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Abstract

The term meta-analysis refers to a set of statistical techniques for combining findings from

different studies in order to draw more definitive conclusions about some treatment or exposure

effect of interest in a particular context. Recently, meta-analyses which aim to combine the

individual observations collected in each study, instead of simple summary measures, have been

gaining in popularity in medical research. The main advantage of this so-called Individual

Patient Data Meta-Analyses (IPD-MA) is that they have much more statistical power to

investigate heterogeneity of the contributing studies and to explore treatment covariate effects.

Unfortunately, missing data are a common problem that affects nearly every dataset in clinical

or epidemiological studies and therefore also the meta-analyses of such datasets. When not

handled properly, missing data can lead to invalid inferences and therefore a lot of research

work has focussed on deriving, implementing and disseminating appropriate methods.
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The motivation for this thesis comes from two IPD-MA, called INDANA and MAGGIC. Some

challenges introduced by missing data in these projects include the presence of wholly missing

variables in some studies, the variety of types of partially observed variables and the presence

of interactions and non-linearities in the substantive models of interest.

In this thesis we propose a Joint Modelling Multiple Imputation (JM-MI) approach to overcome

these issues. Motivated by the lack of available software, in the first part of this thesis we

develop and describe jomo, a new R package for Multilevel MI. A key feature of jomo compared

to other packages for MI, is that it allows for the presence of random, or fixed, study-specific

covariance matrices in the imputation model, therefore allowing for heteroscedasticity when

imputing.

Successively we use this package to prove how our proposed method can be as good as standard

methods used nowadays to treat missing data in IPD-MA with partially observed continuous

variables. Furthermore we show how it performs in more challenging situations, i.e. to impute

missing data in studies with few observations or even with systematically missing variables.

We then extend the method to include partially observed variables that are not continuous,

developing and evaluating a strategy based on latent normal variables to impute categorical

data.

Finally we use the methods introduced to impute missing data in the two motivating meta-

analyses, INDANA and MAGGIC.
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il sacrificio e la dedizione, papá per avermi mostrato come reagire, cantando, alle difficoltá
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ACE-I Angiotensin Converting Enzyme Inhibitors

AD Aggregate Data

ARB Angiotensin Receptor Blockers

BB Beta-Blocker

BMI Body Mass Index

BMI Body Mass Index
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COPD Chronic Obstructive Pulmonary Disease

CR Complete Records

CRAN Comprehensive R Archive Network
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DBP Diastolic blood pressure

DF Degrees of Freedom

DGM Data Generating Mechanism

EF Ejection Fraction

EM Expectation Maximisation

FCS Full Conditional Specification

HF Heart Failure

IVW Inverse Variance Weighting

IW Inverse Wishart

IPD Individual Patient Data

JAV Just Another Variable

JM Joint Modelling

LOCF Last Observation Carried Forward

MA Meta-Analysis

MAR Missing At Random

MARX Missing At Random depending on X

MCAR Missing Completely At Random

MCMC Markov Chain Monte Carlo
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MH Metropolis-Hastings

MI Multiple Imputation

MICE Multiple Imputation by Chained Equations

ML Maximum Likelihood

MMI Multilevel Multiple Imputation

MNAR Missing Not At Random

NHS National Health Service

NYHA New York Heart Association (scale)

OR Odds Ratio

RCT Randomized Controlled Trial

RR Rubin’s Rules

SBP Systolic Blood Pressure

SE Standard Error

SSLS Scottish School Leavers Survey

SYPS Scottish Young People Survey
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1.1 Background and Motivation

The motivation for this thesis comes from two meta-analyses projects, the Individual Data

ANalysis of Anti-hypertensive drug intervention trials (Gueyffier et al., 1995, INDANA) and

the Meta-Analysis Global Group In Chronic heart failure (Pocock et al., 2013, MAGGIC).

These are Individual Patient Data Meta-Analyses (IPD-MA), meaning that in each of them

the whole set of observations coming from the contributing studies are aggregated, instead of

the simple results or summary tables produced separately (Simmonds et al., 2005; Riley et al.,

2010).

There are a number of advantages in performing meta-analyses of IPD, among which perhaps

the most important are the chance to better model heterogeneity and to undertake more

powerful subgroup analyses (Stewart and Parmar, 1993). However, this presents some further

challenges to the analyst. First of all, recovering all the individual patient information from all

the studies may be difficult for a variety of reasons, such as the increased cost or confidentiality

issues. Furthermore, even if we are actually able to collect all the available data from the

authors of the constituent studies, missing data can still be a major issue:

• Missing data can occur in all the constituent studies and therefore in the MA dataset;

• Some variables may not have been observed in some studies, due to excessive cost of

some measurement or simply because of a different study design;

• Some variables may be recorded on different scales in different studies.
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The goal of this thesis is to devise and implement a unified approach to deal with these and

other issues related to missing data that we will illustrate later, in order to be able to perform

IPD-MA using data from all patients.

The method we chose to adopt is Multiple Imputation (Rubin, 1987, MI). This is a tool for

dealing with missing data, roughly consisting in imputing the missing values several times from

the appropriate conditional distributions given the observed data, creating a certain number of

imputed datasets (with no missing values) that we can later analyse with standard techniques,

before combining the results to obtain inference for the parameter(s) we are interested in.

In the context of IPD-MA, MI presents some specific and significant challenges, mainly the

fact that in the whole dataset clustering cannot be ignored without introducing bias in the

results (Abo-Zaid et al., 2013). Therefore appropriate algorithms allowing for 2-level structures

must be used. This is particularly important for handling studies which have not collected all

the variables. The lack of efficient software to undertake this kind of imputation, led us to

code and publish a new R package, jomo (Quartagno and Carpenter, 2014), that we will later

introduce in this script.

Having developed this approach, and the associated software, we demonstrated its efficacy and

advantages in the above settings, dividing our analysis in two situations:

1. when we have only continuous partially observed variables (Quartagno and Carpenter,

2015);

2. when we have partially observed variables of mixed data types.
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Our results are encouraging, showing that joint modelling MI provides a practical and powerful

tool for tackling missing data issues in the IPD-MA setting.

1.2 Outline of this thesis

This thesis is divided into ten chapters. Chapter 2 is an introduction to meta-analysis, illus-

trating both analysis of individual patient data (IPD) and aggregate data (AD). Chapter 3

introduces missing data issues and the main strategies to handle them in simple situations. In

Chapter 4 we extend our review of these methods to the case of multilevel data, in order to

justify the use of MI in the case of IPD-MA with missing observations. After having proved

in Chapter 5 that it is possible to develop an efficient software for multilevel MI, we present

this new program, the R package jomo, in Chapter 6. We therefore illustrate in Chapter 7

the results of simulations to test the proposed MI method in IPD-MA with partially observed

continuous variables. Chapter 8 includes the results of the simulations we performed to test

the method for the imputation of partially observed data of different types, mainly binary and

categorical. Finally in Chapter 9 we apply the proposed methods to handle missing data in

the two motivating meta-analyses (INDANA and MAGGIC), while Chapter 10 summarises

the findings of this thesis and discusses extensions and future work.
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In this chapter, we introduce the concept of meta-analysis, highlighting the differences between

analyses based on individual patient data (IPD) or aggregate data (AD), presenting different

possible models and framing our research problem.

After a short introduction in Section 2.1, we present a comparison of IPD and AD meta-analyses

in Section 2.2. Later we introduce one and two-stage models in Section 2.3, before outlining

the issues arising from missing data in Section 2.4 and concluding with a short summary in

Section 2.5

2.1 Introduction

In the world of clinical research, many studies are performed each year on similar topics,

possibly within different populations. For this reason, it appears natural to try and synthesize

the findings of these studies in order to find results that are generalizable to a larger population

and to get better precision and accuracy of the estimates of interest. This process in called

Meta-Analysis (MA), from the Greek word ‘meta’, meaning ‘after’, ‘beyond’.

The first step in pursuing a MA is always to formulate the problem of interest; to keep things

as simple as possible, imagine we want to estimate the effect of a particular exposure X over

an outcome Y with a simple linear regression:

yi = β0 + β1xi + εi (2.1.1)
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where i indexes the individuals and εi is the error term, that can be assumed for simplicity to

be normally distributed with variance σ2
e . In some studies the intercept β0 and/or the residual

variance σ2
e could be the focus of our interest, but in this case suppose we are mainly interested

in the estimate β̂1 of the slope β1.

Once we have decided what we want to estimate we need to find out which studies investigated

the exposure effect of X with a careful literature search. This can be done in various ways,

by simple web searching on websites like PubMed, by consultation of the experts in the field,

or by means of the Cochrane Library, a collection of databases in medicine provided by some

organizations, principally the Cochrane Collaboration.

After having selected all the potentially relevant studies, carefully drawn up selection criteria

must be applied to choose which ones are actually worth including in the analysis.

Having short-listed the studies of interest, the first question that is encountered by the analyst

is: what kind of data do we have to aggregate?

The first option is to combine study-level data obtained from publications, e.g. estimates of

treatment or exposure effects together with their standard error, which in our example (2.1.1)

are β̂1,s with the associated σ̂1,s. Here, s = (1, . . . , S) indexes the studies, so that β̂1,s is the

estimate of β1 from study s. This is what has been defined as Aggregate Data (AD) Meta-

Analysis. However, if it is possible to collect all the individual records from the constituent

studies, i.e. all the yi,s and xi,s where i = (1, . . . , Ns) and Ns is the cardinality of each study

s, then we can model the Individual Patient Data (IPD) directly.
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2.2 IPD vs AD

Obtaining IPD may require a lot more of effort for many reasons: some study authors may

not be willing to share their data, some others may be difficult to contact, a lot of work in

data cleaning may be needed, etc etc... Then, one might wonder if it is really worth doing it,

or if focusing on AD meta-analyses could be enough. There are a number of papers in the

literature highlighting the advantages of collecting the IPD; for example, Riley et al. (2010)

list among other reasons:

• Inclusion and exclusion criteria can be reformulated in order to make them consistent

across studies, so that in some studies some patients, when possible, can be included or

excluded from the analysis;

• Results of the original publications can be verified;

• New follow-up information, unavailable at the time of publishing, can be included;

• In principle, results from unpublished studies can be incorporated, reducing the risk of

publication or other selection biases;

• The same statistical analysis can be performed across studies, standardizing the pro-

cedure used; this could include running models with slightly different assumptions and

including (or excluding) some covariates, and

• Subgroup analyses can be performed more easily, helping to reduce between-study het-

erogeneity.
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This last point is key and it is probably the main reason why over the last few years IPD-MA

are progressively starting to replace, or at least to complement AD-MA, which were historically

the first type of meta-analyses performed (Simmonds et al., 2005).

Furthermore, since our focus in this thesis will be on missing data problems, having the op-

portunity to directly analyse the original data can give the opportunity to handle missingness

consistently across studies, using the same strategy and making it possible to try to recover

not only missing information within studies, but also wholly missing variables, as we will see

later in the thesis.

Of course, the only case where IPD and AD analyses will match, is when all the studies will

have followed broadly the same protocol, using the same inclusion criteria, the same models

and the same missing data strategies. However this will rarely be the case and therefore IPD

will be usually preferable.

2.3 One-stage vs Two-stage

Once we have obtained our data, either AD or IPD, we need to choose the model to use.

There are several meta-analysis models available; here our focus is on the distinction between

one-stage and two-stage models.

Broadly, one-stage models correspond to the IPD-MA and two-stage models to AD-MA; how-

ever, while the former can not be used when in possession of the AD only, the latter are often

used even with IPD.
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In general,we talk about one-stage analysis when all the IPD from the contributing studies

are modelled simultaneously in a single step; this is not done by simply running the desired

model on a ‘huge’ dataset composed of all the IPD, a practice that can and usually does lead

to invalid inferences (Abo-Zaid et al., 2013). Methods taking into account correlation between

observations coming from the same study must be used instead, making it possible to control

for possible sources of heterogeneity between the studies. One possible solution is simply to

include study ID in the model as a covariate with a fixed effect. Otherwise we can use methods

allowing for random effects for clusters; these are the so-called multilevel models (Goldstein,

2011), already known as hierarchical or mixed models.

Coming back to our simple example (2.1.1), a simple hierarchical model could be:

yi,s = (β0 + u0,s) + β1xi,s + εi,s (2.3.1)

Here, the only substantial difference with respect to model (2.1.1) is given by the new term u0,s,

that is a study-specific random intercept that can be assumed to follow a normal distribution

N(0, σu). If we believe that not only the intercept, but even the slopes should be modelled

allowing for a different slope in each constituent study, then we might opt for a random intercept

and slope model:

yi,s = (β0 + u0,s) + (β1 + u1,s)xi,s + εi,s (2.3.2)
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The random slope term u1,s can be modelled in different ways, for example a simple option is

to suppose that u0,s and u1,s follow a bivariate normal distribution, either with an unstructured

covariance matrix or with correlations set to zero.

Since in IPD-MA, variances of the residuals are usually different in the different studies, it is

particularly important considering models for complex level 1 and 2 variation in this setting

(Goldstein, 2014). For example, the assumption in model (2.3.2) that εi,s ∼ N(0, σ2
e) could be

relaxed by allowing for study-specific residual variances, εi,s ∼ N(0, σ2
e,s).

Regarding the estimation method, maximum likelihood is known to lead to biased estimates of

the variance components, and therefore Restricted Maximum Likelihood is often used instead,

particularly with smaller sample sizes.

When we use a two-stage model, instead, in the first step we fit our analysis model of interest,

i.e. (2.1.1), within each study if we have the IPD, or we collect the results, i.e. β̂1,s and

associated standard errors σ̂1,s, from the single studies s if we only have the AD, and then we

synthesize the evidence in order to get some more definitive conclusions about the treatment

or exposure effect of interest. A natural idea is to weight the results from the single studies

according to the magnitude of the standard errors; this is what is done in the Inverse Variance

Weighting (IVW) approach (DerSimonian and Laird, 1986).

There are two different approaches to IVW: a fixed-effect analysis or a random-effects analysis.

In both cases, we weight the estimates for the single parameters coming from the different

studies according to the inverse of their variances. The difference between the two methods is

that while in the former we assume a common treatment effect across the different studies, in



2 META-ANALYSIS: A BRIEF OVERVIEW 35

the second we assume that the actual effect within each study is only a random draw from a

certain distribution; therefore we make an adjustment to the study weights according to the

extent of variation, or heterogeneity, among the varying intervention effects. Given estimates

β̂1,s and σ̂1,s, the fixed effect IVW model is:

β̂1,s = β1 + εs, εs ∼ N(0, σ2
1,s) (2.3.3)

The maximum likelihood estimate β̂1,FE under this model is:

β̂1,FE =

∑S
s=1

β̂1,s
σ̂2
1,s∑S

s=1
1
σ̂2
1,s

=

∑S
s=1wsβ̂1,s∑S
s=1ws

(2.3.4)

Here ws are the weights we give to the estimates and, in the case of IVW, they are just equal

to the inverse of the variance for each study, i.e. ws = 1
σ̂2
1,s

. Note that within-study variances

σ̂2
1,s are assumed to be known. An estimate of the variance of β̂1,FE is:

ˆV ar(β̂1,FE) =
1∑S

s=1ws
. (2.3.5)

The corresponding random effects model is:

β̂1,s = β1 + us + εs, εs ∼ N(0, σ2
1,s); us ∼ N(0, τ 2), (2.3.6)
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where us and εs are independent. The us are not intrinsically associated to each study s, but

if we were able to re-run any study s we could draw a different value us for the same study(i.e.

exchangeability). The second addition of this model, τ 2, is the between-study component of

variance. The algebraic form of random effects estimates of β1 and σ1 are really similar to

(2.3.4) and (2.3.5), with the only difference that the weights ws are substituted by w∗s , with:

w∗s =
1

σ̂2
1,s + τ̂ 2

(2.3.7)

There are many different methods available in the literature for finding an estimate τ̂ 2 of the

between-study component of variance τ 2, among which the most used is that proposed by Der

Simonian and Laird (DerSimonian and Laird, 1986); however, in some settings this has been

criticised (Hardy and Thompson, 1996; Brockwell and Gordon, 2001) and many other methods

have been developed (Hunter and Schmidt, 1990; Sidik and Jonkman, 2005; DerSimonian and

Kacker, 2007). The main problem with the Der-Simonian and Laird method is that often

standard errors of the estimates are underestimated; therefore (Hartung and Knapp, 2001)

proposed a modified estimate of the variance, and also using a t distribution for deriving

confidence intervals in place of the standard normal distribution.

As we already said, with AD, only two-stage MA is possible but, as for the IPD case, we can

still choose between a fixed-effect or a random-effects analysis. This is usually done both by

means of appropriate strategies, like the examination of the Q and the I2 statistics (Higgins

and Thompson, 2002; Higgins et al., 2003), and by an appropriate consideration of expertise

knowledge in the area of the meta-analysis (Borenstein et al., 2010).
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On the other hand, with IPD, we also need to choose between one-stage or two-stage analysis. It

has been generally thought that both methods lead to similar results and conclusions (Stewart

et al., 2012); however recently (Debray et al., 2013) showed how the two methods can in

principle lead to different conclusions in some situations and they recommend to use one-stage

models, particularly in situations where few studies or few individuals per study are present.

2.4 Missing Data problems

Since missing data are ubiquitous in clinical dataset, they certainly occurr in the IPD meta-

analysis of these data; when a variable is partially observed in some of the contributing studies,

we say that we have sporadically missing data. The issues they raise have been addressed

for example in (Burgess et al., 2013).

Furthermore, some variables may have not been observed or collected at all in some studies,

perhaps due to financial constraints or simply to different study designs. In this case we talk

about systematically missing data; some papers where solutions to this problem have been

proposed include (Resche-Rigon et al., 2013; Jolani et al., 2015).

As we said in Section 2.2, when considering the whole data as a unique large dataset, we need

to use multilevel methods for the analysis,either with a fixed or random treatment effect. We

will see in the following chapters how this will be a challenging problem when trying to find

methods to handle both sporadically and systematically missing values in IPD-MA at the same

time.
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The problem of missing data in AD-MA has been recently addressed as well in several papers.

White et al. (2008) introduced in two companion papers two methods based on the use of

Informative Missingness Odds Ratios (IMOR). The idea behind these methods is to adjust the

odds ratios and their associated measures of precision from contribuent studies allowing for

the uncertainty due to missing data; this is done, in a Bayesian fashion, by incorporating prior

belief about the missing data mechanism. More recently, Turner et al. (2015) have developed

another Bayesian method allowing for priors for the parameters describing the missingness

mechanism to be specified in multiple ways, not only through the IMOR but also with the

probability of success given a missing subject and the response probability ratio.

2.5 Summary

In this chapter we have introduced the main features of meta-analysis, distinguishing between

IPD and AD, one-stage and two-stage models and giving an overview of the missing data

problems usually encountered by the analysts.

Many other key concepts and techniques related to meta-analysis have been developed, includ-

ing:

• Meta-regression (Stanley and Jarrell, 1989), ”an extension to subgroup analyses that

allows the effect of continuous, as well as categorical, characteristics to be investigated,

and in principle allows the effects of multiple factors to be investigated simultaneously”

(Higgins and Green, 2008);
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• Statistical methods to detect and adjust for the recurrent issue of publication bias (East-

erbrook et al., 1991), that is bias arising from the non publication of small studies that

failed to prove the efficacy of a particular treatment;

• Methods for multivariate meta-analysis (Mavridis and Salanti, 2013), and

• Network meta-analysis, i.e. meta-analysis comparing several treatment effects through

both direct and indirect comparisons between studies (Caldwell, 2014).

However we decided not to pursue these further here because they are not directly relevant to

our work.

Some people argue that meta-analyses should be performed only with data coming from RCTs,

excluding observational studies; this is because RCTs are considered a much more valid design

for causal inference. However, many reviews have shown how including data from observational

studies may improve the inference and that RCT-only meta-analyses often give similar results

to meta-analyses of observational studies (Shrier et al., 2007).

Before continuing with the presentation of the strategies for addressing the missing data issues

in meta-analysis, Chapter 3 presents the main missing data methods in a general setting. We

will come back to the IPD-MA setting in Chapter 4.
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This chapter gives an overview of the problems raised by missing data in clinical research and

of the methods currently used to handle them. In Section 3.1 we outline the different missing

data mechanisms, which are the key concepts underpinning the analysis of partially observed

data. Then, in Section 3.2 we review the oldest and most straightforward methods for the

analysis of partially observed data, discussing why we cannot always rely on them. In Section

3.3 we introduce Rubin’s Multiple Imputation, describing both the Joint Modelling approach

(Subsection 3.3.1) and Full Conditional Specification (Subsection 3.3.2). Finally, in Section

3.4 we compare this two imputation methods, itemizing pros and cons of both.

3.1 Introduction

Since unfortunately most of the studies carried out in medical and social sciences are unable

to collect all the planned data, missing data are a common issue in statistical analyses. Not

only do they cause a loss of information, and hence power, but they may also cause bias in

parameter estimates and hence potentially lead to misleading inferences. The first paper to deal

systematically with these issues was probably (Rubin, 1976), which is considered a landmark

paper in this area. In it, Rubin suggested three different kinds of missing data mechanisms:

Missing At Random, Missing Completely At Random and Missing Not At Random. In order

to explain the different mechanisms, we define some notation.

Imagine that we intended to collect data on n units; we can call Yi the vector of variables

that we planned to observe for unit i. To reflect the missing data, we split this vector into

two parts: YO
i , the sub-vector of observed variables for that unit, and YM

i , the sub-vector of

missing variables. It is important to stress that these variables do exist, but have just not been
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collected in our study. Finally, we can define a third vector, called Ri, which is a vector of

binary variables such that:

Yi,j missing⇒ Ri,j = 0,

Yi,j observed⇒ Ri,j = 1.

Given this notation, we can now define the three missing data mechanisms as follows:

• Missing Completely At Random (MCAR): Data are defined to be MCAR if the prob-

ability of a value being missing is completely unrelated to both the observed and the

underlying unseen values on each unit. Algebraically:

P(Ri|YO
i ,Y

M
i ) = P(Ri).

• Missing At Random (MAR): Data are defined to be MAR if, given or conditional on

the observed variables on a unit, the probability of a value being missing is completely

unrelated to underlying unseen values on that unit. In formulae:

P(Ri|YO
i ,Y

M
i ) = P(Ri|YO

i ).

It is quite important here to stress that this does not mean that the probability of a

variable being missing is completely independent from its value. Marginally, Ri depends

on YM
i , but given YO

i this dependence is broken.



3 MISSING DATA METHODS 43

• Missing Not At Random (MNAR): Data are defined to be MNAR if the probability of

a value being missing depends on the underlying missing values on that unit, even after

conditioning on the observed variables. Algebraically:

P(Ri|Yi) = P(Ri|YO
i ,Y

M
i ).

We emphasize that these are just assumptions that we make about the reasons for the data

being missing in the context of the analysis at hand, and not only they are un-testable, but

they are not properties of the dataset itself. For this reason, even though we might often

be tempted to rely on the MAR assumption, because of the simplifications that it brings to

the analysis, we should always check the robustness of the results of our analysis to different

assumptions with sensitivity analysis (Molenberghs et al., 2014, Part V).

3.2 Older methods

Before focusing on Multiple Imputation, we give a brief overview on the main older methods

to deal with missing data, trying to highlight both the advantages and the issues raised by

each.
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3.2.1 Complete Records Analysis

Complete Records Analysis, also commonly known as Listwise Deletion or Case Deletion,

historically has been the most popular approach to deal with missing data in statistical analysis.

It simply excludes from the analysis all units whose collected data are incomplete.

YO
i 6= Yi ⇒ unit i discarded.

If we are interested in simple summary statistics like the sample mean, or the standard devi-

ation, then the only missing data mechanism that is compatible with this method is MCAR.

However, if we are interested in the regression of, say, Yi,1 on Yi,2, . . . , Yi,p and the missingness

mechanism does not involve the response Yi,1 (sometimes referred to in the literature as the

MARX mechanism), then a complete records analysis will give valid inference. In both cases,

of course, complete records analysis is inefficient, i.e. it does not make effective use of all the

available information.

Obviously the reason for the success of this method is its extreme simplicity, plus the fact it

is the default in most statistical software packages. Nonetheless it is clear that it is absolutely

not a sufficient tool in a variety of situations, and hence we need some more sophisticated ones.
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3.2.2 Single Imputation

Instead of dropping all data from incomplete units, we may think about ‘filling in’, i.e. im-

puting, the missing items in order to create an artificial ‘complete’ dataset. Data should be

imputed in a way that reflects the distribution of the observed data, in order not to bias the

results. There are several different possible choices, here we list some of them:

• Mean substitution: impute for each missing value the mean of the observed units on

that variable. This is certainly the most straightforward single imputation approach.

However, it does not preserve conditional relationships in the data and clearly leads to

underestimation of the variance.

• Last observation carried forward: in a longitudinal study framework, imagine data for a

patient are missing with a monotone pattern, i.e. there exists I such that, if we intended

to collect N observations on subject j, Yi,j is missing ∀i > I and observed otherwise.

Then, we can copy the value of YI,j for all the successive observations.However, as with

mean imputation, this does not preserve conditional relationships in the data and leads

to underestimation of the variance.

• Conditional mean imputation: to illustrate this method, suppose Y1 is partially observed.

We fit a regression model of Y1 on the other variables for the cases for which Y1 is

known. Then we plug the values of the other variables into the regression equation,

obtaining predictions Ŷ1,j for all observations j with missing Y1,j. We then impute the

missing observations with these predictions. The main problem with this method is

that it understates the variability, as we know that the missing value is not equal to its

conditional mean.
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• Hot Deck Single Imputation: the idea is to replace each missing value with a random

draw from a suitable pool formed from the observed data. This can be viewed as a

non-parametric form of conditional mean imputation

Even though when imputing from the conditional distribution both the means and the correla-

tions may be preserved, (Rubin, 1987) and subsequently (Schafer and Graham, 2002) showed

with simulations that the performance of resulting confidence intervals is poor.

In general, the problem with single imputation is that it understates the level of uncertainty,

because it ignores the fact that imputations are just guesses; hence, applying standard analysis

methods to the imputed data, which do not distinguish between the observed and the imputed

data, will substantially overestimate the precision of the estimates. Later on in this report we

will describe how Multiple Imputation overcomes this problem.

3.2.3 EM Algorithm

Drawing inferences from a likelihood function is a common procedure in statistics, but the

presence of missing values complicates this. (Dempster et al., 1977) formalised an algorithm

for computing the ML estimates in presence of missing data. Suppose that logL(β|Y) is the

log-likelihood of the data we want to maximize with respect to β. When Y = (YO,YM), the

EM algorithm does this by iterating the following two steps:
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• Expectation step (E-step): using the conditional expectation of the missing data given

the observed data at the current set of parameters βt, calculate the expected value of

the log-likelihood function:

Q(β|βt) = E(YM |YO,βt) logL(β|YO,YM);

• Maximization step (M-step): find the new set of parameters βt+1 that maximize Q from

the previous step:

βt+1 = argβ max
{
Q(β|βt)

}
.

These two steps are repeated until they converge to the final solution. Aside from multi-modal

distributions, where we could fall into a local maximum, the EM algorithm always reaches a

final solution, because at each step it is possible to prove that the likelihood increases. However,

it still has some disadvantages: it is not computationally straightforward and convergence may

be very slow. Most of all, it does not provide standard errors for the parameter estimates; to

obtain them we need to do model specific calculations (Louis, 1982).

For these reasons, the EM algorithm alone is not a sufficient, or especially practical, tool.

Nevertheless, in the context of MI, it may be useful for finding starting values for the parameters

when initializing a joint model imputation, as we will see in the next section.
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3.2.4 Direct likelihood

Besides the EM algorithm, in recent years there has been increasing interest in the direct

maximization of the likelihood in a single procedure, a method that has been referred to as

direct likelihood or Full Information Maximum Likelihood (FIML). The likelihood contribution

for each unit affected by missing data can be calculated by integrating over all the possible

values of the partially observed variables; there are situations where this can be done quite

easily: for example when we are interested in a linear regression and the only missing value for

individual i is in a binary covariate X, the likelihood contribution for i can be obtained as:

L(Yi|Xi; θ, φ) =
∑
k=0,1

(L(Yi|Xi = k; θ)π(Xi = k;φ))

where π indicates a marginal model for Xi with parameter φ.

However, with increasing numbers of variables with missing values, and hence missing data

patterns, possibly with missing values in continuous variables, the calculation of the likelihood

contribution can become more and more difficult. A closed form solution of the integral may

not exist and in some cases we might have to rely on numerical approximations.

We will explore the possible issues of this method more in detail in Chapter 4, in the specific

case of multilevel data structures.
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3.3 Multiple Imputation

As we have seen in Subsection 3.2.2, imputing missing values is an attractive approach, since

models can be fitted to the resulting dataset with standard software. However, this gives the

same weight to the observed and imputed data, so leading to underestimation of the standard

errors.

Multiple imputation is a simple, widely applicable approach to correct for this. It is based on

a really simple idea: instead of just imputing a missing value once, we draw it say K times,

creating K ‘complete’ imputed datasets. In this way, we have not a single imputed value for

each missing datum, but instead K datasets that together represent the distribution of missing

given the observed data. Once we have our K datasets, we then fit our substantive model to

each of them with standard software and finally combine the results together in some way.

The idea of Multiple Imputation is due to Rubin (Rubin, 1987) and can be summarized in

three steps:

1. Imputation step: we imputeK > 1 different datasets using one of the different approaches

we will illustrate in the next sections;

2. Analysis step: we analyse theK datasets with standard methods, as if they were complete

datasets, obtaining K estimates that we will call β̂k, with k = 1, . . . , K, and their

associated variance estimates σ̂2
k;

3. Combination step: we combine the results for inference using Rubin’s rules, defined in

(Rubin, 1987).
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This last step is key; it is what makes MI attractive, as the rules are simple and widely

applicable. We give here Rubin’s rules for a single parameter β, for vector rules see (Rubin,

1987, p.76). Starting from our K different β̂k, the point estimate is simply their average:

β̂MI =
1

K

K∑
k=1

β̂k.

The variance of β̂MI is estimated by the sum of a within imputation variance and a between

imputations one, corrected with a
(
1 + 1

K

)
term to account for the finite number of imputations:

WMI =
1

K

K∑
k=1

σ̂2
k

BMI =
1

K − 1

K∑
k=1

(
β̂k − βMI

)2
σMI = WMI +

(
1 +

1

K

)
BMI

Multiple Imputation is at heart a Bayesian procedure with some good frequentist properties;

however, in order for Rubin’s rules, and hence for these frequentist properties, to hold, the

different imputations must be stochastically independent.

Another important feature of Multiple Imputation is its flexibility, since the imputation model

and the analysis model do not have to be the same. However, in order for Rubin’s variance

combination rules to hold precisely, the two models need to be congenial, essentially meaning
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that there should be one joint distribution for the data, from which both the imputation and

the substantive model can be derived by appropriate conditioning. Simply speaking, there may

be two possible kinds of uncongenial models:

• The imputation model is poorer than the analysis model: there are some variables present

in the analysis model that for some reason are missing in the imputation model; this

situation should be avoided because not only it causes invalidity of Rubin’s rules variance

formula, but it can also result in inconsistent parameter estimates for the substantive

model;

• The imputation model is richer than the analysis model: in the imputation model there

are some more variables, maybe because they are not of interest in our analysis model

but they can provide further information about the missingness mechanism; in this case,

we can say that there is at least one congenial imputation model nested within the

imputation model we are using.

Although in this second setting Rubin’s variance formula may overestimate the sampling vari-

ability of the MI estimators, this overestimation is typically small, when set against the benefits

of including auxiliary variables in the imputation model and the loss of information with com-

plete records analysis. For full details see (Meng, 1994).

In general, inference is valid with a finite number of imputations K and, in most settings, it is

sufficient to rely on a relatively small number of imputations. For example, we know that even

if the fraction of missing information (Rubin, 1987, p.114) is 50%, the relative efficiency for 10

imputations is 95% versus an infinite number of imputations. However, if we want to calculate
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a precise estimate of the p-values, say with Monte Carlo error below 0.005, it is necessary to

use a much larger number of imputations, for example (Carpenter and Kenward, 2013, p.55)

suggest using at least K = 100.

After this short introduction, we are now ready to describe in detail two particular types of

Multiple Imputation procedures. If we have missing data in multiple variables, then we might

decide to define a joint multivariate distribution from which imputing these variables or we

might prefer to split the problem into multiple conditional univariate models; this is the basic

difference between the two methods we are going to explore in the next two subsections. At

this point we should stress that MI is a Bayesian procedure, where the missing data are drawn

from the posterior distribution of the missing data given the observed. Hence we use MCMC

to fit imputation models.

3.3.1 Joint Modelling

Joint modelling is a theoretically natural and, at least for the Multivariate Normal distribution,

computationally convenient method for multiple imputation. The idea is to set up a joint

multivariate model from which to impute the missing values. The basic assumption that we

make, is that the joint distribution of the partially observed vector variable Yi is multivariate

normal:

Yi ∼ N(β,Ω) (3.3.1)
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with Ω being the unstructured p× p covariance matrix, where p is the dimension of the p× 1

vector β.

Given this, we can use a Gibbs sampler (Geman and Geman, 1984) to fit (3.3.1) and impute

the missing data. The Gibbs sampler is a Markov Chain Monte Carlo algorithm (MCMC) for

obtaining a series of correlated draws from a Bayesian posterior distribution, in this case the

multivariate normal one. In the Bayesian setting, missing data are then considered simply as

additional parameters of this joint multivariate model.

The basic idea of the Gibbs sampler is to perform 2 steps:

1. Initialize all the parameters in our model, either randomly or using some more sophisti-

cated algorithm (i.e. EM);

2. Update: sample each variable in turn from its conditional distribution given all the other

ones;

We then update the sampler a certain number of times, by repeating step 2, until it has

converged to the stationary distribution, which is the desired posterior. Subsequent updates

give correlated draws from the posterior distribution. So in our case the first thing to do, before

considering missing data, is to derive the conditional distributions for model (3.3.1). We give

a flat prior to β and a Wishart distribution to the inverse of the covariance matrix, following

(Schafer, 1997, Chap.5). The choice of an inverse-Wishart prior is somewhat arbitrary and

surely questionable, but it leads to great simplifications in the calculation of the conditional

probabilities. However, even considering the least informative choice for the degrees of freedom,

with small numbers of observations the inverse-Wishart prior could still affect the results
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substantially and therefore other more appropriate choices might be considered. If there are

no missing data, we can express the posterior distribution of β, Ω−1 given Y = (Y1, . . . ,Yn) as

a product of a normal distribution for β given Ω−1,Y and a Wishart distribution for Ω−1 given

Y. The former is the conditional distribution of the fixed effect parameter vector given the

current draw of the covariance matrix and the observed data, while the latter is the conditional

distribution of the covariance matrix given the data only. So:

β|Y,Ω ∼ Np(Y, n
−1Ω)

Ω−1|Y ∼W{n+ v, (S−1P + S)−1}
(3.3.2)

where n is the number of units on which we are collecting data, p is the dimension of vector β,

v and SP are the parameters for the prior Wishart we are considering, Y is the sample mean

and S is n− 1 times the sample covariance matrix.

Repeated draws from these two distributions make it possible for the MCMC to reach the

stationary distribution.

Missing Data

Now suppose that elements of Y are missing. In the Bayesian framework, such missing values

are also parameters, so we need a prior for them too. We choose again a flat improper prior.
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At this point, we can start to think about how to apply the Gibbs Sampler to our example.

As we said, the first step to do is to initialize the parameters. This can be done in different

ways, but here we propose two different methods:

1. Calculate the starting β and Ω from the observed values and draw starting values for

missing Yi,j by hot-deck imputation (Subsection 3.2.2);

2. Use the EM algorithm to estimate β and Ω and then use these values to draw missing

Yi,j with the proper conditional distributions (Subsection 3.2.3).

This second approach has some advantages, since we both start from a converged state or notice

immediately if there are some problems with data, if the EM algorithm has not converged.

These could easily be overlooked using the first approach as MCMC would keep on running

and giving incorrect results.

Once we have drawn these initial values, which we call simply β0, Ω0 and Y0
M , we can move to

the second part of the Gibbs sampler, that is the sequential update of the different variables.

For each iteration t, the algorithm is the following:

1. draw Ωt from the conditional distribution:

Ωt ∼ W−1{n+ v, (S−1P + St−1)−1}

where S−1P is the second parameter of the prior Wishart distribution we considered for

Ω;
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2. draw βt from the conditional distribution:

βt ∼ N(Y
t−1
, n−1Ωt);

3. draw Yt
M from the conditional distribution:

Yt
M ∼ f(YM |βt,Ωt,YO)

Each unit may have a different missingness pattern and they are all independent. We

therefore draw missing data for each unit in turn. First of all we have to reorder all the

variables so that Yi,1, Yi,2, . . . , Yi,pi will be observed and Yi,pi+1, Yi,pi+2, . . . , Yi,p missing,

partitioning in the same way also the elements of β into βtO and βtM and the covariance

matrix in 4 parts as:

Ωt =

ΩOO ΩOM

ΩMO ΩMM

 .

Then for each unit, we draw missing data from the appropriate pi-variate conditional

normal distribution:

Yt
M,i ∼ N

(
βtM + (YO,i − βtO)T (Ωt

OO)−1Ωt
OM ,Ω

t
MM −Ωt

MO

(
Ωt
OO

)−1
Ωt
OM

)
;

4. calculate the new sample mean Y
t

given the current draw of missing data from the

previous step;

5. Update also the sum of squares and cross products St accordingly;

6. Return to step 1.
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This is the general Gibbs sampler for this model. However, the set of parameters that we draw

in each step is actually correlated to the one drawn at the previous step. So, in order to have

stochastically independent imputations, as required by Rubin’s rules, the general procedure is:

1. Initialize all the parameters;

2. Update the sampler nburn times, until it has reached the stationary distribution. Running

the EM algorithm at the beginning means we need a much smaller nburn;

3. Use the current draw of missing data to create the first imputed dataset Y1;

4. Run the algorithm for another nbetween times and use the final draw of missing data to

form another imputed dataset;

5. Repeat the previous step until we have recorded all the desired imputations.

This completes the description of the algorithm for Joint Modelling Multiple imputation when

the joint model is multivariate normal. When the partially observed data are all continuous

variables, it is often the case that the multivariate normal distribution is a reasonable assump-

tion, maybe after some proper transformation (logarithm, square root, Box-Cox...). But what

if we had other types of variables, for example binary or categorical data?

Including binary or categorical variables

Following (Goldstein et al., 2009), the idea is the same in both cases, to make use of Latent

Normal Variables. Imagine we have a N-level unordered categorical variable Yi, we can think

about introducing N independent normal variables whose maximum for each record indicates
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the observed category for that record:

Vi,1 = α1 + εi,1

Vi,2 = α2 + εi,2
...

Vi,N = αN + εi,N



Vi,1

Vi,2
...

Vi,N


∼ NN





α1

α2

...

αN


,Ωe


so, for each i, we have:

m = max
j
Vi,j ⇐⇒ Yi = m

Unfortunately the above model can be proven to be non-identifiable. Therefore we need to

add some constraints to the model. First of all we fix the variances of the latent normals to

some arbitrary value, for example 0.5:

Ωe =



0.5 0 . . . 0

0
. . . . . .

...

...
. . . . . . 0

0 . . . 0 0.5


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Then, we use this derivation:

Zi,1 = Vi,1 − Vi,N

Zi,2 = Vi,2 − Vi,N
...

Zi,N−1 = Vi,N−1 − Vi,N

Where we subtracted from the first N − 1 equations the last one. Thus:

Zi,1 = α1 − αN + ei,1

Zi,2 = α2 − αN + ei,2
...

Zi,N−1 = αN − αN + ei,N ,

So that:



Zi,1

Zi,2
...

Zi,N−1


∼ NN−1





β1

β2
...

βN−1


,



1 0.5 . . . 0.5

0.5
. . . . . .

...

...
. . . . . . 0.5

0.5 . . . 0.5 1




= NN−1(β,Ω).

Where βi = αi − αN .

(Goldstein et al., 2009) suggests, for simplicity, to set the correlation terms to 0. This is also

what has been implemented in the REALCOM software (Carpenter et al., 2011) that we will

introduce later. In our work we will start by using this simplification in Chapter 6, but we will

put back the covariance terms to 0.5 in the remaining chapters.
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In our model, we have latent normals Z, but in the data we actually observed only the categories

Y . So, at each iteration of our Gibbs sampling algorithm, we have to add a first step for drawing

the Zi,j, with j = 1, . . . , N − 1. Once we have drawn these, the Gibbs sampler proceeds as

before, apart from the update of the covariance matrix (see below). We can draw the Zi,j using

a rejection sampling approach, so for each unit i at step t of the Gibbs sampling algorithm:

1. Draw Zi:

Zi ∼ N(β,Ω).

2. if Yi = m 6= N then we keep drawing until Zi,m = maxj=1,...,N−1 Zi,j and Zi,m > 0;

3. if Yi = N then we keep drawing until Zi,j < 0 ∀j = 1, . . . , N − 1;

In presence of missing data, we draw from the appropriate conditional N − 1-variate normal

distribution given the other variables and we accept each draw, successively building the im-

puted dataset transforming the N − 1 continuous variables into one categorical variable using

the same rules as before.

Updating the covariance matrix

Unfortunately, because of the constraints on the covariance matrix from the latent normal

model, we can no longer update the covariance matrix via draws from the appropriate inverse

Wishart distribution. A good solution, though potentially more time consuming, is to perform

this update element-wise using a Metropolis Hastings algorithm, as proposed by Browne (2006):
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1. for each non constrained element Ωk,l:

• if k=l: draw proposals for Ωt
k,l from N

(
Ωl,l,Ω

2
l,l

11.6

n

)
, where the value for the

standard deviation has been proposed in (Gelman et al., 2014);

• if k 6= l: draw proposals from N (Ωk,l, 0.1
2Ωk,kΩl,l);

2. if with the proposed Ωt
k,l, Ωt is still positive definite, go to step 3. Otherwise go back to

step 1;

3. accept Ωt
k,l with probability:

min

(
1,

L(β,Ωt)

L(β,Ωt−1)

)
where L is the N-variate normal likelihood function;

4. if the proposed Ωt
k,l is rejected, then keep Ωt

k,l = Ωt−1
k,l .

Having completed this step, we have described all the Gibbs sampling steps for a JM-MI

approach to impute both continuous and categorical missing data.

3.3.2 Full Conditional Specification

Full Conditional Specification, also known as Multiple Imputation using Chained Equations

(MICE), is another way of imputing multivariate data with more flexibility than JM — at

least in the cross-sectional setting — at the cost of an higher difficulty in establishing the

algorithm’s properties.
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The FCS algorithm consists of imputing data variable by variable, conditional on all the

other variables in the dataset. Assuming data are MAR, so we can omit R, we define the

density f(Y|θ) by specifying a conditional density f(Yj|Y−j,ψj) for each variable. Here, Y−j

represents the set of responses excluding only Yj.

Thus the FCS algorithm is as follows:

1. Re-order the variables so that the missingness pattern is as close to monotone as possible,

i.e. such that if Yj is missing, than Yj+1 is missing as well;

2. Initialize the missing values in each variable by sampling with replacement from observed

values of that variable;

3. for j = 1, . . . , p:

• regress the observed part of Yj on all the other variables, obtaining the current set

of parameters estimates ψj;

• draw a new value for ψnew
j from the conditional distribution:

ψnew
j ∼ P (ψj|YO, YM)

• Impute missing values for Yj from the following conditional distribution:

YM
j ∼ P (Yj|ψnew

j ).
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4. Repeat step 3, which is called a cycle, a certain number of times nburn and at the end

of these nburn cycles, register the current values of all the missing data to form the first

imputed dataset. We choose this nburn in order to guarantee that after this number of

cycles the algorithm has converged to the stationary distribution;

5. Run another nbetween cycles before registering the new imputations, in order to obtain

stochastically independent imputations.

If all the variables are continuous we can just use a linear regression model for each variable,

given that the residuals can be assumed to be distributed normally. Otherwise for binary

variables we can use logistic regression, for categorical variables multinomial logistic regression,

for count data Poisson regression and so on.

3.4 JM vs FCS

We introduced two methods for multivariate MI, but do these methods really differ? And if

they do, how much do they differ? Which one is preferable?

The only conceptual difference between JM and FCS is that, while with JM we specify a joint

model for the partially observed data explicitly, with FCS we define the conditional univariate

models and therefore the specification of the underlying joint model is only implicit. When the

joint imputation model we choose is congenial with the analysis model in the sense introduced

in (Meng, 1994), JM imputation is the theoretically best way of imputing the data and it is
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guaranteed not to introduce any bias. When FCS is used instead, since we are defining the

joint model only implicitly, finding conditions for the validity of the method is a more subtle

issue.

However, recently, conditions for equivalence of FCS to JM have been explored independently

from different perspectives in two studies (Hughes et al., 2014; Liu et al., 2013) which essentially

concluded that:

• the two methods are asymptotically equivalent;

• the two methods are equivalent when used in the multivariate normal framework;

• in finite samples the two methods are equivalent when the so-called ‘non-informative

margins’ condition holds, otherwise an order effect occurs;

• in real data the magnitude of this order effect is usually small enough to be considered

negligible.

The second point actually stems from the third one. In this regard, consider the joint model

(3.3.1) and imagine we want to calculate the conditional distribution for variable j, so that:

p(Y|θ) = p(Yj|Y−j,θ)p(Y−j|θ)

If we call Ψj a function of the parameter θ from which the distribution of Yj given Y−j depends

exclusively, then if there is no information about Ψj in the marginal distribution of Y−j, we say

that the ‘non-informative margins’ condition holds. Finally, regarding the last point, (Hughes

et al., 2014) ran some simulations in situations where the previously defined condition did not
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hold, but they found that the magnitude of the order effects was really small and not inducing

any practically relevant bias. Though the theoretical problem still persists, this was reassuring

on the possible magnitude of this effect in real data analysis.

Therefore the two methods seems to be interchangeable in most situations. However, FCS has

become more popular than JM in the last fifteen years and the main reasons for its success

are:

• Its great flexibility to accommodate different kinds of variables, since for example a

linear regression can be used for the univariate conditional model to impute continuous

variables, while a logistic can be used for binary data, a Poisson for count data, etc etc.

• The availability of software packages like ICE (Stata) and MICE (R), easy to use and

constantly updated and improved by the authors. These software packages exploit the

in-built functions for regression, e.g. glm for generalized linear models in R, which makes

them relatively simple to code and also relatively fast.

Consequently, with simple models and datasets, using the well known and established software

for FCS imputation is usually good enough.

However, additional complications may arise, the main of which are:

• data are usually imputed under the MAR assumption, but what if the true mechanism

is actually MNAR?

• What if the partially observed data we need to impute have a multilevel structure?
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In JM imputation, there are two different possible strategies to perform sensitivity analysis to

MNAR, depending on how we factorize the joint distribution of the partially observed data. If

we consider for simplicity that we have two variables, Y1 and Y2 and that R1 is the missingness

indicator for Y1, then we could define for each unit i:

• A pattern-mixture model: this would mean considering a different joint model depending

whether or not Yi,1 is observed, or in a more general situation a different model for each

missingness pattern,

f (Yi,1, Yi,2, Ri,1) = f (Yi,1, Yi,2|Ri,1) f (Ri,1) ;

• A selection model: in this case we would model the selection process given the joint

distribution of the data, hence:

f (Yi,1, Yi,2, Ri,1) = f (Ri,1|Yi,1, Yi,2) f (Yi,1, Yi,2) .

One model can be shown to imply the other in quite general situations, see e.g. (Molenberghs

et al., 1998), so the choice between modelling the different patterns or the selection process is

up to the analyst.

These two types of models have been used several times in the past for sensitivity analysis to

different assumption from MAR in the JM-MI framework. We are not aware of any attempt

to apply the pattern-mixture approach with FCS; on the other hand, only at the time of

writing, Finbarr Leacy and Ian White are developing a method for modelling the selection

process within the FCS framework. Therefore, at present, FCS lacks a principled approach
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for imputing data under MNAR; this limits its utility as a method for conducting sensitivity

analyses to departures from MAR, which is actually one of the main attractions of the MI

approach.

Extensions of MI to accommodate hierarchical structures will be a key issue in our IPD-MA

setting, and therefore we will focus on these in the next Chapter.

3.5 Summary

In this chapter we introduced the main methods for handling missing data in clinical datasets.

Multiple Imputation has been shown to be the gold standard approach thanks to its flexibility,

and hence broad applicability, allowing both to deal with MAR data and to set up simple

techniques for sensitivity analysis to different assumptions.

Two different imputation methods have been described, JM and FCS, with a discussion of the

pros and cons of both.

Since in the JM-MI framework, we impute with a Bayesian method, MCMCs, one might wonder

why we should not decide to go Bayesian all the way and not only at the imputation step.

Methods for Bayesian inference with missing data date as back as the 1970s and a consistent

literature has developed. However, the main limitation of Bayesian methods compared to JM-

MI is that they assume a single model and therefore, similarly to likelihood based methods, it

is not possible to include auxiliary variables only at the imputation stage or to use different

analysis and imputation models; this would be preferable when we have missing data in multiple
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variables, and therefore we have to use a joint Bayesian model for imputing even if we are

interested in a univariate substantive model. One advantage of Bayesian methods is that,

together with MI methods, they are the most easily extendible to the case of non-informative

missingness, and therefore they are particualrly attractive for performing sensitivity analyses

to MNAR assumptions (Mason et al., 2012).

In the next chapter we are going to explore the particular situation of missing data in IPD-MA,

justifying the use of MI as a research tool and our decision to pursue the JM approach.
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In this chapter we are going to discuss the issues raised by missing data in the IPD-MA setting.

In particular we will argue for the use of Multilevel Multiple Imputation as the main tool to

handle them.

After a short introduction to the problem in Section (4.1), in Section (4.2) we introduce the

most general formulation of a multilevel analysis model; then, in Section (4.3) we explore the

different issues raised by the presence of partially observed data in these settings, depending on

where missing data occur. The successive sections are dedicated to two of the most commonly

used techniques to handle missing data, i.e. Maximum Likelihood methods (Section (4.4)) and

Multiple Imputation (Section (4.5)). Specifically we will explore again two different Multi-

ple Imputation approaches, called Joint Modelling (Subsection (4.5.1)) and Full Conditional

Specification (Subsection (4.5.2)). Finally, in Section (4.6) we conclude with a discussion, com-

paring the different methods and trying to sketch out in which circumstances one is preferable

to the others.

4.1 Introduction

As already mentioned in Chapter 2, IPD-MA are considered a major improvement to AD

meta-analyses and therefore, when possible, should be preferred. However, when analysing

the data it is not possible to simply treat the combined dataset as data from a single huge

study, because observations coming from the same study potentially have a strong source of

correlation, and different variability. This needs to be appropriately taken into account when

modelling.
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One possibility is to use Multilevel Models. The term multilevel stands for the fact that data

are clustered at different levels. For example, in the IPD-MA context, when we are aggregating

cross-sectional studies we have observations (level 1) clustered in studies (level 2). However

when we meta-analyse longitudinal studies, we have observations (level 1) nested in patients

(level 2) nested in studies (level 3), and so on and so forth. Therefore the problem of dealing

with missing data in IPD-MA can be seen as a particular case of the more general situation of

missing data in datasets with a hierarchical structure.

In the next sections we will try to see how all the existing methods for handling missing data

behave in this situation. However, first of all we need to introduce some general notation for

multilevel models.

4.2 The general multilevel model

Consider a dataset where we have individuals i nested in clusters j. For example we may have

students i nested in classes j, or, in a longitudinal setting, single observations i at different

time points for the same patient j. In order to take into account the correlation between

individuals in the same cluster, we consider, in matrix form, the following substantive model:

Yj = Xjβ + Zjuj + εj (4.2.1)

where:

• Yj is the nj × 1 response vector for observations in cluster j;
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• Xj is the nj × q design matrix for the fixed effects for observations in cluster j;

• β is the q × 1 vector of fixed effects;

• Zj is the nj × r design matrix for the random effects for observations in group j, and it

is typically, but not necessarily, a subset of Xj;

• uj is the r× 1 vector of random effect coefficients in group j, for which we suppose that

uj ∼ Nr(0,Ωu);

• εj is the nj × 1 vector of errors for observations in group j, for which: εj ∼ Nnj(0,Ωe),

with, typically, Ωe = σ2
eInj ;

This is the general form of the univariate mixed-effects model for individuals nested in cluster

j, as defined for example in (Laird and Ware, 1982). In certain settings it appears convenient

to define the same model in a slightly different way, as constructed from a set of different levels

equations:

Yj = Zjβj + ej Level 1

βj = Wjβ + uj Level 2
(4.2.2)

Here, βj is a r × 1 vector of coefficients that vary between classes j and we model it with the

linear regression model at level 2, where Wj is another design matrix. It is straightforward to

note that combining this two equations we obtain again (4.2.1), with Xj = ZjWj.
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4.3 Missing Data in Multilevel Datasets

Imagine we want to analyse a dataset with one of the two formulations of the multilevel model

we presented in the previous section; some variables may be partially observed, so before

proceeding with our substantive analysis we may need to handle the missing data, for example

by multiply imputing them. But can we simply use the methods we presented for single level

data or do we have to formulate specific methods in order to respect the multilevel structure?

Specialised literature in recent years seems to confirm that taking into account this structure

is key in order to obtain unbiased results. In the case of Multiple Imputation, for example,

(Carpenter and Kenward, 2013, p. 208), proved that, when using an algorithm correctly

considering the hierarchical nature of data, you can obtain good point estimations and just

slightly overestimated standard errors, relative to the complete data ones. Conversely, using a

simple single level imputation algorithm leads to biased estimates and most of all to seriously

underestimated cluster level variances and overestimated individual level variances. Similar

conclusions were drawn using simulations by (van Buuren, 2011).

We are thus going to present and compare in the next sections various methods for imputing

missing values in hierarchical, or multilevel, data.

Similarly to the single level case we can decide to use different methods depending on which

data are missing in the model and on the missing data mechanism.
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Considering model (4.2.1), missing data can occur in the response vector Yj, in the fixed effect

covariates design matrix Xj, in the random effects covariates design matrix Zj or even in the

class indicator j. However, the case of missing class indicator j has not been much investigated

in the past and usually we just rely on complete records discarding all units with missing class

indicator. Furthermore in the meta-analysis setting, this is equivalent to having some data and

not knowing from which study these data come from, a situation that is unusual and hence

not relevant to this thesis.

When missing data are confined to the response vector Yj, restricting to complete records

analysis gives unbiased results, if data are MAR and all the variables included in the missing

data mechanism are included as covariates in the model. However, as we saw for the single

level case, complete records analysis give biased results when we have missing covariate data

and the missingness mechanism depends on the outcome, Yj. Furthermore, due to the large

amount of data we waste, complete records analysis is inefficient, even if inferentially valid. In

general, a (possibly) slightly biased but much more precise analysis under MAR is preferable.

With missing data in Xj or in Zj it is therefore preferable to go beyond complete records

analysis. There are two main categories of methods available for this situation: maximum

likelihood methods and Multiple Imputation.

We present here details of these two approaches, considering models with continuous and/or

categorical variables, and with missing outcomes and/or predictors, to see how the methods

compare.
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Specifically we are going to present two ways of obtaining the maximum likelihood estimates,

and associated standard errors, for the parameter of our substantive multilevel model, when

some data are missing. These are the EM algorithm and Full Information Maximum Likelihood

(FIML). We will then present two approaches to multilevel Multiple Imputation; again, as in

the single level case, these will be Joint Modelling and Full Conditional Specification.

4.4 Maximum Likelihood methods

The first step in Maximum Likelihood (ML) estimation is always to build the likelihood func-

tion. For model (4.2.1), this function is:

Lj =

nj∏
i=1

fi(Yi,j|Xi,j,Zj,β,uj)

Now, imagine that patient i in cluster j has a missing value in covariate X1, which is a binary

predictor at level 1. In order to be able to use the information provided by this patient when

calculating the likelihood function, we need to sum the likelihood term over all the possible

values for the missing covariate. Normally, when calculating the maximum likelihood estimates

for a generalized linear mixed model, we do not consider any distribution for the covariates,

that are just considered as fixed values we condition on. However in this case, we will have to

introduce a distribution for the unobserved covariate. In the above case of a binary variable:

Lij =
1∑

k=0

f(Yi,j|X1
i,j,X

2,...,q
i,j ,Zj,β,uj)p(X

1
i,j = k, γ).
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Where γ is the parameter defining the distribution of the covariate X1 and is distinct from

(β,uJ). In this case, X1 being a binary variable, the calculation is straightforward since

we just need to sum up two terms. This approach generalises naturally to the case where

X1 is a categorical variables; in this situation we sum up over all the categories. This also

readily extends to the case of more than one categorical predictor missing, so for example for

observation i in cluster j, if we had a missing binary covariate X1 and a missing 4-category

covariate X2, the likelihood term from this observation is:

Lij =
1∑

k=0

4∑
t=1

f(Yi,j|X1
i,j, X

2
i,j,X

3,...,q
i,j ,Zj,β,uj)p(X

1
i,j = k, γ1)p(X

2
i,j = t, γ2)

Things are analytically more complex if we have missing values in continuous covariates. In

this case, we must integrate over the distribution of the missing covariate instead of summing.

For example, considering again patient i in cluster j, with a missing normally distributed

covariate X1
i,j, its contribution to the likelihood is:

Lij =

∫ +∞

−∞
f(Yi,j|X2,...,q

i,j ,Zj,β,uj)f(X1, µ, σ2)dX1

with µ and σ2 parameters of the distribution of X1. The problem is that a closed form

solution for this integral is rarely available. Instead, we have to approximate the solution

through numerical integration, for example using quadrature or adaptive quadrature, or to use

Laplace approximations. The more continuous covariates with missing data we have, the more

difficult it becomes to approximate this integral precisely. Furthermore, the integral needs to

be recalculated as we search the parameter space for the maximum likelihood estimates.
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Depending on the number and different kinds of partially observed covariates, finding a good

joint model for the covariates and calculating the values of the parameters that maximize its

likelihood becomes very challenging. Some situations can be solved with ad hoc methods, e.g.

imagine that we have a model with covariate X1 continuous and X2 and X3 binary, subject

to missingness. In this case the contribution to the likelihood for subject (i, j) is:

Lij =

∫ +∞

−∞

1∑
k=0

1∑
t=0

f(YI,J |X1
i,j, X

2
i,j, X

3
i,j,X

4,...,q
I,J ,ZJ ,β,uJ)f(X1

i,j, µ, σ
2)p(X2

i,j = k)p(X3
i,j = t)dX1

(4.4.1)

This problem can be greatly simplified in some particular situations, for example if the sub-

stantive model is the general location model, introduced by (Olkin and Tate, 1961). Broadly,

the idea behind this model is to define a contingency table according to the values of the binary

variables. In this case:

X2 = 0 X2 = 1 total

X3 = 0 n1 n2 n1 + n2

X3 = 1 n3 n4 n3 + n4

total n1 + n3 n2 + n4 n

We then give to each cell c the corresponding probability pc and, given that unit (i, j) belongs

to cell c, the continuous variable follows a normal model with cell-specific mean and variance.

f(X1
IJ |X2

IJ , X
3
IJ) ∼ N(µc, σ

2
c )
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Therefore, this decomposition of the problem makes the integral (4.4.1) much simpler to cal-

culate; however, the general location model is rarely (if ever) our substantive model. In a more

general situation solving (4.4.1) is not so straightforward. Finding a closed form solution for

the integral is even more difficult with increasing number of partially observed variables and

possibly missing data patterns.

Missing data could also occur in Zs, i.e. in covariates that are included in the multilevel model

with a random effect, further complicating the situation.

Furthermore, once we have our likelihood, we still need to maximize it in order to get the desired

estimates. This process of maximizing the Full Likelihood directly is called Full Information

Maximum Likelihood (FIML), also known as direct maximum likelihood. In order to calculate

the estimates for the standard errors, we need to calculate the second derivative of the log-

likelihood at its maximum, and this is often numerically complex. There are some particular

cases of multilevel models where a closed form solution can be obtained without relying on

numerical approximations, and these are mainly linear mixed models and the LISREL model,

essentially a latent normal variable model, which is very common in Structural Equation

Modeling (Skrondal and Rabe-Hesketh, 2004, Chap. 6).

FIML is implemented for example in SAS PROC CALIS and in MPlus. The problem with

PROC CALIS, is that it can only handle normal data. The only commercial software able to

do FIML in presence of missing data in predictors in generalized linear models is MPlus, which

can deal with missing data in continuous, categorical or counting variables, in responses and in
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covariates at level 1, but still not at higher levels. In case of missing data in level 2 covariates,

the software authors suggest putting these as responses in the model, turning the substantive

model into a multivariate model.

Muthén and Brown (2001) and successively Little and Rubin (2002), proved that under the

MAR mechanism FIML estimates and standard errors are unbiased. However, everything we

said so far about maximum likelihood methods rely on the assumption that data are MAR. This

is not always true, and if data are MNAR we need to model also the missing data mechanism.

One last issue, but practically very important, with maximum likelihood approaches is the

difficulty in including auxiliary variables. These are variables that are not to be included in

the substantive model, but which can be important to both recover information and improve

the plausibility of the MAR assumption (Spratt et al., 2010). If present, they need to be

properly included in the model likelihood and integrated out, presenting additional difficulties.

As explained in Section 3.2.3 for the simple case of single level data, another way of maximizing

the likelihood is using the EM algorithm; however the same issues arise, i.e. possibly slow

convergence of the algorithm and difficulty to calculate the SEs, which make the EM algorithm

hardly widely applicable.

All the discussion so far focussed on calculating maximum likelihood estimates for multilevel

models in presence of sporadically missing data only. The additional problems, that are very

common in IPD-MA, of handling systematically missing variables and allowing for heterogene-

ity between different studies, would even complicate things further.
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4.5 Multilevel Multiple Imputation

Multiple Imputation (MI) is a promising approach for missing data with a multilevel structure.

As we have seen in the previous chapter, nowadays there are broadly two main methods to

impute data using multiple imputation: Joint Modelling and Full Conditional Specification.

In this section we discuss how to handle the multilevel structure of data while imputing with

a JM or an FCS approach.

4.5.1 Joint Modelling

It is quite natural to extend JM multiple imputation to account for a multilevel structure in

the data. In this section we are going to replace the cross-sectional joint imputation model

presented in Section 3.3.1 with a multilevel joint imputation model.

To begin with, consider a very simple situation: imagine we have model (4.2.1) and that all of

the variables in the model are continuous. In this case, we can just form a multivariate normal

model for the joint distribution of the data. As before, the imputation model does not need to

be the same as the analysis model. So, building on what we did for single level JM MI, a good

idea is to put the partially observed variables Yi,j as responses in the imputation model and

the fully observed variables Xi,j as covariates. The great advantage, with respect to likelihood

methods, is that this is done only to impute the missing data; after imputation, we can fit on

the imputed datasets the substantive model that we would have used in case we were able to

observe all the intended data.
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In this imputation model, Yi,j may contain both level 1 and level 2 variables. We then use the

following notation for the response vector of our imputation model:

Yi,j =
(
Y

(1)
i,j , Y

(2)
j

)T
,

where Y
(1)
i,j is the p1-dimensional vector of level 1 responses and Y

(2)
j the p2-dimensional vector

of level 2 responses. Similarly, the vector of covariates for individual i nested in cluster j is:

Xi,j =
(
X

(1)
i,j , X

(2)
j

)T
.

Using this notation, the joint multilevel imputation model for individual i in cluster j is:

Y
(1)
i,j = (Ip ⊗X

(1)
i,j )β(1) + (Ip ⊗ Z

(1)
i,j )u(1) + e

(1)
i,j

Y
(2)
j = (Iq ⊗X

(2)
j )β(2) + u

(2)
j

uj =

(
u
(1)
j

u
(2)
j

)
, uj ∼ N(0,Ωu)

e
(1)
i,j ∼ N(0,Ωe)

Where ⊗ is the symbol for the Kronecker product, i.e. if p = 3 and X = (X1, X2, X3), then

Ip ⊗X =


X1 X2 X3 0 0 0 0 0 0

0 0 0 X1 X2 X3 0 0 0

0 0 0 0 0 0 X1 X2 X3


The MCMC algorithm we described in Subsection 3.3.1 extends naturally to fit and impute

from this model. We present it in detail in Appendix A. We have the following parameters:
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• The two vectors of level 1 and level 2 fixed effects, β(1) and β(2);

• The two vectors of level 1 and level 2 random effects, u
(1)
j and u

(2)
j ;

• Level 1 residuals, e
(1)
i,j ;

• Level 1 and level 2 covariance matrices: Ω1 and Ω2;

• Possibly missing data, YM , which can be both at level 1 or level 2 (note that these are

outcomes of the imputation model, but they can both be outcome or covariates in the

substantive analysis model);

Following our previous approach, we give inverse Wishart priors to the two covariance matrices

and flat improper priors to all the other parameters. As we said in the previous chapter, the

choice of an inverse-Wishart distribution as a prior for the covariance matrix is not always safe.

This is particularly important for the level-2 covariance matrix, where it is not uncommon,

particularly for IPD-MA, to have only few clusters and therefore where an inverse-Wishart prior

may have a huge impact on the posterior. It has been shown indeed that using empirically

sensible prior is usually a good idea. (Burke et al., 2016)

At each step t we update each of these parameters in turn conditional on all the others,

using a modification of the Gibbs sampler presented in A, which was initially sketched out by

(Goldstein et al., 2009).

If we introduce in our model some binary, or categorical, variables, the only thing we need to

do is to implement once again the latent normal approach introduced for the single level case.

So, the only differences in the algorithm are (i) the presence at each iteration of the MCMC
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of an initial step for drawing the latent normals that substitute the categorical responses in

the imputation model and (ii) the need to update the covariance matrix element-wise with a

Metropolis-Hastings step within the Gibbs sampler.

Thus, JM multilevel multiple imputation is a natural generalization of the single level JM-MI,

which retains all the advantages of MI as a generic approach for handling missing data.

4.5.2 Full Conditional Specification

The theoretical basis for multilevel imputation with full conditional specification is weaker

than in the single level case. van Buuren (2011) was the first one to try this approach, adding

a new function to his R package mice. Consider once again model (4.2.1), initially with just

continuous variables and potentially with missing values in Yj,Xj and Zj. In order to take

into account the multilevel structure in the data, the first thing to do before imputing is to run

until convergence a Gibbs sampler for calculating the values of the parameters of the univariate

multilevel models from which we will draw the missing data. So, our MCMC draws in turn:

βt ∼ N(β|Yj,uj,Ωe)

utj ∼ N(uj|Yj,β,Ωu,Ωe)

Ωt
u ∼ N(Ωu|Yj,uj)

Ωt
e ∼ N(Ωe|Yj,uj,β)

(4.5.1)
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and then, on convergence, we use the current draws of the parameters to draw the missing

values. As for single level FCS imputation, the difference with JM imputation is that missing

data are imputed using univariate models for each variable in turn, fully conditional on all the

other variables.

As for JM MI, the imputation models are different from the analysis model, so the algorithm

is the same whether data are missing in the covariates rather than in the outcomes.

The algorithm above appears to work well in practice, even though it is not possible to prove

convergence in general cases (van Buuren, 2011). However it is only applicable when partially

observed variables are all continuous.

Now, imagine we have a model with both a level 1 and a level 2 outcome. Ian White (personal

communication) pointed out a theoretical difficulty of FCS in this situation. In a cluster j we

observe a level 2 variable Y
(2)
j and a level 1 variable Y

(1)
i,j for each of the i = 1, . . . , ni individuals

in cluster j. Let Y
(1)
j = (Y

(1)
1,j , . . . , Y

(1)
ni,j

), and consider a model where we only have random

intercepts; the joint model for Y
(1)
j and Y

(2)
j is:

Y
(1)
j

Y
(2)
j

 ∼ N


β(1)

0 jni

β
(2)
o

 ,

ω1J + σ2I ω1,2jni

ω1,2j
T
ni

ω2


 , (4.5.2)

where J is a ni×ni matrix of ones, I is the ni×ni identity matrix and jni is a ni× 1 vector of

ones. Since for FCS we need all the full conditional models, we have to consider the conditional

distribution of Y
(2)
j |Y

(1)
j . This distribution is normal with mean β

(2)
0 + α(Y

(1)
j − β

(1)
0 jni), with



4 WHY MULTILEVEL MULTIPLE IMPUTATION? 85

α = ω1,2jni(ω1J + σ2I)−1. It is possible to prove that this inverse is of the form (aJ + bI), with

a =
−ω1

[σ2(niω1 + σ2)]

and b = 1
σ2 . So, since ei,j = Y

(1)
i,j − β

(1)
0 , we have the following expression of the conditional

expectation for Y
(2)
j :

E[Y
(2)
j |Y

(1)
j ] =

[
β
(2)
0 − niω1,2(nia+ b)β

(1)
0

]
+ niω1,2(nia+ b)Ȳ

(1)
j

So, the imputation model for the level 2 variable needs to include the mean of the level 1

responses as a covariate.

Next, consider a similar random intercepts model with two level 1 variables Y
(1)
1,j and Y

(1)
2,j and

no level 2 variables:Y
(1)
1,j

Y
(1)
2,j

 ∼ N


β(1)

0,1jni

β
(1)
0,2jni

 ,

ω1,1J + σ2
1,1I ω1,2J + σ2

1,2I

ω1,2J + σ2
1,2I ω2,2J + σ2

2,2I


 (4.5.3)

The conditional expectation is:

E
[
Y

(1)
2,i,j|Y

(1)
1,j

]
= β

(1)
0,2 +

σ2
1,2

σ2
1,1

(
Y

(1)
1,i,j − β

(1)
0,1

)
+ α(ni)ni

(
Ȳ

(1)
1,j − β

(1)
0,1

)

with

α(ni) =
ω1,2σ

2
1,1 − ω1,1σ

2
1,2

σ2
1,1(σ

2
1,1 + niω1,1)
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So, in our imputation model for Y
(1)
2,i,j we need to have as covariate Y

(1)
1,i,j, but also the mean

of that variable in cluster j, Ȳ
(1)
1,j and also a non linear interaction between the mean and the

cohort size ni.

If instead of a random intercept model we used a random intercept and slopes model, we would

have had to include in the model as covariates a function of observations and observation time

instead of the mean of Y1,j.

The general point is that, unlike in the cross-sectional setting, we no longer have a generic,

simple algorithm. Instead, the form of the conditional models is very different for different

covariate structures.

White and Resche-Rigon (2013), evaluated the impact of including or not the mean as a

covariate in the imputation model with simulations, finding that, at least in the case of equal

sized cohorts, this wasn’t affecting the results significantly. In their simulations, they also

compared the functionality of Van Buuren’s MICE with respect to two new programs doing

one-step or two-step estimation of the parameters in the model. They found that each of the

programs suffered some issues: Van Buuren’s suffered from convergence problems in presence

of systematically missing covariates, one-step approach could lead to low coverage and two-step

approach was quite slow.

They suggested the two-step approach using method of moments instead of REML for the

parameters estimates as a good compromise.
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4.6 Discussion

In this chapter we have explored the main characteristics of methods for dealing with missing

data in multilevel analyses. Discussion is ongoing in the scientific literature on which methods

are the best to use in these settings.

As we have seen, maximum likelihood methods and multiple imputation are currently the best

available options. Under identical MAR assumptions, both methods produce estimates that

are consistent and asymptotically efficient.

Supporters of ML argue that these methods have some advantages: first of all in ML you have

just one model, the substantive model, differently from MI where you have a substantive and

an imputation model. This can certainly be a good thing, since it avoids possible problems of

incompatibility between the two models. However, on the other hand, sometimes we may have

some auxiliary variables explaining missingness which we do not wish to include in the analysis

model; with MI, it is straightforward to just include them in the imputation model, without

modifying your substantive model, while with ML this becomes much more complicated.

Another advantage of ML is that interactions in the model are not an issue; otherwise, in MI,

and particularly in the multilevel modelling framework, imputation approaches allowing for

interactions and non-linearities between partially observed variables in the substantive model

are more difficult to develop. Recently, though, (Goldstein et al., 2014) proposed a new method

to solve this issue, that we will explore in more detail in Chapters 9 and 10 of this thesis.
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Despite these advantages, ML has a really big issue: as we argued in Section 4.4, the exact

calculation of the likelihood in presence of missing data in predictors in generalized linear

mixed models is awkward, and it becomes almost impossible with moderate rates of missing

data in a reasonable number of covariates of various types (continuous, binary, categorical).

On the other hand, Multiple Imputation is a very flexible tool and it does not become com-

putationally substantially more difficult if we have a large number of missing values, whether

they are in the outcome or in the predictors. This makes it an attractive approach in very

general situations and specifically, what we are most interested in, in multilevel settings.

Furthermore, with MI it is relatively simple to carry out sensitivity analyses in order to check

the robustness of our MAR assumption with respect to a possible MNAR mechanism. In

ML, some software have been implemented for estimating parameters under the MNAR as-

sumptions, for example PROC QLIM in Stata, but results may be extremely sensitive to

distributional assumptions about the outcomes.

If we decide to use Multilevel Multiple Imputation, we still need to decide which imputation

method to choose, JM or FCS. Both the multilevel MI approaches present advantages and

disadvantages. We have seen, for example, how the JM approach extends naturally from

the single level case and, provided we include all the partially observed variables in the joint

imputation model as responses, the only thing we have to specify is the multilevel structure

for each response. At the same time, though in principle finding a joint model for a mix of

continuous and categorical variables may seem an important theoretical issue of this approach,

the latent normal variables approach discussed in this chapter and in the previous one, makes

JM a compelling approach.
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Under the FCS approach, instead, a multilevel structure poses substantial problems because of

the difficulty of setting up the appropriate conditional models, as the function of the variables

we condition on depends on the assumed covariance structure of our model. This is an issue

even before considering categorical data. For this reason FCS is only a good strategy in simple

multilevel settings, e.g. two level models with exchangeability within clusters. It loses instead

its attractiveness in more general multilevel settings, in presence of a mix of data types at both

levels, for example in longitudinal studies with unbalanced times of measurements or in cross-

classified structures, i.e. when we have a dataset with patients nested in different clusters,

for example in hospitals and in neighbourhood. Conversely, in JM we only have to specify

the appropriate covariance structure for the covariance matrix of our joint model, which the

MCMC fitting algorithms can in principle handle without any further difficulties.

For all these reasons, JM MI is the most flexible tool to handle missing data with multilevel

structure. Therefore it is the focus of the rest of this thesis. However REALCOM, the only

software currently available for JM multilevel multiple imputation with the latent normal

variables approach, presents some problems: having been developed in Matlab, it is particularly

slow and therefore it presents some computational issues making it infeasible to use both for (i)

relatively large problems and (ii) simulation studies, which are necessary in order to investigate

finite sample properties.

For this reason, the first thing we decided to do in our research work was to develop a new

software for JM-MI, in order to make it feasible to investigate the use of this strategy to handle

missing data in IPD-MA with an extensive simulation work. We are going to prove that it is

possible to develop an efficient JM-MI software in Chapter 5 and we will describe the resulting

new R package, jomo (Quartagno and Carpenter, 2014), in Chapter 6.
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Motivated by the reasons set out in the previous chapter, we decided to pursue multilevel JM-

MI as a tool to handle missing data in IPD-MA. However, due to a lack of efficient software for

performing multilevel imputation, we decided to write our own software for this purpose. In

this chapter we will prove that the inefficiency of REALCOM, the only current program available

at the moment for multilevel JM-MI with a mix of missing data types, is not due to an intrinsic

limitation of the algorithm, but rather to the slowness of Matlab, the software used to develop

it. We will see that the very substantial reduction in computational time with our new software

shows that a joint modelling approach to missing data in IPD-MA is feasible.

Though our final aim is to implement JM-MI for the multilevel case, in this chapter we only

investigate single level situations. This is for the sake of simplicity, since if we were able to

prove the efficiency of JM-MI in the single-level case, the extension to multilevel imputation

would be immediate.

In Section 5.1 we give an overview of existing software for Joint Modelling Multilevel Multiple

Imputation, then in Section 5.2 we illustrate the results obtained from the first programs

written to implement JM-MI, using an artificial dataset. Then, in Section 5.3 we show the

results obtained from the analysis of the Youth Cohort Dataset, a huge dataset with more than

70, 000 observations on pupils’ GCSE scores. We conclude with a brief discussion in Section

6.6.
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5.1 Existing software for MI

We are aware of relatively few software packages for multilevel MI. Most MI software is single

level, with very limited extensions to the ML case. For example, mice (van Buuren and

Groothuis-Oudshoorn, 2011) and ICE (Stata, 2013) are respectively an R and a Stata software

for FCS imputation, which has gained a lot of popularity over the last ten years. However,

in the multilevel framework at present it is possible only to impute continuous variables and,

as we stressed in the previous chapter, there are good reasons to prefer the JM approach in

these settings. Furthermore, this extension of the FCS approach is based on an MCMC and

therefore (i) the computational attraction of using ‘in-built’ code from other packages is lost

and (ii) since we are using an MCMC anyway, it might be preferable to use simply the whole

MCMC approach, i.e. JM.

There are a number of R packages for JM imputation:

• norm uses the multivariate normal model to impute single level datasets with continuous

partially observed variables only;

• cat uses a log-linear model to impute categorical variables;

• mix makes use of the general location model to impute in the case of a mix of continuous

and categorical variables;

However, all of these packages can deal with a quite limited range of situations and none of

them extends fully to the multilevel setting. Schafer’s package pan (Zhao and Schafer, 2013)

allows for the imputation of hierarchical data. However, it only handles continuous data under
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the multivariate normal model. Some macros for multilevel imputation have been written in

MLwiN (Carpenter et al., 2012) as a second option; however this framework lacks the flexibility

for IPD-MA.

The third approach to multilevel JM imputation is the REALCOM software (Carpenter et al.,

2011). While this is very flexible, handling discrete data with the latent normal approach and

allowing for missing values both at level 1 and 2, it is very slow, as REALCOM is programmed

in MATLAB, a high level programming language.

The computational slowness of REALCOM is problematic for large IPD-MA datasets, where

we may need several days to obtain even ten imputed datasets. However, comparison of pan

and REALCOM suggests this is a specific problem of the software itself, rather than an intrinsic

limitation of the algorithm. For this reason the first goal of this project was to write programs

to speed up the REALCOM software. We have explored two strategies:

1. Writing C-routines for parts of the Matlab program that were running slowly (usually

because they involve categorical variables);

2. Writing a standalone C program.

We began with the multivariate normal model and then moved to the latent normal model.

An additional benefit of coding the algorithm has been to gain a much better understanding

of the methodology.
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5.2 Artificial Dataset

We decided to test our initial programs in the single level situation, to see whether the idea of

running C routines within the Matlab program was actually viable. Initially we programmed

Joint Modelling MI for the multivariate normal model. For brevity, we do not repeat the

results here and instead we concentrate on the latent normal model for categorical variables.

First of all we decided to test REALCOM and compare it with our programs, using an artificial

dataset with no missing observations.

Data generating mechanism. We simulated 1000 observations on 2 variables, one continuous

and one categorical with 4 categories. To draw this second variable, we used the latent normal

model:

• for each of the 1000 observations we drew 4 values from a multivariate normal distribution

with mean:

µ = [0,−0.3, 0, 0.3]

and variance matrix:

Σ =



1 0.25 0.25 0.25

0.25 1 0 0

0.25 0 1 0

0.25 0 0 1


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• We used the first value as the continuous variable Yi,cont for each observation i. The other

three, denoted Zi, with i = 1, 2, 3, were used as latent normals to generate the categorical

variable as follows:

if Zi < 0 ∀i⇒ Yi,cat = 4

if Zm > 0 and Zm = max
i
Zi i = {1, 2, 3} and m < 4⇒ Yi,cat = m

5.2.1 Fitting the model

We fit the following model:

Yi,cont = β1 + εi,cont

Pr(Yi,cat = 1) = Pr(Zi,1 > Zi,2 and Zi,1 > Zi,3 and Zi,1 > 0)

Pr(Yi,cat = 2) = Pr(Zi,2 > Zi,1 and Zi,2 > Zi,3 and Zi,2 > 0)

Pr(Yi,cat = 3) = Pr(Zi,3 > Zi,1 and Zi,3 > Zi,2 and Zi,3 > 0)

Pr(Yi,cat = 4) = Pr(Zi,1 < 0 and Zi,2 < 0 and Zi,3 < 0), where

Zi,1 = βcat,1 + εi,1

Zi,2 = βcat,2 + εi,2

Zi,3 = βcat,3 + εi,3

εi,cont

εi,1

εi,2

εi,3


= N4


0,Ω =



σ2
cont σcont,cat,1 σcont,cat,2 σcont,cat,3

σcont,cat,1 1 0 0

σcont,cat,2 0 1 0

σcont,cat,3 0 0 1





(5.2.1)
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We used REALCOM initially. We ran 1000 updates of the sampler, with a burn in of 100 updates,

and the final results were really similar to the ones that we expected, since both the posterior

mean of the fixed effect estimates and of the covariance matrix were within 1 /Even though

this was a quite small dataset and we ran just 1000 updates, it took more than 5 minutes to

run the sampler.

We then decided to try to run some routines in C, instead of a full Matlab program like

REALCOM, in order to reduce the computational time. To do this, first of all we wrote Matlab

code to repeat more or less the same procedure that REALCOM uses. This gave results really

close to REALCOM ones, both in terms of precision of the estimates and of time elapsed (see

Tables 5.1 and 5.2).

This gave a starting base, but we still had to choose which routines to implement in C.

Analysing our Matlab program, we found that more or less 70% of the time for each iteration

is spent in the rejection sampling step for drawing the latent normal variables for the categorical

response, and 29% of the time is spent in the element-wise update of the covariance matrix. So

these two routines seem to be the first candidates to implement with C code. Such C functions,

called from within Matlab, are called mex functions.

We first wrote a program which implemented only the rejection sampling step with a C sub-

routine, obtaining again good estimates of the means and the covariance terms, but saving a

lot of time, being three times faster than the full Matlab code.
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Program β̂1 β̂2 β̂3 β̂4
True value 0.000 -0.265 0.035 0.280
REALCOM -0.005 (0.031) -0.264 (0.054) 0.035 (0.052) 0.284 (0.049)
Matlab -0.004 (0.036) -0.270 (0.051) 0.035 (0.051) 0.281 (0.049)

Mex rej. samp. -0.003 (0.034) -0.266 (0.051) 0.040 (0.052) 0.281 (0.050)
Mex Update Cov. -0.004 (0.031) -0.274 (0.054) 0.031 (0.052) 0.279 (0.050)
Mex both routines -0.002 (0.032) -0.268 (0.053) 0.041 (0.052) 0.287 (0.049)

Full C code -0.003 (0.032) -0.286 (0.051) 0.037 (0.052) 0.288 (0.049)

Table 5.1: Posterior mean (SE) of the fixed effect estimates after running the MCMC for 1100
iterations with the different programs.

For the mex program which runs only the covariance matrix update with C code, the gain

in speed was lower, as we expected, while finally for the code with both the mex-subroutines

running at the same time we obtained a massive improvement. Finally we wrote a standalone C

program repeating the same algorithm, to see how much time was lost for passing continuously

data from Matlab to C and vice-versa. With this final program, we reached the same results in

16 seconds, gaining another 30% of speed from the previous program. The total speed up was

95%, clearly showing the potential of a more efficiently coded version of the JM approach for

more complex, larger, datasets. Tables 5.1 and 5.2 summarize the results of this first example.

Both the posterior means and covariance matrices were very similar across all the different

programs, though still slightly different because of Monte-Carlo variation.
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Program Time Elapsed % change compared to REALCOM

REALCOM 305 seconds
Matlab 343 seconds +12%

Mex rejection sampling 105 seconds −66%
Mex Update Covariance Matrix 275 seconds −10%

Mex both routines 23 seconds −92%
Full C code 16 seconds −95%

Table 5.2: Times elapsed for running 1100 iterations of the Gibbs sampler with the 4 different
programming approaches. The percent change in time elapsed compared to REALCOM is shown
in the right hand column.

5.3 Youth Cohort Study

The Youth Cohort Time Series for England, Wales and Scotland, 1984-2002, henceforth YCS,

is a dataset available from the UK Data Archive, with Study Number SN 5765. This dataset

merged data from different studies, principally one funded by the English government (YCS -

Youth Cohort Study for England and Wales) and two from the Scottish Government (SYPS -

Scottish Young People Survey and SSLS - Scottish School Leavers Survey). The SYPS collected

data on cohorts of students in the 80s and the SSLS collected data on cohorts of students in

the 90s. Unfortunately, some data are really poorly collected, mainly in the Scottish study

and for the cohorts of students in the 80s. For this reason, for our analysis we decided to

select only pupils from YCS who reached the end of their studies in 1990, 1993, 1995, 1997 and

1999. Restricting to these cohorts, we still have a really large dataset, containing more than

76, 000 observations and 88 variables describing both pupils’ personal characteristics, results

achieved in their studies, characteristics of their parents and of their families and so on. Our

focus is an illustrative analysis of the relationships between pupils’ GCSE scores and measures

of their social stratification like sex, ethnicity and type of parental occupation. Investigating
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these characteristics, we found a non-trivial proportion of missing data. For example, around

4% of observations on pupil’s ethnicity are missing and the situation is considerably worse for

the parental occupation variable, where nearly 15% of the values are missing (see Table 2.3).

To investigate the relationship between GCSE score and social stratification, we chose a simple

substantive model, a linear regression where GCSE score is the response and with 4 covariates

(plus the constant):

Yi = β0 + (β1,IntXi,Int + β1,WorkXi,Work) +

+ (β2,BlaXi,Bla + β2,IndXi,Ind + β2,PakXi,Pak + β2,BanXi,Ban + β2,OtaXi,Ota + β2,OtrXi,Otr) +

+β3Xi,Girl + (β4,93Xi,93 + β4,95Xi,95 + β4,97Xi,97 + β4,99Xi,99) + εi

(5.3.1)

Here,

1. GCSE score is calculated by giving 12 points to a A/A∗ through to 1 point for the bottom

grade. Pupils’ scores are capped at 84.

2. Parental Occupation is a 3-category variable indicating to which working class belongs

pupil’s parents. Class 1 is for a managerial or professional work (reference), class 2

intermediate and class 3 mostly manual work. In (5.3.1) indicator variables Xi,Int and

Xi,Work are used, so that the third category, professional, is the reference category, i.e.

Xi,Int = 0 and Xi,Work.

3. Ethnicity is a 7-category variable indicating each pupil’s ethnicity. The 7 categories are:

White (reference), Black, Indian, Pakistani, Bangladeshi, other Asian and other response.

Again, six indicator variables are used in model (5.3.1).
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Pattern GCSE Ethnicity Parental Occupation N % of Total
1 X X X 66965 87%
2 × X X 760 1%
3 X × X 423 0.5%
4 X X × 7523 10%
5 × × X 18 << 1%
6 × X × 332 0.3%
7 X × × 651 1%
8 × × × 119 0.2%

Total: 76791 100%

Table 5.3: Different Missing Data Patterns for the Youth Cohort Data: ‘X’ observed, ‘×’
missing.

4. Sex is a binary variable which is 1 for male and 2 for females.

5. Cohort is a 5-category variable indicating the year in which the pupil finished his/her

11th school year. As we previously said, this can be 1990 (reference), 1993, 1995, 1997

or 1999. Four indicator variables are used for this variable in (5.3.1).

Sex and cohort are fully observed, while for the other variables Table 5.3 shows the missing

data patterns. We created 10 imputed datasets and then we fit the substantive model (5.3.1)

to each imputed dataset in turn, finally combining the results via Rubin’s rules. We repeated

this procedure with 3 different software packages:

• ICE: Stata Package that implements the FCS approach;

• REALCOM: for a JM approach;

• Our new software that uses mex sub-routines to speed up REALCOM;
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In this way we were able both to verify if FCS and JM led to similar results, and explore

whether the new code could save time with respect to REALCOM — which we will see is really

slow — making it computationally feasible to analyse these data with a JM approach.

5.3.1 Imputation model

As we highlighted in Section 3.3, in order to retain the relationships of interest for the sub-

stantive model in the imputed data, we should use an imputation model congenial with our

substantive model, or even “richer” than it. So, for our final imputation model, we use all the

variables included in our substantive model, including the ones with missing data as responses

and the complete ones as covariates. However, to build this final imputation model, we decided

to proceed step by step, starting from a simple imputation model with only two responses and

adding the other variables one-by-one. This is not a typical procedure for choosing an impu-

tation model, but we decided to proceed in this way here only to test the code and compare

computational times with increasing number of variables.

Following this approach, the first imputation model took GCSE score and parental occupation

as responses and only the constant as a covariate. Obviously, since parental occupation is

a categorical variable, we adopted the latent normal strategy and so the joint model for the

responses was a 3-variate normal, with an appropriately constrained covariance matrix:
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Yi,1 = β1 + εi,1

Pr(Yi,2 = 1) = Pr(Zi,2,1 > Zi,2,2 andZi,2,1 > 0)

Pr(Yi,2 = 2) = Pr(Zi,2,2 > Zi,2,1 andZi,2,2 > 0)

Pr(Yi,2 = 3) = Pr(Zi,2,1 < 0 andZi,2,2 < 0)

Zi,2,1 = β2,1 + εi,2,1

Zi,2,2 = β2,2 + εi,2,2
εi,1

εi,2,1

εi,2,2

 = N3

0,Ω =


σ2
1 σ1,2,1 σ1,2,2

σ1,2,1 1 0

σ1,2,2 0 1


 .

(5.3.2)

The algorithm we followed is the same described in Section 3.3.1:

1. Choose initial value for all the parameters: we chose a vector of zeros for β and the

identity matrix for the covariance matrix;

2. Rejection sampling and imputation step: we draw the values of the latent normals with

a rejection sampling approach as explained on page 60. If one variable is missing for a

certain pupil, we draw it from the proper conditional normal distribution;

3. Update covariance matrix: this is done element-wise as explained on page 60;

4. Update β from the conditional normal distribution given all the other variables;

5. Repeat steps 2 to 4 n times, where n = nburn + nbetween.
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The results from Section 5.2 suggest that we will obtain a substantial computational speed up

by performing steps 2 and 3 of this algorithm with a mex subroutine, that is a function that

calls a C routine from Matlab.

Since in this first simplification of the full imputation model we are only interested in verifying

if the results obtained are similar to the ones given by REALCOM, we did not record actual

imputations, but we just run the algorithm for n = nburn + nbetween = 100 + 1500 = 1600

updates and we compared the posterior means of β and Ω between REALCOM and our software.

The details are given in Appendix B. They show that the posterior means of the fixed effect

estimates β̄ and Covariance matrix Σ̄ from both REALCOM and our code are within 1/

In this example the categorical variable had just 3 categories, but the more categories you

have, the more difficult it becomes to draw the right values at the rejection sampling step,

and so more time is demanded. For example, running the same model, but with the ethnicity

variable instead of parental occupation, requires 6 latent normals. This slows the program

substantially: now REALCOM takes almost 15 hours and our program around 1 hour.

We used the same algorithm in two further settings: the first was an imputation model with

both the categorical variables as responses at the same time. The second was the desired

congenial imputation model, with the same responses but with also gender and cohort as

covariates. In order to do this, we had to extend the code to include covariates as described

on pp.130–132 of (Carpenter and Kenward, 2013). After running the MCMC algorithm, the
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Model Responses Covariates REALCOM mex ICE
1 GCSE score Constant 472 35 19

Parental Occupation minutes minutes minutes
2 GCSE score Constant 863 67 36

Ethnicity minutes minutes minutes
3 GCSE score Constant 1247 95 65

Parental Occupation minutes minutes minutes
Ethnicity

4 GCSE score Constant 1276 294 327
Parental Occupation Gender minutes minutes minutes

Ethnicity Cohort

4 Writing mex routine for β update 127 minutes

4 Whole C code 78 minutes

Table 5.4: Elapsed times for running 1600 updates (JM) or cycles (FCS) of the same models.

results again agreed closely with REALCOM. However, again our code was much faster (Table

5.4). This time we also compared time elapsed with Stata’s ICE, running 1600 cycles of the

FCS algorithm.

Notice that in the last model, since the update of β with 3 covariates is more time consuming

and involves some loops, implementing that step in C via mex leads to a further speed up in

the programs of nearly 60% compared with Matlab.

Furthermore, writing a program that calls just one big C routine to implement the whole

algorithm, in order to save the time spent in passing the arguments from Matlab to C and

vice-versa resulted in further reducing the time elapsed to just 78 minutes. This is a final speed

up of over 16 times, compared to the 1276 minutes necessary to run the REALCOM program.
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It is interesting to notice that for “small” models, with only the constant, ICE seems to be

faster. However, once we have “bigger” models JM overtakes FCS in time per cycle/update.

We do not want to argue that our program is definitely quicker than ICE, since we are using a

different algorithm and typically with ICE one would use a smaller number of cycles than we

used in this example. Nonetheless we have shown that the two methods are computationally

competitive for large datasets, when our software is used.

5.3.2 Application to YCS model

The final step is to compare the results of the JM imputation with those from ICE’s imputation.

To do this, we need to impute a certain number of datasets with both methods, say 10, and then

fit the substantive model to each imputed dataset, finally applying Rubin’s rules to obtain the

combined results. We performed this procedure with REALCOM and our mex program running

the algorithm for 500 updates between each imputation, and also with ICE, running it for 500

cycles between each imputation. We obtained the results shown in Table 5.5. We see that

results obtained from REALCOM and our program are very similar, as expected.

If we compare these results with the ones obtained with a complete records analysis, we notice

some differences, the most interesting being the fact that the coefficient for the effect of the

Bangladeshi ethnicity changes direction, passing from 0.61 to −5.67. Furthermore, this effect

becomes strongly significant after imputation (p << 0.001) while with a complete case analysis

it is not significant (p = 0.53).
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The results of MI using FCS and JM generally agree closely. The exception is for the Pakistani

and Bangladeshi groups, where JM shows a stronger effect. Looking at the data more closely,

more than 90% of all the pupils observed belongs to the white category, and most of the

other ethnicities are not far from 1% of the total. Furthermore, if we look at the proportion

of missing parental occupation values in the different ethnic groups, we see that Bangladeshi

and Pakistani have really high proportions of missing data, more than 50%. Hence, perfect

prediction (White et al., 2010) for these two groups is more likely to occur. Indeed, ICE

warns that it has encountered perfect prediction issues. For this reason, FCS estimates in this

example are probably more accurate, since ICE uses the data augmentation solution proposed

by (White et al., 2010) to alleviate this problem. REALCOM’s results are slightly less affected

by this perfect prediction problem than mex’s results; this is because REALCOM implements its

own solution to this problem by constraining all the latent normals for the categorical variables

between -3 and 4:

−3 < Zi < 4 ∀i,

a solution not implemented in our mex code.
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Variable CR ICE REALCOM mex
Constant 39.35 (0.17) 38.80 (0.17) 38.76 (0.17) 38.76 (0.17)

Managerial reference
Intermediate -8.49 (0.14) -8.94 (0.14) -8.91 (0.14) -8.92 (0.14)

Working -15.84 (0.16) -16.58 (0.16) -16.30 (0.19) -16.34 (0.16)
White reference
Black -5.77 (0.54) -7.51 (0.50) -7.43 (0.50) -7.29 (0.49)
Indian 4.27 (0.39) 3.78 (0.39) 3.68 (0.37) 3.41 (0.38)

Pakistani -2.10 (0.56) -4.01 (0.46) -4.56 (0.46) -5.24 (0.45)
Bangladeshi 0.61 (1.01) -3.87 (0.71) -4.90 (0.81) -5.67 (0.71)
Other Asian 6.20 (0.59) 5.34 (0.54) 5.27 (0.55) 5.02 (0.54)

Other -1.32 (0.58) -1.32 (0.58) -1.14 (0.59) -1.30 (0.58)
Girls 2.89 (0.12) 2.87 (0.12) 2.86 (0.12) 2.87 (0.12)

Cohort 1990 reference
Cohort 1993 4.69 (0.19) 4.46 (0.18) 4.41 (0.18) 4.42 (0.18)
Cohort 1995 9.00 (0.19) 8.82 (0.19) 8.77 (0.19) 8.76 (0.19)
Cohort 1997 7.48 (0.20) 7.47 (0.19) 7.45 (0.19) 7.46 (0.19)
Cohort 1999 12.17 (0.20) 12.40 (0.19) 12.37 (0.19) 12.40 (0.20)

Table 5.5: Results of the substantive analysis of the Youth Cohort Data. We compare Complete
Records (CR), ICE, REALCOM and our mex function. We create 10 imputations with both
methods (JM and FCS), with 500 updates between imputations in JM and 50 cycles in FCS.
In both cases nburn = 500.
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5.4 Conclusions

We have explored the potential for substantially speeding up Joint Modelling Multiple Impu-

tation by using Matlab programs which call C subroutines. Analysing two different datasets,

we found out that with respect to the older software we were able to obtain a > 15-fold speed

up. We also confirmed that results of our substantive analysis are similar to those obtained

with an FCS approach.

Even though we would typically use more MCMC iterations than ICE cycles, we have shown

that for large datasets the JM approach, with a mix of categorical and continuous data, is

computationally competitive to ICE for cross sectional data. Given this, and remembering

that JM is the most natural way of imputing hierarchical data, we were strongly motivated to

develop a JM imputation program for Multilevel MI, in order to analyse IPD-MA data.

However before moving to the multilevel framework, we decided that it was preferable to move

from Matlab to R. This was because we wanted to have the largest possible impact in the

medical research world, where R is nowadays the most widely used statistical software.

The resulting package was submitted to CRAN and published under the name of jomo (Quartagno

and Carpenter, 2014). In the next chapter, we are going to introduce the main functions avail-

able in the new package, and illustrate its use.
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In Chapter 4 we argued that multilevel JM-MI is potentially the best strategy to handle missing

data in IPD-MA, while in Chapter 5 we proved that the main issue related to this approach, i.e.

the inefficiency of the current software available, can be overcome by developing a new software

implementing some steps of (or potentially the whole) MCMC sampler with C subroutines.

We then decided to move the ‘non-C’ part of the program from Matlab to R, in order to be

able to reach the widest possible audience and to make our software freely available to the

research community. The resulting package was submitted to CRAN (R Core Team, 2014) and

is called jomo (Quartagno and Carpenter, 2014). The aim of this chapter is to introduce this

package.

In Section 5.1 we briefly discuss the issues encountered when moving from Matlab to R. We then

present the functions of the new R package in Section 6.2, followed by two short illustrations of

the software for single level (Section 6.3) and 2-level (Section 6.4) imputation and for checking

the convergence of the MCMC sampler (Section 6.5). We conclude with a discussion in Section

6.6.

6.1 From Matlab to R

When starting to develop the functions for multilevel JM-MI in R, we encountered some

additional issues with respect to the use of mex functions in Matlab:
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• The .Call() function in R, i.e. the equivalent of mex in R, is not as easy to use; this is

mainly because handling R type variables in C is only possible through the SEXP structures

(R Development Core Team, 2015). With SEXP variables, the R data types (e.g. numeric,

factor, integer, etc etc) must be redefined within the C code for each variable, and they

are not directly inherited from the R objects. This could have been partially simplified

by using the package Rcpp (Eddelbuettel and Francois, 2011), that provides an interface

for seamlessly accessing, extending or modifying R objects at the C++ level; however,

we decided not to go down this path because it would have involved switching from C to

C++, which is not an entirely different programming language but (i) it is still different

in many details, and (ii) it would have required to spend a lot of time learning this new

language, losing the advantage of using Rcpp.

• We initially encountered severe computational problems calling from R broadly the same

C subroutines that we had called from Matlab in the functions tested in Chapter 5; we

finally found out that the reason for this, was that we had to allocate the memory for

arrays created internally in C at the beginning of the whole code, instead of doing it

locally within the main body of the functions. Modifying the programs accordingly, led

to a massive improvement in the performance.

• The CRAN policies for submitting a new R package are very strict and precise; therefore

a lot of work was necessary for adapting the functions to the R guidelines and preparing

the package for submission.
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After having addressed all these issues, we finally submitted the package, which we decided to

call jomo (acronym for JOint MOdelling). In the sections below we are going to introduce the

main functions available in the new package, and illustrate its use. A version of the material

for the remaining of this chapter is being written up for submission to the peer-reviewed R

Journal.

6.2 Functions

jomo provides nine main functions for imputing datasets, divided into three categories:

• jomo1con, jomo1cat and jomo1mix: these are used in order to impute datasets with

a single level structure. While jomo1con is very similar to the imp.norm function of

the NORM package, jomo1cat and jomo1mix are used when, in the imputation model,

outcomes are respectively categorical variables only or a mix of continuous and categorical

data. The strategy used is the latent normal variables approach described in Chapter 3.

• jomo1rancon, jomo1rancat and jomo1ranmix: these are used in presence of clustered

data. Again, jomo1rancon is very similar to pan while jomo1rancat and jomo1ranmix

make use of latent normal variables. In these functions, a fixed common covariance

matrix is assumed across all clusters in the imputation model;

• jomo1ranconhr, jomo1rancathr and jomo1ranmixhr: these three functions deal with

clustered data as well, but considering an imputation model where each cluster has a

different covariance matrix randomly distributed about an overall covariance matrix, as

proposed in (Yucel, 2011).
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In addition to these functions, there are two wrapper functions, called jomo1 and jomo1ran.

These functions have been introduced to link together all the functions for the single level and

the multilevel models respectively, without the need to specify the type of variables and the

number of categories. As we will highlight later in the discussion, though, it is important to be

sure that the data we are using have the right format when using these two functions. In the

next sections we are going to show step by step how to use these functions in order to impute

datasets.

6.3 jomo: tutorial with single level datasets

In this section we introduce the functions for imputing datasets with a single level structure.

The first thing we need to do when we want to use JM imputation is always to choose a joint

imputation model; this needs to be compatible with the substantive model of our primary

analysis.

Once we have chosen the imputation model to use, there are three functions available for

running the MCMC to impute the data; we can choose to use one of these three functions

depending on the type of variables that we will have as outcomes in the joint imputation

model. When all of the outcomes are continuous, jomo1con is the right function to use, while

jomo1cat and jomo1mix are intended to deal with situations where categorical or a mix of

continuous and categorical data are included as outcomes in the joint model.
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Consider an example based on the dataset sldata, included in the package. This is an artificial

dataset, with four variables: age, sex, 4-category social status and an ‘outcome’ measure.

Missing data occur in all these variables but sex. Firstly, suppose that we do not use the social

status variable, so that our joint imputation model is:


Ymeasure,i = β0,m + β1,mXsex,i + εm,i

Yage,i = β0,a + β1,aXsex,i + εa,i

(
εm,i
εa,i

)
∼ N (0,Ω) (6.3.1)

where i indexes the observations.

Both responses in this model, measure and age, are continuous variables. Sex is also present,

but it is considered as a covariate, being fully observed; therefore we will need to use jomo1con.

The code below can be used to create 5 imputed datasets with this imputation model:

#Upload and attach the data

data("sldata")

attach(sldata)

#Define a data.frame with the imputation model outcomes Y

Y<-data.frame(measure,age)

#Define a data.frame with the imputation model covariate X.

#A column of 1 indicates the intercept

X<-data.frame(rep(1,300),sex)

#Define the starting values for beta

beta.start<-matrix(0,2,2)

#Define the starting value for the covariance matrix (identity matrix)



6 JOMO: NEW R PACKAGE FOR MULTILEVEL JM-MI 115

l1cov.start<-diag(1,2)

#Define the scale matrix for the inverse Wishart prior for the covariance matrix

l1cov.prior<-diag(1,2);

#Assign number of burn-in, between imputation iterations and imputations

nburn<-as.integer(200);

nbetween<-as.integer(200);

nimp<-as.integer(5);

#Create imputed datasets imp with function jomo1con

imp<-jomo1con(Y=Y,X=X,beta.start=beta.start,l1cov.start=l1cov.start,

l1cov.prior=l1cov.prior,nburn=nburn,nbetween=nbetween,nimp=nimp)

As we can see, we need to pass separately a data.frame, or matrix, containing the outcomes

and the covariates of the imputation model considered. Then, we can give starting values to

the fixed effect estimates ( beta.start) and to the covariance matrix (l1cov.start). In this

example we decided to start from a matrix of zeros for beta.start and from a simple identity

matrix for the covariance matrix. These are the default choices of the function, so specifying

them is actually redundant.

Regarding the choice of the priors, a flat prior in assigned to β in this function, while an inverse-

Wishart prior is assigned to the covariance matrix. Degrees of freedom of this distribution are

left to the minimum possible, in order to represent maximum uncertainty. However, we can

specify the value of the scale matrix for the prior, l1cov.prior. This is not mandatory and

the default value is the identity matrix. nburn is the number of iterations we want to run

before registering the first imputation; this should be chosen in order to be confident of having

reached the stationary distribution at the end of nburn iterations of the sampler. Depending on
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the situation, i.e. on the complexity of the imputation model, the cardinality of the dataset,

etc etc, we may have to choose higher or lower values for this number. 500 iterations are

usually enough to reach the stationary distribution, but we discuss in Section 6.5 how to check

the convergence of the sampler. nbetween is the number of iterations to be run between

two successive imputations. This is done in order to obtain (approximately) stochastically

independent draws. Usually we choose a value similar to nburn or slightly smaller. Finally,

nimp is the number of imputations we want to create.

After running this example, on screen we can see the posterior mean of the fixed effect estimates

and the posterior covariance matrix of the imputation model.

The posterior mean of the fixed effects estimates is:

[,1] [,2]

[1,] 0.888329642 67.14421571

[2,] -0.008295014 -0.03850029

The posterior covariance matrix is:

[,1] [,2]

[1,] 0.7843420 0.4427945

[2,] 0.4427945 52.8341167

In imp, the program places the original and the imputed datasets in long format, i.e. stacked

one below the other, with a new variable, Imputation, indexing the imputation number. The

number 0 indicates the original, non imputed data:

> head(imp)
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measure age rep.1..300. sex Imputation id

1 NA 59 1 0 0 1

2 0.3832350 70 1 0 0 2

3 1.2642911 63 1 0 0 3

4 0.7668186 55 1 1 0 4

5 NA 59 1 1 0 5

6 -0.1719376 58 1 0 0 6

> head(imp[imp$Imputation==1,])

measure age rep.1..300. sex Imputation id

301 1.9278797 59 1 0 1 1

302 0.3832350 70 1 0 1 2

303 1.2642911 63 1 0 1 3

304 0.7668186 55 1 1 1 4

305 0.8018390 59 1 1 1 5

306 -0.1719376 58 1 0 1 6

Now, imagine that the model we were originally interested in was a simple linear regression:

Ymeasure,i = α0 + α1Xsex,i + α2Xage,i + εi (6.3.2)

Once we have created our imputed datasets, it is enough to fit our substantive model 5 times

and aggregate the results using Rubin’s rules, which are for example implemented in function

MI.inference of the BaBooN package (Meinfelder, 2011):

#Initialize vectors of estimates (mean,SE) for the two parameters:
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estimates<-rep(0,5)

ses<-rep(0,5)

estimates2<-rep(0,5)

ses2<-rep(0,5)

#for cycle to fit substantive model for each imputation

for (i in 1:5) {

#select imputation i

dat<-imp[imp$Imputation==i,]

#fit substantive model

fit<-lm(measure~age+sex,data=dat)

#Register values of the estimates from imputation i

estimates[i]<-coef(summary(fit))[2,1]

ses[i]<-coef(summary(fit))[2,2]

estimates2[i]<-coef(summary(fit))[3,1]

ses2[i]<-coef(summary(fit))[3,2]

}

#Upload library BaBooN

library("BaBooN")

#Apply Rubin rules to find MI estimate of both parameters

MI.inference(estimates, ses^2)

MI.inference(estimates2, ses2^2)

If we have binary covariates in the imputation model, these may be included in the X matrix

without any problem, as we did for sex in the previous example. If there are categorical ones,

these may also be included, but dummy variables have to be created first, excluding one of
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the dummies for redundancy reasons. This can be easily done for example with the R package

dummies (Brown, 2012). Typically, the most common variables level is the preferred choice

for the reference level.

If we wish to include binary or categorical variables as outcomes in the imputation model,

typically because they have missing values, we can use function jomo1mix. For example,

suppose we have formulated the following imputation model:



Ymeasure,i = β0,m + β1,mXsex,i + εm,i

Yage,i = β0,a + β1,aXsex,i + εa,i

Pr(Ysoc,i = 1) = Pr(Ysoc,1,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 2) = Pr(Ysoc,2,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 3) = Pr(Ysoc,3,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 4) = Pr(maxj=(1,2,3) Ysoc,j,i < 0)

Ysoc,1,i = β0,s1 + β1,s1Xsex,i + εs1,i

Ysoc,2,i = β0,s2 + β1,s2Xsex,i + εs2,i

Ysoc,3,i = β0,s3 + β1,s3Xsex,i + εs3,i



εm,i

εa,i

εs1,i

εs2,i

εs3,i


∼ N (0,Ω) (6.3.3)

We need to remember that in the underlying multivariate normal imputation model, categorical

variables, i.e. social in this case, are modelled using latent normals, i.e. Ysoc,1, Ysoc,2 and Ysoc,3.

Therefore we need to specify n − 1 starting β values for each n-category variable and a valid

starting value for the covariance matrix. For example:
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#Define data.frame with imputation model continuous outcomes

Y.con<-data.frame(measure,age)

#Define data.frame with imputation model categorical outcome

Y.cat<-data.frame(social)

#Define number of levels for categorical outcome

Y.numcat<-c(4)

#Define data.frame with imputation model covariates

X<-data.frame(rep(1,300),sex)

#Initialize fixed effect estimates and covariance matrix

beta.start<-matrix(0,2,5)

l1cov.start<-diag(1,5)

#Define scale matrix of inverse Wishart prior for covariance matrix

l1cov.prior<-diag(0,5);

#Assign number of burn-in, between imputation iterations and imputations

nburn<-as.integer(500);

nbetween<-as.integer(200);

nimp<-as.integer(5);

#Impute with function jomo1mix

imp<-jomo1mix(Y.con,Y.cat,Y.numcat,X,beta.start,l1cov.start,l1cov.prior,nburn,nbetween,nimp)

The output for this call is identical to the one obtained with jomo1con and therefore is not

shown here. In the covariance matrix update step, a further complication in the method arises.

As outlined in Chapter 3, for identifiability reasons, variances of the latent normals must be

kept fixed to 1, while covariances of latent normals related to the same variable should be fixed

to 0.5. In the mex functions presented in the previous chapter, we fixed these covariances to

0 as in REALCOM, but in jomo we avoid this approximation and we keep the 0.5 values.
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Because of these constraints, we can no longer draw the new value for the covariance matrix

at each step from an inverse Wishart distribution. The way we overcome this issue is via an

element-wise update of the matrix through a Metropolis-Hastings step, as explained in Chapter

3. The same holds for function jomo1cat.

6.3.1 A wrapper function: jomo1

jomo1 is the name of a function which can be used when we do not want to specify if a

variable is continuous or nominal. This function links all the three previous ones, treating

automatically each numeric variable as continuous and each factor as categorical, both if it is

ordered or unordered. An example of the simplest possible call to this function is:

Y<-data.frame(measure,age)

imp<-jomo1(Y)

After running this code, a message is printed on screen, telling us that jomo1con was the

function used, since both measure and age were found to be numeric variables. However, by

running:

Y<-data.frame(measure,factor(social))

imp<-jomo1(Y)

we tell the program that social is a factor variable, and so we use function jomo1mix.
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6.4 jomo: tutorial with multilevel structures

Suppose we want to impute a multilevel dataset,where individuals are grouped in clusters. The

primary example we have in mind is patients nested in studies in IPD-MA. In this setting,

we can choose between two strategies: an imputation model with a fixed common covariance

matrix across clusters or with different, cluster-specific matrices, randomly distributed about

an overall covariance matrix.

When choosing to adopt the first strategy, as in the single level case we can use function

jomo1rancon if the imputation model has continuous outcomes only and jomo1rancat or

jomo1ranmix otherwise.

Consider the dataset mldata, included in the package. It consists of simulated data from

individuals clustered in different cities. Therefore, here cities play the same role of studies in

an IPD-MA. Apart from this, the variable names and ‘definitions’ in this dataset are exactly

the same as in sldata and missingness occurs again in all variables but sex.

Now, suppose we set up the following joint imputation model:
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

Ymeasure,i,j = β0,m + β1,mXsex,i,j + um,j + εm,i,j

Yage,i,j = β0,a + β1,aXsex,i,j + ua,j + εa,i,j

Pr(Ysoc,i = 1) = Pr(Ysoc,1,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 2) = Pr(Ysoc,2,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 3) = Pr(Ysoc,3,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 4) = Pr(maxj=(1,2,3) Ysoc,j,i < 0)

Ysoc,1,i,j = β0,s1 + β1,s1Xsex,i,j + us1,j + εs1,i,j

Ysoc,2,i,j = β0,s2 + β1,s2Xsex,i,j + us2,j + εs2,i,j

Ysoc,3,i,j = β0,s3 + β1,s3Xsex,i,j + us3,j + εs3,i,j

εi,j =



εm,i,j

εa,i,j

εs1,i,j

εs2,i,j

εs3,i,j


∼ N (0,Ωe) uj =



um,j

ua,j

us1,j

us2,j

us3,j


∼ N (0,Ωu)

(6.4.1)

In this imputation model, we have indexed with i the single observations and with j the

clusters; as we can see, we have new parameters with respect to imputation model (6.3.3),

specifically uj, the vectors of random effects, and Ωu, the level two covariance matrix.

Here we show how to use function jomo1ranmix to perform MCMC imputation under the

above model:
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#Define data.frames with imputation model outcomes

Y.con<-data.frame(measure,age)

Y.cat<-data.frame(social)

#Define number of levels for categorical outcome

Y.numcat<-c(4)

#define data.frame with imputation model covariates

X<-data.frame(rep(1,1000),sex)

#Define data.frame for imputation model covariates associated with random effects

Z<-data.frame(rep(1,1000))

#Define data.frame with clustering indicator

clus<-data.frame(city)

#Initialize fixed effect estimates

beta.start<-matrix(0,2,5)

#Initialize random effect estimates

u.start<-matrix(0,10,5)

#Initialize level 1 covariance matrix

l1cov.start<-diag(1,5)

#Initialize level 2 covariance matrix

l2cov.start<-diag(1,5)

#Define scale matrix for inverse Wishart prior for level 1 covariance matrix

l1cov.prior<-diag(0,5);

#Define scale matrix for inverse Wishart prior for level 2 covariance matrix

l2cov.prior<-diag(1,5);

#Assign number of burn-in, between imputation iterations and imputations.

nburn<-as.integer(500);

nbetween<-as.integer(200);
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nimp<-as.integer(5);

#Impute with function jomo1ranmix

imp<-jomo1ranmix(Y.con, Y.cat, Y.numcat, X,Z,clus,beta.start,u.start,l1cov.start, l2cov.start,l1cov.prior,

l2cov.prior,nburn,nbetween,nimp)

We need to initialize in this function our two new parameters, the matrix whose rows are the

random effects vectors (u.start) and the level 2 covariance matrix (l2cov.start). Here we

decided to start with default values, a vector of zeros for u.start and an identity matrix for

l2cov.start, so specifying the default values explicitly was in fact redundant. For the level 2

covariance matrix we consider an inverse-Wishart prior, once again with the minimum possible

degrees of freedom and with scale matrix l2cov.prior. For the level 1 covariance matrix,

following (Carpenter et al., 2011), we consider a flat prior instead.

In general there are some other possible new inputs to pass to function jomo1mix, e.g. Z, the

design matrix for the random effects, and clus, a vector indicating cluster number for each

observation.

The output is very similar to the case of single level variables, but in this case even the posterior

distribution for the random effects and the level 2 covariance matrices are displayed.
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6.4.1 Cluster-specific covariance matrices

In some cases, we might have some concerns about the hypothesis that all of the clusters

share the same level 1 covariance matrix; for example, in the case of IPD-MA, it is often

reasonable to assume that covariance matrices are different among the studies. This is an

example of a multilevel dataset that we might want to impute using functions jomo1ranconhr

and jomo1ranmixhr.

Consider the same dataset as in the section above, but this time imagine that it is more realistic

to think that within each city (cluster), the covariance matrix is different. Algebraically:
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

Ymeasure,i,j = β0,m + β1,mXsex,i,j + um,j + εm,i,j

Yage,i,j = β0,a + β1,aXsex,i,j + ua,j + εa,i,j

Pr(Ysoc,i = 1) = Pr(Ysoc,1,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 2) = Pr(Ysoc,2,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 3) = Pr(Ysoc,3,i = maxj=(1,2,3) Ysoc,j,i > 0)

Pr(Ysoc,i = 4) = Pr(maxj=(1,2,3) Ysoc,j,i < 0)

Ysoc,1,i,j = β0,s1 + β1,s1Xsex,i,j + us1,j + εs1,i,j

Ysoc,2,i,j = β0,s2 + β1,s2Xsex,i,j + us2,j + εs2,i,j

Ysoc,3,i,j = β0,s3 + β1,s3Xsex,i,j + us3,j + εs3,i,j

εi,j =



εm,i,j

εa,i,j

εs1,i,j

εs2,i,j

εs3,i,j


∼ N (0,Ωe,j) uj =



um,j

ua,j

us1,j

us2,j

us3,j


∼ N (0,Ωu)

(6.4.2)

We can then decide to treat Ωe,j as fixed or random cluster-specific covariance matrices; this

means that we can either just estimate in the MCMC nclus different covariance matrices for

each cluster separately or we can even assume that all of these covariance matrices are actually

random draws from the same distribution, which in the case of jomo is an inverse-Wishart

distribution.
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For the details on the algorithm used to fit the random covariance matrices algorithm initially

proposed by (Yucel, 2011), see the appendix A.

Here we present an example of how to perform JM imputation under model (6.4.2):

#Define data.frames with imputation model outcomes

Y.con<-data.frame(measure,age)

Y.cat<-data.frame(social)

#Define number of levels for categorical outcome

Y.numcat<-matrix(4,1,1)

#define data.frame with imputation model covariates

X<-data.frame(rep(1,1000),sex)

#Define data.frame for imputation model covariates associated with random effects

Z<-data.frame(rep(1,1000))

#Define data.frame with clustering indicator

clus<-data.frame(city)

#Initialize fixed effect estimates

beta.start<-matrix(0,2,5)

#Initialize random effect estimates

u.start<-matrix(0,10,5)

#Initialize level 1 covariance matrices. These are stacked one below the other

l1cov.start<-matrix(diag(1,5),50,5,2)

#Initialize level 2 covariance matrix

l2cov.start<-diag(1,5)

#Define scale matrix for inverse Wishart prior for level 1 covariance matrix

l1cov.prior<-diag(0,5);
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#Define scale matrix for inverse Wishart prior for level 2 covariance matrix

l2cov.prior<-diag(1,5);

#Assign number of burn-in, between imputation iterations and imputations.

nburn<-as.integer(500);

nbetween<-as.integer(200);

nimp<-as.integer(5);

#Define starting value for df of the inverse Wishart distribution

#from which the covariance matrices are drawn

a<-6

# Impute with function jomo1ranmixhr

imp<-jomo1ranmixhr(Y.con, Y.cat, Y.numcat, X,Z,clus,beta.start,u.start,l1cov.start,

l2cov.start,l1cov.prior,l2cov.prior, nburn,nbetween,nimp, a)

There are two differences in the inputs for this function with respect to the previous one. First

of all, as mentioned in the comments within the code, l1cov.start is a matrix with all the

cluster-specific starting values for the covariance matrices stacked up. The same format is used

in the output. Secondly, there is a new input, a, which is the starting value for the degrees

of freedom of the inverse Wishart distribution from which all of the covariance matrices are

drawn. It is usually recommendable to use the default minimum possible value p, i.e. the

number of outcomes, in order to represent maximum uncertainty.

In both functions, we have an option meth which we can choose to set to Fixed or Random

depending on whether we want to use a fixed or random cluster-specific covariance matrices

approach.
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6.4.2 A wrapper function: jomo1ran

In the same way that jomo1 links the single level functions, jomo1ran links all the functions

for multilevel imputation. Numeric variables are automatically treated as continuous and

factor variables as nominal, while it is possible to choose between the functions for a common

covariance matrix across clusters or study-specific covariance matrices by setting the meth

option to either common, fixed or random.

6.5 Checking convergence of MCMC

When running an MCMC sampler, it is important to check the sampler has reached the

stationary distribution before starting to register imputations. In order to do this, for each

function in the package we have also provided a ‘.MCMCchain’ version.

The way it works is illustrated by the following simple example:

Y<-data.frame(measure,age)

X<-data.frame(rep(1,300),sex)

nburn<-500

imp<-jomo1con.MCMCchain(Y,X,nburn=nburn)
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In this case we are just running the sampler for a certain number of iterations, nburn, and

therefore we do not need to specify the number of imputations. Secondly, the output from this

function is no longer just a data.frame with the imputed datasets, but it is actually a list

containing three elements:

• finimp: the final state of the dataset, which would be the first imputation if we ran the

jomo1con function with nburn burn-in iterations of the MCMC sampler;

• collectbeta: a 3-dimensional array containing the fixed effect draws at each of the

nburn iterations;

• collectomega: a 3-dimensional array containing the level 1 covariance matrix draws at

each of the nburn iterations;

When running the functions for multilevel imputation we also have:

• collectu: a 3-dimensional array containing the random effects draws at each of the nburn

iterations;

• collectcovu: a 3-dimensional array containing the level 2 covariance matrix draws at each

of the nburn iterations;

We can then check the convergence of the sampler by inspection of the line graph of the

evolution of each parameter value and perform more formal tests if desired. For example,

Figure 6.1 shows the plot for the first element of the fixed effects vector, which we obtain by

running:
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Figure 6.1: MCMC chain for one of the fixed effect parameters

plot(c(1:nburn),imp$collectbeta[1,1,1:nburn],type="l")

In this case, we can see that, based on visual check of the plot, 500 burn-in iterations appear

to be quite a conservative choice, since the stationary distribution seems to have been reached

much sooner.

Plots for elements of the covariance matrix updated though Metropolis-Hastings steps look

quite different, because they may not be updated at each iteration. See for example in Figure

6.2 the plot obtained by running the following commands:

Y.con<-data.frame(measure,age)

Y.cat<-data.frame(social)

Y.numcat<-matrix(4,1,1)
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Figure 6.2: MCMC chain for one element of the level 1 covariance matrix

X<-data.frame(rep(1,300),sex)

nburn<-as.integer(500);

imp<-jomo1mix.MCMCchain(Y.con,Y.cat,Y.numcat,X,nburn=nburn)

plot(c(1:nburn),imp$collectomega[1,1,1:nburn],type="l")

Therefore, we may need to run a greater number of iterations in the burn-in phase for such

models, compared to models with only continuous variables. When plotting the elements of the

covariance matrix related to categorical variables, we get a straight line, since these elements

are fixed to 1 (variance terms) or 0.5 (covariance terms).
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6.6 Conclusions and further developments

We have written and described a new package for performing JM Multiple Imputation of

clustered data, allowing for the introduction of categorical or binary variables in the imputation

model as outcomes. A significant, and practically important, development is the addition of

code allowing for fixed or random cluster-specific covariance matrices. This package is an

important advance because (i) its computational speed enables us – for the first time – to

comprehensively evaluate the performance of the JM-MI approach using simulations, and (ii)

the flexibility in approaches to the cluster-specific covariance matrices will be very important

in our application to IPD-MA. However, as with all statistical techniques, multiple imputation

may be a great tool but it has to be used carefully. There are some important points we need

to stress:

• When choosing the imputation model to use, we need to be sure that such a model is

actually compatible with the substantive model of interest;

• Multiple Imputation assumes data are MAR. If data are MNAR, results of our analysis

after naively imputing with jomo may be biased (although a small bias and substan-

tial gain in efficiency may still be better than a complete records analysis). A proper

sensitivity analysis to different assumptions to MAR is therefore recommended;

• We need to be sure that stationary distribution has been reached when we start registering

imputations. This may be checked, as explained in the previous section, through a careful

examination of the MCMC chains;
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• Before setting the program to create the imputations, we may want to do something

similar to Stata’s ICE dryrun, i.e. a check to see if the model we are running is exactly

the one we intend and if we are passing the correct inputs; in practice we recommend

running initially the ‘.MCMCchain’ function with nburn = 2 and looking at the output

to see whether we are running the intended model;

• As already mentioned, when using categorical variables as covariates in the imputation

model, it is necessary to create dummy variables first, excluding the dummy indicator

for one of the categories.

• When running certain models, functions could run quite slowly, depending mainly on

these factors:

1. Number of observations is particularly large, say nobs > 100000;

2. Number of variables (especially categorical) is big, say nvar > 15;

3. Some of the categorical variables have many possible levels, say ncat > 5;

• When using functions for random cluster-specific covariance matrices, one needs to re-

member that the assumption behind this method is that the covariance matrices are

drawn from an inverse-Wishart distribution. Obviously this is not the only choice, but

it is a natural starting point, due to the simplicity of the calculations because it is the

conjugate distribution for the covariance matrix of multivariate normally distributed

data.
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We tested the functions written in this package extensively, and we are going to present the

results of a large simulation work to investigate their use to handle missing data in IPD-MA

in the next two chapters. Chapter 7 will focus on functions for imputing continuous data only,

while Chapter 8 will extend to different missing data types.

One of the main advantages of our method is that, in principle, it can be used with any number

of variables and with missing data in any possible pattern. However, when interactions or non-

linear terms are present in the model of interest, not considering this in the imputation model

may lead to bias. We will return to the issue of how to address this in Chapter 9 and 10.

In some cases, when analysing multilevel datasets, data might be missing in level 2 variables,

e.g. when we have patients nested within the same surgeon and some data on the participation

of surgeons to a certain training is missing. In the future we aim to introduce functions for

the imputation of such variables as well.

Another possible future extension could be the inclusion of functions for multilevel imputation

with random study-specific covariance matrices coming from other distributions other than the

inverse-Wishart distribution.

We are continuing to maintain and update the package, which is proving popular in the re-

search community, with at least two research papers using jomo that have been submitted to

international scientific journals, and several other researchers that have have started to use it,

though the package has been submitted to CRAN less than a year ago.
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In this chapter we present the first part of our investigation of the use of the proposed method,

multilevel JM-MI, to handle missing data in IPD-MA; we will focus here on the case of multi-

variate normally distributed partially observed data. Extensions to different kind of data and

joint models will be discussed in Chapter 8. The research presented in this chapter forms the

core of (Quartagno and Carpenter, 2015), which is in press with Statistics in Medicine.

The chapter is organized as follows. Section 7.2 presents the meta-analysis and imputation

models used in the following analyses. In Section 7.3 we present the results of simulations

to evaluate our proposed approach. We start with the same scenarios considered by Burgess

et al., and then consider some more challenging settings. We conclude with a discussion in

Section 7.4.

7.1 Introduction

Non-trivial proportions of missing covariate data are common in clinical IPD meta-analyses,

and the issues they raise need to be appropriately addressed. Such missing data can take

two forms: (i) missing data within studies (which we term sporadically missing data) and

(ii) missing data because a particular variable was not collected in a particular study. The

latter situation frequently arises, as IPD meta-analyses datasets are typically assembled post-

hoc, and the individual studies have often followed different protocols and collected different

variables.
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With sporadically missing data, one approach to the analysis is to restrict attention to the

subset of individuals with complete records. When the studies have a large number of indi-

viduals (so the resulting loss of power is acceptable), and, crucially, the chance of data being

missing can be reasonably assumed not to depend on the outcome (i.e. dependent variable)

in our substantive model given the covariates, so that bias is not a concern (Carpenter and

Kenward, 2013, p. 28), this may be satisfactory.

However, the above assumption is typically implausible. Thus, there are many settings where

the complete records analysis is insufficient. In these cases, we have argued in Chapter 4 that

Multilevel Multiple Imputation is a natural approach to consider.

The specification of an appropriate imputation model (and hence appropriate predictive dis-

tribution for the missing data) raises some issues in the context of meta-analysis. First, should

a separate imputation model be fitted to each study, or should some attempt be made to

impute jointly across all the studies? Second, at what point in the procedure should Rubin’s

MI combination rules be applied? We can either:

1. apply Rubin’s rules to the imputed data for each study, resulting in a single summary

from each study which is then meta-analyzed. We term this Rubin’s Rules then Meta-

Analysis (RR then MA). Or

2. perform a meta-analysis of each imputed dataset, and then summarize the results using

Rubin’s Rules (ie MA then RR).
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(Burgess et al., 2013) considered the imputation of sporadically missing data, concluding that

in the majority of cases the best approach is to impute separately in each study. This is

because in many meta-analyses there is important between-study heterogeneity, which needs

to be respected in the imputation process. If imputation is performed separately for each study

contributing to the meta-analysis, then their results showed that it is best to apply Rubin’s

rules before meta-analysing the results. This also implicitly calls for a two-stage analysis of the

IPD data, rather than a one-stage analysis. The reason for this is that a one-stage analysis has

the advantage of allowing us to borrow strength across studies for the estimation of covariate

and subgroup effects.

(Burgess et al., 2013) adopt the FCS imputation approach, and show promising results across

a range of scenarios with increasing heterogeneity.

Their results are therefore a welcome addition to the statistician’s toolbox. However, there are

a number of practically important scenarios where this approach falls short (Carpenter and

Kenward, 2013, Chap. 9):

1. contributing studies contain a large number of variables, but relatively few individuals,

so that within-study imputation is noisy;

2. contributing studies did not collect key variables, which are therefore missing for all

individuals within that study;

3. data within contributing studies are hierarchical, with potentially missing values at both

levels of the hierarchy, and
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4. our substantive model contains interactions and non-linear effects, and we wish to impute

consistently with these.

In this chapter, we address the first three points by describing a joint model approach to im-

putation for IPD meta-analyses. In particular, we show how introducing an inverse Wishart

distribution (or potentially any other suitable distribution) for the study-specific covariance

matrices allows us to respect the between study heterogeneity, yet—in common with other

random effects models—borrow strength from larger studies when estimating the covariance

matrix, and then imputing, for smaller studies. The ability to do this in turn naturally al-

lows imputation of variables that are completely missing in a study—assuming missing at

random—in a way that takes into account the covariance matrix of the available variables

from that study. This addresses the issues raised by (Koopman et al., 2008), which showed

how imposing a common covariance matrix across studies when imputing missing variables

within a study leads to inconsistencies when (as it is typically the case) this assumption is

inappropriate. Furthermore, while in the past implementations of this approach have been

relatively computationally slow, jomo has effectively removed this limitation.

7.2 Meta-analysis and multiple imputation models

In order to be able to compare our strategy with the one used in (Burgess et al., 2013), we

decided to start by running some simulations using the same data generating mechanisms they

used. Therefore, we consider a continuous outcome, y, and two continuous covariates, x1 and

x2. Let s = 1, . . . , S index studies, and i index observations within a study.
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7.2.1 Substantive analysis models

Regarding the substantive meta-analysis model used to analyse the data, we opted for a two-

step meta-analysis model, considering both a fixed-effect and a random-effects model. As we

will see in the next subsection, all our proposed imputation methods are actually one-step

methods, so a natural question is why we decided to use two-step methods as substantive

models. The reason for this is that in most of our simulations, had we opted for a one-step

approach, we would have had to use a hierarchical regression model allowing for heteroscedas-

ticity, which is not easily implemented in R. However, in principle results and conclusions

drawn shouldn’t be much different in case we used a one-step substantive model.

Algebraically, these were the two models used to perform the meta-analyses:

1. Two-stage fixed effect model

(a) Within each study s, simultaneously regress yi,s on x1,i,s and x2,i,s, obtaining esti-

mates (β̂j,s, ŝj,s) (where ŝj,s is the estimated standard error of β̂j,s), for j = 1, 2;

(b) Fit the fixed effects meta-analysis model,

β̂j,s = βfixed,j + ŝj,sεs, εs ∼ N (0, 1), (7.2.1)

for j = 1, 2.

2. Two-stage random effects model

(a) Within each study s, simultaneously regress yi,s on x1,i,s and x2,i,s, obtaining esti-

mates (β̂j,s, ŝj,s) (where ŝj,s is the estimated standard error of β̂j,s), for j = 1, 2;
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(b) Fit the random effects meta-analysis model, using the DerSimonian-Laird estimate

of between study heterogeneity (DerSimonian and Laird, 1986),

β̂j,s = βrandom,j + uj,s + ŝj,sεs, εs ∼ N (0, 1); uj,s ∼ N (0, τ 2j ) (7.2.2)

for j = 1, 2.

We thought that the best way to evaluate our proposed imputation method was to apply it in

combination with the most common meta-analysis method used, and this is the main reason

why we used the DerSimonian and Laird estimate of between-study heterogeneity. However,

though this method is undoubtedly the most used, we have already mentioned in Chapter 2

that it has its limitations; confidence intervals obtained with this method are often too narrow

and using the Hartung-Knapp adjustment (Hartung and Knapp, 2001; Cornell et al., 2014)

could have lead to better results; in particular, the reason for some observed under-covering

in the simulations could be the fact that we did not use this adjustment and this is possibly a

limitation of our study.

7.2.2 Imputation models

Motivated by the reasons set out in Chapter 4, we describe a range of possible joint imputation

models, which allow progressively for greater between-study heterogeneity and for missing

values in one, two or all three of the variables y, x1, x2. In each case we highlight the substantive

model that the imputation model is congenial with (Meng, 1994), (Carpenter and Kenward,

2013, p. 46).
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1. Single partially observed variable, common residual variance

As an example, suppose x2 is the variable with missing data. In this setting, the proposed

imputation model is:

x2,i,s = α0,s + α1x1,i,s + α2yi,s + εi,s

α0,s = α0 + us

us ∼ N (0, σ2
u); εi,s ∼ N (0, σ2

e).

(7.2.3)

This imputation model is congenial with a homoscedastic substantive model, but the

more general substantive models (7.2.1) and (7.2.2) can also be fitted. This model is

equivalent to the homoscedastic stratified imputation model used by (Burgess et al.,

2013).

2. Single partially observed variable, study specific residual variance

Again, suppose x2 is the variable with missing data. In this setting, the imputation

model is:

x2,i,s = α0,s + α1x1,i,s + α2yi,s + εi,s

α0,s = α0 + us

us ∼ N (0, σ2
u); εi,s ∼ N (0, σ2

e,s).

(7.2.4)

This imputation model is congenial with (7.2.1), and the more general (7.2.2) can also

be fitted.

3. Two partially observed variables, study specific covariance matrix

Now suppose y and x2 have missing data. Then – as described in (Carpenter and Ken-

ward, 2013, p. 81–85) and extended to the multilevel setting in Chapter 9 of the same
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book – we can use a bivariate response model to impute missing values of y and x2 :

x2,i,s = α1
0,s + α1

1x1,i,s + ε1i,s

yi,s = α2
0,s + α2

1x1,i,s + ε2i,s

α1
0,s = α1

0 + u1s

α2
0,s = α2

0 + u2s(
u1s
u2s

)
∼ N

((
0

0

)
,Ωu

)
(
ε1i,s
ε2i,s

)
∼ N

((
0

0

)
,Ωe,s

)
(7.2.5)

if we are only interested in meta-analysing β1, this imputation model is congenial with

(7.2.1), and the more general (7.2.2) can also be fitted. When β2 is also of interest, only

(7.2.2) is congenial with this imputation model.

In our simulation studies below, only x2 will be affected by missingness. Nevertheless we

will see in Subsection 7.3.2 that, in some cases, modelling y as a response is useful.
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4. Three partially observed variables, study specific covariance matrix

In general, the imputation model for this setting is not congenial with (7.2.1); however

it is congenial with (7.2.2):

x2,i,s = α1
0,s + ε1i,s

yi,s = α2
0,s + ε2i,s

x1,i,s = α3
0,s + ε3i,s

α1
0,s = α1

0 + u1s

α2
0,s = α2

0 + u2s

α3
0,s = α3

0 + u3s
u1s

u2s

u3s

 ∼ N



0

0

0

 ,Ωu




ε1i,s

ε2i,s

ε3i,s

 ∼ N



0

0

0

 ,Ωe,s



(7.2.6)

Again, in our simulation study, only x2 has missing values but nevertheless modelling all

three variables as outcomes has advantages in general.

5. Three partially observed variables, random study specific covariance matrix

This model is the same as (7.2.6), apart from the important extension that the ‘fixed’

study-specific covariance matrix is replaced by a ‘random’ covariance matrix, that is:

Ωe,s ∼ IW(a,A) (7.2.7)
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where a and A are the parameters of an Inverse-Wishart distribution. We take the iden-

tity matrix with minimum scale parameter as the inverse Wishart prior for distribution

of the study specific covariance matrices throughout. In principle, other distributions

could be used; we return to this point in the discussion. With this imputation model,

also systematically missing predictors can be imputed.

7.2.3 Some comments

Below—in order to assist with interpreting the simulation results—we distinguish between

correctly specified, compatible and incompatible imputation and analysis models.

In the correctly specified case, the data generating model is the same as the imputation model,

and the imputation model is congenial with the analysis model (essentially, fixed effects for

coefficients with no across-study heterogeneity, and random effects otherwise).

In the compatible case, the imputation model attempts to accommodate the heterogeneity

present, and the imputation and the substantive model are congenial. However the data

generating model does not match the imputation model.

In the incompatible case, either the imputation model does not allow for between study het-

erogeneity present in the data generation model, or the analysis model and imputation model

are uncongenial.
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With this in mind, we note that imputation model (7.2.6) allows us to share some information

across studies, through the random effects distribution for (α1
0,s, α

2
0,s, α

3
0,s). It is the congenial

imputation model for the multivariate random effects meta-analysis of (β0, β1, β2). Models

(7.2.5)–(7.2.3) make increasing restrictions on the between study heterogeneity, as well as the

number of variables with missing data.

If we modify (7.2.6) to have a separate fixed effects vector (α1
0,s, α

2
0,s, α

3
0,s) for each study, it is

equivalent to imputing separately in each study using the multivariate normal distribution. For

multivariate normal data this is known to be equivalent to FCS (Carpenter and Kenward, 2013,

p87–88) and practically equivalent in other settings (Hughes et al., 2014). Therefore, within-

study joint-model imputation should give very similar results to those reported by (Burgess

et al., 2013).

Importantly, in the light of our original motivation, none of (7.2.3)–(7.2.6) share information on

the covariance matrix across studies. Thus, none can impute a variable that is wholly missing

in a study, because for such studies the study-specific covariance matrix is not estimable. To

overcome this, we need to introduce a random covariance matrix effect, i.e. (7.2.7). A similar

addition could be made to (7.2.4)–(7.2.6) if desired.

Even if we have a number of missing variables spread across the studies in the meta-analysis,

model (7.2.7) is still estimable. In general, provided we have information from two or more

studies about each term in the covariance matrix, (7.2.7) should be estimable with minimal

prior information. In fact, as this is a Bayesian imputation model, we can in principle fit the

model and impute however weak the information in the observed data.
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Using MI in the context of IPD meta-analysis begs the question: at which point in the proce-

dure should Rubin’s MI combination rules be applied? We can either:

1. apply Rubin’s rules to the imputed data for each study, resulting in a single summary

from each study which is then meta-analysed (we term this Rubin’s Rules then Meta-

Analysis (RR then MA) or

2. perform a meta-analysis of each imputed dataset, and then summarize the results using

Rubin’s Rules (ie MA then RR).

As we already mentioned earlier, in a recent study Burgess et al. considered the imputation

of sporadically missing data, concluding that in the majority of cases the best approach was

to impute separately in each study. This is because in many meta-analyses there is important

between-study heterogeneity, which needs to be respected in the imputation process. If im-

putation is performed separately for each study contributing to the meta-analysis, then their

results showed that it is best to apply Rubin’s rules before meta-analysing the results. This

also implicitly calls for a two-stage analysis of the IPD data, rather than a one-stage analysis.

However, a one-stage analysis has the potential advantage of allowing us to borrow strength

across studies, which may be important for estimation of covariate and subgroup effects.

However, suppose we view the data as a whole, and that if there were no missing values we

intended to fit a one-stage (hierarchical) analysis model. Now suppose we have missing data.

If the data are imputed together using our joint model, the usual MI justification tells us to

fit the analysis model to each imputed data set, and then apply Rubin’s rules. Although in

practice we may often replace the one-stage analysis by the more common two-stage analysis,
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the same principle applies. In other words, the more we share information across studies in

the imputation process, the more we should prefer to apply Rubin’s rules after meta-analysis.

This was nicely explained in (Burgess et al., 2013):

If we consider a stratified imputation model [...] then a congenial analysis requires the meta-

analysis to be performed before the application of Rubin’s rules. This is because missing data

in each study is imputed conditional on data in other studies, inducing a dependence between

the imputed data values in different studies, which is not accounted for when Rubin’s rules

are applied at the study level. The inverse-variance weighted analysis models assume that

estimates of the parameter of interest from each study are independent. In this case, the fixed-

effect analysis still has slightly low coverage, whereas the random-effects analysis has correct

coverage levels.

For all the simulations in this chapter, we used 5 imputed datasets. This number was initially

chosen according to general recommendations from the literature, since it has been shown

several times that 5 imputations are enough in most situations (Carpenter and Kenward, 2013,

Chap.2). Furthermore we tested this empirically by looking at the magnitude of the Monte

Carlo SEs with some simulations, and we found that increasing the number of imputations

above 5 did not improve inference significantly.
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7.3 Simulation study

Here we present the results of three simulation studies. In Subsection 7.3.1 we consider the

same data generation mechanisms and scenarios as considered by (Burgess et al., 2013). We use

these to explore whether the joint modelling imputation strategy performs comparably to the

within-study imputation approach. Subsection 7.3.4 goes beyond the scenarios discussed by

(Burgess et al., 2013), exploring settings where in some studies there are few complete records.

The aim is to compare the random study-specific covariance matrix to the fixed study-specific

covariance matrix approach (itself one step removed from imputing separately in each study)

in this setting. Finally, in Subsection 7.3.5 we consider the setting of systematically missing

variables.

For each simulated data set, the MI analysis used 5 imputations, with the MCMC sampler

burned in for 500 iterations, and with 100 between-imputation iterations. In more complex

settings, more iterations and imputations may be needed. However, in our setting, examination

of the MCMC chains showed these numbers were sufficient for convergence of the sampler and

stochastic independence of the imputed data sets. Depending on the imputation model used,

imputing the data took from 3 to 10 seconds per simulation. This means that we were able to

create 5 imputed datasets for 1000 simulations in each scenario in less than 3 hours.

Preliminary results showed that applying meta-analysis before Rubin’s rules was the best

approach, as expected given the discussion at the end of Subsection 7.2.3. We therefore use

this order for the results below.
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7.3.1 Simulations with studies of equal sizes

Here we use the data generating mechanism considered by (Burgess et al., 2013), that is

yi,s = β0s + β1,sx1,i,s + β2,sx2,i,s + εi,s(
x1,i,s
x2,i,s

)
∼ N

(0

0

)
,

 1 ρs

ρs 1




εi,s ∼ N (0, σ2
s).

(7.3.1)

Exactly as in the above paper, we generate data for 30 studies, each with 200 patients. We

use the same five scenarios shown in Table 7.1 with increasing levels of heterogeneity between

studies.

For each scenario we generated 1000 simulated datasets, and then made 50% of the values

of x2 MAR dependent on x1. This covariate-dependent missingness mechanism means that

the complete records analysis will be unbiased, so we can readily assess the extent of the

information loss due to missing data, and the extent to which this is recovered using multiple

imputation.

Since in scenarios 2–5 a consistent meta-analysis model requires study-specific residual vari-

ances to be considered, one-stage meta-analysis is only appropriate for scenario 1, unless we use

methods which deal with complex level 1 variation in hierarchical models. As such models are

still relatively rarely used by meta-analysts, we present the results of two-stage meta-analysis

only, returning to this point in the discussion. For each scenario, we report both the estimates

from a fixed-effects and from a random-effects meta-analysis. The penultimate row of Table
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Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Homosced. Heterosc. Heterogeneity Random slope 2 random slopes

β0s N (3, 12) N (3, 12) N (3, 12) N (3, 12) N (3, 12)
σ2
s 1 N (1, 0.32) N (1, 0.32) N (1, 0.32) N (1, 0.32)
ρs 0.2 0.2 N (0.2, 0.22) N (0.2, 0.22) N (0.2, 0.22)
β2s −0.6 −0.6 −0.6 N (−0., 0.22) N (−0., 0.22)
β1s 0.3 0.3 0.3 0.3 N (0.3, 0.22)
consistent meta- β1 : fixed β1 : fixed β1 : fixed β1 : fixed β1 : random
analysis model β2 : fixed β2 :fixed β2 :fixed β2 : random β2 : random
simplest compatible
imputation model (7.2.3) (7.2.5) (7.2.6) (7.2.6) (7.2.6)

Table 7.1: Scenarios used to generate data from (7.3.1), and corresponding consistent (i) meta-
analysis and (ii) imputation models, when values of X2 are missing.

7.1 shows for both β1 and β2 which one of the two is consistent with the data. We expect some

overestimation of the standard errors with random-effects meta-analysis when the fixed-effects

model is the consistent one. Conversely, when a random effects meta-analysis is consistent,

a fixed effects meta-analysis may underestimate the standard errors and hence result in poor

confidence interval coverage.

The bottom row of Table 7.1 shows which imputation model is the simplest compatible with

the data generation mechanism. Imputation models that are incompatible (too restrictive) are

expected to lead to bias. Imputation models that are more flexible than the data generation

mechanism should not lead to bias, but may lead to some loss of information.
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7.3.2 Simulations with equal size studies: results

Tables 7.2 and 7.3 show the results. Those from the correct meta-analysis model and simplest

imputation model compatible with the data generating mechanism are highlighted in bold. We

now comment briefly on each scenario.

Sccenario 1: This is the most homogeneous scenario, since the only source of between-study

heterogeneity comes from the different study-specific intercepts, β0,s, in the data-generating

algorithm. In this scenario, the simplest imputation model (7.2.3) is sufficient. Analysis

of datasets imputed with this model gives good results both in terms of bias, precision and

confidence interval coverage. We see some gain in precision compared with the complete records

analysis. Reassuringly, using the most general imputation model (7.2.7) gives similar results

under fixed-effects meta-analysis (the consistent analysis for this scenario). However, when

imputing with (7.2.7) and using the random effects analysis, additional variability allowed for

by the (7.2.7) is picked up by the random effects analysis, resulting in larger standard errors

and mild over-coverage.

Scenario 2: Here, imputation model (7.2.3) is not compatible with the data generation mech-

anism, as it assumes a common variance σe across studies. Further, imputation model (7.2.4)

is still not compatible. This is because the data generating model allows the variance of y to

vary across studies, whereas imputation model (7.2.4) only allows the variance of x2 to vary

across studies. Therefore, to have sufficient flexibility for this scenario, we need to include y

as a response in the imputation model, by using (7.2.5). Using this imputation model, or the

most general imputation model (7.2.7), the findings are similar to those from scenario 1.
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Coefficient 1
Fixed Effect Random Effects

meta-analysis meta-analysis
Mean SE Cov Mean SE Cov

True value: 0.300 95.0 0.300 95.0
Scenario 1 (homoscedasticity):

Complete Data 0.300 0.013 94.9 0.300 0.014 95.7
Complete Records 0.300 0.020 93.6 0.300 0.022 95.0
Imp. Model (7.2.3) 0.300 0.016 93.3 0.300 0.016 94.1
Imp. Model (7.2.7) 0.299 0.016 93.8 0.299 0.020 98.1

Scenario 2 (heteroscedasticity):
Complete Data 0.300 0.012 96.0 0.300 0.012 97.1

Complete Records 0.300 0.018 93.6 0.300 0.019 94.7
Imp. Model (7.2.5) 0.299 0.015 95.2 0.299 0.016 96.2
Imp. Model (7.2.7) 0.296 0.015 93.2 0.297 0.019 98.1

Scenario 3 (heterogeneity):
Complete Data 0.300 0.012 94.4 0.300 0.013 95.5

Complete Records 0.299 0.018 95.6 0.299 0.020 94.8
Imp. Model (7.2.6) 0.296 0.015 95.1 0.296 0.019 98.5
Imp. Model (7.2.7) 0.296 0.015 94.0 0.296 0.019 97.6

Scenario 4 (One random slope):
Complete Data 0.300 0.012 94.5 0.300 0.013 95.9

Complete Records 0.300 0.018 93.8 0.300 0.020 94.9
Imp. Model (7.2.3) 0.293 0.015 88.7 0.296 0.020 97.0
Imp. Model (7.2.4) 0.301 0.015 93.5 0.302 0.019 97.2
Imp. Model (7.2.5) 0.303 0.015 92.8 0.302 0.018 97.4
Imp. Model (7.2.6) 0.296 0.015 92.2 0.297 0.019 97.5
Imp. Model (7.2.7) 0.299 0.015 94.2 0.300 0.019 97.7

Scenario 5 (Two random slopes):
Complete Data 0.299 0.012 65.5 0.299 0.023 95.1

Complete Records 0.299 0.018 77.7 0.299 0.027 94.1
Imp. Model (7.2.3) 0.293 0.015 72.5 0.295 0.026 94.6
Imp. Model (7.2.4) 0.301 0.015 74.4 0.303 0.025 94.2
Imp. Model (7.2.5) 0.303 0.015 74.8 0.300 0.023 94.2
Imp. Model (7.2.6) 0.296 0.015 73.5 0.295 0.027 96.3
Imp. Model (7.2.7) 0.298 0.015 72.4 0.298 0.027 97.0

Scenario (7.3.2) (Inverse Wishart):
Complete Data 0.300 0.013 50.1 0.301 0.036 93.2

Complete Records 0.301 0.029 77.3 0.301 0.046 95.0
Imp. Model (7.2.5) 0.284 0.022 66.3 0.282 0.039 91.0
Imp. Model (7.2.6) 0.297 0.021 66.6 0.301 0.043 96.1
Imp. Model (7.2.7) 0.301 0.021 65.9 0.302 0.040 94.0

Table 7.2: Simulations with studies of equal sizes. Mean estimates, SE and coverages for the
coefficient of variable x1, the completely observed covariate.
Scenarios 1,2 & 3: Comparison of results from imputation model (7.2.3),(7.2.5) and (7.2.6)
respectively (the simplest ones compatible with the data) and imputation model (7.2.7) (the
most general).
Scenarios 4 & 5: Comparison of all the different models presented, starting with the simplest
one (7.2.3) and ending with the most general (7.2.7).
Data Generated with (7.3.2): Comparison of the 3 more general models in the previous scenario.
Results in bold highlight cases where both the meta-analysis and the imputation model are
compatible with the data-generating mechanism.
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Coefficient 2
Fixed Effect Random Effects

meta-analysis meta-analysis
Mean SE Cov Mean SE Cov

True value: -0.600 95.0 -0.600 95.0
Scenario 1 (Homoscedastic):

Complete Data -0.600 0.013 95.0 -0.600 0.014 95.8
Complete Records -0.600 0.019 93.3 -0.600 0.020 95.1
Imp. Model (7.2.3) -0.595 0.018 92.6 -0.595 0.018 93.9
Imp. Model (7.2.7) -0.603 0.017 91.8 -0.601 0.023 97.5

Scenario 2 (Heteroscedastic):
Complete Data -0.600 0.012 94.3 -0.600 0.012 95.5

Complete Records -0.600 0.016 93.8 -0.600 0.018 94.7
Imp. Model (7.2.5) -0.594 0.015 92.1 -0.593 0.021 97.9
Imp. Model (7.2.7) -0.596 0.015 93.3 -0.596 0.021 97.9

Scenario 3 (Heterogeneity):
Complete Data -0.600 0.012 95.0 -0.600 0.013 95.8

Complete Records -0.599 0.017 94.4 -0.599 0.018 95.2
Imp. Model (7.2.6) -0.596 0.016 93.6 -0.595 0.022 98.4
Imp. Model (7.2.7) -0.596 0.015 93.0 -0.595 0.022 98.2

Scenario 4 (One random slope):
Complete Data -0.602 0.012 38.0 -0.602 0.039 94.8

Complete Records -0.602 0.017 51.5 -0.602 0.041 94.4
Imp. Model (7.2.3) -0.538 0.018 26.3 -0.577 0.035 83.9
Imp. Model (7.2.4) -0.559 0.018 38.4 -0.599 0.040 93.7
Imp. Model (7.2.5) -0.590 0.016 48.8 -0.588 0.043 95.1
Imp. Model (7.2.6) -0.598 0.018 51.4 -0.596 0.043 95.8
Imp. Model (7.2.7) -0.604 0.016 49.5 -0.602 0.043 95.4

Scenario 5 (Two random slopes):
Complete Data -0.599 0.012 39.4 -0.598 0.039 93.4

Complete Records -0.600 0.017 50.0 -0.599 0.041 94.5
Imp. Model (7.2.3) -0.535 0.018 25.1 -0.572 0.035 82.7
Imp. Model (7.2.4) -0.555 0.018 38.4 -0.594 0.040 93.4
Imp. Model (7.2.5) -0.585 0.016 47.6 -0.583 0.042 93.7
Imp. Model (7.2.6) -0.595 0.016 49.6 -0.592 0.043 95.4
Imp. Model (7.2.7) -0.601 0.015 50.1 -0.599 0.043 96.2

Scenario (7.3.2) (Inverse Wishart):
Complete Data -0.600 0.013 46.6 -0.601 0.036 91.6

Complete Records -0.600 0.018 60.2 -0.600 0.039 91.9
Imp. Model (7.2.5) -0.474 0.018 0.3 -0.479 0.037 8.4
Imp. Model (7.2.6) -0.603 0.017 56.9 -0.600 0.041 94.3
Imp. Model (7.2.7) -0.600 0.017 58.0 -0.600 0.038 93.0

Table 7.3: Simulations with studies of equal sizes. Mean estimates, SE and coverages for the
coefficient of x2, the partially observed covariate.
Scenarios 1,2 & 3: Comparison of results from imputation model (7.2.3),(7.2.5) and (7.2.6)
respectively (the simplest ones compatible with the data) and imputation model (7.2.7) (the
most general).
Scenarios 4 & 5: Comparison of all the different models presented, starting with the simplest
one (7.2.3) and ending with the most general (7.2.7).
Data Generated with (7.3.2): Comparison of the 3 more general models in the previous scenario.
Results in bold highlight cases where both the meta-analysis and the imputation model are
compatible with the data-generating mechanism.
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Scenario 3: Because this scenario has study specific correlations, ρs, the simplest compatible

imputation model is (7.2.6). Using this imputation model, we once again obtain unbiased esti-

mates and good confidence interval coverage with the fixed-effects analysis, while the random-

effects analysis leads to mild over-coverage for the confidence intervals. The more general

imputation model (7.2.7) gives very similar results.

Scenarios 4–5: Scenario 4 generalizes scenario 3 by adding a random effect for β2; scenario 5

further adds a random effect for β1. The simplest compatible imputation model is therefore

(7.2.6). First, we see that—even with no missing data—using a fixed effects model for a random

effect leads underestimation of the standard error and under-coverage of the confidence interval.

Secondly, the results for β2 in scenarios 4 and 5 show that using an imputation model that

is incompatible (i.e. insufficiently flexible) can lead to bias (and some reduction in coverage)

particularly for the parameter estimate for the partially observed variable. Once again, when

used with the appropriate meta-analysis model, results from imputation model (7.2.6), and

the more general (7.2.7) show virtually no bias and good confidence interval coverage. Unlike

with scenarios 1–3, though, little or no information is gained compared to the complete records

analysis. The likely reason for this is that the data generating mechanism implies (i) a different

across-study distribution of the parameters from the tri-variate normality of (7.2.6), and (ii)

a very different joint distribution of the covariance matrices to the inverse-Wishart used in

imputation model (7.2.7). We investigate this point in the next subsection, by exploring the

performance of (7.2.6) and (7.2.7) with a correctly specified data generating mechanism.
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7.3.3 A correctly specified data-generating mechanism

We simulated data from a correctly specified data generating mechanism for imputation models

(7.2.6) and (7.2.7). We used a trivariate normal distribution with an inverse Wishart distribu-

tion for the study specific covariance, parametrized to be consistent with (7.3.1). This gives

the following:


yi,s

X1,i,s

X2,i,s

 ∼ N3



β0,s

0

0

 ,Ωs



Ωs ∼ W−1

a,As =


σ1,s σ2,s σ3,s

σ2,s 1 0.2

σ3,s 0.2 1




σ3,s =
1.042β2,s + 0.208β1,s

(1.0422 − 0.2082)

σ2,s =
β1,s + 0.208σ3

1.042

σ1,s = 1 + (σ2,s, σ3,s)

 1.042 −0.208

−0.208 1.042


σ2,s
σ3,s



(7.3.2)

We explored different values for a, the degrees of freedom of the inverse Wishart distribution:

1. a = 3, i.e. the minimum possible;

2. a = 200, i.e. the number of patients in each study, and

3. a = 30, i.e. the number of studies.
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The conclusions were unchanged by the choice of a, so we report results for a = 30 in the

bottom five rows of Tables 7.2 and 7.3. Once again—even with no missing data—fitting a

fixed effects meta-analysis in this random effects setting gives poor results. With missing

data, and a random effects meta-analysis, imputation model (7.2.5) now gives poor results

for β2, because it does not allow for a study specific dependency of y and x2 on x1. However,

imputation using (7.2.6) gives unbiased results with good coverage and gain in information for

β1, while imputation using (7.2.7), which allows for sharing of information on the covariance

matrix across studies, additionally recovers some information on β2. We discuss the results

further in Subsection 7.3.6 below.

7.3.4 Simulations with studies of different sizes

In the simulation settings discussed so far, we have 200 individuals in each of the 30 studies, and

a missingness rate for x2 of around 50%. Thus there is sufficient information for a reasonable

estimate of the covariance matrix within each study.

Here we allow the study sizes to vary. We still have 30 studies overall, and the same MAR

missingness mechanism, so that around 50% of the observations are missing for x2 only, with

an MAR missingness mechanism dependent on the outcome only. However, now

• 10 studies have between 10 and 50 individuals (average sample size ∼ 25);

• 10 studies have between 50 and 100 individuals (average sample size ∼ 75), and

• 10 studies have between 100 and 200 individuals (average sample size ∼ 150).
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As a consequence, studies with only 10 individuals may have only 4 or 5 complete records,

which are not enough for reasonable estimation of the covariance matrix. In such situations

imputation model (7.2.7) should have a clear advantage over imputation model (7.2.6).

Tables 7.4 and 7.5 show the results when data are simulated under scenarios 3, 5 and using

the correctly specified data generating mechanism (7.3.2). Here, the complete records analysis

struggles because of the small number of observations from some studies. For the same reason,

the results for imputation model (7.2.6) show considerable bias and poor confidence interval

coverage.

However, imputation model (7.2.7) gives results that are essentially unbiased, and with good

coverage both when the distribution of study specific covariance matrices is not inverse Wishart

(scenarios 3, 5) and when it is (data generated using (7.3.2)). Information is recovered for the

coefficient of the fully observed covariate in all cases, and for the coefficient of the partially

observed variable when the data generation model is the same as the imputation model.

7.3.5 Simulations with systematically missing variables

Here we again simulate data from 30 studies, each with 200 patients. We use scenarios 1–5

shown in Table 7.1, and then the scenario where the data generating mechanism is the same as

the imputation model, (7.3.2). We make values of x2 missing using the same MAR mechanism

as before, so about 50% are missing. In addition, for each simulated dataset, out of 30 studies,

we completely remove x2 from two randomly selected studies.
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Coefficient 1
Fixed Effect Random Effects

meta-analysis meta-analysis
Mean SE Cov Mean SE Cov

True value: 0.300 95.0 0.300 95.0
Scenario 3 (heterogeneity):

Complete Data 0.300 0.021 93.6 0.300 0.023 95.3
Complete Records 0.296 0.030 80.9 0.297 0.041 88.4
Imp. Model (7.2.6) 0.287 0.026 91.3 0.284 0.036 97.4
Imp. Model (7.2.7) 0.296 0.028 92.5 0.295 0.041 98.5

Scenario 5 (two random slopes):
Complete Data 0.299 0.021 49.9 0.300 0.036 93.1

Complete Records 0.297 0.031 75.6 0.297 0.046 92.8
Imp. Model (7.2.6) 0.286 0.027 78.2 0.282 0.043 94.7
Imp. Model (7.2.7) 0.296 0.026 78.8 0.297 0.041 96.0

Scenario (7.3.2) (Inverse Wishart):
Complete Data 0.299 0.021 57.0 0.300 0.044 93.7

Complete Records 0.301 0.048 75.5 0.301 0.073 94.4
Imp. Model (7.2.6) 0.208 0.029 24.9 0.202 0.051 49.9
Imp. Model (7.2.7) 0.296 0.033 71.4 0.297 0.053 94.9

Table 7.4: Simulations with studies of different sizes. Mean estimates, SE and coverages for
the first coefficient, the one related to x1, the completely observed covariate.
Scenario 3,5 and data generating mechanism (7.3.2): Comparison of results from imputation
models (7.2.6) and (7.2.7). Once again, cases where both the imputation and the meta-analysis
model are consistent with the data-generating mechanism are highlighted in bold.
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Coefficient 2
Fixed Effect Random Effects

meta-analysis meta-analysis
Mean SE Cov Mean SE Cov

True value: -0.600 95.0 -0.600 95.0
Scenario 3:

Complete Data -0.600 0.021 93.3 -0.600 0.023 94.5
Complete Records -0.604 0.028 80.7 -0.600 0.038 89.3
Imp. Model (7.2.6) -0.575 0.034 89.4 -0.564 0.049 96.9
Imp. Model (7.2.7) -0.590 0.039 92.2 -0.591 0.052 98.8

Scenario 5:
Complete Data -0.599 0.021 53.7 -0.599 0.046 94.3

Complete Records -0.599 0.028 56.5 -0.598 0.055 92.7
Imp. Model (7.2.6) -0.571 0.037 66.1 -0.557 0.064 92.2
Imp. Model (7.2.7) -0.603 0.029 62.3 -0.601 0.059 95.1

Scenario (7.3.2)
Complete Data -0.599 0.021 55.7 -0.599 0.043 92.5

Complete Records -0.582 0.029 64.8 -0.595 0.053 93.4
Imp. Model (7.2.6) -0.313 0.042 0.0 -0.293 0.053 0.0
Imp. Model (7.2.7) -0.595 0.029 70.3 -0.594 0.049 93.0

Table 7.5: Simulations with studies of different sizes. Mean estimates, SE and coverages for
the second coefficient, the one related to x2, the partially observed covariate.
Scenario 3, 5 and data generating mechanism (7.3.2): Comparison of results from imputation
models (7.2.6) and (7.2.7). Once again, cases where both the imputation and the meta-analysis
model are consistent with the data-generating mechanism are highlighted in bold.
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In this setting we do not present the complete records analysis, as this excludes studies with no

data on x2. For imputation in this setting, we need to be able to draw study specific parameter

values to impute x2 when it is systematically missing. For scenario 1, we can do this using

(7.2.3); for the other scenarios we need (7.2.7). Table 7.6 shows the results.

Recall that scenarios 1–5 use a different data generation model from the imputation model. For

scenarios 1–3, where the fixed effects model is correct, we see minimal bias and good coverage

if the fixed effects model is used, and somewhat conservative inference if the random effects

model is used. For scenarios 4–5, using the fixed effects model when the random effects model

is correct results in poor coverage, even with no missing data. Using the correct analysis model

appears to give a little bias, and confidence intervals coverage is always too high.

With data simulated from the correctly specified data generation model, (7.3.2), we see no bias,

correct coverage, and minimal loss of information compared to the complete records analysis.

7.3.6 Summary of findings from simulation studies

Drawing together the results from the simulation studies, we conclude the following:

Choice of meta-analysis model

Even without missing data, using a fixed effects model when random effects are present leads

to underestimation of the standard error and under-coverage of the confidence intervals.
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Coefficient 1 Coefficient 2
Fixed Effect Random Effects Fixed Effect Random Effects

meta-analysis meta-analysis meta-analysis meta-analysis
Mean SE Cov Mean SE Cov Mean SE Cov Mean SE Cov

True value: 0.300 95.0 0.300 95.0 -0.600 95.0 -0.600 95.0
Scenario 1:

Complete Data 0.300 0.013 94.9 0.300 0.014 95.7 -0.600 0.013 95.0 -0.600 0.014 95.8
Imp. Mod. (7.2.3) 0.300 0.016 94.2 0.300 0.017 95.5 -0.600 0.018 93.8 -0.600 0.019 94.6

Scenario 2:
Complete Data 0.300 0.012 96.0 0.300 0.012 97.1 -0.600 0.012 94.3 -0.600 0.012 95.5

Imp. Mod. (7.2.7) 0.296 0.021 96.0 0.297 0.026 99.6 -0.562 0.055 95.7 -0.589 0.041 99.8
Scenario 3:

Complete Data 0.300 0.012 94.4 0.300 0.013 95.5 -0.600 0.012 95.0 -0.600 0.013 95.8
Imp. Mod. (7.2.7) 0.296 0.022 96.5 0.297 0.028 99.5 -0.565 0.054 96.6 -0.588 0.042 99.6

Scenario 4:
Complete Data 0.300 0.012 94.5 0.300 0.013 95.9 -0.602 0.012 38.0 -0.602 0.039 94.8

Imp. Model (7.2.7) 0.277 0.33 99.0 0.297 0.038 99.6 -0.569 0.059 81.3 -0.592 0.064 97.6
Scenario 5:

Complete Data 0.299 0.012 65.5 0.299 0.023 95.1 -0.599 0.012 39.4 -0.598 0.039 93.4
Imp. Mod. (7.2.7) 0.297 0.021 84.1 0.297 0.033 99.0 -0.566 0.056 81.5 -0.589 0.055 97.2

Scenario (7.3.2)
Complete Data 0.302 0.013 48.7 0.301 0.036 95.3 -0.602 0.013 49.7 -0.602 0.036 93.8

Imp. Mod. (7.2.7) 0.301 0.015 58.0 0.301 0.037 95.6 -0.603 0.014 55.6 -0.604 0.037 94.4

Table 7.6: Simulations with studies with systematically missing variables.
Scenarios 1–5 and data generated with (7.3.2): Results with imputation model (7.2.7), the only
one usable in this situation. Note that with systematically missing variables, it is not possible
even to run complete records analysis, unless we exclude the studies with systematically missing
variables.
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Studies of equal sizes

When a fixed effects model is valid—and used—imputation using the most general model

(7.2.7) gives comparable results to imputing using the simplest compatible model.

When a fixed effects model is valid, but a random effects model is used, the most general

imputation model (7.2.7) leads to some loss of efficiency relative to the simplest compatible

model.

In applications, we are most likely to be faced with study specific correlation matrices. In

this case, unless we use imputation models that allow this, i.e. (7.2.6) or (7.2.7), we may get

bias and poor coverage, especially for the coefficients of variables with a lot of missing data.

When the across-study distribution of covariance matrices is close to inverse-Wishart, then we

gain information on both parameters with (7.2.7). When it is not, bias remains negligible and

coverage good, but there is little gain in information compared to a complete records analysis.

Studies with unequal sample sizes

Here, sharing information on the covariance structure across studies using (7.2.7) improved

markedly on the complete records analysis, with more information recovered the closer the

data generation mechanism is to the imputation model.

Studies with systematically missing variables

Imputation using (7.2.7) is the only possible general approach in this setting. It does not

introduce practically important bias in any of the scenarios considered, though it was a little

conservative in the random effects setting when the data generation mechanism was very differ-
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ent to the imputation model. The closer the data generation mechanism is to the imputation

model, the greater the gain in information through multiple imputation, with excellent results

when they are the same.

Overall

In applications, we therefore advocate (7.2.7), as the simulations suggest the worst that can

happen is that inferences are mildly conservative.

7.4 Discussion

In this chapter we have considered a joint modelling (JM) approach to multiple imputation

for IPD meta-analysis where data are continuous. Our results show that, for sporadically

missing data within studies—ie the situations considered by (Burgess et al., 2013)—the JM

approach performs comparably. However, our JM approach allows each study’s covariance

matrix to itself be drawn from an overall Inverse Wishart distribution (i.e. model (7.2.7)

and its extensions). This flexibility gives improved results when studies are of different sizes,

and/or some variables have a lot of missing values in particular studies. This is because in

such settings the study specific covariance matrices are poorly estimated, and our approach

allows appropriate pooling of the covariance matrices across studies, in exactly the same way

as multilevel/hierarchical models.
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The flexibility of our approach also allows us to naturally handle the case where some studies

have completely missing data on particular variables. This will frequently happen in IPD

meta-analyses, where the IPD data set is often assembled post-hoc, and different studies have

used different protocols.

The FCS imputation approach is typically preferred to joint modelling imputation by practi-

tioners because of the availability of software, and the fact that the REALCOM software for

multilevel MI (Carpenter et al., 2011) can be relatively slow. However, using the jomo package

I wrote, eliminated this problem since imputed datasets were created in seconds.

As our approach derives from a proper joint model, fitted by MCMC, it does not rely on any

problem-specific adaptations. Further, it naturally extends to settings with more levels in the

hierarchy, and variables defined at the second and higher levels of the hierarchy. The approach

described in this chapter dovetails with that proposed by (Goldstein et al., 2014) for handling

non-linear relationships and interactions in the substantive model.

We now consider the question of which imputation model to use, and how to construct it. Our

results show that, even when the study specific covariance matrices are drawn from a highly

unusual (implicit) distribution—ie in the scenarios 1–5 which are those considered by (Burgess

et al., 2013)—our general imputation model (7.2.7) does not introduce bias. However, when the

study specific covariance matrices come from an Inverse Wishart (the conjugate distribution

for the multivariate normal) then the simulation results show imputation using (7.2.7) gains

efficiency, in line with statistical theory.
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Since in applications appropriate handling of heterogeneity is typically a key concern, we

therefore suggest using the random covariance matrix approach exemplified by (7.2.7) as the

default, unless we can be confident that a simpler approach is justifiable in the context at

hand.

A further decision is whether to include fully observed variables as covariates in the imputation

model, as suggested in (Carpenter and Kenward, 2013, pp. 132–133), or include them all as

responses. In the meta-analysis context, we believe it is typically best to include all the

variables as responses (both partially and fully observed) so that they can have their own

study specific covariance matrix—ie study specific associations with the other variables. If it

is the case that associations across studies are similar, the model will pool information across

studies appropriately.

When imputing systematically missing variables, we have to remember that we are assuming

a multivariate normal distribution for the random-effects. This is a particularly simple and

convenient assumption, and it is in line with the theory of generalized linear mixed effects

models, where random effects are generally assumed to be multivariate normally distributed

as well. However, this is quite a restrictive assumption, and recently it has been proposed

the use of some other more flexible distributions (Lee and Thompson, 2008). In theory, it is

possible to consider different distributions for the random effects in the imputation model as

well and therefore we may consider adding this extension in our software in the future.

In all the simulations in this chapter, we had 30 studies. This is quite a large number, while

meta-analyses often aggregate the data of 10-15 studies, if not even less. When a lot of variables

have to be imputed, our imputation model may have quite a large number of level-2 parameters
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to estimate and, therefore, with smaller number of studies (level-2 units) estimating all these

parameters may be difficult. Also, it has been suggested (Gelman et al., 2014, Chap.11) that

with small number of clusters, MCMCs could lead to overestimation of the level-2 variances.

Therefore, in the next chapter we focus on a situation where we only have 15 studies.

As briefly discussed in Subsection 7.2.1, random-effects meta-analyses throughout this chapter

were performed with the DerSimonian and Laird model; confidence intervals reported are

therefore obtained simply by adding and subtracting to the point estimates 1.96 times the

standard error. However, Hartung and Knapp method (Hartung and Knapp, 2001), based

on a different estimate of the standard error and on the use of a t distribution to calculate

the confidence interval, is nowadays tought to be a superior approach (Cornell et al., 2014).

Therefore, undercovering observed in some scenarios could be explained in this way and this

is surely one of the limitations of our study.

Finally we need to remember that all of the techniques described so far assume that data are

MAR and therefore a proper sensitivity analysis to different assumptions should be considered

(Carpenter et al., 2007).

In conclusion, the main reason for MI’s growing popularity for handling missing data is its

flexibility in a wide range of situations. In this chapter we argued that the additional flexibility

of joint modelling multiple imputation makes it a natural choice for missing data in IPD meta-

analyses, since our results show good performance across a range of scenarios that are common

in practice. We believe a key barrier to the more widespread use of this approach has been the

lack of fast, general software. We have sought to remedy this by providing the jomo package

for R, which is available from CRAN and was used for all the analyses in this chapter.
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We showed in the previous chapter the strengths and the usefulness of Multilevel JM Im-

putation as a tool to handle partially observed continuous data in individual patient data

meta-analysis. In those settings, we simply used a multivariate normal model for the joint

distribution of the partially observed data. However, finding a proper joint model in cases

where other kind of variables, for example binary or categorical, are present appears more

challenging. In this chapter we are going to explore solutions to this issue.

In Section 8.1 we give a very brief overview of the existing software and methods to include

nominal data in the JM MI framework. In Section 8.2 we present the methods we chose to

adopt and the imputation models considered. In Section 8.3 we explore the results of the

simulations to demonstrate the validity and utility of our proposed approach. Sections 8.4 and

8.5 are dedicated to the inclusion of ordered categorical variables and count variables in the

imputation models. Finally we conclude with a discussion in Section 8.6.

8.1 Existing Software and Methods

Some work has already been undertaken to try to impute partially observed categorical vari-

ables through JM imputation. most notably, two R packages have been uploaded to CRAN:

• with cat (Ted Harding and Schafer, 2012) it is both possible to impute categorical data

through a saturated multinomial model or through log-linear models; the first model

is very general and allows for any kind of associations among the categorical variables,

while log-linear models make it possible to simplify some of these associations. The main
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limitations of this package are (i) that it does not handle missingness in a mix of different

data types; and (ii) that the saturated multinomial model often has too many parameters

and it is not obvious what the appropriate parametrization is.

• mix (Schafer, 2015) uses the so-called general location model to impute in the case of

a mix of continuous and categorical data. However, it can only handle a very limited

number of variables and in many cases users need to choose an appropriate restricted

model in order to get sensible estimates.

Overall, both packages deal with a somewhat limited range of situations and they do not allow

for multilevel imputation, which is the situation where JM has clear advantages over FCS. In

our package jomo, we decided to use a different strategy, using latent normal variables to model

categorical and binary data, as proposed in (Goldstein et al., 2009) and as described in Chapter

3. After having outlined the model, and the substantial work entailed in the corresponding

extension of the jomo package, the main aim of this chapter is to prove through a proper

simulation work the practical utility and validity of this approach.

8.2 Methods

In this Section, we will briefly review JM Imputation, presenting the latent normal imputation

models used to handle binary and categorical data. We will start with single level models in

Subsection 8.2.1 and extend to the multilevel case in Subsection 8.2.2.
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8.2.1 Single Level Models

Suppose we intended to collect a certain number N of observations on K variables yi, but we

finally end up with some missing values in each (or at least in some) of these variables. If we

want to use JM Imputation to impute these missing data, the first thing we have to do is to

set up our joint model for the missing data. In the simple case of normal data only, we can

simply define the following multivariate normal model:

yi,1 = β0,1 + εi,1

. . .

yi,m = β0,m + εi,m

. . .

yi,K = β0,K + εi,K

εi,1

. . .

εi,m

. . .

εi,K


∼ N





0

. . .

0

. . .

0


,Ωe



(8.2.1)

Here we termed Y all the partially observed variables, because they are outcomes in the

imputation model; however, this is irrespective of what it is their role in the substantive

analysis model, where they could be instead included as X (covariate) of a regression model.



8 MULTILEVEL JM MI WITH OTHER DATA TYPES 174

When some of the K variables are binary, or categorical, a possible extension to this model

has been proposed by (Goldstein et al., 2009). The basic idea is that there is a latent normal

variable for each level of the categorical variables. For example, each binary Ym will be sub-

stituted by two normal variables Z∗1,m and Z∗2,m, the maximum of which will indicate the level

of Ym.

yi,1 = β0,1 + εi,1

. . .

z∗i,m,1 = β∗0,m,1 + ε∗i,m,1

z∗i,m,2 = β∗0,m,2 + ε∗i,m,2

. . .

yi,K = β0,K + εi,K

εi,1

. . .

εi,m,1

εi,m,2

. . .

εi,K+1


∼ N





0

. . .

0

0

. . .

0


,Ωe



(8.2.2)

Unfortunately, the model defined in such a way can be shown to be non-identifiable. Infor-

mally, we can see this by noting that a binary variable is defined by one single parameter,

the probability of the event π, but our two latent normals have two parameters each (mean
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and variance), making four in total. We address this by doing two things: (i) we fix the

value of the variance for the normals to an arbitrary value, say for example to 0.5, so that

ε∗i,m,1, ε
∗
i,m,2 ∼ N(0, 0.5), and (ii) we subtract the equation for Z∗2,m from the one for Z∗1,m:

(z∗i,m,1 − z∗i,m,2) = (β∗0,m,1 − β∗0,m,2) + (ε∗i,m,1 − ε∗i,m,2).

Setting zi,m = z∗i,m,1 − z∗i,m,2, β0,m = β∗0,m,1 − β∗0,m,2 and εi,m = ε∗i,m,1 − ε∗i,m,2, we get:

yi,1 = β0,1 + εi,1

. . .

zi,m = β0,m + εi,m

. . .

yi,K = β0,K + εi,K

εi,1

. . .

εi,m

. . .

εi,K


∼ N





0

. . .

0

. . .

0


,Ωe


Ωe,m,m = 1.

(8.2.3)

Here, since εi,m = ε∗i,m,1 − ε∗i,m,2 and ε∗i,m,1, ε
∗
i,m,2 ∼ N(0, 0.5), we have that εi,m ∼ N(0, 1) and

therefore Ωe,m,m = 1. In this situation, the single latent normal remaining is greater than

0 when the binary variable is 1 and lower than zero otherwise. The same reasoning can be

applied to any T–level categorical variable. For T = 3 we have initially three latent normals:
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z∗i,m,1 = β∗0,m,1 + ε∗i,m,1

z∗i,m,2 = β∗0,m,2 + ε∗i,m,2

z∗i,m,3 = β∗0,m,3 + ε∗i,m,3

We then fix the variances of the residuals to a particular value, e.g. 0.5, so that ε∗i,m,1, ε
∗
i,m,2, ε

∗
i,m,3 ∼

N(0, 0.5); subsequently, we subtract one of the equations, for example the one for z∗i,m,3, from

the other two:

(z∗i,m,1 − z∗i,m,3) = (β∗0,m,1 − β∗0,m,3) + (ε∗i,m,1 − ε∗i,m,3)

(z∗i,m,2 − z∗i,m,3) = (β∗0,m,2 − β∗0,m,3) + (ε∗i,m,2 − ε∗i,m,3)

And we set zi,m,1 = z∗i,m,1 − z∗i,m,3, zi,m,2 = z∗i,m,2 − z∗i,m,3, β0,m,1 = β∗0,m,1 − β∗0,m,3, β0,m,2 =

β∗0,m,2 − β∗0,m,3, εi,m,1 = ε∗i,m,1 − ε∗i,m,3 and εi,m,2 = ε∗i,m,2 − ε∗i,m,3. Again, being εi,m,1 and εi,m,2

obtained from the sum of two normals with variance 0.5, they have variance 1. It is also

possible to see that the covariance term between them is equal to 0.5, basically because of the

term ε∗i,m,3 being in common between the two expressions.

When, among the T − 1 latent normals, zi,m,M = maxj=(1,...,T−1) zi,m,j and zi,m,M > 0, then the

observed category is M . Otherwise, if zi,m,M < 0, the observed category is T .
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We can use the same strategy to deal with, potentially, any number of categorical variables with

any number of levels each. Therefore, for example in a situation where we have a continuous,

a 4-level categorical and a binary variable, a possible joint imputation model is:

yi,1 = β0,1 + εi,1

zi,2,1 = β0,2,1 + εi,2,1

zi,2,2 = β0,2,2 + εi,2,2

zi,2,3 = β0,2,3 + εi,2,3

zi,3 = β0,3 + εi,3

εi,1

εi,2,1

εi,2,2

εi,2,3

εi,3


∼ N





0

0

0

0

0


,Ωe =



σ1,1 σ1,2 σ1,3 σ1,4 σ1,5

σ2,1 1 0.5 0.5 σ2,5

σ3,1 0.5 1 0.5 σ3,5

σ4,1 0.5 0.5 1 σ4,5

σ5,1 σ5,2 σ5,3 σ5,4 1




.

(8.2.4)

To apply JM Imputation, we run a Gibbs sampler to update the values of the parameters of

the model, β = (β0,1, β0,2,1, β0,2,2, β0,2,3, β0,3), Ωe and then the missing data, which are also

parameters from the Bayesian prospective. First of all we need to choose the priors; it is a

good idea to start by considering flat, non-informative priors, to give the greatest weight to

the data, compared to the prior. When we have strong belief in some different priors, the

extensions of the MCMC to accommodate these are straightforward, so we will focus on the

flat prior case.
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Successively we need to find the proper conditional distribution from which to draw all the

parameters. Unfortunately, because of the constraints in the covariance matrix, we cannot

draw a new value for the covariance matrix from a known distribution. Therefore, we rely

on a Metropolis-Hastings step to update it element-wise, as suggested in (Browne, 2006).

Furthermore, we need to update at each step of the sampler the values of the latent normal

variables, zi,2,. and zi,3, for patients whose categorical variables were actually observed; this

is done with a rejection sampling step, where a new value for each of the observed T–level

categorical variables is drawn from the proper conditional distribution until the maximum of

the latent normals indicates the observed category, or all the latent normals are lower than

zero if the observed category is T .

8.2.2 Multilevel Models

When the data are clustered, or otherwise multilevel, some more care is needed. Consider

for example the situation of individual patient data meta-analyses; in this case level 1 of this

multilevel structure is represented by patients while level 2 are the studies. It is highly likely

that data from patients within the same study are correlated, which is not accounted for by

models (8.2.1)–(8.2.4). We therefore have to set up a different joint imputation model.

Building from model (8.2.4), considering the case of J level 2 units with nJ observations each,

so that ΣJ
j=1nJ = N , we continue with the example of a continuous, a 4-level categorical and

a binary variable, and we extend to the multilevel setting as follows:
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yi,j,1 = β0,1 + u0,1,j + εi,j,1

zi,j,2,1 = β0,2,1 + u0,2,1,j + εi,j,2,1

zi,j,2,2 = β0,2,2 + u0,2,2,j + εi,j,2,2

zi,j,2,3 = β0,2,3 + u0,2,3,j + εi,j,2,3

zi,j,3 = β0,3 + u0,3,j + εi,j,3

εi,j,1

εi,j,2,1

εi,j,2,2

εi,j,2,3

εi,j,3


∼ N





0

0

0

0

0


,Ωe =



σ1,1 σ1,2 σ1,3 σ1,4 σ1,5

σ2,1 1 0.5 0.5 σ2,5

σ3,1 0.5 1 0.5 σ3,5

σ4,1 0.5 0.5 1 σ4,5

σ5,1 σ5,2 σ5,3 σ5,4 1






u0,1,j

u0,2,1,j

u0,2,2,j

u0,2,3,j

u0,3,j


∼ N





0

0

0

0

0


,Ωu


.

(8.2.5)

Here j indexes the clusters, i.e. the studies in our example, while i indexes the individuals.

With respect to the previous model, we have two more sets of parameters to update: J vectors

of random effects uj and the corresponding level 2 covariance matrix Ωu. We choose a flat prior

for the former and an inverse-Wishart prior for the latter before running the Gibbs sampler.

Again, choosing other more informative priors, the modifications to the algorithm used would

be straightforward.
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The beauty of the latent normal formulation is that no additional complications are introduced

in the algorithm by this addition.

In the above model, the same level 1 covariance matrix is used across all the clusters. In

many situations this may not be reasonable. For example, in our motivating setting of IPD

meta-analysis, on which our simulation study is based, it is often reasonable to assume that

the residual error variances, and possibly the covariance structure itself, differ by study are

different in different studies. This motivates us to consider two further models, still in the case

of one continuous, one 4-level categorical and one binary variable. The first is as follows:
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yi,j,1 = β0,1 + u0,1,j + εi,j,1

zi,j,2,1 = β0,2,1 + u0,2,1,j + εi,j,2,1

zi,j,2,2 = β0,2,2 + u0,2,2,j + εi,j,2,2

zi,j,2,3 = β0,2,3 + u0,2,3,j + εi,j,2,3

zi,j,3 = β0,3 + u0,3,j + εi,j,3

εi,j,1

εi,j,2,1

εi,j,2,2

εi,j,2,3

εi,j,3


∼ N





0

0

0

0

0


,Ωe,j =



σj1,1 σj1,2 σj1,3 σj1,4 σj1,5

σj2,1 1 0.5 0.5 σj2,5

σj3,1 0.5 1 0.5 σj3,5

σj4,1 0.5 0.5 1 σj4,5

σj5,1 σj5,2 σj5,3 σj5,4 1




,



u0,1,j

u0,2,1,j

u0,2,2,j

u0,2,3,j

u0,3,j


∼ N





0

0

0

0

0


,Ωu


.

(8.2.6)

In this model, the single Ωe of model (8.2.4) is substituted by J cluster-specific Ωe,j. The

same flat prior is assumed for all the new matrices and therefore all the covariance matrices

are updated separately in the same way, while all the remaining steps of the MCMC are

unchanged.
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However, following on from what we did in Chapter 7, we introduce a further extension, i.e. that

the study-specific covariance-matrices are actually random draws from a certain probability

distribution. This can be really helpful in cases where a variable is wholly missing from some

studies, so that a fixed study-specific covariance matrix would not be estimable, provided

that the distribution from which we assume covariance matrices are drawn is well defined and

plausible.

Finding out a proper distribution for the covariance matrices in these settings is not so easy,

mainly because of the constraints in some values of the matrices imposed by the presence of

latent normals for categorical variables. To start with, extending both (Yucel, 2011) and the

work in Chapter 7, we consider the case of a (constrained) inverse-Wishart distribution:

Ωe,j ∼ IW (a,A) . (8.2.7)

We are aware that this might not be the best choice, and it might just represents a starting

point. Nonetheless, the inverse-Wishart distribution remains the conjugate distribution for

the covariance matrix of multivariate normally distributed data and therefore it is attractive

because of the simplifications that it brings to the calculations. A proper investigation to find

out which other distributions would be better choices could be the topic for a future research

paper.
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Having opted for a constrained Inverse Wishart distribution for the random study-specific

covariance matrices, we still have to choose how to update this within the Gibbs sampler,

since, as in the case of a single common covariance matrix, the conditional distribution of

these matrices given all the other parameters in the model is not of a known form.

Finding a proper way to perform this step took several weeks of work, as we investigated the

use of many different strategies. To mention some of these:

1. Updating all the covariance matrices element-wise with an extension of the Metropolis-

Hastings step introduced in Chapter 3 and used in the case of a common covariance

matrix across clusters.

• Pros: the extension from the common covariance matrix case is straightforward,

and the only thing we need to do is to modify the log-likelihood of the data used

to calculate the acceptance ratio of the Metropolis-Hastings step. This was, in the

case of single level data:

logL(β,Ωe) ∝ −
1

2
log|Ω| − 1

2

n∑
i=1

(Yi − β) Ω−1 (Yi − β)T .

with n the number of observations, and it becomes in the new settings:

logL(β,Ωe,j,uj,Ωu) ∝ −
1

2
tr(εjε

T
j + A−1)Ω−1 − (a+ p+ 1)log|Ω|

where p is the dimension of the p-variate normal distribution considered.
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• Cons: updating the covariance matrices element-wise may be computationally quite

time consuming, especially when a lot of clusters, and therefore covariance matrices,

are present.

2. Using the conditional probabilities of the IW distribution to update the matrices in

blocks. For example, considering a matrix A we could divide it in blocks as follows:

A =

 A1 A2

A2 A3


the idea is to initially update the block related to continuous variables, i.e. A1, as in

Chapter 7 and then, given that A3 is constrained, use the conditional probability given

A1 and A3 to update A2.

• Pros: By updating the covariance matrices in blocks we could potentially gain in

computational time, with respect to the MH step where we update each element of

the matrix separately.

• Cons: Unfortunately, there is not a known form for the distribution of A2 given A1

and A3, and after trying hard to find a solution to this problem we decided to give

up on this idea.

3. Updating the covariance matrices in blocks, similarly to the previous point, but using

rejection sampling (Ripley, 2008) to update A2.

• Pros: Using rejection sampling, we can update A2 even if we can’t draw directly

from the actual conditional distribution.
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• Cons: In some cases, the sampler may be extremely slow in finding an acceptable

draw for some of the matrices, losing the advantage of updating the covariance

matrices in blocks instead of element-wise.

By looking at the computational time of the MCMC sampler using the MH step both for a

common covariance matrix and for study-specific covariance matrices, we realized that the

possible issue related with the computational time necessary to update all the covariance

matrices element-wise was not actually so important. We then decided that the first method,

involving the extension of the element-wise MH step to the random study-specific covariance

matrices case, was the best one among the ones investigated and we used this method in all

the analyses in this chapter.

8.2.3 Substantive Meta-anaModels

8.3 Simulation study

In this section, we present the results of a simulation study to demonstrate the efficacy of

multilevel multiple imputation to handle missing data when a mix of continuous, binary and

categorical data are to be imputed. For simplicity, we start in Subsection 8.3.1 with a simple

single level model. Later on we extend to the multilevel case (Subsection 8.3.2), considering

both a setting where there is and where there is not heterogeneity in the covariance matrices

across studies. We conclude in Subsection 8.3.3 with a sensitivity analysis to data generating

mechanisms different from the ones hypothesized in the algorithm. Investigation of the Monte
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Carlo SEs showed that 5 imputations were not enough for some of the simulation settings in

this Chapter. Therefore, in order to be consistent throughout the whole chapter, we decided

to use 10 imputations in all the examples.

8.3.1 Single level model

Imagine we intended to collect 1000 observations on three variables, continuous Y , 4-level

categorical X1 and binary X2. Suppose the substantive scientific model is as follows:

Yi = β0 + β1(X1,i == 2) + β2(X1,i == 3) + β3(X1,i == 4) + β4X2,i + εi. (8.3.1)

Where:

(X == x) = 1⇔ X = x

(X == x) = 0⇔ X 6= x

If we have missing values on some or all of the variables, we might consider using imputation

model (8.2.4) and running our Gibbs sampler with this model to impute the missing values.

To explore the statistical properties of this approach, we generated data through a joint latent

normal data generating mechanism:
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

yi,1

xi,1,1

xi,1,2

xi,1,3

xi,2


∼ N





2

−0.2

0.6

0

−0.1


,



2 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5

0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 1




. (8.3.2)

After having generated these data, 4–level categorical X1 and binary X2 are generated with

the same mechanism explained while presenting the imputation models, i.e. for the binary

variable:

Xi,2,bin = 1⇔ Xi,2 > 0

Xi,2,bin = 0⇔ Xi,2 < 0,

While for categorical X1:

X1,i,cat = M = max
k=1,2,3

Xi,1,k ⇔M > 0

X1,i,cat = 4⇔M < 0.

This is basically the model we are later using as imputation model when running our Gibbs

sampler; it is a multivariate normal model, where categorical variables are handled through a

joint multivariate multinomial probit model.

We generated 1000 simulations and we introduced missingness in all the variables. We intro-

duced 20% MCAR in Y and X2, while regarding X1 we explored two different situations:
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• 40 % MCAR;

• Around 35 % MAR given Y ; in particular, the probability of x1,1 being missing was given

by:

(1 + (exp(3− yi))−1

We ran JM imputation using our R package jomo, now extended to fit and impute from model

(8.2.4). We generated 10 imputed datasets, using a burn-in of 500 updates of the Gibbs sampler

and 500 between imputation iterations. In both missingness scenarios we fitted model (8.3.1)to

the fully observed data first, and later to the complete records and to the 10 imputed datasets,

combining results with Rubin’s rules.

Results Table 8.1 shows the results. When data are MCAR, complete records analysis is

valid and therefore gives consistent estimates of the parameters. However, when applying MI

we can gain some information, as it is noticeable by looking at the estimates of the standard

errors.

Another good reason for preferring MI to complete records is given by looking at the results for

MAR data: here the complete records estimates for β1 and β4 are biased, as it is usually the

case when data are MAR depending on the outcome of the analysis model. On the other hand,

MI is valid under MAR as well, and therefore estimates of the parameters are again unbiased,

and coverage is good. Comparing standard errors in this case is not too much informative,

since complete records analysis is not a well specified model.



8 MULTILEVEL JM MI WITH OTHER DATA TYPES 189

β1 β2 β3 β4
Mean SE Cov Mean SE Cov Mean SE Cov Mean SE Cov

True Value 0.624 95.0 -0.063 95.0 -0.028 95.0 0.808 95.0
Complete Data 0.624 0.089 95.0 -0.063 0.137 95.2 -0.027 0.160 95.3 0.807 0.163 96.3
MCAR Data:

Complete Records 0.624 0.143 95.0 -0.066 0.222 94.4 -0.033 0.259 95.5 0.814 0.266 95.6
MI Model (8.2.4) 0.626 0.116 94.0 -0.064 0.206 94.7 -0.031 0.239 95.4 0.807 0.240 93.9

MAR Data:
Complete Records 0.499 0.122 71.3 -0.049 0.191 95.3 -0.022 0.223 93.8 -0.673 0.219 88.6
MI Model (8.2.4) 0.628 0.117 95.0 -0.049 0.224 94.9 -0.023 0.266 95.0 -0.793 0.249 94.1

Table 8.1: Simulations with single level data. Data are generated with model (8.3.2). Mean,
SE and coverage level is reported for the four slope parameters. Missing data are introduced
both with MCAR and MAR mechanisms and complete records is compared to JM imputation,
using imputation model (8.2.4) with 10 imputed datasets.

8.3.2 Multilevel models

Suppose now we observe data with a multilevel structure. We consider the example of an IPD

meta-analysis, where the source of clustering is the study to which a patient belongs. There is

no reason why this should not apply to other example multilevel structures.

First example: common covariance matrix. Suppose we collected data on the same 3

variables of the previous subsection, continuous Y , 4-level categorical X1 and binary X2, in

15 studies. Suppose each of these studies is affected by missing data. Within each study, the

substantive model of interest is still (8.3.1), but this time we want to meta-analyse the results.

Suppose we chose to run a two-stage random-effects meta-analysis, using the Der Simonian

and Laird estimate of the between-study heterogeneity (DerSimonian and Laird, 1986); for

each parameter βj of (8.3.1) we will have to fit the following model:

β̂j,s = βrandom,j + uj,s + ŝj,sεs, εs ∼ N (0, 1); uj,s ∼ N (0, τ 2j ) (8.3.3)
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for j = 0, . . . , 4.

To impute the missing data, we could consider Model (8.2.5) if we believe a common covariance

matrix is to be used among clusters, or Model (8.2.6) or (8.2.7) otherwise. Once again, we

generated 1000 simulations for each scenario, generating 400 observations for each of the 15

studies under investigation.

The data generating mechanism we used was the following one:



yi,1

xi,1,1

xi,1,2

xi,1,3

xi,3


∼ N





2 + u1,s

0.05 + u2,s

−0.02 + u3,s

0 + u4,s

0.01 + u5,s


,



2 0.5 0.5 0.5 0.5

0.5 1 0.5 0.5 0.5

0.5 0.5 1 0.5 0.5

0.5 0.5 0.5 1 0.5

0.5 0.5 0.5 0.5 1





us =



u1,s

u2,s

u3,s

u4,s

u5,s


∼ N





0

0

0

0

0


,Ωu =



1 0 0 0 0

0 0.1 0 0 0

0 0 0.1 0 0

0 0 0 0.1 0

0 0 0 0 0.1




.

(8.3.4)

where s = 1, . . . , 15 indexes the 15 studies. The binary and the categorical variable are then

obtained from the latent normals exactly as in the single level case. Again, we introduced 20%

MCAR in Y and X2, while for X1 we explored three different situations:

• 40 % MCAR;
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• Around 35 % MAR given Y ; in particular, the probability of x1,1 being missing was given

by:

(1 + (exp(3− yi,1))−1 ;

• X1 systematically missing in one of the 15 studies.

We ran JM imputation using an extension of R package jomo (Quartagno and Carpenter,

2014), to fit models like (8.2.6) and (8.2.7). We used imputation models (8.2.5), (8.2.6) and

(8.2.7) for the first two missingness scenarios and only models (8.2.5) and (8.2.7) for the

third case, where, since X1 was completely missing from some studies, it was impossible to

estimate the corresponding study-specific covariance matrix without hypothesizing an across-

study distribution for the matrices. We imputed 10 datasets, with 500 burn-in and between-

imputation iterations. We fitted model (8.3.3) to the complete records and to the 10 imputed

datasets from each imputation model, combining results with Rubin’s rules.

Results. Table 8.2 shows the results. Starting with the MCAR data case, we can see how

using imputation model (8.2.5), which is the correct one to use in these settings since a common

covariance matrix was used to generate the data, all the estimates are unbiased and standard

errors are smaller than in the complete records analysis. Confidence interval coverage is also

close to the nominal level.
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β1 β2 β3 β4
Mean SE Cov Mean SE Cov Mean SE Cov Mean SE Cov

True Value 0.593 95.0 0.005 95.0 0.005 95.0 -0.749 95.0
Complete Data 0.593 0.040 93.9 0.006 0.056 97.5 0.004 0.055 96.9 -0.749 0.056 96.5
MCAR Data:

CR 0.596 0.065 94.8 0.005 0.091 94.6 0.000 0.090 96.2 -0.747 0.091 94.1
MI Model (8.2.5) 0.596 0.051 94.1 0.006 0.081 95.5 0.003 0.080 95.3 -0.746 0.079 95.5
MI Model (8.2.6) 0.595 0.066 97.4 0.008 0.110 99.2 0.004 0.110 99.3 -0.736 0.108 99.1
MI Model (8.2.7) 0.602 0.063 97.9 0.008 0.103 98.1 0.001 0.103 98.3 -0.752 0.100 98.1

MAR Data:
CR 0.481 0.049 33.6 0.002 0.068 95.5 0.002 0.068 96.0 -0.634 0.066 57.7

MI Model (8.2.5) 0.597 0.046 95.8 0.004 0.073 94.2 0.005 0.072 96.7 -0.754 0.069 94.3
MI Model (8.2.6) 0.596 0.053 97.9 0.002 0.097 98.5 0.005 0.097 99.1 -0.749 0.088 98.0
MI Model (8.2.7) 0.598 0.051 97.2 0.003 0.093 98.4 0.006 0.093 98.8 -0.757 0.084 97.4

Syst. missing:
MI Model (8.2.5) 0.594 0.041 93.9 0.007 0.058 95.5 0.006 0.058 95.7 -0.747 0.059 96.1
MI Model (8.2.7) 0.595 0.042 97.7 0.008 0.075 99.1 0.006 0.075 98.9 -0.745 0.073 98.8

Table 8.2: Simulations with 2-level data. Data are generated with model (8.3.4). Mean, SE
and coverage levels are reported for the four slope parameter estimates. Missing data are
introduced with MCAR and MAR mechanisms. The systematically missing data case is also
explored. Complete records are compared to JM imputation using imputation models (8.2.5),
(8.2.6) and (8.2.7), generating 10 imputated datasets in each case.
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On the other hand, when using imputation models (8.2.6) and (8.2.7), the estimates of the

fixed effects are still unbiased, but standard errors are overestimated and therefore confidence

interval coverage exceeds the nominal level. This is in line with what we were expecting, since

the imputation model is too general in this situation, allowing for study-specific covariance

matrices.

Results of applying MI are similar when data are MAR, while complete records analysis is

severely biased in two of the four parameters estimated. Once again, the fact that SEs are

smaller in complete records analysis rather than in MI is not important, since complete records

in this case is just an invalid analysis and therefore the comparison with MI is inappropriate.

Finally, it is really interesting to see how even in the analysis with systematically missing X1

in one study, conclusions about the efficacy of MI remains unaltered, with model (8.2.5) giving

unbiased parameter estimates and standard errors really close to the complete data analysis

and model (8.2.7) yielding an overestimation of the standard errors but not introducing any

bias.

Second example: study-specific covariance matrices. In many situations with real

data it is more plausible to assume that different clusters have different level 1 covariance

matrices. This is particularly likely in the setting of IPD meta-analysis. For this reason we

tried to generate data with a slightly different model, to see how imputation using models

(8.2.6) and (8.2.7) performs in these settings.
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For simplicity we considered a slightly simpler situation, where we only have two variables,

continuous Y and 3-level categorical X, again in 15 studies. The substantive model is a linear

regression of Y over X in each study, followed by a random-effects meta-analysis as defined by

(8.3.3).

We used the following data generating mechanism:


yi,1

xi,1,1

xi,1,2

 ∼ N



2 + u1,s

−0.05 + u2,s

0 + u3,s

 ,Ωe,s



Ωe,s ∼ IW

df = 15, A =


2 0.5 0.5

0.5 1 0.5

0.5 0.5 1




us =


u1,s

u2,s

u3,s

 ∼ N



0

0

0

 ,Ωu =


1 0 0

0 0.1 0

0 0 0.1


 .

(8.3.5)

where the categorical variable X was again generated with the usual mechanism from the

latent normals X1 and X2:

xi,1 =


1 if xi,1,1 > 0 andxi,1,1 > xi,1,2

2 if xi,1,2 > 0 andxi,1,2 > xi,1,1

3 if xi,1,2 < 0 andxi,1,1 < 0.

(8.3.6)

Again we considered MCAR data for Y and three possibilities for X:
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• 40 % MCAR;

• Around 35 % MAR given Y ; in particular, the probability of xi being missing was given

by:

(1 + (exp(3− yi))−1 , and

• X systematically missing in one of the 15 studies.

Results Looking at the results displayed in Table 8.3, we see how in this case MI with

imputation model (8.2.5) fails to reach a satisfactory coverage level. This is because this

model uses a common covariance matrix, which is incorrect in this situation. Therefore the

final estimate for the standard error is even smaller than in the complete data analysis. By

contrast, both models (8.2.6) and (8.2.7) are now well specified and so they present unbiased

estimates and good coverage levels, pretty close to the levels attained with the complete data.

The advantage of the imputation models over simple complete records analysis is given by the

fact that, as usual, these models work for MAR data as well, while the advantage of model

(8.2.7) over model (8.2.6) is that it can be used with good results even in the more challenging

situation of data systematically missing, provided we can assume that covariance matrices

are distributed according to a certain distribution, that in this case is the inverse-Wishart

distribution.
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β1 β2 β3
Mean SE Cov Mean SE Cov Mean SE Cov

True Value 2.284 95.0 0.000 95.0 -0.850 95.0
Complete Data 2.284 0.262 94.0 -0.002 0.105 92.2 -0.843 0.106 91.4
MCAR Data:

CR 2.283 0.262 93.8 -0.002 0.107 91.4 -0.841 0.109 91.6
MI Model (8.2.5) 2.286 0.259 76.1 -0.002 0.077 94.1 -0.843 0.090 85.2
MI Model (8.2.6) 2.280 0.262 92.6 -0.002 0.111 94.1 -0.835 0.111 92.1
MI Model (8.2.7) 2.283 0.262 92.2 -0.002 0.109 94.1 -0.843 0.109 91.6

MAR Data:
CR 2.101 0.228 85.9 -0.002 0.099 92.2 -0.762 0.097 81.8

MI Model (8.2.5) 2.292 0.258 93.4 -0.002 0.077 78.7 -0.847 0.094 87.0
MI Model (8.2.6) 2.282 0.262 94.1 -0.002 0.109 93.2 -0.838 0.110 91.8
MI Model (8.2.7) 2.284 0.262 93.9 -0.002 0.108 93.0 -0.843 0.109 91.4

Syst. missing:
MI Model (8.2.5) 2.319 0.262 90.6 -0.002 0.102 87.2 -0.846 0.104 91.2
MI Model (8.2.7) 2.290 0.262 92.0 -0.002 0.109 92.3 -0.838 0.111 92.0

Table 8.3: Simulations with 2-level data with heterogeneous covariance matrices. Data are gen-
erated with model (8.3.5). Mean, SE and coverage levels are reported for the three parameter
estimates. Missing data are introduced with MCAR and MAR mechanisms. The systemati-
cally missing data case is also explored. Complete records is compared to JM imputation using
imputation models (8.2.5), (8.2.6) and (8.2.7), generating 10 imputated datasets in each case.
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8.3.3 Different data generating mechanisms

In the previous subsections we always generated our data from a multivariate normal distribu-

tion, assuming it was possible to model categorical data via latent normal models. One might

wonder how much these results are sensitive to this assumption and how would they vary in

cases where real data follow different distributions.

In this subsection we explore this, deciding for simplicity to focus on the single level case.

Similar results and conclusions could be drawn for the multilevel case.

Conditional logit model First, we investigate the case of data generated with the logit

model, in place of the probit. We decide to generate the data with a logit model conditional

on values of the covariates, instead of using a joint model as we did in the previous sections.

In particular this is the data generating mechanism used:

β1 = β2 = β3 = 3

X1, X2 ∼ N(0, 1)

Z = β0 + β1X1 + β2X2

p =
1

1 + exp(−Z)

Y ∼ Bernoulli(p).

(8.3.7)
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Figure 8.1: Histogram of the distribution of p, i.e. the probability of an event yi = 1, for one
of the simulations.

We simulate 1000 datasets with 1000 observations in each. The implied marginal distribution

for Z is therefore normal with mean 3 and variance 18; Figure 8.1 shows the histogram of the

distribution of p for one of the simulations.

We then make around 20% of the variables MCAR. Therefore, having 3 variables with proba-

bility of missingness 0.2 each, the probability of a complete record is (1− 0.2)3 = 0.51.
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Then, we generate 10 imputations using an imputation model similar to (8.2.4), i.e. including

all the variables in the model as outcomes:

zi = β0,1 + εi,1

xi,1 = β0,2 + εi,2

xi,2 = β0,3 + εi,3

yi = 1 if zi > 0

yi = 0 if zi < 0
εi,1

εi,2

εi,3

 ∼ N



0

0

0

 ,Ωe =


1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

σ3,1 σ3,2 σ3,3


 .

(8.3.8)

Table 8.4 shows the results. We can see that the estimates of the fixed effects after imputation

are almost perfect, with minimal bias towards the null (< 1%) and standard errors which are

always around 10% smaller than in complete records analysis.

Categorical covariates with small effect Another situation in which we might want to

impute a mix of categorical and normal data types, is when we have a simple linear regression

model with categorical covariates. Imagine for example we observed continuous variables Y ,

X1, and binary X2, and that our substantive analysis model is:

Yi = β0,i + β1X1,i + β2X2,i + εi, (8.3.9)
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β1 β2 β3
Mean SE Cov Mean SE Cov Mean SE Cov

Conditional logit
model (8.3.7)
True Value 3.00 95.0 3.00 95.0 3.00 95.0

Complete Data 3.03 0.226 94.5 3.02 0.239 95.0 3.03 0.239 95.8
Complete Records 3.08 0.376 95.9 3.08 0.397 95.7 3.10 0.399 95.4

MI 2.99 0.343 93.5 2.98 0.369 92.3 2.97 0.368 93.0
Categorical variable

with small effect
Model (8.3.10)

True Value 3.000 95.0 0.500 95.0 0.500 95.0
Complete Data 2.998 0.045 94.0 0.499 0.032 94.8 0.502 0.063 95.4

Complete Records 3.000 0.063 95.2 0.499 0.044 94.7 0.500 0.089 95.0
MI 3.000 0.055 95.4 0.500 0.040 95.1 0.499 0.082 95.0

Categorical variable
with large effect
Model (8.3.12)

True Value 3.000 95.0 3.000 95.0 3.000 95.0
Complete Data 3.000 0.045 93.5 3.000 0.032 94.6 3.000 0.063 94.6

Complete Records 3.000 0.063 95.3 3.000 0.044 93.3 3.000 0.088 95.7
MI 2.991 0.068 93.8 3.012 0.049 89.7 2.960 0.094 85.4

Table 8.4: Simulation results with single level data generated with models (8.3.7), (8.3.10) and
(8.3.12). Mean, SE and coverage levels are reported for the three parameter estimates. Data
are MCAR and Complete records is compared to JM imputation using an imputation model
with all the 3 variables as outcomes, similarly to model (8.2.4), and generating 10 imputed
datasets in each case.
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with residual error following a normal distribution.

Suppose we have the following data generating mechanism:

β1 = β2 = β3 = 0.5

X1 ∼ Bernoulli(0.5)

X2 ∼ N(0, 1)

X1⊥⊥ X2

Y ∼ N(β0 + β1X1 + β2X2, σ = 1).

(8.3.10)

As in the previous case of the logit model, we simulate 1000 datasets with 1000 observations

each, introducing again 20% missing data in all the variables, so that the probability of a

complete record is again around 50%, and we create 10 imputations with a model similar to

(8.2.4), with all the variables as outcomes and with a latent normal with variance fixed to 1

for the latent normal corresponding to the binary variable:



8 MULTILEVEL JM MI WITH OTHER DATA TYPES 202

yi,1 = β0,1 + εi,1

xi,1 = β0,2 + εi,2

zi,2 = β0,3 + εi,3

xi,2 = 1 if zi,2 > 0

xi,2 = 0 if zi,2 < 0
εi,1

εi,2

εi,3

 ∼ N



0

0

0

 ,Ωe =


σ1,1 σ1,2 σ1,3

σ2,1 σ2,2 σ2,3

σ3,1 σ3,2 1


 .

(8.3.11)

Looking at the results for this analysis (see Table 8.4, ‘Categorical variables with small effects’),

we see that again MI seems to behave well, leading to good mean estimates for the fixed effects

and to standard errors smaller than with complete records, reflecting the amount of information

recovered by imputing the missing data.

Categorical covariates with large effects In the previous example all the fixed effects

parameters were quite ‘small’, since βi = 0.5 ∀i = 0, 1, 2, so that they were a half of the residual

standard deviation. Here, we consider much stronger effects, βi = 3 ∀i = 0, 1, 2, i.e. three times

the residual standard deviation of Y |X1, X2. We repeat the same analysis as before, i.e. the

same number of observations, the same proportion of missing data and the same imputation

model. The results, shown in Table 8.4, are surprising at first sight.
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The means of the estimates of the fixed effects are not too bad, but the standard errors are

larger than in the complete records analysis. Despite this, coverage falls short of the nominal

95% level for both β2 and β3.

We will now consider an even simpler situation to understand the reasons for this.

General Location Model Imagine we have two variables, continuous Y and binary X,

distributed according to a general location model:

X ∼ Bernoulli(0.5)

Y |X = 0 ∼ N(µ0, 1)

Y |X = 1 ∼ N(µ1, 1)

Y |X ∼ N(µ0 + (µ1 − µ0)X, σ = 1).

(8.3.12)

If both Y and X are partially observed, we might want to use JM imputation and therefore

we have to set up a joint model:

 yi

zi

 ∼ N

 β1

β2

 ,Ωe

 (8.3.13)

where zi is a latent normal variable for xi and, as usual, Ωe,2,2 is constrained to 1. Now

imagine for a certain observation i, only yi is missing. To impute it with JM, we calculate

the conditional distribution of yi given zi. From the general location model, the conditional

distribution of yi|zi is:
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yi|zi < 0 ∼ N(µ0, 1)

yi|zi > 0 ∼ N(µ1, 1)

yi|zi ∼ N(µ0 + (µ1 − µ0)Izi>0, 1).

(8.3.14)

However, in JM we are actually imputing from the conditional distribution for one element of

a bivariate normal model given the second, that is:

yi|zi ∼ N
(
β1 + σ12σ

−1
22 (zi − β2), σ11 − σ2

12σ
−1
22

)
= N

(
µ3 + µ4zi, σ

2
2

)
(8.3.15)

Therefore, the performance of the latent normal imputation model in this setting depends on

whether is it possible to find some values of µ3 and µ4 for which model (8.3.15) can be a good

approximation of (8.3.14).

We therefore simulated a huge dataset from the following model:

zi ∼ N(0, 1)

yi|zi < 0 ∼ N(µ0 = 3, 1)

yi|zi > 0 ∼ N(µ1 = 7, 1)

yi|zi ∼ N(µ0 + (µ1 − µ0)Izi>0, 1)

(8.3.16)

Successively, we investigated the linear relationship between Y and Z, finding the values of µ3,

µ4 and σ2 giving the best fit for model (8.3.15) given the observed yi and zi:
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yi|zi ∼ N
(
µ3 + µ4zi, σ

2
2

)
= N

(
6.5 + 2.79zi, 2.332

)
(8.3.17)

If (8.3.17) was a good approximation of (8.3.16), then simulating from both models should

give similar results in terms of the substantive model of interest, that is the regression of Y

over binary X, whose values are dependent on the values of the latent normal Z. However,

while fitting this model to the data generated through (8.3.16) gives – as expected – the right

values for the fixed effect estimates of µ0 = 3, µ1 = 7 and σ = 1, fitting the same model to the

data generated from (8.3.17) gives biased estimates µ0 = 4.27, µ1 = 4.45 and σ = 2.87.

In Figure 8.2 we can see the comparison between the scatter-plot of a random selection of 1000

observations of Y and Z from models (8.3.16) and (8.3.17). This illustrates that the latter is

not a good approximation of the former when the effects we want to estimate are particularly

large, relative to the standard deviation of Y |X. On the other hand, for smaller effects, for

example µ0 = 0.3 and µ1 = 0.5, the two scatter-plots are much more similar (Figure 8.3).
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Figure 8.2: Scatterplots of Y over Z, for a random selection of 1000 draws generated from
(8.3.16) (on the left) and (8.3.17) (on the right). In this case µ0 = 3 and µ1 = 7, i.e. µ1−µ0 = 4,
four times the standard deviation of Y |Z.
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Figure 8.3: Scatterplots of Y over Z, for a random selection of 1000 draws generated from
(8.3.16) (on the left) and (8.3.17) (on the right). In this case µ0 = 0.3 and µ1 = 0.5, i.e.
µ1 − µ0 = 0.2, a fifth of the standard deviation of Y |Z.
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8.3.4 Practical implication for use of the latent normal model

The above results suggest that in some situations the latent normal variables approach will

give biased parameter estimates. This is basically when the categorical variable we want to

impute is present in the substantive model of interest as a covariate, with (at least some of) the

levels having a fixed effect parameter particularly large with respect to the residual standard

error of the model. As a rule of thumb, we found that results of the imputation of variables

whose effect is larger than twice the residual standard error of the substantive model leads to

invalid imputation. For example, we repeated the simulation study where data are simulated

from 8.3.10, i.e. from a linear regression model with a binary covariate, using several different

values of β2, the fixed effect estimate for the covariate effect. Figure 8.4 shows the coverage

level attained in the estimation of β2 after using the latent normal model, for the different

values of the ratio β2
σresid

.

8.4 Ordered categorical variables

There are two possible kinds of categorical data that we might observe for a clinical study. An

example of the first type is a pain scale, whose levels might be ‘mild’, ‘moderate’ and ‘severe’.

In this case, we can clearly see an ordering in the levels of the categorical variables. Such
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Figure 8.4: The relation between the coverage level in the estimation of a particular fixed effect
estimate β2 and the ratio β2

σresid
. The data generating model is 8.3.12 with varying values of β2,

between 0.1 and 10.
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data are therefore known as ordinal data, or ordered categorical variables. A counterexample is

ethnicity, that is a categorical variable where we cannot find any ordering in the levels ‘white’,

‘black’ and ‘asian’; this is therefore an unordered categorical variable.

The methods we presented so far in this chapter were developed with unordered categorical

variables in mind; It is therefore important to explore whether they work well even when there

is an order among the levels of the categorical variables or if it would be better to design

specific methods.

In REALCOM, Goldstein et al. handled ordinal data with a slightly different algorithm but

still making use of latent normal variables. In particular, instead of defining N − 1 latent

normals for each N-level variable, they consider a single latent normal, using the proportional

probit model (McCullagh, 1980). For a single ordinal N-level variable Y , this is:

probit(P (Y ≤ n)) = Φ−1(P (Y ≤ n)) = αn n = 1, . . . , N

We arbitrarily set α0 to −∞ and αN to +∞ and define a latent normal Z ∼ N(0, 1) so that:

Z ≤ α1 ⇔ Y = 1

αn−1 < Z ≤ αn ⇔ Y = n

αN−1 < Z ⇔ Y = N

(8.4.1)
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The α cut-off values are then updated within the Gibbs sampler, for example as proposed

in (Albert and Chib, 1993) or (Chib and Greenberg, 1998). A Metropolis Hastings step for

updating these values might also be possible, speeding up the update process.

Before deciding on whether to include this algorithm in the jomo package, we decided to explore

the adequacy of imputing ordered categorical variables as if they were unordered. To test this,

we generate data from two distributions and we check the relative performances of complete

records analysis and JM-MI.

1. Multivariate proportional probit data generating mechanism: this is the model used in

REALCOM to handle ordinal data. We generate 1000 simulations from the following

multivariate normal distribution:


yi,1

zi,1

zi,2

 ∼ N



2

0

−0.1

 ,


2 0.5 0.5

0.5 1 0.5

0.5 0.5 1


 . (8.4.2)

Then, we transform the latent normal Z1 into a 4-category variable X1 according to the

following rule:

xi,1 =



1 if zi,1 < −0.65

2 if − 0.65 < zi,1 < 0

3 if 0 < zi,1 < 0.65

4 if zi,1 > 0.65

, (8.4.3)
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and similarly we transform Z2 into a binary variable X2:

xi,2 =


1 if zi,2 > 0

0 if zi,2 < 0

. (8.4.4)

The substantive model of interest in this case is a simple linear regression of Y over X1

and X2:

yi = β0 + β1(Xi,1 == 1) + β2(Xi,2 == 2) + β3(Xi,3 == 3) + β4Xi,2 + εi,

where (Xi,1 == k) = 1 if Xi,1 = k and (Xi,1 == k) = 0 otherwise.

2. Univariate ordered probit model: we simply generate two independent normal variables

X1 and X2 and a residual error term ε drawing from a standard normal and then we

calculate the latent normal Zi as follows:

zi = 4 + β1xi,1 + β2xi,2 + εi (8.4.5)

Successively, 4-category yi is created according to this rule:

yi,1 =



1 if zi,1 < 3.5

2 if 3.5 < zi,1 < 4

3 if 4 < zi,1 < 4.5

4 if zi,1 > 4.5

. (8.4.6)
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β0 β1 β2 β3
Multivariate prop. probit
DGM (8.4.2) Mean (SE) Cov Mean (SE) Cov Mean (SE) Cov Mean (SE) Cov
True Value 0.517 95.0 0.377 95.0 0.620 95.0 0.985 95.0
Complete Data 0.517 (0.090) 95.8 0.377 (0.119) 94.4 0.620 (0.121) 95.2 0.984 (0.125) 94.3
Complete Records 0.518 (0.146) 95.0 0.375 (0.192) 93.6 0.615 (0.196) 93.7 0.988 (0.202) 93.3
Joint Model. MI 0.531 (0.122) 95.1 0.369 (0.180) 93 0.608 (0.182) 93.9 0.963 (0.183) 93.5
Univariate ordered probit
DGM (8.4.5)
True Value 0.500 95.0 0.500 95.0
Complete Data 0.500 (0.040) 95.1 0.502 (0.040) 95.1
Complete Records 0.503 (0.064) 95.0 0.502 (0.064) 95.0
Joint Model. MI 0.481 (0.058) 94.7 0.481 (0.058) 94.7

Table 8.5: Results of the analysis of datasets with partially observed ordinal data. In both
scenarios data are 20 % MCAR in all the variables and we compare complete data analysis
with CR and JM-MI. We report mean, SE and coverage probabilities.

The substantive model in this setting is an ordered probit regression of Y over X1 and

X2.

In both these scenarios, we simulate 1000 datasets with 1000 observations, making 20% of all

variables MCAR. Ten imputed datasets are generated using JM-MI.

In Table 8.5 we can see the results obtained by running the substantive model when handling

missing data with CR or with JM-MI with the latent normal approach designed for unordered

categorical variables. We can see that mean estimates and coverage levels are good for all

parameters and in both scenarios; furthermore we are always gaining some information with

respect to CR analysis.

Looking at these results, it seems that using the model for general unordered categorical data

will often perform very well in applications. Of course, there are cases where introducing an

order between the categories can improve imputations because such an approach makes more
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efficient use of the data, using fewer latent normals. However, in the majority of applications,

these results suggest the unordered categorical data algorithm is sufficient. Nevertheless, we

will consider adding the specific algorithm for ordinal variables to the jomo package in future.

8.5 Count variables

Another type of variables that one may wish to include in a statistical analysis are count

variables; this includes for example cases where we want to model a count process through a

Poisson regression. The simplest approach to impute such variables, is just to include them in

the imputation model as continuous variables, possibly after an appropriate variance-stabilizing

transformation in order to make the normal distribution assumption more plausible. The

variance-stabilizing transformation for the Poisson distribution is the square root, so this is

typically used.

We test this strategy by generating data from a Poisson model, using a log-link function, with

two covariates, X1 and X2, drawn from the standard normal distribution:

log E [yi] = β0 + β1Xi,1 + β2Xi,2 (8.5.1)

First, we consider β0 = 3. As for the categorical data case, we explore two different scenarios:

one where the fixed effects β1 and β2 are particularly strong and one where they are not. Thus,

we repeat the same analysis for β1 = β2 = 0.1 and for β1 = β2 = 0.3, the second of which,

since we are working on a logarithmic scale with β0 = 3, is a quite strong effect.
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In Table 8.6 we can see the results obtained by running a Poisson model on the complete

data, on the CR and after handling missing data with JM-MI. For this strategy, we include

Y in the joint imputation model either untransformed, square rooted or taking the logarithm.

For the untransformed case, we truncate to 0 negative imputed values and for the logarithmic

transformation, we add 0.1 to each observation, to allow for the transformation of zero counts.

Finally in all three cases, we round imputed values to the nearest integer.

We see that, for all the three MI methods, estimates are (almost) unbiased and some informa-

tion is recovered when the magnitude of the fixed effects is small; when the fixed effects are

stronger, using untransformed Y in the imputation model leads to the worst results, both in

terms of bias and coverage level, but even using a variance stabilizing transformation like the

square root improves the results only marginally. This is because, even though the square root

transformation stabilized the variance and made the distribution of the counts more similar to

a normal distribution, by modelling jointly the transformed counts and the covariates with a

multivariate normal distribution, we are imputing missing data in Y from a conditional nor-

mal distribution, which does not resemble the real conditional distribution from which Y was

created in the data generating mechanism, because of the presence of the log-link function.

This is roughly the same problem we encountered for categorical data with strong effects.

Using the log-transformation, results are much better, probably thanks to the fact that the

logarithm is both the function used for the transformation and the link function in the data

generating model.
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However, when repeating the same analysis in a setting where the mean of the Poisson dis-

tribution is smaller, e.g. with β0 = β1 = β2 = 1, the transformation seems not to be able to

make the distribution of Y to resemble the normal distribution, and therefore results are not

optimal with any of the strategies adopted. The best results in terms of bias are those for the

log-transformation again, but standard errors are hugely overestimated, even with respect to

the complete records analysis.

In Figure 8.5, we can see the histograms showing the distribution of Y , either untransformed,

square rooted or on the logarithmic scale, for the three scenarios presented. We can see that

while in the first two examples, the transformations are able to improve normality of the data,

this is not quite possible in the last scenario, mainly because of the high number of zero counts

in this situation.

8.6 Discussion

In this chapter we investigated the validity of the latent normal approach to include binary and

categorical variables in the Joint Modelling imputation framework. We explored in particular

the multilevel structure case, that is the situation where JM appears to be preferable to FCS,

showing that, provided we choose an appropriate imputation model, congenial with the analysis

model of interest, it is possible to impute the data coherently in a multivariate multinomial

probit situation.
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β0 β1 β2
Poisson model Mean (SE) Cov Mean (SE) Cov Mean (SE) Cov
β0 = 3, β1 = β2 = 0.3
True Value 3.000 95.0 0.100 95.0 0.100 95.0
Complete Data 3.000 (0.007) 93.5 0.100 (0.007) 94.7 0.100 (0.007) 95.8
Complete Records 3.000 (0.010) 94.5 0.100 (0.010) 94.6 0. 099 (0.010) 94.1
JM-MI, untransformed Y 3.000 (0.008) 94.0 0.100 (0.009) 94.6 0.099 (0.009) 94.7
JM-MI, square root of Y 3.000 (0.008) 94.2 0.099 (0.009) 93.6 0.099 (0.008) 94.7
JM-MI, log(Y+0.1) 3.000 (0.009) 94.2 0.099 (0.009) 94.3 0.099 (0.009) 94.9
Poisson model
β0 = 3, β1 = β2 = 0.3
True Value 3.000 95.0 0.300 95.0 0.300 95.0
Complete Data 3.000 (0.007) 95 0.300 (0.007) 94.9 0.300 (0.007) 94.8
Complete Records 3.000 (0.012) 94.8 0.300 (0.011) 95.1 0.300 (0.011) 94.6
JM-MI, untransformed Y 3.008 (0.013) 92.0 0.286 (0.011) 79.2 0.286 (0.012) 79.9
JM-MI, square root of Y 3.005 (0.011) 92.9 0.291 (0.010) 85.3 0.291 (0.010) 85.8
JM-MI, log(Y+0.1) 3.001 (0.010) 95.4 0.301 (0.010) 95.3 0.300 (0.010) 95.9
Poisson model
β0 = 1 = β1 = β2 = 1
True Value 1.000 95.0 1.000 95.0 1.000 95.0
Complete Data 0.999 (0.021) 95.1 1.000 (0.012) 95.1 1.001 (0.012) 94.6
Complete Records 1.000 (0.029) 94.5 0.999 (0.018) 94.8 1.000 (0.018) 95.1
JM-MI, untransformed Y 1.647 (0.050) 0.0 0.609 (0.047) 0.0 0.607 (0.048) 0.0
JM-MI, square root of Y 1.391 (0.046) 0.0 0.714 (0.045) 0.7 0.712 (0.046) 0.8
JM-MI, log(Y+0.1) 1.009 (0.083) 78.7 1.001 (0.072) 98.6 1.001 (0.075) 98.3

Table 8.6: Results after running Poisson regression model on data generated trough (8.5.1)
with 20% MCAR in all three variables. We compare mean estimates, standard errors and
coverage probabilities obtained by using complete data, complete records or JM-MI, either
using untransformed Y, square root or logarithmic transformation.
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Figure 8.5: Imputation of Poisson data: histograms showing the distribution of Y, sqrt(Y) and
log(Y+0.1) in the three scenarios considered.
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We showed how a model like (8.2.5), with a common covariance matrix considered across

clusters, can lead to biased results when the assumption about the covariance matrix is actually

wrong, while for models like (8.2.6) and (8.2.7) we need to distinguish between three situations:

• if the imputation model matches exactly the data generating model they work well, i.e.

there is no bias in the parameter estimates and we recover information on all parameters;

• if the imputation model is moderately misspecified, still we get unbiased estimates but

we may not recover information. This happens for example when in the data generating

mechanism there is a common covariance matrix across studies, while in the imputation

model we assume the covariance matrices are study-specific;

• if the imputation model is badly misspecified, some bias may be introduced. This hap-

pens for example when the categorical variables we are imputing is a covariate in the

substantive model, whose effect is at least twice the residual standard error of the regres-

sion model.

Therefore, in most IPD applications, where it is usually the case that covariance matrices are

actually quite different due to heterogeneity among the aggregated studies, models assuming

random covariance matrices, like (8.2.7), are preferable.

However, in the relatively uncommon setting of strong effects for some levels of a categorical

variable included as a covariate in the imputation model, the method could fail to work. A

possible solution to this issue is to split the joint model in two components; suppose we have

as substantive model a linear regression with outcome Y , continuous covariates X1 and X2

and binary X3, whose effect is three times the residual error of the model. Instead of defining
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the joint model for f(Y,X1, X2, X3), we might define a marginal model for X3, for example a

multinomial model, and then a conditional model for the remaining variables:

f(Y,X1, X2, X3) = f(X3)f(Y,X1, X2|X3)

This is also the strategy used to overcome another problem: when some of the partially observed

variables are included in the substantive model of interest as covariates, imputation without

considering this is invalid (Carpenter and Kenward, 2013, Chap. 7–8). Therefore a possible

solution is again to split the model in two parts, defining a model for the covariates with non-

linearities and interactions and a conditional model for the other variables (Goldstein et al.,

2014). We will talk about this more extensively in the next chapter.

Throughout this whole chapter, when presenting results of meta-analyses, the substantive

model used was always a random-effects meta-analysis with the DerSimonian and laird estimate

of between-study heterogeneity. This has the same limitations we discussed in Chapter 7 and

was chosen for the same reasons set out in that chapter, i.e. to check the performance of our

imputation methods in combination with the most commonly used meta-analysis model.

Another possible issue we did not mention in this chapter is that of perfect prediction (White

et al., 2010). As we said in Chapter 5, this may occur when we have more than one categorical

variable and the strata formed by the covariates create cells in which all the responses are either

1 or 0 (or potentially any other value for categorical variables). For example, with binary X

and 5-category Z, it occurs if, for all observations for which Z = 5, X = 0 and therefore,

the maximum likelihood estimate of the probability is either 1 or 0 and the corresponding

parameter estimates tend to +∞; the associated standard errors also become very large. The
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easiest way to deal with perfect prediction with JM-MI is to bound the values of the latent

normals Zi to lie in a pre-specified range; This can prevent the associated estimates to tend to

infinity.

Another possible solution, is to insist, at the update step for the fixed effects β, that the

implied marginal probabilities lie in another pre-specified range. For example, for a binary

variable, this entails:

• Proposing a new β∗;

• Calculating the marginal probability of the latent normal being greater than zero, given

this new value of β:

Pr(Z > 0|β∗) =

∫ ∞
0

1√
2π
e−

1
2
(z−β∗)2dz

• Rejecting β∗ if this is too large or too small, for example if it lies outside the range

(0.05, 0.95), and possibly drawing a new proposed value for β until we are able to accept

it.

This process is easily generalizable to the case of multi-category variables; we therefore plan

to implement it in a nearby future, comparing it to the other method, consisting in simply

bounding the latent normals, to see which one is worth including in jomo to avoid perfect

prediction bias.
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As we mentioned in Section 8.2.2, when considering the random study-specific covariance

matrices imputation models, the inverse Wishart distribution might not be the best distribution

to use in a number of cases. A sensitivity analysis comparing different distributions for the

covariance matrices when generating the data with different distributions could be the topic

of further research.

We have also explored the case of ordered categorical and count variables, showing how to

include such variables in this framework and demonstrating how in some applications these

work well. Nevertheless, it would be nice to add the special case of ordinal variables into jomo

in future.

To conclude, we believe we have shown how JM multiple imputation can be successfully applied

in many contexts, even when some of the observed variables are not continuous. This represents

a great advantage, particularly when the data we want to impute have a multilevel structure, as

with IPD meta-analyses. In the next chapter we therefore present the results of using JM-MI

on real data applications.
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9.1 Introduction

In Chapter 1 we motivated our research project with two IPD-MA projects, INDANA and

MAGGIC, whose analyses are complicated by a large proportion of missing data. Therefore,

to conclude, after having argued that JM-MI is the most appropriate method to handle missing

data in this setting, we apply this method to the above examples. In this chapter we show the

results of these analyses.

In Section 9.2 we present the results of the analysis of INDANA handling missing data with

our jomo package, and broadly using the methods described in Chapter 7. In Section 9.3 we

impute and analyse MAGGIC, introducing a theoretical issue and outlining possible strategies

to overcome it. Finally we conclude with a short summary in Section 9.4.

9.2 A first example: Indana

INDANA is the name of an individual patient data meta-analysis project which aimed to

investigate the overall effect of an anti-hypertensive drug treatment on patients at high car-

diovascular risk. INDANA’s dataset is made up of IPD data from 10 studies, comprising

altogether 53271 patients. We will start in the next subsection with a small illustrative exam-

ple showing how to use JM-MI when all the variables affected by missing data are continuous

and can be assumed to follow a multivariate normal distribution.
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Missing items (%)
Study Total

DBP after 1 year Baseline DBP Baseline Cholesterol
ANBP 492 (12.5%) 0 (0%) 38 (1%) 3931
COOP 89 (10 %) 0 (0 %) 120 (13.6 % ) 884
EWPH 136 (16.2 %) 0 (0 %) 18 (2.1 %) 840
HDSP 886 (8.1 %) 0 (0%) 186 (1.7 %) 10940
MRC1 993 (5.7 %) 0 (0 %) 388 (3.2 % ) 17354
MRC2 285 (6.5 % ) 9 (0.2 %) 21 (0.5 %) 4396
MRFT 8012 (100%) 1 (< 0.1%) 1 (< 0.1%) 8012
SHEP 512 (10.8 %) 15 (0.3 %) 1910 (40.3%) 4736
SHPP 551 (100 %) 551 (100 %) 551 (100 %) 551
STOP 89 (5.5 %) 15 (0.9%) 650 (40 %) 1627

TOTAL 4033 (7.6 %) 590 (1.1 %) 3882 (7.3 %) 53271

Table 9.1: INDANA meta-analysis: extent of missing data. Number of missing items (percent-
age) in each study and variable. (DBP – Diastolic Blood Pressure)

As an illustration, suppose we are interested in a simple linear regression to analyse the effect of

treatment on diastolic blood pressure after one year, adjusting for sex, age, baseline cholesterol

value and baseline diastolic blood pressure. Sporadically missing data occurs in all of these

variables, except sex and age. In one of the studies, diastolic blood pressure and cholesterol

data are not available. In practice we would typically omit this study, which (for this analysis)

has age and sex only. However, we will keep them in our study in order to illustrate how our

program behaves in presence of systematically missing data. Table 9.1 shows the number and

the percentages of missing data for each variable in each study.

Table 9.2 shows the results of our analysis. We decided to try both one-step and two-step meta-

analysis; for the one-step regression, we dealt with heteroscedasticity using SAS proc mixed,

which allows for a different residual variance for each study, and we tried to fit both a model
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with a fixed treatment effect and a random one. The estimation method used was REML, since

maximum likelihood estimates are known to be biased for the variance components, especially

with small sample sizes.

Concerning missing data, we dealt with them in three different ways:

1. Complete records analysis; in this case, since we didn’t have any data on diastolic blood

pressure in two studies, we had to exclude these studies from our analysis.

2. JM Multiple imputation with a common covariance matrix among the studies, using

an imputation model with partially observed variables as outcomes and sex, age and

treatment as covariates;

3. JM Multiple Imputation with an imputation model similar to the previous one but with

random study-specific covariance matrices.

We created 15 imputations, with 1000 burn in iterations and 500 between imputation itera-

tions. Results show as both imputation models seem to gain some information with respect to

complete records analysis, although this is limited for the fixed effect models. In this example,

probably because of the substantial heterogeneity, the random covariance matrices algorithm is

able to recover even slightly more information than the common covariance matrix imputation

model, at least for the random-effects meta-analyses, leading to smaller standard errors of the

estimates.
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One-step heterosc. One-step heterosc. IVW - IVW -
regression, fixed regression, random Fixed-effect Random-effects
treatment effect treatment effect meta-analysis meta-analysis
Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) Estimate (S.E.)

CR -5.69 (0.10) -6.65 (0.60) -5.70 (0.10) -6.72 (0.62)
MI common:
covariance -5.69 (0.09) -6.38 (0.49) -5.70 (0.09) -6.43 (0.50)

matrix
MI random:
covariance -5.65 (0.10) -6.27 (0.46) -5.66 (0.10) -6.38 (0.48)
matrices

Table 9.2: Results of analysis of the INDANA individual patient data meta-analysis. The
coefficient is the estimated reduction in mean DBP after one year due to treatment, adjusting
for baseline cholesterol, age and sex. We compare complete records, JM-MI with common co-
variance matrix and JM with random study-specific covariance matrices. In both imputations,
we use 15 imputations, 1000 burn in iterations and 100 between-imputation iterations. We
analysed the data with four meta-analysis models.
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Regarding the clinical interpretation of these results, what we can conclude is that, after having

handled missing data with our JM-MI approach, there is a very strong evidence that one year

of treatment is able to decrease blood pressure substantially. The conclusion is the same we

would have got by using simply complete records, but the estimates of the treatment effect are

slightly smaller and more precise.

9.3 Maggic: a theoretical difficulty

The MAGGIC meta-analysis aggregated IPD from 30 cohort studies, only six of which were

randomised clinical trials; overall, it includes data on 39372 patients with heart failure, of both

reduced and preserved left-ventricular ejection function. 40% of patients died during a median

follow-up time of 2.5 years, with deaths equally distributed between RCTs and registries data.

(Pocock et al., 2013) analyzed this meta-analysis finding 13 predictors of mortality in HF. The

statistical methods used included:

• Poisson survival regression models to relate baseline variables to time to death, clustering

on studies (with a random intercept) to account for the correlation between observations

coming from the same study;

• Since mortality risk is higher initially, the follow-up was divided into 3 time bands: less

than 3 months, between three and six months and more than six months;

• The final model was built using forward stepwise regression, using as inclusion criterion

a p-value lower than 0.01.
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• Missing data were handled with FCS MI, creating 25 imputations before running the

substantive model on the imputed datasets and combining the results with Rubin’s rules.

We can immediately see that there are some theoretical problems in the strategy used by the

authors to handle missing data:

1. In the MI, clustering was accounted for simply by including a fixed effect for the study

indicator; therefore, this method lacked of a principled approach to impute systematically

missing variables.

2. Residual variance was considered to be the same across all the studies, both for an RCT

recruiting nearly 5000 patients (DIAMOND) and for registry data consisting of as few

as 5 observations (NPC-I). This seems to be an unrealistic assumption;

3. In the final substantive model, two interactions were present. However, this method

did not consider interactions in the imputation model. This may lead to biased results

(Carpenter and Kenward, 2013, Chap. 7).

Using our hierarchical JM-MI approach, we could in principle overcome the first two issues.

We therefore repeated the same analysis, but using our stratified JM-MI strategy to create the

25 imputations. However, differently from the examples we ran with the INDANA data and

from all the situations considered so far in this thesis, partially observed variables in MAGGIC

are actually covariates of a survival regression analysis. This raises the issue of which joint

imputation model is the best one to consider in this situation.
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9.3.1 Imputing covariates of survival model

When the partially observed variables X that we need to impute are covariates of a survival

model with survival times T and event indicator D (or censoring indicators C = 1−D), finding

a joint model for X, T and D does not have a clear-cut solution.

The most natural solution is to factor the joint model, setting up a marginal model for the

covariates only and the conditional model for the survival times:

f(T,D,X1, . . . , XN) = f(T,D|X1, . . . , XN)f(X1, . . . , XN). (9.3.1)

In order to describe the algorithm that can be used to impute the missing covariates using

this factorization, imagine for simplicity we have a survival model with only 2 covariates X1

and X2. We recall here, that for a survival time distribution f(t) with cumulative distribution

function F (t) and survival function S(t) = 1 − F (t), the hazard rate h(t) is defined as the

death rate at time t conditional on survival until t and it holds that:

h(t) =
f(t)

S(t)
.

Furthermore the cumulative hazard rate is the integral from time 0 to t of the hazard rate and

it holds that:

H(t) =

∫ t

0

h(s)ds = − log(S(t).
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With this in mind, the log-likelihood contribution for an individual with event time Ti with

censoring indicator Ci, given covariate values Xi,1 and Xi,2 is:

lPH = Ci log f(Ti|Xi,1, Xi,2) + (1− Ci) log(S(Ti|Xi,1, Xi,2)) =

= Ci log h(Ti|Xi,1, Xi,2)−H(Ti|Xi,1, Xi,2) =

= Ci(log(h0(Ti)) + β1Xi,1 + β2Xi,2)−H0(Ti) exp(β1Xi,1 + β2Xi, 2)

(9.3.2)

where in the last line we have assumed that the proportional hazards assumption holds, without

specifying explicitly a form for the baseline hazard so that both the general Cox model or some

parametric model can be assumed.

Assuming a joint multivariate normal model for the two covariates marginally, with parameters

θ̃ = (β̃, Ω̃) and density fX , after having initialized all the parameters in the model, missing

data included, we can then divide the JM imputation algorithm into three steps:

1. Update β1, β2 and the baseline hazard h0(t); this should be done in principle with a fully

Bayesian approach (Clayton, 1991);

2. Draw the proposed new values for the missing data X∗i,1 and/or X∗i,2 from the bivariate

normal distribution and accept or reject them with probability p:

p = min

(
L(X∗i,1, X

∗
1,2)

L(X∗i,1, X
∗
1,2)

)

where L = exp(lPH)fX(X1, X2);

3. Update θ̃ as usual.
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This method is congenial with the proportional hazards models, because it is directly derived

from the joint distribution. Furthermore, it can be extended to impute categorical covariates

through latent normals.

However, in a popular paper, (White and Royston, 2009) analysed the form of the conditional

distribution of the covariates given the survival times and found that:

• For a single binary partially observed covariate Y1, the missing values can be imputed

from a logistic regression of Y1 provided the censoring indicator C and the baseline

cumulative hazard H0(t) are included in the imputation model;

• If there are other covariates in the model, we need to include them in the logistic regres-

sion together with their interactions with H0(t), but then the results of the imputation

will be true only if all the covariates are binary, otherwise they will hold only approxi-

mately;

• If the partially observed covariates are normal, it is possible to fit a linear regression

instead of a logistic regression, but results will be approximate as well.

In the paper, they tested the use of FCS-MI including different estimates of the baseline

cumulative hazard and the censoring indicator, finding that best results were usually obtained

using the Nelson-Aalen estimator of H0(t) and that inclusion of the interactions of H0(t) with

the other observed covariates did not seem to be crucial.
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This is valid for a generic Cox proportional hazards model; in the case of MAGGIC, where

an exponential distribution is used for the hazard of the survival model, we might think that

the cumulative hazard can be simply approximated with survival times T . However, in this

example the hazard rate was divided in three time bands, so that the hazard and the cumulative

hazard are respectively:

h0(t) =


k1 t < t1

k2 t1 ≤ t < t2

k3 t ≥ t2

H0(t) =


k1t t < t1

k1t1 + k2(t− t1) t1 ≤ t < t2

k1t1 + k2(t2 − t1) + k3(t− t2) t ≥ t2

Therefore, survival time T is not a good estimate of the cumulative hazard and we decided

to keep the Nelson-Aalen estimator. Including an estimate of the cumulative hazard and the

censoring indicator in the imputation model, can then lead to imputations that are approxi-

mately correct, even though these approximations may not be precise with increasing number

of covariates in the imputation model, with large values of variance for the covariates and for

large values of the cumulative hazard.
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In principle the first method we proposed will always be superior, since it does not entail any

approximation, but this second method has the advantage that it can be used with standard

software simply introducing the cumulative hazard estimate and the censoring indicator in the

imputation model.

9.3.2 Results

We decided to use for our analysis of the MAGGIC data the White and Royston method,

including censoring indicator and the Nelson-Aalen estimator as an estimate of the cumulative

hazard in the imputation model. This was because the survival model used was a piecewise

Poisson regression, which is known to be equivalent to a piecewise exponential survival model

(Holford, 1980; Laird and Olivier, 1981). Similarly to what had been done in the original paper,

we created 25 imputations, using our jomo software with two different imputation models:

1. A model with all partially observed variables as outcomes, completely observed as co-

variates, including the Nelson-Aalen estimates and the event indicator D, and a random

effect for study-effect;

2. A model similar to the previous one, with the important distinction that study-specific

covariance matrices were considered.
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Variable Studies with no data Studies with some data Total partially observed
Studies Missing Studies Missing observations

Age 0 0 0 0 0
Gender 0 0 0 0 0

BMI 16 6898 13 2686 9584
Current smoker 5 1549 24 448 1997

SBP 9 12016 20 273 12289
Diabetes 1 348 28 340 688

NYHA class 5 2503 24 1121 3624
Ejection fraction 6 3279 24 6186 9465

COPD 9 9171 20 253 9424
HF Duration 20 11679 9 1034 12713
Creatinine 5 2800 24 13529 16329

Beta-blocker 2 273 27 709 982
ACE-I/ARB 1 97 28 159 256

Table 9.3: MAGGIC datasets: Extent of missing data. Age and sex are the only fully observed
variables.

The MAGGIC dataset consists of 39372 observations divided between 6 RCTs and 24 registries,

but we had to exclude from our analysis data coming from one of the RCTs, because the data

owners did not provide permission for us to use them. We therefore have 31755 observations.

Table 9.3 shows the number of missing observations, both sporadic and systematic, in the

whole aggregated IPD dataset.

In the original paper, the final model was built using forward stepwise regression, with inclusion

criteria p < 0.01. We did not repeat this process, taking the same variables selected in their

work, in order to explore possible differences in the results with alternative imputation models.

In Table 9.4 we can see the results of our analysis. Rate ratios calculated in the paper with

respective confidence intervals are compared to rate ratios calculated on data imputed with

our two imputation models.
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Rate ratio (CI) MI using jomo MI using jomo
Variable from (Pocock et al., 2013) with common cov. with random covs.

Age (10 years) 1.154 (1.092,1.220) 1.220 (1.142,1.304) 1.229 (1.144,1.320)
Gender 1.115 (1.073,1.159) 1.133 (1.086,1.181) 1.133 (1.086,1.181)

BMI 0.965 (0.959,0.972) 0.965 (0.958,0.972) 0.968 (0.961,0.975)
Current smoker 1.159 (1.109,1.210) 1.163 (1.112,1.217) 1.164 (1.111,1.220)
SBP (10mmHg) 0.882 (0.855,0.910) 0.927 (0.893,0.962) 0.935 (0.899,0.972)

Diabetes 1.422 (1.365,1.481) 1.420 (1.359,1.483) 1.410 (1.347,1.476)
NYHA 1 0.788 (0.732,0.848) 0.778 (0.706,0.857) 0.768 (0.698,0.845)
NYHA 3 1.410 (1.354,1.467) 1.418 (1.283,1.568) 1.431 (1.297,1.579)
NYHA 4 1.684 (1.580,1.796) 1.701 (1.513,1.912) 1.723 (1.545,1.920)

Ejection fraction (5%) 0.581 (0.539,0.627) 0.649 (0.587,0.718) 0.659 (0.597,0.727)
COPD 1.228 (1.152,1.310) 1.219 (1.151,1.290) 1.230 (1.160,1.303)

HF duration < 18 m 1.188 (1.139,1.240) 1.247 (1.180,1.318) 1.247 (1.176,1.321)
Creatinine (10 µmol/L) 1.039 (1.035,1.042) 1.036 (1.028,1.043) 1.032 (1.027,1.038)

Beta-Blocker 0.760 (0.726,0.796) 0.769 (0.735,0.805) 0.771 (0.736,0.807)
ACE-I/ARB 0.908 (0.856,0.963) 0.933 (0.896,0.971) 0.937 (0.898,0.977)

Interaction EF*Age 1.040 (1.031,1.049) 1.038 (1.027,1.048) 1.037 (1.026,1.049)
Interaction EF*SBP 1.012 (1.008,1.017) 1.005 (1.000,1.011) 1.005 (1.001,1.011)

Table 9.4: Results of MAGGIC analysis. Outcome is time to death, or censoring. Rate ratios
(91% CI) of analysis using FCS MI, JM-MI with common covariance matrix and JM-MI with
study-specific covariance matrices.
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First of all, all the covariates were found to be highly significant with all the three imputation

methods, the only exception being the interaction between ejection fraction and SBP, that was

only borderline significant when using JM-MI. Estimates of the rate ratio were similar for most

of the variables, with some important exceptions, like for example ejection fraction (0.581 vs.

0.649/0.659). Standard errors did not seem to be systematically larger or narrower between

FCS and JM methods and between the two JM methods. However, we need to remember here

that we were using three different models for imputing the data. Therefore we cannot compare

the magnitude of the standard errors for the three methods as we do with complete records

analysis when data are assumed to be MCAR, both because data might be MAR and because

(some of) the models could be wrong, so that smaller estimates of the standard errors could be

due to model misspecification rather than because of more effective recovery of information.

Finally, it is important to note that the imputation process with jomo took altogether around

thirty minutes. With REALCOM, imputing such a large dataset would have taken much

longer time, even more than 24 hours; this was once again a proof of the importance of having

created a software package that is able for the first time to impute such big datasets in a

feasible amount of time.

9.3.3 Interactions in the analysis model

As we already noted at the beginning of this section, there is a further theoretical problem

in the imputation of MAGGIC: in the substantive model of interest we have two interactions.

However, these are not included in the imputation model. Therefore, results of imputation not
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considering this will be a little biased. This is likely to take the form of an attenuation of the

estimate of the interaction effect, and correspondingly stronger estimates of the main effect

parameters.

In the original paper, interactions were simply addressed with passive imputation, a method

that consists in just calculating the values for the interactions passively from the imputed

values of the two variables without setting up a model for the interactions. This method is

known to lead to bias (Seaman et al., 2012).

The Just Another Variable (JAV) approach (Von Hippel, 2009), simply consists in including

the interactions in the imputation model as if they were another variable, without bothering

respecting the relationship between the imputed values for the variables themselves and for

the interactions. This is also not an optimal method, relying on a moment based justification

which only holds if data are MCAR and the substantive model is a linear regression, neither

of which apply here. Nonetheless, it has been shown to be usually less biased than the passive

imputation approach, apart from the case of logistic regressions (Seaman et al., 2012).

Since both these methods lack a theoretical basis and have been shown to perform poorly in

simulation studies, other methods should be used for dealing with interactions in a theoretically

well-formulated way. Using a similar approach to that proposed for categorical data in the

discussion section of Chapter 8 and to the first method we proposed for imputing covariates

of a survival analysis, we propose factoring the joint distribution into two components.
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For example, if we have four partially observed variables to impute, two of which, Y3 and Y4,

are included in the substantive model as covariates together with their interactions, then we

can factor the joint distribution for the four variables as follows:

f(Y1, Y2, Y3, Y4) = f(X3, X4)f(X1, X2|X3, X4) (9.3.3)

Then, we have to set up a joint model for Y3 and Y4 marginally and another joint model for

Y1 and Y2 conditional on the draws from the first model. For the first model, we can simply

consider a multivariate normal distribution:

(
Y3
Y4

)
∼ N2

(
β̃, Ω̃

)
(9.3.4)

When this assumption is not proper, we can simply transform variables to approximate nor-

mality. The joint model for Y1 and Y2 will then be:

Yi,1 = β0,1 + β3,1Yi,3 + β4,1Yi,4 + β34,1Yi,3Yi,4 + εi,1

Yi,2 = β0,2 + β3,2Yi,3 + β4,2Yi,4 + β34,2Yi,3Yi,4 + εi,2(
εi,1
εi,2

)
∼ N(0,Ω)

(9.3.5)
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To fit this model by MCMC, we have to initialize and find priors for all the parameters

of the model: the parameters of (9.3.4), β̃ and Ω̃, and the parameters of (9.3.5), β =

(β0,1, β3,1, β4,1, β34,1, β0,2, β3,2, β4,2, β34,2) and Ω.

The next step is to run the sampler by iterating the following steps:

1. Update β, Ω and possibly missing Yi,1 and Yi,2 from the usual conditional distributions

of a bivariate normal model where we treat Y3, Y4 and their interaction as completely

observed covariates using their current imputed values;

2. Given β, Ω, β̃ and Ω̃ update the missing values in Yi,3 and Yi,4; this can be done either by

the use of a Metropolis-Hastings step or by rejection sampling, as outlined for example

in (Carpenter and Kenward, 2013, Chap. 6-7);

3. Update the values of β̃ and Ω̃.

Among the methods presented here, this is the only strategy to handle missing data in co-

variates included with interactions in the substantive analysis model using a strictly congenial

imputation model. Passive imputation and JAV are methods that gained in popularity because

of their simplicity but they should be avoided in principle.

9.3.4 The ideal imputation model

Following from the previous subsection, here we describe the ideal joint imputation model for

MAGGIC, consistent with the survival model, the multilevel structure and the interactions.
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First, being the substantive model a survival model, we factor the joint distribution of all the

variables in two components:

f(T,D,X,Xint) = f(T,D|X,Xint)f(X,Xint) (9.3.6)

where T is the survival time, D the event indicator (death from all causes) and:

X = (Sex, BMI, Smoke, Diabetes, NYHA, COPD, HF Duration,

Creatinine, Beta-Blocker, ACE-I/ARB)

Xint = (Age,Ejection Fraction, SBP)

Here, Xint includes all the covariates that are included in the substantive model with interac-

tions, while X includes all the remaining covariates. It is even possible to further partition the

joint distribution, introducing a third component as follows:

f(T,D,X,Xint) = f(T,D|X,Xint)f(X|Xint)f(Xint) (9.3.7)

However, this is not strictly necessary, as we will see that model (9.3.6) is enough to set up

a substantive model compatible JM-MI approach. Therefore, we have to define two joint

distributions, one for the covariates and one for survival time and event indicator, conditional

on the values of the covariates.
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Survival distribution Regarding the survival distribution, a good idea is simply to use the

same model as the substantive model. Therefore, following (Pocock et al., 2013), we choose a

piece-wise exponential proportional hazards model. This is known to be equivalent to fitting a

Poisson regression model to the event indicator, using the logarithm of the survival time as an

offset, i.e. as a covariate with parameter estimate constrained to 1 (Laird and Olivier, 1981).

More precisely, we first divide survival time in three intervals, with thresholds after 90 and 180

days. k1 is the constant baseline hazard in the first interval, k2 in the second and k3 in the

third. Then, we create a bunch of pseudo-observations, one for each combination of individual

and interval. For example, for an individual i, whose survival time ti was 187 days, we create

three pseudo-observations as follows:


ti,1 = 90, di,1 = 0

ti,2 = 180− 90 = 90, di,2 = 0

ti,1 = 187− 180 = 7, di,3 = 1

Then, we fit the piece-wise exponential model to data by treating the event indicators di,j, for

j = 1, 2, 3, as if they were independent Poisson observations with means:

µi,j = ti,jki,j

where ki,j is the hazard for individual i at time j, defined as:
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ki,j = kj exp(βXi + βintXi,int + us)

with s indexing the studies and us indicating a random effect. Taking logs, and recalling that

the hazard rates satisfy the proportional hazards assumption, we finally obtain:

log(µi,j) = log(ti,j) + log(kj) + βXi + βintXi,interactions + us, (9.3.8)

with us ∼ N(0, σu) and:

Xinteractions = (Xint,Age*Ejection Fraction, SBP*Ejection Fraction).

Thus, the piece-wise exponential proportional hazards model is equivalent to a Poisson log-

linear model for the pseudo observations, one for each combination of individual and interval,

where the death (or event) indicator is the response and the log of survival time enters as

an offset. This is the ideal model we would like to use for the first part of (9.3.6), i.e. the

conditional distribution of survival time and death indicator, given the covariates.

Joint distribution of the covariates Regarding the joint imputation model for the covari-

ates of the survival substantive model, the idea is not to define explicitly the joint distribution

f , but to use a proposal distribution g to draw the missing values, accepting or rejecting the

proposals either with a Metropolis-Hastings step or with rejection sampling, depending on the
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value of the log-likelihood of model (9.3.8). The easiest option is again to use a multivariate

normal model, where fully observed variables enter as covariates, while partially variables enter

as outcomes. Therefore the proposal distribution is as follows:



XBMI,i = α0,BMI + uBMI,s + α1,BMIXsex,i + α2,BMIXage,i + εBMI,i

XSmoke,i = α0,Smoke + uSmoke,s + α1,SmokeXsex,i + α2,SmokeXage,i + εSmoke,i

XSBP,i = α0,SBP + uSBP,s + α1,SBPXsex,i + α2,SBPXage,i + εSBP,i

XDiabetes,i = α0,Diabetes + uDiabetes,s + α1,DiabetesXsex,i + α2,DiabetesXage,i + εDiabetes,i

XNYHA1,i = α0,NY HA1 + uNYHA1,s + α1,NY HA1Xsex,i + α2,NY HA1Xage,i + εNYHA1,i

XNYHA3,i = α0,NY HA3 + uNYHA3,s + α1,NY HA3Xsex,i + α2,NY HA3Xage,i + εNYHA3,i

XNYHA4,i = α0,NY HA4 + uNYHA4,s + α1,NY HA4Xsex,i + α2,NY HA4Xage,i + εNYHA4,i

XEF,i = α0,EF + uEF,s + α1,EFXsex,i + α2,EFXage,i + εEF,i

XCOPD,i = α0,COPD + uCOPD,s + α1,COPDXsex,i + α2,COPDXage,i + εCOPD,i

XHFDur,i = α0,HFDur + uHFDur,s + α1,HFDurXsex,i + α2,HFDurXage,i + εHFDur,i

XCreat,i = α0,Creat + uCreat,s + α1,CreatXsex,i + α2,CreatXage,i + εCreat,i

XBB,i = α0,BB + uBB,s + α1,BBXsex,i + α2,BBXage,i + εBB,i

XACE−I,i = α0,ACE−I + uACE−I,s + α1,ACE−IXsex,i + α2,ACE−IXage,i + εACE−I,i,

(9.3.9)
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with the εx,i jointly following a normal distribution with mean zero and covariance matrix Ωe,s,

and the random intercepts ux,s jointly following a multivariate normal distribution with mean

zero and covariance matrix Ωu.

Missing data in these variables, are drawn from the proper conditional distribution obtained

from this joint model, and later the draws are accepted or rejected depending on the value of

the log-likelihood of model (9.3.8) with the new draw of the missing values, compared to the

previous draw in the MCMC, as explained in Subsection 9.3.1 and 9.3.3.

In conclusion, the ideal joint imputation model for MAGGIC, would be (9.3.6), with the first

member of the right-hand side defined by (9.3.8) and the second as (9.3.9). It is still not possible

to consider such a model in jomo, but work is on-going to extend the package accordingly.

9.4 Conclusions

In this chapter, we applied our multilevel JM-MI strategy to handle missing data in two

large IPD-MA aggregating data from trials and, in the case of MAGGIC, data from both

trials and registries. In the INDANA meta-analysis, we performed an illustrative analysis,

obtaining promising results and confirming the potentiality of the imputation method based on

random study-specific covariance matrices to respect heterogeneity in the covariance structures

of different studies, and recover information including patients with partially observed data.
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However, the MAGGIC meta-analysis, posed new challenges. Specifically, the fact that the

substantive model of interest was a survival model and the presence of interactions between

partially observed variables in the substantive model. While for the former problem, a simple

approximate solution exists, namely including an estimate of the cumulative hazard and the

censoring indicator in the imputation model, for the second problem simple methods like

passive imputation or JAV should be possibly avoided; we therefore introduced a possible

solution based on the factorization of the joint distribution, a solution that, as we will see in

the next chapter, could be potentially used even to deal with non-linearities in the substantive

analysis model.

This led us to propose our ideal imputation model for the MAGGIC study, whose analysis

provided the initial motivation for this thesis. Unfortunately, at the time of writing, we have

still not implemented the algorithm for fitting this kind of model in jomo.

Nevertheless, even in the MAGGIC data, our JM proposal worked successfully, providing a

computationally feasible approach which properly respects the between-study heterogeneity

and allows us – for the first time – to include in a MA studies where relatively few values are

recorded on key covariates.
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Multiple Imputation is a strategy to handle missing data that has been gaining a lot of popu-

larity in recent years in the world of clinical research for a variety of reasons: among the others

we may list its broad applicability, its flexibility, the wide availability of well implemented

statistical software packages and the fact that it is possible to use the standard software to

analyse the data after imputation.

The aim of this thesis was to implement and evaluate a strategy for MI in the particular case

of missing data in individual patient data meta-analysis, focusing on an approach based on the

specification of a joint multilevel imputation model for the whole IPD dataset. In this final

chapter we review the research chapters of this thesis, highlighting the main messages that we

believe should be taken from our work and setting out a possible plan of future research to be

undertaken.

10.1 Missing Data in IPD meta-analysis

As we set out in Chapter 2, missing data introduce many issues in IPD-MA; variables may be

both sporadically or systematically missing, multilevel imputation models may be required to

impute consistently with the analysis model and heteroscedasticity may be important as well.

In Figure 10.1 we can see a flow-chart explaining how to approach missing data in IPD-MA

with MI depending on the presence of the aforementioned problems.

The key factors that should lead to prefer multilevel MI in most situations are the presence

of systematically missing variables, random slopes and heteroscedasticity. All of these issues

have been addressed in our thesis, particularly in Chapter 7.
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Figure 10.1: A flow-chart explaining when multilevel MI is necessary, compared to within-study
imputation and imputation with fixed cluster effect.
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10.2 jomo: outreach and extensions

As we explained in detail in Chapter 4, the difficulty of extending standard methods for MI

(based on FCS) to allow for multilevel structure in the IPD-MA setting – i.e. patients nested

within studies – resulted in adopting a Joint Modelling strategy. Unfortunately, the only two

software packages available to apply this method were R package pan and standalone program

REALCOM, but the former lacks the flexibility to impute non-normal data, and the latter

has problems of computational efficiency which made it infeasible to use for both simulations

studies and the applications at hand. Further, neither of the existing packages implemented

an approach to address systematically missing covariates.

We therefore created a new R package, called jomo, which is now available on CRAN and that

is programmed in C; its algorithm is similar to that used in REALCOM, with some practically

important extensions. The first is to allow for an imputation model with study-specific co-

variance matrices, in order to respect heterogeneity between different aggregated studies. The

second main extension is the possibility to impute systematically missing variables.

Inevitably, there are still a number of developments that could be added to make jomo more

flexible:

• At the moment, it is possible to use multilevel imputation models, but only level 1

variables can be imputed. We plan to include functions for the imputation of level 2

variables soon after the completion of the Ph.D;
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• jomo treats all categorical variables as nominal using the latent normal model. A possible

extension in future will be to include an algorithm for ordered categorical variables as

well, similar to that used in REALCOM and introduced in Section 8.4;

• jomo still lacks a principled approach to face perfect prediction issues. We are planning

to include one of the approaches presented in Chapter 8 to address this;

• In the case of an imputation model with random study-specific covariance matrices, the

assumption of the inverse-Wishart distribution for the covariance matrices is a good start-

ing point, since it is the conjugate distribution for the covariance matrix of multivariate

normally distributed data, and is likely to be a sensible choice in many situations, as

we illustrated throughout this thesis. However it may well not be the best option in all

scenarios. Different assumptions, e.g. based on the multivariate-t distribution, may be

investigated and made available in jomo;

• Functions for substantive model compatible imputations (Section 9.3.3) would be a great

addition. Currently the jomo package assumes that partially observed variables are not

included in interactions or non-linearities in the substantive model. We return to this in

Section 10.5.

The first two points do not present theoretical difficulties, since they have been already imple-

mented in REALCOM. However, there may be computational challenges implementing them

efficiently. The last two entail novel strategies and accordingly will need to be evaluated using

a simulation study.



10 SUMMARY, DISCUSSION AND FUTURE WORK 252

Another important on-going aspect of this project consists in continuing outreach activities to

make researchers more aware of the availability of our software. In order to do this, we have

drafted a paper for the R Journal and we presented results from this thesis at the ISCB and

IBC conferences.

10.3 Imputing IPD-MA: joint multivariate normal model

Having written and submitted the new package to the Comprehensive R Archive Network

(CRAN), the next part of my Ph.D involved an intensive simulation study to test the per-

formance of our proposed imputation method to address missing data issues in IPD-MA. We

focused initially on the situation where a joint model was easiest to find, i.e. when partially

observed data are approximately multivariate normally distributed.

In this setting, first of all we compared our method to the standard method of imputing with

FCS within the contributing studies; to do this, we used the same simulation settings used in

(Burgess et al., 2013), showing that our approach works at least as good as theirs in the settings

considered in their paper. Then, we explored some more challenging situations, in particular

the presence in the meta-analysis of studies with a very small number of observations, and

even the imputation of systematically missing variables.

We demonstrated how, when an IPD-MA contains studies with few observations, our imputa-

tion strategy is able to mitigate the noise by sharing information across studies, at the same

time dealing properly with the heterogeneity between the different studies. Situations like

the one considered in Subsection 7.3.4, where in some studies just over 5 observations were
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considered, might seem extreme but indeed in one of our motivating IPD-MA, MAGGIC, one

of the contributing studies recorded information only for five patients for some of the variables

included in the analysis model.

The method gave good results even when imputing systematically missing variables, both in

the case of fixed and random covariance matrices, particularly when the assumption regarding

the distribution of the covariance matrices was met by the data.

In real data, we would not know whether the common or study-specific covariance matrix

assumption holds; however, the simulation study demonstrated how, wrongly assuming that

there is a common covariance matrix usually leads to biased results, while wrongly assuming

there are study-specific covariance matrices usually leads only to a slight overestimation of the

standard errors, i.e. mildly conservative inference. Therefore in applications, we recommend

using imputation models with study-specific covariance matrices, since in IPD-MA it is usually

the most plausible assumption. Partially observed variables then enter in the multivariate

imputation model as responses, while completely observed ones enter the model as covariates.

When the joint distribution is not plausibly multivariate normal, we may consider a trans-

formation. For example we could use a Box-Cox transformation, the parameters of which are

updated via a further MCMC step, as suggested in (Goldstein et al., 2009). However, a simpler

approach, that is likely to be just as effective, would be to use the observed values to identify

marginal transformations to a normal scale.
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10.4 Imputing IPD-MA: extension to different data types

Having demonstrated the utility of our approach for continuous data, the next step in our thesis

was to try to extend the method to cases where the multivariate normal joint distribution was

not directly usable for the joint model, starting with the case of partially observed binary or

categorical data. We showed how the latent normal variables approach proposed in (Goldstein

et al., 2009), implemented in REALCOM and which we implemented much more efficiently

in jomo, can be used to impute consistently partially observed nominal variables, making use

of a multivariate multinomial probit model. The very substantial increase in computational

speed of jomo with respect to REALCOM allowed us to undertake – for the first time – a

comprehensive simulation study to explore its performance in a range of practically relevant

situations. We found that the approach gave good results when data were generated with

many different distribution; the only exception was when data were generated from the general

location model and effect sizes were strong. For this situation, we found a condition for the

approximate validity of the latent normal imputation model; we further proposed – and are

currently implementing – a solution for when this condition does not hold.

In general, the conclusions from the previous chapters about the choice of the imputation

model hold in this case too; in other words, a multivariate model with all partially observed

variables as outcomes and with study-specific covariance matrices is preferable in the IPD-MA

setting.

Finally we undertook smaller simulation studies to explore the behaviour of our joint imputa-

tion model with ordered categorical variables and count data. For the former case, we showed

how using the latent normal variables approach and treating the ordered categorical variables
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as unordered, still gives good results. The main advantage of the specific method for ordinal

variables introduced in REALCOM appears therefore to be that it requires far fewer latent

normals (one for each ordinal variable, instead of n−1, with n being the number of levels of the

variable). This is likely to be practically important for sparse data, so we intend to implement

it in jomo in due course. For Poisson data, we showed the results of transforming the data

with either a square root or a logarithmic transformation, obtaining better results with the

second, but still observing bad results in some situations, e.g. mainly when the Poisson rate

is quite small, resulting in a large number of zero counts.

10.5 Factorization of the Joint Model

When facing the problem of interactions in the substantive model, and the issue of the difference

between the general location model and the latent normal model for categorical data, we ended

up proposing a similar solution based on an appropriate factorization of the joint distribution

in two (or potentially more) components:

f(Y1,Y2) = f(Y1|Y2)f(Y2).

Let θ denote the set of parameters underlying the conditional distribution f(Y1|Y2) and θ̃ the

set of parameters underlying the marginal distribution f(Y2). We proposed this factorization

strategy when we had:
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1. Categorical covariates X for which βX
σresid

> 2: in this case a marginal multinomial dis-

tribution could be used for X, and the usual multivariate normal model for the other

variables in the model;

2. Missing covariates in survival models: covariates may be assumed to follow the usual

multivariate normal model, drawing the new imputed values consistently with the sur-

vival model of substantial interest;

3. Interactions between partially observed variables: we could set up two different multi-

variate normal models for variables with or without interactions in the analysis model;

4. Partially observed variables involved with non-linearities in the analysis model: again, sim-

ilarly to the case of interactions, we could just set up two different multivariate normal

models. It is important to stress here that in this case, for non-linearities we intend the

presence of a non-linear component of the partially observed data in the linear model,

and not a non-linearity in the parameters like we usually assume in statistical models.

The algorithm to run our Gibbs sampler in all of these cases is similar to the ones proposed in

Subsections 9.3.1 and 9.3.3, consisting of three essential steps:

1. Update θ and the missing values in Y1. In most cases this is done with a regular

Gibbs sampling step where we assume a (partially latent) multivariate normal model for

f(Y1|Y2) considering Y2 as covariate(s), so there are no theoretical differences from the

situations we considered in Chapters 7 and 8. The only exception is the survival model

case, where we already said (9.3.1) that a fully Bayesian approach should be performed

to update θ;
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2. Draw the new values for the missing data in Y2 from an appropriate distribution com-

patible with our substantive model. Since this will not be possible directly, two options

are available for performing this step: a Metropolis-Hastings procedure and rejection

sampling;

3. Update θ̃ as usual, with the Gibbs sampling steps for the marginal multivariate normal

distribution of f(Y2).

The only step presenting substantial differences from what we have presented so far, is the

second one; as we said, there are (at least) two options to impute missing Y2 values coher-

ently with the substantive model: Metropolis-Hastings and rejection sampling. We illustrated

in Subsection 9.3.1 the Metropolis-Hastings step in the case of survival analysis and similar

reasoning is required to build the same step for the other three cases. However, the problem

with the MH algorithm is that we are not necessarily imputing new values at each iteration

of the sampler, as the proposals may be rejected. Therefore, it may be necessary to ‘tune’ the

parameters of the proposal distribution in an initial adaptive phase.

For this reason, another strategy, making use of rejection sampling, has been proposed recently

(Bartlett et al., 2014). If we wanted to draw the missing values for Y2 from the actual

distribution f , but this does not have a known distribution form, we may use g as a proposal

distribution. Given the appropriate bound M over values of y for the ratio f(y)
g(y)

, the algorithm:

• draws a proposed value y2 from g;

• Accepts y2 with probability f(y2)
Mg(y2)

;

• If y2 was rejected at the previous step, draws a new proposal until it is accepted.
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Using this algorithm, it is in principle always possible to draw a new value for all the missing

data at each iteration of the sampler; however, in some cases, a large rejection rate can result

in many proposals being required.

(Bartlett et al., 2014) proposed and tested this method, opting for the FCS approach to

imputation. A Stata and an R package, both named smcfcs, are available to use it. Their

results seem to be promising and therefore we aim to create the functions to implement this

approach in the joint modelling framework, in order to be able to use it in the multilevel

IPD-MA situation as well.

In conclusion, writing some functions for substantive model compatible imputation through

factorization of the joint distribution, we could solve lots of different issues; we therefore believe

that this is the next important extension to be added to jomo which we hope to implement as

part of a post-doc research project.

10.6 Conclusion

Handling missing data correctly is one of the main challenges faced by an analyst wishing to

perform an Individual Patient Data Meta-Analysis aggregating thousands of observations from

diverse studies. Such an analysis may have as its main goal estimates of treatment effects, or

estimation of a prognostic model.
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Motivated by such data, in this thesis we have argued for, developed, implemented and fi-

nally evaluated an approach based on Joint Modelling Imputation. The approach provides

a flexible strategy for imputing missing values, sharing information across studies (clusters),

while at the same time respecting the heterogeneity between contributing studies. The results

of the extensive simulation studies we have performed suggest the approach is reliable and

robust. Moreover, using the software we have written it is –for the first time – computation-

ally feasible in datasets of the size that typically occur. Further, we have described a unified,

computationally feasible strategy for addressing the remaining issues.

Other methods were developed recently with the aim of handling missing data in IPD-MA. Two

important examples of strategies to handle systematically missing covariates were the studies

by (Fibrinogen Studies Collaboration, 2009) and (Jolani et al., 2015). Both methods are based

on FCS imputation; the method proposed in (Fibrinogen Studies Collaboration, 2009) can deal

only with continuous data and (Jolani et al., 2015) extended the method to the case of a mix

of categorical and continuous data; both methods do not deal with heteroscedasticity in the

analysis model but have been proven to handle really well systematically missing predictors in

homoscedastic generalized linear mixed models. However, these approaches do not cover the

common situation of a mix of sporadically and systematically missing data.

An issue that was not covered in this thesis, is that of wholly missing studies (Ahmed et al.,

2012; Riley et al., 2008). These are studies that were possibly performed, but whose results

were not published, most likely because significant results were not found. This may lead

to the so called publication bias. Extending our approach to address this issue might be an

interesting plan of future research.
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Another thing we did not consider in our thesis is the model fit evaluation; if we are unsure

about the model we want to fit on the data and we want to check and compare model fits for

different models, in principle we should use a different, congenial, imputation model for each

analysis model we want to compare. However, even though including auxiliary variables in

the imputation model make Rubin’s variance rules invalid, the amount of information usually

recovered by including these additional variables usually overshadows the overestimation of the

variances with Rubin’s rules and therefore it is usually recommended to use as many variables

as possible in the imputation model; therefore, it is possible to use the most general imputation

model and then to check model fit using different models on the same imputed datasets.

Though our Multilevel MI method has been proposed in this thesis for the particular situation

of missing data in IPD-MA, it could be applied whenever we have any clustered data, from

longitudinal studies to cluster-randomized trials and E-health data. Also, it [our approach]

could be easily extended to impute data with a multilevel structure with more than two levels,

simply by defining the joint multi-level imputation model accordingly; an example of this could

be a dataset where children may be clustered both in classes and in schools. However, when we

do not have missing variables at the top level or systematically missing variables at level-2, e.g.

in the previous example when we do not have missing school-level variables or systematically

missing class-level variables, it might be enough to impute separately the missing data with a

different imputation model for each level-2 cluster, e.g. to impute missing data for pupils with

a different imputation model within each school, using a 2-level model clustering by class only.
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In conclusion, we believe this method can improve the way many IPD-MA with missing data

are analysed and for this reason, in order to maximize the impact of our research, we made

available and are continuing to support and develop an R package that we hope will contribute

in improving the quality of meta-analyses.
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A.1 MCMC Algorithm for common covariance matrix

In this appendix we present the algorithm for joint modelling imputation of hierarchical data.

We begin with the algorithm for fitting the MCMC with a model with a common covariance

matrix across studies (clusters).

Henceforth, i will index patients and j studies (or general level 2 units). Y is a matrix whose

p-dimensional row vectors are the set of partially observed variables for the different units

in the study; X is a matrix whose r-dimensional rows are the observations on completely

observed variables whose effects are fixed across clusters and Z is the design matrix for the

random effects, i.e. it will generally, but not necessarily, be a subset of X and its rows will be

q-dimensional.

The general formulation of the joint multivariate normal model for the partially observed data

is:

Yi,j = (Ip ⊗Xi,j)β + (Ip ⊗ Zi,j)uj + ei,j

uj ∼ N(0,Ωu)

ei,j ∼ N(0,Ωe),

(A.1.1)

where ⊗ is the Kronecker product, defined as:
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A⊗B =


a11B . . . a1nB

...
. . .

...

am1B . . . amnB

 ,

for an m× n matrix A and a p× q matrix B.

In the above model we have the following parameters:

• the vector of fixed effects β;

• the J vectors of random effects uj;

• the level 1 residuals ei,j;

• the level 1 covariance matrix Ωe;

• the level 2 covariance matrix Ωu.

Furthermore, in the Gibbs sampler we treat missing data as additional parameters.

We then need to choose the priors for all these parameters. We decided to take flat priors for

all the parameters in the model apart from the two covariance matrices; for these, we chose an

inverse-Wishart prior instead, mainly because it is the conjugate distribution.

Starting values for all the parameters were chosen as well: matrices of zeros for fixed and

random effects parameters, identity matrices for covariance matrices and random draws from

a normal distribution with mean set to the mean of the observed cases for the missing data.
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We are now ready to outline the general algorithm to fit the above model. At each iteration of

the sampler we have to update the value of each parameter from the appropriate conditional

distribution, conditioning on all the observed data and the current values for all the other

parameters:

1. Update the fixed effect parameters vector β drawing from the following pr-variate normal

distribution:

β ∼ N(µβ,Ωβ)

µβ =

(∑
i,j

(Ip ⊗Xi,j)
T Ω−1e (Ip ⊗Xi,j)

)−1(∑
i,j

(Ip ⊗Xi,j)
T Ω−1e (Yi,j − (Ip ⊗ Zi,j) uj)

)

Ωβ =

(∑
i,j

(Ip ⊗Xi,j)
T Ω−1e (Ip ⊗Xi,j)

)−1

2. Update the random effects parameters uj, for j = 1, . . . , J , drawing each from the

following pq-variate normal distribution:

uj ∼ N(µuj,Ωuj)

µuj =

(∑
i,j

(Ip ⊗ Zi,j)
T Ω−1e (Ip ⊗ Zi,j) + Ω−1u

)−1(∑
i,j

(Ip ⊗ Zi,j)
T Ω−1e (Yi,j − (Ip ⊗Xi,j)β)

)

Ωuj =

(∑
i,j

(Ip ⊗ Zi,j)
T Ω−1e (Ip ⊗ Zi,j) + Ω−1u

)−1

3. Calculate level 1 residuals ei,j:

ei,j = Yi,j − (Ip ⊗Xi,j)β − (Ip ⊗ Zi,j) uj
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4. Draw the new level 2 covariance matrix Ωu from:

Ωu ∼ W−1(νu,Su)

νu = J + νu,prior

Su =

(∑
j

uju
T
j + Su,prior

)−1

5. Draw the new level 1 covariance matrix Ωe from:

Ωe ∼ W−1(νe,Se)

νe = I + νe,prior

Se =

(∑
i,j

ei,je
T
i,j + Se,prior

)−1

6. Draw the new imputed values for all the missing data. This is done by drawing for

each observation with nmiss missing data from the appropriate conditional nmiss-variate

normal distribution.

When handling binary or categorical data with latent normal variables, a further step is the

rejection sampling procedure to draw new values for the latent normals. These are simply

drawn from the appropriate conditional multivariate normal distribution, but then they are

accepted or rejected whether or not they satisfy the conditions presented in Subsection 3.3.1,

i.e. for an N -level variable, accept a draw where all the N − 1 latent normals are negative if

the observed category is N , accept a draw where the maximum is for latent normal K and is

greater than zero if the observed category is K.
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Again, as discussed in Subsection 3.3.1 and throughout Chapter 8, the step for updating level

1 covariance matrix is slightly different because of the constraints imposed and will require an

element-wise update of the covariance matrix with a Metropolis-Hastings step.

A.2 MCMC algorithm for random study-specific covariance matrices

In this appendix, we describe the MCMC algorithm for random level 1 covariance matrices

introduced by (Yucel, 2011), and slightly modified to correct minor errors.

The basic assumption behind this method is that level 1 precision matrices for each level 2 unit

are drawn from a Wishart distribution and thus the inverse of study-specific level 1 covariance

matrices Ω1,j have marginal distribution:

(Ω1,j)
−1 ∼ W (a,A)

where a is the degrees of freedom and A the scale matrix.

Now, we consider the general algorithm for MCMC multilevel imputation presented in the

previous section and we see the differences introduced in this algorithm by this further as-

sumption. Firstly, the common covariance matrix Ω1 needs to be substituted in the algorithm

with the proper study-specific Ω1,j. Secondly, we have two more parameters to deal with, a



APPENDIX 279

and A. So, we need to specify priors for these parameters; a simple choice might be:

a ∼ χ2
η

A−1 ∼ W (γ,Γ)

where η, γ and Γ need to be chosen by the analyst. Following Yucel, we choose in our analyses

to set η = p1, where p1 = dim(Ω1,j), while for γ and Γ we choose the least informative values

possible, that is γ = p1 and Γ = I.

Then, we need to draw a new value for A−1. We do know that the conditional distribution of

A−1 given all the Ω1,j and a is Wishart:

A−1 ∼ W

γ + aJ,

(
Γ−1 +

∑
j

Ω−11,j

)−1

where J represents the number of level 2 units. Unfortunately, we don’t know the form of the

distribution of a given Ω1,j and therefore we are forced to use a Metropolis Hastings step in

order to draw the new value of a at each step of the MCMC.

We know that the density of a is proportional to:

f(a) ∝ f1(a)Γp(
a

2
)−J

(
J∑
i=1

|Ωj|

)−a+p+1
2

Γ γ+aJ
2
|Γ−1 + Ω−11 + . . .+ Ω−1J |

−aJ+γ
2
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where f1(a) is the prior distribution for a, i.e. χ2
η, and Γp is the p-variate gamma function.

Since a has a skewed distribution, then Yucel suggested to use a transformed variable u such

that:

u = log(a+ p1)

fU(u) = f (exp(u)− p1)
∣∣∣∣∂a∂u

∣∣∣∣
We then choose as proposal density a t4 distribution centred at um, i.e. the mode of fU(u),

that we calculate using Newton-Raphson search. The density of such distribution is:

h(u) ∝
(

1 +
(u− um)2

4λ2

)− 5
2

where we choose λ in order to match the curvature of fU :

λ =

√
− 5

4∂
2fU (u)
∂2u

∣∣
u=um

Then, our Metropolis-Hastings sampler accepts a proposed u∗ with probability:

min

(
1,
f(u∗)h(u)

f(u)h(u∗)

)
.

Lastly, given the new draws of a and A, we update the J covariance matrices from the corre-

spondent distributions:
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Ω−11,j ∼ W
(
a+ Ij,W

−1
j

)
,

where:

Wj = A−1 +
I∑
i=1

(Y
(1)
i,j −X

(1)
i,j β

(1) − Z
(1)
i,j u

(1)
j )T (Y

(1)
i,j −X

(1)
i,j β

(1) − Z
(1)
i,j u

(1)
j ).

Where Ij is the number of level 1 units within each level 2 cluster, Y
(1)
i,j is the vector of the

outcomes for subject i in cluster j, X
(1)
i,j and Z

(1)
i,j are the covariates for the fixed and random

effects and β(1) and u
(1)
j are the vectors of fixed and random effects coefficients.
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B.1 Further Results of Youth Cohort Study Analysis

Below we present some further results comparing REALCOM and our first mex program using

the YCS dataset as described in Chapter 6.

REALCOM Mex

β̂1 39.683 39.686

β̂2 0.103 0.101

β̂3 -0.065 -0.0626

Table B.1: Posterior Means for the three coefficients β in model 1 of Table 2.4

REALCOM Mex

β̂1 39.716 39.715

β̂2 1.907 1.901

β̂3 -0.899 -0.901

β̂4 -0.675 -0.676

β̂5 -0.840 -0.841

β̂6 -1.244 -1.249

β̂7 -1.053 -1.056

Table B.2: Posterior Means for the seven coefficients β in model 2 of Table 2.4
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REALCOM Mex

β̂1 39.681 39.685

β̂2 0.099 0.101

β̂3 -0.066 -0.061

β̂4 1.906 1.899

β̂5 -0.903 -0.908

β̂6 -0.675 -0.680

β̂7 -0.843 -0.847

β̂6 -1.248 -1.258

β̂7 -1.053 -1.054

Table B.3: Posterior Means for the nine coefficients β in model 3 of Table 2.4
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REALCOM Mex
ˆβ0,1 32.621 32.621

β̂i,1 ˆβ1,1 2.612 2.621
ˆβ2,1 2.933 2.933
ˆβ0,2 0.058 0.060

β̂i,2 ˆβ1,2 -0.058 -0.058
ˆβ2,2 0.036 0.036
ˆβ0,3 -0.078 -0.074

β̂i,3 ˆβ1,3 0.018 0.018
ˆβ2,3 0.001 0.001
ˆβ0,4 2.141 2.142

β̂i,4 ˆβ1,4 -0.057 -0.053
ˆβ2,4 -0.097 -0.100
ˆβ0,5 -0.894 -0.894

β̂i,5 ˆβ1,5 0.062 0.065
ˆβ2,5 -0.017 -0.019
ˆβ0,6 -0.564 -0.556

β̂i,6 ˆβ1,6 -0.064 -0.064
ˆβ2,6 -0.034 -0.038
ˆβ0,7 -0.705 -0.707

β̂i,7 ˆβ1,7 -0.095 -0.092
ˆβ2,7 -0.038 -0.039
ˆβ0,8 -1.111 -1.119

β̂i,8 ˆβ1,8 -0.028 -0.014
ˆβ2,8 -0.056 -0.058
ˆβ0,9 -0.917 -0.914

β̂i,9 ˆβ1,9 -0.111 -0.101
ˆβ2,9 -0.034 -0.038

Table B.4: Posterior Means for the twenty-seven coefficients β in model 4 of Table 2.4
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