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Abstract 

With increasing availability of large data sets derived from administrative and other sources, there is 

an increasing demand for the successful linking of these to provide rich sources of data for further 

analysis. Variation in the quality of identifiers used to carry out linkage means that existing 

approaches are often based upon ‘probabilistic’ models, which are based on a number of 

assumptions, and can make heavy computational demands. In this paper we suggest a new 

approach to classifying record pairs in linkage, based upon weights (scores) derived using a scaling 

algorithm. The proposed method does not rely on training data, is computationally fast, requires 

only moderate amounts of storage and has intuitive appeal.  
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1. Introduction 

With the increasing availability of large data sets derived from administrative and other sources that 

contain records for the same underlying population of individuals, the successful matching of 

individuals via linking algorithms can provide rich sources of data for further analysis and has 

become a key issue in the management of publicly available data sources. Aside from ethical issues 

related to disclosure, the very large size of such datasets and variation in the quality of the 

identifiers used to carry out linkage raises important considerations. Existing ‘probabilistic’ linkage 

approaches often require ‘training’ data, i.e. a subset of data where the true match status is known, 

from which to estimate parameters for linkage algorithms. However, parameter estimation can be 

time consuming and demand large amounts of storage, and appropriate training data are often 

unavailable. The focus of our paper is therefore ‘unsupervised’ linkage. An overview of current 

approaches can be found in Harron, Goldstein and Dibben [1]. In this paper we propose a new 

approach to deriving weights, or scores, for linkage that is computationally efficient, requires only 

moderate amounts of storage and has intuitive appeal.  

2. Probabilistic Record Linkage 

We begin with a review of existing approaches. 

The standard algorithm for probabilistic record linkage derives from the original work of Fellegi and 

Sunter [2] and its history and development is outlined by Winkler [3]. Recent reviews of probabilistic 

record linkage can be found, for example, in Christen [4]. 

Record linkage involves a characterisation of the primary units of analysis as the pairs of the set C = 

(A x B) where A, the file of interest (FOI) is a sample of individuals from a well-defined population 

and B, the linking data file (LDF) is a second ‘independent’ sample that includes the same N 

individuals and possibly additional individuals. This results in a set of pairs of records, for which the 

same set of ‘identifiers’ (such as age, sex, identification number, name, etc.) is available.  We note 

that there are other linkage scenarios where only a subset of individuals from the FOI is present in 

the LDF. While this will not affect our comparison of methods, it will affect the subsequent analysis 

of the matched data [1]. The term ‘independent’ is taken to mean that the identifiers are measured 

independently in each sample. Because of measurement errors, identifiers cannot always uniquely 

‘match’ the individuals from the two samples. It is usually assumed that these errors are 

independent of the values of the identifiers or any other variables that may be measured on the 

individuals, although this assumption does not always hold [5]. Samples A and B, apart from the 



common identifiers, contain different variables that the data analyst wishes to bring together for 

modelling purposes. 

The aim of probabilistic record linkage methods is to determine a set of weights, or scores, for the 

set C that allows a classification of the elements of C into ‘matches’, ‘non-matches’, or undecided 

matches, ranked according to the assigned weights. A threshold weight is traditionally chosen to 

classify record pairs, which thus determines false-positive and false-negative error rates.   

For each identifier or ‘field’ we define two conditional probabilities for each record pair 𝑖𝐴, 𝑖𝐵 of C. 

For simplicity of exposition we shall assume that A and B contain the same set of individuals, that 

there are p identifiers, indexed by j, and that we measure either agreement or disagreement rather 

than degrees of agreement. This will suffice to motivate our comments on the algorithm, although 

methods can be readily extended to other linkage scenarios. We have 

𝑚𝑗 = 𝑃(agreement on identifier 𝑗|𝑖𝐴 = 𝑖𝐵), i.e. the probability of observing agreement given that it 

is the same individual. 

𝑢𝑗 = 𝑃(agreement on identifier 𝑗|𝑖𝐴 ≠ 𝑖𝐵), i.e. the probability of observing agreement given that it 

is not the same individual. 

The default assumption, which we discuss further below, is now made that for any record pair these 

probabilities for each identifier are independent so that we can write the joint probability for the 

observed agreement/non-agreement values (𝑦) of a pair, indexed by 𝑙 as 

𝑃(𝑦𝑙1, … . . , 𝑦𝑙𝑝) = (∏ 𝑚𝑗)𝜋𝑖𝐴=𝑖𝐵
+  (∏ 𝑢𝑗)𝜋𝑖𝐴≠𝑖𝐵

 𝑗  𝑗      (1) 

where 𝜋𝑖𝐴=𝑖𝐵
 and 𝜋𝑖𝐴≠𝑖𝐵

 are respectively the probabilities that 𝑖𝐴 = 𝑖𝐵 (a match) and 𝑖𝐴 ≠ 𝑖𝐵 

(a non-match). The standard analysis proceeds by writing down the ‘likelihood’ for the data as 

∏ 𝑃(𝑦𝑙1, … . . , 𝑦𝑙𝑝)𝑙         (2) 

and maximising it for the 𝑚𝑗, and 𝑢𝑗 typically using an EM algorithm (‘unsupervised’ linkage) [3]. 

Alternatively, where ‘training’ data are available, parameter estimates can be derived from these 

using the known true match status (‘supervised’ linkage).  

Equations (1) and (2) define a latent class model where the classifier is a function of 𝑅 =

(∏ 𝑚𝑗)/ (∏ 𝑢𝑗),𝑗  𝑗 usually log2 𝑅, where these classifiers are summed over identifiers to give an 

overall weight to each pair. These weights are then used to classify a pair as a ‘match’ or ‘non-match’ 

according to whether a suitably chosen threshold value is exceeded. Typically, where all identifiers 

agree, a match is assigned; where all disagree, a non-match is assigned. A function of the weight can 

be treated, suitably scaled, as the probability of a match as in Goldstein, Harron and Wade [6].  



3. Alternative approaches 

In fact, (2) does not represent a true likelihood since the elements are not strictly independent; the 

observed identifier patterns for a set of record pairs associated with any given individual are related, 

since given the observed pattern for the one true match, the probability associated with all identical 

patterns will be that for a non-match. Tancredi and Liseo [7] among others, point this out.  

These latter authors develop a fully Bayesian classification procedure for the estimation parameters 

and linkage decisions, that incorporates a model for the misclassification probabilities. They propose 

a simple version of the ‘hit-miss’ model for these misclassification probabilities, that assumes a 

particular form for the probabilities of observing any given value given an underlying true value, as 

well as making the assumption of independence among identifiers. The first of these assumptions 

requires that the misclassification mechanism is the same in both files, which in many examples is 

debateable, for example if data inputting processes differ across files. The distribution of the 

misclassified values is assumed to be the same as the ‘true’ distribution, which is also debateable, 

and so it is not clear whether such a model is likely to be reasonable in practice. Sadinle [8] extends 

this model to handle missing data and partial agreements. Hit-miss models for linkage have also 

been explored by other authors, but are not as frequently used in practice as the Fellegi-Sunter 

approach [9]. In principle, rather than relying on a model, it would be possible to determine these 

missclassification probabilities empirically, but they are likely to be context specific and not easily 

generalizable. 

These Bayesian procedures are attractive in that they provide a coherent statistical model that 

avoids the record pair independence assumption. In addition to concerns about the assumptions 

made, a practical drawback is that they are currently computationally intensive and may not be 

feasible for large datasets.  

Machine learning approaches have also been used for linkage. Essentially, these use a training set to 

derive a classification into matched or unmatched groups. Where training data are unavailable, it 

may be possible to create a set using similar data where matching status has been determined, or 

possibly a subset of current data that has been subject to careful manual matching (see for example 

Ng and Jordan [10]). 

In the next section we describe an alternative approach that is similarly motivated but conceptually 

and practically simpler. 



4. A scaling procedure. 

The Felligi-Sunter ‘likelihood’ based and similar procedures do not, as we have pointed out, have the 

usual optimality properties associated with maximum likelihood estimation since the likelihoods are 

not true likelihoods. Nevertheless they can be viewed as convenient algorithms for assigning weights 

that discriminate between the matching classes that units belong to. The Bayesian procedures 

likewise have the ultimate aim of labelling record pairs as matches or non-matches, with some cases 

where no decision is made. In the present paper we propose an alternative procedure in order to 

derive weights, but based upon a scaling model first introduced by Healy and Goldstein [11] to assign 

weights or scores to observed stages of wrist bone maturity development in children who passed 

from completely immature to fully mature stages. It belongs to the class of procedures broadly 

known as correspondence analysis [12] that seek to assign weights or scores to discrete categories 

based upon the minimisation of a suitable loss function.  

For the application to record linkage we use the terminology given in [6]. Specifically, rather than 

setting up a formal statistical model, we define a loss function that is intuitively appealing, and 

derive a procedure for its minimisation. 

For each of p identifiers, 𝑗, we assume that we have several (ordered) states denoted by 𝑘 = 1, … 𝑘𝑗 

where 1 is the least agreement and 𝑘𝑗 is the greatest level of agreement between the file of interest 

and the linking data file. In the simple binary case, there are two states (agree/not agree) for each 

identifier 𝑗. This gives a total of  𝐾 = ∑ 𝑘𝑗𝑗  categories over all identifiers. For example, binary 

agreement/disagreement on each of four identifiers would give a total of 𝐾 = 8 categories.  

Where an identifier value is missing, if we assume that missing data occur completely at random. or 

at random conditionally on values of other identifiers or other record values, then we can draw a 

value at random from the appropriate posterior distribution, estimated separately for each file.   

We seek to estimate a score 𝑥𝑗𝑘 for state k and identifier j, where the classifier for pair 𝑖 now takes 

the form 𝑧𝑖 = ∑ 𝑧𝑖𝑗𝑗  , and 𝑧𝑖𝑗 = 𝑥𝑗𝑘 if pair 𝑖 has state 𝑘 for identifier 𝑗. We fix the average classifier 

values for a definite match as ∑ 𝑥𝑗𝑘𝑗𝑗 = 1 and for a definite non-match as ∑ 𝑥𝑗1𝑗 = 0. That is, the 

sum of the scores for each greatest level of agreement is 1 and the sum of the scores for each lowest 

level of agreement is 0. These scores are analogous to the ‘weights’ defined in existing methods. We 

shall elaborate our model to allow further, pre-defined, weights below. We define the following: 

𝑥(𝑛×1) = 𝑣𝑒𝑐(𝑥𝑖𝑗), 𝑞(𝑛×1) = 𝑣𝑒𝑐(𝑞𝑗), 𝑞𝑗 =
1

𝑝
(1,0, … . ,0)(1×𝑘𝑗)  

 𝑟(𝑛×1) = 𝑣𝑒𝑐(𝑟𝑗), 𝑟𝑗 =
1

𝑝
(0, … . ,0,1)(1×𝑘𝑗) 



𝛿𝑖𝑗𝑘 = 1 if observed agreement state is 𝑘 for pair 𝑖 identifier 𝑗, otherwise 0,   

𝑁𝑗𝑘 = ∑ 𝛿𝑖𝑗𝑘𝑖 , the number of pairs with agreement state 𝑘 for identifier 𝑗 

𝑁𝑗𝑘𝑙𝑚 = ∑ 𝛿𝑖𝑗𝑘𝛿𝑖𝑙𝑚𝑖 , the number of pairs with agreement state 𝑘 for identifier 𝑗 and with agreement 

state 𝑚 for identifier 𝑙 

𝐴(𝐾×𝐾) =
1

𝑝2 (

(𝑝 − 1)𝑁11

⋮ ⋱
−𝑁11𝑝𝑘𝑝

… (𝑝 − 1)𝑁𝑝𝑘𝑝

) , where diagonal elements of 𝐴 are 
(𝑝−1)

𝑝2 𝑁𝑗𝑘 and off-

diagonal elements are −
1

𝑝2 𝑁𝑗𝑘𝑙𝑚. 

We note, for computational purposes, that the matrix 𝐴 = 𝑆 − 𝑍, where 𝑆 is the 𝐾 × 𝐾 diagonal 

matrix with elements 𝑁𝑗𝑘/𝑝 and 𝑍 is 𝐾 × 𝐾 symmetric with diagonal elements 𝑁𝑗𝑘/𝑝2 and off-

diagonal elements  𝑁𝑗𝑘𝑙𝑚/𝑝2. 

𝑑𝑖 =
1

𝑝
∑ (𝑧𝑖𝑗 − 𝑧𝑖)

2
𝑗 , the average within-pair squared discrepancy between weights and 

𝐷 = ∑ 𝑑𝑖 = 𝑥𝑇𝐴𝑥𝑖  , is the total within-pair discrepancy. 

We seek to minimise the within-pair discrepancy 𝐷 subject to 

 𝑞𝑇𝑥 = 0, 𝑟𝑇𝑥 = 1.         (3) 

These ‘end point’ constraints are introduced to avoid the trivial solution where all the weights are 

zero, and is appropriate in the context of assignment to one of two extreme classes (match, non-

match) where the sum over all agreements is 1 and over all disagreements is 0. 

This leads to the straightforward solution for 𝑥 from the set of linear equations given by Goldstein  

[12] 

2𝐴𝑥 − 𝑞𝜆 − 𝑟𝜇 = 0    

which together with (1) leads to solving the non-homogeneous set of linear equations   

𝐴∗𝑥∗ = 𝑏,   𝐴∗ = (

2𝐴 −𝑞 −𝑟

𝑞𝑇 0 0

𝑟𝑇 0 0

) , 𝑥∗ = [

𝑥
𝜆
𝜇

] , 𝑏 =
1

𝑝
(

0
⋮
1

)      (4) 

We find 2𝐷 = 𝜇 = −𝜆. For convenience, by subtracting the ‘non-agreement’ score for each 

identifier from that identifier’s scores we can form a rescaled score vector so that the non-

agreement score for each identifier is now 0 and the sum of the full agreement scores remains 1. In 

our example we have multiplied all the scores by 100 for presentation purposes. 



In fact there is an infinity of possible constraint systems such as (2). The ‘end point’ constraint we 

have used recognises that complete agreement on all identifiers is associated with a maximum score 

equivalent to a matched record and complete disagreement on all identifiers is associated with a 

non-match.  

In practice, with large datasets the matrix 𝐴∗ may not be well conditioned, in which case we can 

define 

𝑞𝑠 = 𝑠𝑞, 𝑟𝑠 = 𝑠𝑟,    𝑏𝑠 = 𝑠𝑏  

and substitute these values in (4). A suitable value of s could be the total number of units 𝑁 =

∑ 𝑁𝑗𝑘𝑗,𝑘 .  

We note that the storage requirements are modest, of the order 𝐾2, the square of the total number 

of categories. For example, using binary agreement/disagreement on four identifiers would result in 

eight categories so that 𝐾2= 64. The matrix 𝐴 is readily computed by cycling over the record 

combinations for each matrix cell. For each pair we have 𝑝2 simple comparisons and the results of 

these are accumulated over the set of pairs. For the binary case the comparison establishes whether 

(pairwise) agreement is present or not. Where we have more than two categories of agreement, for 

each comparison of identifiers the agreement category has to be computed using a suitable 

algorithm, for example in terms of a ‘distance’ between the identifier values (e.g. using a string 

comparator). This has timing implications, but in general it would seem that very large datasets can 

readily be handled. In the next section we give an example of our procedure and compare its results 

with a traditional Fellegi-Sunter probabilistic linkage method.  

5. An example of linking two files. 

The data are synthetic data generated from a dataset obtained from pediatric intensive care units in 

England and wales with known matches, as described in [13]. The file of interest has 7742 records 

and the linking data file has 10000 records. Missing values are introduced completely at random into 

just one of the identifiers in each of 19% of the records in the linking data file. Errors in the 

identifiers are introduced randomly in such a way that the m probabilities for each identifier are 

0.95. Since the missing values are introduced randomly and since the correlations among the 

identifiers are negligible (none is greater than 0.04 in absolute value) the imputed values to replace 

those missing are, for simplicity, sampled from the observed marginal distributions of each 

identifier. 



The identifiers are day of the month, month, year (1991-2006) and gender. The final 4 years, 2003-

2006, account for the majority of cases (13%, 20%, 27% and 31% respectively).  

Using the software LINKPLUS [14] we carried out an unsupervised probabilistic matching, but 

incorporating the knowledge that the separate m probabilities for identifier agreement are all 0.95. 

The scaling algorithm was performed in MATLAB [15]. The MATLAB routine and also one written in R 

[16], are available from the corresponding author.    

TABLE 1 here 

Table 1 shows, to the nearest integer, the estimated weights from the two algorithms. Day of the 

month, the most discriminatory identifier, has the highest weight for a match, followed by month, 

then year, then gender. Bearing in mind that we have generated only one synthetic dataset, we note 

that the weights have the same ordering and are approximately equivalent in terms of ranking 

record pairs. In fact, if we simply square and standardise the probabilistic weight estimates in row 2, 

we obtain weights very close to those given by our scaling method. When the weights are combined 

across identifiers, individual combinations may be ranked differently between methods and for each 

of the 16 possible agreement/non-agreement patterns, the overall pattern of weights with rankings 

is given in Table 2.  

TABLE 2 here 

We see a reasonable agreement between the rankings for each method. For most choices of 

threshold to classify record pairs as matches/non-matches, each method would produce the same 

result. Furthermore, the scales themselves are only invariant up to a monotonic transformation. For 

example the weights in traditional probabilistic record linkage are derived from a logarithmic 

transformation of the ratio of the 𝑚𝑗 and 𝑢𝑗 but other reasonable combinations of these parameters 

are possible. Since a monotonic but non-linear transformation of either scale would generally 

produce different rankings of the patterns, it is the ordering of the weights associated with each 

indicator that is the most appropriate basis for a comparison of methods. As we would expect, both 

procedures produce an ordering where the most discriminating variable, day, has the highest weight 

and sex the lowest.  

Finally, since the data have actually been generated from known matches, we can compare the two 

procedures with respect to their closeness to the correct match status. In fact, only 1000 records in 

the FOI have matching records in the LDF so that only these records are used in the comparison. We 

estimated the probabilities by computing the proportion of times, for each identifier pattern, that 

the record pair was the correct match. Table 3 shows the estimated probabilities for each identifier 

pattern and an estimate of the simple correlation between these probabilities and the separate 



weights for each procedure, omitting the first (all identifiers disagree) and last (all identifiers agree) 

categories, since these are constrained. The traditional procedure gives a somewhat lower estimate 

than the scaling procedure for this example. 

TABLE 3 here 

6. Extensions 

We note that our agreement measure has been assumed to be categorical. In some cases, however, 

it may be effectively continuous, such as in measures of phonetic distance, or age. In such cases, the 

simplest approach is to categorise the scale into a small number of categories, and sensitivity 

analyses can be carried out to determine a satisfactory classification. For example, continuous values 

of the Jaro-Winkler [17] string comparator for measuring similarity between names could be 

categorised as <0.8, 0.8-0.9, 0.9+, etc. It would, in principle, be possible to consider a mixture of 

categorical and continuous variables where a particular functional form for the latter was assumed, 

for example linearity. We shall not, however, pursue this possibility here.  

In traditional probabilistic record linkage there is an assumption that the overall match probabilities 

are derived as a product over the identifiers of separate identifier probabilities. This implicit 

assumption of independence is mirrored by the scaling procedure use of a (possibly weighted) sum 

of weights assigned to each identifier, but there is no explicit assumption of statistical 

independence. Moreover, the procedure can be generalised, for example by combining identifiers so 

that all possible combinations are considered as a new set of categories.  

For example, consider two identifiers, 𝑋, 𝑌 each with two categories. We may form the combined 

identifier which is the set of all possible category pairs for X and Y. We can then replace the separate 

identifiers by a new one XY with 4 categories. This can be done for a number of disjoint pairs, and 

can be extended to sets of three or more categories if required. The analysis proceeds as before. In 

practice there will be a limit to this procedure where category numbers become small or particular 

combinations may not exist, although it may be possible to combine cells with small counts. We can 

also carry out sensitivity analyses, trying different combinations of identifiers to examine changes to 

the estimates.  

We have assumed that, a priori, our identifiers have equal status. In some cases, however, one or 

more identifiers may have low reliability, and in an extreme case be close to random noise. In such 

cases we may wish to down-weight their role in determining the overall category weights. Suppose 

then that each identifier has a weight 𝑤𝑗, ∑ 𝑤𝑗 = 1𝑗 . We now have 



𝑑𝑖 = ∑ 𝑤𝑗(𝑧𝑖𝑗 − 𝑧𝑖)
2

𝑗   

which for the matrix 𝐴 leads to the diagonal elements 𝑤𝑗(1 − 𝑤𝑗)𝑁𝑗𝑘  and off-diagonal elements 

−𝑤𝑗𝑤𝑙𝑁𝑗𝑘𝑙𝑚 and 𝑞𝑗 = 𝑤𝑗(1,0, … . ,0)(1×𝑘𝑗), 𝑟𝑗 = 𝑤𝑗(0, … . ,0,1)(1×𝑘𝑗).  

7. Linking more than two files 

We can extend the case of two files to several files as follows. We assume that one file is the primary 

file of interest. We carry out separate linkages with each secondary linking data file, possibly using a 

different set of identifiers in each case, and in each case derive a set of candidate weights for each 

record in the primary file. We further assume, without loss of generality, that a different set of 

variables from each is to be selected for transfer from each linking file to the primary file.  

For each set of candidate weights, we may wish to set a threshold above which the record with the 

maximum weight is selected and, as in the two file case, where the threshold is not exceeded this 

will result in a set of missing data values. For these, records, alternative approaches such as prior-

informed imputation can be used to carry over a set of variable values [6]. This procedure will not 

depend on the order of the files being linked, but may be dependent on the choice of the primary 

file. In many cases this choice may be a natural one, such as when a survey sample is being 

supplemented with data from administrative datasets. In other cases, such as the linking of several 

administrative datasets, the choice may not be obvious and a sensitivity analysis, choosing different 

primary files may be needed to explore sensitivity to the choice. The computational efficiency of our 

suggested procedure will often make this practically feasible. 

8. Discussion 

We propose a scaling approach to deriving match weights with which to classify record pairs in 

linkage. Our approach provides a measure of pattern agreement equivalent to the weight derived 

from the traditional probabilistic approach, and in our example, we obtain similar rankings of record 

pairs which will provide the same or similar linkage result, depending on choice of threshold. We 

also note that the estimated correlation between the probability of being a true match and  the 

weights estimated from the scaling method is 0.53, compared to 0.26 for the traditional method, 

although we would not wish to generalise from this one example. We could also choose to stratify 

the agreement measure according to which identifiers agree. Thus, for example, we could choose to 

distinguish agreement on birth day and month within and between years, by introducing different 



weights for the two cases as described above, or alternatively by forming a combined variable, say 

month and year. 

Our approach does not rely on the availability of training data to estimate parameters, or on any 

distributional assumptions. Importantly, our proposed procedure is conceptually and 

computationally simpler than existing methods, makes fewer assumptions, yet captures implicitly 

the notion of identifier patterns as indicators of the propensity for a match, and has the ability to 

handle large datasets in an efficient manner. A probabilistic interpretation can still be made if we 

consider the data sets as being ‘sampled’ from a notional population of similar datasets so that the 

resulting weights can be applied in other instances with similar data. Thus, for example, a non-

parametric bootstrap procedure could be used to obtain interval estimates for the weights by 

resampling records with replacement. 

We would note that using the EM algorithm for parameter estimation in the Fellegi-Sunter model 

will sometimes fail to converge or converge to a local maximum, even when a range of starting 

values are used. This is a drawback and may well be related to the fact that the ‘likelihood’ being 

maximised ignores the dependencies in the data. The algorithm becomes particularly unstable when 

the proportion of records with a true match is low. 

Where training data are available with known match status, the latter is often treated as an outcome 

in a general linear model with the identifier agreement as predictors. In this case, however, we also 

encounter the problem that for any given record in the file of interest, only one linking file record is 

a match, and the usual model assumption of independent outcomes is violated.  

We have suggested that our procedure is computationally efficient, not involving a time consuming 

iterative estimation procedure. Nevertheless, we have used a fairly small dataset in our example, 

and computing times will be lengthier with very large data files, and especially when agreement 

status is based upon degrees of agreement in more than two categories. Procedures for applying the 

algorithm to a random subset of the data could usefully be studied, and this is an area for further 

research. One possibility for very large samples is to approximate 𝐴 by selecting a simple random 

sample of all possible pairs with sampling fraction 𝑠 to compute the 𝑁𝑗𝑘 , 𝑁𝑗𝑘𝑙𝑚,  and then rescaling 

these by 𝑠−1. As in traditional record linkage we can also introduce blocking on certain identifiers to 

reduce the number of computations. Both of these possibilities are topics for further research. 

Finally, we note that once we move away from the traditional explicit model based approach that 

relies upon optimal properties such as those associated with maximum likelihood estimates, we are 

confronted by a need to choose both the classifier function and the constraints to ensure 

identifiability. Different choices will lead to different solutions, and in particular to different rankings 



of pairs and thus different selections based upon thresholds. We have argued that our own choice of 

scaling procedure is based upon sensible criteria, but it would be useful to explore this further. We 

would also welcome sensitivity analyses using real life datasets, but this will often be limited by the 

amount of computational time involved.  In general, linkage success depends on the choice of 

threshold for classifying record pairs. This is an ongoing area of research, as a choice of threshold 

needs to be optimal for a particular linkage scenario and substantive research question, where false-

positives or false-negatives may have differing impacts. The extent of non-random linkage errors is 

also important. We are currently looking at the impact of different choices upon the inferences from 

the final substantive models fitted to the linked data. 
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Table 1. Comparison of agreement weights using scaling and traditional probabilistic matching.  

 Day Month Year Sex 

Scaling estimates 53 22 19 7 

Probabilistic estimates 32 27 26 15 

 

  



Table 2. Weights for each linkage pattern (day, month, year, sex). Ordered with 
respect to scaling model. Ranks in brackets 

Identifier Linkage pattern Scaling method Traditional method 

   0   0   0   0 
   0   0   0   1 
   0   0   1   0 
   0   0   1   1 
   0   1   0   0 
   0   1   0   1 
   0   1   1   0 
   0   1   1   1 
   1   0   0   0 
   1   0   0   1 
   1   0   1   0 
   1   0   1   1 
   1   1   0   0 
   1   1   0   1 
   1   1   1   0 
   1   1   1   1 

   0   (1) 
   7   (2) 
  19   (3) 
  26   (5) 
  22   (4) 
  29   (6) 
  41   (7) 
  48   (8) 
  53   (9) 
  60  (10) 
  72  (11) 
  75  (12) 
  79  (13) 
  86  (14) 
  94  (15) 
  100  (16) 

   0   (1) 
  15   (2) 
  26   (3) 
  41   (6) 
  27   (4) 
  42   (7) 
  53   (9) 
  68  (12) 
  32  ( 5) 
  47  (8) 
  58  (10) 
  73  (13) 
  59   11) 
  74  (14) 
  85  (15) 
  100  (16) 

 

  



Table 3. Probability that we obtain the correct match for each identifier 

linkage pattern, and correlation of these probabilities with the procedure 

weights. 

Identifier linkage pattern Probability the match is correct 

   0   0   0   0 
   0   0   0   1 
   0   0   1   0 
   0   0   1   1 
   0   1   0   0 
   0   1   0   1 
   0   1   1   0 
   0   1   1   1 
   1   0   0   0 
   1   0   0   1 
   1   0   1   0 
   1   0   1   1 
   1   1   0   0 
   1   1   0   1 
   1   1   1   0 
   1   1   1   1 

* 
* 
* 
* 
* 
* 
* 

0.072 
* 

0.013 
* 

0.071 
* 

0.071 
0.048 
0.695 

Correlation for scaling procedure** 0.53 

Correlation for traditional procedure** 0.26 

* Indicates probability < 0.01.  ** The first and last (0000, 1111) 
categories are omitted. 

 


