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Dengue outlook for the World Cup in Brazil: an early warning model framework driven by 

real-time seasonal climate forecasts.  
 

Appendix 

 
Model formulation 

To model monthly dengue cases (January 2000- December 2013) in the 553 microregions of Brazil, a generalised linear 

mixed model (GLMM) was formulated,1,2 where for each spatial area, or microregion, (s=1,..., 553) and monthly time 

step, (t=1,..., 168), the count of dengue cases, yst, follows a negative binomial distribution with an unknown scale 

parameter, κ, and mean, μst . A negative binomial model formulation was adopted to allow for extra-Poisson variation 

(overdispersion) in the observed dengue counts caused by unknown confounding factors and possible correlations in 

both time and space. The expected number of cases, est, was included as an offset (based upon the population of 

microregion (s) at time (t) multiplied by the global dengue rate for the whole dataset).  

 

Following Lowe et al.2 the climate variables considered were three-month average temperature and precipitation 

anomalies (departures from the long-term average),3,4 over the three months preceding the dengue month of interest. 

This is equivalent to a two month lag when considering the mid-point of the three month average. As our model is 

designed as an early warning system, this aligns with the fact that temperature and precipitation data are, in practice, 

obtained from seasonal climate forecasting systems, which are typically issued as seasonal (e.g. March-April-May) 

forecasts (http://eurobrisa.cptec.inpe.br). Important non-climatic explanatory variables included in the model were 

altitude and population density. Altitude was found to have a significant negative association with the dengue relative 

risk, whereas population density was positively associated. 

 

As a surrogate for spatio-temporal confounding factors (e.g. increased mosquito populations or the re-introduction of a 

dengue serotype), lagged dengue incidence was considered. The log ratio of observed to expected dengue cases (dengue 

relative risk) four months ahead for each microregion was included in the model. For example, a dengue prediction for 

June is based on the dengue risk reported in the previous February. This lag was chosen as a compromise between the 

longest lag plausible to provide predictive skill and the shortest lag possible to allow enough time to provide an early 

warning (in line with the lead-time gained from using seasonal climate forecasts). As the inclusion of an autoregressive 

term causes the first four observations in each microregion to be lost, we fitted the model to the dataset for the period 

May 2000 - December 2013 (164 months). 

 

 

 

Figure S1: Multiplicative contribution of spatial random effects to dengue relative risk.  
Spatial distribution of posterior mean (a) unstructured and (b) structured random effects. 
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We included unstructured random effects in the hierarchical model framework to help account for unknown or 

unobserved confounding factors in the disease system, such as population immunity, quality of healthcare services and 

local health interventions. Such random effects introduce an extra source of variability (a latent effect) into the model, 

which can assist in modelling overdispersion, in addition to the single-scale parameter in the negative binomial model. 

To allow for correlated heterogeneity between microregions or clustering, structured random effects were included. We 

imposed a spatial dependency structure by assuming a conditional intrinsic Gaussian autoregressive (CAR) model prior 

distribution5 for the spatial effects, which takes the neighbourhood structure of the area under consideration into account 

(Fig. S1).  

 

 

 

Figure S2: Posterior distributions of zone-specific autocorrelated annual cycle effects. 

Posterior distribution of the autocorrelated annual cycle (from August to July) for zones: (a) Amazon, (b) Caatinga, (c) 

Cerrado, (d) North East Atlantic Rainforest (e) Pampa, (f) Pantanal, (g) South East Atlantic Rainforest and (h) South 

Atlantic Rainforest.  

 

Brazil can be divided into six distinct ecological biomes: Amazon Rainforest, Caatinga, Cerrado, Atlantic Rainforest, 

Pampa, and Pantanal. A spatial variable named zone was defined according to the six biomes but with the Atlantic 

Rainforest biome additionally subdivided into three areas (North East, South East and South) according to different 

climatic regimes. For example, south of the Tropic of Capricorn (23.5°S) the climate is more temperate and humid, 

while in the North East portion of the Atlantic Rainforest the climate is relatively warmer and drier. Therefore, eight 

zones are defined for which climatic, geographical and ecological conditions are approximately homogeneous. In the 

model framework, zone is treated as an eight level factor with the Amazon (zone 1) set as the reference level. Dengue 

has a marked annual cycle in Brazil that varies between the different zones. To allow for this, a first-order 

autoregressive month effect6 was interacted with zone, with August (month 1) set as the reference level (Fig. S2).  

 

The final model comprised a combination of lagged climate variables and dengue risk, non-climate covariates and 

spatially and temporally structured and unstructured random effects. We formulated the model as a Bayesian GLMM as 

follows: 

 

yst ~ NegBin(μst, κ) 

log(μst) = log(est) + α + αs'(s) + Σβjxjst + Σγjwjst  + δzst  + φs + υs + ωt'(t) + ωt'(t),s'(s) . 

 

A Negative Binomial as opposed to a Poisson distribution was chosen for the dengue case counts to allow for observed 

global overdispersion in these counts (i.e. variance of counts being substantially in excess of their mean values in all 

months and all microregions). The spatially unstructured random effects in the model (see below) then additionally 

allow for local spatial variations in this overdispersion. The variables xjst, represent the selected climate influences: 

precipitation (j=1) and temperature (j=2) anomalies (observed climate datasets used to estimate parameters).  The 

variables wjst are altitude (j=1) and population density (j=2). Variable zst is the log ratio of observed to expected dengue 

cases 4 months previously, zst=log(yst-4/est-4). Spatial random effects are composed of unstructured φs and structured 
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components υs . The spatially unstructured random effects, φs, are assigned independent diffuse Gaussian exchangeable 

prior distributions. The structured random effects, υs, are assigned a CAR model prior (see Lowe et al.2 for details). We 

included a first-order autoregressive month effect ωt'(t),s'(s) for each zone (t'(t)=2,...,12 , s'(s)=2,...,8),  with month 1 

(August) and zone 1 (Amazon) aliased to the model intercept, α, and subsequent months following a random walk or 

first difference prior in which each effect is derived from the immediately preceding effect. Note, the fixed effect for  

month  t'(t)=1 and zone s'(s)=2,...,8,  is denoted as αs'(s) . The random month effect for the Amazon s'(s)=1 and month  

t'(t)=2,...,12, is denoted as ωt'(t) . 

 

We used independent diffuse Gaussian priors (mean 0, precision 1 x 10-6) for the fixed effects (αs'(s) , βj , γj , δ) and 

weakly informative independent gamma hyperpriors (shape parameter 0.5, inverse scale parameter 0.0005) for the scale 

parameter κ and for the precisions for the spatial and temporal random effects. These choices are similar to those used 

in previous modelling of dengue in Brazil reported in Lowe et al.2 and represent relatively standard choices for a spatio-

temporal GLMM such as that used in this study. Sensitivity of results to the choice of prior and hyperprior parameters 

was assessed by comparing runs with a suitably chosen range of both less and more informative choices and revealed 

that final models results were robust provided an appropriately long burn-in was allowed for in each case. The final 

choices represented a compromise between not wishing to be too informative whilst at the same time not wanting to be 

inefficient in the length of Markov Chain Monte Carlo (MCMC) runs required to achieve convergence. We fitted the 

Bayesian model via MCMC sampling using R in conjunction with the WinBUGS software7 and the R2WinBUGS 

package.8 We generated two parallel MCMC chains, each of length 25,000 with a burn-in of 20,000 and thinning of 10 

to obtain 1000 samples from the joint posterior distribution. 

 

Producing the forecast  

Posterior predictive distributions9 of June 2014 dengue incidence were obtained for each microregion. Samples of 

parameter estimates from the model fitted to May 2000 – December 2013 (e.g. Fig. S3) were combined with new data 

for dengue relative risk for February 2014 and seasonal forecasts of precipitation and temperature anomalies10 for 

March-April-May 2014 (and other spatial covariates), to calculate the posterior distribution of the mean dengue count, 

μst. Subsequently, the posterior predictive distribution of dengue counts, yst, for each microregion was estimated by 

drawing random values from a negative binomial distribution with mean corresponding to the elements of μst and scale 

parameter corresponding to the elements of κ, estimated from the model. 

 

 

 

Figure S3: Kernel density estimates for dengue model drivers.  
Kernel density estimates of marginal posterior distributions for the parameters associated with the variables driving the 

spatio-temporal dengue predictions: (a) precipitation and (b) temperature anomalies (averaged over previous 3 months) 

and (c) dengue risk four months earlier. Estimates from the model fitted to data 2000-2013.  

 

Communicating ternary probabilistic forecasts 

To present the forecast to decision makers, we calculated the probability of dengue incidence rates (DIR) falling into 

pre-defined categories. The Brazilian Ministry of Health is interested in areas where DIR < 100, indicating low risk; 

100 < DIR < 300, indicating medium risk; and DIR > 300, indicating high risk. We used a novel visualisation 

technique11 to produce a map in which the forecast at each microregion is expressed as a colour determined by a 

combination of three probabilities (see Fig. 1 in Article). We considered a ternary forecast as a point in a triangle of 

barycentric coordinates. This allows a unique colour to be assigned to each forecast from a continuum of colours 
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defined on the triangle. Colour saturation increases with information gain relative to the benchmark (reference) forecast 

(see Fig. S4). In this case, the benchmark distribution of June dengue incidence rates 2000-2013 was p(low=68%, 

medium=16%, high=16%) (Fig. S5). Posterior predictive distributions of DIR for individual microregions (i.e. the 

twelve microregions where the stadiums are located) were simulated, to show the probability distribution between low, 

medium and high risk categories for June 2014 (see Fig. S6 and table in Article).   

 

 
 

Figure S4: Palette of colours assigned to ternary forecasts. 

Triangle with palette of colours assigned to ternary forecasts of low, medium and high dengue risk. The triangle is 

divided in 91 squares. For each square three bars are plotted indicating the probabilities for low (first bar), medium 

(second bar) and high (third bar) dengue risk. For example, for the central square in the middle of the triangle the three 

bars have the same height indicating equal (33.33%) probabilities for low, medium and high dengue risk. The square at 

the bottom left corner of the triangle corresponds to 100% probability of low risk and 0% probability for both medium 

and high risk. The square at the bottom right corner of the triangle corresponds to 100% probability of high risk and 0% 

probability for both medium and low risk. The square at the top corner of the triangle corresponds to 100% probability 

of medium risk and 0% probability for both low and high risk. The long-term average distribution of June dengue 

incidence rates (i.e. probability of low risk equal to 68%, probability of medium risk equal to 16%, and probability of 

high risk equal to 16%), indicated by the blue cross, is assigned the colour white. The blue colour in the triangle 

indicates that low risk is most likely. The pink colour in the triangle indicates that high risk is most likely. The orange 

colour in the triangle indicates that medium risk is most likely. The more saturated the colour, the more certain the 

model that a particular category will be observed.  
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Figure S5: Benchmark probability distribution in Brazil, June 2000-2013.  

The historic (long-term) average distribution of dengue incidence rates (DIR) in Brazil. The distribution is divided into 

low risk (DIR<100; 68% - blue), medium risk (100<DIR<300; 16% - yellow) and high risk (DIR>300; 16% - pink). 

 

 

 
 

Figure S6: Predictive distributions for June 2014 for microregions where stadiums are located. 

Posterior predictive distributions for June 2014 showing the probability of low risk (blue),  medium risk (yellow) and 

high risk (pink) for June 2014, in the microregions where World Cup stadiums are located: (a) Belo Horizonte, (b) 

Brasília, (c) Cuiabá, (d) Curitiba, (e) Fortaleza, (f) Manaus, (g) Natal, (h) Porto Alegre, (i) Recife, (j) Salvador, (k) São 

Paulo and (l) Rio de Janeiro (see table in Article for category summary).    
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Model evaluation 

To determine how well the probability forecasting system predicted the category that the observations fell into for June 

2000-2013, the rank probability score (RPS), was calculated for each microregion. RPS measures the sum of the 

squared differences in cumulative probability space for a multi-category probabilistic forecast.12  

 

𝑅𝑃𝑆 = 𝐸 [
1

𝐾
∑ (𝑝𝑘 − 𝑜𝑘)

2𝐾
𝑘=1 ], 

 

where K is number of categories, pk is the predicted probability in category k and ok is a value equal to 1 or 0 depending 

on whether the event occurred in category k, or not. The RPS penalises forecasts less severely when their probabilities 

are close to the true outcome and more severely when their probabilities are further from the actual outcome.  

 

For each microregion, the rank probability skill score (RPSS) was obtained by estimating the RPS using the 14 year 

sample mean of probability forecasts and observations (see Fig. 2, Table 1).The RPSS essentially measures the 

improvement of the multi-category probabilistic forecast relative to benchmark (long-term distribution). The RPSS 

takes the value 1 for a perfect forecast and 0 for the benchmark (reference) forecast. 

 

𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆

𝑅𝑃𝑆𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
. 

 

Relative (or Receiver) Operating Characteristic (ROC) graphs were used in this study to evaluate the forecasting 

system.12 The ROC is a graph of the hit rate (HR) against the false alarm rate (FAR) (or sensitivity against 1-specificity) 

for different decision thresholds. The location of the whole curve in the unit square is determined by the intrinsic 

discrimination capacity of the forecasting system and the location of specific points on a curve is fixed by the 

probability decision threshold at which the system is operating.  As the probability decision threshold varies from high 

to low (moving from left to right) HR and FAR vary together to trace out the ROC curve. Perfect discrimination is 

represented by the point (0, 1) where HR= 100% and FAR= 0%. The diagonal HR=FAR represents zero skill, i.e. the 

forecasting system performs no better than random guessing. Trigger thresholds were defined as the point on the curve 

closest to the point of perfect discrimination. The area under the modelled ROC curve, abbreviated AUC,13 is a widely 

used ROC-based measure of skill. AUC characterises the quality of a forecast system by describing the system’s ability 

to anticipate correctly the occurrence or non-occurrence of pre-defined events.14 The possible range of AUC is [0,1]. 

Zero skill is indicated by AUC=0.5, that is, the area under the diagonal HR=FAR. For perfect skill, AUC=1. To test the 

null hypothesis that the area under the ROC curve is 0.5, i.e. the forecast has no skill, a p-value can be calculated using 

a Mann-Whitney U-test. 14 The ROC curves in Figure 5 a and b (see Article) have AUC=0.86 (p-value < 0.0001) and 

AUC=0.84 (p-value < 0.0001), respectively. This indicates that the forecasting system performs significantly better than 

randomly guessing. 
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