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ABSTRACT 

 

B. pseudomallei is the cause of melioidosis, a serious an often fatal disease of humans and 

animals. The closely related bacterium B. mallei, which cases glanders, is considered to be 

a clonal derivative of B. pseudomallei. Both B. pseudomallei and B. mallei were evaluated by 

the United States and the former USSR as potential bioweapons. Much of the effort to 

devise biodefence vaccines in the past decade has been directed towards the identification 

and formulation of sub-unit vaccines which could protect against both melioidosis and 

glanders. A wide range of proteins and polysaccharides have been identified which 

protective immunity in mice. In this review we highlight the significant progress that has been 

made in developing glycoconjugates as sub-unit vaccines. We also consider some of the 

important the criteria for licensing, including the suitability of the “animal rule” for assessing 

vaccine efficacy, the protection required from a vaccine and the how correlates of protection 

will be identified. Vaccines developed for biodefence purposes could also be used in regions 

of the world where naturally occurring disease is endemic 
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1. Melioidosis; The global incidence 

B. pseudomallei is the cause of melioidosis, a serious and often fatal disease of humans and 

animals. The closely related bacterium B. mallei, which causes glanders, is a clonal 

derivative of B. pseudomallei [1], with a reduced host range. In this review we have included 

references to B. mallei where appropriate. Human melioidosis can range from a localised 

skin infection to an acute septicaemia or a pneumonia. Some individuals develop chronic 

disease, whilst others apparently clear the infection only to suffer a relapse later [2, 3]. The 

diverse forms of disease make disease diagnosis based in clinical signs and symptoms 

challenging.  

 

B. pseudomallei and B. mallei were evaluated by the United States and the former USSR as 

potential bioweapons [4, 5]. They attracted attention because, at least in animal models, they 

are highly infectious by the airborne route [6]. This is consistent with cases of disease in 

healthy US helicopter crews during the Vietnam War, believed to be a consequence of the 

inhalation of soil-derived dusts containing B. pseudomallei [7].  Because of the potential for 

B. pseudomallei and B. mallei to cause disease in humans and animals these bacteria are 

classified as  tier 1 overlap select agents by the US Centers for Disease Control and 

Prevention and the US Animal and Plant Health Inspection Services.  

 

Naturally occurring melioidosis is usually associated with South East Asia or Northern 

Australia. In northeast Thailand melioidosis is the third most common cause of death from 

infectious diseases after human immunodeficiency virus (HIV)/acquired immunodeficiency 

syndrome (AIDS) and tuberculosis [8]. A wide range of underlying conditions predispose 

individuals to disease, but diabetes is the main risk factor [9, 10]. Melioidosis is not currently 

considered to be a neglected tropical disease, but evidence is accumulating that it is present 

in many sub-tropical and tropical regions of the world [11, 12]. A recent study (Table 1) 
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predicts that the global incidence of human melioidosis is 165,000 cases (95% credible 

interval 68,000–412,000) with 89,000 (95% credible interval 36,000–227,000) deaths [11]. If 

these predications are validated, then the global death toll from melioidosis is comparable to 

the global mortality from measles (95,600 per year) and higher than the global death toll 

from leptospirosis (50,000 per year) or dengue (9,100–12,500 per year) [11].   

 

B. pseudomallei (and B. mallei) is resistant to many antibiotics including many β-lactams, 

aminoglycosides, macrolides and polymixins [3] making the treatment of disease difficult. 

Even with aggressive antibiotic treatment the fatality rate is 50% in Northeast Thailand and 

19% in Australia [8]. Against this background there is an urgent need for improved 

preventative measures, such as vaccines, to protect against disease. Because many 

antigens are shared B. pseudomallei by B. mallei, and there is evidence of cross-protective 

immunity [13-19], it is feasible that a single vaccine can be devised which protects against 

both diseases. 

 

 

2. Vaccine candidates 

 

2.1 Live attenuated vaccines  

A range of attenuated B. pseudomallei (and B. mallei) mutants able to induce protective 

immunity in mice have been reported [14, 20-26]. However, not all attenuated mutants can 

induce protective immunity. Some are over-attenuated and are cleared too rapidly or the 

disrupted gene may play a role in biosynthesis of a protective antigen [27]. Immunisation 

with Burkholderia thailandensis, a naturally attenuated species that is related to B. 

pseudomallei can induce a protective immune response [28]. 

 

It is not certain that a live attenuated mutant would be acceptable as a human vaccine. The 

potential problem of reversion to virulence can be solved by introducing multiple mutations 
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and some mutants capable of inducing protective immunity [29] have been shown to be safe 

even in immunocompromised (IFNγ -/-, SCID) mice [30]. However, a concern is that, like 

wild type strains, attenuated mutants may be able to establish latent infections.  

 

In spite of these concerns live attenuated mutants of B. pseudomallei and B. mallei are some 

of the most protective vaccine candidates identified to date [31-33]. As such they are useful 

as a standard in studies comparing the protection afforded after immunisation with non-living 

vaccines. In addition, live attenuated mutants have proved to be valuable tools for dissecting 

the nature of protective immunity, at least in mice.  

 

2.2 Killed whole cell vaccines 

Immunisation with killed B. pseudomallei, B. thailandensis or B. mallei cells can induce 

protective immunity [18, 34, 35]. These vaccines may be attractive because they are cheap 

to produce and because a range of antigens are presented to the immune system. The 

recent report of the Steering Group on Melioidosis Vaccine Development (SGMVD) 

highlighted that killed whole cell vaccines could be acceptable if they met the criteria for 

efficacy, safety and progressed through clinical trials [33]. The principle disadvantages of 

killed vaccines are that some protective antigens are not expressed when bacteria are grown 

in vitro and some components in the vaccine, such as the lipid A of lipopolysaccharide 

(LPS), might cause short-term but undesirable side effects [36].   

 

A refinement of whole cell vaccines, exploits outer membrane vesicles (OMVs) [37, 38]. 

These are naturally shed from bacteria and contain cell wall lipids, polysaccharides and 

proteins. OMVs induce significant but incomplete protection against an aerosol challenge in 

mice [37]. In more recent studies OMVs have been shown to be safe and immunogenic in 

non-human primates [39]. These findings suggest that OMVs are an alternative to killed 

whole cell vaccines, and might be exploited as a low cost vaccine.  
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2.3 Sub-unit vaccines 

A sub-unit vaccine against melioidosis and or glanders would contain only protective 

antigens and consequently would not be reactogenic, would potentially be more effective 

and easier to produce reproducibly. Much of the effort to devise biodefence vaccines against 

melioidosis and or glanders in the past decade has been directed towards the formulation 

and testing of sub-unit vaccines in mice (Table 2). Many of these antigens are conserved 

between B. pseudomallei and B. mallei and have been shown to play major roles in 

virulence. For example, the capsular polysaccharide appears to block C3b deposition [40], 

whilst the lipopolysaccharide confers resistance to serum killing [41].  Many of the proteins 

tested are components or effectors of secretion systems which play roles in virulence. BopA 

is a putative effector of the type III secretion system [42], BimA is the type V autotransporter 

involved in actin polymerisation and motility in cells [43] whilst the Hcp proteins form the 

needle of the type VI secretion system [44].  

 

It is difficult to compare the relative efficacy of the different sub-units as protective antigens, 

because different immunisation regimes, adjuvants, animal models and challenge strains 

doses and routes have been used [33]. An additional concern is that many of the adjuvants 

used do themselves have protective effects, making the interpretation of protection data 

difficult.  

 

2.3.1 Protein sub-unit vaccines 

A range of proteins have been identified as partially protective sub-units against 

experimental melioidosis and glanders. These antigens are derived largely from the cell wall. 

However, to date the goal of finding a single protein that provides high level protection and 

sterile immunity has been elusive. One approach to address this problem might involve 

screening additional sub-units [23, 45-48]. Another approach is to use a combination of 

proteins. One study has shown that a combination of antigens can provide protection against 

experimental disease although sterile immunity was still not achieved [49]. An alternative to 
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using combinations of proteins would involve using combinations of epitopes derived from 

different proteins and there has been some exciting foundation work in this area [50-57].  

 

2.3.2 Naked DNA vaccines 

There are two reports that immunisation with DNA vaccines encoding the B pseudomallei 

flagellar subunit gene, fliC provided modest levels of protection in mice [58, 59]. In a whole 

genome screen, using expression library immunisation, 12 B. mallei ORFs which could 

induce protective immunity were identified and the proteins encoded by 3 of these were 

shown to induce protective immunity towards experimental glanders (Table 2) [48].  

 

2.3.3 Polysaccharide sub-unit vaccines 

Bacterial polysaccharides often make excellent vaccines and surface polysaccharides of B. 

pseudomallei and B. mallei have been investigated. LPS is attractive as a vaccine candidate 

but there are at least three different LPS O-antigens (A, B and B2) in B. pseudomallei [60] 

and the O-antigen may be O-acetylated and/or O-methylated [61] leading to subtle 

immunological differences. The O-antigen produced by B. thailandensis (strain E264) 

appears to be identical to the B. pseudomallei Type A O-antigen [61]. The B. mallei O-

antigen is similar to the Type A O-antigen but with some differences in acetylation [61]. The 

capsular polysaccharide is highly conserved between different strains of B. pseudomallei 

and B. mallei and  some strains of B. thailandensis produce a similar capsular 

polysaccharide [62].  

 

The immunisation of mice or hamsters with purified capsular polysaccharide or LPS results 

in the induction of protective, but not sterile, immunity [49, 63, 64]. Protection is dependent 

on antibodies, and the passive transfer of immune sera [63], or monoclonal antibodies 

against these polysaccharides [15, 65] can protect niaive animals.  
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One challenge associated with polysaccharide vaccine production, is the isolation of 

sufficient quantities, and the isolation of polysaccharide from B. pseudomallei (or B. mallei) 

can be hazardous. An alternative could involve growing an attenuated strain as a source of 

the antigen and in the USA some mutants of B. pseudomallei are exempt from select agent 

regulations [66]. The similarity of the B. thailandensis and B. pseudomallei Type A O-

antigens [61] indicates the potential to use the B. thailandensis antigen [67-69]. Another 

approach might be to produce the polysaccharide in an engineered strain of a non-

pathogenic species of bacteria. The expression of the B. mallei O-antigen gene cluster in an 

attenuated strain of Salmonella enterica serovar Typhimurium [13] indicates the feasibility of 

this approach. Finally, there has been progress with the chemical synthesis of 

polysaccharides. A synthetic repeat unit of the capsular polysaccharide (2-O-acetyl-6-deoxy-

β-d-manno-heptopyranose) has been shown to be immunogenic and protective [70]. Further 

refinement of the epitope(s) recognised could allow the refinement of the synthetic 

immunogen [71]. 

 

2.3.4 Glycoconjugate vaccines 

Polysaccharides are poor immunogens that do not generate an anamnestic response 

because of the lack of T cell involvement. To elicit a T cell dependent response, 

polysaccharides can be conjugated to proteins. Conjugates of capsular polysaccharide or 

LPS linked to tetanus Hc fragment, BSA, flagellin proteins or Hcp1 have been reported 

(Table 3). These are immunogenic in rabbits, mice and rhesus macaques [64, 68-70, 72-75] 

and, compared to polysaccharide alone, induce enhanced antibody responses, with a bias 

towards IgG production [64, 68, 72, 73]. The conjugates tested to date typically use 

chemically coupled polysaccharide and protein. However, one recent report highlights the 

potential for exploiting the natural glycosylation system found in Campylobacter jejuni but 

transferred in E.coli to devise biological conjugates of the B. pseudomallei O-antigen linked 

to AcrA acceptor protein [76]. 
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3. Criteria for candidate selection 

An efficacious melioidosis/glanders vaccine would ideally provide high level protection 

against multiple routes of infection, protect against multiple LPS types and provide sterilizing 

immunity. Additionally, it would be both safe and cost-effective to produce. At present, some 

of the most promising vaccine candidates undergoing pre-clinical evaluation include LPS- 

and CPS-based glycoconjugates, protein sub-units, OMVs and live attenuated strains. 

Important properties associated with these types of vaccines are shown in Table 4. Although 

good progress has been made, the development of a vaccine that possesses all of the 

attributes listed, in particular sterilizing immunity, may be difficult to achieve since B. 

pseudomallei and B. mallei are able to survive intracellularly [77]. 

 

3.1 Sterile immunity 

None of the vaccine candidates tested to date provide sterile protection in animal models 

questioning their usefulness for biodefense or public health purposes. The feasibility of using 

a vaccine that provides protection but not sterile immunity in a public health setting has been 

examined. A melioidosis vaccine providing only partial protection (50% protection for 12 

months or a 50% reduction in disease for 10 years) could be useful in high-risk populations 

[32]. A recent report from the SGMVD indicated that a lack of sterilizing immunity should not 

be a barrier to progressing promising candidates [33]. Furthermore, the SGMVD suggested 

that a partially protective melioidosis vaccine may be useful in endemic areas since it could 

reduce disease severity and death rates by extending the therapeutic window and allowing 

the administration of other treatments [33]. Similarly, a vaccine that shifts disease from an 

acute to a sub-acute or chronic form in endemic regions may provide a similar benefit by 

increasing the time an individual has to seek treatment.  

 

3.2 Need for head to head comparisons 

Due to differences in vaccination protocols, challenge routes and animal models, it is difficult 

to compare and contrast the various vaccine candidates identified to date. Consequently, the 
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SGMVD has recommended head-to-head protection studies in mice be conducted for 

candidate selection [33]. While all details relating to vaccine production, formulation, route of 

administration and dosage should be the responsibility of the developers, the SGMVD 

proposed challenges with 2 or 3 B. pseudomallei strains selected from the BARDA panel 

(strains MSHR668, MSHR305, 1026b, 1106a, K96243 and 406a). The preferred route of 

inoculation is subcutaneous using a challenge dose that results in the negative control group 

reaching humane endpoints within 7-14 days, with continued monitoring of the test groups 

for at least 28 days post-challenge. The SGMVD does not recommend a particular NHP 

model for further testing, does not state the specific criteria that would characterize a 

successful vaccine candidate and has identified specific hurdles in the process of advancing 

melioidosis vaccine candidates into  early phase clinical trials [33].  

 

3.3 Criteria for the selection of biodefence vaccines 

A Broad Agency Announcement from the U.S. Defense Threat Reduction Agency (DTRA; 

HDTRA1-14-CHEM-BIO-BAA Amd #3, Topic: CBMV-03) has outlined the criteria for 

protective efficacy of melioidosis and/or glanders vaccine candidates in preclinical studies. 

The preferred infection model for initial efficacy testing is C57BL/6 mice challenged via 

aerosol with B. pseudomallei (strains HPUB10134a, MSHR5855, or K96343) and B. mallei 

(23344 FMH). Demonstration of protective efficacy in mice is defined as “… >80% survival 

over 30 days and >50% survival over 60 days OR extension of therapeutic window by >28 

days”. For further evaluation of vaccine candidates in NHPs, “protective efficacy may be 

defined as >80% survival over 45 days and >50% survival over 60 days OR extension of 

therapeutic window by >28 days”. Additional criteria dictate that the time to onset of 

immunity be 28-90 days lasting for >1 year and can be achieved with no more than 3 doses 

of vaccine. The purpose of these decision points is to guide the development of vaccines to 

protect the warfighter from disease. It is anticipated, however, that such a vaccine would 

also be useful in public health settings. 
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3.4 Utility of Biodefence Vaccines for public health purposes  

Biodefence vaccines may be useful for protecting against naturally occurring disease in 

endemic regions but not all biodefence vaccines would be equally suitable. Biodefence 

vaccines would protect healthy people from infection, whilst a vaccine against natural 

disease would need to protect individuals who may be immunocompromised (e.g. diabetics) 

[33]. A biodefence vaccine would need to protect primarily against an inhalational challenge, 

whereas natural infection occurs by a number of routes [33]. An additional consideration is 

whether antibiotic treatment after vaccination or in parallel with vaccination is equally likely in 

biodefence and/or public health situations. 

 

Notwithstanding these concerns, the cost effectiveness of exploiting biodefence vaccines for 

the prevention of melioidosis in Thailand was examined recently [32]. The model considered 

the efficacy of the vaccine, the duration of protection afforded by the vaccine and the cost of 

the vaccine and revealed that in a number of scenarios vaccination would be cost effective. 

For example, a vaccine that cost $2 per dose, provided only 50% protection and which 

protected only for 12 months would be cost effective for vaccination of the population at 

greatest risk of disease. A vaccine that cost $25 per dose and which reduced disease by 

50% and provided protection for 10 years would be cost effective for use in all diabetics. 

Overall, this study concluded that in Thailand, a vaccine would likely be cost-effective if used 

in high-risk populations and highlighted the value of vaccines that provide only partial 

protection against disease [32]. 

 

3.5 The animal rule  

US Food and Drug Administration’s (FDA) Animal Rule was implemented to allow the 

licensing of medical countermeasures, such as vaccines, for diseases for which clinical trials 

involving exposure to the pathogen are unethical or impractical. This situation might apply to 

many biodefence vaccines. A similar mechanism exists for licensing products in Canada but  

the European Medicines Agency (EMA) currently does not have a similar licensing 
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mechanism. The Biothrax anthrax vaccine was the first vaccine to be approved under the 

FDA animal rule [78] which requires that the benefits of a vaccine are demonstrated in more 

than one animal species and predict the likely response in humans. Alternatively a single 

animal species can be used if it is accepted to be a well-characterized animal model for 

predicting human response to the vaccine.  

 

In the case of a meliodosis, a vaccine licensed for public health purposes would have 

undergone clinical trials but may have limited value as a biodefence vaccine, because it may 

not meet the criteria outlined above. Therefore, it is possible that a melioidosis biodefence 

vaccine may need to be approved under the FDA animal rule. In the case of glanders, there 

are very few naturally occurring cases of human disease and it seems certain that a 

biodefence vaccine would have to be approved under the FDA animal rule.  

 

There are no single animal models that are accepted as robust indicators of the efficacy of 

human vaccines against glanders or melioidosis. Therefore licensing under the FDA animal 

rule would require at least two animal species to demonstrate efficacy. Mouse models of 

inhalational disease caused by B. pseudomallei and B. mallei have been used extensively to 

evaluate vaccine candidates and it is likely that non-human primate models of disease will 

also be required. There have been several reports of the development of non-human primate 

models of disease. Marmosets [79] appear to be more susceptible than rhesus macaque 

[80, 81] or African green monkeys [80] to B. pseudomallei infection. Both rhesus macaque 

aerosol [82] and marmoset intranasal infection models [83] have been described for B. 

mallei, and rhesus macaques have been used to assess vaccine candidates [69]. There is 

one report of a s.c. infection model for B. pseudomallei and B. mallei in marmosets [84].  

 

4. Correlates of Protection 

All vaccine discovery and evaluation projects benefit from an understanding of the immune 

responses underlying protection. The term ‘immunological correlates of protection’ describes 
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an immunological response, typically measured by laboratory assay, which is statistically 

associated with vaccine efficacy and based on clinical trial data in humans [85, 86]. 

Correlates of protection may be mechanistic, where the response measured directly 

mediates protection, or non-mechanistic serving as an indirect indicator of protection. In 

situations where clinical trial data does not exist, as is currently the case of melioidosis, 

relevant immunological biomarkers could be identified and verified later as correlates of 

protection [87].  

 

Immediately following exposure, B. pseudomallei is extracellular, and therefore susceptible 

to antibody mediated defences. However, it also has an intracellular lifestyle able to grow in 

macrophages, and so would be a target for (T) cell mediated immune responses. Live 

attenuated, killed whole cell, OMV, and polysaccharide-conjugate vaccines using B. 

pseudomallei proteins as carriers will likely require an analysis of both antibody and cell 

mediated biomarkers. In contrast, studies with polysaccharide alone and polysaccharides 

conjugated to heterologous carriers (e.g. tetanus toxoid or CRM197) would likely focus only 

on antibody responses.  

 

4.1 Antibody mediated correlates of protection 

Antibodies are established correlates of protection for many vaccines in use today [85, 86]. 

The three primary parameters which determine antibody-mediated efficacy are 

concentration, class/isotype and affinity. Plasma IgM, due to its rapid production and 

complement fixing ability and to a larger extent IgG responses, because of their greater 

affinity, extended memory and opsonic activity are the most likely correlates of antibody 

mediated protection in any B. pseudomallei vaccine. The protective properties of mucosal 

IgA (and IgG) have been considered in other bacterial infections [88] and in theory provide 

an opportunity for actually preventing infection via the inhalational route, but their importance 

in melioidosis has not been considered.  
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Assays of antibody function integrate all three parameters providing direct and accurate 

correlates of protection. Typically these involve either i) serum bactericidal assays in the 

presence of complement, ii) Fc receptor mediated uptake of opsonised bacteria by host 

neutrophils or monocytes (opsonophagocytic-OP assay),  iii) subsequent intracellular killing 

of the bacteria (opsonophagocytic killing -OPK assays)  or  iv) bacterial agglutination. Flow 

cytometry based measurement of phagocytosis and respiratory burst have been described 

for B. pseudomallei [89], and intracellular killing can be measured by standard colony 

forming unit assays [90]. Few studies have used these assays in the context of immune 

responses to B. pseudomallei vaccine candidates [15, 38, 54, 91, 92]. 

 

4.2 Cell mediated correlates of protection 

Unfortunately, experience with other vaccines has shown that defining cell mediated 

correlates of protection can be a difficult process. The most dramatic example being that of 

BCG, a vaccine given to over 4 billion children since the 1930’s, where an immune correlate 

of protection is still not defined with any certainty [87].  

 

The role of antibody in protection against melioidosis indicates a likely involvement of CD4+ 

T-cells in protection against meloioidosis and especially follicular T-cells in the development 

of a humoral response. In support of this, in mice there is evidence that CD4+ T-cells play a 

role in protective immunity [93]. These cells might also provide IFNγ and it is known that B. 

pseudomallei is susceptible to killing by IFNγ activated macrophages further indicating a role 

for cell mediated protection. Humans do develop CD4+ T-cell responses to B. pseudomallei 

[94] and IFNγ production by Th1 cells might contribute to the survival of melioidosis patients 

presenting with acute infection [95]. Glycoconjugate vaccines would exploit the involvement 

of T-cells by promoting both the magnitude, subclass and duration of antibody responses 

against the polysaccharide and potentially enhancing protective immunity. For example, 

immunisation with a polysaccharide conjugates generated significantly higher levels of 

antigen-specific IgG than polysaccharide alone [64, 72]. In addition, the elevated levels of 
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IgG2a seen after immunisation with a lipopolysaccharide glycoconjugate suggested a bias 

towards a Th1 responses, whereas immunisation with lipopolysaccharide alone evoked 

almost no IgG2a [64]. 

 

Although B. pseudomallei is adapted to replicate in the cytoplasm of infected cells, and 

should load protein antigens into the Class I MHC antigen presentation pathway, we are 

relatively ignorant of the biology and role of CD8+ T cells in response to this organism. CD8+ 

T cells are a source of IFNγ for macrophage activation, but their cytotoxic potential against 

host cells infected with B. pseudomallei is not known. In a murine model of disease 

protection does not appear to involve CD8+ T cells [93], but it is not known whether CD8+ T 

cells play a protective role in humans. Further identification of Class-I MHC restricted B. 

pseudomallei-derived protein epitopes recognised by CD8+ T cells is warranted.  

 

NK cells, considered part of the innate immune response, may also need to be examined in 

future studies on B. pseudomallei vaccine induced immunity. These cells provide the initial 

source of IFNγ in both mice and humans in response to innate cytokines produced by 

macrophages and probably dendritic cells following exposure to the bacteria [94, 96]. In 

support of this possibility, activation of the innate immune system has been shown to protect 

against inhalational challenges with B. pseudomallei or B. mallei and to involve the activation 

of NK cells and the production of IFNγ [97].  

 

Just as functional (OP/OPK) assays integrate the key features of antibody dependent 

immunity, bacterial growth inhibition assays can assess the killing capacity of cell mediated 

responses induced following vaccination. Viable bacteria are incubated with whole blood or 

PBMC from vaccinated donors and bacterial CFU measured subsequently; killing being an 

integrated readout of phagocytosis, T/NK cell cytokine secretion and macrophage activation 

within the culture. These assays are providing important information in the search for 
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vaccines against M. tuberculosis and need to be developed in both mice and humans for B. 

pseudomallei [98, 99]. 

 

Finally, when future human vaccine trials are being conducted it will be important to 

harmonise the assays used in order to optimise data comparability. Useful precedents for 

this exist from  tuberculosis biomarker discovery which can be applied to B. pseudomallei, 

addressing issues such as standardization of T cell stimulation conditions, batch analyses of 

frozen peripheral blood samples and use of common flow cytometry antibody panels and 

gating and analysis strategies [100]. 

 

4.3 Systems biology approaches to vaccine evaluation 

Use of systems biology and the ‘omics technologies is increasingly important in the 

development and evaluation of vaccines [101, 102]. The search for correlates of protection is 

dominated by the use of transcriptomics, and in particular the genome-wide transcriptional 

profiling of peripheral blood immune responses following vaccination [103]. The 

transcriptional profiles of many polysaccharide and conjugate vaccines against other 

pathogenic bacteria have been defined, and will provide bench marks for future melioidosis 

vaccine studies [104]. To date, the peripheral blood gene signatures of both mice and 

humans infected with B. pseudomallei have been reported [105, 106] but there is currently 

no information on vaccine responses following administration of candidate B. pseudomallei 

vaccines. 

 

5. Conclusion  

There have been a number of important developments since the publication of previous 

reviews on the development of B. pseudomallei and B. mallei vaccines. In this review we 

highlight the DTRA guidelines on vaccine performance, and which might drive any 

assessment of the candidates which could be selected for development and clinical trials. 

These criteria might be equally applicable to vaccines for biodefence and public health 
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purposes. We also consider some of the important the criteria for licensing, including the 

suitability of the “animal rule” for assessing vaccine efficacy and how correlates of protection 

will be identified. Finally, we review the significant progress that has been made in 

developing glycoconjugates as sub-unit vaccines. We now believe that we are now in a 

position to select promising candidates for development. These candidates need to be 

produced under appropriate conditions and after appropriate quality control, efficacy testing 

in animals and toxicity testing they could be progressed into phase 1 clinical trials in 

humans. These trials might be undertaken in either the UK or in the USA. Completion of 

these trials might then allow licensing of the vaccine for biodefence purposes. However, as 

outlined above, it might also be possible to carry out further clinical trials to evaluate the 

potential for the use of these vaccines in regions of the world where naturally occurring 

disease is endemic.   
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Table 1. Estimated global burden of melioidosis  

 

 melioidosis cases - 

thousands (95% credible 

interval) 

melioiodosis deaths – 

thousands (95% credible 

interval) 

South Asia 73 (31-171) 42 (18-101) 

East Asia & Pacific 65 (28-161) 31 (13-77) 

Sub-Saharan Africa 24 (8-72) 15 (6-45) 

Latin America & Caribbean 2 (1-7) 1 (< 1-3) 

Middle East & North Africa < 1 < 1 

Total 165 (68-412) 89 (36-227) 

 

Adapted from [11] 
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Table 2. Sub units shown to provide protection against experimental B. pseudomallei or B. mallei infection 

 

Antigen animal 

model 

immunization 

route 

challenge  reference 

strain  route dose 

(CFU)  

dose (LD50 / 

MLD) 

capsular polysaccharide BALB/c 

mice 

i.p. B. pseudomallei 

NCTC4845 

i.p.  2 x 104 5000 [107] 

lipopolysaccharide  BALB/c 

mice 

i.p. B. pseudomallei 

NCTC4845 

i.p.  2 x 104 5000 [107] 

capsular polysaccharide BALB/c 

mice 

i.p. B. pseudomallei 

NCTC4845 

inh.  12.5 2.5 [107] 

lipopolysaccharide  BALB/c 

mice 

i.p. B. pseudomallei 

NCTC4845 

inh. 12.5 2.5 [107] 

lipopolysaccharide from B. 

thailandensis 

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. NR 55 [67] 

PotF (ATP binding cassette system) BALB/c 

mice 

i.p.  B. pseudomallei 

K96243 

i.p.  4 x 104 40 [108] 
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LolC (ATP binding cassette system) BALB/c 

mice 

i.p.  B. pseudomallei 

K96243 

i.p.  4 x 104 70 [108] 

LolC  BALB/c 

mice 

i.p.  B. pseudomallei 576 i.p.  6.6 x 

105 

8250 [108] 

LolC  BALB/c 

mice 

i.n. B. pseudomallei 

1026b 

i.n. NR 2 [17] 

LolC  BALB/c 

mice 

i.n. B. mallei ATCC23344 i.n. NR 2 [17] 

BopA (type III effector) BALB/c 

mice 

i.n. B. pseudomallei 

1026b 

i.n. NR 2 [17] 

BopA  BALB/c 

mice 

i.n. B. mallei ATCC23344 i.n. NR 2 [17] 

BimA (autotransporter protein) BALB/c 

mice 

i.n. B. pseudomallei 

1026b 

i.n. NR 2 [17] 

BimA  BALB/c 

mice 

i.n. B. mallei ATCC23344 i.n. NR 2 [17] 
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Omp3 (Outer membrane protein) BALB/c 

mice 

i.p.  B. pseudomallei 

D286 

i.p. 1 x 106 10 [109] 

Omp7 (Outer membrane protein)  BALB/c 

mice 

i.p.  B. pseudomallei 

D286 

i.p. 1 x 106 10 [109] 

Omp85 BALB/c 

mice 

i.p. B. pseudomallei 

D286 

i.p.  1 x 106 10 [110] 

peptide mimotopes of 

exopolysaccharide 

BALB/c 

mice 

i.p. B. pseudomallei 

NCTC4845 

i.p. 4.7 x 

104 

250 [111] 

Hcp 1 (integral surface-associated 

component of T6SS)  

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. 5 x 104 50 [44] 

Hcp 1 BALB/c 

mice 

i.n. B. pseudomallei 

1026b 

i.n. NR 2 [17] 

Hcp 1 BALB/c 

mice 

i.n. B. mallei ATCC23344 i.n. NR 2 [17] 

Hcp 2 (integral surface-associated 

component of T6SS)  

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. 5 x 104 50 [44] 
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Hcp 3 (integral surface-associated 

component of T6SS)  

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. 5 x 104 50 [44] 

Hcp 4 (integral surface-associated 

component of T6SS)  

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. 5 x 104 50 [44] 

Hcp 6 (integral surface-associated 

component of T6SS)  

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. 5 x 104 50 [44] 

OmpW BALB/c 

mice 

i.p. B. pseudomallei 576 i.p. 6 x 105 7500 [112] 

OmpW C57BL/6 

mice 

i.p. B. pseudomallei 576 i.p. 4 x 106 NR [112] 

BPSL1897 + BPSL3369 + BPSL2287 + 

BPSL2765 

BALB/c 

mice 

i.p. B. pseudomallei 

K96243 

i.p. 7.5 x 

104 

/100 [49] 

BMA_A0768 mannitol dehydrogenase 

family protein 

BALB/c 

mice 

i.m. B. mallei ATCC23344 i.n. 1 x 105 2 [48] 

BMA_2821. ABC transporter ATP 

binding protein 

BALB/c 

mice 

i.m. B. mallei ATCC23344 i.n. 1 x 105 2 [48] 
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BMA_0816 maltooligosyl trehalose 

synthase  

BALB/c 

mice 

i.m. B. mallei ATCC23344 i.n. 1 x 105 2 [48] 

GroEL BALB/c 

mice 

i.m. B. mallei ATCC23344 i.n. 1 x 105 2 [48] 

 

In none of these reports did the immune response to the antigen(s) indicated consistently provide sterile immunity. CFU = colony forming units. 

LD50 / MLD – lethal dose for 50% / median lethal dose. i.p. – intraperitoneal; i.m. = intramuscular; inh. = inhalation; i.n. intransal. NR = not 

reported. 
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Table 3. Immunisation and protection studies with glycoconjugates  

 

polysaccharide protein immunisation protection measured protection profile (%) a reference 

acute chronic survivors 

capsular 

polysaccharide 

BSA BALB/c mice challenge i.p. with 14 MLD (1x104 CFU) 

of B. pseudomallei K96243 i.p.  

0 10 90 [72] 

capsular 

polysaccharide 

BSA BALB/c mice challenge i.p. with 113 MLD (8.4 x104 

CFU) of B. pseudomallei K96243 i.p.  

0 30 70 [72] 

synthetic CPS 

hexasaccharide 

TetHc BALB/c mice challenge i.p. with 120-137 MLD (9x104 

- 1x105 CFU) of B. pseudomallei 

K96243.  

0 33 67 [70] 

lipopolysaccharide TetHc BALB/c mice challenge i.p. with 40 MLD (4x104 CFU) 

of B. pseudomallei K96243. Reduced 

splenic burden at 48 hr post challenge.  

0 20 80 [64] 

lipopolysaccharide BSA BALB/c mice challenge i.p. with 54 MLD (4.05 x 104 

CFU) of B. pseudomallei K96243 i.p. 

NA NA NA [72]  
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Reduced hepatic burden at 24hr. No 

overall reduction in mortality  

lipopolysaccharide BSA BALB/c mice antibody enhanced opsonophagocytic 

uptake by RAW264 cells 

NT NT NT [73] 

lipopolysaccharide Tetanus toxoid Rabbits passive transfer of IgG or IgM antisera 

into streptozotocin diabetic rats. 

Provided ≥104-fold protection against 

i.p. challenge with B. pseudomallei 

strain 316c 

NT NT NT [74] 

lipopolysaccharide TetHc BALB/c mice challenge i.n. with 1.9 LD50 (1.2x105 

CFU) of B. mallei ATCC23344.  

33 0 67 [68] 

lipopolysaccharide TetHc BALB/c mice challenge i.n. with 6.5 LD50 (4x105 CFU) 

of B. mallei ATCC23344.  

67 0 33 [68] 

lipopolysaccharide FliC BALB/c mice challenge i.n. with 1.9 LD50 (1.2x105 

CFU) of B. mallei ATCC23344.  

33 11 56 [68] 

lipopolysaccharide FliC BALB/c mice challenge i.n. with 6.5 LD50 (4x105 CFU) 

of B. mallei ATCC23344.  

67 22 11 [68] 
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lipopolysaccharide Hcp1 BALB/c mice challenge i.n. with 1.9 LD50 (1.2x105 

CFU) of B. mallei ATCC23344.  

0 11 89 [68] 

lipopolysaccharide Hcp1 BALB/c mice challenge i.n. with 6.5 LD50 (4x105 CFU) 

of B. mallei ATCC23344.  

67 11 22 [68] 

lipopolysaccharide FliC Rhesus 

macaques 

challenge inh with 4.6 LD50 (6.4x104 

CFU) of B. mallei ATCC23344. No 

overall reduction in mortality, but 

reduced fever and bacterial burdens in 

immunised animals 

NA NA NA [69] 

O-antigen B. 

pseudomallei 

flagellin 

Rabbits passive transfer of antiserum into 

streptozotocin diabetic rats. Provided 

102-fold increase in LD50 dose of B. 

pseudomallei 316c i.p. 

NT NT NT [75] 

O-antigen  C. jejuni AcrA BALB/c mice challenge i.n. with 10-12 LD50 (2x103 

CFU) of B. pseudomallei K96243. 

Delayed time to death. 

0 100 0 [76] 
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a The protection profile summarise the proportion of challenged mice that develop acute disease (die between day 1 and day 7 post challenge), 

the proportion that develop chronic disease (die between day 8 and the end of the study) and the proportion of mice that are alive at the end of 

the study. NA = not applicable - no difference between survival of control and immunised groups of animals. NT = not tested. CFU = colony 

forming units. LD50 / MLD – lethal dose for 50% / median lethal dose. i.p. – intraperitoneal; inh. = inhalation; i.n. intransal.  
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Table 4. General properties associated with lead melioidosis and glanders vaccine 

candidates 

 

 

 

 

property sub-unit 

 

inactivated 

(whole cell, 

OMV) 

live attenuated 

 

route of administration injection injection injection or 

natural 

number of doses multiple multiple single 

need for adjuvant yes yes/no no 

humoral immune responses IgG IgG IgG, IgA 

cell-mediated immune responses poor poor/moderate moderate/strong 

duration of immunity short/mid-

term  

short/mid-term long-term 

potential for side effects low low/moderate low/moderate 

use in immunocompromised 

individuals 

yes yes yes/no 

cost high moderate/low low 

shelf life long medium short 


