian analysis.  

Methods:  We deliberately misclassify smoking status in data from a case-control study of 

lung cancer. We then implement the SS and DI methods using fixed-parameter (FBA) and 

probabilistic (PBA) bias analyses, and Bayesian analysis using the Markov-Chain Monte-

Carlo program WinBUGS to show how well each recovers the original association.  

Results: The ‘true’ smoking-lung cancer odds ratio (OR) adjusted for sex in the original 

dataset was OR=8.18 (95% confidence limits (CL): 5.86, 11.43); after misclassification it 

decreased to OR=3.08 (nominal 95% CLs: 2.40, 3.96). The adjusted point estimates from all 

three approaches were always closer to the ‘true’ OR than the OR estimated from the 

unadjusted misclassified smoking data, and the adjusted interval estimates were always wider 

than the unadjusted interval estimate.  When imputed misclassification parameters departed 

much from the actual misclassification, the ‘true’ OR was often omitted in the FBA intervals 

whereas it was always included in the PBA and Bayesian intervals.  

Conclusions: These results illustrate how PBA and Bayesian analyses can be used to better 

account for uncertainty and bias due to measurement error. 
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 Introduction 

 

A major source of bias and uncertainty in epidemiologic analysis is measurement error, 

usually termed “misclassification” when referring to discrete variables[1-4]. Measurement 

error can be considered a missing-data problem[3] in that information has been recorded on a 

variable which is an imperfect surrogate for the missing ‘true’ variable of interest.  

 

When internal validation or replication data are not available, the true values for the 

mismeasured variables are completely missing and no consistent point estimate can be 

constructed from the data without adding further, potentially arbitrary assumptions. To 

address this problem, simple sensitivity-analysis formulae adjust for misclassification 

assuming various values for fixed misclassification rates, based on background literature or 

on external validation data[2, 13, 14]. More sophisticated analyses construct and use prior 

distributions for these rates[2-4, 13, 15-18];  in that case, standard missing-data software can 

be used by augmenting the actual data with pseudo-validation data representing these priors 

[3]. Such analyses may be repeated using different plausible priors to assess sensitivity to the 

assumed prior information. 

 

In this paper we focus on the situation where exposure has been misclassified, no validation 

data are available, and adjustment for potential confounders or matching factors is needed. 

We illustrate and compare methods to adjust for the misclassification of smoking status in a 

case-control study of smoking and lung cancer, while also adjusting for sex.  Each method 

can be carried out with commercial software. 
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Material and methods 

Methods 

In a case-control study, let Y, T and C denote the outcome (case/control status), exposure 

status (exposed/unexposed) and a dichotomous covariate. In many studies the exposure T 

cannot be directly observed and a surrogate exposure X is measured instead.  

In order to retrieve information on the ‘true’ exposure and its association with the outcome 

one has to make a priori assumptions on the relationship between T and X, i.e. on the 

misclassification rates. Assumptions can be made on one of the two following groups of 

rates: 

1. The proportion of subjects classified as exposed among those truly exposed, i.e. the 

sensitivity (Se) and the proportion of subjects classified as unexposed among those 

truly unexposed, i.e. the specificity (Sp)). This is the Sensitivity-Specificity 

imputation approach (SS). 

2. The proportion of truly exposed subjects among those classified as exposed, i.e. the 

positive predictive value (PPV), and the proportion of truly unexposed subjects 

among those classified as unexposed, i.e., the negative predictive value (NPV). This is 

the Direct Imputation approach (DI). The predictive values can be expressed as 

functions of the sensitivity, specificity, and true exposure prevalence: 
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Making assumptions about PPV and NPV is therefore equivalent to making assumptions on 

Se, Sp, and P(T=1)[A1] 
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Figure 1 summarises how information from a priori assumptions and information from the 

data are combined to provide adjusted estimates in both methods. Detailed algorithms are 

included in appendices. 

 

Figure 1 Steps of Sensitivity/Specificity Imputation Analysis (SS) and Direct Imputation 

Analysis (DI) 
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These assumptions can be expressed with more or less uncertainty. One can define a range of 

a priori values for the misclassification proportions (fixed-parameter-bias-sensitivity analysis 

or FBA) or a priori probability distributions for these proportions (probabilistic bias analysis 

or PBA). The most rigorous way to do PBA is via Bayesian techniques[15], but a simple 

approximation is provided by Monte Carlo sensitivity analysis (MCSA) in which 

combinations of parameters are sampled from the prior distributions, and then an analysis is 

conducted for each sampled combination [2, 13, 16, 17]. Thus, MCSA involves a sensitivity 

analysis using a random sample of values for adjustments, instead of fixed values. On the 

other hand, a fully Bayesian analysis updates the prior distributions based on the study data to 

yield posterior distributions for the parameters[2, 13, 16, 17]. Procedures for MCSA have 

been implemented in Excel and SAS[2, 16].  

We consider here both SS and DI approaches, using FBA, MCSA and a fully Bayesian 

analysis. 

We use updated versions of a SAS macro implementing MCSA, which allow covariates in 

the imputation model[16] and the free software WinBUGS to implement fully Bayesian 

analysis.  

We caution that FBA and MCSA interval estimates from our analyses are not valid 

confidence intervals (they would not have 95% coverage under all fixed parameter values); 

although they may provide adequate coverage when the true parameter values are very close 

to the parameter values used in the FBA, or close to the centres of the prior distributions in 

the MCSA, but they can have poor coverage otherwise. Neither are they valid posterior 

intervals (they are not a coherent integration of prior and data information) although they can 

be adequate approximations under certain simplifying assumptions[15,17]. We therefore refer 

to them only as FBA or MCSA intervals, as appropriate, noting that the quality of the MCSA 
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approximation to Bayesian results is adequate to the extent that the distribution of sampled 

parameters would be negligibly updated by a fully Bayesian analysis. 

 

Description of the data and misclassification 

The data are from a population-based lung cancer case-control study conducted in New 

Zealand [19]. Briefly, cases were all subjects diagnosed with incident lung cancer notified to 

the New Zealand Cancer Registry during 2007 and 2008 and aged 20-75 years. Controls were 

recruited from the New Zealand Electoral Rolls of 2003 and 2008 and were frequency 

matched with the cases for age and sex. For further details see Corbin et al.[19]. 

 

We considered the association between smoking status (ever/never) and lung cancer. The 

odds ratio (OR) of lung cancer for being ever-smoker vs. never-smoker was estimated using 

unconditional logistic regression, adjusting for sex. The SAS Logistic procedure (SAS V9.3) 

was used to estimate ORs and corresponding 95% confidence intervals (95% CI). 

 

To provide a hypothetical reference point for evaluations, we assumed that our original 

dataset was correctly specified, i.e. that the ‘true’ smoking status indicator T  was known for 

all subjects. We then deliberately misclassified T  to X , and pretended that this was our 

observed measure. We attempted to use realistic misclassification rates which had been 

observed in previous studies. In 9 studies using the cotinine validation method reported by a 

meta-analysis[20], the lowest sensitivity of the self-reported smoking status was 0.82 and the 

lowest specificity was 0.91. We therefore took the original data, then misclassified T  with a 

sensitivity of 0.8 and a specificity of 0.9. The misclassification was applied nondifferentially, 

i.e. independently of the other variables (disease status, sex). In case-control studies, the 

nondifferential misclassification assumption may not hold, because cases and controls may  
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report past behaviour differently, but the methods applied here can be extended to situations 

where misclassification is differential[2, 3, 16, 17]. 

 

Let Y, C, and X denote the indicators for case-control status, sex (1=Man, 0=Woman) and 

misclassified smoking status, respectively, and let ntycx denote the number of subjects with 

T=t, Y=y, C=c, and X=x. To create the misclassified smoking status X , we computed the 

frequencies ntyc+ in each of the 8 combinations of the categories of T, Y and C , where a 

subscript “+” indicates summation over a subscript. We then calculated the frequencies of 

classified ever/never smokers ntycx for each of these combinations as follows: 
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A preliminary analysis was conducted in order to check what possible values of sensitivity 

and specificity could have led to the misclassified odds ratio[23]. Let 
 
be the proportion 

of subjects truly ever-smokers and  the proportion of subjects classified as ever-smokers 

in the different strata of Y and C. Then   

The proportions  must fall in the range from 0 to 1, which implies the following 
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Table 1 shows the proportions of subjects classified as ever-smokers  and never-smokers 

 in strata of Y and C. Therefore, the restrictions on Se and Sp become: 

If    Se + Sp > 1 

*

11Se  (i.e. Se > 0.76) and *

001 Sp  (i.e. Sp > 0.59)  

If Se + Sp < 1 

*

00Se  (i.e. Se < 0.41) and *

111 Sp  (i.e. Sp < 0.24)  

As we assumed that self-reported smoking status was classified better than chance, we only 

considered the case where Se + Sp > 1. 

 

Table 1 Proportions of subjects classified as exposed and non-exposed in strata of Y and C 

*

YC

*
1 YC
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Results 

 

The ‘true’ odds ratio of lung cancer for ever-smokers vs. never-smokers adjusted for sex in 

the original dataset was OR=8.18 (95% CL 5.86,11.43) (log odds ratio (ln OR)=2.10, 95% 

CL 1.77, 2.44). After misclassifying the smoking status with a sensitivity of 0.8 and a 

specificity of 0.9, the estimated OR was 3.08, 95% CL 2.40, 3.96 (ln OR=1.13, 95% CL 0.87, 

1.38). 

 

Tables 2 and 3 below give the results obtained with the different methods using fixed-

parameter and probabilistic bias analyses, respectively. 

 

Table 2 Smoking-lung cancer odds ratios from SS FBA and DI FBA; 95% interval estimates 

in brackets. 

 

Table 3 Smoking-lung cancer odds ratios from SS PBA, DI PBA and Bayesian (MCMC) 

analyses 1 and 2; 95% interval estimates in brackets. 

 

When assuming sensitivity values (Se0) between 0.7 and 0.9 and specificity values (Sp0) 

between 0.8 and 1, SS FBA produced adjusted ORs ranging from 3.96 to 15.67 and DI FBA 

produced adjusted ORs between 3.88 and 17.72. However, interval estimates suggest SS FBA 

ORs would lie with 95% chance between 2.84 and 44.60 while DI FBA ORs would lie with 

95% chance between 2.97 and 26.30.[A2] 

As expected, for larger values of Se0 and Sp0, the OR obtained with SS FBA became closer to 

the OR obtained with the misclassified smoking status. The OR estimate appeared more 

sensitive to changes in the sensitivity than in the specificity of the measured exposure. When 
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Se0 was 0.7, the sensitivity was replaced by 0.77 in step (ii) of the algorithm (see Appendix 

A).  

 

Similarly, DI FBA produced adjusted ORs closer to the OR obtained with the misclassified 

smoking status when we assumed higher sensitivity and specificity. However, the adjusted 

OR was more sensitive to the value given to the OR of lung cancer in women ORTY(C=0) 

than to the values given to the sensitivity and specificity. When the values given to the 

sensitivity and the specificity were equal to the actual sensitivity and specificity of the 

introduced misclassification (Se=0.8, Sp=0.9), the OR obtained with DI FBA was very close 

to the value given to ORTY(C=0). 

 

Both the SS FBA and DI FBA interval estimates obtained after adjustment were wider on the 

logarithmic scale than the intervals obtained with the ‘standard’ analysis using misclassified 

smoking status. The intervals became narrower when increasing the sensitivity and specificity 

and when decreasing ORTY(C=0) for DI FBA. The intervals were wider when using SS FBA 

than when using DI FBA, as SS FBA also attempted to account for the uncertainty in 

estimating the prevalence of subjects classified as ever-smokers . 

 

When assuming 95% prior limits of 0.68 and 0.90 for the sensitivity and of 0.80 and 0.96 for 

the specificity and an average for ORTY(C=0) of 6.93, SS PBA ORs lied with 95% chance 

between 2.99 and 23.17, DI PBA ORs lied with 95% chance between 3.06 and 26.07, 

Bayesian analysis 1 ORs lied with 95% chance between 4.44 and 48.51 and Bayesian 

analysis 2 ORs lied with 95% chance between 4.23 and 21.78. As expected, prior means for 

the sensitivity and the specificity equal to the actual misclassification sensitivity and 

specificity gave the closest median ORs to the ‘true’ OR. 

*
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In SS PBA, out of 10,000 draws of initial sensitivity Se0, 8,799 (88%), 3,128 (31%), 4,283 

(43%) and 76 (0.76%) values for prior distributions 1, 2, 3 and 4 (see Appendix A), 

respectively, were lower or equal to 0.76 and were adjusted to 0.77. In draws of initial 

specificity Sp0 from prior distribution 3, 415 (4%) were lower or equal to 0.59 and were 

adjusted to 0.60. An increase of the prior means for the sensitivity and specificity resulted in 

a decrease of the median ORs.  When expanding the 95% limits for the sensitivity and 

specificity, the median ORs increased slightly, moving away from the ‘true’ OR and the 95% 

simulation intervals (95% SI) were much wider. For DI PBA, as for DI FBA, an increase in 

the prior means for the sensitivity and the specificity
 
still resulted in a decrease of the median 

ORs, while increasing the prior mean for ORTY(C=0) considerably increased the median 

ORs. Expanding the 95% limits for the sensitivity and the specificity slightly increased the 

median ORs and the 95% SI. Both SS and DI MCSA intervals were much wider than the 

interval estimates obtained with the original and the misclassified smoking status.  

 

As with SS PBA, median ORs obtained from fully Bayesian (MCMC) analysis 1 (defined in 

Appendix A) decreased when increasing the sensitivity and the specificity. However, median 

ORs obtained from Bayesian analysis 1 were higher than median ORs obtained with SS PBA. 

Ninety-five percent credibility intervals (95%CI) obtained from Bayesian analysis 1 were 

also wider than the 95% SI obtained with SS PBA, suggesting that SS PBA underestimates 

the uncertainty in the prevalence of true smokers in strata of T and Y. 

 

In comparison with median ORs obtained from DI PBA, median ORs obtained from 

Bayesian analysis 2 (defined in Appendix A) were more sensitive to the prior means assigned 

to the sensitivity and specificity and less sensitive to the prior mean assigned to ORTY(C=0). 
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Credibility intervals (95%CI) obtained from Bayesian analysis 2 were slightly narrower than 

DI PBA 95% SI.  

 

When the means assigned to sensitivity and specificity equalled the actual misclassification 

sensitivity and specificity, the informative prior distributions placed on Model 3 coefficients 

in Bayesian analysis 2 yielded median ORs closer to the ‘true’ OR than in Bayesian analysis 

1.  Credibility intervals were narrower after Bayesian analysis 2 than after Bayesian analysis 

1. 
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Discussion 

 

We have illustrated the use of several currently available methods for bias analysis which can 

be implemented using standard statistical software. Sensitivity/specificity (SS) imputation 

analysis has the advantage of requiring only the specification of a priori values for 

sensitivities and specificities. When one wishes to account for uncertainty about these values, 

one can specify prior distributions for the values and then sample from those[2,13,17].  

 

Nonetheless, the apparent simplicity of the SS approach has its own difficulties, since 

seemingly intuitive guesses for sensitivity and specificity may turn out to be highly 

implausible when compared to what one might deduce by considering the actual 

classification mechanism and background literature, particularly when covariates are also 

taken into account. Furthermore, prior distributions for sensitivity and specificity in PBA 

require restriction to the range of values compatible with the data (because some values may 

be impossible given the observed data) whereas fully Bayesian methods automatically 

accommodate such restrictions[15,17].  

 

Direction Imputation (DI) analysis directly models predictive values, thus eliminating the 

need for constraints on sensitivity and specificity[3]. Its main limitation is that the user needs 

to specify values or prior distributions for coefficients about which there may be poor prior 

information, including for the association of interest (here, the odds ratio of lung cancer for 

being ever smoker), and the resulting adjusted estimate can be very sensitive to that 

distribution.  
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Both SS and DI methods have been applied using fixed-parameter bias-sensitivity analysis 

(FBA) and probabilistic bias-sensitivity analysis (PBA). FBA is simpler and faster to run, 

since one only needs to specify fixed values. It is also very useful to check which values are 

compatible with the data in the SS method. Nonetheless, it does not account for uncertainty in 

the specification of the bias parameters. PBA takes this uncertainty into account and as a 

result produces wider interval estimates, thus producing inferences less sensitive to 

misspecification of the bias parameters.  

 

Rough allowance for uncertainty due to random error in PBA can be made via the addition of 

a random number to estimates during simulation. This shortcut thus leads to fast run times, 

but should be used with caution as it may seriously underestimate the actual contribution of 

random error to uncertainty about the TY association; this underestimation will be a problem 

if uncertainty due to random error is not minor compared to uncertainty about the 

classification parameters. Bootstrap or jacknife methods for adding random error are 

preferable, but can lead to long run times; bootstrapping in particular can also encounter 

technical problems in small samples[21]. 

 

The choice between SS and DI depends on what information is available. In particular, one 

needs to evaluate the amount and the quality of prior information to decide between setting 

priors on sensitivity and specificity or on regression coefficients for predictive values. When 

both validation data and prior information are available, all the information can be combined 

using data augmentation[3, 24-26], in which prior distributions are translated into new data 

records and added to the validation data. Such an approach enables analysis with standard 

methods for missing data.  
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Bayesian procedures may be preferable to PBA, especially when one feels comfortable 

assigning priors to parameters beyond the classification model[15]. Our Bayesian analyses 

indicated that the uncertainty in the prevalence of exposure might be underestimated when 

using SS PBA. In addition, unlike SS PBA, Bayesian analyses do not require truncation of 

the prior distributions when the sensitivity or specificity prior extends below the range 

compatible with the data. For further analysis and contrast of SS PBA and Bayesian analyses, 

see Maclehose and Gustafson[15]. 

 

It has been remarked that most epidemiologists write their methods and results sections as 

frequentists and their introduction and discussion sections as Bayesians[3, 27]. In their 

methods and results sections, they analyse their data as if those are the only data that exist, 

and as if there is no bias left uncontrolled by the study design or by covariate adjustment (i.e. 

they implicitly use point-null priors on hidden bias parameters[3]). In the discussion, they 

then assess their results relative to background information, examining consistency with 

previous studies, biological plausibility, and the possibility of various biases. It has been 

lamented however that in the latter discussions they severely overweight their own results, 

and tend to understate biases in these results, displaying especially poor intuitions about 

potential misclassification and measurement-error effects[2, 13, 17, 28].  

 

These problems can be mitigated by including bias analyses[2, 3, 13, 29]. FBA is particularly 

simple and may be useful for initial bias analyses, but we recommend PBA or Bayesian 

analyses when doing a risk assessment that must account for all sources of uncertainty. We 

have reviewed and illustrated several methods feasible using standard statistical software. 

Hopefully, sensitivity and bias analyses will become options in standard statistical packages 

to supplement existing methods, facilitating their conduct and presentation before inferences 
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are offered. This will enable readers to better quantitatively assess the uncertainty warranted 

in the face of methodologic problems[29].  
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KEY MESSAGES 

 We illustrate how to apply several methods for sensitivity analysis of 

misclassification, including imputation based on sensitivity and specificity, direct 

imputation based on predictive values and fully Bayesian analyses. 

 Sensitivity-Specificity Imputation requires only values or prior distributions for 

sensitivity and specificity, but these values or priors should be restricted to values 

compatible with the data. 

 Direct Imputation does not require range restrictions, but does require information 

beyond sensitivity and specificity, including a prior distribution for the association of 

interest. 

 Fully Bayesian analyses require the most prior information, but can best capture the 

uncertainty warranted under the assumed models and priors.  

 All methods should employ priors that are plausible in light of background literature. 
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