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S U M M A R Y

Whole genome sequencing (WGS) can provide a comprehensive analysis of Mycobacterium tuberculosis

mutations that cause resistance to anti-tuberculosis drugs. With the deployment of bench-top

sequencers and rapid analytical software, WGS is poised to become a useful tool to guide treatment.

However, direct sequencing from clinical specimens to provide a full drug resistance profile remains a

serious challenge. This article reviews current practices for extracting M. tuberculosis DNA and possible

solutions for sampling sputum. Techniques under consideration include enzymatic digestion, physical

disruption, chemical degradation, detergent solubilization, solvent extraction, ligand-coated magnetic

beads, silica columns, and oligonucleotide pull-down baits. Selective amplification of genomic bacterial

DNA in sputum prior to WGS may provide a solution, and differential lysis to reduce the levels of

contaminating human DNA is also being explored. To remove this bottleneck and accelerate access to

WGS for patients with suspected drug-resistant tuberculosis, it is suggested that a coordinated and

collaborative approach be taken to more rapidly optimize, compare, and validate methodologies for

sequencing from patient samples.

� 2016 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction

The publication of the first Mycobacterium tuberculosis genome
sequence in 1998 heralded a new era in tuberculosis (TB)
research.1 The bacterium was found to have a relatively small
circular genome of approximately 4.5 million base pairs and was
estimated to have around 4000 potential genes. Sequencing of the
M. tuberculosis H37Rv reference strain was soon followed by other
strains, and expectations were high that mechanisms of patho-
genesis and virulence were about to be revealed that would enable
the development of novel drugs and improved vaccines to assist in
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TB control.2,3 However, the anticipated advances have been slow to
materialize and such work continues, accompanied by the
realization of the sophistication of M. tuberculosis as a highly
successful human pathogen.

The early genomes were deciphered using various cloning and
shotgun sequencing approaches, followed by assembly and annota-
tion with an assortment of analytical tools – a painstaking process
with each genome taking years to complete. Advances in technology
over the past 15 years have greatly reduced the complexity, cost, and
time of sequencing. Thousands of M. tuberculosis strains have since
been sequenced, contributing to studies on evolution, transmission,
and drug resistance.4–10 Several Web-based tools have been
developed to assist TB sequence analysis, and software is now freely
available for rapid genotypic analysis and the identification of drug
resistance-associated mutations.11–15
ciety for Infectious Diseases. This is an open access article under the CC BY-NC-ND

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijid.2016.11.422&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijid.2016.11.422&domain=pdf
http://dx.doi.org/10.1016/j.ijid.2016.11.422
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Ruth.Mcnerney@uct.ac.za
http://www.sciencedirect.com/science/journal/12019712
www.elsevier.com/locate/ijid
http://dx.doi.org/10.1016/j.ijid.2016.11.422
http://creativecommons.org/licenses/by-nc-nd/4.0/


R. McNerney et al. / International Journal of Infectious Diseases 56 (2017) 130–135 131
Next-generation sequencing (NGS) is already used in clinical
practice for characterizing cancers and hereditary diseases. It may
also be used to assist TB case management by detecting resistance
to anti-TB drugs.16–18 However, the quality of the DNA template is
critical for successful whole genome sequencing (WGS), and M.

tuberculosis presents considerable technical challenges in this
respect. Firstly, the scarcity of bacilli in clinical samples limits the
availability of M. tuberculosis genomic DNA (gDNA). Secondly, the
remarkable hardiness of the lipid-rich M. tuberculosis cell wall
makes disruption of the M. tuberculosis bacterium difficult and can
affect the quality and the yield of gDNA. In addition, the M.

tuberculosis genome itself is unusually robust, with a guanine/
cytosine average content of 65% across the genome, and with some
regions exceeding 80%.1 Thus careful consideration must be given
to the choice of sample, bacterial lysis, DNA extraction methodol-
ogy, library preparation, and sequencing platform if M. tuberculosis

sequencing is to enter routine clinical practice.19

This article explores sample collection and processing as crucial
factors for WGS and NGS analysis of patient-derived M.

tuberculosis. Although some questions remain unanswered, advice
is offered on current best practices and pitfalls to avoid.

2. Next-generation sequencing platforms

NGS technologies analyse whole genomes without recourse to
cloning, as was previously required for Sanger sequencing. High
throughput platforms have been developed that can analyse
millions of DNA fragments in parallel, and sequencing of bacterial
genomes that previously took years to complete can now be
achieved in hours. Sophisticated labelling systems allow multi-
plexing, where multiple samples are combined within a single run,
greatly reducing costs. The early NGS platforms required specialized
laboratories and highly trained personnel, but newer bench-top
instruments suitable for clinical laboratories are now available. In
addition to WGS, targeted sequencing, where multiple targets are
amplified and sequenced in parallel, offers a rapid detection of
resistance, albeit on a limited scale compared to whole genome
approaches.17,20

Several NGS systems are commercially available, providing a
range of platforms to choose from, some of which have gone
through regulatory registration and clearance. Two NGS systems
have been used to detect mutations associated with M. tuberculosis

drug resistance.21 Illumina sequencing (Illumina, San Diego, CA,
USA) is based on reversible dye-terminators.22 First a library is
prepared whereby pure DNA is chopped into smaller fragments that
are modified prior to amplification on a specialized chip holding
hundreds of thousands of oligonucleotides. New fragments are built
one nucleotide at a time, with fluorescent tags indicating which
nucleotide has been incorporated. Sequential rounds of nucleotide
additions build a new strand of DNA, with thousands of positions
throughout the genome being sequenced at the same time in a
process called massive parallel sequencing. The result is millions of
short DNA fragments replicating the entire genome, with multiple
fragments covering each stretch of gDNA. In most cases fragments
are aligned and assembled by computation against a predetermined
reference genome, thus allowing for the identification of polymor-
phisms. The depth of coverage (number of fragments that
represents a specific nucleotide) is an indication of sequencing
quality for each nucleotide sequenced, because if hundreds of
fragments give the same signal for a specific position there is high
confidence in the specific nucleotide call. Depth of coverage varies
across genomes and is adversely affected by regions of high GC
content and repetitive elements. Typically, when calling drug
resistance mutations, coverage of at least 10-fold is required.
However, other studies suggest at least 30-fold coverage is needed,
else the result is considered of low confidence.19
Ion Torrent or Ion semiconductor sequencing (Ion Torrent Inc.,
USA, marketed by Thermo Fisher Scientific) uses different
chemistry to monitor nucleotides incorporated during the creation
by polymerization reaction of the new strand of DNA.23 Sequencing
is performed on semiconductor chips that detect changes in pH
caused by the release of H+ ions during the polymerization of DNA
and incorporation of deoxyribonucleoside triphosphate (dNTP).
dNTPs are added sequentially, with washing between each step to
remove unbound nucleotide molecules. As with Illumina sequenc-
ing, assembly by computation and comparison with reference
genomes provides a readout of the whole genome and identifies
polymorphisms. Labelling dyes and optical detection are not
employed in this platform, a factor that the manufacturer claims
increases the speed of sequencing and reduces running costs. Ion
Torrent sequencing has been used successfully to detect mutations
associated with M. tuberculosis drug resistance.16,21

PacBio sequencing, or single molecule real-time sequencing
(Pacific Biosciences, USA), is primarily being utilized as a research
tool.24 Rather than short fragments, this technology generates long
strands of DNA and it is possible to assemble whole bacterial
genomes from a single reaction. Assembly problems for repetitive
regions encountered with short-read sequencing methods are
overcome, for example the M. tuberculosis PE and PPE gene families,
which are often excluded from Illumina sequencing data analysis.
The technology may also be used to investigate DNA methylation,
DNA damage, and other epigenetic information. PacBio sequencing
is rapid, but has a limited capacity to multiplex, which translates to
a moderate throughput. A drawback when considering clinical
applications is the requirement for large amounts of pure high
molecular mass gDNA, which for M. tuberculosis necessitates
lengthy culture and extraction processes.

The MinION sequencing platform (Oxford Nanopore Technolo-
gies, UK) is a rapid technology with a portable sequencing
instrument that also offers relatively long read lengths.25 It was
recently shown to detect antibiotic resistance genes of Escherichia

coli in DNA purified from urine following processing to remove
contaminating human DNA, with results available in approxi-
mately 4 h.26 However, successful sequencing of the M. tuberculosis

genome with this platform has not yet been reported.
The choice of sequencing strategy is influenced by the reasoning

for sequencing. Identifying novel polymorphisms of biological
significance ideally requires a depth of coverage of at least 100-
fold, and for discovering rare polymorphisms up to a 1000-fold
coverage may be preferred. Similarly, to investigate transmission
chains and differentiate between closely related bacteria with
confidence requires high coverage. Lower coverage (20- to 30-fold)
may be sufficient to observe specific well-defined single nucleotide
polymorphisms (SNPs). Thus, while high quality DNA with few
strand breaks may be crucial for some research applications, DNA
of lower quality may be tolerated when looking for known SNPs
associated with drug resistance. For sequencing to be optimally
effective for managing patients with drug-resistant TB, results
should be available in days rather than weeks and ideally
sequencing should be performed directly from primary clinical
specimens. It should be noted, however, that when dealing with
patient samples, mixed infections (more than one M. tuberculosis

strain) and heteroresistance (more than one polymorphism at the
same point) may require special consideration, and higher depth of
reads are desirable. There is as yet no consensus on the depth
of coverage required for NGS drug resistance screening for
M. tuberculosis.

3. Sputum collection and processing

The sample of choice for the diagnosis of pulmonary TB is
expectorated sputum, which is subjected to analysis by smear



Table 1
Reported DNA extraction methodologies for whole genome sequencing approaches for detecting drug resistance in Mycobacterium tuberculosis

Sample Sequencing platform Extraction methods Reference

Liquid culture

4�106 to 10�106 CFU/ml

Ion PGM, Ion Torrent Heat-killed (90 8C) followed by DNA purification with UCP Pathogen Minikit

(Qiagen), following mechanical disruption using Pathogen Lysis Tubes with small

beads (Qiagen)

Witney et al., 201516

M. tuberculosis-positive

liquid culture

MiSeq, Illumina Sonication followed by heat (95 8C); removal of eukaryote DNA and other inhibitors

with MolYsis Basic5 (Molzym Life Science); ethanol precipitation or commercial kit

(QIAamp or QuickGene-Mini80); further purification using AMPure XP SPRI beads

(Beckman Coulter)

Votintseva et al., 201559

Smear-positive sputum MiSeq, Illumina N-acetyl-L-cysteine/NaOH decontamination, heat (80 8C), freeze/thaw, vortexing

with glass beads, DNA purification with DNeasy Blood and Tissue DNA extraction

kit (Qiagen);

SureSelectXT target enrichment

Brown et al. 201518

Smear-positive sputum MiSeq, Illumina

(shotgun sequencing)

Liquefied with N-acetyl-L-cysteine and sodium citrate; diluted in PBS before

pelleting (3220 g for 20 min); two rounds of differential osmotic lysis of human

cells using sterile water; pellet treated with the RNase-Free DNase (Qiagen),

and washed before DNA extraction using NucleoSpin Tissue-Kit (Macherey-Nagel,

Duren, Germany)

Doughty et al., 201441

PBS, phosphate buffered saline.
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microscopy, culture, or diagnostic PCR. Currently WGS is
performed following the isolation and culture of the bacteria,
which may take weeks; thus, it would be of considerable
advantage to sequence directly from the clinical sample. Sputum
may be obtained spontaneously (by instructing the patient to
cough27) or by induction following the inhalation of a fine spray of
saline.28 M. tuberculosis is an aerosol-spread pathogen and as such
stringent safety precautions must be implemented whenever live
bacteria may be present. This includes during sample collection. M.

tuberculosis bacilli are rarely found in saliva, and the quality of
specimens received should be monitored to avoid processing of
substandard samples.29 The number of M. tuberculosis bacilli in a
TB-positive sputum sample may vary between a handful to
millions.30 In the case of smear-positive sputum, it is assumed that
the bacillary load is at least 10 000 bacilli per millilitre of sputum.

WGS and targeted NGS directly from sputum has been
demonstrated, but to date no systematic investigations of sample
preparation procedures with an output of providing WGS or
targeted NGS quality gDNA suitable for detailed analysis of drug
resistance-associated mutations has been reported (see Table 1).
The quality of sequence data obtained (coverage and depth of
reads) is dependent on the purity and integrity of DNA submitted.
Sputum is a complex matrix containing mucus, human cells, cell
debris, various bacteria and viruses, and sometimes blood and pus.
It is often viscous with semi-solid lumps, which require thinning to
release the bacteria. Three approaches are possible: heating,
chemical treatment, and physical disruption, such as vortexing
with 3–4-mm diameter glass beads.31 However, all of these
approaches risk damaging the bacterial cell wall, permitting direct
exposure of the gDNA to extreme conditions, as well as the
potential for the release of gDNA, which may be lost during
subsequent washing and concentration steps. In addition, tradi-
tional techniques such as bead-beating and sonication may
fragment the DNA and are not recommended for sequencing
protocols where DNA of high integrity is needed.32

In order to amplify the number of M. tuberculosis bacteria from
the sample, clinical specimens are cultured. Culture typically
requires 3–4 weeks, but may take longer since some M. tuberculosis

may be associated with a slower growing phenotype, particularly
strains with high-grade drug resistance. It may be possible to
sequence from early cultures, where the number of M. tuberculosis

bacilli has been enriched, but prior to microbiological culture
positivity. In such cases the efficiency of WGS may be influenced by
the sample processing required for culture. The slow growth rate of
M. tuberculosis makes it vulnerable to overgrowth by other
microorganisms; to prevent this unwanted contamination, clinical
specimens are treated with sodium hydroxide or acid to
preferentially kill the unwanted microorganisms.30 Due to their
robust cell walls, some M. tuberculosis bacilli survive this process
and following neutralization and concentration by centrifugation
the samples are placed in broth or solid media for culturing.33

Other reagents that assist sputum processing are N-acetyl-L-
cysteine, which disrupts disulfide bonds,34 and detergents such as
sodium laurylsulphate.30 Unfortunately, not all of the M. tubercu-

losis bacteria survive the decontamination process and consider-
able losses may occur at this stage if the process is not well
controlled.35 In addition, overgrowth by contaminants or no
growth due to harsh sample pre-treatment may require the entire
process to be repeated.

Additional methods and adjuncts have been used post-culture
to enhance the isolation of M. tuberculosis gDNA. Bactericidal
reagents such as isopropanol can assist by their ability to denature
proteins and damage bacterial cell walls. Similarly, guanidine
thiocyanate may be used where gDNA released is captured using
activated silica.36 Further purification and removal of proteins can
be effected by phenol and chloroform extraction when, at the
appropriate pH, DNA will partition into the aqueous layer.37 It
should be noted that bleach (sodium hypochlorite) should not be
used, as although it will effectively thin sputum, it is highly
detrimental to DNA.38

An extraction procedure optimized for maximum sensitivity
has been developed by scientists investigating M. tuberculosis in
archaeological specimens.39 This incorporates enzyme digestion
with Proteinase K and extended incubation in guanidium
thiocyanate for up to 3 days at 56 8C. N-phenacylthiazolium
bromide (PTB) is then used to cleave covalent cross-links to enable
strand separation and amplification. Although effective for ancient
samples, the technique also recommends using bead-beating and
freeze/thaw steps that are less suitable for an analysis that requires
DNA of high integrity.

4. Enrichment methods

A particular challenge for NGS sequencing from sputum is the
presence of low numbers of bacteria amongst high levels of other
materials. This includes large amounts of DNA of human origin and
from other bacteria, which will react with sequencing reagents and
may quench the reaction by out-competing the M. tuberculosis

DNA. To enhance sensitivity, it is necessary to increase the
proportion of M. tuberculosis DNA by a process of enrichment.
However, any enrichment technique may run the risk of selection
bias, which can alter the results. A potential way to reduce levels of
human DNA is enzymatic degradation following differential lysis,
in which the human cells are lysed but the bacilli remain intact.40
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Doughty et al. evaluated water-induced osmotic lysis of human
cells in N-acetyl-L-cysteine liquefied sputum. Following treatment
with DNAase the samples were washed and heat-treated to
remove the enzyme before the extraction of M. tuberculosis DNA
was initiated.41 Samples were sequenced using a shotgun
approach, but success was limited. Although characteristic M.

tuberculosis signals were identified, the depth of coverage obtained
was insufficient for the detection of drug resistance-associated
mutations with a high confidence of the nucleotide call.

An alternative approach is to capture either the bacteria or the
bacterial DNA and remove them from the sample matrix. A simple
approach is preferential binding to magnetic beads, and products
are commercially available that utilize ligand-coated beads to bind
bacteria.42,43 A more sophisticated approach involves specific pull-
down of M. tuberculosis DNA using complementary oligonucleo-
tides. Brown et al. succeeded in sequencing M. tuberculosis from
24 smear-positive sputum specimens using a number of 120mer
RNA baits that complement and span the M. tuberculosis genome.18

The baits were labelled with biotin, thus enabling library
preparation using the SureSelectXT system (Agilent Technologies)
followed by Illumina paired-end sequencing. Although successful,
the authors point out that the requirement for highly specialized
skills and equipment and estimated cost per sample of approxi-
mately US$350 may be a disadvantage, therefore other strategies
need to be explored. A potential, less expensive approach is whole
genome amplification, which has been applied to other bacteria
with some success.44,45 Whole genome multiple displacement
amplification uses small random primers and high-fidelity DNA
polymerase (phi29) to amplify large segments of DNA.46 The
technique requires good quality DNA, but its capacity to amplify
the GC-rich regions of the M. tuberculosis genome has yet to be
reported.

5. Sequencing from cultured bacteria

DNA extracted from cultured bacteria may be used in genome-
wide association studies (GWAS) to identify putative resistance
mutations. In addition, isolation and culturing of the bacteria from
sputum samples serves as an effective enrichment strategy, where
sequencing from cultures may provide information of resistance
more rapidly than phenotypic testing methods.47–49,59

[2_TD$DIFF] To ensure
sequence data of satisfactory quality with sufficient depth of reads,
the quality and quantity of the extracted DNA should be checked
before samples are submitted for library preparation and
sequencing. Simple spectroscopic methods to measure absorption
are not adequate as they frequently give misleading results due to
small nucleic acids and contaminating chemicals. Quantity should
be checked using targeted DNA-specific tests. To examine the
integrity of the DNA, a sample should be examined by agarose
electrophoresis (see Supplementary Material for further details).

Lessons learned from extracting cultured organisms may assist
in the development of sputum processing methods. M. tuberculosis

bacilli have a characteristic lipid-rich cell wall that is highly
protective of the cell contents. Layers of peptidoglycan (cross-
linked for additional stability), lipoglycans, mycolic acids, and large
waxes form a robust barrier that must be overcome to allow the
release of the gDNA. Methods to break open the cell wall include
enzymatic, mechanical, and chemical approaches.50,51 Enzymes
may be used sequentially, with lysozymes to degrade the cell wall
followed by proteinases, combined with solvent extraction to
remove extracellular proteins.52 Mechanical methods including
bead-beating, sonication, freeze-fracturing, homogenizing, grind-
ing (frozen samples), and high pressure have also been
employed.50,52 Kaser et al. reported optimum results using a
bead-beater with beads of a small diameter (0.1 mm).32 Unfortu-
nately, these physical methods risk shearing the gDNA, which may
affect sequencing quality.32,50,53 Chemical methods include the use
of detergents, and chaotropic agents such as guanidine thiocyanate
have also been investigated.32,36 Once released and purified, the
bacterial DNA is highly vulnerable to degradation from naturally
occurring enzymes and should be protected by use of DNAase-free
reagents and the addition of metal chelating reagents such as
ethylenediaminetetraacetic acid (EDTA). (Note: EDTA may be
detrimental to some enzyme-based sequencing reactions.) gDNA
may also be damaged by physical and environmental forces such as
shearing, UV light, and high temperatures.

A DNA extraction protocol previously developed for restriction
fragment length polymorphism (RFLP) analysis has been shown to
consistently provide DNA of high molecular weight and sufficient
quality for sequencing54 (see Supplementary Material for full
protocol). In this method, cells are heated to 80 8C before cooling
and treating with lysozyme. A Proteinase K/detergent solution
(sodium dodecyl sulphate) is then added and the solution
incubated at 65 8C prior to treatment with cetyl trimethylammo-
nium bromide (CTAB) to precipitate lipoglycans and polysacchar-
ides,55 thus assisting their removal along with unwanted proteins
during organic solvent extraction (chloroform/isoamyl alcohol).
This method of DNA purification has been used successfully for M.

tuberculosis with the Illumina, Ion Torrent, and PacBio sequencing
platforms. However, for use in a clinical laboratory, the DNA
extraction method selected should be robust and time-efficient,
and some improvement on the above protocol in this respect may
expedite the uptake of WGS in a routine laboratory setting.

6. Conclusions

The emergence of resistance to multiple anti-TB drugs is an
urgent public health problem.56 The World Health Organization
recommends at least five effective medicines be used for patients
with rifampicin-resistant or multidrug-resistant TB (resistance to
at least rifampicin and isoniazid).57 Poor access to susceptibility
tests often results in empiric treatment with a drug regimen that
may not be effective if the bacteria have already developed
resistance to some, or all of the drugs.

Considerable progress has been made towards determining
resistance to anti-TB drugs by WGS, which would enable
personalized and optimized treatment for patients. Sequencing
should ideally be done directly from clinical samples to prevent the
lengthy delays incurred during culture-based phenotypic testing,
thus accelerating access to effective treatment. Although new
sequencing platforms and analytical software are now available,
there is as yet no consensus on the critical issue of sample
preparation. The literature is rich with potential techniques and
methodologies, but an inclusive systematic review of the topic is
lacking. Traditional techniques such as bead-beating and sonica-
tion that are used successfully in conjunction with PCR-based
detection may not be appropriate for sequencing protocols in
which high molecular mass gDNA is required.32 There have been
few attempts to optimize extraction for M. tuberculosis WGS or
targeted NGS for detecting mutations that are presumptively
associated with drug resistance, and evidence of the impact of
extraction tools on sequence quality is currently insufficient.

Whilst other aspects of WGS, such as determining phylogenetic
strain lineage, virulence, etc., are essential in understanding the
transmission and pathogenesis of TB, it is detecting drug resistance
directly from clinical samples that warrants priority. Given the
scope of the topic and the urgency of the clinical and public health
need, consideration should be given to a coordinated collaborative
approach to reduce duplication and fast-track progress. Prece-
dence for such an initiative has previously been established
through the creation of the ReSeq TB Consortium by which a
comprehensive database of drug resistance-associated mutations



R. McNerney et al. / International Journal of Infectious Diseases 56 (2017) 130–135134
is being developed though international collaboration.58 The TB
research community is urged to follow this example and work
together to identify methodological algorithms that will allow
rapid comprehensive testing for drug resistance by WGS.
Accelerated access to effective treatment for patients with
multiple and extensively drug-resistant disease would reduce
morbidity and mortality, improve patient care and the familial
burden, and may also reduce opportunities for transmission.
Thus a consolidated approach that is affordable to the regions
where drug-resistant TB is endemic, towards the development of
standardized, optimized DNA extraction protocols, will benefit
both patients and efforts to control this deadly disease.
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