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S U M M A R Y

S E T T I N G : Isoniazid preventive therapy (IPT) is effective

for preventing active tuberculosis (TB), although its

mechanism of action is poorly understood and the

optimal disease burden for IPT use has not been defined.

O B J E C T I V E : To describe the relationship between TB

incidence and IPT effectiveness.

M E T H O D S : We constructed a model of TB transmission

dynamics to investigate IPT effectiveness under various

epidemiological settings. The model structure was

intended to be highly adaptable to uncertainty in both

input parameters and the mechanism of action of IPT.

To determine the optimal setting for IPT use, we

identified the lowest number needed to treat (NNT)

with IPT to prevent one case of active TB.

R E S U LT S : We found that the NNT as a function of TB

incidence shows a ‘U-shape’, whereby IPT impact is

greatest at an intermediate incidence and attenuated at

both lower and higher incidence levels. This U-shape

was observed over a broad range of parameter values;

the optimal TB incidence was between 500 and 900

cases per 100 000 per year.

C O N C L U S I O N S : TB burden is a critical factor to

consider when making decisions about communitywide

implementation of IPT. We believe that the total disease

burden should not preclude programmatic application

of IPT.

K E Y W O R D S : latent tuberculous infection; preventive

therapy; optimal impact

TUBERCULOSIS (TB) IS A GLOBAL health prob-

lem, with 9.6 million cases and 1.5 million deaths

worldwide in 2014.1 According to a World Health

Organization (WHO) estimate, approximately one

third of the world’s population is latently infected

with TB.2 However, assessment of the future risk

posed by this reservoir of potential disease is

challenging due to several issues, including the

inability of currently available diagnostic tests to

predict whether or not an infected individual will

progress to active disease. Therefore, while preven-

tive treatment against latent tuberculous infection

(LTBI) may be a vital tool in achieving the WHO and

the Stop TB Partnership’s ambitious objective of TB

elimination by 2050,3 the optimal setting in which to

employ this intervention is uncertain.

Isoniazid preventive therapy (IPT) is known to be

effective in reducing the risk of subsequent disease in

LTBI patients at the individual level.4–6 However, its

impact at the population level remains unclear.

Communitywide IPT interventions in Alaska, Green-

land and Tunisia have demonstrated the ability of IPT

to reduce TB incidence.5,7,8 The number needed to

treat (NNT) to avert one case of active disease was

found to range between 35 and several hundred,

depending on the baseline risk of TB activation,

demonstrating that IPT can be very efficient, provid-

ed that relevant populations are targeted.6 However,

the results of the recent Thibela trial conducted

among South African gold miners are less clear, with

no durable population-level impact demonstrated

despite a reduction in the risk of TB during

treatment.4 These observations highlight the poten-

tial for different population-level impact of IPT

interventions by disease burden.

Questions have been raised around the mechanism

of action of IPT, as it is unclear whether this

intervention reduces the risk of later progression to
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active disease or cures infection.9,10 Furthermore, the
ability of IPT to protect against subsequent infections
has not been demonstrated, and reinfection is
therefore likely to be a major modifier of IPT
effectiveness, with the potential to markedly attenu-
ate public health effects. As a direct correlation exists
between TB incidence and reinfection rates,11 it
would be logical to suppose that the success of IPT
interventions will be modified by the local TB
incidence.

We constructed a mathematical model that allows
for variations in the TB burden and incorporated a
flexible structure for exploring different assumptions
regarding IPT efficacy.

MATERIALS AND METHODS

Model development

Using ordinary differential equations and the as-
sumption of homogeneous mixing, we created a
deterministic model of TB transmission. The simplest
feasible structure capable of adequately capturing
both TB transmission dynamics and IPT was em-
ployed (Figure 1). Newly born individuals enter via
the fully susceptible compartment (S). Two distinct
compartments (LA and LB) were used to model LTBI
to reflect the higher risk of disease progression during
the early stages following infection.12–14 The mod-
elled intervention was communitywide treatment for
LTBI, which consists of treating infected individuals
with a 9-month course of IPT after infection is
detected using the tuberculin skin test (TST) or
interferon-gamma release assays (IGRAs) (Appen-
dix).*

Individuals with LTBI treated with IPT transition
to two equivalent compartments PA and PB. In these
compartments, we assumed a reduced risk of
progression to disease compared to that existing
before IPT commencement. This model structure
allows the exploration of a wide range of possibilities
regarding the effectiveness and mechanism of action
of IPT; i.e., different levels of reduction in the risk of
progression achieved through IPT may be considered,
as well as a situation where IPT can completely cure
infection. Infected individuals developing active TB
progress to compartment I, and eventually transition
to compartment R in case of recovery. In our model,
all individuals with a history of tuberculous infection
can be re-infected.15,16 Various assumptions concern-
ing the risk of reinfection are considered: some degree
of immunity may be conferred by previous infection,
although non-biological factors such as social mixing
patterns could enhance the risk of reinfection.

The Table presents the main assumptions made in

our model; a detailed description of the model and the
associated differential equations are available in the
Appendix.

Observed model outputs

Disease burden indicators, including incidence, prev-
alence and mortality, are recorded before the inter-
vention starts and over 10 years of IPT
implementation. From these measures, three different
indicators are calculated and reported: 1) the primary
outcome, which is the NNT required to avert one case
of active TB; 2) the proportional reduction in
incidence of active TB; and 3) the absolute number
of active TB cases averted in the population through
IPT. These three outputs allow us to consider both the
absolute and relative impact of treatment, as well as
the NNT, which is our primary consideration as it
describes the population-level effectiveness of the
strategy per treatment provided. NNT is defined as
the number of active TB cases averted over 10 years
of intervention divided by the total number of
individuals treated with IPT. The optimal incidence
is then obtained by minimising this indicator.

We also estimate the proportion of disease due to
early progression vs. late reactivation, as well as the
risk of reinfection in the different incidence settings,
as these factors are expected to play an important role
in IPT efficiency.

Sensitivity analyses

A sensitivity analysis was performed to observe
whether the optimal incidence for implementing IPT
is modified by alternative parameter set selections.
First, we consider one-dimensional variations in each
parameter across the ranges presented in Appendix
Table A. Next, considering the same numeric ranges,

Figure 1 Model structure. Rectangular boxes represent the
different categories in which the population is structured:
susceptible (S), latently infected untreated (LA and LB), latently
infected treated with IPT (PA and PB), infected with active
tuberculosis (I) and recovered (R). Arrows represent the
transitions permitted between categories. Infected individuals
treated with IPT transition to corresponding compartments
where the rate of disease activation is reduced. Reinfection may
occur for both recovered and latently infected individuals. Birth
and death flows are not represented in this diagram (Appendix).
IPT¼ isoniazid preventive therapy.

* The appendix is available in the online version of this article, at

http://www.ingentaconnect.com/content/iuatld/ijtld/2017/
00000021/00000001/art00012
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we performed a multidimensional sensitivity analysis
employing a Latin hypercube method to obtain 1000
parameter sets. Finally, we considered additional
scenarios where model parameterisation was adjust-
ed to simulate human immunodeficiency virus (HIV)
endemic settings, considering various levels of HIV
prevalence as well as different assumptions regarding
the effect that HIV infection has on the risk of TB
disease activation.

Model implementation

The model was implemented in R, version v3.1.2 (R
Computing, Vienna, Austria) and the code to

reproduce all the results presented here is supplied
in the Appendix.

Ethics approval

Ethics approval was not required for the study, as no
patients were involved.

RESULTS

Baseline results

Figure 2 shows the outcome measures for IPT
effectiveness as a function of TB incidence, with
different efficacy levels for IPT. Four examples of

Figure 2 Baseline results. Three indicators of (IPT) effectiveness are presented. A) The NNT to
avert one case of active tuberculosis; B) the proportional reduction in incidence; and C) the
absolute number of cases averted due to IPT. All three indicators are calculated over a period of 10
years of intervention. In each panel, four curves are presented corresponding to different
assumptions regarding the IPT efficacy. The vertical dashed lines represent four countries/regions
that illustrate different levels of TB incidence: Micronesia (MIC), Cambodia (CAM), Kiribati (KIR)
and the Gulf Province of Papua New Guinea (PNG-GP). NNT ¼ number needed to treat; IPT ¼
isoniazid preventive therapy; LTBI¼ latent tuberculous infection; TB¼ tuberculosis.

Table Main assumptions

Feature Assumption Tested in sensitivity analysis?

Reinfection while latently infected Individuals return to the early infection compartment (LA)* No
Already infected individuals are assumed to be less susceptible

than infection-naı̈ve individuals (50% relative risk)
Yes

Reinfection after receiving treatment
(for active or latent infection)

Individuals with history of treatment have the same susceptibility
to reinfection as untreated infected individuals

Yes

Effect of IPT at the individual level Four scenarios: reduction in the risk of activation by 25%, 50%,
75% or 100%

No further

Impact of HIV co-infection The rate of progression to active disease is enhanced in both
early and late latency compartments

Yes

* See Figure 1.
IPT¼ isoniazid preventive therapy; HIV¼ human immunodeficiency virus.

62 The International Journal of Tuberculosis and Lung Disease



countries/region are represented in Figure 2 to
illustrate different levels of TB incidence: Micronesia
(MIC), Cambodia (CAM), Kiribati (KIR) and the
Gulf Province of Papua New Guinea (PNG-GP), with
estimated TB incidences of respectively 195, 390, 497
and 1290 cases per 100 000 population per year.1,17

As our baseline analysis does not apply to HIV-
endemic settings, only settings with low HIV preva-
lence are presented.

We observed a U-shaped curve for the NNT to
avert one case of active TB regardless of efficacy
(Figure 2A); i.e., NNT is lowest at an intermediate
incidence (500–900 cases/100 000/year), but increas-
es in both lower and higher incidence settings. As
would be intuitively expected, NNT values are lower
under the most optimistic assumptions (i.e., complete
cure or strong protection provided by IPT). However,
the optimal TB incidence for implementing IPT is
relatively unaffected by different values for the
proportion cured by IPT assumptions, and ranges
between 717 and 726 cases/100 000/year. Both the U-
shaped curve and the location of the optimum are
conserved. The corresponding values of optimal
NNT range from 94 to 396.

In contrast, the proportional reduction in TB
incidence decreases with background incidence (Fig-
ure 2B). While IPT produces a significant reduction in
TB incidence in low-to-moderate burden settings (5–
19% reduction in 10 years for an incidence of 50
cases/100 000/year), its impact in very highly endemic
settings is small (1–3% reduction in 10 years for an
incidence of 1500 cases/100 000/year), although in
high-burden settings even a slight reduction in
incidence results in a significant absolute number of
cases averted.

Finally, the absolute number of averted cases
reveals another non-monotonic relationship with TB
incidence, regardless of the assumption made about
IPT efficacy (Figure 2C), with a similar (although
inverse) pattern to that seen for NNT. The maximal
number of averted cases is obtained when TB
incidence is between 827 and 835 cases/100 000/year.
At this incidence, and in a total population of
1 000 000, the model predicts that IPT would prevent
between 1006 (if IPT reduces risk of activation by
25%) and 4199 (if IPT cures LTBI) cumulative active
TB cases over 10 years of intervention.

Two interacting phenomena

Figure 3 shows two measures to quantify the
contribution of two phenomena suspected to explain
the dynamics driving the U-shape: 1) the proportion
of TB incidence attributable to recently infected
individuals; and 2) the annual risk of reinfection for
individuals with LTBI. At less extreme incidence
rates (0–500), the picture is dominated by the rapid
increase in the proportion of disease due to recent
infection, explaining the decrease in NNT over this

range of incidence (Figure 2A). In contrast, when
incidence reaches very high levels (.1000), the
proportion of disease due to recent infection
increases more slowly as it approaches its saturation
level of 100%. At the same time, reinfection
continues to increase linearly with incidence, and
dominates the picture over this range. Accordingly,
at such high incidence levels, the NNT increases with
incidence.

Sensitivity analyses

Appendix Figure A.2 presents the results of the
sensitivity analysis performed to observe the impact
of single variations in parameter values on the
optimal incidence obtained by minimising the
NNT. The sensitivity analysis highlights that a faster
rate of progression from early latency to active
disease results in a higher estimate of the optimal
incidence.

Another parameter with a marked impact on our
conclusions is the risk of reinfection. Specifically, we
find that the risk of reinfection after treatment by
comparison with the risk during LTBI plays a major
role in determining the incidence that correlates with
optimal IPT impact. In particular, if we assume that
susceptibility to reinfection is enhanced after treat-
ment completion, the nadir of the NNT U-shape
occurs at a lower TB incidence. In contrast, when the
risks of reinfection before and after treatment are
varied together, we observe minimal impact on
optimal incidence. Single variations in other param-
eters have no pronounced effect on optimal inci-
dence.

Appendix Figure A.3 presents the results of the

Figure 3 Annual risk of reinfection and the proportion of
disease due to recent infection as functions of TB incidence. –––
¼proportion of TB disease due to recent infection; - - -¼annual
risk of reinfection. TB¼ tuberculosis.
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multidimensional sensitivity analysis using a Latin
hypercube method for sampling 1000 parameter
sets. We measured a median optimal incidence of
811 cases/100 000/year (interquartile range 582–
1066). We noted that 100% of the runs led to a
strictly positive value for optimal incidence, and
that its lowest value was 154 cases/100 000/year,
indicating that the U-shape was conserved over all
model runs. This multivariate sensitivity analysis
confirms the results of the previous analysis,
showing that only variations in the rate of
progression from early latency to active disease
and the risk of reinfection after treatment by
comparison to the risk during LTBI significantly
impact the results.

Finally, our analysis relating to HIV-endemic
settings revealed that the findings concerning the U-
shape curve associated with a high level of optimal TB
incidence for IPTuse were not jeopardised, even when
considering a very high HIV prevalence (Appendix,
Consideration of HIV-endemic settings). We found
that the optimal TB incidence increases with HIV
prevalence and that IPT use becomes more efficient
(NNT reduced) in HIV-endemic settings, reaching
NNT levels as low as 14 when TB incidence is 3767
(optimal configuration) and for an HIV prevalence of
26%. These findings remained valid under various
scenarios concerning the effect of HIV infection on
the risk of TB activation.

DISCUSSION

We find that the optimal epidemiological settings for
the programmatic use of IPT against LTBI occur at
surprisingly high levels of TB incidence. The NNT
initially falls as TB incidence increases, and then
follows a U-shaped curve, with the maximal impact
of IPT found at a TB incidence of around 720 cases/
100 000/year. This finding remained valid regardless
of the assumptions made about IPT efficacy, from
assuming a weak reduction (25%) in the risk of
disease progression through to allowing complete
cure of infection. This consideration of different
scenarios is of particular importance given the
uncertainty around the individual-level effect of IPT.
This concern was approached in a recent modelling
study, and it was found that IPT is unlikely to totally
cure infection in HIV-positive individuals not on
antiretroviral therapy.10 However, no similar investi-
gations have been conducted in the general popula-
tion. Our different sensitivity analyses provide
confidence in the U-shape finding, as the exploration
of a wide parameter space did not affect this
qualitative result even when considering HIV-endem-
ic settings.

Such optimal levels of incidence might seem very
high when considering country-specific estimates, as
only South Africa, Lesotho and Swaziland exceeded

annual incidences of 700 new TB cases/100 000 in
2014, and HIV is a critical driver of the huge disease
burden in these settings.1 However, a similar TB
burden might also occur in more moderate HIV
burden settings, when considering smaller subnation-
al populations or local communities such as PNG-GP
within countries of much lower national incidence.17

Our results suggest that it is only when incidence
reaches extremely high levels (.1400 cases/100 000/
year) that the effects of IPT begin to attenuate. In
these settings, IPT would result in a limited reduction
of incidence and few averted cases, leading to
unreasonable NNTs.

We propose an explanation for the U-shaped curve
by the interaction of two competing phenomena that
vary in intensity as incidence increases: the rise in the
level of reinfection and the rise in the proportion of
disease that is due to recent infection. On the one
hand, higher incidence leads to higher risks of
reinfection in both recovered and latently infected
individuals. Patients who have been treated for LTBI
are thus more likely to be re-infected and conse-
quently have a high risk of active TB in the early
phase of this new infection. Accordingly, the benefits
from IPT diminish with higher incidence. On the
other hand, in high-incidence settings, the proportion
of LTBI cases recently infected is greater than in
lower-incidence settings. The risk represented by the
LTBI reservoir is thus higher, given that early
infections have the highest risk of progression to
active disease, leading to a greater benefit from IPT in
higher-burden settings. This profile was demonstrat-
ed previously, and is confirmed by the findings of our
simulations.11,18,19

We further demonstrate that the risk of reinfection
plays an important role in the estimation of optimal
incidence, finding that it is crucial to distinguish
susceptibility to reinfection for latently infected
individuals from that occurring after treatment.
Our results imply that if isoniazid attenuates the
immunity conferred by previous infection, the
corresponding optimal incidence may be much
lower, particularly if rates of progression following
recent infection are low. Unfortunately, little is
known about the true effect of IPT on acquired
immunity and, accordingly, our study indicates that
further work that would allow us to distinguish
between these two risks of reinfection would bring
crucial knowledge to better understand the potential
impact of IPT.

Our sensitivity analysis emphasises the impor-
tance of detailed knowledge of the dynamics of TB
latency, and especially of its early stages. Fortu-
nately, several studies have now reported the rate
of disease progression from recent infection,
generating consistent estimates.12–14,20 Factors
such as HIV infection or young age at infection
have been shown to increase the risk of TB disease
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progression,14,20,21 which—according to our mod-
el—may lead to higher optimal incidences. Our
additional analysis focusing on HIV-endemic set-
tings confirmed this assumption, and also suggest-
ed that it becomes more efficient to use IPT when
HIV is endemic, due to the higher potential of TB
disease represented by the infection reservoir.
Future modelling investigations based on this
work, but incorporating a more specific model
structure, could be conducted to provide stronger
evidence regarding HIV-endemic settings. Although
age structures along with non-homogeneous pop-
ulation mixing could also be incorporated in future
works to enhance the realism of the model in local
contexts, such features were not considered in this
exercise, as we aimed to provide broad insights to
minimise the complexity of our model.

A further limitation of our study is that we did
not consider multidrug-resistant TB (MDR-TB)
settings. If we assume that specific MDR LTBI
regimens have similar effectiveness to that of IPT
for drug-susceptible LTBI, as suggested by recent
observational studies,22 our results could be ex-
tended to high MDR-TB settings. Nevertheless,
although our model is potentially applicable to high
MDR-TB burden settings, the diagnosis of MDR
LTBI is much more complicated and often assumed
on the basis of contact history, making our model
too limited to fully understand these consider-
ations. Finally, potential side effects as well as cost
of IPT were not considered in this study, as we
aimed to observe the impact on the TB epidemic.
While further works could help to better under-
stand these aspects, our choice of NNT as the
primary outcome allows implicit consideration of
the costs and risks involved in this intervention,
alongside its benefits.

CONCLUSIONS

While the WHO recommends mostly using IPT in
low-endemic settings,23 our study suggests that the
optimal TB incidence for employing IPT is consider-
ably higher than expected, indicating that total
burden of disease should not preclude the program-
matic application of IPT. In the light of the ambitious
new End TB global targets for the post-2015 era, bold
new strategies will be required, potentially incorpo-
rating preventive treatment. While our results were
robust to most model inputs, better understanding of
post-treatment immunity is critical to refining our
estimates.
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APPENDIX

Description of the mathematical model

Figure A.1 presents the model structure along with
parameters. A natural mortality rate (l) applies to
every compartment; an additional tuberculosis (TB)
specific mortality rate (lI) is added to the active
disease population (I). Recruitment is set equal to
total mortality to maintain a constant population
size. Newly born individuals enter via the fully
susceptible compartment (S). As described in the
main text, two compartments (LA and LB) are used to
model untreated latent tuberculous infection (LTBI),
while two additional compartments (PA and PB) are
used to represent LTBI treated with isoniazid
preventive therapy (IPT). In these compartments, we
assume a reduced risk of progression to disease
compared to that existing before IPT commencement
by using the multipliers qA and qB. In this way,
different levels of reduction in the risk of progression
achieved through IPT may be considered, as well as a
situation where IPT completely cures infection
(qA ¼ qB ¼ 0). Furthermore, this structure allows
for different efficacies of IPT according to whether
the infection is acquired recently or remotely (by
setting qA„qB).

In our model, all individuals with a history of
tuberculous infection can be re-infected,1,2 although
we systematically varied the rate at which reinfec-
tion occurs. In the base-case, we assumed that prior
(or current) tuberculous infection confers 50%
immunity against subsequent infection (w ¼ 0:5),
in accordance with previous estimates.3,4 Even if
previous infection is assumed to provide some
protection during an infectious contact, it should
be noted that reinfection is driven not only by
biological factors, but also by social mixing patterns,
as previously infected individuals are more likely to
live in settings with higher exposure to TB.
Accordingly, we chose to consider a wide range of
values for the risk of reinfection, even considering
situations in which risk is augmented by previous
infection (w.1), as suggested by Verver et al.5 The
effect of treatment on subsequent risk of tuberculous
reinfection is unclear. Treatment may provide some
biological protection, reducing the risk of reinfec-
tion, or treatment could reduce the degree of
immunity conferred by infection, increasing the risk
of reinfection. Thus, although we assumed an
equivalent risk of reinfection for any history of
infection (treated or not) in the base-case (j ¼ 1), we
explored alternative configurations in sensitivity
analyses (j varied from 0.5 to 1.5). In earlier model
iterations, we found that the critical issue in
susceptibility to reinfection was the relative suscep-
tibility of treated (either for LTBI or TB) vs.
untreated individuals. We therefore chose to use
the multiplier j to represent relative susceptibility

after treatment by comparison with treatment-naı̈ve
individuals who are latently infected.

The simulation was realised in two stages. First,
we assumed no IPT coverage and ran the model to
equilibrium. From this equilibrium state, we then
ran the model over 10 years of IPT implementation.
Treatment rates (dA, dB, and dS, which represent
annual coverage) remain constant during this second
phase and apply to the whole population of the
corresponding category (LA, LB, and S, respectively),
but may differ according to the stage of latency (i.e.,
dA„dB). These differences permit consideration of
higher IPT coverage among recently infected cases,
to reflect a more targeted intervention, such as case
finding among TB contacts. Furthermore, given the
difficulties encountered with LTBI diagnosis—and
particularly given the poor specificity of the tuber-
culin skin test (TST) which is predominantly used—
we allow for IPT to be given to a proportion of non-
infected individuals.6,7 In the sensitivity analysis, we
thus allow for IPT use in the fully susceptible
population (dS.0), although treatment of this
population is assumed to be ineffective and would
therefore have no epidemiological impact. We
consider relatively low treatment coverage in the
infected population to account for the fact that
treatment would not be initiated in all infected
individuals in the real world, as some of them may
not complete testing or, even if diagnosed, may not
start treatment. We assumed null IPT coverage for
individuals who have already successfully completed
a treatment course for LTBI (in compartments PA

and PB).
At baseline, we assume a combined rate of efficacy,

completion and sensitivity of LTBI detection of 48%.
This results from the multiplication of a test
sensitivity (for TST or interferon-gamma release
assays) of around 80%,8 and a combined rate of
adherence and treatment efficacy of 60%. This latter
figure was obtained from the Cochrane review of
Smieja et al. reporting a risk ratio of 0.40 of
developing TB when receiving isoniazid for 6–12
months.4 The definitions and values of the model
parameters are presented in Table A.

Differential equations corresponding to the
compartmental model

dS

dt
¼ �b:S:I þ l:N þ lI:I � l:S

dLA

dt
¼ ðb:Sþ jwb:Rþ wb:LB þ jwb:PA

þ jwb:PBÞ:I � ðeþ cþ dAhþ lÞ:LA

dLB

dt
¼ e:LA � wb:LB:I � ðmþ dBhþ lÞ:LB
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dI

dt
¼ c:LA þ m:LB þ qAc:PA þ qBm:PB

� ðsþ lþ lIÞ:I

dR

dt
¼ ðs� jwb:RÞ:I � l:R

dPA

dt
¼ dAh:LA � jwb:PA:I � ðeþ qAcþ lÞ:PA

dPB

dt
¼ e:PA þ dBh:LB � jwb:PB:I � ðqBmþ lÞ:PB

One-way sensitivity analyses under different
assumptions regarding the mechanism of action of
IPT

Figure A.2 represents the results of one-way
sensitivity analyses realised under different assump-
tions regarding the mechanism of action of IPT (i.e.,
different values of qA and qB). The upper left panel
corresponds to the analysis presented in the main
text.

Multidimensional sensitivity analysis

Figure A.3 is a scatter plot representing the results of
the fully varied sensitivity analysis. Each of the 14
panels corresponds to the same sampling of 1000
parameter sets, but the different parameters are
represented on the x-axis.

Consideration of HIV-endemic settings

To observe how the model predictions would be
affected by considering human immunodeficiency
virus (HIV) endemic settings, we undertook analyses
with parameter values to simulate populations with
HIV prevalence. Specifically, we assumed that the risk
of progression to active TB disease is higher for this
population during both the early and late stage of
LTBI. In particular, this corresponds to an increase in
the values of the parameters c and m (see Table A for
descriptions). These parameters are then recalculated
by using the HIV prevalence (PrevHIV) and the
relative risk (RR) of activation among HIV-infected
individuals compared to that among non-HIV-infect-
ed individuals (RR), as follows:

mHIV ¼ PrevHIVRRmþ ð1� PrevHIVÞm ,

cHIV ¼ PrevHIVRRcþ ð1� PrevHIVÞc;
where mHIV and cHIV denote the risks of progression
to active disease for an HIV-endemic setting. The RR
is known to be around 26 according to the World
Health Organization.17 Figure A.4 presents the
results of our analysis when we assume an RR of 26
and for a very high HIV prevalence of 26%, which
corresponds to that in the country with the highest
HIV prevalence in the world: Swaziland.

We observe the same U-shape phenomena as that
reported in the absence of HIV infection. However,
the model suggests that the TB incidence correspond-

Table A Model parameters and parameter values. The figures in brackets indicate the ranges used for the sensitivity analysis

Parameter Definition Value (sensitivity range) Source

Disease dynamic parameters
b Transmission rate Calibrated to incidence —
- Incidence 0–1500 cases/100 000/year 9
1/e Duration of recent infection phase 5 years (3–7) 10,11
c Rate of rapid progression to disease 0.09 over 5 years (0.05–0.15) 10,11
m Rate of slow progression to disease 0.0005/year (0.0003–0.001) 12,13
1/s Duration of infectiousness 1 year (0.5–1.5) Assumption*
l Natural death rate 1/70 years�1 (1/80–1/60) 14
l

I
TB-specific mortality 0.03 years�1 (0.02–0.04) Assumption

Partial immunity parameters
w Relative susceptibility to reinfection if

latently infected and not treated
(reference: fully susceptible population)

0.5 (0.25–1.5) 3,4

j Relative susceptibility if history of
treatment (reference: latently infected
population)

1 (0.5–1.5) 3,4

LTBI treatment parameters
q

A
HR of disease progression in early latency

after receiving IPT (reference: early
latency not treated)

0–0.75 Model exploration

q
B

HR of disease reactivation in late latency
after receiving IPT (reference: late
latency not treated)

0–0.75 Model exploration

h Combined rate of treatment efficacy,
completion and test sensitivity

0.48 (0.3–0.7) 4,8,15,16

dA LTBI treatment rate in early latency 5% annually (1–25%) Implementation-dependent
dB LTBI treatment rate in late latency 5% annually (1–25%) Implementation-dependent
dS LTBI treatment rate for susceptible

individuals
0% annually (0–25%) Implementation-dependent

* This value leads to a reasonable ratio between incidence and prevalence.
TB¼ tuberculosis; LTBI¼ latent tuberculous infection; HR¼ hazard ratio; IPT¼ isoniazid preventive therapy.
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ing to the optimal use of IPT is much higher when
HIV is endemic, reaching 3767 new cases per 100 000
population per year when considering a high HIV
prevalence of 26%. We also note that the associated
number needed to treat (NNT) is much lower than in
the absence of HIV infection, suggesting that it
becomes more efficient to use IPT when HIV is
endemic than in the absence of HIV. This result is in
agreement with previous findings that show that the
NNT for IPT is lower when the baseline risk of TB is
higher.4 We then considered various levels of HIV
prevalence and observed the associated optimal TB
incidences for IPT use, as well as the corresponding
NNT (Figure A.5). This analysis confirms the
previous finding that the optimal TB incidence for
IPT use increases with HIV prevalence while the
associated NNT decreases.

Finally, we wanted to explore alternative scenarios
regarding the RR of activation among HIV-infected
individuals compared to that among non-HIV-infect-

Figure A.1 Model structure and parameters. Rectangular boxes
represent the different categories in which the population is
structured. Arrows represent the transitions permitted between
categories. Blue arrows indicate flows related to IPT. Infected
individuals treated with IPT transition to corresponding compart-
ments where the rate of disease activation is reduced (multipliers qA

and qB). Reinfection may occur for both recovered and latently
infected individuals. Treated individuals have a reduced risk of
reinfection (j) compared to treatment-naı̈ve latently infected
individuals. Birth and death flows not represented in this diagram
(see main text for full description). IPT¼ isoniazid preventive therapy.

Figure A.2 One-way sensitivity analyses realised under different assumptions regarding the mechanism of action of IPT. The ranges
considered for the parameter values are presented in the main text (Table A). Values on the x-axis represent the optimal TB incidence obtained
by minimising the number needed to treat. The vertical line indicates the result obtained with the baseline parameter set (Table A; main text)
under thedifferentassumptions regarding themechanismofactionof IPT.Black (vs.white) rectangles correspondtoparameter values thatare
lower (vs. higher) than the corresponding baseline value. The hatched rectangles indicate situations where the variation of the optimal
incidence over the parameter range is not monotonic. LTBI¼ latent tuberculous infection; IPT¼ isoniazid preventive therapy; TB¼tuberculosis.
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Figure A.3 Representation of the multidimensional sensitivity analysis. A Latin hypercube method was used to create 1000
parameter sets. The values obtained for the optimal incidence over the different ranges of parameters are represented. Parameter
notations and definitions are described in Table A. TB¼ tuberculosis.

Figure A.4 Results associated with a high HIV-endemic setting. NNT¼ number needed to treat; IPT¼ isoniazid preventive therapy;
LTBI¼ latent tuberculous infection; HIV¼ human immunodeficiency virus.
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ed individuals (RR), by considering different RRs for

the early and late latency compartments. While it was

shown that HIV infection increases the risk of TB

activation after recent infection,18,19 as well as the

risk of late reactivation,20,21 it remains unclear

whether these two risks are affected in the same

way. Accordingly, we performed an additional

analysis where different RRs apply to the early and

late latency compartments.

Figure A.6 presents the optimal TB incidence

obtained when the RRs in early latency and that in

late latency are varied separately (between 1 and 26)

and when considering an HIV prevalence of 26%. We

observe that the RR that applies to the early latency

has a much higher impact than that applying to the late

latency compartment. This suggests that the impact of

HIV infection on the efficiency of IPT is mostly caused

by the fact that HIV-infected individuals present a

higher risk of TB activation after recent infection.

Figure A.5 Optimal TB incidence and associated NNTover HIV prevalence. TB¼ tuberculosis; HIV¼human immunodeficiency virus;
NNT¼ number needed to treat.

Figure A.6 Optimal TB incidence obtained under various scenarios regarding the RR of TB among HIV-infected individuals compared
to that among non-HIV-infected individuals. The bottom-left corner point (RRA ¼ RRB ¼ 1) corresponds to our baseline situation in
absence of HIV infection. The top-right corner point (RRA ¼ RRB ¼ 26) corresponds to the situation studied previously, with detailed
results reported on Figure A.4. RRA¼ the RR that applies to the early latency compartment (LA); RRB¼ the RR that applies to the late
latency compartment (LB); IPT¼ isoniazid preventive therapy; RR¼ relative risk; TB¼ tuberculosis; HIV¼ human immunodeficiency
virus.
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R code used for implementing the model

library(deSolve) # package for solving differential equations
library(lhs) # v 0.10 #package for Latin Hypercube Sampling
# To define the differential equations
reso ,- function(t,x,param)
{
DELTA ,- function(t,T_Tx,delta){
if (t,T_Tx){
return(0)

}else{
return(delta)

}
}
with(
as.list(c(param,x)),{

# ____________________________________________________________
S_La¼beta*S*I
La_Lb¼epsi*La
La_I¼gamma*La
Lb_La¼psi*beta*Lb*I
Lb_I¼nu*Lb
I_R¼tau*I
R_La¼alpha*beta*R*I

La_Pa¼DELTA(t,T_Tx,delta_A)*theta*La
Lb_Pb¼DELTA(t,T_Tx,delta_B)*theta*Lb
Pa_Pb¼epsi*Pa
Pa_I¼rho_A*gamma*Pa
Pa_La¼alpha*beta*Pa*I
Pb_I¼rho_B*nu*Pb
Pb_La¼alpha*beta*Pb*I

Death¼mu*Nþ muI*I
TB_Death¼muI*I

Inc_early¼La_I
Inc_late¼Lb_I
Inc_early_Tx¼Pa_I
Inc_late_Tx¼Pb_I
Inc¼Inc_earlyþ Inc_late þ Inc_early_Txþ Inc_late_Tx

Re_inf¼Lb_LaþR_Laþ Pa_LaþPb_La

N_Tx¼La_PaþLb_Pb
#_______________________________________________________

dS ,- -S_Laþ Death - mu*S
dLa ,- S_Laþ R_Laþ Lb_Laþ Pa_Laþ Pb_La - La_Lb - La_I - La_Pa - mu*La
dLb ,- La_Lb - Lb_La - Lb_I - Lb_Pb - mu*Lb
dI ,- Inc - I_R - mu*I -muI*I
dR ,- I_R - R_La - mu*R
dPa ,- La_Pa - Pa_Pb - Pa_La - Pa_I - mu*Pa
dPb ,- Pa_Pbþ Lb_Pb - Pb_La - Pb_I - mu*Pb

der ,- c(dS,dLa,dLb,dI,dR,dPa,dPb)
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list(der,inc_D¼Inc,inc_Da¼Inc_earlyþInc_early_Tx,inc_Db¼Inc_lateþInc_late_Tx,
N_Tx¼N_Tx, Re_inf¼Re_inf)# the output must be returned

}
)

}

# Run a simulation for a set of parameters
Simul,-function(param){
init¼c(S¼param$N-1,La¼0,Lb¼0,I¼1,R¼0,Pa¼0,Pb¼0)
dt¼seq(0,param$T,by¼param$step)

Results¼as.data.frame(lsoda(init,dt,reso,
parms¼param,maxsteps¼50000))

Results$Cum_Inc_D¼Results$Cum_Inc_D0¼Results$Cum_treated¼Results$ratio
¼rep(NA,nrow(Results))

Results$Cum_Inc_D[Results$time,¼param$T_Tx]¼Results$Cum_Inc_D0[Results
$time,¼param$T_Tx]¼Results$Cum_treated[Results$time,¼param$T_Tx]¼Resul
ts$ratio[Results$time,¼param$T_Tx]¼0

times¼seq(from¼param$T_Txþparam$step,to¼param$T,by¼param$step)

S¼0
S2¼0
S_Tx¼0
for (t in times){
S¼Sþparam$step*0.5*(Results$inc_D[Results$time¼¼t]þ

Results$inc_D[Results$time¼¼t-param$step])
S2¼S2þparam$step*Results$inc_D[Results$time¼¼param$T_Tx]

S_Tx¼S_Txþ(param$delta_A*Results$La[Results$time¼¼t]þparam$delta_B*Res
ults$Lb[Results$time¼¼t]þparam$delta_S*Results$S[Results$time¼¼t])*par
am$step

ratio¼S_Tx/(S2-S) # N cases treated for getting 1 TB case saved
Results$Cum_Inc_D[Results$time¼¼t]¼S
Results$Cum_Inc_D0[Results$time¼¼t]¼S2
Results$Cum_treated[Results$time¼¼t]¼S_Tx
Results$ratio[Results$time¼¼t]¼ratio

}

index_Tx¼length(Results$time[Results$time,param$T_Tx])

R1¼Results[index_Tx,] # before intervention
R2¼tail(Results,1) # after intervention

prev_L1¼100000*(R1$LaþR1$Lb) / (param$N)
prev_D1¼100000*R1$I/param$N

inc_D1¼365*100000*R1$inc_D/ (param$N)
re_inf1¼100*365*R1$Re_inf/(param$N) # per 100 per year

prev_L2¼100000*(R2$LaþR2$Lb) / (param$N)
prev_D2¼100000*R2$I/param$N

inc_D2¼365*100000*R2$inc_D/ (param$N)
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re_inf2¼100*365*R2$Re_inf/(param$N) # per 100 per year

Stats¼data.frame(’Phase’¼c(1,2),’Prev_L’¼c(prev_L1,prev_L2),’Prev_D’¼c
(prev_D1,prev_D2),

’Inc_D’¼c(inc_D1,inc_D2),’Re_inf’¼c(re_inf1,re_inf2)
)

return(list(Results¼Results,Stats¼Stats))

}

# Calculate the different indicators of effectiveness
effectiveness ,- function(R,T_Tx){

# R contains the results from Simul
R¼R$Results

index_Tx¼length(R$time[R$time,T_Tx])
index_10¼length(R$time[R$time,¼T_Txþ10*365])
index_20¼length(R$time[R$time,¼T_Txþ20*365])
index_50¼length(R$time[R$time,¼T_Txþ50*365])

R0¼R[index_Tx,] # before intervention
R10¼R[index_10,]
R20¼R[index_20,]
R50¼R[index_50,]
Req¼tail(R,1)

prev_L_eq¼100*(Req$LaþReq$Lb)/param$N;
prev_L_10¼100*(R10$LaþR10$Lb)/param$N;
prev_L_20¼100*(R20$LaþR20$Lb)/param$N;
prev_L_50¼100*(R50$LaþR50$Lb)/param$N;

prev_D_eq¼100000*(Req$I/param$N);
prev_D_10¼100000*(R10$I/param$N);
prev_D_20¼100000*(R20$I/param$N);
prev_D_50¼100000*(R50$I/param$N);

inc_L_eq¼365*100000*(Req$inc_L/param$N);
inc_L_10¼365*100000*(R10$inc_L/param$N);
inc_L_20¼365*100000*(R20$inc_L/param$N);
inc_L_50¼365*100000*(R50$inc_L/param$N);

inc_D_eq¼365*100000*(Req$inc_D/param$N);
inc_D_10¼365*100000*(R10$inc_D/param$N);
inc_D_20¼365*100000*(R20$inc_D/param$N);
inc_D_50¼365*100000*(R50$inc_D/param$N);

Prop_La¼100*R10$La/(R10$LaþR10$Lb) # %

Prop_INCa¼100*R10$inc_Da/(R10$inc_DaþR10$inc_Db) # %

eff_equ¼ (Req$inc_D-R0$inc_D) / R0$inc_D
eff_10¼ (R10$inc_D-R0$inc_D) / R0$inc_D
eff_20¼ (R20$inc_D-R0$inc_D) / R0$inc_D
eff_50¼ (R50$inc_D-R0$inc_D) / R0$inc_D
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ratio_10¼R10$ratio
ratio_20¼R20$ratio
ratio_50¼R50$ratio

absolute_10¼R10$Cum_Inc_D0-R10$Cum_Inc_D # nb of averted cases over
10 years

L¼list( prev_L_eq¼prev_L_eq, prev_L_10¼ prev_L_10,
prev_L_20¼ prev_L_20, prev_L_50¼ prev_L_50,

prev_D_eq¼prev_D_eq, prev_D_10¼ prev_D_10,prev_D_20¼
prev_D_20, prev_D_50¼ prev_D_50,

inc_L_eq¼inc_L_eq, inc_L_10¼ inc_L_10,inc_L_20¼ inc_L_20,
inc_L_50¼ inc_L_50,

inc_D_eq¼inc_D_eq, inc_D_10¼ inc_D_10,inc_D_20¼ inc_D_20,
inc_D_50¼ inc_D_50,

eff_equ¼eff_equ, eff_10¼eff_10, eff_20¼eff_20,
eff_50¼eff_50,

ratio_10¼ratio_10, ratio_20¼ratio_20, ratio_50¼ratio_50,
absolute_10¼absolute_10, Prop_La¼ Prop_La ,

Prop_INCa¼Prop_INCa)
# ratio¼ number of LTBI treatments needed to save one TB-case

return(L)
}

# find a value of beta that leads to an incidence between inc_min and
inc_max
fit_beta,-function(param,inc_min,inc_max,betaMax¼0.000001){
param$step¼10000
param$T_Tx¼5000*365
param$T¼5500*365

beta1¼0
beta2¼betaMax
beta¼(beta1þbeta2)/2
param$beta¼beta
R¼Simul(param,plot¼0)
inc¼R$Stats$Inc_D[1]

cpt¼0
MaxIter¼50
ok¼1
while ( inc,inc_min jj inc.inc_max ){
cpt¼cptþ1

# update
if (inc,inc_min){
beta1¼beta

}else{
beta2¼beta

}

beta¼(beta1þbeta2)/2

param$beta¼beta
R¼Simul(param,plot¼0)
inc¼R$Stats$Inc_D[1]
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if (cpt.¼MaxIter){
ok¼0
break

}
}

return(list(beta¼beta,ok¼ok))

}

# Function to minimize when optimizing with NNT
f ,- function(beta,param){
param2¼param
param2$beta¼beta

R¼Simul(param2)
eff¼effectiveness(R,T_Tx¼param2$T_Tx)
NNT¼eff$ratio_10
return(NNT)

}

# Optimization by considering NNT
opti_U_shape ,- function(params){

MIN¼optimise(f,interval¼ 0.00000001*c(2.5,50),param¼params,tol¼1.e-
9)

betamin¼MIN$minimum
y¼MIN$objective
param2¼params
param2$beta¼betamin
R¼Simul(param2)
inc_min¼R$Stats$Inc_D[1]
return(list(inc¼inc_min,NNT¼y))

}

#__________________________________________
# Latin hypercube sensitivity analysis

# Generate N parameter sets from a Latin Hypercube (rho can be fixed)
Draw_Sets ,- function(N,ranges,rho¼NA){

# generate N sets of parameters that are scattered in the parameter
space

# defined by ranges which is a list containing the ranges (use
param_ranges)

pars¼names(ranges)
N_params¼length(ranges)
Cube¼randomLHS(N,N_params)
Cube¼data.frame(Cube)
colnames(Cube),-pars

# affine transformation
for (p in pars){
range¼ranges[[p]]
Cube[[p]]¼range[1]þ (range[2]-range[1])*Cube[[p]] #¼a þ (b-

a)*U
}
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if (!is.na(rho)){
Cube$rho_A¼rep(rho,N)
Cube$rho_B¼rep(rho,N)

}

return(Cube)
}

# Run simulations for all parameter sets
Run_Latin_Sensitivity ,- function(Cube){

# run the simulations for the different sets from the Latin
Hypercube

# Launch after Cube¼Draw_Sets(20,param_ranges)
param2¼param
Pars¼colnames(Cube)
Cube$Opt_Inc¼rep(NA,nrow(Cube))
Cube$Opt_NNT¼rep(NA,nrow(Cube))

for (i in 1:nrow(Cube)){
print(paste(‘‘i¼’’,i,"/’’,nrow(Cube)))
param2¼param
for (p in Pars){
if (p¼¼’kappa’){ # alpha¼kappa*psi
param2$alpha¼Cube$kappa[i]*Cube$psi[i]

}else{
param2[[p]]¼Cube[[p]][i]

}
}
# param2 is ready
Opt¼opti_U_shape(param2)
Cube$Opt_Inc[i]¼Opt$inc
Cube$Opt_NNT[i]¼Opt$NNT

}

return(Cube)
}
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R E S U M E

C O N T E X T E : Le traitement préventif par isoniazide

(IPT) est efficace dans la prévention de la tuberculose

(TB) active, même si son mécanisme d’action est mal

compris et que le poids optimal de la maladie pour

l’utilisation d’IPT n’a pas été défini.

O B J E C T I F : Décrire la relation entre l’incidence de la TB

et l’efficacité d’IPT.

M É T H O D E : Nous avons construit un modèle des

dynamiques de transmission de la TB afin de

déterminer l’efficacité d’IPT dans différents contextes

épidémiologiques. La structure du modèle a été conçue

pour s’adapter facilement à l’incertitude à la fois des

paramètres d’entrée et du mécanisme d’action d’IPT. Pour

déterminer le contexte optimal d’utilisation d’IPT, nous

avons identifié le plus petit nombre de personnes à traiter

par IPT requis (NNT) pour prévenir un cas de TB active.

R É S U LTAT S : Nous avons trouvé que le NNT comme

fonction de l’incidence de la TB suivait une courbe en U,

l’impact d’IPT étant maximal pour une incidence

intermédiaire et étant atténué à la fois pour un niveau

d’incidence faible et élevé. Cette courbe en U a été

observée pour une large fourchette de valeurs des

paramètres, et l’incidence optimale de la TB a été

constatée entre 500 et 900 cas par 100 000 personnes par

an.

C O N C L U S I O N : Le poids de la TB est un facteur crucial

à envisager avant de décider d’une mise en œuvre d’IPT

au niveau d’une communauté. Nous montrons que le

poids total de la maladie ne devrait pas exclure

l’application d’IPT par les programmes.

R E S U M E N

M A R C O D E R E F E R E N C I A: El tratamiento profiláctico

con isoniazida (IPT) es eficaz en la prevención de la

tuberculosis (TB) activa y sin embargo se conoce mal su

mecanismo de acción y no se ha definido cuál es el valor

óptimo de la carga de morbilidad por TB para

recomendar su utilización.

O B J E T I V O: Describir la relación entre la incidencia de

TB y la eficacia del IPT.

M É T O D O: Se construyó un modelo de la dinámica de

transmisión de la TB con el fin de investigar la eficacia del

IPT en diferentes contextos epidemiológicos. Se procuró

que la estructura del modelo fuese muy adaptable a la

incertidumbre en las variables de entrada del modelo y el

mecanismo de acción del tratamiento. Con el objeto de

reconocer el contexto óptimo de aplicación del IPT, se

definió el número mı́nimo de pacientes que es necesario

tratar con el fin de prevenir un caso de TB activa.

R E S U LTA D O S: Se encontró que el número de pacientes

que es preciso tratar en función de la incidencia de TB,

exhibe una curva ‘en forma de U’, según la cual la

repercusión más alta se alcanza cuando existe una

incidencia intermedia y el efecto se atenúa en los niveles

de más alta y más baja incidencia. Este tipo de curva se

observó en un amplio intervalo de valores y la incidencia

óptima se definió entre 500 y 900 casos por 100 000

habitantes por año.

C O N C L U S I Ó N: La carga de morbilidad por TB

constituye un factor esencial cuando se adoptan

decisiones sobre la aplicación del tratamiento

preventivo a escala de una comunidad. Los resultados

del estudio revelan que la carga total de morbilidad por

TB no debe excluir la aplicación programática del IPT.
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