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Approaching  disease  elimination,  it is crucial  to be able  to assess  progress  towards  key objectives  using
quantitative  tools.  For  Gambian  human  African  trypanosomiasis  (HAT),  the ultimate  goal  is  to  stop  trans-
mission  by  2030,  while  intermediary  targets  include  elimination  as  a public  health  problem  −  defined  as
<1 new  case  per  10,000  inhabitants  in  90%  of  foci,  and  <2000  reported  cases  by 2020.  Using  two  indepen-
dent  mathematical  models,  this  study  assessed  the  achievability  of  these  goals  in  the  former  Equateur
province  of the  Democratic  Republic  of Congo,  which  historically  had  endemic  levels  of  disease.

The two  deterministic  models  used  different  assumptions  on disease  progression,  risk  of  infection
and  non-participation  in  screening,  reflecting  biological  uncertainty.  To  validate  the  models  a  censor-fit-
uncensor  procedure  was  used  to fit to health-zone  level  data  from  2000  to  2012;  initially  the  last  six years
were censored,  then  three  and  the final  step  utilised  all data.  The  different  model  projections  were  used
to evaluate  the  expected  transmission  and  reporting  for each  health  zone  within  each  province  under  six
intervention  strategies  using  currently  available  tools.

In 2012  there  were  197  reported  HAT  cases  in former  Equateur  reduced  from  6828  in 2000,  however
this  reflects  lower  active  testing  for HAT  (1.3% of  the  population  compared  to 7.2%).  Modelling  results
indicate  that  there  are  likely  to be <300  reported  cases  in  former  Equateur  in  2020  if screening  continues

at  the  mean  level  for  2000–2012  (6.2%),  and <120  cases  if vector  control  is  introduced.  Some  health  zones
may  fail  to achieve  <1  new  case  per  10,000  by 2020  without  vector  control,  although  most  appear  on
track  for  this  target  using  medical  interventions  alone.  The  full elimination  goal  will  be  harder  to  reach;
between  39  and  54%  of  health  zones  analysed  may  have  to improve  their  current  medical-only  strategy
to  stop  transmission  completely  by 2030.

© 2017  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
. Introduction
Gambian human African trypanosomiasis (HAT), also known as
leeping sickness, is a tsetse-borne disease caused by the para-
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/).
site Trypanosoma brucei gambiense.  The World Health Organization
(WHO) has laid out two targets towards the elimination of Gambian
HAT. The first target, to be achieved by 2020, is defined by two  indi-
cators (i) to eliminate HAT as a public health problem, defined as
less than one reported case per 10,000 people, in 90% of HAT foci and
(ii) reduce annual reported cases globally to <2000 (Holmes, 2014).
The second target for this disease is to terminate transmission by

2030 (Holmes, 2014).

The natural history of Gambian HAT is slow, and consists of
two distinct stages (1 and 2). During stage 1, which typically lasts

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.

dx.doi.org/10.1016/j.epidem.2017.01.006
http://www.elsevier.com/locate/epidemics
http://crossmark.crossref.org/dialog/?doi=10.1016/j.epidem.2017.01.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:k.s.rock@warwick.ac.uk
dx.doi.org/10.1016/j.epidem.2017.01.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 emics

a
t
w
s
s
l

b
r
m
m
i
t
w
m
o
c
t
U
T
Y
d
w

v
s
t
o
g
p
w
i
t

a
f
o
p
t
i
f
m
b
(

s
o
d
t
1
s
s
i
a
s
i
h
w
f
h
f
t
n
d

a

02 K.S. Rock et al. / Epid

round 17 months (Checchi et al., 2008), infected individuals ini-
ially experience mild or no symptoms that can easily be mistaken
ith malarial infection (Lejon et al., 2013). Stage 2 marks the tran-

ition of the parasite across the blood-brain barrier and the onset of
evere disease with symptoms including behavioural disturbances,
ethargy and usually death without treatment (Kennedy, 2013).

Despite an estimated 57 million people living at risk of Gam-
ian HAT infection, the global trend of declining cases and lowered
isk levels is promising and appears on track to meet the WHO’s
ilestones by 2020 (Simarro et al., 2012). The decrease was
ainly achieved through widespread detection and treatment

nterventions. Detection may  be either “passive”, when symp-
omatic individuals self-present at health facilities, or “active”,
hen mobile teams screen at-risk villages. The recent develop-
ent of cost-effective methods of tsetse control offer the prospect

f adding vector control to case detection and treatment. Tsetse
ontrol through tiny targets is one such method and has been effec-
ive in regions including HAT foci in Guinea (Courtin et al., 2015),
ganda (Tirados et al., 2015) and Chad (Mahamat et al., 2017).
setse interventions have also been implemented recently in the
asa-Bonga health zone (an administrative unit of former Ban-
undu province) of Democratic Republic of Congo (DRC), but not
ithin former Equateur province.

A combination of active-screening programmes and declines in
ector populations through the growth of human populations have
hrunk many of the historic foci of HAT across West Africa, such
hat 87% of the Gambian HAT burden was estimated in 2014 to
ccur in DRC (WHO, 2015). Within DRC there are also high levels of
eographic heterogeneity in disease burden. Of the former eleven
rovinces that existed pre-2015, Equateur province in the north-
est of DRC had the highest number of reported HAT cases, 6828,

n the year 2000 and the third highest proportion of cases (17% of
he total) between 2000 and 2012 (Lumbala et al., 2015).

Mathematical modelling provides a method with which to
ssess quantitatively progress towards the WHO  goals and project
orwards to 2020 and 2030 (Hollingsworth et al., 2015). This type
f mechanistic modelling has predictive power to test a range of
lausible scenarios, enabling not only analysis of current interven-
ions but also to predict the likely impact of current and alternative
ntervention strategies in the future. In this study, human case data
rom the former Equateur province was used to fit and validate the

odels (Model W and Model Y) of two independent research teams
efore generating predictions for the future of HAT in this region
see Methods and SI1 for model details).

Despite many of the mechanisms of transmission being known,
ome features of the epidemiology are less well understood; much
f the key epidemiology that impacts on model assumptions is
iscussed elsewhere (Rock et al., 2015a). There is some evidence
hat some infected individuals may  not follow the standard stage
–2 progression; recently, evidence of parasitic infections in the
kin (Capewell et al., 2016; Caljon et al., 2016) has highlighted
ome of the uncertainty that surrounds our knowledge of HAT
nfection and transmission to tsetse. Consequently, Model Y takes
n assumption that some infected individuals will never develop
ymptomatic disease, and self-cure before progression to stage 2
nfection. Other factors, which could impact transmission, include
uman behaviour that influences the tsetse biting rate on humans,
ith some individuals entering tsetse habitat more often and there-

ore having higher more bites, and hence infection. Model W has
eterogeneous exposure of the population to tsetse bites to account

or this. Other differences between the models included the infec-
ivity of stage 2 patients towards tsetse and the susceptibility of

on-teneral (previously fed) flies to infection (see SI1 for more
etails of all model assumptions).

By using multiple models, which have different underlying
ssumptions, the impact of these assumptions on forward predic-
 18 (2017) 101–112

tions can be observed. Where results between the modelling teams
are aligned, there is greater confidence in the model predictions,
even if there is biological uncertainty in transmission. If there are
conflicting results, it indicates that different biological hypothesis
translate into different outcomes, and better more information may
be required to improve certainty in predictions.

Both teams identify health zones in former Equateur province
that may  need revised strategies in order to achieve elimination
as a public health problem by 2020, or full elimination by 2030. To
inform policy planning and disease control, the groups also provide
estimates for the expected number of cases in 2020 at the province
level under maintenance of current intervention strategies, as well
as current interventions combined with the introduction of var-
ious levels of vector control. By comparing the effect of model
structure and model fitting procedures on the predictions, we are
able to provide a range of uncertainty in model prediction. Both
models predicted that continuing current intervention will achieve
elimination of HAT as public health problem in most health zones
of former Equateur and that introducing moderate vector control
could enable elimination as public health problem by 2020 and full
elimination by 2030 in all health zones.

2. Methods

2.1. Data

Former Equateur province had an area of 403,292 km2 and a
population of approximately 7.5 million inhabitants. In 2015 this
province was  divided into five smaller provinces: Nord-Ubangi,
Mongala, Sud-Ubangi, Equateur and Tshuapa; however, given that
our data comes from before this division, we  focus on the whole
of the former province. Former Equateur province was subdi-
vided into smaller administrative units called “zones de santé”
or “health zones”, which each have a population size of approxi-
mately 100,000 people, although there is one as small as 34,000
and another as large as 327,000. For each health zone considered,
the two teams calibrated their models independently to the aggre-
gate incidence of actively- and passively-detected cases and the
number of active screenings between 2000 and 2012 as recorded
in the WHO  HAT Atlas (Simarro et al., 2010; Simarro et al., 2015).

In order to ascertain which data belonged to a particular health
zone, assigned geo-locations were used to match each reported
active screening or passive detection to the 2014 health zone map.
This was  to resolve issues with changing health zone boundaries
throughout the period 2000–2012. For data with no assigned geo-
location, village names and other information such as “aire de
santé” (health areas, which are smaller divisions within health
zones) were matched to data with assigned geo-locations. For the
few data that could not be matched, the original health zone name
was used as a proxy for the 2014 health zone.

Of 69 health zones in the former Equateur, 12 had no reported
cases or active screening, and were therefore not included in the
model fitting process (SI2 provides maps of the health zones which
were fitted to in this study). These health zones with no reported
cases were assumed to have already met the zero transmission goal,
however it is noted that without active screening or information
about the passive surveillance system in these zones, there is some
uncertainty about whether there is underreporting or if these are
truly zones with zero infection. Neither group had previously fitted
their models to data from former Equateur province.
2.2. Models

The independent teams previously developed their own deter-
ministic models (Rock et al., 2015b; Pandey et al., 2015) and
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Table 1
Six intervention strategies under consideration in this analysis.

Strategy Tsetse population reduction
after 1 year (starting in 2017)

Active screening level

1 0% Mean (for each health zone) of
2000–2012 level

2  0% Max (for each health zone) of
2000–2012 level

3  60% Mean
4 60% Max
K.S. Rock et al. / Epid

ariants of these were used to perform this analysis. The two  mod-
ls structures are based on different hypothesis regarding disease
rogression, human risk and behaviour.

Gambian HAT has typically been considered to be an anthro-
onotic disease, with no animal involvement in transmission.
revious work by both research teams did not provided support
or either anthroponotic transmission or animals as infection reser-
oirs in former Bandundu province of DRC (Rock et al., 2015b), or
n Guinea (Pandey et al., 2015). In this study, both teams selected

odels that had human-tsetse transmission only.
Both models are deterministic and compartmental, with classes

or susceptibles, those in stage 1 and 2 disease, those recovering
rom infection, and explicit tsetse dynamics. Model W is a pre-
iously published model (Rock et al., 2015b), which accounts for
eterogeneity in both human exposure to tsetse bites and also
creening participation. In line with model fitting results to health
ones from former Bandundu province of DRC, this model assumes
hat the high-risk people do not participate in active screening
lthough the proportion of people in these categories and the
elative exposure are re-fitted for each health zone in former Equa-
eur as this is likely to vary geographically. An adaptation to this

odel simulates the impact of tiny tsetse targets on fly popula-
ions and subsequent disease dynamics in humans (Rock et al.,
017). Model Y is an extension to a previously published model
Pandey et al., 2015) and now includes asymptomatic human infec-
ion, which progresses to self-cure rather than disease. It is assumed
hat such asymptomatically infected individuals are able to trans-

it  the parasite to tsetse with a reduced probability. Both models
re described further in the SI1 (Model Description).

.3. Fitting and validation

The teams used the data of the number of people actively screen-
ng for all years (2000–2012) in every calibration, however they
onducted a 3-stage calibration/uncensor procedure whereby the
eams only used 2000–2006 reported case data (both active and
assive) for the initial model fit. Once the first stage was  complete,
ase data from years 2000–2009 were used by the teams to repeat
he model calibration. Finally, the full data set was uncensored and
he models were calibrated for a final time. The three rounds of fit-
ing were performed in order to be able to conduct model validation
nd to assess the models’ predictive abilities.

Both teams used the same estimated population size of each
ealth zone in 2014 (see SI2 Fitting and Prediction for these val-
es) and an assumed population growth of 3% per year which is
he standard used by the national vaccination campaign (OCHA,
016). All other parameters, the model structure, and the method
or model fitting were chosen by each group independently. Model

,  which had four unknown parameters, was fitted using Markov
hain Monte Carlo (MCMC), whereas Model Y used Bayesian meld-
ng technique to calibrate their six parameters. Each of the fitted
arameters for both groups represented a biological quantity (such
s a probability of transmission), or a behavioural one (such as who
as actively screened). Initial conditions were taken as endemic

quilibria in the absence of active screening or vector control as it
as assumed that this was the only intervention available before

000 (see SI1 for more model fitting details). Each group provided
ufficient model replicates using their respective fitting algorithm
o generate a distribution of fitted/predicted active and passive case
umbers for years 2000–2012. Model Y was fitted using a mixture
f Poisson and Binomial likelihood function, whereas Model W was

tted using just Binomial likelihood functions; however given the
opulation sizes this was not likely to generate significant differ-
nces. The level of uncertainty around the model fitting determined
he level of confidence in the model predictions.
5 90% Mean
6 90% Max

2.4. Projections

Following fitting, each group generated projections (from 2013)
to simulate the predicted year of (a) elimination as a public health
problem; and (b) full elimination, for each health zone under 6 dif-
ferent intervention strategies (Table 1). The simulated strategies
encompass current interventions (Strategies 1 and 2) and readily
available interventions (Strategies 3–6). Using these projections,
the teams assessed whether the current strategy (variable active
screening on top of passive surveillance) is sufficient to achieve
HAT elimination as a public health problem by 2020, and full elim-
ination by 2030 in Equateur and whether additional vector control
could facilitate attaining these goals. Both groups assumed that
passive surveillance would continue with the same detection rate
post-2012 as pre-2012.

As vector control has not been implemented at scale in this
province previously, it is unclear what the efficacy of vector inter-
ventions could be in the region. A range of different tsetse control
interventions is available and includes targets, traps and insectici-
dal treated cattle. Each of these methods would be expected to have
similar impact on the disease dynamics if the same tsetse reduction
was achieved, although the effort required and costs of these differ-
ent methods vary greatly and are setting-dependant (Shaw et al.,
2013). As a focussed example, in this study both groups modelled
the impact of tiny targets on tsetse populations and disease dynam-
ics. In other settings tsetse control via tiny targets has been found to
reduce populations rapidly; in Guinea 80% tsetse population reduc-
tion was  achieved 18 months after initial implementation (Courtin
et al., 2015) and in Uganda 90% reduction was observed after 1 year
(Tirados et al., 2015). The teams therefore selected two  plausible
tsetse population reductions, 60% and 90%, that might be attained
following a year of target implementation and correspond to mod-
erately and highly effective tsetse control.

Due to their use of deterministic modelling, both groups had to
select a suitable criterion for elimination. Since the definition of
elimination as a public health problem relates directly to reporting
rather than transmission per se,  both groups used the threshold of
the reported case incidence below 1 per 10,000 at a health zone
level as the criterion for this target. The health zone level was  cho-
sen as it is a clearly defined administrative unit with population
size estimates available, whereas a “HAT focus” is more ambiguous
both spatially and in terms of demography. For full elimination, the
teams agreed to compute the full elimination year as the first year
in which a given health zone would reduce their incidence to <0.5
new infections per year across the entire health zone. This slight
modification to the true elimination goal was necessary because of
the deterministic nature of the models; at less than half an infection
per year stochastic elimination is extremely likely. It is noted that
new transmissions and new reported cases are distinguished by the

time lag between infection and detection for both models. Model
W also accounts for underreporting in passive detection data (see
SI1), which creates even greater differences between transmission
and reporting.
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Fig. 1. Example model fitting to Budjala (health zone 18). The top graph shows the level of active screening achieved in each year in this health zone, the middle and bottom
show  the number of cases found actively and passively respectively. On these, the data is shown as a grey line, whilst results of fitting Models W and Y across all rounds (1–3)
a rvals.
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re  given as box and whisker plots with the whiskers representing 95% credible inte
he  remaining years shown are model predictions using known active screening n
ound  3 uses all years (2000–2012) for fitting.

. Results

.1. Fitting and validation

Censoring was performed in order to test the models’ predic-
ive power. Results of fitting in each of the 57 health zones can be
een in SI2. Model Y typically remained relatively consistent in its
rojections across the 3 fitting and projection rounds. In contrast,
uring the initial round of fitting Model W was found be unable to
eplicate reliably the trend in observed active cases; in particular
he number of observed cases were often well below the predicted
umber of false positives. As a result the specificity parameter was
hanged from 99.9% to 100% in rounds 2 and 3, leading to a sub-
tantial improvement in the fit in these rounds for many health
ones. Results from Model W used in comparison figures (main
ext and SI2) show the 100% specificity across all rounds, but the

mpact of changing specificity is shown in SI3. For example in Bwa-

anda (health zone 22) using an imperfect 99.9% specificity test
ould result in many false positive detections in 2002–2006 due
 In round 1 (results W1  and Y1), the available case data was only years 2000–2006;
rs (and no vector control). Likewise, round 2 shows fitting for 2000–2009, whilst

to the high screening coverage (Figs. S3–22). In reality there was
a decreasing trend in active case reporting, which was reflected in
fitting the model with 100% specificity (shown in green) where it
could not be produced using 99.9% specificity (purple). Model W
rounds using 100% specificity were typically very similar in their
projections.

In some health zones, extra data in later years did impact the
model fits, e.g. in Bikoro (health zone 4), there were peaks in active
detections in years 2009 and 2011. In Iboko and Ntondo and (health
zones 27 and 51) there were 0 and 1 total detections respectively
prior to 2006 and so the results of fitting changed for both models
after round 2, when more years were uncensored. The change was
more stark for Iboko (health zone 27) as no active screening took
place pre-2006. In Ntondo (health zone 51), there were screenings
in 2000 and 2003 (both covering <6% of the population), which
this resulted in less difference between rounds 1 and 2 for active

screening, but still substantial differences for passive.

One clear discrepancy between the modelling approaches was
how to deal with health-zones where there were limited data. In
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ig. 2. Median elimination as a public health problem (PHP) years by health zone u
he  right. Maps for all six strategies under each of the models are given in the SI2.

4 health zones there was limited (and temporally patchy) screen-
ng and no reported cases, therefore, Team Y decided not to include

odel fitting results for the full elimination years in these 14 health
ones in the study, as they are likely to have already reached full
limination. Team W fitted their model in all health zones and
ound that in these health zones, the best model fit was  obtained
ith the basic reproductive ratio (R0) less than one (i.e. no sus-

ained local transmission). In the 12 health zones with no reported
ases or active screening neither team fitted their model, and it was
ssumed that there was no transmission in these health zones.

Both fitting approaches lead to quite tight credible intervals (CIs)
n most cases (Fig. 1).

.2. Predictions from models (using all available data)

Model W predicts that, on average, 2 of the 69 health zones

o not to achieve elimination as a public health problem by 2020

f the mean level of screening is continued (Fig. 2). Somewhat
ounter intuitively, this increases to 6 health zones with maximum
creening. This is explained by the increase in screening effort, and
trategies 1–3 as predicted by the two models, Model W on the left and Model Y on

therefore more cases being detected in the four additional health
zones which fail to meet the target. Using the median result of
Model Y, simulations indicate that all but three health zones are
on track to achieve elimination as a public health problem by 2020
if mean screening levels continue (Fig. 2); this decreases to two if
maximum screening continues.

Changing strategy was  predicted to have little impact in most
health zones under both models due to almost all of them already
being on track. Under strategies with at least 60% vector reduc-
tion, Ntondo (health zone 51) was  the only health zone not on
target to reach the goal. For the health zones that Model W suggests
wouldn’t meet the target by 2020 under mean screening, increasing
screening had little impact the projected elimination year, however
introducing moderate (60%) vector control reduced the timescale
and just one health zone (Ntondo, health zone 51) was found not
to meet the target (Fig. 2) and highly effective tsetse control (90%)

combined with maximum screening lead to all health zones achiev-
ing elimination as a public health problem by 2020. Results from
Model Y indicate that Ntondo (health zone 51) could still fail to
meet this target even with such effective tsetse control.
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ig. 3. Median full elimination years, by health zone under strategies 1–3 as pred
ere  assigned through direct assessment of the data rather than by model fitting. M

It was predicted that 34 and 42 of the 69 health zones (Models W
nd Y respectively) would not to meet the full elimination goal by
030 under mean screening (Fig. 3). Increasing to maximum screen-

ng showed improvements under both models with a reduction
o 27 and 37 health zones behind schedule for stopping trans-

ission (Fig. 3). Introducing moderate vector control alongside
ean screening levels had a marked impact on model predic-

ions with Models W and Y predicting that all health zones would
ave stopped transmission by 2030 (Fig. 3). Both teams found
hat achieving 90% tsetse reduction in all health zones resulted in
rovince level full elimination by 2025 due to the impact of vector
ontrol on new transmissions (SI2 Figs. S2–5 and S2–7).

Vector control generated large improvements in the projected
limination years for both teams (Figs. 4 and 5). For both teams,
he proposed vector reductions are predicted to reduce the time
o elimination by several decades in many health zones where the
ime to elimination is long under current strategy.
Figs. 4 and 5 show the probability of achieving <1 reported case
er 10,000 by 2020 and zero transmission by 2030 respectively. In
ost health zones and under most strategies the models have high

ertainty that the goals will either be meet (>90% chance shown
y the two models, Model W on the left and Model Y on the right. Striped regions
or all six strategies under each of the models are given in the SI2.

in dark blue) or won’t be meet (<10% chance shown in dark red).
However, for a few health zones, particularly in relation to full
elimination, there is much more uncertainty whether these tar-
gets will be met  and so these are take colours from the middle of
the spectrum.

Table 2 gives the expected number of reported cases in 2020
for the whole of former Equateur province under the six different
strategies. Model W predicts slightly higher numbers of cases in
2020 under intervention without vector control (Strategies 1 and
2), however it is expected that even under mean screening alone
there will be fewer than 300 cases in former Equateur. Both teams
predict that there are likely to be fewer than 120 reported cases if
vector control is implemented (Strategies 3–6) which would com-
prise <6% of the global goal total. The models agree that adding
or increasing vector control is always beneficial to the reduction
in transmission, however the number of cases predicted in 2020
under Model W increases with increased screening alone due to

increased detection effort. Under vector control, Model W pre-
dicts that improving vector control from 60 to 90% is better than
increasing screening levels from mean to maximum (i.e. moving
from Strategy 3 to 5 is better than 3 to 4), conversely Model Y
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Fig. 4. Probability of achieving elimination as a public health problem by 2020 by health 

Model  Y on the right. Maps for all six strategies under each of the models are given in the

Table 2
The predicted number of total reported cases (median and 95% CIs) across former
Equateur province in 2020 under all strategies.

Total predicted reported cases in former
Equateur in 2020

Strategy Model W Model Y
1.  Mean screening only 278 (242, 316) 239 (210, 272)
2.  Max  screening only 283 (240, 330) 201 (172, 231)
3.  Mean
screening + 60% VC

63 (48, 80) 117 (100, 136)

4.  Max  screening + 60%
VC

54 (39, 69) 80 (64, 99)

5.  Mean
screening + 90% VC

38 (26, 51) 93 (77, 108)

p
c

p

6.  Max  screening + 90%
VC

29 (19, 40) 55 (43, 68)
rojects lower case numbers under increased screening (80 cases)
ompared to better vector control (93 cases).

The summary results for both elimination as a public health
roblem and full elimination are given in Figs. 6 and 7 and also
zone under strategies 1–3 as predicted by the two  models, Model W on the left and
 SI2.

show where there is consensus between models. It is noted that,
for elimination as a PHP (Fig. 6), both models agree that many of
the health zones will achieve the 2020 goal of <1 reported case per
10,000 by using strategies without vector control. Only two  health
zones (in the South West) are identified in both models as fail-
ing to achieve the 2020 goal. In general Model W tends to be more
pessimistic about the effects of increasing screening, while Model Y
tends to be more pessimistic about the effects of adding vector con-
trol; but, in general, the degree of agreement is high. It is observed
that many health zones are projected by both models to not achieve
full elimination before 2030 if current strategy is continued (Fig. 7),
however with 60% or more vector control, all health zones are pre-
dicted to meet this goal. Model W is more optimistic about the
proportion of health zones which may  need improved strategies,
however many of the health zones, for which full elimination is
predicted post-2030, have extremely low case numbers.
4. Discussion

Two  independent models were used to assess the progress
towards elimination of Gambian HAT in former Equateur province,
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ig. 5. Probability of achieving full elimination by 2030 by health zone under strat
triped regions were assigned through direct assessment of the data rather than by

RC. Despite their structural differences and fitting methodolo-
ies the models agreed that most health zones within the province
re on track to achieve the elimination as a public health prob-
em by 2020 if active screening continues at the mean level
chieved between 2000 and 2012. Results from both models indi-
ate that Ntondo and Lukolela (health zones 51 and 39) are least
ikely to achieve elimination as a public health problem by 2020
Figs. 2, 4 and 6) and will likely contribute around 10–11% and
1–15% of the cases for the whole province in that year respec-
ively. In Gemena (health zone 26), active screening appears to
ave substantially reduced reported case numbers, but a drop-off

n screening coverage for most of 2008 onwards could lead to a per-
istent number of low cases as is suggested by the results of fitting
oth models (Fig. S2–33). In Lukolela (health zone 39) there was an

nitial drop in passive case detection following the start of the active
creening campaign, however since 2003 the passive case numbers
ave plateaued (Fig. S2–46). Again, the level of screening achieved
eclined after the first four years and coverage was quite low for the

emainder of the time. Both teams determined that increased lev-
ls of screening may  be sufficient in some health zones to achieve
he 2030 goal, however vector control could have a substantial
eneficial impact on reducing the time until full elimination.
–3 as predicted by the two models, Model W on the left and Model Y on the right.
l fitting. Maps for all six strategies under each of the models are given in the SI2.

It is noted that levels of screening achieved across former Equa-
teur province as a whole have fluctuated between 2000 and 2012,
with the highest percentage of people screened (12.0%) occurring in
2003 and a mean of 6.2% during the whole time period. In later years
the number of people screening has decreased and in 2012 just 1.3%
of Equateur took part in active screening. For most health zones,
continuing with the mean screening level represents an increase
from that achieved in 2012.

It is important to note that the considered strategies are based on
plausible intervention strategies using current tools. Active screen-
ing capacity was based on historic screening for the health zone.
Since data was  only available up to 2012, screening interventions
during the years 2013–2016 had to be predicted, despite hav-
ing already occurred. Vector control was only assumed to take
place from 2017. Large changes in the level of active screening
between 2013 and 2016 would be likely to shift model predic-
tions. In particular for health zones which are expected to achieve
either elimination target during this time period, e.g. Befale or

Kungu (health zones 3 and 32), these predictions have been made
conditioning on screening having continued at similar levels to
2000–2012.
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Fig. 6. Bivariate-chronopleth comparison map  showing consensus/disagreement between the modelling results for elimination as a public health problem (PHP) (<1 new
reported case per 10,000 per year). Each row denotes a different level of vector control, and each column, a different level of active screening. These show the results under
round  3, which uses case data from all available years (2000–2012), projected forwards with the six different strategies. Colours denotes when elimination as a public health
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roblem is predicted to occur under each model; either pre-2020, between 2020 a
limination years, red shades are for health zones in which Model Y yields later yea
here  there is consensus between the two models, with darker colours for health z

There are differences in the model results, with Model W pro-
ecting that Bangabola, Bikoro, Bosomanzi, Iboko, Lukolela and
tondo (health zones 1, 4, 16, 27, 39 and 51) may  not be on track to
chieve elimination as a public health problem by 2020, whereas
odel Y predicts that this should be feasible under current (med-

cal) interventions excluding Loko, Lukolela and Ntondo (health
ones 37, 39 and 51). Model W shows that for four health zones,
ncreasing screening level would postpone the year to elimina-
ion as a public health problem because the increased screening
ould lead to increased reporting, however this would ultimately

educe underlying transmission in these regions; this effect was
ot observed for Model Y.

There are a few health zones in which the models appear to com-

letely differ in their full elimination predictions. For example in
umba and Yakoma (health zones 20 and 55), Model Y predicts the

ull elimination won’t be achieved until after 2050 under Strategy
, yet Model W predicts this could occur before 2020. In fact, Model
30, or post-2030. Blue shades are for health zones in which Model W yields later
e darker the colour, the later the predicted year. Purple and white health zones are
which are expected to achieve the goal later.

Y predicts that this health zone will see an extremely low number
of cases, however it will still not be sufficient to completely stop
transmission (Fig. S2–27 and S2–62). It is difficult to establish from
these data whether some health zones with very low screening
have on-going transmission in the region rather than importations.
Both teams emphasise that additional active screening data would
help to determine whether such areas have active transmission or
not. This demonstrates the challenges of projecting forwards from
extremely low case numbers.

Across all model predictions, vector control impacted the time
until zero transmission so that this goal was achieved within a
few years of implementation of tiny targets. Some health zones
have predicted elimination years which greatly exceed 2020/2030

despite relatively low prevalence. This is indicative of areas which
have seen little change to the incidence between 2000 and 2012
and without changing to an alternative strategy (such as increasing
screening or improving passive detection) the modelling predicts



110 K.S. Rock et al. / Epidemics 18 (2017) 101–112

Fig. 7. Bivariate-chronopleth comparison map  showing consensus/disagreement between the modelling results for full elimination. Each row denotes a different level of
vector  control, and each column, a different level of active screening. These show the results under round 3, which uses case data from all available years (2000–2012),
projected forwards with the six different strategies. Colours denotes when full elimination is predicted to occur under each model; either pre-2020, between 2020 and 2030,
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r  post-2030. Blue shades are for health zones in which Model W yields later elim
arker  the colour, the later the predicted year. Purple and white health zones are w
hich  are expected to achieve the goal later.

he HAT cases will persist at this level. For example Mompono,
bado-Lite and Mobayi Mbongo (health zones 46, 25 and 45) are
xpected to have transmission past 2030 despite indications that
ome could achieve elimination as a public health problem by 2020.

No model is perfect – they represent an abstract conceptual-
sation of the real world and approximate many of the complex
rocesses. In this study, it is observed that more data improves
he model fits, however, the improvement is slight for most health
ones as even early data provides a good indicator prediction of
ong-term dynamics. Aggregate data was used at a health zone
evel (approximately 100,000 population size) and also at a yearly
emporal resolution. The unknown timing of both active screen-

ngs and passive detections could have impacted model fitting.
ikewise, by using aggregate health zone data, small-scale spatial
eterogeneities could have been missed. Health zone population
ize estimates may  not be reliable, but this demographic denomi-
n years, red shades are for health zones in which Model Y yields later years. The
 there is consensus between the two models, with darker colours for health zones

nator is an important factor in modelling. If the number of people
in a health zone is significantly higher or lower than the estimate,
then model fitting could indicate the controls are much more or less
effective than they are in reality. Human movement between health
zones and, in particular, from outside the region was not accounted
for in either model due to lack of data. It is important to consider the
impact of human migration on persistence of HAT infection into a
region in the planning the end-game strategy, this is particularly the
case for health zones sharing boundaries or those which see large
influx into the region. Other factors such as changing awareness of
disease in the region, which corresponds to the passive detection
rate, could impact the accuracy of model fits where this type of

parameter is assumed to be constant over time.

In this study, both models used deterministic framework to sim-
ulate disease dynamics. In future work it would be beneficial to
consider the impact of chance events on local disease extinction by
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sing stochastic models. This type of approach can be particularly
elevant when considering the small number of cases prior to full
limination and avoids the need to define the cut-off threshold that
s necessary for deterministic models.

Tsetse control has not previously be implemented in this region
nd it is unclear what impact vector control such as tiny targets
ight have on vector densities in Equateur. Values comparable to
ganda (90% reduction) and lower than Guinea (60% reduction)
ere used as a guide for the potential impact of tsetse control. It is
oted that some isolated populations can potentially achieve even
reater results, as observed with the tiny target intervention in the
andoul focus of Chad which had a 99% reduction (Mahamat et al.,

017). Tiny targets have been estimated to achieve control of tsetse
opulations at a cost of US$ 84/km2 (Shaw et al., 2015) which is
heap compared to other methods including traps (US$ 283/km2)
nd spraying (US $380/km2) (Shaw et al., 2013). In some settings,
nsecticidal treated cattle has been found to be the least expen-
ive option (US$30/km2) and more easily accepted by famers (Shaw
t al., 2013; Shaw et al., 2014; Muhanguzi et al., 2015 Muhanguzi
t al., 2015), however the low density of livestock in former Equa-
eur province means this would be an impractical option for this
egion of DRC. Whilst models of different types of vector control
ight be structurally different to those presented for this study,

f another method of vector control was used in former Equateur
nd also reduced tsetse populations by 60% or 90% after a year, the
xpected outcome in terms of human infection dynamics would be
ery similar.

Making predictions for areas where there were no reported
ases is challenging. If no screening was performed and no pas-
ive cases were reported it is hard to provide realistic predictions
or the elimination years due to a large amount of uncertainty. For
ome areas which have had little active screening, a better inter-
ention strategy could simply consist of higher screening levels.
nother tool which is considered important in the elimination of
ambian HAT is improvements to the passive surveillance system
y providing more local health facilities with HAT diagnostics such
s rapid diagnostic test kits which do not need a cold-chain. This has
een implemented in other regions of DRC where active screening

s arduous (FIND, 2016) and will become increasingly important as
ther control measures are reduced or removed to ensure recrude-
cence does not occur. In the future safer, oral drugs (in particular
tage-independent treatment) and improved diagnostics will like-
ise provide useful tools in the end-game for HAT and contribute

o a shift in the way HAT infection is diagnosed, treated and moni-
ored.

This analysis concludes that former Equateur province is largely
n track to meet the key goal of elimination as a public health prob-
em by 2020, although some health zones may  need to improve
ctive screening levels and/or add additional interventions such as
ector control to meet this target. It is important to remember that,
t present, only one human infectious disease, smallpox, has been
radicated and whilst others including polio and Guinea Worm
ill hopefully follow suit within the next few years, the effort and

ime required to reach such low case numbers was underestimated.
n former Equateur province of DRC, the difficulty of successfully
topping transmission is demonstrated through these model sim-
lations in which between 49 and 61% of health zones (on average)
re unlikely to meet the 2030 goal if active screening continues at
ts mean level and 39–54% of health zones continuing with maxi-

um screening. Additional vector intervention appears to be one
ery promising method to reach full elimination rapidly. Model
imulations with 60% vector reduction and just the mean screen-

ng level project that all health zones will meet the full elimination
arget, and see this occur more rapidly with higher levels of screen-
ng and/or greater reduction to tsetse populations. This modelling
uggests that, as with other diseases which are targeted for elimina-
 18 (2017) 101–112 111

tion or eradication, the end-game strategy will undoubtedly have
to adapt to ensure the success of the elimination goal.
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