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Abstract  
 
Background 

Unsafe drinking water and household air pollution are leading risk factors for diarrhoea and 

pneumonia, two major causes of death for young children. Rural areas are vulnerable due to 

unsafe water supplies and biomass burned indoors for cooking. Household water filters and 

portable fuel-efficient cookstoves could reduce these risks, but there is limited evidence of long-

term uptake and impact.  

 

National Water Quality Study  

To determine the extent of faecal contamination of household stored drinking water and 

associated risk factors in Rwanda, we conducted a nationally representative cross-sectional 

study. Only 24.9% (n=217) of household supplies met WHO Guidelines of no detectable faecal 

contamination (thermotolerant coliforms (TTC)). Risk factors for intermediate and/or high risk 

contamination (11-100 and 101+ TTC/100mL) included low population density, increased open 

waste disposal within a sector, lower elevation, water sources other than piped to household or 

rainwater/bottled, and occurrence of an extreme rain event the previous day. Thus, community-

level factors are associated with stored household water quality; observed contamination poses 

a health risk in Rwanda.   

 

Matched Cohort Study  

We next conducted a matched-cohort study in 18 villages to assess uptake, exposure, and health 

impacts of a water filter and improved biomass cookstove intervention programme 13-24 

months after receipt.  Coverage and use of the filter and cookstove was high, but non-exclusive. 

The odds of detecting TTC were 78% lower in the intervention arm (OR 0.22, p<0.001), with 50% 

lower odds of reported diarrhoea among intervention children <5 (OR=0.50, p=0.03). The 
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intervention was associated with 43.4% lower fine particulate matter in kitchens (p<0.001), but 

geometric mean exposure remained above WHO targets for cooks (151 μg/m3) and children (175 

μg/m3), and only marginally reduced among intervention cooks (22.2% lower, p=0.06). While the 

filter showed promise for health benefits, alternative household and community-level 

approaches for achieving clean, safe air are needed. 
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Chapter 1.  Introduction and Research Aims 

 

1.1 Project overview 

This study will examine an improved cookstove and water filter distribution program in rural 

Rwanda.  The program is a partnership between Rwanda Ministry of Health and DelAgua Health, 

a for-profit organization which seeks to address environmental health concerns with a pay-for-

performance model following a carbon offset scheme (Edwards et al., 2004; Johnson et al., 

2009). By developing interventions that reduce the need for fuel wood used for water treatment 

and cooking, DelAgua Health seeks to obtain carbon credits by participating in the United 

Nations Clean Development Mechanism (Thomas, 2012). Carbon credits are awarded for 

demonstrable adoption of such technologies over a designated time period (Haigler, 2011), and 

there is incentive for the implementer to distribute at scale, monitor uptake and ensure correct 

use over time (Simon et al., 2012). This type of market-based approach can provide funding and 

promote accountability by requiring monitoring of large stove and water treatment programs 

(Shrimali et al., 2011). 

 

London School of Hygiene and Tropical Medicine (LSHTM) (Dr. Thomas Clasen, PI) was 

commissioned by DelAgua to undertake a four-year research programme agreed with the 

Rwanda Ministry of Health to (i) assess the adoption (use) of the interventions, (ii) evaluate the 

impact of the intervention on exposure to contaminated drinking water and household air 

pollution (HAP), and (iii) conduct a health impact evaluation of a large-scale roll out of the 

programme.  We started this work with a randomized controlled trial of a pilot programme 

(Phase IA) (Rosa et al., 2014). The research described in this thesis represents the next phase of 
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the work (Phase IB) and includes (i) scoping the country-wide exposure to contaminated drinking 

water in Rwanda by conducting a rapid drinking water quality assessment, (ii) assessing the 

longer-term (year two) use of the intervention hardware, (iii) evaluating the impact of the 

intervention on drinking water quality and personal-level exposure to HAP,  in preparation for a 

large-scale randomized controlled trial (Phase II) (Nagel et al., 2016; Thomas et al., 2016).  The 

papers from Phase IA and Phase II, which I have contributed to since beginning the PhD at 

London School of Hygiene and Tropical Medicine (LSHTM), are included as appendices. 

 

1.2 Research aims   

The overall aim of this research is to assess the uptake and exposure impact of water filters and 

improved cook stoves distributed for free in rural Rwanda and to provide information to inform 

the design of a large scale health impact evaluation of the intervention.  The specific objectives 

of this research are: 

i) To determine the level of faecal contamination of household drinking water 

nationally and risk factors associated therewith.  

ii) To evaluate the medium-term use of a water filter and improved cookstove 

provided to lower-income populations with a child under 5 years of age in rural 

Rwanda. 

iii) To assess the impact of the intervention on drinking water and household air 

pollution.  

Thesis questions: 

a) To what degree is household drinking water faecally contaminated nationally in 

Rwanda, and what household and community-level factors are associated with 

household microbial water quality (Chapter 3)? 
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b) To what extent is the intervention stove and water filter used by this population 13-

24 months after they have been received (Chapter 4 and Chapter 5)? 

c) Is the intervention associated with improvements in drinking water quality (Chapter 

4)? 

d) Is the intervention associated with improvements in cooking area fine particulate 

matter (PM2.5) and personal exposure to PM2.5 and carbon monoxide (CO) (Chapter 

5)? 

e) What is the burden of respiratory infection and diarrhoea illness in children under 5 

according to caretaker self-report (Chapter 4 and Chapter 5)? 

 

1.3 Responsibilities of Investigators 
 

Unless stated otherwise, I was responsible for all research covered by this thesis, with guidance 

from Thomas Clasen, Corey Nagel, Ghislaine Rosa, Jill Baumgartner, Michael Johnson, W.P. 

Schmidt, and Evan Thomas. Throughout the thesis, use of the pronoun “we” refers to work that 

was conducted by the author, Miles Kirby, with guidance from his supervisors.  

 

I lived in Rwanda from April 2013-December 2014. From April 2013-June 2013, I designed and 

managed a national cross-sectional study to assess drinking water quality, source water quality, 

household water treatment practices, and cooking practices. Due to the pilot nature of this 

work, this work is not included in the thesis. From July 2013-September 2013, I was involved in 

preparations for the matched cohort study (Chapter 4 and Chapter 5). These included study 

design, submitting ethics applications, writing, programming, and piloting the survey tools, 

procurement of all materials including new personal exposure assessment equipment, training 
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staff, and field testing and refining the study procedures.  I also designed the matching 

procedure and obtained all data necessary for propensity score matching, which was performed 

by Corey Nagel.  From October 2013-November 2014, I directly supervised the matched cohort 

data collection team. These included frequent visits to project offices and study households for 

quality assurance purposes. From November 2014-May 2015, I designed and remotely managed 

a national household drinking water quality study (Chapter 3).    
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Chapter 2.  Literature Review 

 

2.1 Drinking water quality  

2.1.1 Access to safe water  
 

An estimated 663 million people do not have access to an improved drinking water source 

(defined to include piped water to the dwelling, plot or yard, as well as public taps/standpipes, 

tubewells or boreholes, protected dug wells, protected springs, and rainwater collection) 

(WHO/UNICEF, 2015). However, water from improved water sources is not necessarily of safe 

microbiological quality and can contain faecal contamination (Bain et al., 2014a, 2014b; Shaheed 

et al., 2014). An estimated 1.8 billion people use a water source that has faecal or chemical 

contamination (Onda et al., 2012), with the burden particularly high in Africa (Bain et al., 2014a). 

 

A recent meta-analysis showed piped water was safer at both the source and household 

compared to other water source types (Shields et al., 2015). Sub-national inequalities, including 

urban and rural differences and differential access to types of improved water sources such as 

piped water are commonplace (Bain et al., 2014c; Fuller et al., 2015; Luh et al., 2013; Pullan et 

al., 2014; WHO/UNICEF, 2015; Yu et al., 2014). Although rural drinking water sources tend to be 

more contaminated than urban sources (Bain et al., 2014b), definitions of what constitutes 

urban and rural settings are often broad and do not necessarily take into account population 

density, socioeconomic differences, and access to services which can vary significantly 

(Christenson et al., 2014). Within urban settings, there can be high heterogeneity of vulnerability 

to poor drinking water quality (Elala et al., 2011; Yongsi, 2010).     

 

2.1.2 Water storage issues 
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Moreover, in these hygiene-challenged environments, even water that is safe at the source 

frequently can become contaminated from faecal pathogens during collection, transport and 

storage in the home (Trevett et al., 2005; Wright et al., 2004).  Even households that have access 

to piped tap water may store their water leading to water quality contamination (Baker et al., 

2013).  Post-treatment contamination can also occur at point-of-consumption, via contaminated 

drinking cups (Rufener et al., 2010). Unsafe storage can be the dominant contamination pathway 

in urban settings (Machdar et al., 2013), although intermittent supply, system deficiencies and 

poor condition of improved sources also increase risk of contamination and illness (Ercumen et 

al., 2014; Shaheed et al., 2014). This suggests that in absence of safely managed piped water, 

there is a need to improve water quality and safely store water at a household level immediately 

prior to consumption.   

 

2.1.3 Water quality testing by suppliers in Africa 
 

Water quality testing by suppliers and public health surveillance agencies in sub-Saharan Africa 

is less frequent in rural areas and among small water suppliers (Peletz et al., 2016). This trend is 

seen in other low-income settings, and is primarily due to high costs and lack of resources 

including field testing capacity and laboratory resources (Crocker and Bartram, 2014). When 

water is tested by agencies in sub-Saharan Africa, piped sources relative to other sources are 

most frequently tested (Kumpel et al., 2016). In a study examining nearly 43,000 microbial water 

quality tests from seven countries, piped sources were less frequently contaminated than non-

piped sources, while protected sources such as protected springs and protected dug wells 

showed presence of faecal indicator bacteria of 39% and 65% respectively (Kumpel et al., 2016). 

Piped water sources in low-resource settings are additionally subject to intermittent supply due 

to a wide variety of institutional, mechanical, environmental, and human influences (Galaitsi et 



20 
 

al., 2016). Intermittent supplies can increase water contamination in these systems (Kumpel and 

Nelson, 2016). 

 

2.1.4 Health impacts of unsafe water  
 

Globally, an estimated 1.25 million deaths and 75 million disability-adjusted life years (DALYs) 

are attributable annually to obtaining water from unsafe sources (GBD 2015 Risk Factors 

Collaborators, 2016). Most of the deaths are from diarrhoea, especially among young children 

exposed to faecal contamination in drinking water (Prüss-Ustün et al., 2014). Diarrhoea is a 

leading cause of mortality in children under 5, accounting for an estimated 9% of overall deaths 

(Liu et al., 2014).  In 2011, an estimated 700,000 deaths among children under 5 were due to 

diarrhoea (Fischer Walker et al., 2013c). 

 

Diarrhoea in young children less than 2 years of age can lead to linear growth faltering from 2-7 

years of age, likely continuing beyond (Moore et al., 2001).  Diarrhoea can lead to 

undernutrition, which in turn can lead to increased frequency and duration of diarrhoea 

episodes (Guerrant et al., 1992). Evidence from a cohort study in Brazil suggests early childhood 

diarrhoea, independent of malnutrition and stunting, has been associated with cognitive 

development impairment later in life (Pinkerton et al., 2016).   

A recent systematic review and analysis found no association between faecal coliform levels in 

drinking water and diarrhoea, although the review noted heterogeneity and evidence of 

publication bias (Gruber et al., 2014).  However, there is increasing evidence that household 

drinking water quality is a determinant of diarrhoea (Hodge et al., 2016; Levy, 2015; Luby et al., 

2015). A recent review compiling 45,052 observations found that log10 increases in TTC/100mL 

above 10 TTC/100mL increased the odds of both child and all ages diarrhoea (Hodge et al., 
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2016). Another large study examining E. coli contamination found a relationship between log10 

increases and subsequent diarrhoea using 12,192 monthly follow-up visits over a 2-year period 

(Luby et al., 2015). A more recent study in Bangladesh gives further evidence for a relationship 

between E.coli in drinking water and diarrhoea, based on prospective measurements and more 

reliable two-day diarrhoea recall; cross-sectional data in this study found no association 

(Ercumen et al., 2016).   

 

The 2014-15 Rwanda Demographic and Health Survey estimated 27.6% of the population use 

unimproved drinking water sources, with the majority residing in rural areas (National Institute 

of Statistics of Rwanda (NISR) et al., 2015). In Rwanda, unsafe drinking water is currently ranked 

third as a risk factor for disease (GBD 2015 Risk Factors Collaborators, 2016).  There have been 

few studies of water quality in Rwanda, but none on a national scale.  Rosa et al. (Rosa et al., 

2014) conducted repeated samples over a 5-month period in 3 villages in Western and Northern 

province and found high faecal contamination levels (Rosa et al., 2014). A study in Rusizi district 

(Western Province) also found faecal contamination of household drinking water supplies, 

although most samples were not highly contaminated (Sinharoy et al., 2016). Another study 

looked at differences between a river used as a water source and 20 stored water samples after 

household water treatment (Uwimpuhwe et al., 2014). Other water quality assessments in 

Rwanda have found high faecal contamination of surface water partly due to anthropogenic 

influence, and these sources are sometimes used as water sources (Sekomo et al., 2012; 

Wronski et al., 2015).   

 

2.2 Factors affecting drinking water quality  
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Faecally contaminated drinking water is usually associated with two major factors:  poor hygiene 

(especially failure to wash hands after defecation) or poor sanitation. However, a variety of 

additional factors are associated with the faecal contamination of drinking water. 

 

2.2.1. Hygiene and Sanitation 
 

 Contaminated hands may be a pathway for stored drinking water contamination (Mattioli et al., 

2014; Pickering et al., 2010; Schriewer et al., 2015).  Transmission can occur through contact 

with contaminated soil, food or other surfaces such as toys (Mattioli et al., 2014; Pickering et al., 

2012, 2011; Torondel et al., 2015).  Domestic animal exposure can result in increased 

contamination on hands as well as contaminated water leading to diarrhoeal illness (George et 

al., 2015; Schriewer et al., 2015; Zambrano et al., 2014). Hands frequently come in contact with 

contaminated soil, food or other surfaces and can contaminate water supplies (Mattioli et al., 

2014; Pickering et al., 2012, 2011).  

 

Evidence of sanitation conditions adversely affecting water quality is mixed. Surfaces within and 

around toilets can be a source of pathogens (Pickering et al., 2012).  A cross-sectional study in 

urban slums in India found no impact of shared sanitation on drinking water, although shared 

facilities were less likely to be clean or functional (Heijnen et al., 2015). Another study in 

Tanzania did not find any association between latrines with slab and soil faecal bacteria, though 

this could have been due to a low sample size (Pickering et al., 2012).   

 

In some settings, animal-associated faecal contamination of water, soil, and hands may be more 

dominant than human-associated faecal contamination (Boehm et al., 2016; Harris et al., 2016). 
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A study in Bangladesh evaluating provision and promotion of child feces removal tools and 

toilets found that ruminant faecal contamination was prevalent within the household 

environment including drinking water, and was associated with animal ownership (Boehm et al., 

2016). In a study in Uganda, dumping of solid waste into the bush was a contributor to chemical 

and biological contamination (Nsubuga et al., 2004), while another study found that latrines 

within 50m of pumps or wells increased risk of virus detection (Verheyen et al., 2009).  

Groundwater contamination has been observed downstream of latrines, although there is mixed 

evidence on how far contamination can reach and is likely very context specific (Graham and 

Polizzotto, 2013).  For example, a study in Kenya found increased latrine density was associated 

with groundwater contamination (nitrate and chloride), but not faecal contamination (Wright et 

al., 2013).   

 

2.2.2 Population density  
 

Studies have found an increase in enteric infection with increased housing density (Halpenny et 

al., 2012), potentially due to person-to-person transmission and increased social connectedness 

(Bates et al., 2007). Sources of faecal contamination may contaminate surface water sources 

used for drinking or other household uses, and can also contaminate groundwater and/or water 

sources with poor infrastructure (Godfrey et al., 2006; Howard et al., 2003; Kulabako et al., 

2007; Nsubuga et al., 2004). Increased population density has been associated with increased 

contamination of protected springs (Nsubuga et al., 2004), potentially through increased latrine 

density or unsafe sanitation (Escamilla et al., 2013).  On the other hand, a recent study 

examining population density in Guatemala found no effect of population density on enteric 

infection (Jarquin et al., 2016). 
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2.2.3 Solid Waste disposal 
 

Household waste is an important contributor to household water quality, and may be partially 

dependent on the disposal practices of one’s neighbours.  Many households in Rwanda and 

other low-income countries have limited waste removal services, and this is a challenge in both 

urban and rural settings.  Household solid waste can contain numerous pathogens, and may 

include child feces and other sources of faecal waste (Majorin et al., 2014; Rego et al., 2007). 

Lack of solid waste removal has been associated with health risks including Giardia (Prado et al., 

2003).   When dumped in the bush, farmland, or rivers, this source of faecal contamination may 

contaminate surface water sources used for drinking, and contaminate groundwater or water 

sources with poor infrastructure (Kulabako et al., 2007).  For example, protected springs can still 

be vulnerable to contamination due to structural issues, as was found in a study in Kampala 

(Howard et al., 2003).  Sanitary inspection of water sources is recommended in order to to target 

structural improvements, and WHO risk-of-contamination scoring is a tool that has shown a 

strong relationship with health-related indicators (Mushi et al., 2012).   

 

2.2.4 Livestock density  
 

A number of studies have found associations between livestock density and enteric illness 

(Febriani et al., 2009; Frank et al., 2008; Graziani et al., 2015; Jagai et al., 2010). In New Zealand, 

livestock density was associated with increased risk of Cryptosporidiosis in children under 5 (Lal 

et al., 2016). Giardia and Cryptosporidium prevalence has been found to be greater in areas with 

reduced population density compared to higher density areas (Jagai et al., 2010; Pollock et al., 

2010). This may be due to reduced livestock ownership in urban areas. A study of a river in 

Kenya found cattle to be the dominant source of faecal contamination and Cryptosporidium in 

the environment (Jenkins et al., 2009).  A systematic review of studies conducted in high-income 
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settings found distinct seasonal variations in human zoonotic enteric infections (Lal et al., 2012); 

thus, the impact of livestock on water quality and diarrhoea may be mediated by climatic 

factors.   

 

Presence of livestock within the home can also impact drinking water quality. Chickens often 

enter houses and can come in close proximity with water storage containers, as well as other 

surfaces that human hands come in contact with.  Avian feces can contain high levels of 

pathogens (Oberhelman et al., 2003), and close proximity has been associated with increased 

Campylobacter-related diarrhoea (Oberhelman et al., 2006).  A study in Zimbabwe found 

children ingested chicken feces and contaminated soil (Ngure et al., 2013), and domestic animal 

exposure has been associated with environmental enteropathy and stunting, as well as 

contamination on caregivers hands (George et al., 2015). Faecal contamination on hands and 

animal proximity may in turn result in increased risk of stored water contamination. 

2.2.5 Altitude  
 

One study in Rwanda identified increased altitude as protective against diarrhoea, and this was 

partly attributed to drainage and accumulation of solid waste, flies and faecal matter at lower 

altitudes (Uwizeye et al., 2014).  Higher altitude may be indicative of fewer sources of animal 

and human waste in the watershed, although temperature, which varies with altitude in 

Rwanda, can affect faecal indicator growth.  A review recently identified higher altitude areas as 

having reduced faecal indicator growth and prevalence in the environment relative to lower 

elevations (Rochelle-Newall et al., 2015).    

 

2.2.6 Rainfall  
 



26 
 

Water sources, including a range of improved water sources, are susceptible to greater 

contamination during the wet season, and this pattern has been found in both urban and rural 

settings and in different climate zones (Kostyla et al., 2015).  During the rainy season, storm 

water runoff can increase, and contamination can infiltrate into groundwater (Nsubuga et al., 

2004). Impacts from acute precipitation events can also impact water quality.  For example, 

previous day rainfall resulted in increased faecal contamination of protected springs in Kampala 

(Howard et al., 2003) and wells in Mozambique (Godfrey et al., 2006). Rainfall may additionally 

mediate the impact of unimproved water sources and unimproved sanitation  on diarrhoea 

(Bhavnani et al., 2014). The impact of open waste disposal, as well as presence of other faecal 

sources such as human/animal faeces, may be aggravated by extreme rainfall events which can 

result in a “flush effect” (Levy et al., 2009), particularly in environments with rapid groundwater 

recharge. Other studies in Rwanda have identified increased rainfall as a risk factor for water 

source contamination (Gasana et al., 2002) and groundwater contamination (Nigatu et al., 

2015). 

 

2.3 Point of use water treatment  
 

2.3.1 General 

   
Household water treatment and safe storage is recommended by the World Health Organization 

(WHO) to address the risks associated with source water quality and household recontamination 

(UNICEF/WHO, 2009; WHO, 2007). Household water treatment methods include boiling (Brown 

and Sobsey, 2012; Rosa et al., 2010), chlorine (Arnold and Colford Jr, 2007; Boisson et al., 2013), 

flocculation, sedimentation and disinfection (Souter et al., 2003), solar disinfection (SODIS) 

(Mäusezahl et al., 2009; Rose et al., 2006) and filtration (Clasen et al., 2015, 2004; Stauber et al., 

2012).  In several review studies, point of use water treatment has been shown to improve 
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water quality and reduce diarrhoea (Clasen et al., 2015; Fewtrell et al., 2005; Waddington et al., 

2009; Wolf et al., 2014). However, many of these studies were non-blinded and relied on self-

reported diarrhoea which is subject to courtesy bias (Schmidt and Cairncross, 2009).  As blinded 

trials of these interventions present ethical issues (Clasen and Boisson, 2015), there is a need for 

more objective outcomes to overcome the weaknesses of self-reported  outcomes such as 

biomarkers of recent infection (Priest et al., 2006).  

 

Of various water treatment methods available, filtration is considered one of the best options 

(Hunter, 2009; Clasen 2015).  A meta-regression examining different household water treatment 

methods in developing countries found that ceramic filters were most effective, and likely to 

remain effective over time (Hunter, 2009).  Another study found that ceramic and biosand filters 

were the most effective as well as sustainable and acceptable (Sobsey et al., 2008), although this 

study and the review by Hunter (2009) occurred before the development of advanced 

ultrafiltration filters (Clasen et al., 2009). A recent study highlights rotavirus, Shigella, 

Cryptosporidium, and Enteropathogenic E. coli contributing the most to moderate-to-severe 

diarrhoea in children, with Cryptosporidium most associated with increased death among 

children 12-23 months (Kotloff et al., 2012). Unlike some other common treatment methods 

such as chlorine (Korich et al., 1990), most filters are effective against these bacteria and 

protozoa.  At the same time, most water filters, including ceramic candle filters, are not effective 

in removing viruses from drinking water (Sobsey, 2002). 

 

2.3.2 Lifestraw filter   
 

For the Rwanda project, DelAgua selected the Lifestraw ® Family Filter 2.0, a tabletop gravity-

based filter that employs hollow-fibre membranes as the microbiological barrier and includes 
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safe storage for product water (Figure 1).  The filter was selected because it is effective against 

all classes of microbial pathogens (including viruses) and is designed to provide sufficient 

drinking water for a household for at least three years without replacing any consumables 

(Clasen et al., 2009).  There have been a few studies examining the impact of the Lifestraw 1.0, 

an earlier version of the filter that required users to hang it in homes and did not include safe 

storage.  These included a randomized placebo-controlled trial in Democratic Republic of Congo 

(DRC) (Boisson et al., 2010) and a randomized controlled trial in Zambia that also included safe 

storage (Peletz et al., 2012).  The study in DRC found microbiological effectiveness but low 

uptake, and did not find an effect on diarrhoea (Boisson et al., 2010).  The Zambia study, 

conducted among a population living with human immunodefficiency virus / acquired immune 

deficiency syndrome (HIV/AIDS), found high uptake and reductions in diarrhoea among both 

children under 2 and all household members (Peletz et al., 2012).  One year later there was 

similar high uptake and microbiological reductions, although this population may be more likely 

to engage in consistent use (Peletz et al., 2013).  

 

Figure 1 Lifestraw Family Filter 2.0 (photo courtesy of Thomas Clasen) 

 

2.3.3 Correct, consistent and sustained use 
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A major challenge facing household water treatment interventions is correct, consistent use.   

Despite uptake demonstrated during field trials, usage of household water treatment 

interventions tends to diminish over time (Arnold and Colford Jr, 2007; Boisson et al., 2013; 

Waddington et al., 2009). A recent systematic review and meta-analysis found that while 

shorter-term (<12 months) trials yielded protective effects from household water treatment 

interventions, none of the four trials with follow-up exceeding 12 months reported an effect on 

diarrhoea (Clasen et al., 2015). This could be due to a combination of declining usage over time, 

as well as non-exclusive use of the filter for consumption of drinking water.  

 

Studies utilizing quantitative microbial risk assessment modelling have shown that high 

compliance and consistent use of treated drinking water are necessary to achieve health 

benefits (Brown and Clasen, 2012; Enger et al., 2013, 2012; Hunter et al., 2009), and even a small 

reduction in adherence can substantially offset positive health gains (Brown and Clasen, 2012).  

There is therefore a need to carefully measure compliance of household water treatment 

interventions (Enger et al., 2013), and factors affecting longer-term drinking water practices.      

 

Sub-optimal use of the Lifestraw Filter 1.0 was recently reported in a study in Kenya (Pickering et 

al., 2016).  The investigators found that that usage of the filter declined over time among 

households with pregnant women, dropping to 19% 2-3 years following the initial free 

distribution.  As noted above, this filter has been fully redesigned in an effort to improve use and 

protect treated water. A pilot randomized control trial in Rwanda using this new tabletop 

version found high microbiological effectiveness and high uptake, although non-exclusive use 

(Rosa et al., 2014). 
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There are several factors affecting filter usage and performance (Ojomo et al., 2015).  People 

may be less likely to treat their water at home when source water is perceived as being clean 

(Arnold et al., 2013),  or they may not want to wait for water filtration to occur (Boisson et al., 

2010). Untreated water may also be preferred when away from the home (Boisson et al., 2010; 

Rosa et al., 2014).   User maintenance and operation can impact filter performance and increase 

risk of exposure (Baumgartner et al., 2007).   General household hygiene practices may also 

influence proper filter maintenance and operation, as well as diarrhoea (Divelbiss et al., 2013). 

Despite a promising variety of trials confirming beneficial impacts of filters on water quality and 

diarrhoea, there is a need for long-term follow-up in order to assess filter performance and how 

to maximize consistent, exclusive use (Clasen et al., 2015).     

 

2.4 Household air pollution  

2.4.1 Biomass usage  
 

An estimated forty percent of the world’s population uses solid fuels such as wood, crop 

residues, charcoal and coal for cooking and household energy needs (Bonjour et al., 2013).     

While the proportion of global population cooking with biomass has decreased since 1980, 

around 2.8 billion continue to cook with biomass, and this has remained relatively stable due to 

population growth (Bonjour et al., 2013). Southeast Asia and Africa are most dependent on solid 

fuel use, with an estimated 60%-77% of Africa’s population relying on solid fuels (Bonjour et al., 

2013; Rehfuess et al., 2006). Only 0.3% of households in Rwanda use liquefied petroleum gas 

(LPG), with the majority relying on solid fuel such as wood, straw/shrubs/grass, and charcoal 

(98.1%) (National Institute of Statistics of Rwanda (NISR) et al., 2015). Only 20.9% of households 

cook outdoors, with the remainder primarily cooking in a separate building (53.3%) or in the 

house (24.3%) (National Institute of Statistics of Rwanda (NISR) et al., 2015).     
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Burning of solid fuels on traditional inefficient stoves results in incomplete combustion. Products 

of incomplete combustion include particulate matter (PM) and carbon monoxide (CO) in 

addition to more than 250 compounds, many of which are known to be harmful to health (Bruce 

et al., 2000; Naeher et al., 2007). Fine particulate matter <2.5 micrometers in aerodynamic 

diameter (PM2.5) is considered to an indicator of health risk in air pollution exposure 

measurement (Clark et al., 2013b; Naeher et al., 2007; Williams et al., 2015). Given PM2.5 

measurement difficulties in public health research, CO has been used as a proxy of PM2.5 with 

varying success (Dionisio et al., 2012b; Klasen et al., 2015; McCracken et al., 2013; Northcross et 

al., 2010). Despite evidence that PM2.5 and CO may not correlate well with each other in certain 

settings, CO remains an important health indicator of exposure and is associated with acute and 

chronic health effects (Penney et al., 2010; Yang et al., 2004).     

 

2.4.2 Health impacts of household air pollution 
 

Household air pollution (HAP) is estimated to have resulted in 2.9 million deaths and 85.6 million 

DALYs in 2015 (GBD 2015 Risk Factors Collaborators, 2016). Numerous health impacts have been 

associated with HAP (Bruce et al., 2015b; Fullerton et al., 2008; Smith et al., 2014). There is 

strong evidence for the adverse impact of household air pollution (HAP) on respiratory infections 

(Gordon et al., 2014), particularly for children who are vulnerable to acute lower respiratory 

illness (Dherani et al., 2008; Gordon et al., 2014; Po et al., 2011).  Each year an estimated 1.3 

million child deaths are due to pneumonia (Fischer Walker et al., 2013c).  

 

Strong evidence has also been reported for chronic obstructive pulmonary disorder and chronic 

bronchitis (Assad et al., 2015; Hu et al., 2010; Kurmi et al., 2010; Mortimer et al., 2012). More 
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tentative evidence exists for nasopharyngeal and laryngeal cancer as well as lung cancer and 

stroke (Bruce et al., 2015a; Gordon et al., 2014; Kurmi et al., 2012a; Raspanti et al., 2016). 

Exposures early in life may result in increased risk for some of these diseases in adulthood 

(Kurmi et al., 2012b).  Emerging evidence suggests there may be an impact on blinding and other 

eye conditions (Ravilla et al., 2016; West et al., 2013) as well as tuberculosis (Jafta et al., 2015; 

Lin et al., 2014; Sumpter and Chandramohan, 2013). A recent meta-analysis indicates HAP 

associations with cancers of the cervix as well as upper aero-digestive tract (Josyula et al., 2015). 

Other non-disease related injuries can occur, such as burns from stoves (Peck et al., 2008) and 

sexual violence during fuel collection (Patrick, 2007).   Much uncertainty exists about exposure-

response for these outcomes, and misclassification is possible (Assad et al., 2015; Bruce et al., 

2015b; Gordon et al., 2014). 

 

Child survival outcomes such as low birth weight, preterm birth, still birth, and perinatal 

mortality are also associated with solid fuel use (Amegah et al., 2014; Epstein et al., 2013; Patel 

et al., 2015; Pope et al., 2010; Wylie et al., 2014).  One recently hypothesized mechanism for 

adverse health outcomes is fetal thrombotic vasculopathy, due to observed associations in 

Tanzania that was recently observed with increasing PM2.5 and CO exposures (Wylie et al., 2016).  

 

Globally, systolic blood pressure is highest in low and middle income countries (Danaei et al., 

2011).  Hypertension is an important risk factor for cardiovascular disease (Lewington et al., 

2002; Vasan et al., 2001), and leads to one of the highest burdens of disease (GBD 2015 Risk 

Factors Collaborators, 2016).   Cross sectional studies examining the impact of biomass smoke 

on blood pressure suggest an association with elevated blood pressure (Baumgartner et al., 

2011; Burroughs Peña et al., 2015; Clark et al., 2011; Quinn et al., 2016). 



33 
 

 

Reductions of blood pressure due to changes in HAP have been observed in a couple of studies.  

The RESPIRE intervention study found a 3.7mm Hg reduction in systolic blood pressure and a 

3.0mm Hg reduction in diastolic blood pressure among women over 38 years old after receiving 

vented cookstoves (McCracken et al., 2007). A stove intervention study in Nicaragua found a 

reduction in systolic blood pressure, but only for women over 40 years or obese women (Clark et 

al., 2013a). Although only small effect sizes have been observed, reductions can have a large 

impact at a population level.  For example, a 2 mm Hg reduction in population average systolic 

blood pressure could reduce mortality by 10% (Lewington et al., 2002).  

 

Although biological mechanisms responsible for all of these illnesses are not precisely defined, a 

number of physiologic impacts from biomass exposure have been identified.  These include 

oxidative stress, pulmonary inflammation, and platelet activation (Dutta et al., 2013; Kurmi et 

al., 2013; Sussan et al., 2013).  Sub-mechanisms may include dose-dependent inflammation, 

altered phagocytosis in human macrophages, and impacts on innate immunity (Lee et al., 2015; 

Rylance et al., 2015). Biomass impacts on atherosclerotic plaques, carotid intima-media 

thickness, and higher blood pressure have also been observed (Painschab et al., 2013). Recent 

work has characterized increased biomarkers of endothelial inflammation among adults with 

chronic exposure to biomass smoke (Caravedo et al., 2015). 

 

2.4.3 Potential interventions for improving household air pollution  
 

Clean fuel and improved cookstoves  
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There are three main approaches to reducing HAP: transitioning to cleaner fuel, changing to 

cleaner cookstoves, and increasing ventilation.   Moving to cleaner fuels in many rural settings is 

unlikely to happen in the near-term due to high costs and lack of supply (Ezzati and Kammen, 

2002). Improving fuel efficiency and reducing emissions using current fuel types is therefore an 

interim option (Kshirsagar and Kalamkar, 2014). However, adoption and sustained consistent use 

of improved stoves at scale is a challenge, and is enabled and hindered by a range of factors that 

are related to the technology as well as household and institutional determinants (Debbi et al., 

2014; Rehfuess et al., 2014).    

 

Improved cookstoves are often tested in a laboratory setting, though these results are not 

necessarily indicative of what will be achieved in a real world setting during a household’s 

normal cooking activities (Johnson et al., 2010; Roden et al., 2009).  In one study, cookstove 

emissions were three times higher during actual cooking in Honduras than simulated cooking 

emissions in a laboratory setting (Roden et al., 2009). Factors such as lighting technique, fuel 

addition, and wood type also affect emissions (Roden et al., 2009).  

 

Ventilation/cooking location 

The success of improved cookstoves may also partly be mediated by cooking location and 

ventilation (Bruce et al., 2004). In a test kitchen simulation, PM 1-hour concentrations were 

lowered by 93% and 98% when opening a door and window respectively (Grabow et al., 2013). 

For those cooking with biomass, the highest reduction may come from cooking outdoors as 

opposed to improving a cooking device , with one study finding acute respiratory infection (ARI) 

due to biomass smoke could be reduced by 50% if cooking moves outdoors (Akunne et al., 

2006). This is due in part to increased dispersion outdoors compared to indoor environments 
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with limited ventilation (Balakrishnan et al., 2004).  Another study using survival analysis found 

that cooking outdoors was similar to transitioning to a cleaner fuel, but that cooking with stove 

ventilation was most linked to child acute lower respiratory infection (ALRI) mortality (Rehfuess 

et al., 2009). Laboratory tests examining mutagenicity indicate even the most efficient biomass 

stoves available, known as forced-draft or fan-assisted stoves (e.g. Philips) will still result in poor 

indoor air quality in the absence of ventilation (Mutlu et al., 2016). 

  

The importance of ventilation and cooking location has also been shown in personal exposure 

studies.  Lower carbon monoxide exposure among children has been found among households 

cooking outdoors (Barnes et al., 2006). Another study found that ventilation had an impact on 

personal and indoor respirable PM, as well as indoor carbon monoxide (Clark et al., 2010).   

Moving cooking outdoors may also have an adverse effect if children spend more time outdoors, 

and air pollution is known to spread from cooking areas into living areas (Dasgupta et al., 2006).      

 

Heating and lighting 

Within the household, there are other sources of HAP besides cooking, including lighting as well 

as heating, with potential seasonal relationships contributing to personal exposure and ambient 

levels (Dionisio et al., 2012a; Jin et al., 2006; Ni et al., 2016; Pennise et al., 2009). Kerosene is an 

emerging concern (Lam et al., 2012) and is used for lighting, cooking, and heating.  It is 

particularly hazardous, and has been associated with kitchen concentrations and personal 

exposure to black carbon (Van Vliet et al., 2013) in addition to particulate matter (Apple et al., 

2010).  Kerosene use has also been associated with low birth weight and potentially neonatal 

death (Epstein et al., 2013). 
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2.4.4 Improved cookstoves and impact on HAP 
 

Improved cookstoves have been found to reduce kitchen concentrations of particulate matter 

and carbon monoxide (Clark et al., 2013b; Ezzati et al., 2000a; Pennise et al., 2009; Thomas et al., 

2015). Personal exposure studies have also demonstrated an impact, although usually there are 

greater reductions in kitchen emissions than personal exposures (Cynthia et al., 2008; Smith et 

al., 2014).  Women and children tend to be more exposed due to spending more time in cooking 

areas (Gordon et al., 2014; Siddiqui et al., 2009). However, average 24-hr exposures can still be 

high among those not involved in cooking (Balakrishnan et al., 2002) and health impacts are 

possible among these household members.   

 

An improved stove in Guatemala reduced CO exposures by 90%, 61%, and 52% in kitchens, 

mothers, and children 0-18 months (Smith et al., 2010). Similarly, an improved stove in Mexico 

resulted in a 74% reduction in kitchen PM concentrations, but personal exposure was only 

reduced by 35% (Cynthia et al., 2008).   A non-portable rocket mud stove study in Kenya reduced 

fuel use and both kitchen and personal CO, although levels were still high and unlikely to impact 

health (Ochieng et al., 2013a, 2013b).  Factors to improve rocket stove performance included 

fuel drying, cooking away from the main house, and behaviour change, such as reducing 

smouldering (Ochieng et al., 2013b).  Indeed smoldering can substantially contribute to HAP, 

particularly with traditional stove designs; an improved portable stove may have the greatest 

reduction (Ezzati et al., 2000b). In Rwanda, a randomized controlled trial involving a portable 

rocket stove found a mean 24-hour PM2.5 reduction of 46%, although for the approximately 25% 

users cooking outside, reductions were 73% (Rosa et al., 2014).  More advanced cookstoves such 

as fan-assisted biomass stoves show promise, and have potential to substantially reduce cooking 

area concentrations and personal exposures.   
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However, most improved cookstove studies have failed to reduce kitchen concentrations or 

personal exposures below WHO guidelines of 10 μg/m3 and the interim WHO target of 35 μg/m3 

(Clark et al., 2013b; Thomas et al., 2015; WHO, 2014). Substantial reductions that approach the 

guideline levels are likely necessary to achieve health impact for acute respiratory infections 

(Burnett et al., 2014; Ezzati and Kammen, 2001; Smith et al., 2011) and cardiovascular disease 

(Baumgartner et al., 2012; Pope III et al., 2011). In fact, evidence of negative health impacts still 

exists below the WHO Guideline (Wellenius et al., 2012). Moreover, though evidence is placed 

on PM2.5 reductions, more efficient improved combustion cookstoves may produce higher 

emissions of ultrafine particles that could present health risks (Just et al., 2013).   

 

Many improved cookstove intervention studies report improved respiratory symptoms and 

fewer eye or back problems, although self-reported symptoms are subject to courtesy bias 

(Schmidt et al., 2011). With high reductions in exposure and high compliance, improved 

cookstoves have been associated with several objective health impacts. These include reduced 

risk of severe pneumonia (Smith et al., 2011), reduced blood pressure (Alexander et al., 2015; 

Clark et al., 2013a; McCracken et al., 2007) and improved lung function similar to smoking 

cessation (Romieu et al., 2009; Smith-Sivertsen et al., 2009).   

 

2.4.5 Ecozoom stove 
 

The intervention stove is a portable rocket stove design known as an Ecozoom Dura stove 

(Figure 2).  The stove’s internal chamber allows for improved combustion and channelled air 

flow resulting in reduced emissions. The stove included a stick support used to increase airflow 

and a pot skirt to improve thermal efficiency. Although full testing according to the International 
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Organization for Standardization (ISO) and International Workshop Agreements (IWA) has not 

occurred (ISO/IWA, 2012), laboratory results for water boiling tests suggest it is likely Tier 2 for 

the ISO/IWA fuel efficiency, total emissions, indoor emissions (Aprovecho Research Center, 

2012; Ballinger et al., 2013). Since Tier 4 includes the highest performing optimal cooking 

solutions, the Tier 2 status of this and other similar rocket stoves suggests potential for only 

modest reductions in HAP (Jetter et al., 2012; Mutlu et al., 2016; Still et al., 2015). Nevertheless, 

epidemiological studies have suggested the potential for positive health impacts provided that 

use is optimized (Johnson and Chiang 2015). 

 

Figure 2 Ecozoom Dura cookstove (photo courtesy of Thomas Clasen) 

 

2.4.6 Sustained use/ stacking 
 

Like household water treatment interventions, a major challenge of cookstove interventions is 

optimizing use.  In respect of stoves, this is known as “stacking” behavior, or the continued use 

of traditional stoves despite the presence of an improved cookstove (Burwen and Levine, 2012; 

Ruiz-Mercado et al., 2011; Ruiz-Mercado and Masera, 2015). When traditional stoves continue 

to be used, there may be minimal impact of the improved stove on HAP (Edwards et al., 2007; 

Johnson and Chiang, 2015). Even if benefits are initially detected from an improved stove 
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implementation, these can diminish over time in the presence of stove stacking (Hanna et al., 

2012; Pine et al., 2011; Romieu et al., 2009), even when traditional stoves are used as secondary 

stoves (Pennise et al., 2009). 

 

One method to ascertain use of traditional and intervention stoves is through the use of sensors. 

Sensors have been used in numerous stove evaluation studies, including in Uganda (Hankey et 

al., 2015), Kenya (Lozier et al., 2016), Ghana (Piedrahita et al., 2016), and Mexico (Ruiz-Mercado 

et al., 2008).  A study in India found that intervention stove usage reduced over time until 

approximately 200 days after initial receipt (Pillarisetti et al., 2014), while a study in Kenya saw 

improved stove usage decrease over a period of 12 days(Lozier et al., 2016). In other studies, 

stove use increased after delivery and then leveled off (Ruiz-Mercado et al., 2008). Usage on 

portable intervention stoves within Rwanda indicated consistent use, although self-reported use 

was higher (Thomas et al., 2013).  Sensors have also been used on improved stoves in 

humanitarian settings. A study in South Sudan indicated use of an improved stove was over-

reported, although usage increased after a follow-up survey and was sustained for two weeks of 

observation (Wilson et al., 2016).   

 

2.5 Current HAP intervention trials 
 

Several trials are currently underway to assess the impact of improved cookstoves on HAP and 

health. A randomized trial in Ghana examining low birthweight and physician-assessed severe 

pneumonia has recently been completed in Ghana, consisting of two biomass-burning highly 

efficient BioLite gasifier (fan-assisted forced draft) stoves in one arm, LPG stove with fuel supply 

in another arm, and a control arm (Jack et al., 2015). Another study in Ghana is also examining 

the impact of the Philips gasifier stove on personal exposure, cooking area, health-related 
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biomarkers, and local to regional air quality (Dickinson et al., 2015; Piedrahita et al., 2017). Two 

trials that recently finished were based in Nepal and used a cluster-randomized stepped wedge 

approach to investigate the impact of a biomass stove with chimney as well as LPG on ALRI and 

birthweight (Tielsch et al., 2014). Preliminary results suggest the biomass stove intervention may 

have contributed towards a reduction in ALRI incidence, although kitchen PM2.5 concentrations 

remained high and secular trends likely minimized observable effects (Tielsch et al., 2016). 

Another trial that is examining low birthweight, premature birth, and other adverse birth 

outcomes is based in Nigeria, and seeks to transition intervention households from mainly 

traditional kerosene stoves to bioethanol.  Although health results are forthcoming, the study 

has found high uptake given the liquid-to-liquid transition, with very little stacking and 

consistent usage according to stove use monitors (Northcross et al., 2016). In Rwanda, a study 

examining severe acute respiratory illness and diarrhoea of a combined rocket stove and water 

filter intervention has recently completed (Nagel et al., 2016), and analysis is in progress. Finally, 

an ongoing cluster-randomized trial in Malawi is investigating whether the provision of two fan-

assisted Phillips biomass stoves reduces incidence of healthcare provider-diagnosed pneumonia 

following the IMCI protocol (“Cooking and Pneumonia Study (CAPS),” 2016).  

 

2.6 Combined cookstove and water treatment studies 
 

Three household intervention studies have focused on combined cooking and drinking water 

technologies.  Two projects have involved the combination of improved stove and HWT within 

the same device, although these studies have had low compliance and low acceptability overall 

(Christen et al., 2009; Gupta et al., 2008).  A more recent cluster-randomized study design paper 

in Peru has separated the interventions out and also added a kitchen sink (Hartinger et al., 

2011). The pilot indicated high uptake of the stove, reduced fuel consumption, and a preference 

for solar treated water taste (Hartinger et al., 2012).  A nested cross-sectional study highlights 
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the issue of maintenance and functionality, finding only well-performing cookstoves reduced 

emissions, with non-significant reduced personal exposures (Hartinger et al., 2013).  Results of 

the trial indicate the combined intervention had a slight but non-significant impact on childhood 

diarrhoea, and no effects on respiratory health or growth outcomes (Hartinger et al., 2016). 

 

2.7 Comorbidity   
 

Children with diarrhoea or respiratory infections may have immune system vulnerability to 

infections (Lee et al., 2015). Some studies have suggested that reduced diarrhoea risk can reduce 

risk of ALRI (Ashraf et al., 2013; Fischer Walker et al., 2013a; Schmidt et al., 2009).  A study in 

Israel among Bedouin children found that nutritional status and diarrhoeal illness are risk factors 

for pneumonia (Coles et al., 2005).  Furthermore, reduced diarrhoea may improve clinical 

outcomes associated with severe pneumonia (Chisti et al., 2016; Leung et al., 2015), and is also 

associated with malnutrition, a risk factor for pneumonia (Chisti et al., 2009; Howie et al., 2016; 

Le Roux et al., 2015). Stunting is associated with poor pneumonia outcomes (Moschovis et al., 

2015). Mortality among children may be increased when both diarrhoea and ALRI are present 

(Fischer Walker et al., 2013b).  
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ABSTRACT 
 

Unsafe drinking water is a leading cause of morbidity and mortality, especially among young 

children in low-income settings. We conducted a national survey in Rwanda to determine the 

level of faecal contamination of household drinking water and risk factors associated therewith. 

Drinking water samples were collected from a nationally representative sample of 870 

households and assessed for thermotolerant coliforms (TTC), a World Health Organization 

(WHO)-approved indicator of faecal contamination. Potential household and community-level 

determinants of household drinking water quality derived from household surveys, the 2012 

Rwanda Population and Housing Census, and a precipitation dataset were assessed using 

multivariate logistic regression.  Widespread faecal contamination was present, and only 24.9% 

(95% CI 20.9-29.4%, n=217) of household samples met WHO Guidelines of having no detectable 

TTC contamination, while 42.5% (95% CI 38.0-47.1%, n = 361) of samples had >100 TTC/100mL 

and considered high risk. Sub-national differences were observed, with poorer water quality in 

rural areas and Eastern province. In multivariate analyses, there was evidence for an association 

between detectable contamination and increased open waste disposal in a sector, lower 

elevation, and water sources other than piped to household or rainwater/bottled. Risk factors 

for intermediate/high risk contamination (>10 TTC/100mL) included low population density, 

increased open waste disposal, lower elevation, water sources other than piped to household or 

rainwater/bottled, and occurrence of an extreme rain event the previous day. Modelling 

suggests non-household-based risk factors are determinants of water quality in this setting, and 

these results suggest a substantial proportion of Rwanda’s population are exposed to faecal 

contamination through drinking water.  

 

 

Keywords: water quality, faecal contamination, Rwanda, precipitation 
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HIGHLIGHTS: 
 Nationally representative study of household drinking water quality in Rwanda 

 More than 75% of houses had detectable TTC contamination in their drinking water 

 Houses using surface compared to other sources had highest odds of TTC contamination 

 Houses not using piped or rain/bottle sources had increased odds of TTC contamination 

 Extreme rain, elevation and open waste dumping were risk factors of TTC contamination 
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1. INTRODUCTION 
 

Globally, an estimated 1.25 million deaths and 75 million disability-adjusted life years (DALYs) 

are attributable annually to obtaining water from unsafe sources (Forouzanfar et al., 2015). 

Most of the deaths are from diarrhoea, especially among young children exposed to faecal 

contamination in drinking water (Prüss-Ustün et al., 2014). In Rwanda, unsafe water is currently 

ranked third as a risk-factor for disease (Forouzanfar et al., 2015), and diarrhoea is a leading 

cause of mortality in children under 5, accounting for an estimated 9% of overall deaths (Liu et 

al., 2014).  

 

While the UN celebrated the achievement of the Millennium Development Goal (MDG) for 

water in 2012, unsafe drinking water is still the eighth leading risk factor for disease globally 

(Forouzanfar et al., 2015). An estimated 663 million people do not have access to an improved 

drinking water source (defined  to include piped water to the dwelling, plot or yard, as well as 

public taps/standpipes, tubewells or boreholes, protected dug wells, protected springs, and 

rainwater collection) (WHO/UNICEF, 2015a). However, water from improved water sources is 

not necessarily free of faecal contamination (Bain et al., 2014b; Shaheed et al., 2014), with an 

estimated 1.8 billion people using a source that has faecal contamination, particularly in Africa 

(Bain et al., 2014a).   Moreover, in these hygiene-challenged environments, even water that is 

safe at the source frequently becomes contaminated from faecal pathogens during collection, 

transport and storage in the home (Trevett et al., 2005; Wright et al., 2004).   

 

Furthermore, safe water source coverage is not always equitable. Subnational inequalities, 

including urban and rural differences and differential access to types of improved water sources 

such as piped water are commonplace (Bain et al., 2014c; Fuller et al., 2015; Luh et al., 2013; 



88 
 

Pullan et al., 2014; Yu et al., 2014). In Rwanda, 76% of the population has access to an improved 

drinking water source, with 9% having access to piped water onto premises. However, while 85% 

of the urban population has access to improved drinking water sources including 28% having 

access to water piped onto premises, access for the rural population is only 57% and 2% 

respectively ((NISR) and (MINECOFIN), 2014).    

 

With the adoption of the Sustainable Development Goals and specifically Target 6.1 of achieving 

universal and equitable access to safe and affordable drinking water for all by 2030, there is a 

need to incorporate water quality testing at sources and households (WHO/UNICEF, 2015b).  In 

cooperation with the Rwanda Ministry of Health and DelAgua Health Rwanda—a private 

company distributing water filters and cookstoves financed by carbon credits (Barstow et al., 

2014)—we conducted a national cross-sectional study to assess the faecal contamination of 

drinking water at the household level. In addition to testing water quality, potential risk factors 

for water quality were assessed at a household level and analyzed along with potential 

community-level determinants.    

 

2. MATERIALS AND METHODS 
 

2.1. Study setting 

The study was conducted in all five provinces and 30 districts of Rwanda from 22 February to 4 

April 2015, which included dry and rainy periods.  In general, Eastern and Southern provinces are 

relatively drier and warmer compared to Northern and Western provinces, with increasing 

elevation and hilly terrain moving east to west. While most of the country is rural, Kigali City 

province is predominantly urban.   

 

2.2. Sample size calculation 
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The primary outcome of interest was a national estimate of faecal contamination of drinking 

water at the household level. For this purpose, we used thermotolerant coliforms (TTC), a WHO-

approved indicator of faecal contamination (WHO, 2011). We used a Monte Carlo simulation in 

order to generate within-village variance and between-village variance estimates necessary for 

sample size calculations (Chakraborty et al., 2009). Based on previously collected water quality 

data from Rwanda (Rosa et al., 2014b), we estimated an average within-village proportion of 

households with TTC-free drinking water of 40%, with a range of 0% to 100% as parameters for 

the simulation, as well as average size of a village and variation in size of villages based on a 

national database (Rwanda Ministry of Local Government, 2011). The variance components and 

intra-cluster correlation (ICC) were averaged across 1000 simulation runs to yield an ICC of 

0.248, a within-village variance of 0.173 and a between-village variance of 0.057. Using the 

within-village and between village variance outputs from the simulation, we then calculated 

sample size. Setting a constant of 6 households to be sampled per village due to logistical 

considerations, we estimated a total of 144 villages (n=864 households) would be required to 

generate a national-level estimate of faecal contamination in household water quality with 90% 

confidence with a 10% relative precision. One additional village was added to buffer against 

potential sample loss.   

 

2.3. Sample selection 

To construct a nationally representative sample of households, a stratified two-stage cluster 

sample design was developed. Prior to sample selection, the population was stratified by 

geographic district (n=30 districts) and urban/rural status. Within each district, households were 

designated as urban or rural according to the village’s urban or rural classification by the Rwanda 

Housing Authority Urban Status Final Report (RHA, 2012). As the intention was to have a binary 

indicator of urban status, peri-urban households were classified as urban households in the 

sample allocation. Proportional allocation was used to determine a stratum-specific sample size 
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based on the number of urban and rural households in each district derived from the 2012 

national ubudehe database, which includes head of household names for each village (Rwanda 

Ministry of Local Government, 2011). In the first sampling stage, villages were randomly sampled 

from each stratum with probability proportional to estimated size (number of households).  In 

the second stage, 6 primary households were randomly selected per village. Backup households 

were randomly pre-selected prior to data collection in case enumerators were unable to locate a 

primary household or the household member declined to participate. Community health 

workers were consulted prior to initiating surveys within a village in order to confirm the 

residency status and location of randomly selected households. 

 

2.4. Eligibility criteria 

Households were eligible to participate in the study if the house did not have a Lifestraw Family 

water filter provided by DelAgua Health Ltd., had drinking water present for sampling at the time 

of enumerator visit, and had a household member 16 years of age or older present that could 

answer the survey questions. 

 

2.5. Household survey 

Enumerators sought to survey the primary cook in each household, but if the cook was not 

present another adult 16 years of age who was willing to participate was surveyed. After 

providing informed consent, the respondent was asked to respond to a short pre-piloted survey 

in Kinyarwanda, a national language and spoken by all study households. The survey covered 

self-reported and observed household demographics, sanitation and hygiene facilities, water 

source type and household drinking water practices. We also asked questions on the 

respondent’s self-reported diarrhoea and reported diarrhoea among any children under 5 years 

of age residing in the house.  A socioeconomic status indicator was developed using polychoric 
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principal component analysis based on household materials and durable goods ownership 

(Kolenikov and Angeles, 2009).   

 

2.6. Water sampling and analysis 

At the end of each household survey, a drinking water sample was collected in a sterile Whirl-

Pak bag (Nasco, Fort Atkinson, WI USA) containing a tablet of sodium thiosulphate to neutralize 

any halogen disinfectant. Respondents were asked to show where a child under 5 would get 

their drinking water, or where the respondent would if there was no child under 5 in the 

household, and the respondent dispensed the water from either their storage or serving 

container directly into the sample bag. The respondent also answered questions about whether 

that particular water sample had been treated and what type of source it had been collected 

from. Samples were placed on ice and processed in a mobile laboratory within 6 h of collection 

to assess levels of TTC. The mobile water sampling laboratory was set up in different locations 

throughout the study to minimize the time from sample collection to sample processing and 

membrane filtration.  The lab was either set up in two separate offices or in hotel rooms; all 

rooms used for laboratory processing and analysis had a table that was cleaned with 75% 

ethanol and then covered with tinfoil to minimize risk of cross-contamination. Assays were 

performed using the membrane filtration technique on membrane lauryl sulphate medium 

(Oxoid Limited, Basingstoke, Hampshire, UK) using an Oxfam-DelAgua field incubator (Robens 

Institute, University of Surrey, Guilford, Surrey, UK). Plates that yielded colony forming units 

(CFUs) that were too numerous to count were given a level of 300 TTC for purposes of analysis 

(Rosa et al., 2014b). On average 24 water samples were processed each day (SD 7.2), with a 

range of 6-36 samples. For quality assurance, a lab blank was processed each sampling day using 

distilled water, and 1-2 sample duplicates were performed per day depending on incubator 

capacity.   
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2.7. Census data  

In order to assess potential community-level determinants of drinking water quality, we 

accessed publicly available data from the Rwanda Population and Housing Census 2012, which 

was conducted August 2012. District profiles, which contain aggregate Census results for each 

sector (containing approximately 35 villages), were downloaded from the National Institute of 

Statistics Rwanda website ((NISR), 2014). A high-risk sanitation coverage indicator was created 

comprised of percentage of households in a sector with a public pit latrine or percentage of 

households practicing open defecation (in contrast to households using private pit latrine or 

flush toilet/WC system). “Other” and “not stated” types of toilet facilities could not be classified 

and did not contribute to the high-risk sanitation coverage percentage. For bivariate analysis, 

quartiles of the higher risk sanitation coverage indicator (% of sector) were used. Percentages of 

households within sectors disposing of their waste “in the bush”, “on the farms”, or “in the 

river/stream/drain/gutter” were combined to derive a percentage of households within a sector 

practicing open waste disposal. Other waste disposal such as “compost dumping”, “private dust 

bins”, and “public refuse bins” were considered contained disposal methods, while “other” and 

“not stated” could not be classified. For bivariate analysis, quartiles of the open waste disposal 

indicator (% of sector) were used. Lastly, population density (inhabitants/km2), as reported by 

Rwanda Census 2012 for each sector, was collapsed into quartiles for inclusion in analyses.  

Water source coverage according to the census was not included in analyses since this was 

assessed during the household survey specifically for the collected water sample.     

 

2.8. Precipitation data 

Precipitation data for previous 7 days prior to each household’s survey date were downloaded in 

NetCDF format for each household location from Climate Hazards Group InfraRed Precipitation 

with Station data 2.0 (CHIRPS) (Funk et al., 2015), which comprises daily gridded precipitation 

data derived from satellite and in-situ station data at 0.05 degree spatial resolution 
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(approximately 5.3km). Precipitation data were converted from NetCDF into raster format and 

joined to household/village centroid locations using ArcGIS 10.3 (ESRI, Redmond, CA, USA).  If 

the house had an inaccurate GPS location (outside of its village boundary), rainfall for the 

household was calculated according to its village centroid coordinates. Occurrence of an 

extreme rainfall event in the day previous to the survey date was calculated as a binary variable 

according to whether that day’s rainfall exceeded the 90th percentile for all observed daily 

precipitation at all household/village locations over the survey period (Carlton et al., 2014; 

Howard et al., 2003).  Thus, an extreme event was determined to have occurred if rainfall 

exceeded 2.53 cm on the previous day.   

 

2.9. Statistical analysis 

All analyses were conducted in Stata 14 (Stata Corporation, College Station, TX, USA). Because of 

a multi-modal distribution of TTC counts for water quality, Williams means (Alexander, 2012), 

medians, and interquartile ranges are presented as measures of central tendency.  National and 

sub-national level estimates of water quality were weighted and adjusted for the complex 

sample design. For bivariate and multivariate analyses, we used logistic regression with two 

different water quality indicator outcomes: i) detection of TTC contamination vs no detection of 

TTC contamination  and ii) intermediate/high risk vs. no detection of TTC contamination/low risk 

(>10 TTC/100 mL vs <=10 TTC/100 mL) (WHO, 2011). The choice to examine determinants of 

drinking water quality for the latter categorization was based on a recent meta-analysis of 

drinking water quality and diarrhoea which showed a marked increase in disease risk for 

households with drinking water having >10 TTC/100mL (Hodge et al., 2016), as well as a 

previously proposed intermediate post-2015 MDG monitoring target of <10 CFU of E. coli per 

100 mL (WHO/UNICEF, 2013). Final model selection using multivariate analysis was based on the 

inclusion of variables with p-values of <0.10 in bivariate analysis. Model performance was 

assessed by constructing a confusion matrix based on predictive probabilities using 
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postestimation commands in Stata. All regression analyses incorporated sampling weights and 

cluster-robust standard errors were used in significance tests and the calculation of confidence 

intervals.  

 

2.10. Ethics  

The study was reviewed and approved by the ethics committee at the London School of Hygiene 

and Tropical Medicine (No. 9069) and Rwanda National Ethics Committee (No.460/2013). The 

protocol was also approved by the Rwanda National Institute of Statistics (Nº 

0542/2015/10/NISR). Written informed consent to participate in the research was obtained 

from the male or female head of household, the primary cook of each participating household, 

or another adult respondent. 

 

3. RESULTS 
 

3.1. Study population 

A total of 870 households from 145 villages and all 30 districts were sampled that met the 

eligibility criteria of currently having drinking water available at the household, not having a 

Lifestraw filter, and with a respondent at least 16 years of age. Target enrolment of 6 

households per village was attained for all villages. There were no refusals, although 396 (45.5%) 

of households surveyed were backup houses because primary houses had either moved from 

the village, could not be identified from the sample frame ubudehe database, were not home at 

the time of the survey, or did not have drinking water available at the time of the survey. The 

elevation ranged from 962m to 2594 m, and previous week’s rainfall ranged from 0 cm (78 

households) to 8.22 cm (6 households). 88.9% of respondents were female, and 75% of surveyed 

villages were rural. Additional household and community characteristics are found in Table 1.  
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Table 1 Survey respondent and village/household characteristics. 

 
N 

(households)a % 

Province   

  Kigali City 78 9.0 

  Southern 234 26.9 

  Western 180 20.7 

  Northern 156 17.9 

  Eastern 222 25.5 

Total 870 100.0 

   

Village status   

  Rural 654 75.2 

  Peri-urban 108 12.4 

  Urban 108 12.4 

   

Respondent characteristics   

  Female 773 88.9 

  Years of education mean (SD) 3.9 (3.7) - 

  Age mean in years (SD) 42.5 (16.1) - 

   

Household characteristics   

Mean household elevation in metres (SD) 1771 (287) - 

Household members mean (SD) 4.7 (2.2) - 

Children under 5 years mean (SD) 0.5 (0.7) - 

Dirt/animal dung flooring  683 78.5 

Evidence of cow kept on plot 360 41.4 

Owns 1 or more chickens 170 19.5 

   

Water, sanitation and hygiene characteristics    

Hand washing    

Has dedicated hand washing location after defecation  64 7.4 

Soap present at a designated handwashing location after defecation 15 1.7 

   

Toilet type   

Pit latrine with slab 279 32.1 

Pit latrine without slab 557 64.0 

Other improved toilet (ventilated pit, composting, flush/pour flush) 18 2.1 

No toilet 16 1.8 

   

Reported drinking water source of collected sample   

Piped water into yard/plotb   41 4.7 

Public tap/standpipeb  226 26.0 

Hand pump (borehole)b  13 1.5 

Protected springb  361 41.5 

Protected wellb  2 0.2 

Rainwaterb 54 6.2 

Bottled waterb  4 0.5 

Unprotected springc 73 8.4 
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Surface waterc 96 11.0 

   

Reported household water treatment of collected sample    

None 778 89.6 

Boiled 84 9.7 

Other (filtered, chlorinated, boiled & chlorinated) 6 0.7 

   

Precipitation characteristics   

Extreme rain event in previous day (>=2.53cm) 46 5.3 

Mean precipitation in previous 7 days in cm (SD) 2.63 (1.85) - 
aExcept where mean and standard deviation indicated  
bImproved water sources according to WHO/UNICEF Joint Monitoring Programme (JMP) for Water 
Supply and Sanitation guidelines (WHO/UNICEF, 2006).  Bottled water determined to be improved 
given village availability of improved sources for cooking and personal hygiene as well as type of 
bottle.  
cUnimproved water sources according to JMP guidelines.   

 

3.2. Water quality results  

Drinking water samples were collected from 870 households. Of these samples, one was lost 

during transit, one was too turbid to process, and two samples’ plates could not be read after 

incubation; these are counted as missing. Nationally, Williams mean water quality was 34.1 

TTC/100mL (95% CI 26.0-44.7), with Eastern Province having the highest contamination 

compared to other provinces (123.9 TTC/100mL, 95% CI 84.1-182.3 TTC/100mL) (Table 2). In 

addition to regional differences, there was evidence that households in urban villages had lower 

levels of water contamination than households in rural villages. Rural samples had a Williams 

mean of 41.5 TTC/100mL (95% CI 30.9-55.7 TTC/100mL), while urban samples had a Williams 

mean of 11.3 TTC/100mL (95% CI 4.6-26.1 TTC/100mL). Although water source type was self-

reported and could be subject to misclassification, particularly protected vs. unprotected 

springs, there was evidence that household samples fetched from surface water sources were 

more contaminated than other source types. Drinking water samples reportedly fetched from 

piped to household premises sources were the least contaminated overall, although not 

completely free of contamination (Table 2). 
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Table 2 Household drinking water quality by province, village status, and reported water source type. 

 n Williams mean 
(TTC/100 mL) 

Lower 
95% CI 

Upper 
95% CI 

Median 
(TTC/100 mL) 

IQR 
(TTC/100 mL) 

Rwanda 866 34.1 26.0 44.7 38 0-600 

       

Kigali City Province 78 18.1 6.7 46.4 15 0-392 

Southern Province 233 29.7 19.2 45.6 24 2-294 

Western Province  179 27.8 14.3 53.0 26 2-504 

Northern Province  156 11.0 4.8 23.9 5.5 0-216 

Eastern Province  220 123.9 84.1 182.3 261 32.5-600 

       

Village status       

Rural 652 41.5 30.9 55.7 44.5 2-600 

Peri-urban 106 28.3 12.7 61.5 34 2-600 

Urban 108 11.3 4.6 26.1 6 0-328 

       

Reported water source type       

Piped water into yard/plota 40 4.3 1.9 8.5 0 0-83 

Standpipe/boreholea 239 27.1 15.2 47.7 26 2-490 

Protected spring/wella 362 29.6 18.5 47.1 26 2-340 

Rain/bottled watera 57 19.6 8.2 45.0 26 0-408 

Unprotected springb 73 30.5 11.6 77.9 16 0-600 

Surface waterb 95 259.5 164.9 408.1 600 70-1500 
aImproved water sources according to JMP guidelines (WHO/UNICEF, 2006).  Bottled water (n=4) determined 
to be improved given village availability of improved sources for cooking and personal hygiene as well as type 
of bottle.  
bUnimproved water sources according to JMP guidelines.   



98 
 

Only 24.9% (95% CI 20.9-29.4%, n=217) of household water samples met WHO Guidelines of no 

detectable TTC contamination, while 42.5% (95% CI 38.0-47.1%, n=361) of samples were >100 

TTC/100mL and considered high risk (Figure 1). Samples from Kigali City Province and Northern 

Province had the highest proportion of samples with no detectable TTC contamination (39.1%, 

95% CI 23.3-57.5% and 38.8%, 95% CI 27.7-51.2% respectively) (Figure 1). Eastern province had 

the lowest proportion of samples meeting WHO guidelines, with only 12.3% (95% CI 8.0- 18.4%) 

of samples having no detectable TTC contamination. Eastern Province also had the highest 

proportion of samples with high risk contamination >100 TTC/100mL (63.5%, 95% CI 54.1-

72.0%). Similar to the pattern observed for mean water quality differences, an estimated 44.1% 

of urban households had drinking water with no detectable TTC contamination (95% CI 29.6-

59.6%), while peri-urban and rural houses had 23.7% (95% CI 14.1-37.0%) and 21.9% (95% CI 

17.8-26.7%) respectively. Additionally, a higher proportion of rural samples (65.1%, 95% CI 59.7-

70.1%), were at intermediate or high risk according to WHO Guidelines, compared to urban 

samples (41.8%, 95% CI 28.1-57.0%).  
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Figure 1 Household drinking water quality (thermotolerant coliform colony forming 
units/100mL) nationally and by province with 95% confidence intervals. 

 

3.3. Factors associated with detectable TTC contamination (>=1 TTC/100mL)  

In bivariate logistic regression analyses for detectable TTC contamination, household-level risk 

factors with p values <0.10 included having a dirt/animal dung floor, chicken ownership, not 

having soap at a dedicated handwashing location after defecation, having an unimproved toilet, 

not treating drinking water, and drinking water source, particularly surface sources such as 

streams, rivers, or lakes (Table S1). Household water storage practices were not associated with 

water quality, nor was reported time to fetch water, household size, SES, diarrhoea in the 

household in the previous week, toilet location, toilet sharing, or latrine cleanliness. Community-

level risk factors that indicated increased odds of any water contamination included the 

percentage of houses within the sector disposing of solid waste into bush, farm or rivers 

(according to percentage quartiles). Increased elevation was associated with lower TTC counts, 

as was cumulative rainfall in the previous 7 days. Both increased population density (according 
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to quartiles) and village urban status were associated with lower TTC counts, with highest 

population density quartile (OR 0.38, 95% CI 0.20-0.74, p<0.001) and urban designation (OR 

0.36, 95% CI 0.18-0.70, p=0.003) most protective relevant to lowest quartile and rural status 

respectively (Table S1). After further examination, only population density was included in 

multivariate analyses to avoid potential issues of collinearity, and because census-derived 

population density was more recent and had higher resolution than rural, peri-urban, and urban 

designations.    

 

In the multivariate logistic regression model for risk factors of detectable TTC (Table 3), there 

was evidence that reported drinking water source is a determinant of household water quality, 

with surface water sources having the highest odds of contamination relative to piped water 

into yard/plot (OR 15.91, 95% CI 3.58-70.65, p<0.001). With the exception of rainwater/bottled 

water, water from other sources, including improved sources, had increased odds of 

contamination relative to piped water into yard plot. Public tap/borehole (OR 4.11, 95% CI 1.05-

16.16, p=0.043), protected spring /well (OR 4.10, 95% CI 1.07-15.73, 0.040), and unprotected 

spring (OR 4.08, 95% CI 0.96-17.31, p=0.056) all had similar odds of detectable TTC 

contamination relative to piped water into yard/plot.  

 

Increased percentage of households in a sector that openly disposed of solid waste was 

associated with significantly increased odds of detectable TTC contamination, relative to lowest 

quartile (corresponding to <21.4% of households in sector). There was also evidence that 

household elevation is associated with water quality. Households below 1500m had the highest 

odds of having detectable TTC contamination relative to households at above 2000m (OR 11.71, 

95% CI 4.98-27.51, p<0.001), although the 95% CI overlapped with households between 1500 

and 1999m (OR 5.47, 95% CI 2.92-10.23, p<0.001). There was no evidence that other factors 

such as sector population density, cumulative rainfall in previous 7 days, type of flooring, chicken 
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ownership, toilet type, presence of soap, and household water treatment were drivers of 

detectable TTC contamination in multivariate analyses. The model correctly predicted 665 

(77.1%) cases.   

 

3.4. Factors associated with intermediate/high risk contamination (>10 TTC/100mL)  

In bivariate logistic regression analyses, determinants of intermediate/high risk drinking water 

quality with p values <0.10 were similar to determinants of the detectable TTC contamination 

model with a few exceptions (Table S1). Household-level risk factors included chicken ownership 

and having an unimproved toilet, but not floor type, presence of soap at handwashing location, 

or household water treatment, as was found for the detectable TTC contamination model. 

Community-level determinants included reported water source type, sector open waste disposal 

practices, and elevation, similar to the detectable TTC contamination model. Also similar to the 

detectable TTC contamination model, both increased population density and urban status were 

associated with lower TTC contamination in the intermediate/high risk contamination model, 

but only population density was included as described in 3.3.  Two precipitation-related 

indicators were significantly associated with water quality: cumulative rainfall in the previous 7 

days was protective, while an extreme rain event in the previous day increased odds of 

intermediate/high risk contamination. After further examination and to avoid potential issues of 

collinearity, seven-day cumulative rainfall was not included in the final intermediate/high risk 

contamination model as it was correlated with the occurrence of an extreme rain event on the 

previous day.  

 

In the multivariate logistic regression analysis for determinants of intermediate/high risk 

contamination (Table 3), there was again evidence that the household’s water source is a risk 

factor, with surface water having the highest odds relative to piped water to yard/plot (OR 

19.19, 95% CI 6.73-54.70, p<0.001).   Increased open solid waste disposal within the sector was 
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again also strongly associated with increased odds of intermediate/high risk contamination, and 

increased elevation was protective, with the highest odds of intermediate/high risk 

contamination in houses below 1500m (OR 11.95, 95% CI 5.79-24.63, p<0.001). In contrast with 

the detectable TTC contamination model, there was evidence that the highest quartile of sector 

population density in the sample, corresponding to >686 people/km2, had lower odds of 

intermediate/high risk contamination relative to the lowest quartile of sector density of <386 

people/km2 (OR 0.48, 95% CI 0.25-0.89, p=0.021). There was no evidence that household factors 

such as chicken ownership or household toilet type increased odds of intermediate/high risk 

contamination, while the occurrence of an extreme rain event on the previous day significantly 

increased odds of intermediate/high risk contamination (OR 3.92, 95% CI 1.33-11.56, p=0.014). 

The model correctly predicted 599 (69.2%) cases.   
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Table 3 Multivariate logistic regression models for i) >=1 TTC/100mL vs no detectable TTC and ii) >10 TTC/100mL vs <=10 TTC/100mL. 

 >=1 TTC/100mL vs no 
detectable TTC 

>10 TTC/100mL vs <=10 
TTC/100mL. 

 Adjusted OR 
(95% CI) p value 

Adjusted OR 
(95% CI) 

p 
value 

Sector waste dumped in bush/farm/river - First 
quartile  

(1.1-21.4% of households) REF  REF  

Second quartile (21.5-29%) 2.55 (1.34-4.87) 0.005 2.06 (1.12-3.79) 0.020 

Third quartile (29.1-39%)  2.39 (1.16-4.93) 0.019 1.60 (0.83-3.10) 0.16 

Fourth quartile (39.1-55.5%) 2.84 (1.43-5.62) 0.003 1.88(0.97-3.66) 0.063 

     

Sector density - First  (55-385 people/km2)  REF  REF  

Second quartile (386-499/km2) 0.95 (0.48-1.91) 0.89 0.67 (0.37-1.18) 0.16 

Third quartile (500-686/km2)  1.06 (0.51-2.18) 0.88 0.71 (0.39-1.30) 0.27 

Fourth quartile (687-24482/km2)  0.80 (0.37-1.70) 0.55 0.48 (0.25-0.89) 0.021 

     

Village rainfall in previous 7 days (cm) 1.04 (0.86-1.25) 0.71 - - 

     

No extreme village rain event in previous 1 day - - REF  

Extreme village rain event in previous 1 day - - 3.92(1.33-11.56) 0.014 

     

Elevation  >=2000m REF  REF  

1500-1999m 5.47 (2.92-10.23) <0.001 5.20 (2.74-9.85) <0.001 

<1500m 
11.71 (4.98-

27.51) <0.001 
11.95 (5.79-

24.63) <0.001 

     

Ceramic tile/cement/brick flooring REF  - - 

Dirt/animal dung flooring 1.03 (0.63-1.69) 0.90 - - 

     

No chickens owned REF  REF  
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1  or more chickens owned 1.50 (0.91-2.48) 0.11 1.10 (0.72-1.69) 0.65 

     

Soap present at designated handwashing location 
after defecation REF  

 
- 

 
- 

No soap present at designated location after 
defecation or no designated location 1.41 (0.52-3.86) 0.50 

 
- 

 
- 

     

Improved toilet (pit latrine with slab or other 
improved type) REF  REF  

Unimproved toilet (pit latrine without slab or none) 1.50 (0.93-2.40) 0.095 1.15 (0.78-1.70) 0.49 

     

Piped water into yard/plot REF  REF  

Public tap/borehole   4.11 (1.05-16.16) 0.043 4.01 (1.62-9.93) 0.003 

Protected spring/well 4.10 (1.07-15.73) 0.040 3.64 (1.44-9.21) 0.007 

Rainwater/bottled water 1.22 (0.29-5.19) 0.79 2.34 (0.75-7.25) 0.14 

Unprotected spring 4.08 (0.96-17.31) 0.056 4.43 (1.53-12.81) 0.006 

Surface water 
15.91 (3.58-

70.65) <0.001 
19.19 (6.73-

54.70) <0.001 

     

Household treated water (JMP adequate) REF  - - 

No household treatment 1.21 (0.56-2.63) 0.62 - - 
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4. DISCUSSION 
 

This is the first population-based, nationally representative assessment of household drinking 

water quality in Rwanda. We found widespread faecal contamination of household supplies, a 

finding that is consistent with studies of particular sub-populations in Rwanda (Rosa et al., 

2014b; Uwimpuhwe et al., 2014). Faecal contamination of drinking water can have adverse 

health impacts and can contribute to diarrhoea (Hodge et al., 2016; Luby et al., 2015). These 

results suggest a substantial proportion of Rwanda’s population are exposed to faecal 

contamination through this pathway.  

 

Reported source of the sampled household drinking water was a major factor associated with 

water quality. Compared to piped water to yard/plot, all water source types (other than 

rainwater/bottled water) had increased odds of detectable and intermediate/high risk TTC 

contamination. These results are consistent with a recent meta-analysis that showed piped 

water was safer at both the source and household compared to other water source types 

(Shields et al., 2015), and that water from improved sources is not necessarily free of 

contamination and can still pose a health risk  (Bain et al., 2014b). At substantial risk for 

detectable and intermediate/high risk TTC contamination are households utilizing surface 

sources, suggesting transitioning these households to improved water source types, particularly 

piped water, could lead to substantial improvements in water quality in this setting.  Indeed, 

other water quality assessments in Rwanda have found high faecal contamination of surface 

water, partly due to anthropogenic influence (Sekomo et al., 2012; Wronski et al., 2015).   

 

We found various community-level factors associated with increased faecal contamination of 

water at the household level. Households residing in sectors with high levels of open household 

solid waste disposal were at increased odds of detectable and intermediate/high risk TTC 
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contamination, although there did not appear to be increasing risk according to quartiles 

suggesting a potential threshold effect. Solid waste can contain numerous pathogens, and may 

include child faeces and other sources of faecal waste (Majorin et al., 2014; Rego et al., 2007). 

When openly disposed of into the environment, this source of faecal contamination may 

contaminate surface water sources used for drinking or other household uses, and contaminate 

groundwater and/or water sources with poor infrastructure (Godfrey et al., 2006; Howard et al., 

2003; Kulabako et al., 2007; Nsubuga et al., 2004). Open household solid waste disposal may 

also lead to unsanitary environments around the household and other living environments and 

contribute towards other pathways of water contamination such as through contaminated 

hands and collection/storage vessels. The impact of open waste disposal, as well as presence of 

other faecal sources such as human/animal faeces, may be aggravated by extreme rainfall 

events which can result in a “flush effect” (Levy et al., 2009), particularly in environments with 

rapid groundwater recharge. Other studies in Rwanda have identified increased rainfall as a risk 

factor for water source contamination (Gasana et al., 2002) and groundwater contamination 

(Nigatu et al., 2015), and previous day rainfall resulted in increased TTC contamination of 

protected springs in Kampala (Howard et al., 2003) and wells in Mozambique (Godfrey et al., 

2006). Globally, water sources, including a range of improved sources, are susceptible to greater 

contamination during the wet season, and this pattern has been found in both urban and rural 

settings and in different climate zones (Kostyla et al., 2015).  

We also found that households at higher elevations had lower odds of detectable and 

intermediate/high risk TTC contamination. Higher elevations may characterize more pristine 

catchment areas, and have fewer sources of animal and human waste in the environment than is 

often present downstream or lower in watersheds. A recent study in Rwanda supports this, 

identifying elevation as protective against diarrhoea, partly attributed to drainage and 

accumulation of solid waste, flies and faecal matter at lower elevations (Uwizeye et al., 2014). 

Another study in Rwanda found increased elevation to be associated with improved surface 
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water quality (Wronski et al., 2015). Additionally, ambient temperature, which we did not 

include in our analyses, decreases with increased elevation in Rwanda, and may have reduced 

faecal indicator growth and prevalence in the environment relative to lower elevations 

(Rochelle-Newall et al., 2015).    

 

Increased population density was also associated with reduced odds of intermediate/high risk 

TTC. Consistent with this finding, a major systematic review found rural drinking water sources 

to be of worse quality than urban drinking water sources (Bain et al., 2014b), and this pattern 

has also been observed in a national, randomized study of household drinking water in Peru 

(Miranda et al., 2010). In Rwanda, this pattern may be due to reduced livestock ownership in 

urban areas, which can be a substantial source of faecal contamination in the environment 

(Jenkins et al., 2009). In contrast, other studies have found increased population density to be 

associated with contaminated groundwater and drinking water contamination, potentially due 

to latrine density, poor waste management, unimproved sanitation, and other unmeasured 

factors (Escamilla et al., 2013; Nsubuga et al., 2004; Okotto-Okotto et al., 2015; Wright et al., 

2013). More investigation is needed to arrive at a possible explanation for this finding.    

 

Interestingly, household-level indicators did not appear to be determinants of faecal 

contamination of drinking water in this setting. We suspect that this is partly due to a low 

degree of variation in household water collection, storage, and serving practices.  Most 

households fetch and store water in 20L jerricans on a fairly regular basis given proximity of 

water sources and year-round availability of water, and while additional contamination may 

occur in the household, these practices may have less impact on household water quality than 

determinants that affect source water quality in this setting. Household unimproved toilet type 

did not reach statistical significance, in contrast with a study in Tanzania that found increased 

presence of E. coli virulence genes (ECVG) in stored drinking water of households with 
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unimproved toilet types (Mattioli et al., 2013).  Although other studies have found that domestic 

animal exposure can result in increased contamination on hands as well as contaminated water 

leading to diarrheal illness (George et al., 2015; Schriewer et al., 2015; Zambrano et al., 2014), 

we did not find significant associations for the limited range of livestock indicators we examined. 

Future research on animal proximity and contact with drinking water supplies, mechanisms of 

contamination, and ways to minimize this potential contamination pathway is warranted. 

Although presence of soap at a designated hand washing location after defecation was not 

significant in multivariate analysis, very few houses reported having a designated handwashing 

location.  It is likely our use of this proxy indicator and this finding does not adequately account 

for hand cleanliness and may not reflect the role of hygiene on water quality in this setting 

(Pickering et al., 2010; Ram et al., 2011).Hands frequently come in contact with contaminated 

soil, food or other surfaces and can contaminate water supplies (Mattioli et al., 2014; Pickering 

et al., 2012, 2011). Of interest is our finding in bivariate analyses that recent diarrheal illness in 

either the child (if present) or respondent was not associated with water quality, although this 

may be due to low numbers of households with children under 5.  Recent studies give evidence 

for the relationship between water quality and diarrhoea and thus this finding may be due to 

low sample size and timing of sample collection vs illness recall (Hodge et al., 2016; Luby et al., 

2015). Lastly, although significant in bivariate analysis for detectable TTC contamination, 

reported household water treatment was not a significant determinant of drinking water quality 

in multivariate analysis. The majority of households that reported treating their water reported 

their method as boiling. Other research has shown that reported household water treatment is 

exaggerated, inconsistent and often ineffective (Rosa et al., 2014a).  Moreover, without safe 

storage, treated water may be subject to recontamination, which may partly explain why a 

stronger protective effect was not observed (Wright et al., 2004).     
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There are a number of limitations to this study. This is a single cross-sectional study and was 

conducted over two months. While we cannot infer causality between the examined risk factors 

and drinking water quality, we have identified potential relationships worthy of further 

examination, perhaps using experimental study designs. This activity was conducted to assess 

household drinking water quality prior to receiving a Lifestraw filter. Since households were 

excluded if they had received a Lifestraw Filter from DelAgua Health or did not currently have 

drinking water in the house, this study population may not be representative of the general 

population.   Evidence from a randomized trial found improved water quality in households that 

had received the Lifestraw filter from DelAgua Health (Rosa et al., 2014b), and thus water 

contamination may be overestimated in Western Province where DelAgua Health conducted a 

large-scale free distribution of filters to ubudehe 1 and 2 households in two thirds of the 

province.  Additionally, initial sample size calculations were based on the need to obtain a single 

point estimate of national drinking water quality, although the sample size of 862 samples (for 

detection of TTC model) and 866 samples (for intermediate/high risk TTC contamination model) 

exceeds the commonly cited rule of thumb of at least 10 events per variable (Peduzzi et al., 

1996). Although a range of geographic settings were included in the study, approximately half of 

the study was in the rainy season and the data collection team moved from one province to 

another due to logistical and timing constraints.  This resulted in an imbalance of experienced 

climatic conditions between regions during sampling, and the results may reflect a season bias, 

particularly between regions (Wright et al., 2012). A more ideal study design would incorporate 

repeated measures of water quality in households and water sources under a range of climatic 

conditions.  This would enable assessment of potential drivers over a longer time period to 

account for climatic variability and variations in exposures at household and community levels, 

and minimize risk of seasonal bias. Given multiple contamination pathways and concerns about 

faecal coliforms as a suitable faecal indicator for health (Gruber et al., 2014), detailed 

assessment of other sources of faecal contamination, such as through surface, soil, food, hand, 
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water source sampling, and microbial source tracking, would help to better characterize 

mechanisms and pathways of health-relevant drinking water contamination. This study utilized 

publicly available sector-level data from the Rwanda census which preceded water sampling by 

over two years and may not reflect current village conditions. The daily precipitation data also 

lacks geographic specificity, and may not accurately reflect rainfall amounts or occurrence of 

extreme events (Crétat et al., 2013; Funk et al., 2015). Future research seeking to examine 

community environmental and climatic determinants should incorporate village or watershed-

level data, and in-situ temperature and precipitation measurement.   

 

5. CONCLUSION 
 

Unsafe drinking water quality is a major health concern in low-income countries, particularly for 

children under 5 years of age.  This study found widespread faecal contamination of household 

drinking water supplies, with evidence of sub-national differences, household and community-

level risk factors, and impact of extreme precipitation.  As the first population-based, nationally 

representative assessment of household drinking water quality in Rwanda, these results 

highlight the need to reduce the risk of unsafe drinking water at both source and point of 

consumption.    
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SUPPLEMENTARY INFORMATION  
 

Table S 1 Unadjusted logistic regression analysis for i) >=1 TTC/100mL vs no detectable TTC and ii) >10 TTC/100mL vs <=10 TTC/100mL. 

 
N(%) or 
Mean (SD) 

>=1 TTC/100mL vs no 
detectable TTC 

>10 TTC/100mL vs <=10 
TTC/100mL 

 
 

Crude OR p value Crude OR 
p 
value 

Village/sector characteristics      

Rural village 652 (75.3) REF  REF  

Peri-urban village 106 (12.2) 0.91 (0.45-1.81) 0.78 0.77 (0.44-1.37) 0.37 

Urban village 108 (12.5) 0.36 (0.18-0.70) 0.003 0.39 (0.20-0.74) 0.005 

      

Sector density - First quartile (55-385 
people/km2)  220 (25.4) REF 

  
REF 

 

Second quartile (386-499/km2) 216 (24.9) 0.90 (0.44-1.85) 0.77 0.64  (0.33-1.23) 0.18 

Third quartile (500-686/km2)  221 (25.5) 0.64 (0.29-1.41) 0.27 0.50 (0.24-1.05) 0.065 

Fourth quartile (687-24482/km2)  209 (24.1) 0.38 (0.20-0.74) <0.001 0.30 (0.17-0.55) <0.001 

      

Sector waste dumped in bush/farm/river 
- First quartile  
(1.1-21.4% of households) 227 (26.2) REF 

  
 
REF 

 

Second quartile (21.5-29%) 209 (24.1) 2.87 (1.49-5.54) 0.002 2.43  (1.25-4.73) 0.010 

Third quartile (29.1-39%)  214 (24.7) 3.26 (1.70-6.25) <0.001 2.39  (1.29-4.44) 0.006 

Fourth quartile (39.1-55.5%) 216 (24.9) 4.82 (2.53-9.21) <0.001 3.14 (1.75-5.62) <0.001 

      

Sector % unimproved toilet type ( bush 
and shared pit latrine) – First quartile 
(1.7-5.6% of households) 222 (25.6) REF 

  
 
REF 

 

Second quartile (5.7-9%) 215 (24.8) 1.11 (0.53-2.35) 0.78 0.92 (0.44-1.92) 0.82 

Third quartile (9-13.4% 214 (24.7) 1.17 (0.58-2.36) 0.67 1.03 (0.52-2.04) 0.92 

Fourth quartile (13.5-64.8%) 215 (24.8) 0.85 (0.44-1.64) 0.62 0.73 (0.41-1.30) 0.29 
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Village rainfall in previous 7 days (cm) 2.6 (1.8) 0.83 (0.74-0.94) 0.004 0.89 (0.79-1.00) 0.047 

      

No extreme village rain event in previous 
1 day 820 (94.7) REF 

  
REF 

 

Extreme village rain event in previous 1 
day 46 (5.3) 1.49 (0.48-4.60) 0.48 2.53 (0.97-6.63) 0.06 

      

General household characteristics      

Household elevation  >=2000m 157 (18.1) REF  REF  

1500-1999m 492 (56.8) 4.70 (2.81-7.88) <0.001 4.53 (2.62-7.83) <0.001 

<1500m 217 (25.1) 6.39 (3.07-13.31) <0.001 8.61 (4.44-16.68) <0.001 

      

Number of household members   4.7 (2.2) 1.00 (0.92-1.09) 0.97 0.97 (0.91-1.05) 0.49 

      

Number of children under 5 in household 0.5 (0.7) 1.16 (0.90-1.50) 0.25 1.09 (0.87-1.37) 0.45 

      

Lowest SES quintile 174 (20.1) REF  REF  

Low SES quintile 172 (19.9) 1.42 (0.85-2.36) 0.18 1.38 (0.91-2.10) 0.12 

Middle SES quintile 174 (20.1) 1.06 (0.61-1.83) 0.84 1.30 (0.80-2.10) 0.29 

High SES quintile 173 (20.0) 1.02 (0.59-1.78) 0.94 1.24 (0.73-2.10) 0.42 

Highest SES quintile 173 (20.0) 0.64 (0.36-1.14) 0.13 0.88  (0.51-1.50) 0.63 

      

Ceramic tile/cement/brick flooring 186 (21.5) REF  REF  

Dirt/animal dung flooring 680 (78.5) 1.61 (1.01-2.57) 0.044 1.36  (0.89-2.07) 0.15 

      

[No evidence of any] cow kept on plot 507 (58.6) REF  REF  

[Evidence of] cow(s) kept on plot 359 (41.5) 1.02 (0.69-1.50) 0.91 1.10 (0.79-1.52) 0.58 

      

No chickens owned 696 (80.4) REF  REF  

1  or more chickens owned 170 (19.6) 1.94 (1.21-3.10) 0.006 1.45 (1.00-2.11) 0.052 
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No diarrhoea (child <5 or respondent) 763 (88.1) REF  REF  

Diarrhoea (child <5 or respondent) 102 (11.8) 0.89 (0.54-1.48) 0.65 1.05 (0.63-1.77) 0.84 

      

Household hygiene and sanitation 
characteristics 

 
 

   

Has dedicated handwashing location 
after defecation 

 
64 (7.4) REF 

  
REF 

 

No designated handwashing location 802 (92.6) 1.32 (0.62-2.80) 0.47 1.06 (0.49-2.29) 0.89 

      

Water present at designated 
handwashing location after defecation 

 
43 (5.0) REF 

  
REF 

 

No water present at designated location 
after defecation or no designated 
location 

 
821 (94.8) 

1.17 (0.53-2.54) 0.70 1.17 (0.48-2.83) 0.73 

      

Soap present at designated handwashing 
location after defecation 

 
15 (1.7) REF 

  
REF 

 

No soap present at designated location or 
no designated location 

 
849 (98.0) 2.33 (0.97-5.59) 0.058 1.22 (0.50-2.96) 0.65 

      

Improved toilet (pit latrine with slab or 
other improved type) 

 
296 (34.2) REF 

  
REF 

 

Unimproved toilet (pit latrine without 
slab or none) 

 
570 (65.8) 1.99 (1.23-3.20) 0.005 1.50 (1.03-2.19) 0.037 

      

No faeces observed on floor or w/in 1m 
of toilet 604 (69.8) REF 

  
REF 

 

Faeces observed on floor or w/in 1m of 
toilet 259 (29.9) 1.29 (0.86-1.92) 0.22 1.17 (0.81-1.70) 0.40 

      

Wiping materials observed at toilet 
 
239 (27.6) REF 

 REF  
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No wiping materials observed at toilet 
 
624 (72.1) 1.11 (0.77-1.60) 0.59 1.07 (0.72-1.58) 0.73 

      

Does not share toilet facility 754 (87.1) REF  REF  

Shares toilet facility with 1 or more 
houses 112 (12.9) 0.90 (0.54-1.50) 0.68 1.19 (0.73-1.92) 0.48 

      

Toilet facility located inside compound 807 (93.2) REF 
  

REF 
 

Toilet facility located outside compound 59 (6.8) 1.38 (0.67-2.84) 0.38 1.31 (0.67-2.59) 0.43 

      

Household drinking-water characteristics      

Piped water into yard/plot 40 (4.6) REF  REF  

Public tap/borehole   239 (27.6) 4.90 (2.18-11.04) <0.001 3.86 (1.95-7.65) <0.001 

Protected spring/well 362 (41.8) 5.04 (2.47-10.27) <0.001 3.68 (1.87-7.25) <0.001 

Rainwater/bottled water 57 (6.6) 2.37 (0.89-6.29) 0.083 3.52 (1.37-9.04) 0.010 

Unprotected spring 73 (8.4) 3.71 (1.46-9.43) 0.006 3.40 (1.45-7.96) 0.005 

Surface water 
95 (11.0) 33.98 (10.54-

109.55) 
<0.001 29.93 (11.69-

76.63) <0.001 

      

Round-trip walking time to water source 
(minutes) 

 
28.6 (25.0) 1.01 (1.00-1.02) 0.21 

 
1.00 (1.00-1.01) 

 
0.43 

      

Storage container covered (has lid) 238 (27.5) REF  REF  

Storage container uncovered 625 (72.2) 1.33 (0.84-2.11) 0.22 1.10 (0.72-1.68) 0.67 

      

Small-mouthed storage container 835 (96.4) REF  REF  

Large-mouthed storage container 29 (3.4) 0.78 (0.25-2.48) 0.68 1.51 (0.48-4.74) 0.48 

      

Household treated water (JMP adequate) 775 (89.5) REF  REF  

No household treatment 89 (10.3) 2.37 (1.32-4.25) 0.004 1.55 (0.86-2.80) 0.14 
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Chapter 4. Use, microbiological effectiveness and health impact 
of a household water filter intervention in rural Rwanda – a 

matched cohort study 
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ABSTRACT   
 

Unsafe drinking water is a substantial health risk contributing to child diarrhoea. We investigated 

impacts of a program that provided a water filter to households in rural Rwandan villages. We 

assessed drinking water quality and reported diarrhoea 13-24 months after intervention delivery 

among 269 households in the poorest tertile with a child under 5 from 9 intervention villages 

and 9 matched control villages. We also documented filter coverage and use.  In Round 1, 97.4% 

of intervention households reported receiving the filter, 84.5% were working, and 86.0% of 

working filters contained water. Sensors confirmed half of households with working filters filled 

them at least once every other day on average. Coverage and usage was similar in Round 2. The 

odds of detecting faecal indicator bacteria in drinking water were 78% lower in the intervention 

arm than the control arm (OR 0.22, 95% CrI 0.10-0.39, p<0.001).  The intervention arm also had 

50% lower odds of reported diarrhoea among children <5 than the control arm (OR=0.50, 95% 

CrI 0.23-0.90, p=0.03). The protective effect of the filter, though potentially exaggerated due to 

reporting bias, is also suggested by reduced odds of reported diarrhoea-related visits to 

community health workers or clinics, although these did not reach statistical significance.    
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INTRODUCTION 
 

Unsafe drinking water and household air pollution are two significant environmental health risks 

and contribute to diarrhoea and pneumonia, two major causes of death for children under 5 

years of age (GBD 2015 Risk Factors Collaborators, 2016; Liu et al., 2014; Prüss-Ustün et al., 

2014). In 2011, an estimated 700,000 deaths among children under 5 were due to diarrhoea 

(Fischer Walker et al., 2013b). In Rwanda, diarrhoea is a leading contributor to mortality in 

children under 5 years and is second after pneumonia, accounting for 9% of deaths in this age 

group (Liu et al., 2014), and unsafe water is estimated to be the third leading risk factor for 

overall disease (GBD 2015 Risk Factors Collaborators, 2016). 

  

The 2014-15 Rwanda Demographic and Health Survey estimated 27.6% of the population use 

unimproved drinking water sources, with the majority residing in rural areas (National Institute 

of Statistics of Rwanda (NISR) et al., 2015). Access to improved water sources does not 

necessarily result in consumption of safe drinking water since not all improved sources are free 

of microbiological contamination (Bain et al., 2014).  Moreover, since water is often collected 

and stored within the house after collection, additional contamination can occur during transit 

and storage (Wright et al., 2004). A recent nationally representative study found that more than 

75% of households had drinking water with detectable thermotolerant coliforms (TTC), 

exceeding World Health Organization (WHO) guidelines for drinking water (Kirby et al., 2016; 

WHO, 2011). 

 

There is increasing evidence that household drinking water quality is a determinant of diarrhoea 

(Hodge et al., 2016; Luby et al., 2015), and efforts to improve drinking water quality, such as by 

using filters, may reduce diarrhoea (Clasen et al., 2015; Wolf et al., 2014). Household water 
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treatment is recommended by the WHO as an intermediate step towards ensuring safe drinking 

water supply and is part of a 7-point plan for comprehensive diarrhoea control (UNICEF/WHO, 

2009; WHO, 2007). However, most of the studies to date have been short-term efficacy studies 

and use of interventions can change over time (Hunter, 2009) and the health impact among non-

blinded trials may be exaggerated due to reporting bias (Clasen et al., 2015). There is a lack of 

evidence regarding the long-term effectiveness of these technologies, particularly within a 

programmatic, scalable context.   

 

In October 2012, a public-private partnership between the Rwanda Ministry of Health and 

DelAgua Health provided approximately 2,200 advanced “rocket” cookstoves and water filters to 

households in 15 villages in 11 of Rwanda’s 30 districts. The intervention was accompanied by 

behaviour change messaging and monitoring conducted by community health workers (CHWs) 

through quarterly-biannual visits (Barstow et al., 2014). A 5-month household randomized 

controlled trial (RCT) was conducted in three of the villages to assess the intervention’s impact 

on household drinking water quality and household air pollution. The trial showed high uptake 

of the filter and was associated with a 97.5% reduction in TTC in drinking water (Rosa et al., 

2014b; Thomas et al., 2013a). However, non-exclusive use and consumption of unfiltered 

drinking water away from the household were identified as challenges. The study did not assess 

health impact, and evidence for the sustained uptake and effectiveness of the intervention 

outside of a short-term intensive trial remains unclear.   

 

We undertook a matched-cohort study to assess medium-term uptake of the filter 13-24 months 

after intervention receipt in order to determine its impact on faecal contamination of drinking 

water in the home and child diarrhoea. We used a matched cohort design since the intervention 

was pre-existing and was not randomly allocated to households or villages. The matched cohort 

design seeks to minimise the risk of unmeasured confounders by matching on characteristics 
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likely to impact outcomes of interest (Austin, 2011; Stuart, 2010). This design has been used in 

other studies of pre-existing interventions where randomization is not possible (Arnold et al., 

2009, 2010; Ercumen et al., 2015a). 

 

MATERIALS AND METHODS 
 

Village selection and matching 

This study was based in the Southern and Western provinces of Rwanda, where most of the 

study population are engaged in agriculture.  The setting is primarily rural and comprises 

foothills and mountains of the Congo-Nile Divide, with study villages ranging from 1400-2500m 

in elevation.   The area experiences two rainy seasons, with the “short rains” typically in 

September, October, November and December, and the “long rains” typically in March, April 

and May.  Of the 15 villages that received the intervention in October 2012, nine were purposely 

selected for follow-up in this study. Three of the original 15 villages were excluded due to the 

previous RCT (Rosa et al., 2014b), and 3 were excluded due to low number of estimated eligible 

households.  

 

Village-level matching was performed using a combination of restriction, propensity score 

matching, and rapid assessment (Arnold et al., 2009, 2010). Intervention villages were first exact 

matched to non-bordering potential control villages within the same health centre catchment 

area (sub-district). A phone survey was then conducted in July 2013 and administered to one 

CHW from all intervention and potential control villages.  The phone survey contained questions 

on village-level cooking and drinking water practices, including drinking water sources and 

household water treatment, which the CHW answered by estimation. Additionally, 

programmatic DelAgua household survey data from the nine intervention villages, originally 

collected by village CHWs, were aggregated by village and categorized according to majority 
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proportion for additional matching to the indicators collected by the phone survey.  Finally, a 

national ubudehe (wealth category) database was accessed to derive the proportion of houses 

according to ubudehe category, and estimation of household size according to ubudehe 

category. Village-level data were thus combined from the above three sources. For intervention 

village-level data, characteristics likely to change due to the intervention, such as water 

treatment and cooking practices, were derived from the DelAgua household survey since it 

assessed these practices prior to receipt of the intervention.  All other village-level 

characteristics were derived for intervention and control villages from the CHW phone survey 

and National Ubudehe Database. Potential control villages were restricted based on the 

implementer’s original intervention village selection criteria which was intended to represent a 

typical rural village’s water service and energy use (Barstow et al., 2014). Villages were restricted 

if more than 20% of households had piped water, more than 60% used water treatment other 

than boiling, more than 20% used cooking fuel other than biomass or charcoal, or more than 

20% used a non-traditional stove. After restriction, the pool of potential control villages for each 

intervention village ranged from 6-61, (mean=23 villages).  

 

Propensity score matching using probit regression was then conducted using different 

combinations of the village-level covariates described above, given their potential relationship to 

drinking water quality and household air pollution which were the primary outcomes of interest 

(Brookhart et al., 2006). The mean bias of each fitted model was examined in an iterative 

process across the range of potential matching variables in order to obtain optimal covariate 

balance for all available covariates between arms. Using the propensity score from the optimal 

model, each intervention village was then matched to a control village within the same health 

centre catchment area using the nearest neighbour method (Austin, 2009; Rosenbaum and 

Rubin, 1985). Propensity score matching was performed using the Stata add-on package 

PSMATCH2 (Leuven and Sianesi, 2003). 
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Lastly, a rapid assessment was conducted in each of the selected control villages after visiting its 

respective intervention village.  The rapid assessment consisted of a transect to qualitatively 

observe similarity to its paired village, and an in-person meeting between the staff supervisor 

and village’s chief and CHWs.  During the in-person meeting, the supervisor confirmed key 

variables used in the matching, including total number of households, children under 5 years of 

age, percent of households using improved water supply, primary household fuel type, primary 

household stove type, household cook times, and water treatment practices. Additionally, the 

chief and CHWs were asked to describe any changes in the village since October 2012 that could 

affect the primary outcomes. 

 

Enrolment and eligibility 

Houses were enrolled and visited once between November 2013 and May 2014 (Round 1) and 

visited a second time between May 2014 and November 2014 (Round 2). In each village, we 

enrolled all consenting households with a child under 5 years of age that belonged to the poorest 

socio-economic tertile (ubudehe groups 1 and 2) according to a government-derived village roster. 

The large-scale rollout of DelAgua Health’s carbon credit-financed distribution programme, which 

started in late 2014, targeted ubudehe groups 1 and 2, so we were most interested in assessing 

the long-term uptake and impact of the pilot within this demographic group (Nagel et al., 2016). 

Participating control households received a water filter and stove after completion of the study. 

 

Description of water treatment intervention 

The intervention, described in detail elsewhere (Barstow et al., 2014), included a household 

water filter, an advanced cookstove, in-home training, instructional materials, and repeated 

household visits to monitor and reinforce behaviour change. The filter was the Vestergaard-

Frandsen Lifestraw Family 2.0, a table-top microbiological purifier with 5.5 litres of built in 
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storage (Barstow et al., 2014). The filter utilizes gravitational pressure to remove bacteria, 

viruses and protozoa as the water passes through hollow fibre membranes.  In laboratory 

testing, an earlier version of the filter with the same filtration membrane was found to have a 6-

log reduction for bacteria, 4-log reduction for viruses, and 3-log reduction for protozoan cysts, 

and thus meets EPA standards (Clasen et al., 2009). The filter is designed to provide sufficient 

drinking water for a household for at least three years without replacing any consumables 

(Clasen et al., 2009). More recently, in Round 1 results from the WHO International Scheme to 

Evaluate Household Water Treatment Technologies, the Lifestraw 2.0 was ranked 2 out of 3 

stars offering “Comprehensive protection” (removing at least 2 log10 of bacteria, at least 3 log10 

of viruses and at least 2 log10 of protozoa) (WHO, 2016).   

 

Household survey 

The field and laboratory team used for data collection and lab assays were trained and worked 

under the supervision of the study authors; they did not participate in the delivery or promotion 

of the intervention.  At each visit, a household survey was administered to the primary cook of 

the household consisting of questions addressing household demographics and characteristics 

related to cooking, sanitation, hygiene, and drinking water practices. A socioeconomic status 

indicator was developed using polychoric principal component analysis based on household 

materials and durable goods ownership (Supplementary Information 1) (Kolenikov and Angeles, 

2009). Usage and condition of the filter was assessed using self-reported and observational 

indicators including frequency of use, whether the filter appeared to be accessible and in use, 

and whether water was in the filter.  

 

Primary and secondary outcome 

The primary outcome for this study was household drinking water quality according to TTC in 

colony forming units (CFU) per 100mL, a WHO approved indicator of drinking water quality 
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(WHO, 2011).  Secondary outcomes included reported and observed use of the filter and primary 

caregiver-reported diarrhoea within the previous 7 days for children under 5 years of age. 

Diarrhoea was defined as three or more loose stools within a 24-h period, with a loose stool 

defined as any that can take the shape of a container (WHO, 2005). Additional outcomes 

included whether care from a CHW or health facility was sought for diarrhoea within the 

previous 7 days, and whether care was sought within the previous 3 months. Toothache was 

included as a negative control (Lipsitch et al., 2010).   

 

Water quality testing 

At the end of each visit, a 100mL sample of water a child under 5 would drink, be it directly from 

the water filter or other storage container, was collected and assessed for TTC using the 

membrane filtration technique (APHA, 2001). If a child under 5 was too young to drink water, 

the water the primary cook would drink was sampled.  Source water quality was collected within 

24 hours of the collection of a household sample. All water samples were collected in sterile 

Whirl-Pak bags (Nasco, Fort Atkinson, WI). After collection, samples were put on ice and 

processed within six hours of collection. Water samples were assayed for TTC on membrane 

lauryl sulphate medium (Oxoid Limited, Basingstoke, Hampshire, UK) and incubated for 18 hours 

at 44C. Plates that yielded in excess of 300 CFU were deemed too numerous to count and were 

assigned a value of 300 CFU. One lab blank using distilled water and one duplicate were typically 

processed each sampling day and assessed for quality control purposes.  

 

Sensors 

In a random subsample of 79 households in Round 1 and 73 households in Round 2, use of the 

filter was monitored by temporarily replacing the householder’s filter with an identical filter 

fitted with a cellular-reporting SweetSense usage sensor (Thomas et al., 2013b) (Figure 1). 

Households were eligible for sensor monitoring if the filter they owned was reported to be 
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working properly at the time of the survey. Up to 21 households in each of the nine intervention 

villages were randomly selected to participate. 

 

The sensored water filter was calibrated to detect changes in pressure in the upper container, 

indicating filling of the filter. The usage algorithms have been validated and described elsewhere 

(Thomas et al., 2013b). Sensor-equipped filters were deployed to households within two weeks 

after the household survey was conducted. Households were informed the sensor would collect 

performance data of the filter, but not told they would detect changes in water volume or 

frequency of use. Consenting households had the sensored water filter for a period of 7-30 days. 

During this monitoring period, the household’s original water filter they had originally received 

was temporarily locked to prevent use. Sensor data were uploaded and interpreted as described 

elsewhere (Thomas et al., 2013a). The deployment and retrieval days were not included in 

analyses to reduce potential reactivity and have whole-day samples. Adherent households were 

defined as having filled the filter at least once on at least half of the days for which sensor data 

was available.   

 

Figure 1 Sweetsense sensor affixed to Lifestraw filter (photo courtesy of Evan Thomas). 

 

Precipitation data 
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In order to control for the potential impact of precipitation on water quality and diarrhoea (Kirby 

et al., 2016; Levy et al., 2016; Mukabutera et al., 2016), total precipitation within the previous 10 

days to each household’s survey date was included in analyses as a potential confounder 

(Ercumen et al., 2015b). Data were downloaded in Network Common Data Format  (NetCDF) for 

each village centroid from Climate Hazards Group InfraRed Precipitation with Station data 2.0 

(CHIRPS) (Funk et al., 2015), which comprises daily gridded precipitation data derived from 

satellite and in-situ station data at 0.05 degree spatial resolution (approximately 5.3km). 

Precipitation data were converted from NetCDF into raster format and joined to village centroid 

locations using ArcGIS 10.3 (ESRI, Redmond, CA, USA). 

 

Sample size and study power 

The sample size was based on household drinking water quality, the primary outcome. We 

assumed a 50% reduction in mean log10-transformed TTC count, which is conservative given 

results from the previous RCT in this population which reported a 89% reduction in the mean 

log10 TTC count (Rosa et al., 2014b). We used a sample size calculation for two-sample 

comparison of means in Stata using sampsi followed by the sampclus package (Garrett, 2001). 

We assumed mean water quality in the untreated arm to be 1.22 log10 CFU/100mL, with a 

standard deviation of 0.96 log10 CFU/100mL. With an alpha of 0.05 and power of 0.8, the results 

indicated a sample size of 39 in each arm. To adjust for the clustered design, we use an intraclass 

correlation of 0.03 based on data from the previous RCT, an estimated 5 observations per 

cluster, and 18 clusters. This resulted in a corrected sample size of 44 in each group. To better 

characterize household water quality and impact of the filter over time, we decided to sample 

drinking water from all enrolled households.   

 

Data Analysis   
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In order to compare the balance of household characteristics between arms, the standardized 

difference was calculated (Arnold et al., 2009; Rubin, 2007). The standardized difference is the 

difference of the means in terms of standard deviations, with a value of 0 indicating equal means 

and a value of 1 indicating a one standard deviation difference (Austin, 2011). Descriptive 

statistics, means, and confidence intervals of water quality measurements were adjusted for 

village-level clustering, which was the highest level of clustering in the data (Bottomley et al., 

2016).  Due to the skewed nature of the water quality TTC counts, Williams means are 

presented.  To calculate the Williams mean, a value of 1 TTC was added to all water quality 

values, the geometric mean was calculated, and then 1 was subtracted (Alexander, 2012; Rosa et 

al., 2014b) 

 

We examined differences in water quality and 7-day reported diarrhoea between the control 

and intervention households using Bayesian multilevel logistic regression to account for the 

longitudinal, hierarchical data structure. For reported diarrhoea diarrhoea-related medical care 

visits, we fitted a 4-level, random intercept model, with two observations (level 1) per child 

(level 2), who were clustered within households (level 3) and villages (level 4). Models of 

household drinking water quality were 3-level random intercept models, with observations (level 

1) nested within households (level 2) and villages (level 3). The dependent variables for water 

quality models were any detectable TTC/100mL vs. no detectable TTC/100mL and a separate 

model evaluating >10 TTC/100mL) vs. <10 TTC/100mL.  Models were adjusted for potential 

individual, household, and village-level confounders (Figure S1), and model coefficients were 

exponentiated to yield odds ratios.  

 

Models were estimated using Markov Chain Monte Carlo (MCMC) with the Metropolis-Hastings 

algorithm. For multilevel models with discrete outcomes, MCMC methods yield unbiased 

estimates of both fixed and random model parameters and are robust to small numbers of 
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clusters (Browne and Draper, 2006; McNeish and Stapleton, 2016). We used diffuse, non-

informative priors and estimated starting values for the MCMC chain using penalized quasi-

likelihood. Given the complexity of the models, we used orthogonal parameterization to 

improve chain mixing and specified a burn-in length of 50,000 with a chain length of 2,000,000. 

We assessed chain mixing by visually examining traceplots and autocorrelation plots and 

convergence using the Raftery-Lewis and Brooks-Draper diagnostics (Browne, 2009). We 

obtained the means, 2.5%, and 97.5% values of the posterior distribution to calculate the point 

estimates and 95% credible intervals (Crl) of the true model parameters. The 95% credible 

interval can thus be interpreted as the interval within which there is a 95% chance the true 

population values are included. All analyses were conducted using MLWin Version 2.1 (Browne, 

2009; Rasbash et al., 2009) and Stata 14 (College Station, TX) with the RunMlWin add-on 

package (Leckie et al., 2013). 

 

Ethics and Consent 

Primary cooks gave written informed consent to participate in the study. If the respondent could 

not sign their name, they supplied a thumbprint and a literate witness signed on their behalf 

after ensuring comprehension. This study was approved by LSHTM Ethics (6457) and Rwanda 

National Ethics Committees (494/RNEC/2013). This study was registered at ClinicalTrials.gov 

(NCT01998282). 

 

RESULTS 
 

Village matching  

After restriction according to pre-defined characteristics, CHW phone surveys resulted in 201 

potential control villages. Propensity score matching resulted in 9 potential control villages that 

were visited and confirmed during rapid assessment (Figure S2). Median bias on the key 
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matching variables was 27.8 prior to matching, and reduced to 7.2 after matching (Table S1), 

indicating improved balance among potential confounders. Bias was reduced in all variables 

except mean daily cooking times, which is unlikely to be a confounder of drinking water quality 

or diarrhoea.   

 

Table 1 shows balance of household and child characteristics at enrolment between the 

intervention and control arms. Overall, the arms were well balanced on demographic, sanitation, 

hygiene, and water practice characteristics. However, source drinking water quality showed 

signs of imbalance, with a higher proportion of samples in the intervention arm having higher 

TTC contamination than controls (Table 1). Treatment of household water was higher in the 

intervention arm, and travel time to health facility also appeared to be imbalanced, with 

intervention households reporting less travel time than control households (Table 1).   

 

Table 1 Intervention and control household characteristics at enrolment. 

Household characteristics 

Intervention 
(n=113 hh) 

%hh 

Control 
(n=156 hh) 

%hh 
Standardized 

difference 

Mean number of occupants per household 5.07 5.35 -0.151 

Mean number of females 18+ per household 1.23 1.35 -0.190 

Mean number of males 18+ per household 0.82 0.83 -0.018 

Mean number of children under 5 per household 1.31 1.24 0.126 

Female respondent 100.0 100.0 . 

Mean age of respondent  35.34 37.40 -0.160 

Respondent never attended school 36.3 36.5 -0.005 

Respondent completed primary  14.2 16.0 -0.052 

Respondent completed some secondary or higher 4.4 4.5 -0.003 

Floor type -- earth/sand  93.8 90.4 0.127 

House has electricity  2.7 8.3 -0.251 

House has radio 33.6 35.3 -0.034 

House has mobile phone 25.7 34.6 -0.196 

Has mattress 27.4 35.9 -0.183 

Has bicycle 1.8 3.8 -0.126 

Own land 90.3 85.9 0.135 

Own house 83.2 90.4 -0.214 

Own animals  46.9 44.9 0.041 

Mean reported one-way travel time to health 
facility (min) 45.6 63.6 -0.451 
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Study participants 

Overall, 269 households were enrolled into the study, with 113 households in the intervention 

arm and 156 in the control arm (Table 1). There were no reported refusals at enrolment.  

Approximately 6 months after enrolment, 144 control houses (92.3%) and 91 intervention 

households (80.5%) were followed-up and surveyed as part of Round 2. There were no refusals 

of the household survey, and one child death occurred in between Round 1 and Round 2 

surveys.   

 

Filter coverage and use  

In Round 1 (enrolment), 97.4% of intervention households reported receiving the intervention 

filter (Table 2). Of these households, 94.6% of households had the filter in the house at the time 

of visit, and 84.6% of filters were reported to be working. Coverage was similar at Round 2 

Method of reaching facility – only on foot 96.5 98.7 -0.148 

Has dedicated handwashing location after 
defecation 0.9 1.3 -0.038 

Toilet type – Improved1 36.3 30.8 0.117 

Share toilet   16.0 14.6 0.039 

Drinking water stored in house 1 day or less 92.6 97.3 -0.217 

Current water source - public tap / borehole 23.9 25.0 -0.026 

Current water source - protected spring  68.1 59.6 0.178 

Current water source – Improved1 92.9 85.9 0.230 

Fetch water daily  85.7 90.2 -0.138 

Roundtrip water-fetching time (min) 26.65 27.59 -0.039 

Has drinking water available at time of visit 96.5 95.5 0.048 

Drinking water reportedly treated 74.1 1.3 2.270 

 
N=93 

households2 

N=105 
households2  

Source drinking water quality - no detectable TTC 58.1 64.8 -0.138 

Source drinking water quality <11 TTC/100mL 64.5 93.3 -0.755 

Source drinking water quality <101 TTC/100mL 89.2 99.0 -0.427 

 
N=147 

children 
N=193 

children  

Mean child age (months) 31.06 30.68 0.023 

Child gender -- female  53.7 52.8 0.018 
1According to WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply and Sanitation 
guidelines (WHO/UNICEF, 2006) 
2Households matched to source water sample +/- 1 day of survey date. 
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(Table 2).  With the exception of one household in Round 2, all houses with a working filter 

reported they were currently using it (Table 2).   

 

Of households with a working filter, over 85% of households in each round reported using the 

filter on the day of survey or previous day, and over 80% had water in the filter.   Among all 

intervention households with drinking water stored in the home at time of visit (105 in Round 1, 

81 in Round 2), 76 houses (72.4%) indicated a child’s drinking water would come from the filter 

and had water in it in Round 1, and 63 houses (77.8%) in Round 2. Of the 91 intervention 

households that had a working filter at both round 1 and round 2, 54 (59.3%) reported using the 

filter on the day of visit or previous day at both visits, and 47 (51.6%) had water in the filter at 

both visits.  Sensors confirmed usage of the filter, with 50.0% of households using the filter at 

least once on at least half of the days in which sensor data was available in Round 1, and 36.8% 

in Round 2 (Table 2).    

Of houses reporting they currently use the filter, 17.2% of respondents reported drinking 

unfiltered water the day of the visit or the previous day in Round 1, and 9.3% in Round 2 (Table 

2). Respondents were more likely to report ever drinking unfiltered water when away from the 

household (33.3% in Round 1, 26.7% in Round 2) compared to when at their household (16.1% in 

Round 1, 21.3% in Round 2). Among children under 5 residing in households reporting current 

filter usage, approximately 10% drank unfiltered water the day of the survey or previous day in 

both Round 1 and Round 2 (according to primary caretaker) (Table 2). A higher proportion of 

households reported they had a child under 5 who ever drank unfiltered when away from the 

household compared to at the household (Table 2).   
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Table 2 Reported and observed filter coverage, use and exclusive use among intervention 
households. 

 Round 1 
N (%) 
N=113 
households 

Round 2 
N (%) 
N=91 
households 

Overall  
N (%) 
N=204 household 
observations 

Coverage    

Received filter   110 (97.4) 89 (97.8) 199 (97.6) 

Currently has filter1  104 (94.6) 85 (95.5) 189 (95.0) 

Filter broken1  15 (13.6) 12 (13.5) 27 (13.6) 

Filter away for repair1  4 (3.6) 3 (3.4) 7 (3.5) 

House currently has working filter1  93 (84.5) 76 (85.4) 169 (84.9) 

Observed and reported use  N=93 
houses 

N=76 
houses 

N=169 household 
observations 

Reports currently using filter 93 (100.0) 75 (98.7) 168 (99.4) 

Reports filter last used on day of visit or previous 
day 

86 (92.5) 67 (88.2) 153 (90.5) 

Filter looks in use 88 (94.6) 69 (90.8) 157 (92.9) 

Has water in the filter 80 (86.0) 62 (81.6) 142 (84.0) 

Sensor-derived use2  N=45 
households  

N=39 
households 

N=84 household 
observations 

Filter filled on at least half of days with sensor data 
(% of houses) 3 

22 (50.0) 14 (36.8) 36 (45.9) 

Filter filled on a least one third of days with sensor 
data (% of houses) 

35 (79.5) 21 (55.3) 56 (68.3) 

Mean (SD) filter fills per day of sensor data per 
household  

0.8 (0.5) 0.8 (0.7) 0.8 (.6) 

Mean (SD) litres treated per day of sensor data per 
household 

2.2 (1.4) 1.6 (1.3) 1.9 (1.4) 

Mean (SD) litres per fill event 2.9 (1.8) 2.14(1.7) 2.6 (1.8) 

Reported exclusive use4  N=93 
households 

N=75 
households 

N=168 household 
observations 

Respondent drank unfiltered water today4  8 (8.6) 4 (5.3) 12 (7.1) 

Respondent drank unfiltered water yesterday4  12 (12.9) 6 (8.0) 18 (10.7) 

Respondent drank unfiltered water today or 
yesterday4  

16 (17.2) 7 (9.3) 23 (13.7) 

Respondent ever drinks unfiltered water while at 
home4  

15 (16.1) 16 (21.3) 31 (18.5) 

Respondent ever drinks unfiltered water while away 
from home4  

31 (33.3) 20 (26.7) 51 (30.4) 

Child drank unfiltered water today4, 5  9 (7.4) 8 (8.2) 17 (7.8) 

Child drank unfiltered water yesterday4,5  9 (7.4) 8 (8.2) 17 (7.8) 

Child drank unfiltered water either today or 
yesterday4,5   

13 (10.7) 9 (9.3) 22 (10.1) 

Household has child under 5 who ever drinks 
unfiltered water while at home4  

23 (24.7) 25 (33.3) 48 (28.6) 

Household has child under 5 who ever drinks 
unfiltered water while away from home4  

28 (30.1) 25 (33.3) 53 (31.6) 

1Only if household received Lifestraw filter 
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2Sensors were deployed in 79 hh in Round 1 and 73 hh in Round 2, for a mean of 16.3 days (SD 7.5, 
range 8-36 days).  Due to mobile network challenges, sensor failure, and other technical faults, data 
was usable from 45 households in Round 1 and 39 households in Round 2.   
3Day classified as transmit day if the sensor transmitted data to a central server at least once (not 
including the partial deployment and retrieval days).  A mean of 12.9 days per deployment were 
useable for analysis (SD 7.7, range 0-34 days).  
4 Only if household reported using filter 
5For each child under 5 residing in household reportedly using filter. N=121 children in Round 1, N=97 
children in Round 2.   

 

Water quality 

A total of 478 household drinking water samples were collected (Table 3). In Round 1, 108 water 

samples were collected from intervention, and 149 from control households. In Round 2, 81 

water samples were collected from intervention, and 140 from control households. Four 

samples were lost between the point of collection and the processing lab due to improper 

storage of the sample.    

 

Table 3 Household drinking water quality (TTC/100mL) with cluster-robust 95% confidence 
intervals (CI) in control and intervention households at each follow-up visit, according to where 
water stored. 

 Control Intervention – all Intervention –directly 
from filter 

Intervention –from other 
container 

Round N AM  
(95% 
CI) 

WM 
(95
% 
CI) 

N AM  
(95% 
CI) 

WM 
(95% 
CI) 

N AM  
(95% 
CI) 

WM 
(95% 
CI) 

N AM 
(95% 
CI) 

WM 
(95% CI) 

1 149 51.9 
(28.8
- 
75.0) 

5.5 
(3.5-
8.5) 

106 31.4 
(13.0- 
49.9) 

2.7 
(2.1-
3.5) 

75 5.8 (-
1.4- 
13.0) 

1.5 
(1.2-
2.1) 

28 103.3 
(35.5- 
171.1) 

12.9 
(6.2-
26.5) 

2 138 121.5 
(65.5
- 
177.6
) 

10.0 
(6.9-
14.5 

81 19.7 
(1.6- 
37.8) 

1.9 
(1.4- 
2.7) 

63 3.0 (-
2.0- 
7.9) 

1.4 
(0.9-
2.1) 

18 78.3 
(21.1- 
135.6) 

6.2 (3.5-
11.1) 

All 287 
 
 

85.4 
(62.1
- 
108.7
) 

7.3 
(5.6-
9.5) 

187 26.3 
(12.1- 
40.6) 

2.3 
(1.9- 
2.9) 

138 4.5 (-
1.6- 
10.6) 

1.5 
(1.1-
2.0) 

46 93.5 
(37.9- 
149.1) 

9.7 (5.7-
16.4) 

AM=arithmetic mean, WM=Williams mean.   
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Using combined data from both rounds, household drinking water quality in control households 

overall had significantly worse water quality than intervention households, with a Williams mean 

of 7.3 TTC/100mL (95% CI, 5.6-9.5) compared to 2.3 TTC/100mL (95% CI, 1.9-2.9, p<0.001) in the 

intervention arm (Table 3). Within the intervention arm, householdss with drinking water from 

filter storage containers had less TTC contamination (WM 1.5, 95% CI 1.1-2.0) than intervention 

households that stored their water in another container (WM 9.7, 95% CI 5.7-16.4, p<0.001) 

(Table 3). Overall, 39.4% of control households had no detectable TTC (95% CI, 30.6-48.9%), 

compared with 70.6% of intervention households (95% CI, 63.7-76.7%) (Figure 2). Of 91 

intervention households that provided water samples in both Round 1 and Round 2, 55 

households (60.4%) had no detectable TTC at both visits, while of 144 control households with 

water samples in both rounds, 27 households (18.8%) had no detectable TTC.   

 

Controlling for water source, toilet type, and rainfall within the previous 10 days, the odds of 

having detectable TTC were significantly reduced in the intervention arm, with an OR of 0.22 

(95% CrI 0.10-0.39, p<0.001). A further sensitivity analysis among a subsample of houses (276 

total observations) was conducted, controlling for source water quality instead of source type 

since source type may not be an adequate proxy for source quality. This analysis found there 

was an OR of 0.17 (95% CrI 0.04-0.35, p<0.001) with source water quality as log TTC. This 

sensitivity analysis demonstrates the effect of the filters on water quality remained protective 

despite these factors.   

 

Similarly, the odds ratio of having drinking water with more than 10 TTC/100mL in the 

intervention arm compared to control arm was 0.34 (95% CrI 0.18-0.56, p<0.001). Controlling for 

source water quality instead of reported water source, there was an OR of 0.26 (95% CrI 0.10-

0.50, p=0.001) with source water quality as log TTC.  
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Figure 2 Proportion of drinking water samples by level of faecal contamination with cluster-
robust 95% confidence intervals (CFU/100mL) in control and intervention households. 

 

Child diarrhoea 

Overall, one-week prevalence for reported diarrhoea was 19.3% in the control arm and 12.5% in 

the intervention arm, with greatest difference between the two arms occurring in Round 2 

(Table S2).  Controlling for SES, age in months, gender, water source (improved vs. unimproved), 

and toilet type (improved vs. unimproved), and rainfall within the previous 10 days, children in 

the intervention arm had 50% lower odds of diarrhoea compared to children in the control arm 

(OR=0.50, 95% CrI 0.23-0.90, p=0.03). Separate models for seeking care from a CHW for 

diarrhoea within the last 7 days and seeking care for diarrhoea at a health facility within the last 

7 days were not estimable due to low number of cases. Controlling for SES, age in months, 

gender, water source, toilet type, rainfall within the previous 10 days, and reported travel time 

to health facility, the odds ratio of seeking care from a CHW or at a health facility for diarrhoea 

within the last 7 days in intervention compared to control was 0.54 (95% CrI 0.18-1.21, p=0.13). 

The odds ratio of seeking care for diarrhoea at a health facility within the last 3 months was 0.60 
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(95% CrI 0.27-1.11, p=0.11), controlling for SES, age in months, gender, water source, toilet type, 

and reported travel time to health facility.   

 

DISCUSSION 
 

This study found high coverage and continued use of a household water filter 13-24 months 

following intervention delivery. This was accompanied by improved household drinking water 

quality and reduced one-week prevalence of self-reported diarrhoea among children under 5 

years.    

 

The levels of coverage and use of the filter were significantly higher than those reported on a 

large-scale intervention involving previous versions of the LifeStraw filter in Kenya (Pickering et 

al., 2015).  This may be due in part to improvements in the design of the filter, from a hanging 

version (model 1.0) used in previous studies to the tabletop version (2.0) used here.  The 

previous version may have been difficult to use; it also had no water storage chamber.  The 

difference in effect may have also benefited from consistent engagement by the programmatic 

team. This included technical support, transport of broken filters between households and 

regional repair centres, involvement of CHWs who lived in the targeted communities, and 

dynamic and repeated behaviour change messaging and materials (Barstow et al., 2014). Most 

instances of non-use in the intervention arm were due to breakage or perceived breakage. The 

necessary backwashing frequency and cleaning frequency seemed to be key messages that were 

not followed consistently, and this led to clogged and unusable filters, as noted in previous 

studies (Barstow et al., 2014; Rosa et al., 2014b).      

 

In addition to self-reported and observed usage, filter usage was confirmed by the sensor-

equipped filters. Sensors may offer a more objective measure of usage and are able to provide 
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usage statistics over an extended period of time, although they may still be subject to bias due 

to reactivity. Although households were not told the explicit nature of the sensor, it is possible 

that usage increased due to observer bias and other factors related to the presence of research 

staff in the village during the monitoring period (Arnold et al., 2015). A recent study among 

similar households in Rwanda demonstrated reactivity when households knew the sensor was 

present and measured filter usage, with households appearing to increase their usage for at 

least 30 days (Thomas et al., 2016). In this study, sensors were in houses for 7-30 days due to 

logistical constraints, and it is possible the sensors do not reflect long-term usage. The range in 

the number of days which sensors were deployed within houses for was largely dependent upon 

the number of study households within the intervention village and its matched control village, 

and this further diminishes the generalizability of usage data generated by the sensors. The 

mean volume filtered per day and the overall less than 50% of household sensor deployments 

that were adherent (defined as at least one filter fill on at least half of analysable transmit days) 

suggests consumption of filtered water is below WHO recommendations (Grandjean, 2005). This 

may be due to under-consumption of water and/or preference for other types of beverages, as 

well as consumption of non-treated water both at and away from the household.  

 

Consistent with potential under-consumption of filtered water as indicated by the sensors, this 

study found non-exclusive consumption of filtered water by both children and adults, 

particularly whilst away from the household. Since these behaviours were self-reported, non-

compliance is likely underestimated, particularly for children who were not always supervised by 

the survey respondent (Rosa et al., 2016, 2014a). Previous work has identified non-exclusive and 

inconsistent use of household water treatment products as challenges in this and other low-

income settings (Barstow et al., 2014; Boisson et al., 2013; Clasen et al., 2015; Peletz et al., 2012; 

Rosa et al., 2014b). This behaviour can diminish the health gains that are possible (Brown and 

Clasen, 2012; Enger et al., 2013; Hunter et al., 2009). Future research and behaviour change 
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efforts should focus on ways to maximize the availability of filtered water and sustain exclusive 

and consistent use, both within and outside of the household. 

 

Drinking water quality in the intervention arm was significantly less contaminated than in the 

control arm in both rounds and overall. The observed reductions in TTC contamination is 

consistent with other field-based studies of the LifeStraw filter, including version 1.0, a hanging 

model (Boisson et al., 2010; Peletz et al., 2013, 2012) and version 2.0, the tabletop model (Rosa 

et al., 2014b). Levels of faecal contamination in the control arm and in intervention households 

whose sample did not come from the LifeStraw were similar to other studies in Rwanda among 

households not using a LifeStraw filter (Kirby et al., 2016; Rosa et al., 2014b). Within the 

intervention arm, those who reported consuming water directly from the filter had significantly 

improved water quality compared to households that stored their water in other containers. 

However, this was mainly due to the filter being broken rather than storage in separate 

containers after filtration.     

 

This study found significant reduced odds of child diarrhoea within the previous week among 

children in the intervention arm compared to the control arm. Given evidence of filter usage and 

improved water quality in the intervention arm, reduced diarrhoea could be due in part to the 

intervention. The magnitude of effect was similar to other filter studies (Clasen et al., 2015), 

including a study in Zambia examining LifeStraw 1.0, a hanging model (Peletz et al., 2012). 

Although children within the intervention arm had reduced odds of visiting a CHW or health 

facility for diarrhoea within the previous 7 days, the finding was not statistically significant, nor 

was seeking care for diarrhoea at a health facility within the previous 3 months. This is likely due 

to insufficient sample size. Additionally, the 3-month recall period is likely subject to inaccuracies 

(Arnold et al., 2013; Boerma et al., 1991). Fewer visits to health facilities would have substantial 
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public health benefits, including reduced economic burden associated with seeking treatment 

(Ngabo et al., 2016a).   

 

Evidence of health impacts should be interpreted with caution since the outcomes were self-

reported and the intervention was not blinded. A systematic review of household water 

treatment found that while non-blinded trials generally reported a protective effect, blinded 

trials generally did not (Clasen et al., 2015). There was no impact on the negative control of 

toothache, suggesting courtesy bias may have a limited role, although additional negative 

controls such as bruising/scraping and earache could have strengthened this check. Of note is 

the finding that one-week diarrhoea prevalence was similar between the intervention and 

control arms in Round 1, yet substantially different in Round 2 (Table S2). The reasons for this 

are unclear, though are potentially due to unmeasured confounders such as variation in local 

disease transmission patterns and environmental exposures such as localized seasonal and 

climatic influences.  It is also possible the implementer’s health education and behaviour change 

messaging influenced respondent responses regarding health symptoms and usage behaviour. 

There remains a need for more objective outcomes to overcome the weaknesses of this self-

reported outcome (Clasen and Boisson, 2015), such as biomarkers of recent infection (Priest et 

al., 2006). A larger randomized study with confirmed health facility diagnoses of diarrhoea and 

other objective measures would help determine whether the filter is effective at preventing 

clinically significant cases of diarrhoea.   

 

This study has several limitations. The study was unblinded, and we cannot exclude the 

possibility of courtesy bias that can occur with a non-blinded intervention, both for intervention 

usage and reported health impacts.  In some villages, study teams were present in the village for 

over a month, and implementers remained programmatically engaged with communities 

throughout the study.  This could have influenced household behaviours and responses (Arnold 
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et al., 2015; McCarney et al., 2007; Zwane et al., 2011). There was also high attrition in this 

study, particularly among the intervention arm.  Reasons for this are unclear, although 

intervention villages with the lowest follow-up rates were visited during the July and August 

planting season (Table S3). The loss to follow-up is not believed to be due to unmeasured 

confounders or factors relevant to our outcomes of interest.   

 

Of particular concern is that intervention and control villages were not randomly selected and 

thus our results are not generalizable beyond the study population. Additionally, we cannot rule 

out the potential role of unmeasured confounders. For example, we did not measure 

breastfeeding practices, child nutrition status, or ambient temperature which can impact 

diarrhoea (Checkley et al., 2000), nor did we assess rotavirus vaccination status, which was 

introduced in May 2012 and has been associated with both decreased hospitalizations for 

diarrhoea and rotavirus in Rwanda (Ngabo et al., 2016b; Tate et al., 2016). However, we would 

not expect these factors to systematically influence the intervention or control arm. 

Furthermore, the quality of the matching data was low and may not represent true household or 

village conditions, particularly among neighbouring households which were not eligible to 

participate in the study yet may influence outcomes of interest in study households. Timely 

household- or village-level census data could have improved the matching considerably. Despite 

continued susceptibility to unmeasured confounding, the matched cohort design is a cost-

effective approach to estimating intervention effects in populations exposed to non-randomized 

programmes.  It attempts to account for the relationship between treatment and covariates, and 

is more statistically efficient for estimating difference parameters than post hoc adjustment 

(Arnold et al., 2010).  

 

Lastly, this was a combined intervention of both a water filter and an advanced cookstove. While 

this paper has focused on diarrhoea and water quality as outcomes, we cannot rule out the 
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possibility that the stove influenced the results. For example, the stove component of the 

intervention could have reduced immune system vulnerability to respiratory infections (Lee et 

al., 2015) and co-morbidity with diarrhoea, although reduced risk of diarrhoea is more likely to 

reduce pneumonia than vice versa (Ashraf et al., 2013; Fischer Walker et al., 2013a; Schmidt et 

al., 2009). Nevertheless, these results should be interpreted within the context of a combined 

intervention and not solely the filter, although the causal pathway of improved drinking water 

due to the filter in turn resulting in reduced diarrhoea remains the most plausible explanation 

for our findings.  Future research should examine the separate and combined impacts of 

household-based WASH and energy interventions.   

 

Notwithstanding these limitations, this study does provide support for scaling up the 

intervention.  The implementers have now delivered filters and stoves to ubudehe 1 and 2 

households throughout Western Province. A randomized controlled trial to assess the impact of 

this larger scale roll out is currently underway (Nagel et al., 2016). 
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SUPPLEMENTARY INFORMATION  
 

Table S 1 Comparison of unmatched vs. matched village characteristic bias on key matching characteristics. 

 UNMATCHED VILLAGES (n=210) 
MATCHED VILLAGES 

(n=18)  

  Intervention Control % bias Intervention Control % bias % reduction bias 

Minutes to road 100.56 82.11 18.8 100.56 92.22 8.5 54.8 

Percent of households 
ubedehe 1 & 2 32.87 29.99 25.6 32.87 30.27 23.1 9.7 

Percent of households 
using unimproved 
water supply 11.62 24.72 -52.7 11.62 13.11 -6 88.7 

Mean household daily 
cook times  2.0 1.91 30.5 2.0 1.89 37.9 -24.1 

Percent of households 
treating water  44.02 53.85 -41.5 44.02 42.61 6 85.6 

Mean size of ubedehe 
1 & 2 households 3.42 3.69 -26.7 3.43 3.23 19.5 27 

Primary stove (3 
stone) 0.44 0.38 13.1 0.44 0.44 0 100 

Primary stove 
(charcoal) 0.44 0.59 -28.9 0.44 0.56 -21.8 24.7 

Primary household 
fuel type (wood) 1 1.23 -32.3 1 1 0 100 
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Table S 2 Reported diarrhoea, health-care seeking behaviour, and toothache (negative control) among children under 5 years of age. 

 Round 1 
N=340 children 

Round 2 
N=284 children 

Overall 
N=624 child observations 

 Control 
N (%)  

Intervention 
N (%) 

Control 
N (%) 

Intervention 
N (%) 

Control 
N (%) 

Intervention 
N (%) 

Diarrhoea – within previous 
7 days  

31 
(16.1) 

25 (17.0) 38 
(22.8) 

8 (6.8) 69 
(19.2) 

33 (12.5) 

Sought care from CHW or at 
health facility for diarrhoea 
within previous 7 days 

10 (5.2) 8 (5.4) 17 
(10.2) 

2 (1.7) 27 (7.5) 10 (3.8) 

Sought care at health facility 
for diarrhoea within last 3 
months 

25 
(13.0) 

13 (8.8) 25 
(15.0) 

7 (6.0) 50 
(13.9) 

20 (7.6) 

Toothache – within previous 
7 days  

9 (4.7) 6 (4.1) 5 (3.0) 4 (3.4) 14 (3.9) 10 (3.8) 

Total child observations 193 147 167 117 360 264 
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Table S 3 Main household and child health survey enrollment and follow-up for Round 1 (October 2013-May 2014) and Round 2 (May-November 2014). 

Intervention villages – Round 1 Control villages – Round 1 

Round 1 start Round 1 end 

Interv
ention 
village  

Enrolled 
and 
surveyed 
houses 

% of 
overall 
round  

Round 1 
start 

Round 1 
end 

Control 
village 

Enrolled 
and 
surveyed 
houses 

% of 
overall 
round  

29-Oct-13 30-Oct-13 201 8 3.0  01-Nov-13 01-Nov-13 202 15 5.6  

11-Nov-13 12-Nov-13 203 7 2.6  14-Nov-13 20-Nov-13 204 16 5.9  

25-Nov-13 28-Nov-13 205 12 4.5  02-Dec-13 02-Dec-13 206 4 1.5  

10-Dec-13 10-Dec-13 207 3 1.1  14-Dec-13 17-Dec-13 208 15 5.6  

07-Jan-14 08-Jan-14 209 14 5.2  09-Jan-14 09-Jan-14 210 16 5.9  

27-Jan-14 29-Jan-14 211 16 5.9  30-Jan-14 31-Jan-14 212 5 1.9  

11-Feb-14 12-Feb-14 213 27 10.0  21-Feb-14 25-Feb-14 214 13 4.8  

10-Mar-14 17-Mar-14 215 13 4.8  17-Mar-14 27-Mar-14 216 43 16.0  

22-Apr-14 22-Apr-14 217 13 4.8  26-Apr-14 09-May-14 218 29 10.8  

Intervention villages – Round 2 Control villages – Round 2 

Round 2 start Round 2 end 

Interv
ention 
village 

Surveyed 
houses 

% of 
overall 
round 

% from 
Round 1 
followed 
up 

Round 2 
start 

Round 2 
end 

Control 
village 

Surveyed 
houses 

% of 
overall 
round 

% from 
Round 1 
followed 
up 

19-May-14 22-May-14 201 8 3.4 100.0 19-May-14 22-May-14 202 15 6.4 100.0 

02-Jun-14 03-Jun-14 203 7 3.0 100.0 06-Jun-14 09-Jun-14 204 15 6.4 93.8 

16-Jun-14 17-Jun-14 205 10 4.3 83.3 17-Jun-14 17-Jun-14 206 4 1.7 100.0 

30-Jun-14 30-Jun-14 207 3 1.3 100.0 01-Jul-14 05-Jul-14 208 12 5.1 80.0 

14-Jul-14 15-Jul-14 209 14 6.0 100.0 17-Jul-14 19-Jul-14 210 14 6.0 87.5 

29-Jul-14 31-Jul-14 211 11 4.7 68.8 30-Jul-14 31-Jul-14 212 3 1.3 60.0 

20-Aug-14 02-Sep-14 213 16 6.8 59.3 18-Aug-14 18-Aug-14 214 11 4.7 84.6 

15-Sep-14 16-Sep-14 215 11 4.7 84.6 17-Sep-14 03-Oct-14 216 41 17.4 95.3 

21-Oct-14 24-Oct-14 217 11 4.7 84.6 24-Oct-14 11-Nov-14 218 29 12.3 100.0 
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Figure S 1 A theoretical model for the association between determinants and household water 
quality (thermotolerant coliform, TTC) as an outcome. 
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Figure S 2 Map of Rwanda with district boundaries and locations (shaded) of the nine paired 
intervention and control villages. 
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Supplementary information 1 – polychoric principal component analysis  

 

The following variables were considered for polychoric principal component analysis: 

 

ubudehe category 

respondent ever attended school 

respondent highest level of schooling.  

head of house ever attended (includes respondent if they are head of house) 

head of house highest level of schooling (includes head of house)  

highest education, of respondent or head of house 

house has electricity 

house has radio 

house has mobile phone 

house has mattress 

house has bicycle 

house has own land/plot 

house has own agricultural land 

house has own house 

house has own animals 

house has cows  

house has pigs 

house has sheep 

house has goats 

house has chickens 

house has rabbits 

house has other animals  
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house has flooring  

type of walls 

number of rooms. 

number of bedrooms 

total people in house 

total people in house/# of rooms 

total people in house/# of bedrooms 

 

These variables were included in a correlation matrix, and variables were removed when 

correlations were missing. Components (eigenvectors) with values less than 0.15 were removed. 

The final model included household durable goods and housing materials: 

 

electricity 

radio 

mobile phone 

bicycle  

flooring type 

wall type categories 

 

The variance explained by the first principal component was 0.535155.  

 

The continuous PCA variable was then divided into quintiles to construct a categorical 

socioeconomic status (SES) proxy variable.   



 

Chapter 5. Assessing use, exposure, and health impacts of a 
portable rocket stove intervention in Rwanda 
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ABSTRACT 
 

Household air pollution (HAP) is a major cause of morbidity and mortality worldwide. Improved 

cookstoves have been promoted as a way of reducing exposure to fine particulate matter (PM2.5) 

in the absence of clean fuels. In 2012, a public-private program provided a free rocket stove and 

water filter to households in 15 rural villages. We matched 9 of these pre-existing intervention 

villages to 9 control villages using propensity score matching to assess medium-term usage, 

exposure, and child health 13-24 months later. Cooking area PM2.5 and personal exposures 

among cooks and children under 5 to PM2.5 and carbon monoxide (CO) was assessed for 48 

hours in 455 household visits. Coverage and use of the stove was high, but householders 

continued to use traditional stoves as well. The geometric mean (GM) concentration of PM2.5 in 

the primary cooking area was 43.4% lower in the intervention arm (p<0.001), although 

accounting for the sum of two different household locations was 32.7% lower (p=0.017).  Among 

primary cooks, GM PM2.5 concentrations were 192 μg/m3 (95% confidence interval (CI) 150-246 

μg/m3) in the control arm compared to 151 μg/m3 (95% CI 134-171 μg/m3) in the intervention 

arm, but not significantly different in adjusted analyses (22.2% lower GM PM2.5, p=0.06).  Child 

GM PM2.5 concentrations were 194 μg/m3 (95% CI 138-272 μg/m3) in the control arm and 175 

μg/m3 in the intervention arm (95% CI 135-225 μg/m3), but reductions were not statistically 

significant in adjusted analyses (p=0.27). Despite a lack of significant exposure reductions, 

children in the intervention arm had significantly reduced odds of self-reported acute respiratory 

infection within the previous 7 days (OR 0.23, p=0.008, 95% credible interval (CrI) 0.05-0.57) and 

self-reported attendance to a health facility for respiratory symptoms within the previous 90 

days (p=0.004, 95% CrI 0.10-0.64) compared to the control arm. The reported health impacts 

could be due in part to reporting bias and the impact of the water filter component of the 

intervention. 
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INTRODUCTION 
 

An estimated forty percent of the world’s population uses solid fuels such as wood, crop 

residues, charcoal and coal for cooking (Bonjour et al., 2013). Burning of solid fuels on traditional 

inefficient stoves results in incomplete combustion, resulting in particulate matter (PM) and 

carbon monoxide (CO), major components of household air pollution (HAP) in addition to more 

than 250 compounds, many of which are harmful to health (Naeher et al., 2007; Smith et al., 

2000). 

 

Household air pollution (HAP) is estimated to have resulted in 2.9 million deaths and 85.6 million 

disability adjusted life years in 2015(GBD 2015 Risk Factors Collaborators, 2016). Numerous 

health impacts have been associated with HAP (Bruce et al., 2015b; Fullerton et al., 2008; Smith 

et al., 2014). There is strong evidence for the adverse impact of HAP on respiratory infections 

(Gordon et al., 2014), particularly for children who are especially vulnerable to acute lower 

respiratory infection (ALRI) (Dherani et al., 2008; Gordon et al., 2014; Po et al., 2011).  Each year 

an estimated 1.3 million child deaths are due to pneumonia (Fischer Walker et al., 2013b).  

 

Strong evidence has also been reported for chronic obstructive pulmonary disorder and chronic 

bronchitis (Assad et al., 2015; Hu et al., 2010; Kurmi et al., 2010; Mortimer et al., 2012). More 

tentative evidence exists for nasopharyngeal and laryngeal cancer as well as lung cancer and 

stroke (Bruce et al., 2015a; Gordon et al., 2014; Kurmi et al., 2012a; Raspanti et al., 2016). 

Exposures early in life may result in increased risk for some of these diseases in adulthood 

(Kurmi et al., 2012b).  Emerging evidence suggests there may be an impact on blinding and other 

eye conditions (Ravilla et al., 2016; West et al., 2013) as well as tuberculosis (Jafta et al., 2015; 

Lin et al., 2014; Sumpter and Chandramohan, 2013). Child survival outcomes such as low birth 
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weight, preterm birth, still birth, and perinatal mortality are also associated with solid fuel use 

(Amegah et al., 2014; Epstein et al., 2013; Patel et al., 2015; Pope et al., 2010; Wylie et al., 2014).  

Other non-disease related injuries can occur, such as burns from stoves (Peck et al., 2008) and 

sexual violence during fuel collection (Patrick, 2007).   Much uncertainty exists about exposure-

response for these outcomes, and misclassification is possible (Assad et al., 2015; Bruce et al., 

2015b; Gordon et al., 2014). 

 

Approaches to reducing HAP include transitioning to cleaner fuel, changing to cleaner 

cookstoves, increasing ventilation, and other behaviour change techniques (WHO, 2006). 

Exclusive use of cleaner fuels like liquefied petroleum gas (LPG) is advocated as the best way to 

reduce HAP exposures (Sagar et al., 2016), however provision of clean fuels in many rural 

settings is unlikely in the near-term due to high costs and lack of supply (Johnson and Chiang, 

2015; Thomas et al., 2015). Improving fuel efficiency and reducing emissions using biomass 

stoves is therefore an interim option (Johnson and Chiang, 2015; Kshirsagar and Kalamkar, 

2014). Improved biomass cookstoves have been found to reduce kitchen concentrations of 

particulate matter <2.5μm in diameter (PM2.5) and carbon monoxide (CO) (Ezzati et al. 2000, 

Pennise et al. 2009, Clark et al. 2013, Emma Thomas et al. 2015). However, these cookstoves 

may not reduce kitchen concentrations or personal exposures below WHO guidelines (Bruce et 

al., 2015b; Clark et al., 2013), and substantial reductions may be necessary to achieve health 

improvements for acute respiratory infections (Bruce et al., 2015b; Burnett et al., 2014; Ezzati 

and Kammen, 2001) and cardiovascular disease (Baumgartner et al., 2012; Pope III et al., 2011).  

 

In October 2012, a public-private partnership between the Rwanda Ministry of Health and 

DelAgua Health Rwanda Ltd., a private company, provided approximately 2,200 improved 
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combustion cookstoves and water filters at no cost to all households in 15 rural villages in 11 

districts.  The intervention, described elsewhere (Barstow et al 2014), included one improved 

portable cookstove and one household water filter, in-home training, instructional materials, 

repair services, and multiple household visits to measure and encourages behavior change.  The 

intervention stove is a portable rocket stove design known as an Ecozoom Dura stove.  The 

stove’s internal chamber allows for improved combustion and channelled air flow resulting in 

reduced emissions.   The stove included a stick support used to increase airflow and a pot skirt to 

improve thermal efficiency.  Households were encouraged to use dry wood when possible, and 

to cook outdoors.   

 

A 5-month household randomized controlled trial (RCT) of the intervention programme reported 

a mean 24-hour PM2.5 reduction of 46% in cooking area concentrations, though reductions were 

73% for the approximately 25% users reportedly cooking outside (Rosa et al., 2014). Although 

self-reported use was high and sensor-derived use of the stove was confirmed (Rosa et al., 2014; 

Thomas et al., 2013a), continued use of traditional stoves was observed. Importantly, impacts on 

personal exposure among cooks and children are unknown.  We undertook this study to assess 

the long-term sustainability of this intervention as delivered programmatically, as well as the 

long-term effectiveness of these devices on HAP, personal exposures and self-reported health 

outcomes. 

 

METHODS 
 

Study setting, design and matching.   

This study was based in the Western and Southern provinces of Rwanda, as described elsewhere 

(Barstow et al., 2014; Rosa et al., 2014).  The region is predominantly rural and most villagers are 
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agriculturalists, with two rainy seasons – March to May, and September to December. There is 

little variation in temperature during the year, and averages 17.5-19°C. Study villages ranged 

from 1400-2500m in elevation. Most courtyards (66.4%) were open (bordered by 1 wall), while 

22% were semi-enclosed (bordered by 3-4 walls). Households typically cook meals in pots over a 

fire between three stones (three stone fire), or locally-made built-in wood-burning stoves that 

do not have chimneys (rondereza). Additionally, some households cook on portable locally-made 

charcoal stoves (imbabura). 

 

Because this study was designed to assess the longer-term use and impact of the intervention 

among villages that had received it a year before, an RCT design was not possible.  However, 

since we sought to compare those villages with a contemporaneous control group, we adopted a 

matched cohort study design (Rubin, 2007).  Nine of the original 15 intervention villages were 

purposely selected for inclusion into the follow-up study, with 3 excluded due to low number of 

estimated eligible households and 3 excluded due to participation in a previous RCT.   

 

Nine matched control villages were selected using restriction, propensity score matching, and 

rapid assessment (Arnold et al., 2010). First, intervention villages were matched to potential 

control villages within the same health centre catchment area as a measure of village similarity.  

 

To create the propensity score model, we first created a dataset for the matching that merged 

three separate datasets. The covariates used in the matching process were determined by 

examining items from a baseline survey of intervention households conducted in October 2012 

and determining variables most related to the outcomes of interest (HAP and household drinking 



179 
 

water quality). These items were incorporated into a survey of community health workers from 

potential control villages.  More information about each data source is below:   

 

i) DelAgua household survey   

This survey was conducted within 48 hours of intervention delivery (October 2012) to all 

intervention households. The survey was conducted by each intervention village’s 

community health workers (CHWs), and contained questions on stove type, fuel type, 

and water treatment practices before receipt of the intervention.  DelAgua household 

data were aggregated by village and categorized according to majority proportion.   

 

ii) Community Health Worker phone survey 

A phone survey was conducted by LSHTM research team staff in July 2013 and 

administered to one CHW from all intervention villages and potential control villages.  

Potential control villages were surveyed if they i) shared same health centre as 

intervention village and ii) did not share a border with an intervention village. Shared 

health centres were pre-identified using a national database that lists each village, its 

CHWs, and its assigned health centre.   

 

If the potential control village CHW reported that the village did not attend the 

government-listed health centre, or if it shared a border with the intervention village, 

the survey was not administered and that village was excluded from consideration.  The 

phone survey consisted of 37 questions and lasted approximately 15 minutes.  The 

survey asked the CHW to estimate village-level characteristics including total 

households, total children under 5, minutes’ walk to main road, percent of households 

using drinking water source types, water treatment practices, and cooking practices  
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(primary stove type, primary fuel type, number of meals cooked per day). CHW phone 

surveys resulted in 201 potential control villages.  

 

iii) National Ubudehe Database 

This government database lists the number of households and number of people in each 

of six ubudehe wealth categories for every village, cell, sector, and district in Rwanda. 

This database allowed for the proportion of houses according to ubudehe category, and 

estimation of household size according to ubudehe category. 

 

Village-level data were combined from the above 3 sources.  Characteristics likely to change due 

to the intervention, such as water treatment and cooking practices, were derived from the 

DelAgua survey since it assessed these practices prior to receipt of the intervention.  All other 

village-level characteristics were derived for intervention and control villages from the CHW 

phone survey and National Ubudehe Database.   

 

Control villages were restricted from consideration based on the implementer’s original 

exclusion criteria (Barstow et al., 2014), intended to characterize a rural Rwandan village’s 

energy use and water infrastructure.  Namely, if villages were estimated to have more than 20% 

of households with piped water, more than 60% using water treatment method other than 

boiling, more than 20% using cooking fuel other than biomass or charcoal or more than 20% 

using a non-traditional stove, they were excluded.  

 

Propensity score matching using probit regression was then conducted using different 

combinations of the village-level covariates described above, given their potential relationship to 
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household air pollution and drinking water quality which were the primary outcomes of interest. 

The mean bias of each fitted model was examined across the range of potential matching 

variables in order to obtain optimal covariate balance for all available covariates between arms.  

Using the propensity score from the optimal model, each intervention village was matched to a 

control village within the same health centre catchment area using the nearest neighbour 

method (Austin, 2009; Rosenbaum and Rubin, 1985). Propensity score matching was performed 

using the Stata add-on package PSMATCH2 (Leuven and Sianesi, 2003). 

 

After matching, median bias of key matching variables was reduced from 27.8 to 7.2 (Table S1), 

suggesting improved balance was achieved reducing likelihood of potential confounders. Village-

level bias was reduced in all key matching variables with the exception of mean household daily 

cook times, although the household differences at enrolment between the intervention and 

control arms were minimal (Table 1).  Lastly, after conducting household surveys in intervention 

villages, each control village was rapidly assessed by study personnel by conducting a transect 

through the village, meeting with village chiefs and CHWs to confirm the previously estimated 

village-level characteristics used in the matching.  Following the rapid village assessments, each 

intervention village was deemed comparable to its matched control village. 

 

Enrolment and eligibility 

Eligible households had to have at least one child under 5 years of age and be listed on a 

government-derived village roster as being in the poorest socioeconomic tertile (ubudehe group 

1 or 2). Households in intervention villages were enrolled regardless of whether they had 

received the intervention from the implementer. Study households in control villages received a 

water filter and stove at the end of the study (2015).  From November 2013-May 2014 (Round 
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1), all consenting eligible houses were enrolled and visited once. Houses were visited a second 

time between May 2014 and November 2014 (Round 2). 

 

Ethics and consent. 

Primary cooks gave written informed consent to participate in the study, and also gave assent 

for the participation of children within the household. If the respondent could not sign their 

name, they provided a thumbprint and a literate witness signed on their behalf to confirm 

comprehension. This study was approved by LSHTM Ethics (6457) and Rwanda National Ethics 

Committees (494/RNEC/2013), and was registered at ClinicalTrials.gov (NCT01998282). 

 

Household questionnaire 

Study enumerators were trained and supervised by the study authors and were not involved in 

delivery or promotion of the intervention.  At each visit, a household survey was administered to 

the primary cook of the household regarding household demographics, drinking water practices, 

fuel use, cooking, heating and lighting practices, self-reported child health symptoms and receipt 

of medical care from a CHW or health facility.  Questions were pre-piloted, translated, back-

translated and administered verbally in Kinyarwanda, a national language of Rwanda spoken by 

all study participants. Ownership of household goods were incorporated into a socioeconomic 

indicator using polychoric principal component analysis (Kolenikov and Angeles, 2009).   

 

Evaluation of cookstove use 

Household use of the Ecozoom was assessed using self-reported indicators of frequency of use 

(e.g., number of times per week, when last used). Staff also visually inspected the stoves for 
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appearance of use (i.e., accessible, not dusty with cobwebs, etc), and noted if the stove was 

warm or currently in use. These questions and observations were also administered for each 

traditional stove in the intervention and control arms.     

 

Primary and secondary outcomes 

The primary outcome for this study was 48-hour personal exposure to PM2.5 among cooks and 

children less than 5 years of age since these household members experience the highest 

exposures and health burden to HAP due to proximity to fires used for cooking.  Secondary 

outcomes included personal exposure to CO among cooks and children under 5, cooking area 

and outside courtyard PM2.5, reported and observed use of the intervention stove, and primary-

caregiver reported acute respiratory illness within the previous 7 days for study children. Due to 

limited time and resources necessary to assess ALRI according to World Health Organization 

WHO Integrated Management of Childhood Illness (IMCI) protocol (WHO, 2005) or utilize clinical 

evaluation, acute respiratory infection (ARI) was defined as cough accompanied by “wheeze or 

rapid or difficulty breathing”.  Additional information included whether care from a CHW or 

health facility was sought for ARI within the previous 7 days, and whether care was sought at a 

health facility for respiratory symptoms within the previous 3 months. Toothache was included 

as a negative control (Arnold et al., 2016; Lipsitch et al., 2010).  

 

HAP measurement eligibility and enrolment  

All households that participated in the main survey were followed up for participation in HAP 

monitoring in both Round 1 and Round 2 up to one month after the main survey visit.   A survey 

was administered to the primary cook on HAP monitoring deployment and retrieval day (48 

hours later), as well as an unannounced check-up visit to evaluate compliance and identify any 
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problems with the equipment on day two. The survey contained observations and 

measurements concerning stove lighting events during the monitoring period.  

 

To be eligible for personal exposure monitoring, the primary cook had to be healthy enough to 

perform normal daily activities, 18 years of age or older, not pregnant, and not a current smoker. 

For children, HAP monitoring preference was given to any child under 5 who was able to carry 

either the gravimetric PM2.5 and CO monitors in a medium backpack (~ 1kg) (Figure 1) or a 

smaller backpack (0.25kg) holding only a CO monitor.  If more than one child under 5 was able to 

carry the equipment, 1 child was randomly selected. At Round 2, the HAP cook and HAP child 

from Round 1 was followed up for monitoring at Round 2 if present if they still met the eligibility 

criteria and were present; otherwise another cook or child under 5 was selected for exposure 

monitoring.   

   

Personal exposure to PM2.5  

Integrated gravimetric exposure to PM2.5 was assessed in primary household cooks and children 

1.5-5 years of age using a system consisting of a 2.5 μm-diameter BGI-Harvard Personal 

Environmental Monitor (HPEM) impactor (BGI, Massachusetts, USA) and a Casella TuffPro™ 

(Casella Measurement, Bedford, UK) low-flow pump set to 1.8 litres per minute at one-minute 

intervals for 48 hours. The PM2.5 particulate matter was collected on pre-weighed 37-mm Teflon 

filters (Pall, USA) with a drain disk due to anticipated high loading of the filters (Ni et al., 2016).  

The HPEMs were worn within the breathing zone (between chest-level and mouth) in a diagonal 

chest strap and connected by tubing to a pump held within a sewn pouch (Figure 1). The 

equipment weighed approximately 1kg in total. Participants were instructed to wear the 

equipment at all times for a 48-hour period, except during sleeping, breastfeeding, bathing, or 
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other activities as necessary, in which case the devices were to be kept within 1 meter of the 

individual at a similar height (Dionisio et al., 2012).  Filter blanks (~15%) were collected 

throughout the measurement period.  

 

Pump flow was calibrated in the participant’s home immediately before and after the 48-hour 

monitoring period using a Challenger air flow calibrator (BGI, Massachusetts, USA).  Samples and 

blanks were stored at 4°C and then mailed on ice in batches to Berkeley Air Monitoring Group in 

California, USA for gravimetric analysis.  Prior to weighing, the filters were equilibrated for 24 h 

at 22 ± 3°C and 40 ± 5% relative humidity (Rosa et al., 2014).  Filters were weighed in duplicate, 

unless the two weights differed by more than 5 µg, in which case a third weight was taken and 

the average of the two closest weights was used. The balance was a 0.1 microgram resolution 

electro microbalance (XP2U, Mettler, Toledo, USA).  Median blank adjustment resulted in a 

subtraction of 32.30 μg for rainy season deployments (based on 75 blanks), and 23.10 μg in the 

dry season (based on 37 blanks).   

 

Personal exposure to CO 

Personal exposure to CO was assessed using a GasBadge Pro (Industrial Scientific, Pennsylvania, 

USA) that recorded CO parts per million (PPM) at 60-second intervals using an electrochemical 

sensor. The measurement range is 0 PPM-1500 PPM, with increments of 1 PPM. The GasBadge 

Pro was worn within the breathing zone of cooks just below the HPEM andfilter described 

above.  For children with a large backpack holding the PM equipment, the Gasbadge Pro was 

placed in a side pouch of the backpack. Children with the smaller backpack wore the GasBadge 

Pro in an open pouch.  Child GasBadge Pros were covered with fabric to protect the gas sensor 

from dirt and water (Figure 1).  Before each HAP measurement period, the GasBadge Pros were 



186 
 

zero-calibrated in the study villages but at least 5 m from any household combustion sources.  

The Gasbadge Pro’s responsiveness to 20 PPM and 100 PPM calibration gas was assessed for 17 

of 22 used devices after study termination in the United Kingdom due to difficulty obtaining 

calibration gas.  Median difference among the tested devices was 6ppm (range 2 to 7 PPM) for 

20 PPM calibration gas and -7ppm (range -3 to -11 PPM) for 100 PPM calibration gas (Table S2).   

 

  

Figure 1 Personal exposure monitoring equipment set-up for cook and child under 5. 
Left : Main cook air monitoring set-up as worn.  Top to bottom: HOBO Pendant Temperature and 

Light Data Logger; HPEM; GasBadge Pro; TuffPro Pump.  Centre: Child HAP monitoring backpack 

with HPEM, tubing, and arrow pointing to fabric-covered GasBadge Pro.  Right: Child air 

monitoring set-up as worn.  

 

Stationary household and courtyard PM2.5 measurements  

We monitored 48-hour household PM2.5 concentrations (simultaneously during personal 

exposure monitoring) using the University of California, Berkeley Particle and Temperature 

Sensor (UCB-PATS) (Berkeley Air Monitoring Group, California, USA).  The UCB-PATS is a light-

scattering nephelometer and it is calibrated to provide semi-continuous, 1-minute averages of 

PM2.5 concentration.   This method has been validated in laboratory and field settings 
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(Chowdhury et al., 2007; Edwards et al., 2006) and has been utilized in a number of recent field 

studies (Balakrishnan et al., 2013; Clark et al., 2011; Rosa et al., 2014). 

 

In each intervention and control household, field staff placed up to two UCB-PATS monitors, 

with highest priority to primary and secondary cooking areas. Monitors were placed at a height 

of 1.5 meters and a distance of 1 meter from the edge of combustion zones according to 

standard procedures (Berkeley Air Monitoring Group, 2005). If a household had more than two 

cooking areas, the two most used cooking areas were selected based on self report.  If a 

household had only one reported cooking area, the second UCB-PATS monitor was placed in the 

household’s outdoor courtyard 2 meters from the household door at a height of 1.5 meters.  

Start and end times of the stationary 48-hour measurement coincided with personal exposure 

monitoring. Each UCB-PATS record was manually reviewed to identify any irregularities.  The 

limit of detection was set at 0.05 mg/m3 if the minimum value was greater than 0.075 mg/m3.  

However, records with a minimum value of 0.5 mg/m3 were deemed irregular and discarded.   

 

To calibrate the UCB-PATS response to PM2.5, we conducted 48-hour gravimetric co-locations in 

51 different cooking areas in a subset of enrolled households.  The gravimetric system consisted 

of HPEMs and TuffPro Pumps, as described above.  After excluding incomplete and missing UCB-

PATS and gravimetric samples, 21 paired measurements were available for analysis.  After 

confirming a linear relationship, we analysed the pair measurements using linear regression.  

This resulted in an R2 value of 0.9152, with an adjustment factor of 0.7963116 (UCB-PATS 48-hr 

mean)+.0991519 (Figure S1). This adjustment factor is similar to that observed in our previous 

study in Rwanda (Rosa et al., 2014).  
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Evaluation of participant compliance  

Compliance in wearing the personal exposure monitors was assessed through self-report and 

observations on the unannounced spot-check visit on day 2 and retrieval on day 3.  Additionally, 

a subsample of adult (89%) and child participants (84%) were also equipped with HOBO Pendant 

Temperature and Light Data Loggers (Onset HOBO Data Loggers, Massachusetts, USA). These 

lightweight devices (18 g) record light intensity (International System of Units, lux) and 

temperature at 1 minute intervals. The device was attached to personal air monitoring equipment 

on a shoulder strap so that the sensor rested horizontally facing the sky. A lux value of <1000 was 

considered indoors (Turner and Mainster, 2008), and we excluded the evening hours of 18:00-

07:00 from analysis due to ambient light levels below the outdoor threshold.  All records indicating 

less than 20% of time was spent outdoors over the 48-hour period or on the second day of 

monitoring were manually reviewed visually for signs of non-compliance, indicated by lux levels 

<500 lux for 6 continuous hours or more. 

 

Intervention stove usage according to sensors 

Households were eligible for Ecozoom stove sensor monitoring if the Ecozoom stove they owned 

was reported to be working properly at the time of the survey. Usage of Ecozoom stoves was 

objectively quantified using SweetSense instrumentation affixed to Ecozoom stoves (Figure 2) 

(Thomas et al., 2013a, 2013b). The SweetSense sensor measures temperature of the combustion 

chamber which can be interpreted as distinct cooking events (Thomas et al., 2013a). Usage 

events within 60 minutes were grouped together and considered one event (Lozier et al., 2016).  

Ecozoom stoves equipped with sensors were deployed to households within two weeks of the 

main household survey. Households were informed that the sensor would collect performance 

data of their Ecozoom stove, but not told they would detect changes in temperature or 

frequency of use. Households had the sensored Ecozoom stove for a period of 7-30 days. During 
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this monitoring period, the household’s Ecozoom stove that they had originally received was 

temporarily locked to prevent use. Sensor data were uploaded and interpreted as described 

elsewhere (Thomas et al., 2013a). The deployment and retrieval days were not included in 

analyses to reduce potential reactivity and in order to have whole-day samples.  

 

    

Figure 2 SweetSense sensor affixed to Ecozoom stove. 

 

Precipitation data 

Throughout the HAP exposure assessment periods, an RG3 HOBO Data Logging Rain Gauge 

(Onset HOBO Data Loggers, Massachusetts, USA) was placed in a central location within each 

intervention and control period.  The rain gauge measured rainfall in 0.01-inch increments, and 

precipitation total during the three HAP monitoring days was included in HAP area and personal 

exposure models to adjust for impacts of rainfall on fuel moisture and emission variations. Rain 

gauges could not be placed in villages in advance of main survey household visits, so 

precipitation data were downloaded in Network Common Data Form (NetCDF) format for each 
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village centroid from Climate Hazards Group InfraRed Precipitation with Station data 2.0 

(CHIRPS) (Funk et al., 2015).  Daily gridded precipitation data derived from satellite and in-situ 

station data at 0.05 degree spatial resolution (approximately 5.3km) were converted from 

NetCDF into raster format and joined to village centroid locations using ArcGIS 10.3 (ESRI, 

Redmond, CA, USA). Total precipitation during the previous 10 days to each household’s survey 

date was included in analyses as a potential confounder for acute respiratory illness to account 

for seasonal variations and potential imbalance of climatic conditions between arms at the time 

of household visit. 

 

Sample size and study power 

Sample size was based on 48-hour mean primary cook PM2.5 exposure, basing assumptions on 

previously observed reductions in cooking area PM2.5. We used kitchen nephelometric PM2.5 

data from our previous RCT in nearby rural villages that found a mean PM2.5 concentration of 

0.89 (mg/m3) with a standard deviation of 0.89 (mg/m3) in control households (unpublished).  

Due to anticipated low ambient PM2.5 levels outside of household living quarters and the 

mobility of the primary cook, we estimated that personal PM2.5 exposure would be 50% less than 

kitchen concentrations (Cynthia et al., 2008).  We calculated our sample size using an 

assumption that the Ecozoom stove would reduce personal PM2.5 exposure from an estimated 

0.45 mg/m3 to 0.27 mg/m3 with a standard deviation of 0.5 mg/m3, given previously observed 

cooking area reductions of 16-75% (Rosa et al., 2014).  We anticipated personal air monitoring 

would occur in 9 intervention villages and 9 control villages with an average of 16 observations 

per cluster. At 80% power with type 1 error of 0.05, we estimated an unadjusted sample size of 

122 households would be needed to observe a 40% reduction in the mean PM2.5 levels. In order 

to account for clustering at the village level, we estimated within village intraclass correlation 

coefficient at 0.01.  Thus, the estimated adjusted sample size was 141 intervention participants 
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and 141 control participants.  In order to account for loss to follow-up (estimated at 15%) and 

incomplete measurements (estimated at 15%), our sample size enrolment target was 185 

households in both the intervention and control arms.       

  

Data analysis 

To compare balance between arms, the standardized difference is presented (Table 1), 

calculated as the mean difference between arms in terms of standard deviations (Arnold et al., 

2009; Rosenbaum and Rubin, 1985; Rubin, 2007).  A value of 0 indicates equivalent means while 

a value of 1 indicates a standard deviation of 1 (Austin, 2011). Descriptive statistics, means, and 

confidence intervals of PM2.5 and CO measurements were adjusted for village-level clustering, 

which was the highest level of clustering in the data (Bottomley et al., 2016).  Exposure 

measurements that were 80% complete based on pump runtime (ran for >=1152 minutes of the 

1440 minute runtime) was the main outcome, and we conducted sensitivity analyses for 90% 

pump runtime samples (>=1296 of 1440 minutes).  

 

Our dependent variables, cooking area PM2.5 concentrations and personal exposure to carbon 

monoxide and PM2.5, were highly skewed and natural-log transformed to achieve a normal 

distribution. A value of 0.0001 PPM was added to all 48-h CO means (below limit of detection) 

for purposes of regression analysis so as not to exclude mean values of 0.0 mean PPM. The 

primary outcome for cooking area concentrations was based on the UCB-PATS value placed at 

the self-reported primary cooking area cooking, or the placement with the higher PM2.5 value if 

used as a cooking area. As a sensitivity analysis, we assessed the sum of both UCB-PATS 

placements for those houses with two usable measurements that were placed in two distinct 

areas (either indoors and outdoors, or inside main house and inside separated kitchen).   
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Multilevel modelling was used to examine differences between the control and intervention 

groups in reported ARI and measured HAP after controlling for potential individual, household, 

and village-level confounders (Figure S4). For reported ARI and ARI-related medical care visits, 

we fitted 4-level, random intercept logistic regression models, with two observations (level 1) 

per child (level 2), who were clustered within households (level 3) and villages (level 4). Personal 

CO and PM2.5 exposure were modelled separately for primary cooks and children. Because HAP 

exposure was only measured on one primary cook and one child per household, we constructed 

3-level random intercept linear regression models for these outcomes, with observations (level 

1) nested within households (level 2) and villages (level 3).  Similarly, models of household 

cooking area PM2.5 were 3-level random intercept linear regression models, with multiple 

cooking area observations (level 1) nested within households (level 2) and villages (level 3). 

 

Models were estimated using Markov Chain Monte Carlo (MCMC) simulation with the 

Metropolis-Hastings algorithm. For multilevel models with discrete outcomes, MCMC methods 

yield unbiased estimates of both fixed and random model parameters and are robust to small 

numbers of clusters (Browne and Draper, 2006; McNeish and Stapleton, 2016). We used diffuse, 

non-informative priors and estimated starting values for the MCMC chain using penalized quasi-

likelihood. Given the complexity of the models, we used orthogonal parameterization to 

improve chain mixing and specified a burn-in length of 50,000 with a chain length of 2,000,000. 

We assessed chain mixing by visually examining trace plots and autocorrelation plots and 

convergence using the Raftery-Lewis and Brooks-Draper diagnostics (Browne, 2009). We 

obtained the means, 2.5%, and 97.5% values of the posterior distribution to calculate the point 

estimates and 95% credible intervals (Crl) of the true model parameters. We obtained the 

means, 2.5%, and 97.5% values of the posterior distribution to calculate the point estimates and 
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95% credible intervals (Crl) of the true model parameters. The 95% credible interval can thus be 

interpreted as the interval within which there is a 95% chance the true population values are 

included. For PM2.5 and CO outcomes which were natural-log transformed, the beta coefficients 

and credible intervals from the models were exponentiated, which allows the coefficient to be 

interpreted as the ratio of geometric means associated with a unit change in that variable. All 

analyses were conducted using MLWin Version 2.1 (Browne, 2009; Rasbash et al., 2009) and 

Stata 14 (College Station, TX) with the RunMlWin add-on package (Leckie et al., 2013). 

 

RESULTS 
 

Study participants  

All eligible households agreed to participate in the study, consisting of 113 intervention 

households and 156 control households (Figure 3). In Round 2, the second visit approximately 6 

months after initial enrolment, 91 intervention households (80.5%) and 144 control households 

(92.3%) were followed up and surveyed.  One child death was reported between Round 1 and 

Round 2 surveys.  Household and child characteristics at enrolment are shown in Table 1 for the 

overall study population as well as the sub-group that underwent HAP monitoring. Both main 

survey monitoring and the subset of households in which HAP monitoring occurred showed 

good balance and were similar to each other on a range of household characteristics and 

demographics. Differences were observed for characteristics related to fuel use and cooking 

practices; these are consistent with the provision of the stove among intervention households.  

The reported travel time to a health facility which a family would use for mild/moderate illness 

was also lower in the intervention arm (Table 1).   
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Figure 3 Main household/child health survey and HAP monitoring enrolment and follow-up. 

 

Stove implementation and use  

Ninety-eight percent of intervention households reported receiving the Ecozoom stove and, 

among those, 97% were observed to have an Ecozoom stove reported to be in working order 

(Table 2).  The same 2 stoves were reported broken and not currently in use during both data 

collection visits. Of the 194 household visits that observed a working Ecozoom, 99% of 
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households reported currently using it, with 90.7% on day of visit or previous day in Round 1, 

and 93.0% in Round 2.   Overall 26.8% of Ecozoom stoves were warm or in use during the 

household visit.  However, continued use of traditional stoves (stacking) was reported widely.  In 

Round 1, 34.3% of households reported using a traditional stove at least once a week or more, 

and 40.7% in Round 2; 16.7% reported using traditional stoves everyday in Round 1, and this 

increased to 27.9% in Round 2. In Round 1, 12.0% of intervention households with a working 

intervention stove were observed to have a traditional stove in use or warm upon arrival to the 

household, and 18.6% in Round 2.    

 

Sensor-derived use 

Sensors affixed to Ecozoom stoves confirmed consistent usage during the sensor monitoring 

periods according to a temperature-derived usage algorithm (Thomas et al., 2013a).  In Round 1, 

93.0% of households used their Ecozoom stoves at least once every day for days with sensor 

data, decreasing to 84.9% in Round 2.  Overall the sensor detected a mean of 1.23 (SD 0.27) 

stove use events per day per household.  Usage of the stove twice per day or more was less 

common, detected on 23.8% of days with usable sensor data.  Overall 9.4% of households used 

stoves twice per day on at least half of days with sensor data, and 2.1% of households used their 

stove twice per day on every day with sensor data.   

 

Household PM2.5 measurements. 

Real-time stationary PM2.5 was measured in 455 of the 469 household visits (14 visits did not 

have stationary PM2.5 measurements due to equipment shortage). During these 455 visits, 10 

control households (3.6%) and 13 intervention households (7.1%) had only one UCB-PATS 

placement due to reporting they only cooked outdoors.  Thus, a total of 888 stationary PM2.5 

measurements were conducted inside kitchens and courtyards. Due to missing records and 
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irregular records due to calibration errors, battery failures, and placement disturbances,  610 

UCB-PATS records were deemed complete for data analysis, with 335 indoor placements and 

275 outdoor placements (Table 3).  

 

Overall primary cooking area geometric mean (GM) concentrations were 0.668 mg/m3 in the 

control arm (0.548-.814 mg/m3) and 0.385 mg/m3 (95% CI .306-.484 mg/m3) in the intervention 

arm, a 42% reduction (Table 3). Primary cooking locations that were indoors had higher GM 

concentrations than primary cooking locations outdoors in both the control arm (0.695 vs 0.452 

mg/m3) and intervention arm (0.417 vs 0.292 mg/m3), although only 18 control placements and 

30 intervention placements were usable for this comparison. The majority of primary cooking 

locations were identified as being indoors, with GM concentrations of 0.417 mg/m3 in the 

intervention arm (95% CI 0.335-0.519 mg/m3) compared to 0.695 (0.573-0.844 mg/m3) in the 

control arm (Table 3). The largest percent reduction in GM concentrations was between indoor 

primary cooking in the control arm compared to outdoor primary cooking in the intervention 

arm (58%), which had a GM of 0.292 mg/m3. Outdoor placements overall, with and without 

stoves present, had lower PM2.5 mass concentrations than indoor placements in both control 

and intervention arms, and were also similar between arms. Since cooking may have occurred in 

more than one location during the monitoring period, the sum of both placements is used as a 

proxy for overall household concentrations and only includes placements that were in separate 

buildings or indoors and outdoors. Geometric mean concentrations were 0.847 mg/m3 in the 

control arm (95% CI .685- 1.0485 mg/m3) compared to .596 mg/m3 in the intervention arm (95% 

CI 0.479- 0.741 mg/m3) (Table 3).  
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After adjusting for 3-day precipitation, household kerosene use for lighting, and presence of 

smokers in the home (Table S3), the geometric mean concentration of PM2.5 was  43.4% lower in 

the intervention arm than the control arm (95% CrI 20.8-58.1%, p<0.001).  For households with 

two UCB-PATS placements, geometric mean concentration of PM2.5 in the intervention arm was 

32.7% lower (95% CrI 5.7-51.3%, p=0.017) (Table S4).  

 

Personal exposure -- cooks 

Overall, 410 personal exposures measurements were conducted in primary household cooks, 

with 397 gravimetric PM2.5 and CO, 12 gravimetric PM2.5 only, and 1 CO only.  Reasons for not 

meeting eligibility criteria (n=59) included being pregnant (26), current smoker (19), pregnant 

and current smoker (5), poor health (8), and under the age of 18 (1).   

 

Overall, 359 PM measurements (87.8%) ran 80% of the target 48-hour period (91.8% of control 

samples, 81.7% of intervention samples); 354 measurements ran for 90% of the target (90.2% 

control, 80.1% in intervention). Pump battery failure and air-flow restriction due to pinched 

tubing between the pump and HPEM were the most common causes of stoppage. Of 409 

gravimetric deployments for cooks, 402 filter samples were successfully pre- and post-weighed 

and matched to participant data, although removing anomalous weights indicating potential 

filter and identification code switches and weighing irregularities resulted in 367 usable weights. 

Of the 398 CO measurements, 275 measurements were usable and retained for analysis; 123 

measurements were deemed unusable due to instrument failure or incorrect field zeroing (95), 

operating less than 80% of the 48 hours (8), and broken/missing/stolen devices (20). Additionally 

35 cooks (8.5%) were deemed noncompliant based on spot-check observations, self-reported 

compliance/problems with equipment, and light-sensor records and were excluded from 
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analyses. Thus, 295 PM2.5 samples at 80% completeness (292 at 90%) and 254 CO samples were 

retained for statistical analysis. 

 

Among primary cooks, geometric mean (GM) PM2.5 concentrations were 192 μg/m3 (95% CI 150-

246 μg/m3) in the control arm compared to 151 μg/m3 (95% CI 134-171 μg/m3) in the 

intervention arm (Table 4).  The arithmetic mean was 251 μg/m3 in the control arm and 190 in 

the intervention arm (Figure 4).  Differences in CO between control and intervention cooks were 

also observed, with a GM of 0.838 PPM (0.592- 1.187 PPM) in the control arm compared to 

0.677 PPM (95% CI 0.479-0.958 PPM) in the intervention arm.  Our results did not change after 

limiting our analysis to samples with 90% pump runtimes (Table 4).   

 

After controlling for age, 3-day precipitation, household kerosene use for lighting, and presence 

of other smokers in the home, the geometric mean personal exposure to PM2.5 was 22.2% lower 

in the intervention arm (95% CrI 40.3% lower to 0.2% higher; p=0.06) (Table S5). Sensitivity 

analyses for 90% pump runtimes were similar (Table S6). Presence of household smokers that 

reported smoking inside of the house was associated with a 37% increase in exposure (p=0.003). 

Although the adjusted model for CO indicated intervention status was associated with lower CO 

exposure (Table S7), the effect was not statistically significant (p=0.133).   

 

Personal exposure – children  

Among children <5 years old, 405 personal exposure measurements were conducted, with 328 

gravimetric PM2.5 and CO paired measurements, 11 gravimetric PM2.5 measurements only, and 

66 CO measurements only. Reasons for not meeting eligibility criteria (n=64) included being 



199 
 

above 5 years of age (19), too small (32) or too unwell (8) to support the monitoring equipment, 

or being away from the household at the time of deployment (5).  Of 394 total child CO samples, 

271 samples were usable; unusable samples (n=123) were due to drifting/jumping baseline due 

to incorrect field zeroing and instrument failure (88), incompleteness (11), and 

broken/missing/stolen devices (24).    

 

Of 339 total child PM2.5 samples, 251 (74.0%) had pump runtimes that were 80% complete for 

the 48-hour period (75.1% incomplete in control, 72.6% incomplete in intervention; 229 (67.6%) 

had 90% complete pump runtimes (67.9% control, 67.1% intervention). Three hundred thirty-

seven filters were successfully post-weighed and merged with deployments, although 

anomalous weights indicating potential filter ID switches and weighing irregularities resulted in 

306 usable weights. Overall 13 children (3.5%) samples were determined to be noncompliant 

and were not included in final analyses, resulting in 219 PM2.5 samples at 80% completeness (199 

at 90%) and 263 CO samples for final analysis.     

 

Child GM PM2.5 concentrations were 194 μg/m3 (95% CI 138-272 μg/m3) in the control arm and 

175 μg/m3 in the intervention arm (135-225 μg/m3) (Table 4).  Arithmetic mean was 268 μg/m3 

(95% CI 183-353) in the control arm and 226 μg/m3 (95% CI 148-304 μg/m3) in the intervention 

(Figure 4). Exposure to CO was lower among children, and differences between intervention and 

control were more pronounced than among cooks, with a geometric mean of  0.551 PPM (95% 

CI 0.346-0.880 PPM) in control compared to 0.355 PPM (95% CI 0.232- 0.542 PPM) in 

intervention.  Concentrations for samples with 80% pump runtime were similar to samples with 

90% pump runtime for both cooks and children (Table 4).   
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Controlling for child age, sex, 3-day precipitation, household kerosene use for lighting, and 

presence of other smokers in the home (Table S8), exposure to PM2.5 was not significantly 

improved in the intervention arm compared to control (19.5% lower, 95% CrI 45.9% lower to 

18.8% higher; p=0.27). Sensitivity analysis including samples that ran for 90% of the 48-hour 

period were similar (Table S9). Adjusted exposure to CO was also not significantly different 

between intervention and control (34.8% lower, 95% CrI 62.9% lower to 14.3% higher; p=0.13) 

(Table S10).   

 

 

Figure 4 Boxplot of arithmetic mean 48-hour PM2.5 concentrations for main cooking area, sum of 
main cooking area and other household area, cooks, and children under 5 years of age. 

 

Child respiratory health. 
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One-week prevalence of acute respiratory illness was 9.4% in the control arm and 2.7% in the 

intervention arm (Table 5). Prevalence of seeking care from a CHW or health facility for ARI 

within previous 7 days was 3.1% in control and 0.8% in intervention, although in both arms 

about a third of ARI cases sought care.  Within the previous 3 months, care was sought at a 

health facility for respiratory symptoms by 19.7% among control child observations and 6.8% of 

intervention child observations.   

 

Controlling for age, SES, sex, and precipitation within the previous 10 days,  children in the 

intervention arm had significantly reduced odds of self-reported acute respiratory infection 

within the previous 7 days compared to the control arm (OR 0.23, p=0.008, 95% CrI 0.05-0.57).  

Controlling for age, SES, sex, and precipitation within the previous 10 days, the OR for seeking 

care for ARI in the previous 7 days was 0.27 among intervention children compared to control 

children (p=0.131, 95% CrI 0.01-1.06).   The OR of attending a health facility for respiratory 

symptoms within the previous 90 days, controlling for the same covariates as the 7-day care 

model with the exception of 10-day precipitation,  was 0.29 among intervention children 

compared to control children (p=0.004, 95% CrI 0.10-0.64).   
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Table 1 Intervention and control household characteristics of main survey and HAP monitoring households at enrolment. 

Household characteristics 

Intervention – 
main survey 
(n=113 hh) 

%hh 

Control  -- 
main survey 
(n=156 hh) 

%hh 
Standardized 

difference 

 
Intervention – 

HAP households  
(n=105hh) 

%hh 

Control – 
HAP 

households 
(n=150hh) 

%hh 

 
 
 

Standardized 
difference  

Mean number of occupants per 
household 5.07 5.35 -0.151 

 
5.10 

 
5.35 

 
-0.129 

Mean number of females 18+ per 
household 1.23 1.35 -0.190 

 
1.25 

 
1.35 

 
-0.170 

Mean number of males 18+ per 
household 0.82 0.83 -0.018 

 
0.81 

 
0.83 

 
-0.040 

Mean number of children under 5 per 
household 1.31 1.24 0.126 

 
1.31 

 
1.24 

 
0.141 

Female respondent 100.0 100.0 . 100.0 100.0 . 

Mean age of respondent  35.34 37.40 -0.160 36.801 38.171 -0.110 

Respondent never attended school 36.3 36.5 -0.005 33.3 38.0 -0.098 

Respondent completed primary only 14.2 16.0 -0.052 15.2 15.3 -0.003 

Respondent completed some secondary 
or higher 4.4 4.5 -0.003 

 
4.8 

 
4.7 

 
0.004 

Floor type -- earth/sand  93.8 90.4 0.127 94.3 90.7 0.138 

House has electricity  2.7 8.3 -0.251 1.9 8.0 -0.284 

House has radio 33.6 35.3 -0.034 33.3 34.7 -0.028 

House has mobile phone 25.7 34.6 -0.196 24.8 33.3 -0.190 

Has mattress 27.4 35.9 -0.183 28.6 35.3 -0.145 

Has bicycle 1.8 3.8 -0.126 1.9 3.3 -0.090 

Own land 90.3 85.9 0.135 91.4 85.3 0.191 

Own house 83.2 90.4 -0.214 84.8 90.0 -0.158 

Own animals  46.9 44.9 0.041 48.6 45.3 0.065 

Mean reported one-way travel time to 
health facility (min) 45.6 63.6 -0.451 

45.11 63.66 -0.461 

Method of reaching facility – only on foot 96.5 98.7 -0.148  97.1 98.7 -0.107 
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Current primary fuel: wood 65.5 51.9 0.278 66.7 51.3 0.316 

Current primary fuel: straw/shrubs/grass 29.2 47.4 -0.382 28.6 48.0 -0.408 

Current primary fuel: charcoal 5.3 0.6 0.277 4.8 0.7 0.254 

Times stove lit per day 2.06 1.83 0.419 2.08 1.83 0.435 

Meals cooked per day (mean) 2.08 1.79 0.559 2.10 1.80 0.585 

          1 meal per day (%) 8.8 25.6 -0.456 7.6 25.3 -0.492 

          2 meals per day (%) 74.3 69.2 0.114 75.2 69.3 0.132 

          3 meals per day (%) 16.8 5.1 0.381 17.1 5.3 0.381 

Primary cooking location: Inside house – 
kitchen 

30.1 47.4 -0.362 28.6 48.7 -0.422 

Primary cooking location: Inside house – 
other  

18.6 14.7 0.103 18.1 15.3 0.074 

Primary cooking location: Outside  37.2 5.1 0.853 39.0 5.3 0.888 

Primary cooking location: Inside separate 
kitchen 

14.2 32.7 -0.448 14.3 30.7 -0.400 

Has secondary cooking location 61.9 13.5 1.155 62.9 14.0 1.162 

Has secondary cooking location outdoors 19.5 5.1 0.447 20.0 5.3 0.452 

Has traditional three-stone fire and uses 
more than once per week 

15.0 83.3 -1.870 14.3 83.3 -1.910 

Has three-stone fire and uses everyday 9.7 82.1 -2.109 10.5 82.0 -2.059 

Has traditional rondereza stove1 and uses 
more than once per week 

6.2 16.0 -0.317 5.7 16.7 -0.353 

Has traditional rondereza stove and uses 
everyday 

2.7 15.4 -0.456 2.9 16.0 -0.462 

Has traditional charcoal stove and uses 
more than once per week  

8.8 3.2 0.239 7.6 3.3 0.189 

Has traditional charcoal stove and uses 
every day 

8.8 0.6 0.393 7.6 0.7 0.354 

Has Ecozoom stove and uses more than 
once per week 

88.5 0.0 -- 81.4 0.0 -- 

Has Ecozoom stove and uses every day 81.4 0.0 -- 83.8 0.0 -- 
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Use kerosene for lighting more than once 
per week 

18.6 24.4 -0.141 19.0 24.0 -0.121 

Use kerosene for lighting every day 17.7 20.5 -0.072 18.1 20.0 -0.049 

Ever heat home 24.8 19.2 0.134 23.8 20.0 0.092 

Heat home in both rainy and dry seasons 10.8 11.5 -0.023 9.7 12.0 -0.074 

Cook beans more than once per week  61.9 52.6 0.191 61.0 52.0 0.181 

Use a stove for brewing alcohol 6.2 12.2 -0.208 6.7 12.0 -0.184 

Use a stove for business 4.4 1.9 0.143 4.8 2.0 0.153 

Use a stove for heating water for bathing 76.1 82.1 -0.147 78.1 81.3 -0.081 

Use a stove for roasting 74.3 92.9 -0.520 73.3 94.7 -0.608 

       

 N=147 children 
N=193 

children  
N=99  

children  
N=132 

children 
 

Mean child age (months) 31.06 30.68 0.023 37.60 37.61 -0.001 

Child gender -- female  53.7 52.8 0.018 54.5 55.3 -0.015 
1 Cook that participated in personal exposure monitoring.  Age in years at enrolment.  94 intervention cooks, 137 control cooks.   
2 A rondereza is a built-in wood stove without a chimney and considered a traditional stove in this study.   
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Table 2 Reported and observed Ecozoom coverage, use and exclusive use among intervention 
households. 

 Round 1 
 

Round 2 
 

Overall  
 

Coverage N=113 
households N 
(%) 

N=91 
households 
N (%) 

N=204 
household 
observations  
N (%) 

Received stove    111 (98.2) 89 (97.8) 200 (98.0) 

Currently has stove1    108 (97.3) 88 (98.9) 196 (98.0) 

House currently has working stove1  108 (97.3) 86 (96.6) 194 (97.0) 

Observed and reported use (only if has 
working Ecozoom) 

N= 108 
houses 

N= 86 
houses 

N= 194 
household 
observations 

Reports currently using stove  107 (99.1) 85 (98.8) 192 (99.0) 

Reports using within previous week  104 (96.3) 84 (97.7) 188 (96.9) 

Reports stove last used on day of visit or 
previous day 

98 (90.7) 80 (93.0) 178  (91.8) 

Stove has the appearance of previous use  106 (98.2) 83 (96.5) 189 (97.4) 

Stove warm or in use at time of visit 27 (25.0) 25 (29.1) 52 (26.8) 

Reported and observed exclusive use (only if 
has working Ecozoom) 

N= 108 
houses 

N= 86 
houses 

N= 194 
household 
observations 

Self-reported frequency of traditional stove 
use –once a week or more 

37 (34.3) 35 (40.7) 72 (37.1) 

Self-reported frequency of traditional stove 
use  -- every day   

18 (16.7) 24 (27.9) 42 (21.6) 

Traditional stove observed warm or in use at 
time of survey day arrival  

13 (12.0) 16 (18.6) 29 (14.9) 

Control arm or intervention house without 
working Ecozoom  

N=161 
houses2 

N=149 
houses2 

N=310 
household 
observations2 

Traditional stove observed warm or in use at 
time of survey day arrival (if control arm or 
intervention without working Ecozoom) 

51 (31.68) 54 (36.2) 105 (33.9) 

Sensor-derived use3  N=43 
households 
N (%)  

N=53 
households 
N (%) 

N=96 
household 
observations 
N (%) 

Stove used at least once per day on >=50% of 
measurement days4  

42 (97.7) 52 (96.3) 94 (97.9) 

Stove used at least once per measurement day 
(% of houses)  

40 (93.0) 45 (84.9) 85 (88.5) 

Stove used at least twice per day on >=50% of 
measurement days 

6 (14.0) 5 (9.4) 9 (9.4) 
 

Stove used at least twice per day on each 
measurement day 

1 (2.3) 1 (1.9) 2 (2.1) 

Avg proportion of days stove used at least 
once (SD) 

97.7 (10.6) 96.0 (13.5) 96.8 (12.2) 
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Avg proportion of days stove used at least 
twice (SD) 

26.1 (20.9) 22.0 (21.3) 23.8 (21.1) 

Mean (SD) cooking events per day of sensor 
data per household  

1.25 (0.23) 1.22 (0.30) 1.23 (0.27) 

1Only if household received Ecozoom stove  
2Only if control arm or intervention without working Ecozoom stove 
3Only if house had working Ecozoom stove. Ecozoom stove sensors were deployed in 91 hh in 
Round 1 and 80 hh in Round 2.  Due to mobile network challenges, sensor failure, and other 
technical faults, data was obtained from 44 households in Round 1 and 56 households in 
Round 2, with a mean of 16.9 deployment days (SD 8.0, range 8-36 days). 
4Day considered usable with sensor data if the sensor transmitted data to a central server at 
least once (not including the partial deployment and retrieval days).  Forty-three households 
had usable days in Round 1 and 53 in Round 2 for analysis, with a mean of 9.1 days per 
deployment (SD 6.8, range 0-30 days) 
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Table 3 Descriptive statistics for household cooking areas and outdoor courtyard 48-h PM2.5 mass concentrations (mg/m3) by UCB-PATS placement and 
cooking location, based on usable data. 

 Control Intervention 

 n Min-
max 

Med IQR Mean 
(LSE)   

95% CI GM 
(LSE)   

95% 
CI 

n Min-
max 

Med IQR Mean 
(LSE)   

95% 
CI 

GM 
(LSE)   

95% 
CI 

Primary 
cooking area1  

191 .132-
4.453 

.645 1.069 
 

.967 
(.080) 

.798-
1.137 

.668 
(.063) 

.548-

.814 
133 .110-

3.371 
.307 0.462 

 
.540 
(.071) 

.391-

.689 
.385 
(.042) 

.306-

.484 

Primary 
cooking – 
indoors 

173 .132-
4.453 

.699 1.109 
 

.995 
(.080) 

.826-
1.164 

.695 
(.064) 

.573-

.844 
103 .110-

3.371 
.351 0.535 

 
.550 
(.068) 

.417-

.703 
.417 
(.043) 

.335-

.519 

Primary 
cooking – 
outdoors  

18 .1605- 
3.277 

.381 0.181 
 

.700 
(.309) 

.048- 
1.351 

.452 
(.120) 

.258- 

.791 
30 .123-

2.792 
.2069 0.228 

 
.472 
(.161) 

.132-

.811 
.292 
(.056) 

.195-

.436 

                 

Indoor 
placement – 
stove(s) 
present  

187 .115-
4.453 

.633 1.092 
 

.943 
(.081) 

.773-
1.113 

.632 
(.063) 

.512-

.781 
130 .107-

3.371 
.296  0.363 

 
.489 
(.060) 

.361-

.616 
.357 
(.038) 

.285-

.447 

Outdoor 
placement  - all   

168 .106-
3.277 

.157 0.079 
 

.234 
(.034) 

.163-

.306 
.185 
(.010) 

.166-

.206 
107 .109- 

2.792 
.163 0.096 

 
.261 
(.046) 

.163-

.358 
.195 
(.014) 

.168-

.227 

Outdoor 
placement – 
stove(s) 
present  

20 .118-
.730 

.215 0.181 
 

.262 
(.033) 

.193-

.331 
.230 
(.025) 

.182- 

.289 
76 .109-

2.792 
.186 0.106 

 
.303 
(.067) 

.162- 

.444 
.217 
(.020) 

.178- 

.264 

Outdoor 
placement – no 
stove(s) 
present  

148 .106-
3.277 

.155 0.059 
 

.231 
(.040) 

.147- 

.314 
.180 
(.011) 

.159- 

.204 
31 .118-

.317 
.149 0.033 

 
.156 
(.010) 

.136-

.176 
.151 
(.008) 

.136- 

.168  

Sum of both 
placements2  

135 .2493- 
5.2316 

.736 0.996 
 

1.120 
(.127) 

.852- 
1.389 

.847 
(.086) 

.685- 
1.049 

80 .218- 
3.513 

.529 0.414 
 

.735 
(.087) 

.552- 

.919 
.596 
(.062) 

.479- 

.741 
1 Self-reported location or location with higher value if both household UCB-PATS placements have complete data or is identified as alternative cooking 
location. 
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2Only if UCB-PATS data from both placements are usable and only if the placements were in two different locations (e.g. indoors and outdoors, or 
inside house and inside separated kitchen).  

 

 

Table 4 Descriptive statistics for 48-h average personal exposure to PM2.5 mass μg/m3 and CO (PPM) among Rwandan women and children under 5 
cooking with biomass fuels. 

 Control Intervention 

Pollutant n Min-
max 

Med IQR AM 
(LSE)   

95% 
CI 

GM 
(LSE) 

95% CI n Min-
max 

Med IQR AM 
(LSE)   

95% 
CI 

GM 
(LSE) 

95% CI 

Cook PM2.5 

(μg/m3) 
80% runtime 

186 18-
1055 

193 195 251 
(32) 

184- 
319 

192 
(23) 

150- 246 109 38-
1078 

148 113 190 
(16) 

156-
224 

151 
(9) 

134-
171 

Cook PM2.5 

mass (μg/m3) 
90% runtime 

183 18-
1055 

195 195 250 
(31) 

185-
315 

191 
(22) 

151-243 109 38-
1078 

148 113 190 
(16) 

156- 
224 

151 
(9) 

134-
171 

Child PM2.5 

(μg/m3) 
 80% runtime 

124 5-
1707 

202 188 268 
(40) 

183-
353 

194 
(31) 

138-272 95 38-
1895 

167 175 226 
(37) 

148-
304 

175 
(21) 

135-
225 

Child PM2.5 

(μg/m3)   
90% runtime 

111 5-
1707 

197 179 252 
(42) 

164- 
340 

186 
(32) 

129- 266 88 38-
972 

175 167 205 
(24) 

155- 
256 

168 
(18) 

134- 
212 

Cook CO 
(PPM) 

158 0.000- 
17.476 

.795 1.790 1.790 
(.333) 

1.088-
2.493 

.748 
(.125) 

.526- 
1.065 

96 0.000- 
7.703 

.678 0.967 1.238  
(.192) 

.832-
1.644 

.618 
(.145) 

.376- 
1.015 

Child CO 
(PPM)  

159 0.000-
10.590 

.503 1.579 
 

1.365 
(.437) 

.443-
2.288 

.552 
(.122) 

.347- 

.880 
104 .001-

5.521 
.418 0.904 

 
.803 
(.086) 

.621-

.985 
.356 
(.071) 

.233- 

.543 

Min-max, minimum to maximum values; Med, median;  IQR, interquartile range; AM, arithmetic mean; LSE, linearized standard error; GM, geometric 
mean; CI, confidence interval 
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Table 5 Reported respiratory symptoms, health-care seeking behaviour, and toothache (negative control) among children under 5 years of age. 

 Round 1 
N=340 children 

Round 2 
N=284 children 

Overall 
N=624 child 

observations 

 Control 
N (%)  

Intervention 
N (%) 

Control 
N (%) 

Intervention 
N (%) 

Control 
N (%) 

Intervent
ion 
N (%) 

ARI1  within previous 7 days 19 (9.8) 5 (3.4) 15 (9.0) 2 (1.7) 34 (9.4) 7 (2.7) 

ARI - Sought care from CHW 
or at health facility for ARI 
within previous 7 days 

6 (3.11) 1 (0.68) 5 (2.99) 1 (0.85) 11 
(3.06) 

2 (0.76) 

Fever 55 
(28.50) 

24 (16.33) 40 
(23.95) 

13 (11.11) 95 
(26.39) 

37 
(14.02) 

Fever – sought care 26 
(13.47) 

6 (4.08) 24 
(14.37) 

8 (6.84) 50 
(13.89) 

14 (5.30) 

Constant cough 72 
(37.31) 

37 (25.17) 55 
(32.93) 

21 (17.95) 127 
(35.28) 

58 
(21.97) 

Constant cough – sought 
care  

27 
(13.99) 

12 (8.16) 17 
(10.18) 

8 (6.84) 44 
(12.22) 

20 (7.58) 

Congestion/runny nose 91 
(47.15) 

36 (24.49) 56 
(33.53) 

23 (19.66) 147 
(40.83) 

59 
(22.35) 

Congestion/runny nose – 
sought care  

25 
(12.95) 

6 (4.08) 13 
(7.78) 

4 (3.42) 38 
(10.56) 

10 (3.79) 

Panting / wheezing / 
difficulty breathing   

26 
(13.47) 

8 (5.44) 18 
(10.78) 

2 (1.71) 44  
(12.22) 

10 (3.79) 

Panting / wheezing / 
difficulty breathing  - sought 
care 

10 
(5.18) 

1 (0.68) 5 (2.99) 0 (0.00) 15 
(4.17) 

1 (0.38) 

Sought care at health facility 
for respiratory symptoms 
within last 3 months2 

41 
(21.2) 

13 (8.8) 30 
(18.0) 

5 (4.3) 71 
(19.7) 

18 (6.8) 
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Toothache – within previous 
7 days  

9 (4.7) 6 (4.1) 5 (3.0) 4 (3.4) 14 (3.9) 10 (3.8) 

Total child observations 193 147 167 117 360 264 
1 Acute respiratory illness (ARI) defined as cough accompanied with “wheeze or rapid or difficulty 
breathing”.   
2 Case of cough, congestion/runny nose, difficulty breathing, or rapid breathing 

 

 



211 
 

DISCUSSION 
 

Coverage and use; stacking. 

This study found high coverage and continued use of an improved biomass stove 13-24 months 

following intervention delivery.  Most stoves were in good working order, and most households 

reported using the Ecozoom stoves daily.  Usage of the cookstove was measured by sensors, and 

indicated consistent regular usage during the sensor monitoring period.  Programmatic 

engagement, such as technical support, repeated behaviour change messaging, and visits by 

programmatic staff likely contributed to the high uptake that was observed (Barstow et al., 

2016, 2014). 

 

Usage was similar in Round 1 and Round 2, and indicated regular stove usage, although recorded 

events per day were less than reported typical behaviour, as previously reported in this pilot 

intervention (Thomas et al., 2013a).  This study could have benefited from including stove usage 

sensors on traditional stoves, as we were unable to objectively quantify the extent to which 

exclusive use occurred.  In this study we were limited by a 7-30 day sensor installation period 

due to logistical constraints, and it is possible the sensors do not reflect long-term usage, 

although patterns reflect uptake 13-24 months after receipt. A study in India found that 

intervention stove usage reduced over time until approximately 200 days after initial receipt 

(Pillarisetti et al., 2014); also a study in Kenya saw improved stove usage decrease over a period 

of 12 days of observation (Lozier et al., 2016). In other studies, stove use increased after delivery 

and then levelled off (Ruiz-Mercado et al., 2008).  Within our study it is possible there was some 

reactivity to our visit and/or knowledge of the sensor’s presence or purpose, which can impact 

usage as well as HAP levels (Lozier et al., 2016; Thomas et al., 2016).  Being observed can change 

behaviour (Arnold et al., 2015; Zwane et al., 2011), and frequent presence of research and 
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programmatic staff within the village of research could affect the generalizability of these 

results.  

 

Stove stacking (continued use of traditional stoves) was widespread. Among intervention 

households with working Ecozoom stoves, over 20% reported using traditional stoves every day, 

and traditional stoves were observed to be warm or in use on 15% of visits, while the Ecozoom 

was observed to be warm or in use on 26% of visits.  Being warm or in use is an imperfect proxy 

of usage for all cooking events, and intervention stoves tend to have a lower thermal inertia 

than traditional stoves and do not stay warm as long after use.  The usage of infrared 

thermometers could increase the observation window and are recommended for other studies 

assessing stove use. Due to reporting bias, the usage of traditional stoves is likely higher than 

reported.  When traditional stoves continue to be used, there may be minimal impact of the 

improved stove on HAP (Edwards et al., 2007; Johnson and Chiang, 2015). Even if benefits are 

initially detected from an improved stove implementation, these can diminish over time in the 

presence of stove stacking (Pine et al., 2011; Romieu et al., 2009; Ruiz-Mercado and Masera, 

2015), even when traditional stoves are used as secondary stoves (Pennise et al., 2009). 

  

Exposure 

Despite high and sustained uptake of the intervention stove, both cook and child personal 48-

hour exposures to PM2.5 in control and intervention arms far exceeded WHO health guidelines of 

10 μg/m3 and interim WHO target of 35 μg/m3 (WHO, 2014).  Slight reductions in geometric 

mean personal exposure to PM2.5 were observed for both cooks and children in the intervention 

arm, although in adjusted analyses modelling log-transformed PM2.5 exposure, the intervention 

was not associated with a statistically significant difference for  cooks (p=0.059) or children 
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(p=0.315). There was no statistically significant impact on CO exposures among cooks and 

children; mean levels were lower than observed in other studies in The Gambia and Kenya 

(Dionisio et al., 2008; Ochieng et al., 2013).  The lack of a significant reduction in exposure for 

cooks and children is consistent with other studies of biomass cookstoves that are Tier 2 and 3  

for indoor emissions, confirming the need to employ cleaner fuels and address other sources of 

exposure (Balakrishnan et al., 2015; Rosenthal, 2015; Sambandam et al., 2015; Smith et al., 

2011). Other possible reasons for lack of effect include increased time needed to tend the 

Ecozoom compared to their traditional stove as previously reported for this health programme, 

resulting in similar exposure levels (Barstow et al., 2014; Rosa et al., 2014). Also, the sharing of 

cooking tasks among household members may dilute exposure reduction potential (Beltramo 

and Levine, 2013). Importantly, there could have been behavioural reactivity during HAP 

monitoring periods resulting in increased use of the intervention stove, so the exposure levels 

observed might not be representative of typical exposures (Lozier et al., 2016).     

 

CO exposure measurements occurred in children as young as 8 months and PM2.5 from 18 

months of age.  Exposure of infants remains largely unknown, although children are often 

carried on their mother’s back at an early age even during cooking, so exposure is likely similar 

to levels seen for cooks.  In contrast with other studies (Balakrishnan et al., 2004; Dionisio et al., 

2008), child PM2.5 exposures were very similar to cook PM2.5 exposures (Table 3, Figure S3). 

Reasons for this could include similar time spent close to cooking fires indoors and in outdoor 

courtyards, and possibly being more sedentary around cooking fires than active cooks who 

perform multiple tasks while cooking. Even if children are in adjoining rooms to cooking 

activities, they can be exposed to high PM2.5 concentrations, particularly when ventilation is 

lacking (Patel et al., 2017). High PM2.5 concentrations exceeding WHO guidelines were observed 

in outdoor courtyard areas with and without stoves present, and children often spend time 
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playing in these areas.  It is likely that cooks and children were exposed to additional exposures 

to varying levels in and outside of the house given different behaviours, such as re-suspended 

dust during play or walking along roads, or exposure to additional cooking events at 

neighbouring houses (Accinelli and Gozal, 2015; Secrest et al., 2016). While controlling for 

rainfall was partly intended to control for potential dust exposures, it is possible this was an 

inadequate proxy.  Moreover, we did not assess cook or child location during the HAP 

monitoring period. Using person-location tracking in tandem with exposure measurements could 

help in understanding determinants of exposure.   

 

Another reason why child exposure was similar to adults may have been exposure to second-

hand tobacco smoke from the mother or from other household members (Semple and Latif, 

2014).  We did not measure HAP exposure among cooks who reported they smoked; thus, 

overall exposure of cooks in our study households is likely underestimated. Presence of a smoker 

had a statistically significant impact on cook PM2.5 exposure in adjusted models (Table S5 and 

Table S6).  Both antenatal and second hand smoke exposure may be important within this 

population, in addition to impact of cooking with biomass as found in other studies (Gurley et 

al., 2013; Vanker et al., 2015). Children can also participate in cooking activities which would 

increase exposures, and smoke from heating may be another exposure pathway, although this 

was not a wide-spread practice during exposure monitoring periods.   

 

We were unable to conduct ambient air quality monitoring in villages, and this is recommended 

for future studies.  The contribution of biomass cooking to these exposure levels is unknown, 

and multiple contributing sources are likely (Piedrahita et al., 2017; Secrest et al., 2016).  Black 

carbon analyses are underway for cook and child gravimetric samples, and should help 
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determining whether exposure to biomass was similar between cooks and children in this 

setting, although black carbon sources are variable (Soneja et al., 2015).  Source apportionment 

has been recommended as an additional analysis in epidemiological studies looking at the 

relationship between HAP and health in order to understand more fully the sources of PM2.5 

contributing to exposure (Huang et al., 2015).  Investigating the components of exposure and 

ambient conditions would also be helpful to understand more fully the reasons for the small to 

negligible exposure reductions observed among intervention cooks and children.  

Reductions in cooking area concentrations were greater than observed for personal exposures.  

This is consistent with other studies that have measured both personal and cooking area PM2.5.  

For example, a study in Mexico found kitchen reductions of 74% compared with a 35% personal 

reduction (Cynthia et al., 2008).  Even among households exclusively using Ecozoom stoves, 

kitchen and exposure reductions were likely not as high as could be achieved due to continued 

indoor cooking behaviour which was observed (Table 1 and Table 2), especially during rainy 

periods.   Relative household concentrations of PM2.5 measured in cooking areas among 

intervention and control were similar to levels as seen in the previous RCT among 3 of the 

original pilot villages (Rosa et al., 2014).  Similar to that study, the greatest difference in cooking 

area PM2.5 was observed for those who cooked outdoors, possibly suggesting the greatest 

potential for exposure reductions occurs if cooking occurs outdoors. Indeed, carbon monoxide 

exposure among children has been found lower among households cooking outdoors (Barnes et 

al., 2006). 

 

However, due to stove stacking and usage in multiple locations, interpretation of cooking area 

PM2.5 as measured at a single location should be interpreted with caution. Given multiple stoves 

and cooking locations, it is very difficult to accurately place static PM2.5 monitors in a way that 

captures all cooking events and concentrations in all living quarters, particularly in intervention 
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households using portable stoves. It is possible cooking events were under-measured if the 

cooking occurred more than 1 meter from our designated UCB-PATS equipment placement. 

Since intervention households were more likely to report cooking in multiple locations and 

outdoors given portability of the Ecozoom stove, relying on a single primary cooking area likely 

underestimates household concentrations. The difference between primary cooking area alone 

and the sum of primary and other cooking area was greater in the intervention arm, confirming 

this (Table 3, Figure S2).  However, using a sum of two different stationary monitors must also be 

interpreted with caution since smoke from a cooking event or other sources may have been 

captured by both UCB-PATS placements leading to double-counting and overestimation. Cooking 

with grass, leaves, and shrubs was more common in intervention households compared to 

higher wood-using control households, possibly due to the Ecozoom requiring smaller pieces of 

fuel or local wood availability. This fuel difference may have contributed to observed differences 

in cooking area concentrations between arms, although measuring fuel moisture, which can 

impact CO and PM2.5 stove emissions, would help in assessing the importance of this difference 

between arms (Ochieng et al., 2013).   

 

Courtyard concentrations were similar between intervention and control households regardless 

of reported cooking behaviour in courtyards.  This may indicate intrusion of smoke from indoor 

cooking areas, smoke from other sources such as garbage burning, charcoal making, agricultural 

burning, and the burning of biomass by neighbours (Dasgupta et al., 2006; Salje et al., 2014). It is 

also possible those houses with outdoor placements by a stove tended to use that stove indoors 

more than outdoors during the HAP monitoring period.   
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The PM2.5 concentrations of control houses with outdoor cooking areas was similar to 

intervention houses with outdoor cooking areas, and observed reductions could have been 

mainly attributed to a change in cooking location rather than the stove itself.   Further work is 

needed to assess proportion and type of cooking events by location and impact on kitchen 

concentrations and personal exposures.  The benefits of increased ventilation have been 

documented elsewhere (Johnson et al., 2011; Ruth et al., 2013). Future interventions involving 

improved stoves should be coupled with improved kitchen design, particularly in locations 

experiencing rainy seasons where outdoor cooking is a challenge (Debnath et al., 2016). 

However, there might be increased risk to other household members by moving cooking into 

other living areas such as outdoor courtyards where children often play.   

 

Child health outcomes. 

Despite the lack of statistically significant personal exposure reduction in the intervention arm 

among children, both 7-day acute respiratory infection (defined as cough accompanied by 

“wheeze or rapid or difficulty breathing”) and 90-day attendance at a health facility for 

respiratory symptoms were significantly reduced in the intervention arm. However, these 

outcomes were self-reported and are subject to reporting bias, although the negative control of 

toothache was comparable between arms.  Importantly, acute respiratory illness should not be 

interpreted as a proxy for ALRI which is the health outcome of most concern given higher 

mortality rates (Fischer Walker et al., 2013b). The symptoms we assessed did not allow for 

characterizing upper versus lower respiratory infection; presence of cough with “wheeze or 

rapid or difficulty breathing” was assumed to be acute, although this may not have been the 

case.   More objective health outcomes are needed to assess impact and severity, particularly for 

assessment of ALRI, such as clinic-based diagnostics, the use of portable ultra-sound, or pulse-

oximetry in addition to WHO IMCI criteria (Chavez et al., 2015; Ginsburg et al., 2016).   
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While some reduction in child exposure was observed in unadjusted descriptive analyses, 

exposure remained well above WHO guidelines; the exposure-response curve from the RESPIRE 

trial (Smith et al., 2011) and the integrated risk function developed by Burnett et al. (2014) 

indicates exposure to PM2.5 needs to reach much lower levels than those observed to reduce risk 

to ALRI. Nevertheless, acute respiratory infection is still a burden in low-resource settings and 

may make one more susceptible to pneumonia and other infections. Additionally, reduced 

exposure could shorten duration of both upper and lower respiratory illness, as a recent study in 

Mexico found (Schilmann et al., 2015). 

 

Health facility attendance for respiratory symptoms within the previous 90 days was significantly 

lower in the intervention arm.  The long recall period could lead to misreporting of reason for 

visit, frequency of visits, and type of care sought , although 3- and 6-month recall periods for 

health facility attendance are common (Bhandari and Wagner, 2006). A longer recall period 

likely underestimates health facility attendance , and capturing this burden within intervention 

studies remains important given the financial burden of seeking care (Ngabo et al., 2016).   

 

Notably, this was a combined intervention with a household water filter.  Among the same study 

households, we observed significant improvements in household drinking water quality and 

reduced odds of 7-day diarrhoea and visiting a health facility for diarrhoea in the previous 90 

days (Chapter 4). This reduction in diarrhoea among children was similar to other water filter 

trials (Clasen et al., 2015). It is possible the observed impact on self-reported respiratory 

symptoms was due in part to the health benefits imparted by the water filter, such as reducing 

immune system vulnerability. Some studies have suggested that reduced diarrhoea risk can also 
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reduce risk of ALRI (Ashraf et al., 2013; Fischer Walker et al., 2013a; Schmidt et al., 2009).  

Furthermore, reduced diarrhoea may improve clinical outcomes associated with severe 

pneumonia (Chisti et al., 2016; Leung et al., 2015), and is also associated with malnutrition, a risk 

factor for pneumonia (Chisti et al., 2009; Howie et al., 2016; Le Roux et al., 2015). 

 

Limitations 

This study has several limitations.  First, the intervention villages were purposively selected by 

the project implementers, and since our study focused on the poorest tertile (ubudehe 1 and 2), 

our results are not generalizable to all pilot intervention households or beyond the study area. 

However, previous work among these pilot villages reported cookstove adoption was similar 

between all households and ubudehe 1 and 2 households (Barstow et al., 2014). Households 

with children under 5 years of age may have been more likely to use the intervention and 

receptive to behaviour change messaging, although impact of the intervention within this high-

risk age group was of most importance to the Ministry of Health.  

 

Furthermore, the study was unblinded, so risk of responder bias and observer bias is high.  

Frequent presence of study staff within villages could have influenced participant behaviour, as 

well as the presence of sensors on stoves and water filters, and HAP monitoring equipment. In 

addition, this was a non-randomized study so the potential for unmeasured confounders is high, 

although the arms showed good balance on most characteristics of interest.   

 

The study could have been strengthened by assessing health insurance status, which has been 

shown to increase healthcare utilization in Rwanda (Mejía-Guevara et al., 2015). Vaccination 
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status is another potential confounder that we did not measure, although the pneumococcal 

conjugate vaccine (PCV3) was introduced into Rwanda in 2009 and reached 98% coverage in 

2013 (Gatera et al., 2016). Other factors, such as bedsharing and malnutrition could have 

impacted prevalence of respiratory infections, and should be examined in future studies  (Howie 

et al., 2016). 

 

Another limitation is that our study did not achieve the sample size target due to higher than 

anticipated ineligibility, loss to follow-up and sample loss.  Differential loss to follow-up between 

arms was observed, and reasons for higher absence and moving away are unknown. Higher loss 

to follow-up of intervention households may be due to village visits in the intervention arm 

coinciding with planting periods; more time was spent in control villages given the higher 

number of eligible participants, and this could have also increased follow-up success in Round 2. 

The relatively substantial proportion of HAP monitoring data that was unusable was due in large 

part to equipment malfunction and theft, and was unlikely to be influenced by treatment status. 

Households were also not visited at a uniform time, nor were HAP monitoring days standardized, 

with the exception that monitoring did not occur on Sundays in either arm.  However, this is 

unlikely to have differed systematically by arm.   

 

We did not ask about current heating or kerosene lamp-lighting episodes during the 48-hour 

monitoring period, and future monitoring should account for these practices more accurately 

(Carter et al., 2016; Lam et al., 2012). Future work should seek to characterize more fully 

proximity of study households to neighbours and neighbours’ cooking behaviours, dirt and 

tarmac roads given risks of resuspended dust and traffic –related sources of exposure, and other 

potential sources of exposure such as garbage burning, commercial cooking, and charcoal 
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making.  Given the time and behaviour-related variability of exposure determinants, repeated 

and longer-term measures of personal and household PM2.5 is recommended, especially for 

evaluating the potential health impacts of improved cookstoves and clean fuel interventions.    
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SUPPLEMENTARY MATERIALS  
 

Table S 1 Comparison of unmatched vs. matched village characteristic bias on key matching 
characteristics. 

 
UNMATCHED VILLAGES 

(n=210) 
MATCHED VILLAGES 

(n=18)  

  
Interven-
tion Control 

% 
bias Intervention Control 

% 
bias 

% reduction 
bias 

Minutes to road 100.56 82.114 18.8 100.56 92.222 8.5 54.8 

Percent of 
households 
Ubedehe 1 & 2 32.87 29.99 25.6 32.87 30.27 23.1 9.7 

Percent of 
households 
using 
unimproved 
water supply 11.62 24.72 -52.7 11.62 13.11 -6 88.7 

Mean 
household daily 
cook times  2.0 1.91 30.5 2.0 1.89 37.9 -24.1 

Percent of 
households 
treating water  44.02 53.85 -41.5 44.02 42.61 6 85.6 

Mean size of 
Ubedehe 1 & 2 
households 3.42 3.69 -26.7 3.43 3.23 19.5 27 

Primary stove (3 
stone) 0.44 0.38 13.1 0.44 0.44 0 100 

Primary stove 
(charcoal) 0.44 0.59 -28.9 0.44 0.56 

-
21.8 24.7 

Primary 
household fuel 
type (wood) 1 1.23 -32.3 1 1 0 100 
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Figure S 1 Mass calibration of UCB-PATS against co-located PM2.5 gravimetric samples. 
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Figure S 2 Boxplot of 48-hour arithmetic mean PM2.5 concentrations in main cooking area 
compared to the sum of main cooking area and other household area (using UCB-PATS 
nephelometric measurement). 
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Figure S 3 Boxplot of 48-hour arithmetic mean PM2.5 personal exposure concentrations for cooks 
and children under 5 years of age (using gravimetric measurement). 
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Figure S 4 A theoretical model for the association between determinants (exposures) and 
personal PM2.5 as an outcome. 

 

Table S 2 Response of GasBadge Pro devices to 25 PPM and 100PPM calibration gas (balance 
nitrogen) following data collection activities. 

GasBadge ID 
Response to 25 PPM 
calibration gas (PPM) 

Response to 100 PPM 
calibration gas (PPM) 

1 31 92 

2 31 92 

3 31 94 

10 28 89 

13 31 97 

14 27 93 

15 32 95 

23 29 91 

24 30 93 

25 29 91 

26 32 93 

29 32 96 

31 31 92 

32 30 92 

33 30 95 

34 31 93 

37 29 91 
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Table S 3 Primary cooking area PM2.5 model 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .566 0.000 .419 .792 

3-day rainfall 1.212 0.177 .917 1.603 

Smoker who 
smokes in 
house 

1.202 0.093 .969 1.489 

Uses kerosene 
for lighting 

1.235 0.068 .984 1.550 

 

 

Table S 4 Sum of primary cooking area+ other household area PM2.5 model 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .673 0.017 .487 .943 

3-day rainfall 1.333 0.058 .990 1.797 

Smoker who 
smokes in 
house 

1.224 0.059 .992 1.510 

Uses kerosene 
for lighting 

1.113 0.338 .894 1.386 

 

 

Table S 5 Cook PM2.5 model (80% pump runtime) 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .778 0.056 .597 1.002 

3-day rainfall 1.071 0.538 .861 1.335 

Smoker who 
smokes in 
house 

1.373 0.003 1.110 1.696 

Uses kerosene 
for lighting 

1.081 0.470 .876 1.334 

Age (years) 1.007 0.069 .999 1.014 
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Table S 6 Cook PM2.5 model (90% pump runtime) 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .783 0.058 .603 1.004 

3-day rainfall 1.066 0.569 .856 1.329 

Smoker who 
smokes in 
house 

1.382 0.003 1.118 1.708 

Uses kerosene 
for lighting 

1.068 0.543 .863 1.323 

Age (years) 1.007 0.070 .999 1.014 

 

 

Table S 7 Cook CO model (PPM) 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .646 0.137 .3589 1.147 

3-day rainfall 1.909 0.025 1.082 3.367 

Smoker who 
smokes in 
house 

1.533 0.090 .934 2.513 

Uses kerosene 
for lighting 

.809 0.436 .476 1.380 

Age (years) .999 0.861 .982 1.015 

 

 

Table S 8 Child PM2.5 model (80% pump runtime) 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .805 0.273 .541 1.188 

3-day rainfall 1.261 0.115   .945 1.684 

Smoker who 
smokes in 
house 

1.111 0.378 .879 1.405 

Uses kerosene 
for lighting 

1.009 0.943 .780 1.310 

Sex .986 0.899 .798 1.217 

Age (months) 1.001 0.879 .990 1.012 
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Table S 9 Child PM2.5 model (90% pump runtime) 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .827 0.354 .550 1.240 

3-day rainfall 1.171 0.305 .866 1.584 

Smoker who 
smokes in 
house 

1.123 0.334 .887 1.421 

Uses kerosene 
for lighting 

.935 0.608 .722 1.212 

Sex .953 0.658 .769 1.178 

Age (months) 1.005 0.385 .994 1.016 

 

 

 

Table S 10 Child CO model (PPM) 

 Beta (exp) p-value Lower 95% 
credible 
interval 

Upper 95% 
credible 
interval 

Treatment .652 0.133 .371 1.143 

3-day rainfall 1.346 0.239 .821 2.215 

Smoker who 
smokes in 
house 

1.438 0.124 .903 2.284 

Uses kerosene 
for lighting 

.794 0.369 .481 1.313 

Sex 1.060 0.788 .693 1.618 

Age (months) .991 0.273 .975 1.007 
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Chapter 6. Reflections and Recommendations 

 

Unsafe drinking water and air pollution contribute substantially to the burden of disease, 

especially among young children in low-income settings. This burden is particularly high among 

rural populations in Sub-Saharan Africa where safe drinking water is often lacking and where 

households rely on biomass for cooking.  These health risks are exacerbated by poverty, with the 

poorest populations facing the heaviest disease burden and the most barriers to effective 

interventions.  

 

The objective of the research described in this thesis was to characterize the health risk 

presented by drinking water and household air pollution (HAP) in rural Rwanda and to evaluate 

the potential contribution of a scalable intervention aimed at both of these health risks.  

Previous research has shown household water filters to be protective against diarrhoea in the 

short term, but studies with follow up >12 months were not effective against diarrhoea (Clasen 

et al., 2015).  The majority of studies have been small and conducted within the context of  

intensive research trials rather than at-scale programmes as delivered.  A recent evaluation of a 

large-scale household-based water filter distribution programme in Western Kenya showed little 

use over the medium term and health impacts were not reported (Pickering et al., 2015).   

 

We sought to assess the medium-term use and impact on exposure and health of the 

intervention.  We also sought to assess these medium-term endpoints for an improved biomass 

stove, an intervention whose health impacts have also been questioned as a result of recent 

World Health Organization (WHO) guidelines on household air pollution (WHO, 2014).  While 
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interventions are available, they are often out of reach for the poorest, and long-term adoption 

and impact is understudied.   Evaluations of non-randomized pre-existing interventions are not 

as rigorous as randomized controlled trials, but still have the strong potential for causal 

inference (Arnold et al., 2010).  Quasi-experimental methods such as matching are helpful for 

assessing effectiveness of pre-existing interventions as actually delivered.   

 

6.1 Summary of the main findings 

Chapter 3 presents a paper summarizing research designed to examine baseline household 

drinking water quality conditions nationally for Rwanda. The cross-sectional study design 

allowed for an opportunity to derive a national estimate of household drinking water quality, in 

addition to sub-national patterns.  Since the study sample was nationally representative with a 

modest sample size, the design additionally afforded the opportunity to examine potential 

household community-level determinants of drinking water quality.  The availability of a robust 

national sampling frame containing household names was unusual for a national-level study, and 

increases the ability to generalise the results for Rwanda.   

 

The paper included in Chapter 4 presents research on the coverage, use, and health impact of a 

water filter among households within the poorest tertile with children under 5 years of age. This 

population was chosen a priori because the programme implementer planned a large-scale 

distribution of the intervention to the poorest tertile within Western Province (Barstow et al., 

2016), and we were most interested in the impact on children under 5 years given the higher 

burden of disease in this age group. The main outcome was household drinking water quality. 

We found high coverage and sustained use according to self-report, observation, and sensors 

affixed to filters, although non-exclusive use was evident among children and respondents.  This 
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non-exclusive use, particularly away from the household, may have diminished the potential 

health gains.  Nevertheless, we observed statistically significant reductions in child diarrhoea in 

the intervention arm.   

 

Chapter 5 presents research on the coverage, use, and health impact of the intervention stove 

within the same households described in Chapter 4. Similar to the filter assessment, we found 

high coverage and sustained use, as well as reduced concentrations of particulate matter <2.5 

µm in aerodynamic diameter (PM2.5) in cooking areas. This study adds to the literature 

suggesting reductions in household cooking area concentrations do not reduce personal 

exposures by the same levels. Though reductions in personal exposures to PM2.5 were observed 

in cooks and children within the intervention arm, these were not statistically significant in 

adjusted analyses, and reported and observed regular usage did not translate to the low 

personal exposures needed to achieve reductions in acute lower respiratory infection (ALRI). 

Child exposure levels remained similar between arms, and child exposures were similar to cooks, 

unlike results from other improved cookstove interventions.  This may indicate presence of 

other exposures to particulate matter and carbon monoxide (CO) such as second-hand smoke, 

cooking smoke from neighbours, and higher than expected ambient levels.  The intervention 

stove, which was promoted to be used outdoors, may have also adversely increased child 

exposures by introducing cooking smoke into areas where children spend more time.  

 

6.2 Reflections on what could have been done to improve the research presented 

This research has certain shortcomings. Some of these limitations have been described in the 

previous chapters, but will be addressed fully in this section. 
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6.2.1 Cross-sectional study (Chapter 3) 

A larger sample size for the cross-sectional study would have allowed for a more comprehensive 

analysis of determinants and consequences of drinking water quality contamination, although 

this was not the main aim of the study. For example, evidence suggests our study was 

underpowered to adequately assess the relationship between child diarrhoea and faecal 

contamination given a recent study that only found an effect after combining observations from 

26,518 individuals and 8,000 water samples from multiple studies (Hodge et al., 2016). Although 

growing evidence for a relationship exists, it is likely context-specific and varies depending on 

underlying determinants related to hygiene, sanitation, nutrition status, communicable disease 

patterns, and other factors. It would have been helpful to examine the relationship and possible 

threshold effects within our setting, particularly within the context of household drinking water 

treatment.  Recent studies also suggest it is more important to look at water quality prior to 

rather than after episodes of child diarrhoea since water quality varies over short periods of time 

and there is a need to account for the incubation period of the enteric pathogens (Ercumen et 

al., 2016; Levy et al., 2008; Luby et al., 2015).  Testing water quality and then returning to ask 

about health symptoms would have also been advisable for the matched cohort study (Chapters 

4 and 5).   However this approach requires two household visits, doubling the cost and 

potentially aggravating reactivity on self-reported health conditions (Zwane et al., 2011). 

 

Water quality is affected by many factors that are time- and individual -dependent.  While I 

attempted to look at a broad range of community and household-level determinants of water 

quality, I relied on pre-existing data from the Rwanda Population and Housing Census and 

publicly available precipitation data.  Village-level census data or neighbouring household data 

would have been much better to include than sector-level, which encompass approximately 35 

villages. However, these data were not available to us. This is particularly true with regard to 
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population density, waste disposal practices and community sanitation levels, which would have 

benefited from finer geographic resolution than sector-level. A recent study suggests community 

sanitation coverage may have a greater impact on child diarrhoea and malnutrition than 

household sanitation practices (Hunter and Prüss-Ustün, 2016). The relative community size and 

contribution of community-level factors upon diarrhoea and water quality remain understudied 

and likely varies across different settings.   

 

Given the complexity and time-varying determinants of drinking water quality (Levy et al., 2008), 

one thing that would have improved the national drinking water quality assessment would have 

been to take repeated samples at the same house at different times of day, and over the course 

of multiple days. The issue of time-varying water quality and generalizability has been described 

previously, and is a known limitation of the planned inclusion of water quality testing into 

national cross-sectional studies conducted by the WHO Joint Monitoring Programme (JMP) and 

others (Rosa et al., 2016; WHO/UNICEF, 2015). It would also have also been helpful to examine 

spatial distribution of risk factors and patterns of contamination within a village in terms of 

households, sources, and environmental drivers such as groundwater susceptibility, geology, 

topography, and livestock areas.   

 

The climatic drivers of household drinking water quality are likely quite complex, with interacting 

influences of short and long-term precipitation trends. Extreme precipitation events may be 

mediated by preceding precipitation patterns, but our sample size did not allow for extensive 

analysis of such interactions. One of the challenges is to adequately account for the influence of 

seasonality. Binary indicators of season, such as rainy vs. dry, may be too broad for some health 

and exposure studies, especially for non-randomized studies since they are more susceptible to 
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imbalance between clusters and treatment groups. In addition to impacts on health and 

exposures, climatic influences can impact follow-up of participants and field work activities.  

Annual and seasonal variations, extreme weather events, and climate change all contribute to 

the inadequacy of relying on historical trends to account for these influences on outcomes of 

interest.   

 

To account for climatic influences, local temperature and precipitation may be better proxies of 

influence of seasonality and climate on outcomes of interest.  However, high quality reliable 

weather station data is frequently lacking in low/middle-income settings and in rural areas.  

Studies often lack the resources to set up their own weather stations, although this may become 

more common as climate increases in variability.   

 

Various global and regional precipitation datasets exist that are derived from various 

combinations of satellite and ground station data. Reliance on satellite data, particularly for 

extreme rain events that can be highly localized in this part of Africa, is not ideal. The CHIRPS 

data and similar datasets could be utilized by other studies concerned with climatic influences, 

and can be used as a more robust indicator of seasonality and precipitation than relying on 

crude binary predictors based on historical patterns, which can also have a lot of variability.   

 

It would also have been helpful to have village-level rain gauge (Figure 1) data in the days 

leading up to household water sampling rather than relying on satellite-derived Climate Hazards 

Group InfraRed Precipitation with Station (CHIRPS) data (Funk et al., 2015).  The time and 

geographical resolution of CHIRPS is finer than other currently available sources, but 
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contributing stations are limited in sub-Saharan Africa and data quality is lower than other 

settings where more weather stations are available to inform the estimates.   

 

Figure 1 HOBO rain gauge used during household air pollution monitoring days. 

 

While we looked at water quality at sources in the water filter evaluation (Chapter 4), this was 

not done in the national sampling activity due to time constraints.  It would also have been 

helpful to conduct water quality sampling at water sources, particularly in the days prior to 

household water sampling as water is typically stored for 1-2 days.  Source water quality 

contributes to household water quality, likely varies over time, and may also be subject to 

climatic events.  Perhaps water treatment is most necessary and effective during and after 

certain precipitation events.   

 

6.2.2 Matched cohort study (Chapter 4 and Chapter 5) 

Matching 

Village-level matching was done using a combination of restriction, propensity score matching, 

and rapid assessment (Arnold et al., 2009, 2010). This approach approximates a cluster-

randomized design and is consistent with the village-level distribution of the intervention and is 

necessary due to logistical constraints and data availability.   The objective of this matching 

approach is to minimize potential bias due to systematic differences between intervention and 
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control villages, which will give optimal covariate balance and overlap between groups than 

would be accomplished by random selection of control villages (Rubin, 2007; Rubin and Thomas, 

1996).  

 

The key to the study design is the quality of the matched control group.  Using a combination of 

restriction, propensity score matching, and rapid assessment, intervention villages were 

matched to comparison villages on key covariates most likely associated with the outcomes of 

interest (household air pollution and drinking water quality). Matching improves balance 

between intervention and control groups on measured confounders at baseline, but the 

presence of unmeasured confounding is still possible.  We additionally matched on shared 

health centre in order to improve balance on unmeasured confounders that could be related to 

geographic location. Despite continued susceptibility to unmeasured confounding, the matched 

cohort design is a cost-effective approach to estimating intervention effects in populations 

exposed to non-randomized programmes; it attempts to account for the relationship between 

treatment and covariates, and is more statistically efficient for estimating difference parameters 

than post hoc adjustment (Arnold et al 2010).   

 

In this study we were limited by the quality of data available for matching. Ideally there would 

have been household-level data relevant as potential confounders that would have been 

collected as close as possible prior to the delivery of the intervention being evaluated.  When 

these data are not available, community or regional-level data may be used instead, although 

the risk of misclassification and unmeasured confounding could increase under these conditions.  

With additional resources, a representative household survey could have been conducted in all 

potential control villages, as well as verification of water source types and sanitary inspections of 
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sources.  Additional village characteristics derived from remote sensing data and other pre-

existing sources could have been included in matching.  These could have included topology, 

proximity to different types of roadways, altitude, geology, slope, latrine density, proximity and 

density of livestock, and population density.   

 

We tried to mitigate the risks of unmeasured confounding by constructing a village-level dataset 

that could be used for matching. However, this dataset had better geographic resolution among 

intervention households than control households since it included household-level baseline data 

from intervention households as collected by the implementer.   

 

The ability of community health workers (CHWs) to accurately estimate village-level household 

drinking water and cooking practices is not completely clear.  It is possible that intervention 

village CHWs were more accurate in their village-level assessments given their programmatic 

involvement and frequent household visits. Since there are 3 CHWs per village, a better design 

for studies of this nature would have been to derive a composite village estimate for variables 

used in matching based on responses from more than one individual. Responses could have 

included opinions of the village chief or local administrative leader. However, due to resource 

constraints, this approach was not possible.  

 

Household survey data and potential for bias 

Both papers relied heavily on self-reported outcomes. The risk of bias is high when participants 

and researchers are unblinded to the intervention. The inclusion of care-seeking behaviour could 

help reduce courtesy bias since it is a more objective and memorable outcome than recall of 
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specific combinations of symptoms, duration, number of loose stools, etc.  The visit to a CHW or 

health facility may indicate more severe illness, and the visit itself can incur a time and financial 

burden.  While reporting bias is still possible since it is still a self-reported outcome, asking about 

care-seeking behaviour offers an additional health indicator that should be considered for 

environmental health evaluations.   

 

Reliability of this outcome could be assessed by verifying CHW and health facility-based records. 

Frequency of visits by the same individual would also be important to assess recurrent and 

persistent illness and variations of severity. Objectively capturing care-seeking visits throughout 

the year, as opposed to relying on self-reported outcomes with long recall periods, is 

recommended if resources permit.  An additional analysis of the paper-based clinic patient 

registers could verify visits at health facilities based on village of residence and even name of 

patient. A primary outcome of the large-scale cluster randomized trial is CHW- and health 

facility-diagnosed severe acute respiratory illness and diarrhoea. Verifying CHW and health 

facility care for these outcomes will be a main research focus of mine moving forward (Nagel et 

al., 2016; Weston et al., 2016).  

 

There remains the possibility for systematic bias with regard to care-seeking behaviour. It is 

possible that CHWs in intervention villages were less available to offer care and make health 

facility referrals, given their involvement with the intervention program and additional 

responsibilities.  On the other hand, it is possible the frequent programmatic visits made by 

CHWs to households could have resulted in more opportunities for child health consultations 

and referrals to health facilities, as well as re-enforcement of health and behaviour change 
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messaging.  This limitation will be present in other studies concerned with care-seeking 

behaviour related to interventions that involve CHWs in implementation.  

 

Problematic outcome – acute respiratory infection (ARI) 

As the primary aim of this research was to measure the sustained use and exposure impacts of 

the intervention, health outcomes were not a primary focus and were collected mainly as a pilot 

for the larger Phase 2 trial. We elected to assess specific symptoms of ARI rather than relying on 

uncertain case definitions. While this increased sensitivity and provided a useful comparison 

between study arms, it limits ability to compare to other studies and inferences that can be 

made. We also collected data on reported health seeking behaviours, an outcome that may 

reduce risk of reporting bias and while providing more policy-relevant data to government 

authorities.  A more comprehensive approach to understanding determinants and barriers of 

health care-seeking behaviour is recommended, such as inquiring about visits to traditional 

healers, costs, and purchase or use of medication. 

  

Focus on children’s health 

Both chapter 4 and chapter 5 focused on health of children under 5 given the higher burden and 

mortality rate associated with diarrhoea and respiratory infection among this age group.  We did 

not ask about self-reported health symptoms and care-seeking behaviour among other age 

groups. Diarrhoea, respiratory symptoms, eye discomfort, and headaches among others 

involved in cooking or who spend time at the house during cooking are outcomes worth 

exploring.    
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More objective measurements  

The evaluation of the improved stove would have benefited from more objective health 

outcome measures and additional indicators of exposure such as biomarkers of inflammation, 

carboxyhemoglobin and expirated CO.   

 

I advocated for the usage of this equipment for a trial I helped launch in fall of 2014. These may 

provide additional indicators of exposure, although there is still uncertainty about their 

relationship to health outcomes.  Another step would have been to assess child health outcomes 

according to Integrated Management of Childhood Illness (IMCI) protocol.  While quality control 

is challenging for this protocol, new technologies are being developed to improve the sensitivity 

and specificity of field-based assessments by non-health professionals.  For example, a new 

mobile device app has been developed based on IMCI protocol that includes breath counting 

and pulse oximetry (Ginsburg et al., 2016).  

 

Quality control issues 

Identification code conflicts and data discrepancies across multiple data types made post data 

processing very challenging and time consuming.  A barcode system would have likely reduced 

some of these problems.  Barcodes could have been placed on household air pollution (HAP) 

pumps, Harvard Personal Environmental Monitor (HPEMs), air filter Petri dishes, and water 

sampling bags.  Barcodes could have also been installed at households. There were barcodes on 

stoves and filters, and these were useful for the sensor monitoring given sensored stove and 

water filter switch-outs.  However, many of the most time-consuming issues could not have 

been fixed by using barcodes, and related more to organizing, cleaning, and clipping real-time 

CO and PM2.5 data to the correct 48-hour periods. It would be helpful to automate some of these 
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processes, although to ensure data quality, manually reviewing graphical presentations of the 

real-time data was helpful for identifying problematic records such as drift and battery 

problems. File name notation errors further complicated the data processing process; it is 

recommended the field supervisor matches each digital exposure record to each household and 

individual in a more timely fashion.  Taking pictures of equipment IDs during household surveys 

could also minimize data loss.   

 

It would also have been preferable to get data off of devices more frequently.  Some data were 

lost due to phones or devices being stolen, damaged, or lost.  More frequent backup onto secure 

servers would have also been helpful to prevent data loss.  Problematic devices and some 

abnormal patterns were not discovered until midway or after the study.  For example, the 

Gasbadge Pro (Figure 2) experienced CO baseline drift (Figure 3).   The University of California, 

Berkeley Particle and Temperature Sensor (UCB-PATS) (Figure 4)  sometimes experienced 

download errors, battery failures (Figure 5). Identifying these issues sooner could have mitigated 

the amount of missing data by training specific staff members or removing problematic devices 

from rotation.  Additionally, GasBadges could have been tested and calibrated more frequently 

throughout the study period using calibration span gas.  

 

Figure 2 GasBadge Pro for measuring carbon monoxide (CO). 
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Figure 3 Example of drifting baseline, GasBadge Pro CO record. 

 

Figure 4 Indoor and outdoor UCB-PATS placement during household air pollution monitoring. 
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Figure 5 Abnormal UCB-PATS PM2.5 record indicative of battery failure. 

 

 

Repeated measures   

Overall, there were substantially fewer eligible households than anticipated.  Accurate lists of 

ubudehe 1&2 households with a child under 5 were not available during the planning stages of 

the study and sample size calculations were based on rough estimates of village demographics. 

There was high variability in exposures among households.  More frequent repeated measures 

within the same individuals over time would have been helpful, although this could have led to 

fatigue among respondents and would have added substantial costs.  

 

Other sources of exposure  

Exposure to second hand smoke and kerosene lamps contributed to cooking area concentrations 

and personal exposures.  The degree to which second hand smoke contributed within this 

setting was unexpected.  In retrospect, it would have been helpful to collect more detailed 

information on specific tobacco smoking events during the monitoring period, including quantity 
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smoked and location.  Similarly, we could have characterized kerosene lamp usage during the 

monitoring period in more detail.   

 

Assessments of ambient air quality during the monitoring period with more sensitive equipment 

would have also been helpful.  The limit of detection for the UCB-PATS, many of which were 

placed outside, is only 30-50 µg/m3; it is expected that ambient levels during non-cooking 

episodes are lower than this, although this is not well understood in this setting. Contribution to 

HAP by neighbouring households and non-cooking sources could also be assessed, and would be 

helpful for understanding how low exposures could be attained with cleaner fuel such as 

liquefied petroleum gas LPG).  Additionally, the influence and frequency of air inversion events 

and resuspended dust should be investigated and quantified, although source apportionment 

was beyond the scope of this study.   

 

Reactivity of participants  

There could have been reactivity during air quality monitoring (Arnold et al., 2015; Zwane et al., 

2011)  For example, we observed some households dismantling their three stone fire as we 

arrived to the household.  Drinking water and cooking practices could have been altered during 

sensor monitoring and HAP monitoring activities.  A recent study noted increased improved 

stove usage during HAP monitoring (Lozier et al., 2016), and it is likely this occurred in our study.  

HAP monitoring could have resulted in the altering of other behaviour due to added 

inconvenience or participant fear of damaging equipment, resulting in more time spent at the 

house, children’s ability to play as normal, less time working in fields, etc.  To minimize the 

influence of this reactivity, we recommend placing stove use sensors and static air quality 
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monitors in households for longer periods of time. Battery life has traditionally been a limiting 

factor, but is improving with the development of new devices.   

 

Measuring compliance of wearing exposure monitoring equipment remains challenging. The 

spot-check observation on the second day of monitoring was helpful for switching out batteries 

and encouraging compliance among cooks and children. The light-sensor (Figure 6) provided a 

potentially useful indicator of compliance.  

 

Figure 6 HOBO Pendant Temperature and Light Data Logger. (source: 
http://www.onsetcomp.com/products/data-loggers/ua-002-08) 

 

 In reviewing light-sensor records based on records indicating <20% outdoor time, it appeared 

some cases of non-compliance would have been missed by relying on observation alone.  Some 

people appeared to put the equipment on only for the survey visit (Figure 7). However, it is not 

possible to adequately assess whether the device was being worn inside.  Thus, some compliant 

cook and child measurements could have been unnecessarily dropped from analysis.  Similarly, it 

is possible compliance is over-estimated; the light-sensors could not detect ambient light after 

dark, which is when evening cooking episodes often occur (Figure 8).  In addition, weather, 

shade, local object interference, and inconsistent directionality of the sensor itself, could have 

affected the light sensor readings.  Thus, more validation of the utility of these devices is 
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needed, although alternative location sensors, such as blue-tooth-based sensors worn on 

participants and affixed to equipment, would be helpful.  

  

 

Figure 7 Example of non-compliant exposure record according to light sensor values, with two 
spikes in lux (light) values indicating survey visits. 

 

 

Figure 8 Example of compliant exposure record during daylight hours according to light sensor 
values, with frequent spikes in lux (light) values.  

 

6.3 Reflections on the intervention programme and similar programmes 
 

Programmatic involvement within the 9 intervention villages was observed 13-24 months after 

intervention receipt, and regular household surveys and engagement from local community 

health workers allowed the implementers to respond to breakage or maintenance issues, and 

reiterate behaviour change messaging (Barstow et al., 2014). The hardware component of the 

water filter intervention was robust throughout the 13-24 months of observation although 
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weakened by poor maintenance or attacks by mice.  Improvements to filter design have since 

been developed and deployed (Barstow et al., 2016), and these replacements highlight a 

strength of the pay for performance model characteristic of carbon financed programs: there is 

programmatic incentive to keep the intervention in working order (Hodge and Clasen, 2014; 

Thomas, 2012). The public-private partnership and integration within the Ministry of Health 

(MOH) system likely encouraged higher adoption and sustained use than would have been 

achieved through private enterprise alone. The ability of the program to maintain this level of 

engagement and foster sustained use and impact health at a much larger regional level is the 

subject of continued research (Nagel et al., 2016).   

 

The water filter demonstrably improved household water quality and appeared in use in most 

households, yet reported use was non-exclusive. Use of unfiltered water within and outside of 

the household were identified as challenges, and the intervention only addressed one source of 

faecal exposure and within one setting – the household. This challenge is not unique to the 

DelAgua/MOH intervention programme, and is common within household water treatment 

programmes (Clasen et al., 2015).   

 

Similarly, the cookstove appeared to be in use in most households and reduced household air 

pollution, yet use was non-exclusive. The observed personal PM2.5 exposures among cooks and 

children within the intervention arm suggest that the cookstove component, as implemented, is 

likely insufficient to result in substantial respiratory health gains (Bruce et al., 2015; Gordon et 

al., 2014).  Child pneumonia, in particular, is unlikely to be affected by the biomass cookstove 

given observed exposure levels and existing knowledge about exposure-response curves 

(Burnett et al., 2014; Ezzati and Kammen, 2001; Ruiz-Mercado et al., 2011).  Nevertheless, a 
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slight reduction in exposure, as was observed for the cook, may translate to small health gains 

on a population level for very young children as they are often in close proximity to the mother 

(Johnson and Chiang, 2015a).   

 

The Global Alliance for Cookstoves (http://cleancookstoves.org/), in its effort to promote the 

distribution and adoption of clean cookstoves and fuels by 100 million households by 2020, has a 

high visibility within the development sector. Supported by the United Nations Foundation, a key 

claim by the Alliance and found on its website are the possible health benefits that can be 

obtained through adoption of clean cookstoves and fuels (Global Alliance for Clean Cookstoves, 

2016). Many cookstove NGOs make more overt claims about the health benefits that can be 

obtained through the use of efficient cookstoves that continue to use biomass, such as reduced 

child pneumonia. However, while evidence is growing that transitioning exclusively to cleaner 

fuels like LPG or ethanol can result in health gains such as reduced blood pressure (Alexander et 

al., 2017), most cookstove programs have so far failed to measurably deliver on the claim of 

saving lives and reducing illness. Stoves that continue to burn biomass are particularly 

implicated, even if they are fan assisted and have very low laboratory-measured emissions.  The 

vast majority of real-world cookstove delivery programmes as well as intensive health impact 

studies have not demonstrated long-term sustainability nor health impacts, and the stoves 

deployed fail to achieve exposure reductions necessary for measurable health improvements 

(Hanna et al., 2016; Manibog, 1984; Mortimer et al., 2016; Smith et al., 2011; Tielsch et al., 

2016).   

 

Even with exclusive use of an improved cookstove or clean fuel by a particular household, the 

multiplicity of additional sources of exposure, including local and regional sources, often means 
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the levels needed to achieve health benefits are not reached (Huang et al., 2015; Piedrahita et 

al., 2017; Zhou et al., 2014).  Just as an “improved” water source does not imply safe water (nor 

safe water within the household), so too should the term “improved stove” be viewed with 

caution given the unsafe exposures that persist with such stoves (Clark et al., 2013b). Wide scale 

dissemination of certain stove types, with the intent for health gains, is premature, and 

cookstove programs should refrain from proclaiming the health benefits as a main reason for the 

programme given the lack of objective evidence. A greater emphasis on striving towards clean 

air rather than simple distribution of clean cookstoves is needed.  Many cookstove programmes 

are likely well-positioned to shift from simply focusing on the delivery of inadequate 

technologies towards working to address other sources of exposure such as heating, lighting and 

tobacco use (Carter et al., 2016; Lam et al., 2012), and mitigating local and regional contributors 

to air pollution. Solutions aimed at reducing exposure within rural and urban settings will likely 

entail systemic and structural changes to ensure sustainability in addition to technological and 

behavioural innovations (Amegah and Agyei-Mensah, 2016). These may include regulation, 

penalties, incentives, and subsidies.   

 

Despite the limitations of household water filter and cookstove intervention programmes, the 

following recommendations are made to optimize the current and similar programmes: 

6.3.1 Water filter recommendations 

 Emphasize importance of proper filter usage and maintenance throughout the 

programme, not just at the beginning.  This includes backwashing the filter after use, 

keeping filtered water in the safe storage container rather than other containers, using 

clean drinking cups, and consuming filtered water stored in safe water bottles while 

away from the household. 
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 Water bottles equipped with water filters, which are commercially available in higher 

income countries, may be a helpful addition to the tabletop filter, as a bottle is closer to 

point of consumption and can accompany individuals during activities away from the 

household.   

 To minimize consumption of untreated water, untreated water should be stored out of 

reach of children.  

 Revisit whether filtered water should also be used for handwashing, food preparation, 

dish cleaning, etc. These activities could result in exposure to faecal matter and more 

liberal use of filtered water could mitigate these pathways of exposure. 

 Emphasize the importance of filtering during and after extreme precipitation events.  

 Identify and address other sources of faecal exposure within the household and provide 

recommendations and assistance to mitigate risk.  

 Install Lifestraw community filters at schools so that school-aged children can have 

access to safe water away from the household. Installing community filters at health 

facilities and other community gathering areas is also recommended.  

6.3.2 Cookstove recommendations  

 Emphasize importance of proper filter usage and maintenance throughout the 

programme, not just at the beginning.  This includes using the pot-skirt and stick 

support, removing ash after use, and using wood that is dry.  The implementer could 

provide instructions and training on ways to dry out and store fuel.  

 Encourage all stove use to be located outside, outside, away from doors, windows, 

children, and other people if possible; identify barriers to outdoor cooking, alleviate 

safety concerns, and help build protective roofing structures to protect from rainfall, etc. 

If indoor stove use is essential, assist households in increasing ventilation.  
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 Acknowledge that some traditional stove use will likely continue, and that any stove use, 

regardless of whether cooking or for other tasks, should also be done outside away from 

children and other people. 

 Encourage participants to avoid other households while they are cooking. Stress the 

importance of reducing their own personal exposure in all areas of life, not just at their 

households. 

 Identify and address other sources of smoke exposure within the household and seek to 

provide replacements if necessary (e.g. solar lamps to replace kerosene lamps). 

Additionally, provide behavior change programming to reduce the amount of indoor 

tobacco smoking by all household members, and minimize this exposure to children and 

pregnant mothers.  

 Utilize existing programmatic infrastructure and partnerships to foster transition and 

adoption of cleaner fuels like LPG, biogas, and ethanol.  Programmes should strive to 

assist households in moving up the energy ladder and not stop with the provision of a 

single biomass-burning rocket stove.  

6.3.3 Overall programme recommendations 

 Use sensor monitoring, or sham sensors, as a tool to improve consistent and exclusive 

use.  

 Consider targeting intervention and reinforcement to vulnerable populations, e.g., 

pregnant mothers, those with chronic illness, houses with young children, children with 

malnutrition, etc.  

 Develop and explore various low-cost, low-effort programmatic “nudges”, potentially 

through slight modifications to household design, hardware design, repair, promoter 

materials, competitions, etc. that could positively influence behavior change and 

appropriate adoption. 
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 At least every 6 months, schedule focus groups and key-informant interviews in 

communities with recipients to get feedback on barriers to use, improvements that 

could be made, etc.  Seasonal variability and influence on usage should be factored in to 

these discussions.  

 Develop incentives for exclusive use of both the filter and cookstove. Incentives for 

improvements in water quality and air quality in cooking areas, perhaps even personal 

exposure, should be explored.  

 Use sensor monitoring, or sham sensors, as a tool to improve consistent and exclusive 

use.  

 Consider targeting intervention and reinforcement to vulnerable populations, e.g., 

pregnant mothers, those with chronic illness, houses with young children, children with 

malnutrition, etc.  

 Develop and explore various low-cost, low-effort programmatic “nudges”, potentially 

through slight modifications to household design, hardware design, repair, promoter 

materials, competitions, etc. that could positively influence behavior change and 

appropriate adoption. 

 At least every 6 months, schedule focus groups and key-informant interviews in 

communities with recipients to get feedback on barriers to use, improvements that 

could be made, etc.  Seasonal variability and influence on usage should be factored in to 

these discussions.  

 Develop incentives for exclusive use of both the filter and cookstove. Incentives for 

improvements in water quality and air quality in cooking areas, perhaps even personal 

exposure, should be explored.  
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6.4 Comparative challenges of combined intervention study   

Nature of the intervention  

The nature of the combined Lifestraw water filter and Ecozoom cookstove intervention is a 

household-based solution to two substantial environmental health concerns. The intervention to 

improve water and air quality is directed at minimizing the risk of two household-based sources 

of exposure  – household stored drinking water quality, and smoke from stoves predominantly 

used for cooking.  To a certain extent, the particular context of the intervention under 

evaluation was also community-based in that all households within an “intervention village” 

received the intervention (Barstow et al., 2014). However, often this is not the case in other 

household water treatment or cookstove delivery programmes which target certain sub-

populations or include some degree of voluntary participation.  It remains uncertain to what 

degree household-based interventions can impact unsafe water and air quality at a community 

level.  For both faecal contamination and household air quality, household levels of 

contamination can influence community/ambient levels of contamination, and vice versa (Bain 

et al., 2014; Carter et al., 2016; Chafe et al., 2014; Wright et al., 2004). 

Fundamentally the water filter is designed to reduce exposure to faecal contamination, but its 

impact on other sources of faecal contamination, as highlighted in the F-diagram (fluids, fingers, 

flies, fields/floors, food), is likely limited (Kawata, 1978).  By locating the intervention at the 

household level, the intention of this component of the intervention is to make water safe at the 

closest point to water consumption within a household, both physically and temporally.   

 

Similarly, the stove is designed to reduce exposure to high levels of toxic substances created 

during the combustion process while cooking (in addition to other purported co-benefits such as 

reduced fuel consumption and shorter cooking time). Cooking may be understood as the main 

source of exposure to air pollution, although relative contributions to personal exposure from 
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other sources in different settings is understudied (Huang et al., 2015; Secrest et al., 2016; Zhou 

et al., 2014).  The stove component of the intervention does not address other sources of 

exposure experienced within a household (e.g. lighting, heating, intrusion of smoke from 

neighbours ,tobacco smoke, etc.), nor outside of the home (e.g. road traffic, industry, rubbish 

burning, and other contributors to ambient air pollution).  

 

Exposure assessment at individual and household levels 

In this study, exposure to faecal contamination from water quality was assessed by quantifying 

thermotolerant coliforms (TTC) within a 100mL sample of stored household drinking water at 

one point in time, at the conclusion of a health survey.   If a household did not have any drinking 

water available at the house at the time of visit, exposure assessment was not possible.  

Measurement at a single point in time and from a single sample may not reflect average water 

quality of a container, nor what is actually consumed within the household much less outside of 

the household (Levy et al., 2008; Luby et al., 2015). Personal measures of exposure to faecal 

contamination, let alone water quality, are lacking, and perhaps can only be addressed through 

repeated or continuous sampling of water at sources, within storage containers, and actual 

consumption devices. Sampling of other sources of faecal exposure, such as food, soil, flies, etc. 

could also more robustly characterize the extent of faecal contamination an individual is 

exposed to (Boehm et al., 2016; Pickering et al., 2012; Schriewer et al., 2015; Wolfe et al., 2016).    

 

In contrast, air quality was measured at both an individual and household-level regardless of 

what was available at the house, making the exposure measure less susceptible to selection bias 

than water quality.  Also in contrast with water quality, measurement of PM2.5 and CO, the two 

indicators of air pollution, was conducted over a 48-hour period, increasing the chance that the 

measure is more representative of experienced conditions during that time period and during 
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periods not measured.  However, even a 48-hr measure likely fails to adequately characterize 

normal, much less long-term exposures due to the variability of determinants of air quality, such 

as climatic conditions and personal behaviours (Dionisio et al., 2012). Measurement is difficult 

and time-consuming, and worn equipment can be particularly susceptible to breakage, 

manipulation, and non-compliance (Clark et al., 2013b). Efforts are underway by exposure 

scientists to measure household-level air pollution over extended time periods, and the advent 

of low-cost monitors that can be placed throughout a household may improve abilities to 

characterize micro-environmental exposures (Patel et al., 2017).  The development of personal 

exposure monitors that can be worn for long periods of time and deliver is further off, yet very 

much needed.   

 

Similar to TTC, PM2.5 and CO are proxy indicators of health relevance, but they may not be the 

most health-relevant indicators (Secrest et al., 2016).  Both water quality and air quality 

measurement frequently rely on indicator measurements. It is likely particular toxic components 

of particulate matter, for example, pose a greater risk to health than others, or may have 

differential impacts on acute vs. chronic health conditions. This challenge is faced in the WASH 

sector as well – the costs and technical difficulties associated with finer pathogen differentiation 

make it a rarity in intervention evaluations, thus obscuring potentially important mechanistic 

relationships and health impacts that could be elucidated. Furthermore, the relative importance 

of real-time levels vs. cumulative amounts is unknown for both water quality and air quality.  

The concept of environmental enteropathy (Prendergast and Kelly, 2016)may extend to 

exposure to air pollution—there is likely a burden from persistent inflammation and oxidative 

stress that could become systemic . While source apportionment may help illuminate relative 

contributions of exposure sources and culpable components, attribution to specific behaviours 

or cookstove types remains a challenge.    
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Monitoring of sustained exclusive use 

Monitoring of sustained exclusive use is another challenge facing both household water 

treatment and cookstove interventions. Sensors on water treatment devices is a relatively novel 

application (Thomas et al., 2016, 2013), and is more common in the cookstove sector (Lozier et 

al., 2016; Mortimer et al., 2016; Pillarisetti et al., 2014; Ruiz-Mercado et al., 2008; Wilson et al., 

2016). The limitation of these sensors is often translating usage into meaningful metrics that 

would indicate sufficient or exclusive use, and data must be interpreted with caution. In this 

study, beyond limited observation and self-report, objective usage of unsafe water storage 

containers and consumption by different individuals is unknown, as is the usage of traditional 

stoves. Duration of monitoring was also limited by battery life and breakage, although sensor 

durability and longevity is improving. Currently usage is essentially measured at a household 

level, and thus faces the same weaknesses of using household-level measures to infer personal 

exposures. To this end, location beacons used in tandem with usage sensors may help clarify the 

degree of exclusive use.  The use of stationary and wearable cameras may also help clarify the 

extent of exclusive use (Salmon et al., 2016), although reactivity and length of observation are 

likely to be substantial limitations.   

 

Health impacts for household water vs. air quality interventions 

This study relied on self-reported child diarrhoea and respiratory symptoms with a one week 

recall, as reported by the primary caretaker.  While this type of health outcome is often used as 

a low-cost indicator of impact and is utilized in large-scale surveys such as the DHS, it lacks 

objectivity and is subject to responder and observer bias (Ercumen et al., 2016; Schmidt and 

Cairncross, 2009).  Respiratory symptoms may be especially prone to misclassification, and 

assessment of both diarrhoea and respiratory symptoms for infants is particularly challenging. 

Assessment of child health using WHO IMCI protocol is an improvement for assessing severe 
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respiratory infections, but only addresses current illness and thus requires larger sample sizes to 

detect an effect.  More objective measures of child enteric and respiratory-related health 

outcomes exist, although they are often beyond the financial or technical capacity of evaluation 

efforts. For impacts related to faecal exposure and enteric infection, stool samples can be 

identified for specific pathogens, and blood samples can be assessed for seroconversion or 

biomarkers of infection.  Rapid assessment techniques, such as saliva tests for biomarkers of 

recent illness, are in development and could improve objective assessment for diarrhoea.  For 

respiratory illness, multiple methods exist to identify clinical indicators of current acute lower 

respiratory illness, with more advanced diagnostic capacity through the use of x-ray, ultrasound, 

lung aspiration, cultures from blood, induced sputum, etc.  However, low-cost technologies 

suitable for use in low-income household settings, the context for many health impact studies, 

are lacking for enteric and respiratory infections.  Moreover, the clinical significance of various 

objective measures of infection, and categorization according to severity, can be problematic 

and is a challenge for health impact assessment.    

 

6.5 Future work and recommendations   

Several next steps emerge as a result of this research. 

Rainfall, source and household water quality, and child diarrhoea and respiratory illness 

Chapter 3 highlighted the potential importance of extreme rainfall events and community-level 

risk factors, and I would like to explore these further.  While other studies have begun to 

investigate these factors in Ecuador and India, relatively little attention has been put on these 

interrelated determinants in Sub-Saharan African. The study could use highly accurate real-time 

rain gauges as described in Chapter 5, placed at household water sources and village 

neighbourhoods.  Periodic water quality testing and morbidity surveillance could be conducted.  

The analysis could be strengthened by examining clinic-confirmed cases of diarrhoea and 
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respiratory illness.  Identification of risk factors and thresholds of effect could help in the 

development of mitigation strategies for extreme precipitation events.  Additional techniques 

such as time series analysis and spatial analysis could be employed.  It is possible that 

mechanisms involving these factors contributed to the similar prevalence rates in round 1 and 

substantial differences in round 2 between intervention and control arms.   

 

Blood pressure 

As a pilot within the matched cohort study HAP monitoring households, we collected data on 

blood pressure and potential confounders for all cooks and additional women 18 years of age 

and older within households if present. These data can be analysed for impacts of the 

intervention on blood pressure overall between arms as well as for women over 40 years of age, 

since studies have indicated older women’s blood pressure may be more affected by HAP 

interventions (Baumgartner et al., 2011; Clark et al., 2013a).  Exposure relationships between CO 

and PM2.5 could also be investigated. 

 

Personal exposure of other household members 

I would like to conduct future exposure assessments on additional members within the 

household, including men who may have high occupational-related exposures in addition to 

cooking-related exposures within the household. Future work examining lung function and 

prevalence of acute and chronic respiratory conditions among adults would also be advisable 

(Jary et al., 2015). Repeated exposure measurements and treatment success of those with 

human immunodeficiency virus (HIV) and non-communicable diseases (NCDs) would also be 

helpful, as treatment success may be mediated by immune system stimulation and systemic 

inflammation due to high HAP exposures (Meghji et al., 2016).    
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Recovery of drift samples 

Nearly 25% of real-time CO data were not usable due to drifting baseline and negative values.  

Adjustments to these measurements are possible, although current methods to rapidly adjust 

are lacking.  We are exploring ways of recovering these data and comparing drift to non-drift 

samples in sensitivity analyses.  Current CO records may underestimate overall exposure 

patterns among participants. Though staff were instructed to zero outside in an environment 

without any cooking, drift was most often due to field-zeroing the devices within the presence of 

CO, and may indicate CO levels were high despite absence of cooking activity.  Thus, households 

with higher CO exposures may have disproportionately fewer usable CO measurements since 

their records were more likely to have experienced drift and have been dropped.   

 

Black carbon and source apportionment 

By conducting black carbon measurements, we hope to identify whether exposure to black 

carbon was similar between cooks and children, and attempt to infer whether sources of 

exposure were likely to have been similar.  Recent research implicates re-suspended dust as a 

contributor to PM2.5 (Secrest et al., 2016), and children may have been differentially exposed to 

non-biomass sources given behaviour differences.    

 

Respiratory infection and WASH 

The large observed difference in ARI associated with the intervention despite the lack of an 

observed impact on child exposures suggests some benefit may have occurred due to the water 

filter.  It is possible improved water quality reduced immune system stimulation in turn reducing 
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community-acquired ARI. HAP exposure may lead to chronic inflammation and immune system 

stimulation, and this may interact with intestinal pathogens, malnutrition, and environmental 

enteropathy (Ngure et al., 2014; Prendergast and Kelly, 2016). A future trial with separate and 

combined drinking water, HAP and sanitation arms would be helpful to disentangle the possible 

synergistic effects of these household-based interventions designed to improve water quality 

and air quality.  Outcomes could include environmental enteropathy and clinic-diagnosed 

outcomes. Moreover, future WASH studies should have more rigorous evaluation of respiratory 

symptoms and ALRI in particular, and future HAP and respiratory studies should include 

diarrhoea symptoms. 

 

Determinants of kitchen concentrations and personal exposure to PM2.5 

Along with cooking area and personal exposure data, we collected extensive data on cooking 

area characteristics such as dimensions and ventilation, along with self-reported cooking 

locations and stove usage for each meal during the monitoring period. Future analyses could 

examine determinants of kitchen and personal PM2.5 (WHO, 2014), and these could help 

elucidate typical household exposures in the region since measuring personal exposures is 

difficult on a large scale (Bruce et al., 2015; Clark et al., 2013b; Northcross et al., 2015). Using 

these data, we could also examine exposure amongst sometimes, never, and exclusive users, 

and investigate cooking location as a mediating factor. In a subset of households for which 

sensor and UCB area measurements are complete, objective indicators of usage and real-time 

static PM2.5 and personal CO could be modelled. Chapter 5 focused on mean PM2.5, but the 

influence of PM2.5 and CO exposure peaks could be equally important for health. A comparison 

between arms, stove and fuel type, and location would be helpful.  Little is known about the 

influence of exposure peaks, although one study from India suggests black carbon increases 

results in acute increases in systolic blood pressure (Norris et al., 2016).  Additionally, we plan to 
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assess the relationship between PM2.5 and CO using Bland-Altman plots (Klasen et al., 2015; 

McCracken et al., 2013).   

 

Determine exposure of children less than 2 years of age 

A key remaining question is the exposure of children less than 2 years of age since there is 

increased mortality due to ALRI and diarrhoea in this age group (Fischer Walker et al., 2013). A 

key strategy may be to conduct gravimetric PM2.5 measurements for children by having the 

mother wear the equipment while the child is on their back, and when the child is not on the 

back, place the equipment within 1 meter. Future work should assess the feasibility of this 

approach in order to characterize exposures.   

 

More objective usage and location data 

Real-time location info coupled with real-time cooking area and exposure data would help 

address relative contributions and locations of other sources of exposure. One idea is to affix 

both usage and location sensors on portable stoves to detect when and where they are being 

used.  This would also provide objective measures on child proximity to cooking fires and other 

sources of exposure.  Respiratory tract infections have been associated with child proximity to 

cooking fires in Bangladesh (Nasanen-Gilmore et al., 2015). Proximity to cooking may be an 

easily modifiable risk factor for children, and deserves further exploration.  

 

Behaviour change strategies to increase household ventilation and encourage outdoor cooking, 

even during the rainy season, similarly merits investigation, although cooking-related behaviour 

change has demonstrable challenges (Clark et al., 2015; Goodwin et al., 2015; Hanna et al., 2012; 
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Johnson and Chiang, 2015b). Strategies to reduce exposure to second-hand smoke and kerosene 

lighting should also be explored in this setting. Such modifiable practices could be incorporated 

into public health messaging, and especially targeted towards vulnerable populations such as 

those with HIV or NCDs, or during antenatal and postnatal care and first years of life. Impacts on 

personal exposure should drive best practice and decision-making in order to minimize 

unintended consequences, since changes in cooking location may adversely increase exposure of 

other household members.   
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Abstract

Diarrhoea and respiratory infections remain the biggest killers of children under 5 years in developing countries. We
conducted a 5-month household randomised controlled trial among 566 households in rural Rwanda to assess uptake,
compliance and impact on environmental exposures of a combined intervention delivering high-performance water filters
and improved stoves for free. Compliance was measured monthly by self-report and spot-check observations. Semi-
continuous 24-h PM2.5 monitoring of the cooking area was conducted in a random subsample of 121 households to assess
household air pollution, while samples of drinking water from all households were collected monthly to assess the levels of
thermotolerant coliforms. Adoption was generally high, with most householders reporting the filters as their primary source
of drinking water and the intervention stoves as their primary cooking stove. However, some householders continued to
drink untreated water and most continued to cook on traditional stoves. The intervention was associated with a 97.5%
reduction in mean faecal indicator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p,0.001) and a median reduction of
48% of 24-h PM2.5 concentrations in the cooking area (p = 0.005). Further studies to increase compliance should be
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Introduction

Environmental contamination at the household level is a major

cause of death and disease, particularly among rural populations in

low-income countries. Unsafe drinking water, together with poor

sanitation, account for an estimated 0.9% of the global burden of

disease and 0.3 million deaths [1]. Much of this disease burden is

associated with diarrhoea, which alone accounts for 10.5% of

deaths in children under 5 years in low-income countries [2].

Household air pollution (HAP) from biomass fuel smoke has been

linked to increased risk of respiratory tract infections, low birth

weight, exacerbations of inflammatory lung conditions, cardiac

events, stroke, eye disease, tuberculosis, cancer and nutritional

deficiencies [3]. The Global Burden of Disease (GBD) 2010

project found HAP from solid fuels to be responsible for 3.5

million premature deaths globally [1]. In this same assessment,

smoke from household cooking fuels was also responsible for

another half a million premature deaths due to contributions to

outdoor air pollution [1]. These environmental hazards are

aggravated among rural inhabitants of sub-Saharan Africa who

are more likely to rely on unsafe water supplies and cook using

biomass fuels on inefficient stoves [4–6].

Inefficient cookstoves also present substantial economic, devel-

opmental and environmental costs. At the household level, poverty

is exacerbated and time spent at school is reduced by the burden of

collecting more fuel for boiling drinking water and cooking [7].

Individuals, households and governments bear the cost of

expenditures for seeking treatment of enteric and respiratory

infections. Cookstove emissions also contribute to greenhouse gas

and black carbon emissions, and in some cases the fuel harvesting

can result in denuding of forests [8,9].

With a population of 10.5 million and a density of 412 persons

per sq. km, Rwanda is the most densely populated country in East

Africa [10]. Eighty per cent of the population of Rwanda lives in

rural areas and is engaged in agriculture [11]. Despite significant

progress over the last decade, 57% of the population is living
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below the poverty line, 37% of them living in extreme poverty

[11]. While a large proportion of the rural population has access to

improved water sources (71.2%), mainly through protected

springs, only 2.2% of rural areas have water on their premises

[12], resulting in an increased risk for drinking water contamina-

tion during transport and storage [13]. Almost all of rural Rwanda

(99.0%) relies on biomass for their cooking needs [12]. Morbidity

and mortality are largely dominated by communicable diseases,

including HIV/AIDS, acute respiratory infections, diarrhoeal

diseases, intestinal parisitoses, and malaria [14]. Among deaths of

children under 5, pneumonia accounts for 20% and diarrhoea for

12% [15].

In an effort to reduce the disease burden in rural Rwanda,

decrease poverty associated with expenditures for fuel, and

minimize the impact of greenhouse gases from inefficient

combustion of biomass in low-efficiency stoves, the Rwanda

Ministry of Health (MiniSante) and the Rwanda Environmental

Management Authority (REMA) have partnered with DelAgua

Health (implementer) to design, deploy and evaluate the impact of

a project that will deliver and promote the use of advanced water

filters and high efficiency cookstoves to lower-income households

in Rwanda. Prior to initiating the full campaign, the implementer

with the Ministry of Health undertook a pilot distribution of filters

and cookstoves to approximately 2200 households in 15 villages in

11 of the country’s 30 districts. We conducted this study in three of

those villages in order to assess the uptake of the intervention and

its impact on drinking water quality and household air pollution.

Methods

Study setting
The study was conducted from September 2012 to April 2013

in three rural villages, Nyarutovu and Kabuga located in

Muhanga district, Southern province; and Rubona, located in

Gakenke district, Northern province. These villages were pur-

posely selected from the 15 villages comprising the pilot

distribution phase. The sites were changed from the original

protocol, Karongi and Ngororero districts in Western province, to

accommodate access to better microbiology laboratory facilities in

Kigali.

Study design and sample size
The study employed a parallel, household-randomised, control

trial design with a 1:1 ratio. This trial followed a non-blinded

design because previous attempts to blind an earlier version of the

LifeStraw Family filter in the Democratic Republic of Congo were

unsuccessful [16]. The objectives of the study were to assess (i)

uptake and use of the intervention by the target population when

delivered programmatically, and (ii) the impact of the intervention

on the microbiological quality of household drinking water and air

quality near the self-reported cooking area over the 5-month

follow-up period. Our primary outcomes were (i) to assess levels of

faecal contamination (measured by thermotolerant coliforms,

TTC) in stored water in the home that householders used for

drinking, and (ii) to determine average 24-h concentrations of

PM2.5 in the main cooking area as identified by participants. Our

secondary outcome was to assess use of the intervention filters and

stoves based on self-report and spot-check observations.

The sample size calculation was based on PM2.5 emissions

reductions rather than TTC reductions in drinking water as the

former was determined to require a larger sample. Assuming a

50% reduction in PM2.5 emissions, 80% power, a= 0.05 and a

coefficient of variation (COV) of 1, we estimated a sample size of

63 households per arm.

The protocol of this trial and CONSORT checklist are

available as supporting information; see Text S1 and S2.

Intervention
Each intervention household received one LifeStraw Family 2.0

filter and one EcoZoom Dura improved wood burning stove. The

filter is the second-generation of a gravity-based water purifier that

uses ultrafiltration in the form of a hollow-fibre cartridge to

remove pathogens from drinking water. The first generation

device has been shown in field studies to be highly effective in

improving water quality and to achieve consistent (though not

exclusive) use [16]. The second-generation version used in this

study employs a table-top design and an integrated safe storage

vessel. Untreated water is poured through a 20-mm pre-filter

plastic mesh into a 6.0 L container; over time, gravity forces the

water through the cartridge comprised of hollow-fibres with a 20-

nm pore size. The water then passes into a 5.5 L storage vessel

where it can be dispensed via a plastic tap. The device is cleaned

daily by backwashing the cartridge using a squeeze-pump

mounted on the back of the storage container. The device is

designed to treat 18,000 L of water [17] with a flow rate of

approximately 3 L per hour. In the laboratory, the filter cartridge

was found to meet the USEPA standards for microbiological water

purifiers by reducing bacteria by 6 logs, viruses by 5 logs and

protozoa by 4 logs [18]. The filter meets the ‘‘highly protective’’

World Health Organization (WHO) rating for household water

treatment technologies [19].

The intervention stove is based on the ‘rocket’ concept that uses

an internal ‘chimney’ in the stove that directs air through the

burning fuel (usually biomass), and encourages the mixing of gases

and flame above it. Precise internal stove dimensions are used to

achieve high combustion efficiency and transfer heat to the

cooking pot. Two additional components are included with the

stove, a ‘‘stick support’’ onto which fuel wood is placed to promote

airflow and a ‘‘pot skirt’’ which increases fuel efficiency. A study

comparing cookstoves in Uganda, Kenya and Tanzania reported

that the EcoZoom (aka StoveTec) stove saved 39% to 54% of fuel

compared to open fires, cooked meals faster, and was participants’

most preferred stove during controlled cooking of local dishes [20–

22]. In the intervention group, householders were encouraged to

cook outdoors on the EcoZoom stove and to use dry wood only to

increase the efficiency of the stove. Further details on the

messaging used in the pilot distribution can be found elsewhere

[23].

Houses that were allocated to the intervention group also

received a poster with illustrations and instructions in Kinyarwanda,

the local language, on filter and stove use, maintenance, and

contact names and phone numbers for the implementer. Most

households had easy access to a cellular phone for contacting the

implementer. Intervention households received one-to-one train-

ing on use and maintenance in their homes by community health

workers (CHWs) who were previously trained by trainers who

themselves had been trained by the filter and stove manufacturers

and implementer. Intervention households were then visited

periodically at approximately one-month intervals by CHWs to

refresh health messaging and encourage use. Households allocated

to the control group were instructed to continue usual practices

throughout the study. At the end of the study in April 2013, these

control households received their own filters, stoves, posters and

training.

Use of Water Filters and Improved Stoves in Rwanda
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Enrolment, baseline survey, randomisation and
deployment of devices

Households were eligible to participate in the study if (i) they

were registered as being members of the village, (ii) the head of the

household was over 18 years, and (iii) no members of the

household worked as a CHW. The last criterion was included after

the original protocol was drafted as at the time of the design the

researchers were not aware that the CHW that would deliver the

intervention resided in the villages selected for the study. It was

explained that while all participating households would receive

filters and stoves, half would receive them at the outset of the study

and the balance at the conclusion of the 5-month follow-up period.

After obtaining consent from the heads of participating house-

holds, a baseline survey was undertaken in September-November

2012 to collect information on demographics, socio-economic

characteristics, water, hygiene and sanitation practices as well as

fuel and cooking practices. Data collection tools were translated

into Kinyarwanda and piloted before use.

Following the baseline survey, a public lottery was organised by

the implementer and research teams during a village meeting to

randomly allocate an approximately equal number of households

from each village to intervention or control groups. Local

authorities and village chiefs were extensively engaged to assess

the suitability of this randomisation approach. After the lottery,

members of control households were invited to leave the venue

while those of intervention households attended a demonstration

on the use and maintenance of the filter and stove, collected their

devices, and carried them to their homes.

Outcome assessment
Compliance. Monthly cross-sectional surveys were conduct-

ed by trained field investigators (the evaluation team) working

independently of the implementation team at unannounced visits

among each household. At each visit participants were asked to

identify the main drinking water container in the household,

whether it was the intervention filter or another container; the

surveyor also recorded whether the filter contained water at the

time of the visit, a possible objective indicator of filter use. The

field investigators also observed the cookstove and if cooking was

taking place at the time of the unannounced visit, recorded where

and whether such cooking was on the intervention stove or the

traditional stove. If no cooking was taking place, field investigators

noted the presence of smoke marks on the intervention stove, a

possible objective indicator of use. Reported measures of stove use

were also collected by asking participants what stove had been

used the last time cooking took place in their home.

Independent to our study, the implementers undertook a

separate survey, conducted by Environmental Health Officers

(EHOs), to assess use and acceptability of the intervention for their

own monitoring and evaluation purposes. The details of this

assessment have been presented elsewhere [23].

Additionally, to assess use of the intervention in a more

objective manner, remotely reporting electronic sensors were

mounted onto 23 intervention filters and 27 intervention stoves

and deployed in a randomly selected sub-sample of intervention

households for a two-week period. The details of the implemen-

tation of this nested study, data handling and analysis, and results

are presented elsewhere [24].

Water quality. During each of the five monthly visits, field

investigators took a sample from the water container identified by

the householder as being used mainly for drinking by children

under 5 years of age, or adults if no under 5 s resided in the

household. If this was other than directly from the intervention

filter, a second sample was taken directly from the filter if it

contained water. All water samples were collected in sterile Whirl-

Pak bags (Nasco, Fort Atkinson, WI) containing a tablet of sodium

thiosulphate to neutralize any halogen disinfectant. Samples were

placed on ice and processed within 6 h of collection to assess levels

of TTC. Microbiological assessment was performed using the

membrane filtration technique [25] on membrane lauryl sulphate

medium (Oxoid Limited, Basingstoke, Hampshire, UK) using a

DelAgua field incubator (Robens Institute, University of Surrey,

Guilford, Surrey, UK).

Household air pollution. Monitoring of particulate matter

with an aerodynamic diameter ,2.5 mm (PM2.5) in the main

cooking area took place between November 2012 and March

2013. 126 households (63 control and 63 intervention households)

were randomly selected for semi-continuous 24-h PM2.5 monitor-

ing. Households were numbered and selected by using a

computerised random number generator. Upon arrival at the

participant’s home, the family member mainly responsible for

cooking was identified and a short survey was employed to identify

the area in the household where cooking primarily took place.

‘‘Stacking’’ of stoves (using different stoves, often in different

locations) [26] was a common scenario, both in control and

intervention households, though more common in the latter. In

cases where the participant reported cooking equally in two

locations or with two or more stoves, we sampled from indoor

rather than outdoor locations and from traditional rather than

intervention stove. UCB-PATS PM2.5 monitors (described below)

were placed 1.5 m above the ground and 1 m away from the stove

and, whenever possible, at least 1.5 m from windows and doors by

suspending the monitors from the roof beams. When cooking was

reported to take place outdoors, the PM2.5 monitor was mounted

onto a vertical wooden stand and placed at the same distance and

height from the stove. The location of the stand was marked on the

floor and participants were advised not to touch or move the

equipment.

PM2.5 was measured using the University of California,

Berkeley Particle and Temperature Sensor (UCB-PATSTM),

(Berkeley Air Monitoring Group, USA), a semicontinuous (1-min

averages), light-scattering nephelometer [27,28]. Laboratory and

field validations of the UCB-PATS have been described previously

[27–30]. To take into account that nephelometer sensitivity is a

function of an aerosol’s specific optical properties such as size,

colour, and shape [31], calibration of the UCB response with the

target aerosol was undertaken by conducting 24-h PM2.5

gravimetric co-location measurements in a sub-sample of homes

(n = 30). Five field blanks were obtained, resulting in an

adjustment of subtracting 5 mg to the final filter masses (,1% of

the mean mass deposition). The UCB-PATS response was then

linearly regressed against the gravimetric samples (n = 27,

R2 = 0.86), with the resulting equation then used to adjust the

UCB-PATS response to the gravimetric measures (Figure S1 of

supporting information). Three gravimetric samples were omitted

due to incomplete sampling durations.

Gravimetric PM2.5 samples were collected using standard air

sampling pumps (PXR8, SKC Inc., USA) with PM2.5 cyclones

(SCC 1.062, BGI, USA) using a flow rate of 1.5 L/min. Flow rates

were measured before and after installation of the sampling

equipment in the home with a rotameter (Matheson Trigas,

Montgomeryville, PA, USA) that had been calibrated using a TSI

Flow Calibrator 4146 (TSI, Inc., USA). PM2.5 was collected on 37-

mm Teflon filters (Pall, USA). Filters were stored at 4uC until

shipment to Berkeley Air Monitoring Group in California, USA

for weighing. Filters were equilibrated for 24 h at 2263uC and

4065% relative humidity before being weighed on a 0.1
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microgram resolution electro microbalance (XP2U, Mettler

Toledo, USA).

Data analysis
All data were analysed using Stata 12 (Stata Corporation,

College Station, TX, USA). Because both PM2.5 concentrations

and TTC counts in drinking water followed non-normal

distributions, medians, geometric means and Williams means are

presented together with arithmetic means. The Williams mean is

calculated by adding 1 to all the data values, then taking the

geometric mean, then subtracting 1 again [32]. Categorical data

were compared using a Chi square or a Fisher’s exact test where

appropriate. The non-parametric Wilcoxon rank sum test was

used to compare PM2.5 concentrations in the main cooking area

between intervention and control groups. To assess the effect of

the intervention on water quality, TTC counts during follow-up

were compared using random effects negative binomial regression

as describe elsewhere [33] to account for (i) repeated observations

within households and, (ii) the skewed distribution of the TTC

counts. Model comparison was assessed by using the Bayesian

information criterion (BIC), which is a well-established measure of

goodness of fit that also applies to non-nested models [33,34]. For

the purpose of analysis, plates that yielded coliform forming units

(CFUs) that were too numerous to count (TNTC) were assigned a

value of 300 TTC/100 mL. Data were analysed in an intention-

to-treat basis in order to estimate the effect of the intervention

regardless of compliance. Only those households with complete

follow-up data were analysed.

Ethics
The study was reviewed and approved by the ethics committee

at the London School of Hygiene and Tropical Medicine

(No. 6239, as amended) and the Rwanda National Ethics

Committee (No. 328 RNEC/2012). Written informed consent to

participate in the research was obtained from the male or female

head or the wife of each participating household.

Results

Study population
The three villages participating in the study comprised 585

households, all of which were screened to participate in the study,

16 (2.7%) were ineligible and 3 (0.5%) refused to participate

(Figure 1). A total of 566 households with 2429 individuals were

enrolled in the study. Of those 281 (49.7%) were assigned to the

control group and 285 (50.4%) were assigned to receive the

intervention filter and cookstove. Household loss-to-follow-up was

2.8%, primarily due to participants moving out of the study area.

A total of 2737 household-visits were completed during the follow-

Figure 1. CONSORT diagram showing the flow of participants through the trial.
doi:10.1371/journal.pone.0091011.g001
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up period (96.7%) and data on one of the primary outcomes (water

quality) was collected for 2637 households-visits (93.2%).

Baseline characteristics
Baseline characteristics were distributed evenly between the trial

arms, with the exception of availability of soap among households

with a designated hand washing area and boiling or chlorination of

drinking water (see Table S1 of supporting information). At

baseline, drinking water samples were obtained from 551 (97.3%)

households. The median and Williams mean of drinking water was

14 and 20.2 TTC/100 mL (95% CI: 15.0–27.0 TTC/100 mL)

and 22 and 30.3 TTC/100 mL (95% CI: 22.8–40.2 TTC/

100 mL) for control and intervention groups, respectively.

Filter and improved stove use and compliance
Most households used the filter throughout the study period

(Table 1). Intervention households identified the filter as the main

drinking source in 89.2% of all household visits where drinking

water was available. Visual inspection at the time of the

unannounced visit was consistent with reported use, with 99% of

the filters containing water. Of the 10.8% of intervention

households that stored their drinking water elsewhere, overall

only 39.0% of them reported that the water had been treated with

the intervention filter. Over the course of the study, however, only

62.9% of intervention households identified the filter as the main

drinking water storage container in all five follow-up visits with

available water (n = 240, 84.2%). Of the remainder, 11.2%

reported treating it and storing it elsewhere at least once during

the 5-month follow-up, 25.0% reported drinking untreated water

at least once during follow-up and 0.8% did not know the status of

their water in at least one of the visits. During the last follow-up

visit, the major reasons for not having filtered water at the time of

the visit were (i) forgetting to fill the filter (48.1%), (ii) drinking

mainly locally produced beer instead of water (22.2%), or (iii)

having a broken or not properly functioning filter (18.5%).

The intervention stoves were also used throughout the study,

though most householders also continued to use their traditional

stoves. Field investigators observed actual cooking on about a

quarter (26.9%) of their unannounced visits. Of these, 54.3% were

cooking only with the intervention stove and 4.3% were using both

the intervention and traditional stoves (Table 1). Reported use was

higher, with householders claiming they last cooked solely on the

intervention stove on 78.0% of visits. Use of the intervention stove

was not consistent, with 47.5% of intervention households

reporting to have used the intervention stove during the last

cooking event at all three home visits (data not collected during

initial phases of follow-up). Likewise, of the households that were

cooking at all three unannounced visits (n = 8), or at two of the

Table 1. Filter and stove use among intervention households: Evaluator’s survey.

All visits

N %

Filter use1

Reported drinking container

Intervention filter 1210 89.2

Other container 146 10.8

Water stored in other container treated 57 39.0

Method of treatment: Intervention filter 56 98.2

No water in intervention filter among households identifying filter as drinking container 12 1.0

No water in intervention filter among households not identifying filter as drinking container 83 56.8

Stove use2

Observation data on use

Intervention household cooking at time of visit 280 26.9

Stove in current use

Intervention stove only 152 54.3

Both stoves simultaneously 12 4.3

Traditional stove only 116 41.4

Currently cooking outdoors 59 21.1

Intervention stove users cooking outdoors3 49 32.2

Reported data on use

Reported last stove used4

Intervention stove only 593 78.0

Both stoves simultaneously 15 19.3

Traditional stove only 147 2.0

Reported using intervention stove in last three follow-up visits 130 47.5

1Based on households that completed the visits and allowed enumerators to observe the container, 1356/1393 = 97.3%.
2Data only available from mid follow-up 2 onwards (1040/1393 = 74.7%).
3Among those households cooking only on the intervention stove.
4Excludes those households cooking at time of home visit.
doi:10.1371/journal.pone.0091011.t001
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three unannounced visits (n = 52), only 50.0% and 34.6% were

using the intervention stove at all three or two visits, respectively.

During the last follow-up visit, the major reasons for not using the

intervention stove during the last cooking event were (i) having no

time to tend the fire (34.1%), (ii) not having dry (30.7%) or the

right-size wood (10.2%) or, (iii) cooking beans for which a

traditional stoves was regarded most appropriate (10.2%).

Data on use of the intervention from the implementer’s survey

was very similar to our assessment (Table 2). A similar percentage

of intervention households (27.7%) were cooking at the time of the

visit. Of these, just over two thirds (64.1%) were exclusively

cooking on the intervention stove, but only 17.2% of these were

cooking outdoors, a figure just slightly lower than the one observed

on our independent follow-up. Data from the implementer’s more

extensive survey confirmed the stacking of stoves in intervention

households, with 76.4% of intervention households reporting to

continue using their traditional stoves. Of these, 26.7% reported

using it $7 times per week. Of interest was the fact that 83.8% of

intervention households identifying the intervention stove as their

primary cookstove reported that the intervention stove required

more active tending of the fire as compared to the traditional

stove.

In the last round of our follow-up, 5.4% and 5.1% of

intervention households reported having problems with their filter

or stove at the time of the visit, respectively. Data collected from

the implementer’s repair team indicates that 24.9% of filters and

6.7% of stoves had to be repaired during the study. No devices had

to be fully replaced, though some repairs involved the replacement

of individual components. The main reasons for filters being

repaired were (i) filters being clogged (48.6%) and, (ii) tubes being

damaged by rodents (27.0%). The main reasons for the

intervention stoves being repaired included (i) pot skirts melting

(65%), and (ii) stick supports breaking (10%).

Overall, only 1.0% of water samples collected from control

households were reported to have been treated with a neighbour’s

intervention filter, showing low levels of cross-contamination

between groups.

Water quality
The microbiological quality of the stored drinking water was

significantly higher in intervention households than control

households (Williams means 0.5 vs. 20.2 TTC/100 mL, respec-

tively, p,0.001). Overall, 86.8% (95% CI: 84.9%–88.6%) of

drinking water samples from intervention households were free of

TTC compared to 22.4% (95% CI: 20.1%–24.6%) of control

household samples (p,0.001) (Figure 2). The proportion of

samples that had .100 TTC/100 mL was 3.6% (95% CI:

2.6%–4.6%) for intervention households and 31.9% (95% CI:

29.4%–34.5%) for control households. Overall, 96.6% of drinking

water samples collected directly from filters were free of TTC. In

intervention households, water quality was significantly higher in

water samples collected directly from the filter (Williams mean

0.14 TTC/100 mL; 95% CI: 0.10–0.18) than water stored in

another container (Williams mean 13.8 TTC/100 mL; 95% CI:

9.0–20.7) (see Table S2 of supporting information). The quality of

the drinking water stored in other containers did not differ

significantly between control and intervention households

(p = 0.07). However, among intervention households, water that

was stored in another container and was reportedly treated with

the intervention filter was significantly of higher quality than

reportedly non-treated stored water (Williams means 5.4 vs.

23.2 TTC/100 mL, respectively, p,0.001). Throughout the

duration of the study, only 2.5% of control households had

drinking water free of TTC on all follow-up visits as opposed to

56.5% of intervention households. Overall 15.2% of samples from

control households and 5.1% of samples from intervention

households yielded plates that were TNTC.

Air quality
A total of 121 households (60 intervention and 61 control)

completed the 24-h PM2.5 monitoring of the main cooking area.

66.7% of intervention households identified the intervention stove

as their main cooking stove. However, only 23.3% of intervention

households reported that their main cooking area was outdoors as

promoted by the intervention. Of these, all households reported

cooking with the intervention stove. Among the control house-

holds, the three stone fire was identified as the main cooking stove

in 65.6% of cases, followed by the locally made rondereza stove

(24.6%). Only one control household reported cooking outdoors.

Table 3 shows the PM2.5 concentrations of the main cooking

area for control and intervention households on an aggregate level

and stratified by reported main area of cooking. Overall, mean

and median 24-h PM2.5 concentrations in intervention households

were 0.485 mg/m3 and 0.267 mg/m3, respectively, compared to

Table 2. Filter and stove use among intervention households:
Implementer’s survey.

N %

Filter use

Filter presence confirmed in households1 283 99.7

Tap accessible to ,5 s 267 94.4

Water present in filter 269 95.1

Stove use

Observation data on use

Intervention household cooking at time of visit2 78 27.7

Stove in current use

Intervention stove only 50 64.1

Both stoves simultaneously 4 5.1

Traditional stove only 24 30.8

Currently cooking outdoors 30 38.5

Intervention stove users cooking outdoors3 28 17.2

Reported data on use

Reported last stove used4

Intervention stove only 163 79.9

Both stoves simultaneously 2 1.0

Traditional stove only 39 19.1

Primary stove in current use is intervention stove4 253 89.1

Use intervention stove $7/week 236 93.3

Use intervention stove $14/week 137 54.2

Continue using traditional stove 217 76.4

Use traditional stove $7/week 58 26.7

Reported cooking less indoors 175 61.6

Reported main cooking is outdoors 163 57.4

Tend more the fire with the intervention stove5 212 83.8

1Observation not allowed in one household.
2Of those households that allowed the observation (n = 282, 99.3%).
3Among those households cooking only on the intervention stove.
4Excludes those households cooking at time of home visit.
5Among those households identifying intervention stove as main cooking
stove.
doi:10.1371/journal.pone.0091011.t002
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0.905 mg/m3 and 0.509 mg/m3 for control households. This

represents a 48% reduction in median 24-h concentrations

(p = 0.005). Compared to control households that predominantly

cooked indoors, intervention homes that reported indoor cooking

showed a reduction in median concentrations of 37%, which was

only borderline significant, possibly due to the smaller sample size

(p = 0.08). Outdoor cooking in the intervention was associated with

a median reduction of 73% when compared to control households

(p,0.001) and 57% reduction when compared to indoor-cooking

intervention homes (p = 0.02).

Discussion

We report on a randomised controlled trial to independently

evaluate a pilot implementation program distributing free water

filters and improved cooking stoves to rural homes in Rwanda. We

found high reported use of the intervention filter, which was

associated with significantly higher microbiological quality of

drinking water when consumed directly from the filter. Neverthe-

less, such use was not exclusive; a sizable proportion of

householders continued to drink untreated water. We also found

improved household air quality among intervention households

despite continued use of the traditional stove.

Filter uptake among the intervention population was high, with

filters being reportedly used in 89.2% of all household visits. Similar

levels of uptake of filter-based interventions have been reported

elsewhere [16,35,36]. Nevertheless, we found that 25% of

intervention householders were reporting untreated water in at

least one of the five follow-up visits. The nested study within this

RCT using remotely reporting electronic sensors that collected

objective data on use of the intervention devices (mainly times and

volumes of water filtered for the intervention filter and times and

duration of use for the intervention stove) corroborated our findings,

showing that the filters and stoves were not used in a consistent and

exclusive manner [24]. Epidemiological modelling based on

quantitative microbial risk assessment suggests that even occasional

consumption of untreated water can vitiate the health benefits

associated with improved water quality interventions [37–39].

However, the intervention did significantly improve the microbio-

logical quality of the drinking water when the filter was used as the

main storage container. Since 96.6% of drinking water samples

collected directly from filters were free of TTC, the conditions for

achieving health gains may be achieved with better messaging.

Exclusive use was more problematic for the intervention stove.

Only half of the intervention households reported that the last

Figure 2. Percentage of water samples by level of contamination (TTC/100 mL).
doi:10.1371/journal.pone.0091011.g002

Table 3. Summary statistics for 24-h PM2.5 concentrations in the reported main cooking area.

PM2.5 (mg/m3) N Mean SD Min Median Max
Geometric
mean

% Mean
reduction

% Median
reduction

Wilcoxon
RST1 p-value

Control 61 0.905 1.05 0.06 0.509 4.69 0.51 - -

Intervention 60 0.485 0.53 0.04 0.267 2.28 0.28 46% 48% 0.005

Reported cooking location

Control- Indoor cooking 60 0.910 1.06 0.06 0.506 4.69 0.51 - -

Intervention- Indoor cooking 46 0.558 0.56 0.04 0.321 2.28 0.33 39% 37% 0.08

Intervention- Outdoor cooking 14 0.243 0.34 0.05 0.139 1.40 0.16 73% 73% ,0.001

1Wilcoxon rank-sum (Mann-Whitney) test

doi:10.1371/journal.pone.0091011.t003
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cooking event was performed with the intervention stove in the last

three monthly follow-up visits. Likewise, only a third of those

households that were visited twice at times that cooking was taking

place were using the intervention stove at both instances, showing

that among the intervention arm, households continued to rely on

their traditional stove. Results from the implementers’ survey

showed similar results, with 76.4% of households reporting the

continued use of their traditional stove, 26.7% of them using it more

than 7 times per week. This is consistent with other studies that have

shown that the introduction of a new stove often results in

‘‘stacking’’ rather than an immediate complete substitution [40–43].

Households reported continuing the use of their traditional

stove because the intervention stove required more tending,

unavailability of the adequate fuel or personal preferences for

cooking traditional dishes. Context-specific issues regarding a

community’s cooking needs and preferences have been commonly

cited in the literature as reasons for not achieving higher uptake

and/or exclusive sustained use of improved cookstoves [42,44].

Thus re-considerations of the promoted stove or more active

messaging addressing each of the main barriers may be required if

a switching of the stove as opposed to an addition of the

intervention stove to the current cooking system is to be achieved.

This is not only going to affect the potential health impact of the

intervention but also its environmental impact.

The assessment of HAP among control and intervention

households showed an overall reduction of 48% of 24-h PM2.5

among intervention households, which was comparable to

reductions in household air pollution for rocket stove interventions

in Ghana (52%) and Kenya (33%) [22,45]. Indoor cooking with

the intervention stoves as opposed to the traditional stove was

associated with a 37% reduction in 24-h PM2.5, which was of

borderline significance. However, we cannot rule out that this

association may be due to residual bias by comparing sub-groups.

Likewise, cooking outdoors, as recommended by the implementer,

doubled the reduction in 24-h PM2.5 from 37% to 73% as

compared to indoor cooking on traditional stoves. Future studies,

randomising participants not only to stove technology but also to

cooking location (indoors vs. outdoors) would be advisable. More

effective messaging may increase the levels of outdoor cooking

expected by the intervention, as only 57.4% of households

reported that their main cooking area was outdoors. Nevertheless,

both the indoor and outdoor concentrations in the cooking area

were well over even the initial interim 24-h WHO target for PM2.5

(75 mg/m3) [46]. At the same time, it will be important to monitor

personal exposure directly, as most householders that identified

the intervention stove as their primary cooking stove (83.8%)

reported that the intervention stove required more tending than

their traditional one, which could mitigate some of the impact

from the household level reductions in PM2.5. Indeed, many

studies have found that reductions in personal exposure tend to be

lower than reductions of emissions in the cooking area [47,48].

Given that a recent RCT study suggested that personal exposure

reductions exceeding 50% may be required to achieve meaningful

health impacts [47], further assessments of the intervention stove

maybe be needed to determine whether the use of the intervention

stove translates into meaningful health benefits.

This study has certain limitations. First, the villages included in

the RCT were not selected randomly and should not be viewed as

representative of any larger population. Second, we cannot rule

out the potential for reactivity due to repeated monthly follow-up

visits [49]. Third, while we attempted to collect objective

indicators of use, by both undertaking visual observations of the

filter and stoves and cooking events, the study relied heavily on

reported data, which is susceptible to reporting bias. Furthermore,

in this study we failed to collect data on reported supplementation

of treated water with untreated water, which would have further

implications for the health impact of the study. Previous studies

with the earlier version of the LifeStraw Family filter have found

quite varied results. A study in the Democratic Republic of Congo

showed substantial supplementation despite high levels of filter use

[16]. On the other hand, a study among HIV-positive mothers,

who may be more aware of their health and their children’s health,

reported almost no supplementation [36]. However, in the latter

storage containers were provided. Fourth, budget constraints

allowed only the main cooking area, as identified by the

participant, to be monitored for HAP. Given the potential for

reporting bias and that stacking was commonly reported among

the study population, it is very likely that cooking events may have

taken place during the monitoring period in areas other than the

one being monitored, thus giving a misleading and probable

underestimate of the actual total HAP. Likewise, budget

constraints did not permit personal PM2.5 assessment, a more

reliable metric for exposures associated with health outcomes [50].

Fifth, we did not collect any self-reported or other measures of

diarrhoea or respiratory infections in our study communities.

Finally, the follow-up period of this evaluation was limited to 5

months. This represents under a fraction of the lifespan of both the

filter and stove and provided little opportunity to assess the impact

of seasonal variations that are common in water quality and HAP.

It also provided no opportunity to assess long-term patterns of use,

which have been shown to diminish or vary over time for both

water filters and improved cookstoves [35,43]. We are endeav-

ouring to address some of these shortcomings in a longer-term

follow-up study, currently underway, that will focus on health

outcomes and sustained use.

Notwithstanding these limitations, this study suggests that a

combined filter/stove intervention accompanied by consistent

follow-up to promote use has the potential to significantly improve

drinking water quality and household air pollution among a

vulnerable population in Rwanda. If the longer-term follow-up

study demonstrates sustained use with more exclusive reliance on

the intervention hardware and lower personal exposure to HAP,

then a large-scale roll out in Rwanda could significantly reduce

exposures linked to much of the country’s disease burden.
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Background: In Rwanda, pneumonia and diarrhea are the first and second leading causes of death,
respectively, among children under five. Household air pollution (HAP) resultant from cooking indoors
with biomass fuels on traditional stoves is a significant risk factor for pneumonia, while consumption of
contaminated drinking water is a primary cause of diarrheal disease. To date, there have been no large-
scale effectiveness trials of programmatic efforts to provide either improved cookstoves or household
water filters at scale in a low-income country. In this paper we describe the design of a cluster-
randomized trial to evaluate the impact of a national-level program to distribute and promote the use
of improved cookstoves and advanced water filters to the poorest quarter of households in Rwanda.
Methods/Design: We randomly allocated 72 sectors (administratively defined units) in Western Province
to the intervention, with the remaining 24 sectors in the province serving as controls. In the intervention
sectors, roughly 100,000 households received improved cookstoves and household water filters through
a government-sponsored program targeting the poorest quarter of households nationally. The primary
outcome measures are the incidence of acute respiratory infection (ARI) and diarrhea among children
under five years of age. Over a one-year surveillance period, all cases of acute respiratory infection (ARI)
and diarrhea identified by health workers in the study area will be extracted from records maintained at
health facilities and by community health workers (CHW). In addition, we are conducting intensive,
longitudinal data collection among a random sample of households in the study area for in-depth
assessment of coverage, use, environmental exposures, and additional health measures.
Discussion: Although previous research has examined the impact of providing household water treat-
ment and improved cookstoves on child health, there have been no studies of national-level programs to
deliver these interventions at scale in a developing country. The results of this study, the first RCT of a
large-scale programmatic cookstove or household water filter intervention, will inform global efforts to
reduce childhood morbidity and mortality from diarrheal disease and pneumonia.
Trial registration: This trial is registered at Clinicaltrials.gov (NCT02239250).
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Environmental contamination at the household level is a major
cause of death and disease among rural populations in low-income
countries. Household air pollution (HAP) contributes to acute lower
respiratory infection in children under five, and among adults is a
significant risk factor for hypertension, ischemic heart disease,
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chronic obstructive pulmonary disease, and lung cancer [14,19,39].
Unsafe drinking water is the leading cause of diarrheal disease [32].
HAP and unsafe drinking water rank 7th and 8th among risk factors
for the global burden of disease [18]. Collectively, pneumonia and
diarrhea are responsible for an estimated 6.9 million deaths
annually [7].

These environmental hazards are common among impov-
erished rural inhabitants of sub-Saharan Africa, the vast majority of
whom cook with biomass fuels on traditional stoves and rely on
unsafe water supplies [9]. In Rwanda, where more than half the
population is living below the poverty line and more than a third in
extreme poverty, 98.1% of rural householders cook with biomass,
mainly on open three-stone fires; and only 7.6% have water on their
premises [30]. After HIV/AIDS, the leading causes of death in
Rwanda are ALRI (20%) and diarrhea (12%) [46].

Despite clear evidence that HAP is an important risk factor for
respiratory and cardiovascular disease, evidence for the health
impact of improved cookstoves that can be deployed at scale
among vulnerable populations is limited [38]. Although trials are
currently underway to explore the effectiveness of various
improved cookstove types, these are all limited scale efficacy trials
[8,17,42]. Further, doubts about the potential of any biomass stove
to achieve WHO indoor air quality targets have shifted much of the
focus to clean cooking fuels such as LPG, ethanol and electricity,
although supply chain limitations currently render these options
impractical in most rural settings [51,54,55].

There is strong evidence that household-based water filters are
effective in preventing diarrhea [15]. The actual protective effect,
however, is likely to vary by setting, season, and the extent towhich
water is a dominant transmission pathway. As evidence also sug-
gests that even occasional consumption of untreated water vitiates
the potential health impact, correct and consistent use is essential
[10]. The up-front cost of household filters, together with the need
to establish supply chains for consumables, has limited the extent
to which they have been scaled up among vulnerable populations,
particularly in rural settings. Like improved cookstoves, there has
been no large-scale effectiveness trial to assess the impact of
household water filters promoted programmatically.

In an effort to reduce the disease burden in rural Rwanda, the
Rwanda Ministry of Health (MOH) partnered with the social en-
terprise DelAgua Health to distribute and promote the use of
improved cookstoves and advanced water filters to the poorest 25%
of households nationally, beginning in Rwanda's Western Province.
The project, know as “Tubeho Neza” or “Live Well”, earns revenue
through carbon credits under the United Nations Clean Develop-
ment Mechanism (CDM), a program authorized by the Kyoto Pro-
tocol that provides credits to the implementer based on a formula
that includes population coverage and use [22].

Prior to initiation of the Tubeho Neza program, the implementer
first undertook a pilot intervention to all 1943 households in 15
rural villages [4]. At this time we conducted a five-month RCT
among 566 households in three of these pilot villages to assess the
impact of the water filter on fecal indicator bacteria in household
drinking water and the impact of the stove on fine particulate
mater (PM2.5) in reported cooking areas [56]. Overall, the inter-
vention was associated with a 97.5% reduction in mean fecal indi-
cator bacteria (Williams means 0.5 vs. 20.2 TTC/100 mL, p < . .001)
and a 48% reduction of 24-h PM2.5 concentrations in the cooking
area (0.485 mg/m3 and 0.267 mg/m3, p ¼ 0.005). The reduction
was 37% for those cooking indoors (p ¼ 0.08) and 73% for those
cooking outdoors (p < 0.001) [56].

Based on the results from the pilot study, the RwandaMOH and
the implementer elected to proceed with the roll out of the
intervention throughout Western Province. However, due to
funding constraints, only approximately 100,000 of the 140,000
eligible households in Western Province could be included in the
initial implementation. Consequently, it was decided that receipt
of the program would initially be limited to households within
randomly allocated sectors (groups of villages that generally
correspond with catchment areas for primary-care clinics) within
Western Province, with the remainder of households scheduled to
receive the program the following year. This provided us the
unique opportunity to conduct a population-level RCT to assess
the impact of the program on health outcomes using records
maintained at health facilities and by community health workers
(CHW). In addition, we randomly selected a representative sample
of households (n ¼ 1580) in the control and intervention areas to
conduct intensive data collection in order to assess coverage, use,
environmental exposures, and additional health outcome mea-
sures. This paper provides details on the evaluation of the Tubeho
Neza program, including the design of the study, the study setting
and population, primary and secondary outcomes, and other de-
tails concerning the methods to be followed.
2. Methods

2.1. Setting

The study is located in Western Province, Rwanda, a predomi-
nantly rural province with a total population of roughly 2.5 million
(Fig. 1). TheWestern Province is 87.8% rural, and the main source of
energy for cooking is firewood (88.6%), followed by charcoal (8.3%).
Most households in Western Province report their main source of
water is from protected sources (26.8% public tap, 39.8% protected
spring/well, 4.5% piped water on premises), although 16.3% of
households obtain from an unprotected spring/well and 9.4% from
surface water [30].
2.2. Study design

The study design is a cluster-randomized trial with sectors
(administratively defined areas containing an average of 40 vil-
lages) as the unit of randomization. Each of the 96 sectors in
Western Province have been randomized to either control or
intervention status (Fig. 1). The primary study outcomes are
diarrhea and acute respiratory infection (ARI) among children
under five residing in households eligible to receive the program.
Clinician-diagnosed episodes of diarrhea and ARI among all
households in the study area will be assessed from records
maintained by health facilities and village-level CHW health re-
cords that have been made available for use in this study by the
Rwanda MOH.

In conjunction with the assessment of clinical outcomes across
the entire population of program recipients (referred to as the
“sector-level” study), we are conducting intensive data collection in
a random sample of households with children <5 residing in the
study area. This nested design permits examination of outcomes in
addition to thosemaintained in health records, such as intervention
uptake and use and the effect of the intervention on exposure to
HAP and fecally contaminated drinking water. It also permits us to
collect self-reported information on respiratory disease and diar-
rhea (to learn about cases that may not be reported to CHWs and
clinics) and to assess a variety of objective measures related to
health status (e.g. blood pressure, oximetry, inflammatory bio-
markers, enteric pathogen antibodies) among household members.
We refer to this intensive data collection in a sample of the larger
RCT population as the “village-level” study in sections to follow in
order to differentiate these efforts from the primary assessment of
outcomes across the entire study population.



Fig. 1. Map of the study area. Western Province, Rwanda.
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2.3. Eligibility criteria

All households in Western Province designated as Ubudehe
category 1 or 2 were eligible to receive the intervention from the
implementer. Ubudehe category is a government-defined house-
hold economic status classification and Ubudehe categories 1 and 2
roughly constitute the poorest 25% of the country. Ubudehe cate-
gory is determined by community members based on
classifications outlined by the Rwandan Ministry of Local Govern-
ment (MOLG), and households categorized as Ubudehe 1 and 2
receive free medical and other assistance through government
programs [57]. All children <5 in Western Province who reside in
households that are categorized as Ubudehe 1 and 2 are included in
active surveillance of diarrhea and pneumonia cases at local health
centers and by village CHW's. These records are collected by
research staff, in collaboration with the Rwandan MOH, and no
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additional contact with the study population is required for the
sector-level study.

2.4. Randomization

The choice of sector as the unit of randomization was made in
collaboration with the program implementers and the Rwandan
MOH. We used a database maintained by the Rwanda MOLG that
contains the Ubudehe categorization of all households (subse-
quently referred to as the 'Ubudehe database') to generate a count of
eligible households in each sector and determined that a 3:1 allo-
cation of intervention to control sectors inWestern Province would
meet the implementer's programmatic goal of reaching approxi-
mately 100,000 households during the initial roll-out of the pro-
gram. Sectors were randomly assigned to intervention and control
arms by the research team using a computer-generated randomi-
zation stratified by district to ensure equal distribution of the
intervention across the seven districts of Western Province. Neither
the implementers nor the Rwanda MOH were involved in the
randomization process.

Randomization resulted in 72 designated intervention sectors
and 24 designated control sectors, with a total of 97,815 eligible
households in the intervention sectors and 36,152 eligible house-
holds in the control sectors. Sector-level census data [30] indicate
that randomization achieved good balance between the arms in
regards to population-level sociodemographic characteristics, wa-
ter source type, and fuel use (Table 1). It is intended that all eligible
households in the 72 sectors randomly assigned to the intervention
group received the intervention during the Phase 2 implementa-
tion in late 2014, while eligible households in the control sectors
will receive the intervention after the 1-year surveillance period
(Fig. 2).

2.5. Village-level study

2.5.1. Eligibility criteria for village-level study
All villages within the study area (N ¼ 3617) were eligible for

selection as intensive data collection sites, excluding the 10 villages
that were previously included in pilot intervention activities.
Enrollment in this village-level cohort was limited toUbudehe 1 and
2 households with at least one child 4 years of age or younger
residing in the home the majority of the year. We limited enroll-
ment to households with a child �4 years of age in order to ensure
that at least one child per household remained under the age of five
for the duration of the study. However, at each visit we collect all
outcome data on any additional children present in the household
that are currently under the age of five.

2.5.2. Sampling strategy for village-level study
The households selected for intensive data collection were

randomly sampled from the study area using a stratified, two-stage
design of the type commonly used in nationally-representative
surveys in developing countries [45]. Prior to sampling for the
village-level study, we estimated the number of eligible households
in each village in Western Province using data provided by the
Rwandan government and other sources. To ensure that a sufficient
number of eligible households were present in each primary
sampling unit (PSU), each village in the study area containing fewer
than 12 eligible households was randomly paired with a
geographically contiguous village in an iterative process using
geographic information system software. This yielded 2715 PSUs, of
which 2080 consisted of single villages and the remaining 635were
composed of groups of two or more geographically adjacent vil-
lages. We then conducted probability proportional to size random
sampling of PSUs, stratified by treatment allocation. We
oversampled from the control sectors to yield a 1:1 ratio of inter-
vention to control clusters. This resulted in 87 clusters in each arm,
with 101 villages in the control group and 98 villages in the inter-
vention group. In stage 2, households were sampled from each PSU
in using simple random sampling (Fig. 2). Our target enrollment
was 10 households per PSU. The implementer and the Ministry of
Health are blinded to the identity and location of villages selected
for intensive data collection.

2.5.3. Enrollment in village-level study
Following household selection, trained study staff located the

selected households with the assistance of the village CHW. The
primary point of household contact was the primary cook. In order
for a household to be enrolled into the study, at least one child four
years of age or younger had to reside at the house the majority of
the year, the primary cook had to be 16 years of age or older, and the
primary cook had to give informed written consent. If the primary
cook was not present at a first attempted visit of the household,
another visit was attempted the same day and a final attempt the
following day. If the selected household was not present in the
village or if contact was unsuccessful after the repeated attempts,
study staff attempted to enroll an alternate household selected by
the field supervisor from the list of eligible households in the PSU
using simple random sampling. The final sample enrolled in the
village-level study consisted of 1582 households. Baseline data
collectionwas conducted in each household immediately following
enrollment.

2.6. Intervention

The program implementation under study is branded “Tubeho
Neza”whichmeans to “LiveWell” in Kinyarwanda. The Tubeho Neza
program includes the free distribution of the Vestergaard Frandsen
LifeStraw Family 2.0 household water filter and the EcoZoom Dura
high efficiency wood cookstove (Fig. 3) with associated community
and household education and behavior change messaging to all
households in Ubudehe categories 1 and 2 inWestern Province. The
program was implemented by the UK-based social enterprise
DelAgua Health in collaboration with the Rwanda MOH, and is
primarily funded through a pay-for-performance model enabled by
revenues from the generation and sale of carbon credits under the
United Nations Clean Development Mechanism, a program autho-
rized by the Kyoto Protocol. Carbon credits are earned through the
reduction of fuel wood from improved stove efficiency and by
reduced levels of boiling under a “suppressed demand” construct
[22]. To earn credits, the implementer must demonstrate actual use
of the intervention hardware through repeated audits one or more
times per year.

Large-scale program activities in Western Province began in
September 2014, and reached over 101,000 households and nearly
458,000 recipients by December 23, 2014. Approximately 820
DelAgua and MOH trained Community Health Workers conducted
community distributions and household education. In community
meetings, CHWs and DelAgua supervisors conducted public health
focused skits and demonstrations, collected household informa-
tion, and distributed the cookstoves and water filters. Following
distribution, CHWs perform household level education, focusing on
correct and consistent adoption of the products. Educational tools
are utilized including a picture based flipbook and interactive
poster to demonstrate benefits related to health as well as liveli-
hood and environmental benefits. Throughout the lifetime of the
project, CHWs visit households approximately bi-yearly to perform
further household level education activities with on-going com-
munity level engagement. Repair and replacement of products is
managed by DelAgua through district level facilities with problems



Table 1
Census-derived sociodemographic characteristics, water source type, and fuel use in intervention and control sectors. Western Province, Rwanda, 2012.

Characteristics Intervention (n ¼ 72 sectors) Control (n ¼ 24 sectors)

Mean or count Std dev or % Mean or count Std dev or %

Total population 1,854,751 100.0 616,488 100.0
Female 978,973 52.8 323,821 52.5
Children under five 280,442 15.1 94,663 15.4
Rural population 1,625,681 87.6 544,246 88.3
Mean people per square kilometresa 691.6 602.5 683.9 392.0

Household socioeconomic characteristics
Mean size of household 4.5 0.3 4.5 0.2
Own house 350,485 85.8 117,668 87.2
Walls e sundried brick 283,030 69.3 95,933 71.1
Walls e wood/mud 92,864 22.7 29,343 21.7
Roof e iron sheets 193,053 47.3 53,279 39.5
Roof e local tiles 211,544 51.8 80,427 59.6
Owns TV 18,870 4.6 5052 3.7
Owns mobile phone 196065 48.0 62,511 46.3
Owns radio 230,630 56.5 75,937 56.3

Household energy use
Main cooking source e charcoal 35,971 8.8 9123 6.8
Main cooking source e wood 360,637 88.3 121,274 89.8
Main lighting source e candle 42,629 10.4 15,065 11.2
Main lighting source e kerosene 148,098 36.3 47,274 35.0
Main lighting source e electricity 51,203 12.5 13,088 9.7

Water source type
Piped to compound 19,315 4.7 5011 3.7
Public tap 111,950 27.4 33,868 25.1
Protected spring/well 157,405 38.5 59,181 43.8

Surface water 39,144 9.6 11,942 8.8
Household sanitation
Toilet type e Private pit latrine 340,813 83.4 116,054 86.0
Toilet type e Shared pit latrine 43,885 10.7 12,747 9.4
Toilet type e Uses bush 6129 1.5 1337 1.0
Rubbish disposal e bush, farm or river 140,101 34.3 39,817 29.5

Note: Census data includes all households in study sectors-i.e. both eligible (Ubudehe 1 & 2) and ineligible (Ubudehe 3 to 6 households.
a Based on mean values in each sector.

Source: Ref. [30] Fourth Population and Housing Census, Rwanda, 2012, Main Indicators Report, Kigali: National Institute of Statistics of Rwanda
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being reported primarily through a dedicated call center phone line
and communications with local officials. Further details of the de-
livery of the interventions and associated program activities are
contained in a separate process evaluation paper [5].

2.7. Primary outcomes

The primary outcomes of the sector-level study are the inci-
dence of clinically-reported ARI (all types, severe pneumonia/se-
vere illness and non-severe pneumonia) and diarrhea (including
severe persistent diarrhea, persistent diarrhea and bloody diarrhea)
among children under five in Ubudehe 1 and 2 categories during the
12 months of follow-up, as defined by the Rwandan Integrated
Community Case Management of Childhood Illness (ICCM) diag-
nostic criteria [36], which are based on the World Health Organi-
zation Integrated Management of Childhood Illness (IMCI) [52].

Outcomes will be identified from data collected routinely by
health authorities including outpatient and inpatient registers
maintained at health posts, health centers, and district hospitals,
as well as CHW-maintained registers. Together with the Rwandan
MOH, health registers in these health facilities as well as CHW
registers were modified to include name of the head of household
as well as Mutuelle insurance number of patient or household
member. The Rwanda MOH sent letters to all health facilities in
the study area explaining the modification and encouraging
compliance, and study staff have visited every health facility in
order to explain the changes and assess staff fidelity in recording
this information in the clinical registers. To differentiate clinic and
CHW-reported cases among Ubudehe 1& 2 households from those
in other Ubudehe categories, we will use this information to link
health records with a MOLG database containing the Ubudehe
categorization of every household in the study area. Notably, this
is the database that is used by the implementer to determine
household eligibility to receive the intervention. We will also
confirm receipt of the intervention by checking health records in
the intervention sectors against a list of recipient households
provided by the implementer. While health clinicians at health
facilities may not be fully aware of patient Ubudehe status nor
what sectors in their region have received the intervention and so
may be blinded during the health assessment process, CHWs are
aware of the allocation of patients during symptom assessment as
they are based at the village level. At the end of the follow-up
period, non-blinded researchers will screen all health facility
and CHW registers and extract data on cases occurring in eligible
households.

2.8. Secondary outcomes: intensive data-collection households

We define as secondary outcomes all of those assessed during
intensive data collection in the sample of households enrolled in
the village-level study. We completed a baseline survey in these
households prior to program implementation and are conducting
three follow-up visits, at approximately four-month intervals,
during the 12-month study period. During these visits, we are
assessing the prevalence of caregiver and field staff reported diar-
rhea and ARI among all children under five in the household
(N ¼ 2179), testing household drinking water quality, and evalu-
ating uptake and use of the intervention, as well as collecting
extensive survey data on sociodemographic characteristics, cook-
ing practices, water source and treatment practices, and hygiene



Fig. 2. Flow diagram of the study. Note: HH ¼ households; ARI ¼ acute respiratory infection; CO ¼ carbon monoxide.
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and sanitation practices among all of the households. In addition,
sub-samples of the village-level cohort have been randomly
selected for measurement of personal particulate matter (PM2.5)
exposure, blood pressure, pulse oximetry, expired carbon monox-
ide, inflammatory biomarkers, and enteric pathogen antibodies.
Details regarding all of these measures are provided in the sections
following.
2.8.1. Reported diarrhea and ARI
Among all households enrolled in the village-level study, re-

ported data on diarrhea and respiratory symptoms are collected
from the primary caretaker for each child under five at the time
of the interview that permanently lived in the household. A 7-
day recall period is used for both conditions, with additional
follow-up questions to determine length and severity of illness



Fig. 3. LifeStraw Family 2.0 household water filter (left) and EcoZoom Dura high-efficiency wood cookstove (right).
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in the event of a positive report and to identify cases for which
care was sought at a health facility or from a CWH. Regarding
diarrhea, we use the WHO definition of three or more loose or
watery stools in 24 h [50]. We define ARI as reported illness with
cough accompanied by rapid breathing or difficulty breathing. In
addition, caregivers are asked about other symptoms (fever,
constant cough, blocked/runny nose, wheezing/stridor) in
order to examine the impact of the intervention on specific
respiratory symptoms and to construct and test more restrictive
definitions of ARI. Lastly, the primary cook is assessed for re-
ported diarrhea and respiratory symptoms at each visit. Tooth-
ache, unlikely to be related to either intervention device, was
used as a negative control symptom to assess potential reporting
bias [26].
2.8.2. Symptom identification using the IMCI methodology
To overcome some of the limitations of the self-reported health

data, field staff trained in WHO IMCI methods will assess all chil-
dren between 2 months and 5 years of age for diarrhea and ARI at
baseline and at each follow-up visit. All field staff underwent one-
week office and clinic-based IMCI training from a Rwanda MOH
community health nurse trainer in diarrhea and ARI sign and
symptom recognition including video for fast breathing, chest
indrawing and stridor. Field staff were also trained on the classifi-
cation of illness severity and the identification of children requiring
referral to CHW or health centers. Field staff were instructed to
remove any clothing covering the chest of the child for the
assessment of stridor, chest indrawing and the counting of breaths.
Respiratory rate is measured for oneminute using a timer in a calm,
rested child. Fast breathing is defined as 50 or 40 breaths per
minute or more in children 2e12 months and 1e5 years
respectively.

These staff-assessed signs and symptoms are combined using
IMCI criteria to produce three definitions of ARI (severe pneumonia
or very severe disease, pneumonia and no pneumonia (cough or
cold) and three definitions for diarrhea (diarrhea with severe
dehydration, diarrhea with some dehydration and diarrhea with no
dehydration) according to IMCI guidelines.

Additionally, field staff assess objective indicators of nutritional
status (mid-upper arm circumference, palmar pallor and edema) in
all children undergoing IMCI assessment. While there is no study
that directly links to cookstove exposure, these nutritional in-
dicators can be affected by both acute and chronic illnesses [4] and
so could be impacted by an intervention targeting diarrheal and
respiratory infections, the most common illnesses among children
under five in Rwanda.
2.8.3. Cardiovascular function, blood oxygenation and carbon
monoxide exposure

A growing body of evidence indicates that exposure to indoor air
pollution is a major contributor to cardiovascular disease in lowand
middle-income countries [6,18,31]. To assess the impact of the
intervention on cardiovascular function, we are collecting objective
measures of blood pressure among primary cooks in a sub-sample
of 348 households. This includes all households randomly selected
for personal particulate matter exposure measurement (described
below) in 112 total village clusters as well as two additional,
randomly selected households in the 62 other village clusters in our
study. Diastolic and systolic blood pressure is measured using a
validated automated Omron-705CP blood pressure device (Omron
Corp, Tokyo, Japan). After five minutes of quiet rest, three seated,
consecutive blood pressure measures one-minute apart are taken
according to standard recommendations [58] For all participants
who undergo blood pressure testing, we are collecting data on
previous history and current medication for hypertension, diabetes,
heart disease and kidney disease, diet, physical activity, height,
weight, and waist circumference.

Carbon monoxide is a key product of incomplete combustion
and carboxyhemoglobin (COHb) may therefore be an indicator of
recent exposure to household air pollution. COHb levels
exceeding 2.5% have been deemed unsafe by the WHO, and
excess COHb levels (>5%) are associated with neurobehavioral
factors, impaired vision and decreased alertness [43]. To better
understand the relationship between COHb level and personal
PM2.5 exposure and to assess whether the intervention is asso-
ciated with measurable reductions in COHb, we are measuring
COHb saturation among all participants selected for personal
particulate matter exposure measurement. Pulse oximetry is
used to measure COHb saturation (SpCO), oxygenated hemoglo-
bin (SpO2), and pulse using a Rainbow-SET Rad-57 Pulse CO-
Oximeter (Masimo Inc., Irvine, California, USA). Pulse oximetry
is performed by field staff in accordance with manufacturers
recommendations for use.

Expired CO may also be an indicator of recent exposure to
household air pollution [24,31]. In households selected for personal
particulate matter exposure measurement as well as households
selected for blood pressure measurements, expired CO (ppm and %
COHb) is measured using a MicroCO (CareFusion Corp, San Diego,
California, USA). Measurements are conducted outside away from
any smoke sources. Primary cooks and the selected child under five
are instructed to hold their breaths for as close to 20 s as possible
and exhale for up to 5 s. Given variable ability for primary cooks and
children to hold their breath, the number of seconds is recorded
and may be adjusted for in analyses. In households with personal
exposure monitoring, pulse oximetry and expired CO



C.L. Nagel et al. / Contemporary Clinical Trials Communications 4 (2016) 124e135 131
measurements are taken directly after the 48-hour exposure
monitoring.

2.8.4. Inflammatory biomarkers
Recognizing the potential contribution of biomarker data, there

are increasing calls for biomarker data to be incorporated into
future clean cookstove trials [28,35]. Inflammatory biomarkers
related to cooksmoke exposure, ALRI and cardiovascular disease
(including interleukin (IL)-1b, IL-6, IL-8, IL-10, tumor necrosis
factor-alpha (TNF-a) and C-reactive protein (CRP)) will be assessed
among households selected for personal particulate matter expo-
sure, with a target of 2 households per cluster. Enumerators
collected capillary blood on Whatman 903 Protein-Saver cards
(Sigma-Aldrich, St. Louis, MO). These dried blood spot samples
(DBSS) were dried for a minimum of 4 h after collection at room
temperature prior to placing them in sealed plastic bags with
desiccant. Samples remained at room temperature for a maximum
of 7 days before placing them into storage in a �20C freezer [37].
CRP will be measured through ELISA, using paired capture (anti-
CRP monoclonal antibody) and detection antibodies. All other cy-
tokines (IL-1b, IL-6, IL-8, IL-10 and TNF-a), in addition to specific
cardiovascular disease markers such as sVCAM, sICAM and sCD40L
will be measured through multiplex immunoassay with a dual-
laser FACSCalibur flow cytometer (BD Biosciences, Franklin Lake,
NJ) in Rwanda's National Reference Laboratory. This semi-
quantitative method will yield mean fluorescence intensity (MFI)
values that correlate with the concentration of the cytokines and
disease markers in the blood sample. Analysis of DBSS through flow
cytometry is dependent on validation of this particular multiplex
assay with DBSS.

2.8.5. Enteric pathogen antibodies
Serological assays that assess antibody production against

various enteric pathogens can provide a far more objectivemeasure
of exposure to enteric infections than reported diarrhea or diarrhea
diagnosed using clinical indices in the field [16,40] characterized
the age-specific seroprevalence of antibodies against various
enteric pathogens, such as Escherichia coli, Norovirus, Cryptospo-
ridium parvum and Helicobacter pylori and hepatitis A virus (HAV)
and found the steepest increase in antibody acquisition against
antigens such as E. coli heat-labile enterotoxin (ETEC-LT) and nor-
ovirus capsid proteins between 6 and 18months of age. In addition,
antibody acquisition against C. parvum surface 27kD surface anti-
gen began to increase steadily after 12 months of age, with sero-
prevalence peaking and leveling out around 18e24 months of age.
Together with other studies [11,23,25,44,47] that have demon-
strated marked age-specific prevalence of antibodies against these
pathogens between 6 and 36 months-old, the appropriate age
range to assess seroconversion against WASH improvements likely
lies within the 6 to 18 month-old age range.

To avoid the influence of maternal antibodies in our analyses
[40], children no younger than 6 month-old were eligible for this
study. To capture the time period in which children with waning
maternal antibody have not fully weaned, children 6-12 month-old
were enrolled at baseline and had capillary blood drawn by heel-
stick or fingerstick. After 6e9 months of follow up (between June
and September 2015), these children were visited again for a
follow-up capillary blood sample. All blood samples will be pre-
served on TropBio (Sydney, Australia) filter discs. Seroconversion
against G. intestinalis VSP1-5, C. parvum Cry17 and Cry27, HAV,
E. histolytica lectin adhesion antigen (LecA), enterohemorrhagic
E. coli heat-labile enterotoxin (ETEC-LT), Salmonella lipopolysac-
charide (LPS) Group B and D, norovirus, Campylobacter spp. and
Vibrio cholerae will be compared between intervention and control
groups using multiplex immunoassay technology on the Luminex
xMAP platform, as described by Lammie et al. [59].

2.8.6. Drinking water quality
Drinkingwater samples are tested for thermo-tolerant coliforms

(TTC) at baseline and the first two waves of follow-up among all of
the households enrolled in the village-level study. Field staff collect
the water sample from the water container identified by the
household respondent as being that used mainly for drinking by
children under five. If this is other than directly from the inter-
vention filter, a second sample is taken directly from the filter if it
contained water. All water samples are collected in sterile Whirl-
Pak bags (Nasco, Fort Atkinson, WI) containing a tablet of sodium
thiosulphate to neutralize any halogen disinfectant. Samples are
placed on ice and processed within 6 h of collection to assess levels
of TTC. Microbiological assessment is performed using the mem-
brane filtration technique [1] on membrane lauryl sulphate me-
dium (Oxoid Limited, Basingstoke, Hampshire, UK) using a DelAgua
field incubator (Robens Institute, University of Surrey, Guilford,
Surrey, UK). For quality assurance, a negative control and two
replicates are conducted in each batch of analysis.

2.8.7. Personal particulate matter exposure
Within 56 randomly selected intervention and 56 randomly

selected control clusters, two households were randomly selected
to undergo personal particulate matter exposure measurements,
for a target enrollment of 224 households. Based on data from our
pilot studies, we calculate that this sample size is sufficient to
detect a 20% reduction in PM2.5. To participate, the household had
to have a healthy child 1.5e4 years old that could support wearing
the exposuremonitoring equipment which weighed approximately
1 kg, and the primary cook could not be pregnant or a current
smoker.

Personal exposure of the primary cook and child under four to
particulate matter less than 2.5 microns in diameter (PM2.5) is
assessed using integrated gravimetric measurements. The partic-
ulate matter is collected on pre-weighed 37-mm diameter PTFE
Teflo filters with 0.2-mm pore size and support ring (Teflo, Pall Life
Sciences, Port Washington, New York, USA), back supported by
Whatman drain disks (Whatman GE Life Sciences, Pittsburgh,
Pennsylvania, USA). During the 48-hour exposure measurement
period, the sample is collected using a Harvard Personal Exposure
Monitor (H-PEM) impactor with a D50 cut of 2.5 mm (BGI, Cam-
bridge, Massachusetts, USA) connected by latex rubber tubing to a
Casella TuffPro™ (Casella Measurement, Bedford, UK) low-flow
pump set to 1.8 litres per-minute flow at one-minute intervals for
48 h. Flow is calibrated in the household immediately before and
after the 48-hour monitoring period using a Challenger (BGI,
Cambridge, Massachusetts, USA).

For both primary cooks and children, the H-PEM containing the
PTFE filter is affixed within the breathing zone (between chest-
level and mouth) in a diagonal chest strap with a pouch that held
the pump for cooks, and on the shoulder-strap of a small backpack
for children (Fig. 4). Participants are instructed to wear the side-
pouch or backpack at all times for a 48-hour period, except dur-
ing breastfeeding, bathing, sleeping or other activities as necessary,
in which case the monitoring equipment is to be kept within 1
meter of the individual. To assess compliance of wearing the
monitoring equipment, an unannounced spot check approximately
24 h into the monitoring period is conducted. Additionally, a HOBO
Pendant® data logger (Onset, Bourne, Massachusetts, USA) set to
record light sensor readings at a 1-minute resolution is affixed to
the monitoring equipment of cooks and children in order to qual-
itatively assess compliance during daylight hours. After the 48-
hour monitoring period the filters are kept refrigerated at 4 �C or
lower until being processed and post-weighed.
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Filters are weighed before and after deployment at Emory
University. Filters are conditioned inside of their respective petri
dishes overnight in a desiccator (BelArt Products, Wayne, NJ) with
lithium chloride desiccant inside a safety hood for an optimal
temperature of 20e23 �C [and relative humidity between 30 and
40%]. Immediately prior to each measurement, each filter was
passed across an electrostatic bar and placed on a microbalance
(Cole-Parmer). Measurements are stabilized for a minimum of 15 s
and are performed twice for each filter. In the event that two
measurements differ by more than 5 mg, a third measurement is
taken. The mean of all measurements for any given filter will be
used for analysis.

2.8.8. Uptake and use
Household uptake and use of the water filter and improved

cookstove is assessed through a combination of self-report, direct
observation by trained field staff, and in randomly selected
households, sensor-recorded observations. At each visit, partici-
pants in the village-level study are asked to identify the main
drinking water container in the household and report on usage and
maintenance of the water filter. To assess the degree of exclusive
use of the water filter, respondents are asked to report the fre-
quency of consumption of non-filtered water in and outside the
home. The field staff documents whether the water filter is present
in the home and records potential indicators of use, such as
whether the filter contained water at the time of the visit, whether
the filter looked clean, whether it was placed on a convenient place,
or had a cloth on top of it. Similarly, the respondent is asked to
identify all cook stoves ever used in the household and report their
current frequency of use. Objective indicators of use are collected
on each stove, including the current location of the stove, whether
it is in use or warm to the touch, or whether there is presence of ash
or smoke marks on the stove.

In addition to household surveys and observations, which are
known to present risks of reporting bias and cause reactivity [3,53],
adoption and frequency of usage is assessed through the use of
sensor based monitoring in a randomly selected sub-sample of
intervention households for a 30-day period. In the pilot study, we
evaluated the correlation of sensors on these filters and stoves
against household surveys and found that sensor-collected data
estimated use to be lower than conventionally-collected data both
Fig. 4. Personal particulate matter monitoring device worn by primary cooks. Not
for water filters (approximately 36% less water volume per day) and
cook stoves (approximately 40% fewer uses per week) [41].

2.9. Sample size calculation

Sample size calculations for the sector-level study were based
on the two primary outcomes of health center or CHW reported
diarrhea and ARI among children under five. In accord with
recently published regional and national estimates [33,48,49]), we
assume a baseline diarrhea incidence of 3.1 episodes per child-year
and ARI incidence of 0.42 episodes per child-year among the study
population. Analysis of data from the 2010 DHS survey in Rwanda
suggest that medical care is sought for 32% of diarrhea episodes and
34% of ARI episodes among children in the lowest socioeconomic
quintile inWestern Province, resulting in an estimated incidence of
clinic/CHW reported diarrhea and ARI of 0.99 and 0.14 respectively.
The sector-level intra-cluster correlation coefficients were esti-
mated using simulation [12]. The resulting ICC values were quite
low for both diarrhea (0.01) and ARI (0.004), which was anticipated
given the large average cluster size. With an estimated 59,667
Ubudehe 1 & 2 children under five in the intervention sectors and
22,052 Ubudehe 1 & 2 children under five in the control sectors, an
average of cluster size of 851 Ubudehe 1 & 2 children under five per
sector, 80% power, a 70%match rate of clinic records to the Ubudehe
database, a design effect of 9.5 for diarrhea and 4.4 for ARI, and
a ¼ 0.05 (two-sided test), the sector-level sample size is sufficient
to detect a relative risk difference of 15% for clinician-reported
diarrhea and 20% for clinician-reported ARI.

The sample size for the village-level study target the primary
health outcomes of seven-day period prevalence of caregiver-
reported diarrhea and ARI. Based on survey data from 2010 DHS
Rwanda (13.98% 14-day prevalence of diarrhea among children
under five in the lowest wealth quintile in Western Province) and
data from our pilot studies (14.2% 7-day prevalence among Ubu-
dehe 1 and 2 children in Western Province), we estimated the
baseline prevalence of diarrhea among children in the control
group to be 12%. In regard to respiratory illness among children in
Western Province, data from the 2010 DHS Rwanda survey indicate
that the baseline prevalence of cough with rapid breathing or dif-
ficulty breathing among children under five in Western province
was 14.34% in the lowest wealth quintile. We chose this definition
e: HPEM¼Harvard Personal Environmental Monitor, CO ¼ carbon monoxide.
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of ARI (cough with rapid breathing or difficulty breathing) as it is
roughly comparable to the clinical definition of pneumonia (re-
ported illness with cough and observed tachypnea) that is the
standard for health clinics and CHW's in the study area. Similar to
diarrhea, we took a conservative approach relative to the DHS fig-
ures and assume a 12% prevalence of ARI in the control group.

The sample size for the village-level study was selected to
achieve sufficient power to detect clinically significant differences
in the prevalence of caregiver-reported diarrhea and ARI. For both
diarrhea and respiratory illness, we calculated the required sample
size necessary to detect a 25% reduction in 7-day period prevalence.
This effect size is both clinically significant and consistent with
previous studies examining the impact of household water treat-
ment on diarrhea [60] and improved cook stoves on respiratory
illness [61].

In addition to a baseline prevalence of 12%, our calculation as-
sumes 10 children per village, a total of three post-baseline obser-
vations per child, a within-child (repeated measures) ICC of 0.05, a
within-village ICC of 0.02, 15% loss to follow-up, 80% power, and a
significance level a ¼ 0.05 (two-sided test). Estimates of within-
child and within-village correlation are derived from our previous
studies and simulation modeling. Based on these assumptions, we
calculated that we required a minimum of 87 village clusters in
each arm to detect a relative difference in prevalence of 25% or
greater [20].

2.10. Data management and analysis

Clinic data will be extracted from paper-based IMCI, maternity
and outpatient patient registers maintained at public health facil-
ities and entered into a secure digital database. CHW patient-level
datawill be extracted from paper-based sick child encounter forms.
Additionally, individual-level patient identifiers and case histories
may be examined in health facility registers and CHW reporting
forms in order to identify Ubudehe category and more fully char-
acterize health outcomes and care-seeking behavior. A smart phone
application is used by field-staff to administer the village-level
surveys and data collected in this manner are synced and uploa-
ded to a secure server.

The statistical analysis of all primary health outcomes in the
study will be done on an intention-to-treat basis. Baseline data
analysis will be conducted to characterize the study population and
examine imbalances between treatment arms. The incidence of
health center/CHW reported diarrhea and ARI in the control and
intervention sectors will be compared using random-effects Pois-
son regression to account for the sector-level clustering andmodels
will be adjusted for stratified randomization by district [21]. The
effect of the intervention on the prevalence of caregiver-reported
diarrhea and ARI in the village-level cohort will be assessed with
mixed-effects log-binomial regression. Secondary outcomes from
the village-level study will analyzed using generalized linear mixed
models with the appropriate link function and distribution family
(e.g. negative binomial for TTC counts). Analyses of the village-level
sample will be adjusted for the multiple levels of clustering
resulting from the study design. Analysis of secondary outcomes
from the intensive data collection households will be conducted on
an intention to treat basis, with per protocol sensitivity analyses.

2.11. Ethics and trial registration

The study has been reviewed by the Ethics Committee of London
School of Hygiene and Tropical Medicine, the Institutional Review
Board of Emory University, and the Rwanda National Ethics Com-
mittee. This trial is registered with Clinical Trials.gov (Registration
No. NCT02239250).
3. Discussion

This research seeks to build on prior and existing research in
multiple ways. First, previous and ongoing trials of HAP are smaller-
scale, research-driven efficacy studies designed to assess the
impact of improved cook stoves under controlled conditions. Our
study is an effectiveness trialda health impact evaluation of an
intervention as actually delivered at scale. Though our results
should be limited to the setting in which it is being delivered, they
should be representative of what can be expected when the
intervention is delivered programmatically.

Second, because Tubeho Neza program is funded through reve-
nue earned through the generation and sale of carbon credits, it
creates a mechanism for the free distribution of improved stoves
and advanced water filters on a large scale. While both stoves and
filters have at least a 3-year useful life, they have a comparatively
high up-front cost (estimated $35 for stoves and $40 for filters by
the time they reach households) that has limited the potential for
governments and others to distribute them without charge to
remote populations. High levels of coverage in a given population
may increase the protective effect of the intervention by reducing
the overall exposure of air pollution and fecal contamination in the
community. This may also translate into a protective effect on non-
adoptersda type of “herd immunity” that has been postulated but
not shown by these environmental interventions.

Third, because carbon credits are awarded on the basis of
intervention use and not just coverage, the implementer has a
strong incentive to optimize use. Such pay-for-performance pro-
grams may address stove “stacking”dthe continued use of tradi-
tional stoves together with the intervention stoveda well-known
problemwith improved stove interventions [29,34]. They may also
increase adherence of household water treatment that is necessary
to achieve health benefits [10,62]. Careful monitoring of actual use
in the village-level sub-study, using self-reports as well as remotely
monitored sensors, should provide strong evidence of patterns of
use over the one-year follow up period.

Fourth, this is the first study evaluating the health effects of a
large-scale intervention that combines improved cook stoves and
household water treatment. In this way, the intervention is
addressing pneumonia and diarrhea, the twomajor killers of young
children both in Rwanda and many other low-income countries.

Fifth, while the LifeStraw 2.0 water filter used in this program
meets the WHO's “most protective” standards [50], the EcoZoom
stove falls below the Tier 3 performance level recommended by the
Global Alliance for Clean Cooking and others. In fact, very few
biomass stoves meet this standard; what is required is the use of
clean fuels such as LPG or electricity [51,52]. Evidence on the per-
formance level of stoves that is necessary to achieve any health
gains is still somewhat limited, however, and modeling does sug-
gest that biomass stovesdespecially those that are portable and
can be used out-of-doorsdare capable of reducing exposure to
levels associated with improvements in health [63]. By assessing
personal level exposure and health outcomes in the village-level
sub-study, we hope to add additional data points on the dose-
response curve and help determine whether biomass stovesdthe
only choice that is available to remote populations that are beyond
the supply chain for clean fuelsdcan not only reduce expenditures
for fuel and green house gas emissions, but also prevent disease.

Finally, our study methods combine a large-scale trial at the
clinical catchment level with a nested trial at the village level. This
allows us to use clinic-based diagnoses of primary and secondary
outcomes, avoiding some of the bias associated with self-reported
conditions and focusing on the more serious cases that present at
clinics. At the same time, the village-level sub-study allows us to
carefully document coverage and use of the intervention, as well as

http://Trials.gov
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their impact on exposure to HAP and fecally contaminated drinking
water.
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ABSTRACT: Subject reactivitywhen research participants change
their behavior in response to being observedhas been documented
showing the effect of human observers. Electronics sensors are
increasingly used to monitor environmental health interventions, but
the effect of sensors on behavior has not been assessed. We
conducted a cluster randomized controlled trial in Rwanda among
170 households (70 blinded to the presence of the sensor, 100 open)
testing whether awareness of an electronic monitor would result in a
difference in weekly use of household water filters and improved
cookstoves over a four-week surveillance period. A 63% increase in
number of uses of the water filter per week between the groups was observed in week 1, an average of 4.4 times in the open
group and 2.83 times in the blind group, declining in week 4 to an insignificant 55% difference of 2.82 uses in the open, and 1.93
in the blind. There were no significant differences in the number of stove uses per week between the two groups. For both filters
and stoves, use decreased in both groups over four-week installation periods. This study suggests behavioral monitoring should
attempt to account for reactivity to awareness of electronic monitors that persists for weeks or more.

■ INTRODUCTION
Measurement of adoption and compliance with household-level
environmental health interventions, such as latrines, water
filters, and improved cookstoves, has often relied on surveys
and observations. However, surveys and other common
methods for assessing behavioral practices are known to have
certain methodological shortcomings, including poor correla-
tion between observations and self-reported recall.1−4 Survey
results can also be impacted by errors of interpretation on the
part of the informant or the enumerator. Missing data due to
participant absences or loss to follow up is another source of
systematic bias. Additionally, it is known that the act of
surveying can itself impact later behavior, a phenomenon
known as reactivity or Hawthorne effect.5 Structured
observation, an alternative to relying on reported behavior in
response to surveys, has also been shown to cause reactivity in
the target population.6,7 Finally, the subjectivity of the outcome
studied can highly influence reporting bias.8

It is unclear whether remote monitoring may also reduce
subject reactivity compared to surveys and direct observation.
While study participants must be apprised of the presence of
the monitor, their discrete operation without the presence of
human investigators may be less intrusive and therefore
engender less reactivity, especially after some initial period of

installation. We undertook this study to assess the reactivity
associated electronic sensor-based monitoring of household-
based water filters and improved cook stoves based on weekly
sensor-recorded stove and filter use between households that
were told of the presence of the sensor (open arm) and
households that were not (blinded arm) over a four-week
installation period.

■ MATERIALS AND METHODS

Study Design and Implementation. The study was
conducted from March to July 2015 in Western Province,
Rwanda. The households selected for this study were
participating in a broader health impact study of the DelAgua
Health and Ministry of Health Tubeho Neza program, wherein
over 100 000 households were provided with household water
filters, improved cookstoves, and behavioral messaging and
monitoring in 2014 and 2015. The program is described
elsewhere9 as is the design of the health impact study.10

Received: January 12, 2016
Revised: March 15, 2016
Accepted: March 17, 2016
Published: March 17, 2016

Article

pubs.acs.org/est

© 2016 American Chemical Society 3773 DOI: 10.1021/acs.est.6b00161
Environ. Sci. Technol. 2016, 50, 3773−3780

pubs.acs.org/est
http://dx.doi.org/10.1021/acs.est.6b00161


The reactivity study was designed as a cluster randomized
controlled trial nested within this larger study. Consistent with
the sampling design of the health impact study cited above, the
unit of randomization was a “village cluster”, which consists of
1−3 geographically contiguous villages that together contain a
minimum of 12 households eligible to participate in the
Tubeho Neza program.10 A convenience sample of 26 village
clusters were included in this trial and randomly assigned to
one of two experimental conditions: blinded vs open. In both
conditions, filters and stoves that were distributed as part of the
Tubeho Neza program were temporarily replaced by nearly
identical devices that contained concealed sensors. While
households in villages assigned to the blinded condition were
not informed that their usage was being recorded by the
concealed sensor, households in the open condition were told
that the sensor was present and that their filter and stove use
was being continuously monitored. A total of 170 households
consented to participate and were enrolled into the study, with
70 (41.2%) in the open group and 100 (58.8%) in the blinded
group. Receipt of sensor-equipped stoves and filters occurred
on average 153.21 (SD 38.48) days after households received
their personal stoves and filters in the open group, and 164.99
(SD 27.78) in the closed group. While these differences are
statistically significant (p < 0.04), there is no practical
expectation that a difference of roughly 10 days of use over
more than five months would impact our analysis.
The open and closed households were administered identical

informed consent statements, translated into English as, “Your
house has been chosen to receive this different filter and stove.
You may use these in the exact same way you use your own
filter and stove. We will leave these with you for 1−3 months.
During this time, we will keep your own filter and stove secure,
so that you can resume using them when we come back to pick
up these devices. Do you agree to participate?”
Households in the closed group were simply informed that

this activity related to the overall health impact randomized
controlled trial in which they had previously enrolled. Houses
in the open group were shown and told the function of the
sensor in both the filter and stove. Following a written script,
the enumerator was instructed to gather together all household
members who were currently home. Those in attendance were
then told they had been chosen by chance to have their filter
and stove use measured for one month. After revealing the filter
and stove sensors and explaining their function, the primary
cook was asked to explain back to the enumerator what the
filter sensor does in their own words. After the sensors had
been in place for at least 28 days, field staff returned to the
houses to remove the instrumented stove and filter and replace
them with the household’s original stove and filter.
Households were surveyed at the time of installation as well

as removal of their sensor-equipped stoves and filters. Based on
comments entered by enumerators, an estimated three-quarters
of households reported preferring their sensor equipped stove
(in both open and closed arms) because it was approximately
10 cm taller and therefore perceived to be easier to use.
In the open group, some households asked if the sensor in

the cookstove would withstand heat, rain, and mud, and asked
questions about theft, out of concern for the instrument. In
both arms, some households reported a preference for their
own filter, as the sensor-equipped filters were comparatively
newer and therefore still had a residual chlorine taste and smell
that dissipates after a few days of use.

In the survey that was administered at the time of sensor
removal, household respondents were asked to report both the
number of times that the water filter was filled and number of
times that the stove was used on day of the survey and the day
before the survey. Responses to these questions were collapsed
into binary variables that indicated household-reported stove
and filter use, and these were compared to sensor-recorded use
during that time period. This comparison was limited to
households with nonmissing, concurrent self-reported use and
sensor-recorded water filter (N = 86) and stove use (N = 89).

Instrumentation. The sensors used in this study are a
newer iteration of the technology described in Thomas et. al,
2013.11 In the case of the water filter, the sensor records water
pressure relative to atmospheric within the LifeStraw Family 2.0
safe water storage container. This water pressure corresponds
approximately linearly to water volume, from a minimum of 0 L
to a maximum of 5.5 L. The sensor system is entirely contained
within a watertight enclosure, and includes the pressure
transducer, data acquisition board, an SD card, a cellular
radio and SIM card, and antenna. A riveted bracket restrains the
sensor. When the water filter is fully assembled, the sensor
enclosure is hidden from external view. The assembly is shown
in in the cover art of this article, with the sensor in hand
installed inside safe water storage container (bottom left) and
the input container and water filter element shown at right.
The cookstove sensor includes a digital temperature sensor

and two K-type thermocouples. The digital temperature sensor
is mounted on the electronics board, while one thermocouple
lead is installed between the ceramic insulation and the external
metal cladding of the stove, and the other is inserted within the
ceramic insulation close to the combustion chamber. The stove
manufacturer, EcoZoom, specially produced stoves with false
bottoms to hide the sensors. These false bottoms increased the
height of the cookstove by approximately 10 cm and the weight
by less than a kilogram. The stove, false bottom and sensor
installation location are shown in Figure 1.

In both cases, the sensors record data on 5 min intervals, and
automatically transmit this data over the cellular phone
networks directly to the www.sweetdata.org servers daily, at
midnight. This data is logged in raw form in MySQL databases,
with unique tables for each sensor. Events and usage are then
calculated using R (R Foundation for Statistical Computing,
Vienna, Austria).

Algorithm Development and ValidationWater Fil-
ter. It was observed that daily temperature changes introduced
noise to the pressure data therefore, to ameliorate the effect of
temperature on pressure readings, a simple linear temperature

Figure 1. Temperature sensor installed within improved cookstove
false-bottom. A metal cover encloses the false-bottom and obscures the
sensor from view.
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correction is performed. This is accomplished by holding
volume, and hence pressure, constant while varying the
temperature. After recording temperature and pressure data
for many different volumes, the pressure and temperature
measurements along with the known pressure can be used to
minimize the total pressure error in a least-squares sense. The
temperature-corrected pressure is defined as

̂ = · ̃ + · +p n a p n b T n c[ ] [ ] [ ]

where ̃p n[ ] is the raw pressure reading, T[n] is the temperature
reading, and a, b, and c are the fitting constants. Note that this
approach does not account for hysteresis of the pressure sensor.
Incorporating memory into the model could result in more
accurate temperature correction.
Water filtration events and corresponding volumes are

calculated from the pressure data as time intervals of near-
constant, positive slope. These intervals correspond to the
linear increase in pressure associated with the accumulation of
filtered water in the safe water storage container of the filter,
where the sensor is located. To robustly calculate the slope of
the raw pressure data, a linear fit is performed on a sliding 30
min window at a 1 min increment. This results in a slope
estimate, s[n], with a sampling period of 1 min (in the case of
this data, recorded with a 5 min sampling interval, a 5 min
sampling period in the algorithm would yield identical results),
where n is the time index. In addition to calculating the slope of
each window, the normalized residual error of the linear fit,
eLF[n], is also calculated and used as an indication of the
noncolinearity of the data for each window.
Filter usage events are detected from s[n] and eLF[n] using

slope spectrum techniques.12 The slope spectrum provides a
visual representation of the slope as a function of time similar
to the spectrogram for frequency. The range of slopes observed
to correspond to filter usage is divided into a number of slope
ranges, or bins. A signal is created for each slope bin indicating
if the slope at each time index is within the bin. This indicator
signal is penalized by the error associated with the slope signal
and is defined as

=
−⎧⎨⎩b n

e n s n m
[ ]

1 [ ] if [ ]is in slope bin

0 otherwise
m

LF

where s[n] is the slope signal, eLF[n] is the error of the linear fit
used to calculate s[n], and m indexes the slope bins. When
bm[n] is one the slope is within the range of slopes
corresponding to bin m and the error is zero. As the error
increases to a maximum of one, bm[n] will go to zero. The
indicator signals for each bin are convolved with a moving
averager, hMA[n], to build up the slope spectrum. The length of
the moving averager is chosen to correspond to the window
length used for the linear fit calculation of s[n]. This process is
mathematically summarized as

= *S m n h n b n[ , ] [ ] [ ]mMA

Events are detected as time intervals when the maximum of
S[m,n] over all slope bins is above a specified threshold. This is
achieved by first calculating a binary signal indicating when
S[m,n] is above the specified threshold. The binary signal is
defined as

=
≥⎧⎨⎩x n

S m n
[ ]

1 max [ , ] 0.4

0 otherwise
m

Intervals when x[n] is high are identified by performing a
first difference. To accurately determine the start and stop
times of each event, these intervals must be padded by the 30
min window length multiplied by the 0.4 threshold chosen to
calculate x[n]. This extra step is necessary to accommodate the
ramp up and down associated with the moving averager.
After calculating the start and stop times of each filtering

event, the volume of a given event is calculated by estimating
the filter flow rate during that event then multiplying by the
event duration. The flow rate of an event is estimated by
performing a linear fit on all pressure data from that event. The
event volume is then calculated as the product of the event flow
rate and duration. A graphical flowchart describing this data
analysis process is shown in Figure 2.

An example data set from one household-sensor combination
from this study, along with the output of the applied algorithm,
is shown in Figure 3.
This algorithm was tuned with laboratory-derived data, and

validated with a portion of the field-collected data. A simplified
sensitivity (true positive rate) and specificity (true negative
rate) analysis was conducted with the algorithm applied to
independent field-collected data that was not previously used in
calibrating the algorithm. Across 80 water filter sensor
deployments, 528 events were manually identified.
The algorithm indicated a high sensitivity of 0.98. The

specificity analysis assumed the rate of nonevents to be the
same as true events. This conservative assumption biases the
specificity analysis lower, yielding an approximation of
specificity of 0.88, attributable to 70 false positives out of 528
manually identified. A linear regression of algorithm-detected
events against manually identified events yielded a R2 of 0.96
and a mean absolute volume error per detected event of
approximately 5%.

Algorithm Development and ValidationCookstove.
The algorithm applied to the cookstove data was considerably
more straightforward. For this study, only the manufacturer
calibrated digital temperature sensor data was used, and a
simple algorithm identified any periods wherein the detected
temperature was above 40 °C (104 °F). This threshold was
chosen as being unambiguously above the maximum ambient
temperature, as verified through manual review of the clear
peaks in the temperature data. Events were differentiated by
periods where the temperature fell below this threshold.
Algorithm validation was conducted through a simple manual
review No sensitivity or specificity analysis was conducted for
this simplified threshold event detection algorithm.

Statistical Analysis. Enumerators recorded unique house-
hold identification numbers, the serial numbers of installed
instrumented stoves and filters, and the date and times of
installation and removals. After discounting some installation
and removal records due to transcription errors and removing
household installation periods with no recorded sensor data
(indicating sensor or cellular connectivity malfunction), the
final sample was 126 households with water filter data (57
open; 69 blind) and 127 households with stove data (49 open,

Figure 2. Signal algorithm processing steps.
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78 blind). The parsing algorithm identified gaps in the sensor
record through hourly and daily data tables that identified
sensor functionality separately from event detection. The
calculation of household rates of use were based only on
observed periods of sensor functionality. As such, the actual
samples available per week over 4 weeks ranged between 117
and 126 for water filter sensor, and 106 to 127 for the
cookstove sensor.
Data collected during the installation surveys were used to

assess for differences in household size and baseline reported
stove and filter use between the open and blinded groups. Data
collected during the removal surveys were used to compare
reported use to sensor recorded use in the 2 days prior to
removal.
We used negative binomial regression (mean-dispersion

parametrization) to model weekly sensor-recorded stove and
filter use and compare the rates of use between households in
the open and blinded study groups after controlling for
household size. The negative binomial model is a Poisson-
gamma mixture model that is robust to overdispersion.13 The
coefficient corresponding to the predicted difference between
the groups was exponentiated to yield the ratio of use (RR) in
the open group over the blind group. Marginal estimates of
weekly use and the average marginal effects (AME) were
calculated from the fitted models. Bias-corrected bootstrap 95%
confidence intervals were constructed for regression coefficients
and model-derived estimates. We employed a stratified
bootstrap so that the proportion of open to blinded households
in each bootstrap sample (2000 replications) was equivalent to
the original sample. Observed significance levels were derived
from the coverage of the bootstrap 95% confidence intervals. If
the 95% confidence interval for the exponentiated regression
coefficient corresponding to the rate ratio between the open
and blinded groups failed to include 1, the effect was
considered to be statistically significant (p < 0.05). A similar
approach was taken to compare the volume of water filtered in
open and blinded households, with the exception that a
covariate for household size was not included in the models, as
the metric of use (household volume/number of persons in the

household) implicitly accounted for differences in household
size.
Poisson regression was used to model the prevalence ratio

(PR) of open to blinded households that used the stove and
filter during a given observation week. To mitigate potential
misclassification bias in households with gaps in the sensor
record, this analysis was restricted to households that had
recorded sensor data for a minimum of 96 h during the week in
question. Lastly, within each household we calculated the
average volume per fill event and then used linear regression to
assess whether there were differences between the open and
blinded groups in the amount of water filtered per use. For
both Poisson and linear regression models, bootstrap
confidence intervals were constructed for regression coefficients
and model-derived estimates as described above.

■ ETHICS AND TRIAL REGISTRATION

This study has been approved by the Institutional Review
Boards of Portland State University and Emory University, the
Ethics Committee of the London School of Hygiene and
Tropical Medicine, and the Rwanda National Ethics
Committee. This substudy was part of the larger trial registered
with Clinical Trials.gov (Registration No. NCT02239250).

■ RESULTS

Baseline Survey. The average household size in the sample
was 5.6 (SD = 2.03, 95%CI = 5.3−6.0). Households contained
an average of 1.6 children under the age of 5 (SD = 1.00, 95%
CI = 1.4−1.7). There was no significant difference in household
size or number of children under the age of 5 between the open
and blinded arms. In regards to self-reported use at baseline,
98.0% (95% CI = 93.7−99.6) of households reported using the
water filter and 95.1% (95%CI = 89.5−97.8) of households
reported using the improved stove during the previous week.
However, there was a high reported rate of traditional stove use
concurrent with use of the improved stove. 65.3% (95%CI =
56.1−73.4) of households who reported using the EcoZoom in
the previous week also reported using a traditional stove during

Figure 3. Example raw water pressure data from sensor installed in water filter safe water storage container (small scatter points are digital pressure
units); event and volume detection algorithm applied (filled larger circles with water volume detected shown above point).
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that same time period. 100% of households in both arms
reported woody biomass as their primary baseline fuel. There
was no significant difference between study arms in the
proportion of households who reported water filter use,
improved stove use, baseline fuel, or traditional stove use
during the previous week.
Sensor-Recorded Water Filter Use. We observed

significant differences between the study groups in volume of
water filtered per week, number of filter uses per week, and
proportion of sensor confirmed users per week (Table 1).
During week 1, the average volume of water filtered (Figure 4)
in open households was 2.62 L per person (95%CI = 2.07−
3.24) compared to an average of 1.60 L per person (95%CI =
1.25−1.98) among blinded households, a 63% difference (RR =
1.63, 95%CI = 1.20−2.24). The volume of water filtered
declined in both open households (2.00 L per person, 95%CI =
1.51−2.59) and blinded households (1.26 L per person, 95%CI
= 0.92−1.63) during week 2, but remained significantly higher
among open households (RR = 1.59, 95%CI = 1.06−2.38). In
week 3, the volume of water filtered among blinded households
was 0.96 L per person (95%CI = 0.69−1.30), compared to 2.39
L per person (95%CI = 1.78−3.15) in open households, with a
resulting increase in the magnitude of the difference between
groups (RR = 2.48, 95%CI = 1.64−3.84). This observed trend
of increased use in open households persisted in week 4, but

the effect was not statistically significant (RR = 1.55, 95%CI =
0.94−2.81).
Households in the open and blinded groups displayed a

similar pattern of differences in the number of filter uses per
week in all households. During week 1, open households used
the filter an average of 4.40 times (95%CI = 3.69−5.14) vs 2.83
times (95%CI = 2.23−3.48) in blinded households, a 55%
increase in the rate of use (RR = 1.55, 95%CI = 1.18−2.03). As
with water volume, the rate of use continued to be significantly
higher in the open group in weeks two (RR = 1.57, 95%CI =
1.08−2.33) and three (RR = 1.93,95%CI = 1.25−2.91), but not
in week 4 (RR = 1.46, 95%CI = 0.90−2.41). In the analysis of
usage rates among the subgroup of confirmed users, we
observed a trend toward increased use among the open
households, although this observed difference was of lesser
magnitude than that observed when comparing all households
and was only statistically significant in week 1 (RR = 1.27, 95%
CI = 1.03−1.63).
The proportion of households that used the water filter in a

given week in the open group was significantly higher than that
in the blinded group during the first 3 weeks of the study
period. During week 1, 94.7% (95%CI = 87.6−99.8) of
households in the open group used the filter at least once,
compared to 76.7% (95% CI = 66.2−86.0) of households in the
blinded group (PR = 1.24, 95%CI = 1.07−1.44). The
proportion of confirmed users continued to be higher in the

Table 1. Key Reactivity Study Results by Week for Open and Blind GroupsShaded Parameters Identify Groups with
Statistically Significant Differences (p < 0.05)

week 1 week 2 week 3 week 4

value SE 95% CI value SE 95% CI value SE 95% CI value SE 95% CI

Filter Water UseLiters/Person/WeekAll Households
open 2.620 0.290 [2.069, 3.244] 2.002 0.281 [1.511, 2.591] 2.394 0.348 [1.783, 3.150] 1.657 0.356 [1.149, 2.635]
blind 1.603 0.183 [1.254, 1.983] 1.256 0.181 [0.923, 1.631] 0.965 0.150 [0.699, 1.302] 1.068 0.177 [0.765, 1.462]
RR 1.634 0.265 [1.208, 2.240] 1.595 0.336 [1.06, 2.382] 2.480 0.563 [1.641, 3.838] 1.552 0.457 [0.942, 2.807]

Filter Use Events/WeekControlling for Household SizeAll Households
open 4.399 0.370 [3.693, 5.142] 3.544 0.418 [2.788, 4.443] 3.675 0.448 [2.796, 4.542] 2.825 0.454 [2.046, 3.861]
blind 2.831 0.321 [2.227, 3.480] 2.259 0.344 [1.629, 2.949] 1.909 0.338 [1.328, 2.701] 1.934 0.365 [1.351, 2.820]
RR 1.554 0.214 [1.183, 2.025] 1.569 0.308 [1.082, 2.325] 1.925 0.435 [1.250, 2.905] 1.461 0.387 [0.901, 2.414]

Filter Use Events/WeekControlling for Household SizeConfirmed Users
open 4.709 0.342 [4.082, 5.438] 4.226 0.418 [3.450, 5.123] 4.215 0.444 [3.403, 5.122] 3.881 0.534 [2.952, 5.078]
blind 3.698 0.369 [3.007, 4.482] 3.359 0.429 [2.554, 4.239] 3.521 0.494 [2.740, 4.666] 3.465 0.539 [2.574, 4.652]
RR 1.273 0.153 [1.026, 1.633] 1.258 0.206 [0.936, 1.764] 1.197 0.204 [.859, 1.631] 1.120 0.240 [0.748, 1.667]

Proportion of Households Using Water Filter At Least Once/Week
open 0.947 0.030 [0.876, 0.998] 0.833 0.050 [0.723, 0.922] 0.868 0.046 [0.773, 0.949] 0.736 0.062 [0.609, 0.851]
blind 0.767 0.050 [0.662, 0.860] 0.677 0.058 [0.561, 0.786] 0.542 0.066 [0.422, 0.679] 0.586 0.065 [0.448, 0.708]
PR 1.235 0.093 [1.071, 1.439] 1.231 0.134 [1.006, 1.511] 1.600 0.225 [1.227, 2.111] 1.255 0.180 [0.975, 1.693]

Mean Water Filter Volume/UseAll Households (No Significant Differences Observed for Any Week Period)
open 2.979 0.120 [2.767, 3.238] 2.988 0.150 [2.710, 3.279] 3.317 0.151 [3.020, 3.608] 3.112 0.199 [2.731, 3.501]
blind 3.031 0.129 [2.791, 3.288] 3.202 0.196 [2.830, 3.602] 3.100 0.227 [2.675, 3.560] 3.008 0.193 [2.628, 3.395]

Improved Stove Uses per WeekAll Households
open 8.120 0.906 [6.526, 9.947] 5.793 0.951 [4.149, 7.905] 5.494 0.891 [3.989, 7.449] 4.899 0.800 [3.411, 6.539]
blind 7.128 0.659 [5.954, 8.478] 5.790 0.608 [4.615, 7.054] 4.812 0.684 [3.613, 6.381] 4.212 0.557 [3.173, 5.360]
RR 1.139 0.169 [0.867, 1.506] 1.001 0.201 [0.685, 1.468] 1.142 0.263 [0.722, 1.736] 1.163 0.266 [0.768, 1.750]

Improved Stove Uses/WeekConfirmed Users
open 8.654 0.968 [6.839, 10.631] 6.826 0.999 [5.165, 9.073] 6.828 0.995 [5.162, 9.069] 6.071 0.819 [4.548, 7.726]
blind 7.758 0.694 [6.494, 9.274] 6.665 0.634 [5.514, 8.001] 6.782 0.780 [5.337, 8.430] 5.644 0.663 [4.410, 7.027]
RR 1.116 0.165 [0.829, 1.461] 1.024 0.181 [0.722, 1.415] 1.007 0.187 [0.712, 1.432] 1.076 0.200 [0.744, 1.521]

Proportion of Households Using Improved Stove at Least Once/Week
open 1.000 0.002 [0.998, 1.003] 0.842 0.059 [0.710, 0.946] 0.828 0.062 [0.688, 0.938] 0.813 0.069 [0.661, 0.937]
blind 0.942 0.028 [0.883, 0.986] 0.859 0.045 [0.763, 0.937] 0.703 0.057 [0.584, 0.812] 0.768 0.058 [0.648, 0.876]
PR 1.062 0.033 [1.014, 1.136] 0.980 0.087 [0.811, 1.151] 1.178 0.132 [0.938, 1.460] 1.058 0.124 [0.841, 1.305]
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open group compared to the blinded group in both weeks two
(PR = 1.23, 95%CI = 1.01−1.51) and three (PR = 1.60, 95%CI
= 1.23−2.11). Notably, the proportion of households that used
the filter declined each week in both groups, with only 73.4%
(95%CI = 60.9−85.1) of households in the open group and
58.6% (95% CI = 44.8−70.8) of households in the blinded
group using the water filter during week 4 (Figure 5).
Lastly, we averaged the volume of water filtered during each

filter use within households in order to determine whether

observed increases in overall water use were partly attributable
to households filtering a larger amount of water when they used
the filter in addition to using the filter with greater frequency
(Table 1). The average volume of water filtered per use was 3.0
L (95%CI = 2.84−3.16). There were no significant differences
in the amount of water filtered per use between groups, and the
amount per use did not differ across study weeks.

Sensor-Recorded Stove Use. Similar to water filter use,
we observed both the frequency of use and the proportion of

Figure 4. Filtered Water Use per person, per week among all households.

Figure 5. Proportion of households using the water filter at least once in each week.
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households with confirmed use in each group to be highest
during week 1 and to decrease over time (Table 1). The
average number of stove uses among open households was 8.12
(95%CI = 6.53−9.95) during week 1, declining to 4.90 (95%CI
= 3.41−6.54) during week 4. Among blinded households, stove
use ranged from 7.12 (95%CI = 5.95−8.48) during week 1 to
4.21 (95% CI = 3.17−5.36) during week 4. In contrast to water
filter use, there were no statistically significant differences in the
number of stove uses per week between the two groups. The
proportion of households that used the stove at least once
during the week was significantly higher in the open group only
during week 1 (PR = 1.06, 95%CI = 1.01−1.14) and the
magnitude of the difference was relatively modest (100% vs
94.2%). By week 4, the proportion of households that had at
least one use during the week declined to 81.3 (95% CI =
66.1−93.7) in the open group and 76.8% (95%CI = 64.8−87.6)
in the blinded group. There were no significant differences
between groups in weeks two through four.
Technology Preferences. For households in which we had

concurrent stove and filter data, adoption of both the water
filter and cookstove in week 1 was 86.05% in the open arm, and
77.05% in the closed arm, with 11.63% of households in the
open arm using only the filter, 0% using only the stove, and in
the closed arm 4.92% using only the filter and 14.75% using
only the stove. In week 3, 78.12% of households used both
technologies in the open arm with 9.38% using only the filter
and 0% using only the stove; in the closed arm 42.86% of
households used both technologies, 12.24% used only the filter
and 22.45% used only the stove. In week 4, this trend was not
observed. These results indicate that the sensors primarily
reinforce water filter use in the open arm while the stove is
more consistently adopted in both arms.
Self-Reported Vs Sensor Recorded Use. Overall, 67.4%

(95%CI = 56.6−76.6) of households reported using the water
filter at least once on the day prior to or the day of sensor
removal. The proportion of households with at least one sensor
recorded water filter use was 37.2% (95%CI = 27.5−48.1).
Among the households that reported water filter use during this
time period, 44.2% (95% CI = 32.3−60.0) had no
corresponding sensor-recorded use. In contrast, among the
32.6% of households that reported no water filter use, there was
perfect correspondence with the sensor record (i.e., no sensor
recorded water filter use). In regards to stove use on the day
prior to or the day of sensor removal, 84.2% (95% CI = 75.0−
90.1) of households reported at least one stove use, while
sensors recorded stove use in only 37.1% (95%CI = 27.4−47.7)
of households. Of the 84.2% of households with reported stove
use, 58.7% (95% CI = 47.0−69.4) had no sensor-recorded
events.

■ DISCUSSION
In this study, we observed significant differences between the
open and blind groups for proportion of households using the
water filter at least once per week, for the first 3 weeks.
Likewise, there are significant differences in the number of uses
per week between the groups. The differences in water volume
consumed per person between groups is likely primarily
attributable to the differences in the number of fill events per
week. In contrast to water filter use, there were no significant
differences in the number of stove uses per week between the
two groups. For both filters and stoves, use decreased in both
groups over the four-week installation periods. These results
suggest two sources of reactivity. One, to the initial engagement

with enumerators, and two, to the known presence of electronic
sensors. In another recent study, reactivity to disclosed
cookstove sensor installation stabilized after approximately
200 days.14 Additionally, we observed a considerable fraction of
households reporting water filter or stove use that did not
correspond to sensor observed use. This lack of agreement
between sensors and survey data reinforces existing literature
identifying limitations of survey instruments.15

The lack of reactivity attributable to sensor monitoring of the
cookstoves may plausibly be explained by programmatic
insights. The implementer has observed that the cookstoves
are more readily adopted by households, as measured through
demonstrations and observational indicators of use, in contrast
to the water filters that have been more challenging to reinforce
consistent use.9

Study Limitations. In this study, we did not install sensors
on baseline stoves, thereby precluding a direct comparison of
“stove-stacking” behavior wherein households continue to use
their baseline stove in addition to adopting the improved
cookstove.
We also did not evaluate if open households reported

remembering the sensor presence at the time of collection, nor
if blind households had “discovered” the sensor. We
hypothesize that these limitations both bias the results toward
the null hypothesis of no difference between groups.
Additionally, while the instrumented water filters were

identical to the noninstrumented filters, the cookstoves were
aesthetically different in that they were raised above the ground
by about 10 cm. While this functionally should not have
impacted performance, many households (over 90% of those
surveyed) reported they preferred the raised stoves over the
programmatic stoves. This indication would not impact the
comparison between the open and blind groups, but it cannot
be entirely discounted as relevant to comparing sensor-
recorded use to the broader program.

■ FUTURE WORK
In this study, reactivity to known presence of the water filter
sensor starts to converge in week 4. However, observed
differences remain and we cannot conclusively state the
duration of reactivity. These results suggest that instrumented
monitoring using disclosed sensors should discount at least the
first 3 weeks of data, and should be installed for at least 4 weeks
or more. Future work is required to determine the duration of
behavior reactivity to sensors, and extend an estimate of this
reactivity to other contexts and interventions.
Regardless, these results do suggest an opportunity to use

sensors, and even the suggestion of sensors, to reinforce and
reward healthy behavior change. For example, while cookstove
adoption appears high in this study, encouraging households to
cook outdoors instead of indoors (to reduce indoor air
pollution and exposure), as well as discontinuing use of their
baseline stove (“stove-stacking”) has been challenging. A simple
instrument with ultraviolet and a temperature sensors can
record when cooking occurs indoors or outdoors, remind
households to move outside, and reward outdoor cooking with
a tally that may correspond to conditional cash transfers.
Sensors installed on baseline stoves could be integrated, and
households rewarded for exclusive use of their improved
cookstove. These payments could be linked to the carbon credit
revenue earned by implementers in several programs, including
the one under study here. A similar effort is currently underway
by others.16 A similar approach could be taken with water
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filters, latrines and other interventions. The cost of the sensors
used in the present study, at least several hundred dollars in
production per device, limits applications across an entire
household based intervention. However, advancements in
technology as well as simplifications in the purpose of the
sensors may in some cases reduce costs to the same order of
magnitude as a household filter or stove.
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