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Abstract

Background: Measuring recurrent infections such as diarrhoea or respiratory infections in epidemiological studies
is a methodological challenge. Problems in measuring the incidence of recurrent infections include the episode
definition, recall error, and the logistics of close follow up. Longitudinal prevalence (LP), the proportion-of-time-ill
estimated by repeated prevalence measurements, is an alternative measure to incidence of recurrent infections. In
contrast to incidence which usually requires continuous sampling, LP can be measured at intervals. This study
explored how many more participants are needed for infrequent sampling to achieve the same study power as
frequent sampling.

Methods: We developed a set of four empirical simulation models representing low and high risk settings with
short or long episode durations. The model was used to evaluate different sampling strategies with different
assumptions on recall period and recall error.

Results: The model identified three major factors that influence sampling strategies: (1) the clustering of episodes
in individuals; (2) the duration of episodes; (3) the positive correlation between an individual's disease incidence
and episode duration. Intermittent sampling (e.g. 12 times per year) often requires only a slightly larger sample size
compared to continuous sampling, especially in cluster-randomized trials. The collection of period prevalence data
can lead to highly biased effect estimates if the exposure variable is associated with episode duration. To maximize
study power, recall periods of 3 to 7 days may be preferable over shorter periods, even if this leads to inaccuracy
in the prevalence estimates.

Conclusion: Choosing the optimal approach to measure recurrent infections in epidemiological studies depends
on the setting, the study objectives, study design and budget constraints. Sampling at intervals can contribute to
making epidemiological studies and trials more efficient, valid and cost-effective.

Introduction

The prevalence of common recurrent infections such as
diarrhoea and respiratory infections in field studies is
commonly estimated using repeated measurements in
the same individuals. Many studies have used intensive
surveillance, for example by conducting twice-weekly
home visits to measure prevalence on every single day
over the study period [1,2]. In other studies prevalence
was measured at intervals, for example during only four
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home visits at 4-week intervals [3]. The differences in
logistical effort are considerable. A study of 100 house-
holds over one year with twice-weekly surveillance visits
would require 52 x 2 x 100 = 10,400 visits. Conducting
only four visits per household in total requires only 4 x
100 = 400 visits. It has been shown that close surveil-
lance can be inefficient with regard to study power [4].
To facilitate logistics and limit the impact of study pro-
cedures on participants’ risk behaviour, it can be prefer-
able to sample less frequently and recruit a somewhat
larger study population to offset the loss of power incur-
ring with fewer measurements [4].
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Using an empirical mathematical model this paper
explores the question of how many more participants
are needed for infrequent sampling to achieve the same
study power as frequent sampling. Furthermore, we
tested the effect of recall error, and whether the use of
daily point prevalence data offers any advantages over
weekly period prevalence data [3,5]. Recording weekly
period prevalence [3,5] may be simpler, but is less pre-
cise. Finally we explored the implications of clustering
at group level (e.g. household or village) for sampling
strategies.

Theoretical Considerations

Repeated prevalence measurements allow the calculation
of the “longitudinal prevalence” (i.e. the proportion-of-
time-ill), a measure that in the case of diarrhoea has
been shown to correlate better with adverse outcomes
than incidence [6,7]. The longitudinal prevalence (LP) of
a disease in an individual is a continuous outcome that
can take values between 0% (never diseased) and 100%
(always diseased) [4,6]. For sufficiently large studies,
standard formulae for the calculation of the required
sample size for the comparison of two means (e.g. in a
control and intervention arm) can be used, such as

n=(0.84+1.96)>x(c,> +0,?)/
(LP — LP x LPR)?

where # is the sample size per arm, the term (0.84+1.96)
corresponds to 80% power and p = 0.05, 5; and G, are the
standard deviations of the LP in the two groups, [p is the
mean longitudinal prevalence in the control arm, and LPR
the ratio of the mean LP between intervention and control
arm [8].

The standard deviation can also be expressed in terms
of the “coefficient of variation” (CV), useful for sample
size calculations based on limited data (see below).

CV=6/L_P

The sample size calculation for studies using LP as an
outcome is not straightforward because the assumed
standard deviation of [p critically depends on how dis-
ease is distributed between individuals. For many com-
mon recurrent infections disease prevalence is highly
clustered in individuals [9]. The more the disease is con-
centrated in high risk individuals, the easier it is to pre-
dict an individual’s future disease evolution based on
previous measurements, thus limiting the gain in study
power from many repeat measurements.

There are several epidemiological characteristics of
common recurrent infections like diarrhoea and respira-
tory infections that increase the clustering of disease in
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individuals, i.e. increase the standard deviation of the
longitudinal prevalence, thereby making individuals
more “different” from each other [9]. Episode incidence
is typically highly clustered in high risk individuals [9].
Also, individuals with more episodes tend to experience
longer episodes than those with fewer episodes [9]. This
also concentrates disease days in high risk individuals.
These and other characteristics can be specified in a
mathematical model allowing the comparison of differ-
ent surveillance strategies with regard to study power
under controlled conditions [4,9].

Simulation Model

Our model simulates the occurrence of recurrent infec-
tions in a population of hypothetical individuals over
365 days. For a detailed description of the model see
[9]. The models were implemented in Stata 10. The
model was parameterized by specifying three major
characteristics disease distribution.

1. Episode incidence

The distribution of the number of episodes is commonly
highly skewed, with a minority of individuals experien-
cing many episodes. In the model, this is reflected by
assuming that the number of episodes in individuals
follows a gamma distribution [9].

2. Episode duration
The duration of episodes of most infections is also
highly skewed with most episodes lasting for only one
or two days. In the model the episode durations are
assumed also to follow a gamma distribution with differ-
ent parameters [9].

3. Correlation between incidence and episode duration
Individuals experiencing many episodes have been
observed to also suffer from longer episodes [9]. This
was modeled by assuming a linear association between
episode incidence and mean episode duration in an indi-
vidual. (Technical note: To improve model fit, the dura-
tion of each episode generated in the model is further
modified by being multiplied by a normally distributed
adjustment factor that assigns at random to each subject
the tendency to experience predominantly shorter or
longer episodes. For further details see [9]).

The dependence of study power on sampling
frequency: epidemiological determinants

In a first step, we built a set of models simulating 20,000
individuals with increasingly complex assumptions on
how disease is distributed over the follow-up period of
365 days, based on a stepwise parameterization of the
model described above. The aim of these models (four
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in total, named models A to D) was to illustrate how the
three different model parameters (episode incidence,
episode duration and correlation between incidence and
episode duration) affect the dependency of study power
on sampling frequency.

The parameters for this set of models were estimated
from a single field study from Brazil, testing the effect
of Vitamin A on diarrhea in children under 5 [10]. As
observed in the study, we assumed a 5% prevalence of
diarrhea in models A to D. The differences between
models A to D are described in the next section. After
generating the models A to D based on the model para-
meters, we simulated different sampling frequencies ran-
ging between daily sampling to sampling only once
every 28 days. For simplicity, we assumed a 24 h recall
period without recall error. We then calculated the
longitudinal prevalence (proportion of time ill) in each
individual, the mean and standard deviation of the LP of
the simulated population, and finally the required sam-
ple size for the different sampling intervals based on the
formula above. For illustration, we assumed a 20%
reduction of LP in one arm (LPR = 0.8, this value was
not critical to the models’ output).

Results model A to D

Model A is a simple (and unrealistic) model in which
disease days (i.e. 5% of all days observed) are distributed
completely at random between individuals and over the
observation period (a Poisson process). As can be seen
in Figure 1, sampling frequency and sample size in
Model A are linearly related: For example, sampling
only one day every 3 weeks (21 days) requires a 21 fold
sample size (n = 420, dashed line) compared to daily
sampling (n = 20, dashed line). In other words, it does
not matter whether many measurements in few indivi-
duals or few measurements in many individuals are con-
ducted: the study power only depends on the total
number of visits.

Model B assumes that disease occurs in episodes of
varying duration following a gamma distribution [9]
whilst maintaining the percentage of days with illness in
the whole population at 5% (Figure 2, top panel). In
Model B, sampling every day requires nearly the same
sample size as sampling every other day or every third
day. However, for long sampling intervals the sample
size converges to the linear relationship of Model A,
where all disease days occur independently. Thus, due
to the clustering of disease in episodes, sampling at 21
day intervals requires only a 4.8 fold increase in sample
size compared to daily sampling (n = 89).

In Model C we assumed (in addition to gamma dis-
tributed episode durations) that the number of episodes
per individual is drawn from a (different) gamma distri-
bution, again with parameters estimated from the Brazil
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Figure 1 Sample sizes per arm for different sampling intervals.
Longer intervals mean fewer simulated visits (sampling interval of 1
day means 365 visits, sampling interval of 28 days means 13 visits).
Model A assumes that disease days are distributed completely at
random; Model B assumes that diarrhoea occurs in episodes (as
shown in Figure 3.2); Model C assumes (in addition to B) clustering
of episodes in high risk individuals; Model D assumes (in addition to
() correlation between incidence and episode duration.

data (Figure 2, middle panel). The required sample size
increases regardless of the sampling interval. The effect
is that for sampling 1 in 21 days at regular intervals, the
required sample size (n = 698) is only around 1.8 times
larger compared to daily sampling (n = 382).

In Model D we assumed that the duration of episodes
increases by 0.07 days with every additional episode, a
value derived from linear regression analysis of the data
from Brazil (Figure 2, bottom panel [9]). The required
sample size increases for all sampling intervals, but
slightly more for short intervals. Sampling 1 in 21 days
at regular intervals now requires only a 1.4 times larger
sample size (n = 969) compared to daily sampling (n =
674).

Figure 1 also shows the results if the sample sizes for
different sampling intervals are estimated based on the
real (instead of the simulated) data. The simulated data
resulting from Model D and the real data produce very
similar results, suggesting that the model incorporates
the essential parameters for the purposes of this analy-
sis. Further analysis revealed that adding seasonal
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Figure 2 Parameters for Models B, C and D based on diarrhea data from a Vitamin A trial in Brazil. Top Panel: Assumed gamma
distribution for episode duration with parameters o = 0.8 and = 2.7. The observed and simulated mean duration of episodes was 2.7 days.

Middle panel: assumed gamma distribution for the number of episodes with parameters a = 1.2 and = 6.8. The observed and simulated mean
number of episodes per year was 7.0. Bottom panel: Correlation between incidence and episode duration. Diamonds indicate the mean episode
duration of individuals according to individual incidence. The line indicates the regression line with a slope corresponding to an increase of 0.07
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variation [9] and autocorrelation (the dependency of dis-
ease risk on previous episodes [9,11,12]) hardly affected
model results and the estimated sample sizes.

The sample size increase with fewer
measurements in different epidemiological
settings

Development of model scenarios

The above findings illustrated the importance of disease
distribution within and between individuals on the
choice of the required sampling intervals. In a second
step we developed a set of four model scenarios using
parameters from a range of field studies across the
world [9] with the aim of quantifying the association

between sampling frequency and required sample size
under more realistic model assumptions. The model
scenarios were developed to cover a broad range of epi-
demiological settings with a focus on diarrhoea and
respiratory infections. They were derived from the com-
bination of two different distributions of disease inci-
dence ('low risk’ and ‘high risk’), and two different
distributions of episode duration ('short’ duration and
‘long’ duration). The model scenarios are described in
Table 1 and Figure 3.

Model scenario 1 (“Low incidence/Short duration”-
LS) represents a population with fairly low risk of dis-
ease (0.9 episodes per person-year) of short duration
(mean 2.7 days). Model scenario 2 ("Low incidence/
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Table 1 Four model scenarios with examples
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Short episode duration

Long episode duration

Low Model scenario 1 (LS)
incidence

Annual incidence: 0.9/person-year
Mean Episode duration: 2.7 days

Model scenario 2 (LL)

Annual incidence: 0.9/person-year
Mean Episode duration: 5.6 days

Examples: Examples:
-Diarrhea or fever in low risk child population (e.g. Thailand -ALRI in malnourished child populations (Ghana[14], Brazil 2[10])
[271)
-Diarrhoea in an population with a very heterogeneous risk (e.g.
Guatemala [13])
High Model scenario 3 (HS) Model scenario 4 (HL)

incidence

Annual incidence: 7.0/person-year
Mean Episode duration: 2.7 days

Examples:

-Diarrhoea or fever in high risk child populations, like Brazil
[10], Peru[28]

Annual incidence: 7.0/person-year
Mean Episode duration: 5.6 days

Examples:

-Diarrhoea in very poor settings in undernourished children, e.g.
Ghana[14]

-Mild ARI'in high risk population (Ghana, Brazil 2[10,14])

Long duration” - LL) assumes the same incidence as
model scenario 1, but with long illness duration
(mean 5.6 days), suitable to represent relatively
uncommon but severe repeated infections like acute
lower respiratory infections. It may also be suitable to
represent diarrhoea risk in a very heterogeneous
population (in terms of age or socioeconomic status)
where a small subset of the population experiences
many episodes of long duration [13]. Model scenarios
3 and 4 represent diseases that occur at a very high
incidence (7 episodes per person-year on average)
with either short duration (“High incidence/Short
duration” - HS), e.g. diarrhoea in a trial in Brazil,[10],
or long duration (“High incidence/Long duration” -
HL) like diarrhoea in a trial in Ghana [14] or cough
in the Brazil trial [10].

The correlation between episode duration and indivi-
dual incidence and the intra-subject correlation of epi-
sode durations were fitted to field data from Guatemala
(Model scenarios 1 and 2) [13], Brazil (Model scenario
3) [10] and Ghana (Model scenario 4)[14].

Simulated surveillance strategies
For the four different model scenarios we simulated sur-
veillance visits at varying intervals over the simulated
365 days. At each simulated visit, we applied different
recall periods to simulate four commonly used recall
approaches:

(1) Point prevalence over the last 24 hours (“Did you
have the disease during the last 24 hours?”).

(2) Point prevalence for the last 3 days ("On which of
the last 3 days did you have the disease?”)

(3) Point prevalence for the last 7 days ("On which of
the last 7 days did you have the disease?”).

(4) Period prevalence over the last seven days ("Did
you have the disease at any time during the last
7 days?”).

It has been shown that recall periods longer than 48
hours are prone to recall error [15-17]. Based on pub-
lished data, we assumed that disease on the 48 h before
a simulated visit is always reported, while disease on day
-3 to -7 prior to a visit is reported with a probability of
0.74, 0.67, 0.67, 0.58 and 0.58, respectively [15]. All
results were averaged over 100 simulation runs which
were found to be sufficient to achieve robust estimates.

Simulation results

Table 2 shows the estimates of LP (and SD) obtained by
applying the four surveillance strategies to the four
model scenarios reflecting different assumptions of the
underlying disease distribution. This table only shows
the results for 52 (= weekly) visits over the simulated
period of one year. The true mean LP in the control
group is 0.6% in model scenario 1 (LS), 1.3% in model
scenario 2 (LL), 5.4% in model scenario 3 (HS) and
11.0% in model scenario 4 (HL). Since we assumed
100% accuracy for the 24 h recall period, the mean LP
resulting from applying 24 h recall at 52 visits over one
year (52 days sampled per individual at 1 week intervals)
are an unbiased estimate of the true mean LP in the
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Figure 3 Simulated distribution of the number of episodes per individual per year (top panel), and of the duration of episodes
assumed for model scenarios 1 to 4 (bottom panel). The models scenarios are derived from a combination of the two different distributions
for incidence and episode duration. Model scenario 1 combines low incidence and short duration, scenario 2 low incidence and long duration,
scenario 3 high incidence and short duration, and scenario 4 high incidence and long duration. The black bars in top panel show the
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the black bars in bottom panel show the distribution of episode durations for the two models with a short mean episode duration, the white
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simulated populations. For the other recall periods we
assumed recall error. Some days of illness are ‘forgotten’,
leading to smaller estimates of the mean LP (Table 2).
Using weekly period prevalence data (summing up the
disease experience over one week) results unsurprisingly
in larger mean LP estimates and a larger SD of the
mean LP. However, the CV, i.e. the SD divided by the
mean LP, is smaller for period prevalence data than for
point prevalence data, which has consequences for the
study power. For example, in the case of model scenario
1, the CV for using 7-day-recall point prevalence data is
1%/0.4%= 2.5, but is only 3.2%/1.6%= 2 for recording 7-
day-recall period prevalence. Thus, recording period

prevalence reduces the differences in LP between study
participants. It is easy to see why: individuals who had
diarrhoea at some point during the last 7 days may have
suffered from one or more episodes of different dura-
tion. The number of diarrhoea days in the last seven
days in these individuals may be anything between one
and seven, but when period prevalence data are
recorded they are all simply coded as “diseased at any
time during the last 7 days”. Applying the mean LP and
standard deviations derived from period prevalence data
to the sample size formula therefore may result in lower
sample size estimates compared to daily point preva-
lence data (see below).
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Table 2 LP, standard deviation, and LP ratios resulting
from different recall periods

control group intervention group

mean SD mean SD LP
LP LP ratio

Model/recall method

Model scenario 1 (LS)

1 day point prevalence
recall

0.6% 1.5% 0.5% 1.2%  0.80

3 day point prevalence 0.5% 1.3% 0.4% 1.1%  0.80
recall

7 day point prevalence 0.4% 1.0% 03%  08% 080
recall

7 day period prevalence 16%  32% 13%  27% 081
recall

Model scenario 2 (LL)

1 day point prevalence 13%  32% 10%  27% 080
recall

3 day point prevalence 1.2% 2.9% 0.9% 24% 080
recall

7 day point prevalence 1.0% 24% 0.8% 20% 080
recall

7 day period prevalence 24% 5.0% 19%  42% 082
recall

Model scenario 3 (HS)

1 day point prevalence 5.4% 73%  42% 59% 080
recall

3 day point prevalence 49%  65%  39%  52% 080
recall

7 day point prevalence 40%  52%  32%  42% 080
recall

7 day period prevalence 139% 139% 115% 118% 084
recall

Model scenario 4 (HL)

1 day point prevalence 11.0% 131% 89% 11.1% 080
recall

3 day point prevalence 10.1% 11.9% 81% 10.1%  0.80
recall

7 day point prevalence 8.2% 9.7% 66%  82% 080
recall

7 day period prevalence 193% 187% 160% 163% 0.82

recall

Simulated were 2000 individuals allocated to intervention and control group,
with a 20% LP reduction in the intervention group (LP ratio= 0.8).

The simulations identified a slight bias in the estimate
of the risk ratio introduced by the use of period preva-
lence data (Table 2). While all point prevalence esti-
mates (regardless of recall error) result in unbiased risk
ratios, using period prevalence biases the risk ratio
towards one. Bias is strongest for the “high risk/short
duration” model scenario 3, with the risk reduction
being biased from -20% to -16% (RR= 0.84, Table 2).
The bias is due to the possibility that some individuals
in the control group suffer from two or more episodes
in a given week of observation while some individuals in
the intervention group only suffer from one episode
during that week (due to the effect of the intervention).
These individuals are all coded as “diseased” during that
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week if period prevalence data are used, thus reducing
the differences between the two groups.

Figure 4 shows the effect of varying the number of
household visits (X-axis) on the estimated sample size
(Y-axis) of a study comparing two groups with a 20% LP
reduction in one arm (80% power and p = 0.05). For each
of the four model scenarios, the different lines show the
simulation of the four different recall approaches applied
(24 h, 3 days and 7 days point prevalence; one week per-
iod prevalence). As can be expected, short recall periods
(24 h or 3 days) require the highest sample sizes, espe-
cially for a small number of visits.

In general the simulations imply that 52 visits over
one year are always inefficient. Conducting 20 visits
instead of 52 only requires a marginally larger sample
size to achieve the same study power, regardless of the
recall period chosen. Increasingly larger sample sizes are
needed for fewer visits, although the increase can be
lowered by using long recall periods (Figure 4).

Perhaps counter-intuitively, all model scenarios, but in
particular the two high risk model scenarios 3 (HS) and
4 (HL), show that recording one-week period prevalence
is more efficient in terms of study power than the more
informative one-week point prevalence data. As dis-
cussed above, this finding is due to the smaller CV that
results from collecting period prevalence data compared
to point prevalence data (Table 2). The effect of the
smaller CV overrides the increase of the sample size
resulting from a slightly biased risk ratio. Thus, period
prevalence data provide a more precise but slightly
biased estimate of the prevalence reduction.

Table 3 shows the association between sampling fre-
quency and sample size, expressed as multiplication fac-
tors indicating the increase in the sample size relative to
that for 52 visits. For example, a study using 7 day point
prevalence in situations similar to model scenario 3 (HS)
will require a 30% larger sample size if 12 instead of 52 vis-
its are conducted. On the other hand, a 90% larger sample
size is required if 12 instead of 52 visits are conducted for
situations corresponding to the low risk scenario 1 (LS).

We further tested whether disease sampling at inter-
vals may also be applicable to studies measuring the
incidence of infection rather than LP. Here we defined
incidence as any new episode occurring within the
7-day recall period, with a gap of two days between
diarrhoea days (commonly required to define a new epi-
sode). The results are given in Table 3. In all scenarios,
decreasing the number of visits leads to a larger sample
size increase for incidence than for LP.

Group-level clustering

Many diarrhoea studies need to consider clustering
of disease in households, villages or other groups, for
example in situations where an intervention is
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Figure 4 Sample size for the comparison of two groups (20% LP reduction in one arm, 80% power, p = 0.05) as a function of the
number of surveillance visits over one year for the 4 different model scenarios. For each model scenario, the 4 lines show the sample
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randomised at group level. The degree of clustering can
be described as the intra-cluster correlation coefficient
(ICC) which can calculated as follows [8]:

ICC=0}/(cf+0f)

where o0p is the between-cluster standard deviation
and oy the within-cluster standard deviation. With
fewer measurements per individual, the within-cluster
standard deviation of the LP increases, because the indi-
vidual LP estimates are less precise. As a consequence,
the ICC will decrease. The ICC can be used to calculate
the design effect Deff, the factor by which the sample
size of a study needs to be inflated to account for clus-
tering [8]:

Deff =1+ (m-1)xICC

where m is the number of individuals per cluster. As
the ICC decreases with less frequent sampling, Deff also
decreases. As a consequence, the sample size inflation
due to clustering is smaller for infrequent sampling than
for frequent sampling.

We incorporated group-level clustering by allocating
the simulated individuals to clusters assuming approxi-
mately normally distributed mean cluster prevalences.
For illustration we tested cluster sizes of n = 5 (to repre-
sent households) and n = 50 (to represent villages). We
assumed /CC values based on published data [18-20].
We tested ICC values of 0.04, 0.1 and 0.3 for a cluster
size of n = 5, and ICC values of 0.005, 0.02 and 0.1 for a
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Table 3 Multiplication factors for the required sample
sizes
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Table 4 Multiplication factors for the required sample
sizes accounting for clustering at group level

52 20 12 6 4 52 20 12 6 4
visits visits visits  visits  visits visits visits visits visits  visits
Model scenario 1 (LS) Model scenario 1 (LS)
7 day point prevalence 1.0 14 1.9 33 438 no clustering 1.0 14 19 33 4.8
recall Cluster size n =5
3 daﬁ/ point prevalence 1.0 1.6 24 4.2 6.3 ICC = 0.04 10 14 18 30 43
reca
ICC =01 10 13 1.7 27 38
7 day period prevalence 1.0 14 1.9 32 46
recall ICC=03 1.0 1.2 14 2.1 28
Incidence during 7 day 10 16 22 37 52 Cluster size n = 50
recall ICC = 0.005 1.0 13 18 29 42
ICC =002 1.0 12 15 22 30
Model scenario 2 (LL) ICC =01 1.0 1.1 12 14 17
7 day point prevalence 1.0 1.1 14 2.2 29 Model scenario 2 (LL)
recall )
no clustering 10 1.1 14 22 29
?e?aa‘)‘/ point prevalence 1.0 1.2 1.6 24 34 Cluster size n = 5
7 day period prevalence 1.0 1.1 14 22 29 [CC =004 10 I 14 20 27
recall ICC =01 1.0 1.1 13 1.8 24
Incidence during 7 day 10 15 2.1 37 5.1 ICC=03 10 11 1.2 15 1.9
recall Cluster size n = 50
ICC = 0.005 1.0 1.1 13 19 26
Model scenario 3 (HS) ICC = 002 1.0 1.1 12 16 20
7 day point prevalence 1.0 1. 13 1.7 2.1 ICC =01 10 1.0 1.1 1.2 14
recal ) Model scenario 3
3 day point prevalence 10 12 14 20 26 (HS)
recal no clustering 10 1.1 13 1.7 2.1
7 day period prevalence 10 1.1 13 18 23 ) ' ) ’ ' '
Cluster size n =5
recall
Incidence during 7 day 10 13 17 25 33 IcC = 0.04 10 11 1.2 16 20
recall ICC =01 10 1.1 1.2 1.5 1.8
ICC=03 1.0 1.1 1.1 13 1.5
Model 4 scenario (HL) Cluster size n = 50
7 day point prevalence 1.0 1. 1.2 1.5 18 ICC = 0.005 1.0 1.1 12 1.6 1.9
recall ICC = 0.02 10 1 12 14 16
3 daHy point prevalence 1.0 1. 13 1.6 20 ICC = 0.1 10 10 11 12 13
reca
Model scenario 4
7 day period prevalence 1.0 1.1 1.2 1.5 1.8 (HL) !
recall I i 10 1.1 1.2 1.5 18
A . . . . .
Incidence during 7 day 10 14 18 27 37 ocwenng
recall Cluster size n =5
Multiplication factors for the required sample size to achieve the same ICC =004 10 . 12 14 17
statistical power as a study using weekly disease sampling over one year (52 ICC =01 1.0 1.0 1.1 13 1.6
visits). Values are given for 4 different surveillance strategies (in addition to ICC =03 10 10 11 12 14
the baseline strategy) to measure disease prevalence applied to the four o ' ’ ' ' '
different model scenarios. For comparison, these values are also calculated for Cluster size n = 50
using incidence instead of prevalence. Incidence was defined as the ICC = 0.005 10 1.1 12 14 16
occurrence of any new episode during the 7 day recall period with a gap of B
at least 2 days between two new episodes. The assumptions on recall error IcC = 0.02 10 10 11 12 14
were the same as for prevalence measures (but these did not impact on the ICC =01 1.0 1.0 1.0 1.1 1.2

model results, see sensitivity analysis).

cluster size of n = 50. The ICC was estimated using the
Stata command Joneway. For the ICC calculation, longi-
tudinal prevalence was treated as a continuous outcome
measure.

The effect of group level clustering on the sample size
inflation factors (Table 3) is shown in Table 4. For

The sample size is calculated for a study comparing the mean LP between two
groups with a 20% LP reduction in one arm (80% power and p = 0.05). Sampling
was simulated as 7 day point prevalence recall at each visit (see Table 3.).

simplicity, we only investigated surveillance using 7 day
recall of daily point prevalence. In general, intra-class
correlation of disease reduces the sample size multipli-
cation factors. For example, assuming an ICC of 0.02
and a cluster size of n = 50 in model scenario 3, the
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sample size increase will only be 20% instead of 30% if
sampling frequency is reduced from 52 to 12 visits.

Sensitivity analysis

We used model scenario 3 (HS, Table 1) as the default
model scenario for the sensitivity analysis (the other sce-
narios showed similar findings). The results of the simu-
lations were robust against reducing disease incidence in
the intervention arm by lowering the o-parameter of the
gamma distribution (which increases the skew of the
distribution) instead of the f-parameter of the gamma
distribution for incidence (not shown); o and B are
respectively the shape and stretch parameters of the
gamma distribution.

In a further analysis we assumed that the 20% reduc-
tion of LP occurs only through a reduction in the
duration of episodes (by reducing the B-parameter of
the gamma distribution for episode duration), while
the incidence remains the same in both study arms.
For the point prevalence data the sample sizes for the
different surveillance intervals were similar to the
default model scenario, where LP was reduced by
decreasing incidence. In contrast, the use of weekly
period prevalence data biased the LP ratio from the
true value of 0.8 to 0.92 (a 20% LP reduction vs. a 8%
LP reduction). This increased the required sample size
by a factor of about 4 regardless of sampling fre-
quency. Thus, for the study of interventions or risk
factors affecting episode duration, the use of period
prevalence data can result in strongly biased estimates
towards no effect and low study power.

In the default model scenario (HS) we had assumed
recall error according to published field data. These
might overestimate recall error, since it is plausible
that the higher diarrhoea prevalence closer to the sur-
veillance visit sometimes may indicate that household
members remember diarrhoea during the last seven
days as having occurred more recently than was actu-
ally the case. Omitting recall error from the model sce-
nario only slightly lowers the increase in the sample
size for all sampling approaches. On the whole, the
model results were not sensitive to the assumptions on
recall error.

Sample size calculation in practice

For the sample size calculation in practice, an investiga-
tor must first identify a reasonable estimate of the base-
line mean LP in the population, which can be acquired
from cohort or cross sectional data. The challenge lies
in the determination of the standard deviation of LP
which depends on factors that are often unknown,
unless high quality longitudinal data are available. Field
data [9] suggest that the ratio of the SD of LP to the
mean LP (the CV) will decrease from model scenario 1
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to 4. A range of CV values estimated from studies avail-
able to the authors are listed in Table 5. Typical CV
values for model scenarios 1 (LS) and 2 (LL) range
between 2.5 (Guatemala and Pakistan diarrhoea data)
and 2.9 (Ghana ALRI data). For model scenarios 3 (HS)
and 4 (HL) one may assume CVs of about 0.9 to 1.3
(Ghana diarrhoea and Brazil 2 diarrhoea data). These
large differences in the standard deviations between the
scenarios highlight the difficulty in estimating the
required sample size.

Example

Suppose an investigator wants to estimate the sample
size for a one-year intervention trial to reduce the LP of
diarrhoea by 20% in a child population with a known
LP of 2.5% (80% power and p = 0.05). Based on limited
epidemiological data from the site, the investigator
assumes that the mean episode duration is fairly short
(2 to 3 days) and the incidence between 4 to 6 episodes
per child year [9]. This means that the episode duration
is similar to model scenarios 1 and 3 (2.7 days), while
the incidence is approximately between the values
assumed for these two model scenarios (model scenario
1 = 0.9 and model scenario 2 = 7.0 per person-year).
The CV may be around 1.6 which leads to a standard
deviation in the control arm of 4.0. This results in a
sample size of 823 per arm if all the days over the year
were sampled. If the investigator decides to limit the
number of visits to one per month, then in this case
example, the increase should be between the factors for
model scenarios 1 and 3, approximately around 1.5,
which results in a sample size of n = 1235 per arm
instead of n = 823.

Table 5 Observed standard deviations and coefficients of
variation in different study populations

Study Mean LP sD cv
Guatemala [13]

Diarrhoea 0.023 0.057 245
Pakistan [29]

Diarrhoea 0014 0.038 265
Brazil 1 [2]

diarrhoea 0.029 0.045 1.54
Brazil 2 [10]

diarrhoea 0.050 0.066 1.31

cough 0.238 0.187 0.78

fever 0.042 0.040 0.95
Ghana [14]

diarrhoea 0.170 0.171 1.01

cough 0.141 0.152 1.12

rapid breathing 0.014 0.042 2.87

LP and SD were calculated based on point prevalence data collected
continuously over one year
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Discussion

Sampling at long intervals to measure the prevalence of
common infections may not only reduce the number of
visits and costs, but could also improve participants’
willingness to cooperate and decrease the potential for
changing risk behaviours due to close surveillance. The
findings of this study could be used to inform on the
choice of the most appropriate sampling strategy and its
implications for sample size and sampling frequency.
Infrequent sampling is less suitable when the aim of a
study is to measure the incidence of infection.

Sampling strategies are ideally chosen to maximise
study power given the available budget. The choice of a
particular sampling strategy in terms of costs and logis-
tics is highly context specific. In some settings, recruit-
ing and supervising a large group of field workers
(needed for intensive follow-up) can be straightforward,
in other settings very difficult. Sometimes, recruiting
additional study participants can be the dominant logis-
tical challenge. In this case it may be better to choose
close follow-up to maximise study power given a limited
number of participants.

The final choice of the sampling frequency may often
depend on the research question. If microbiological data
are to be collected, frequent sampling may be necessary
to maximize study power particularly for uncommon
pathogens. Long sampling intervals may be ideal for
example to explore the effect of large scale-environmen-
tal health interventions, where the causative pathogen is
often of minor interest and the study population is too
large to allow frequent sampling. But regardless of the
study question, it should be useful to compare the sta-
tistical power of different sampling frequencies (for
example by using Tables 3 and 4).

In the past, large-scale trials have often opted for close
surveillance of a subset of the population [14]. In many
circumstances it may be better to sample disease at long
intervals in the whole study population to save staff
costs and to avoid influencing risk and reporting beha-
vior of study participants by frequent visits. A recent
trial on water treatment in Kenya in which participants
were randomized to two different diarrhoea surveillance
schemes (intensive vs. infrequent sampling) found
strong evidence for the latter (Michael Kremer, Claire
Null, personal communication).

The following example illustrates the profound impli-
cations on study planning of choosing infrequent sam-
pling. Emerson and colleagues conducted a large
cluster-randomised trial to measure the impact of fly
control and latrine construction on trachoma [21]. Diar-
rhoea was originally included as a secondary outcome
but then dropped because the logistical effort of con-
ducting weekly follow-up visits was deemed prohibitive
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(Emerson, personal communication). However, our
results suggest that the additional costs of visiting each
household 6 to 12 times over the study period of
6 months would have been small, and - given the large
number of already recruited participants - could have
allowed estimating the effect size of sanitation on diar-
rhoea with sufficient accuracy. Given the clustered
design of the trial, close surveillance of participants for
diarrhoea symptoms would have gained little power
over less frequent sampling, as was shown in Table 4.
Jenkins and colleagues conducted a study on the impact
of a household water filter on diarrhoea [22]. Due to
lack of funding, the study was originally planned as an
acceptability study, only. However, after considering dif-
ferent surveillance strategies as described in this paper
the budget was judged sufficient to conduct 6 visits per
household at monthly intervals.

Some interventions or risk factors (e.g. micronutrient
supplements) partly or primarily affect the duration
rather than the incidence of infections [10]. Some inter-
ventions can also alter the average duration of disease
by selectively reducing short or long episodes as
observed in a household water treatment trial study in
Guatemala [13]. Period prevalence data may at times be
more efficient in terms of study power and are easier to
collect. However, it will often be difficult to exclude
prior to a study that an intervention affects episode
duration, which would not be captured fully by record-
ing period prevalence. The results indicate that in most
circumstances, applying a 7-day recall period using
point prevalence data may be the preferred choice for
measuring prevalence. However, the choice of the length
of the recall period depends on the situation. For exam-
ple, in urban settings people may be used to Monday-
Friday work weeks and shop opening hours and might
‘think’ in weekdays more than some poor rural popula-
tions, which may facilitate disease recall.

We identified several epidemiological characteristics of
recurrent infections that needed to be included in the
simulations in order to achieve estimates on the associa-
tion between sampling frequency and sample size. A
large number of parameter combinations would have
been possible, and it could be argued that the simulation
should have focused on changing these parameters indi-
vidually. However, different settings commonly do not
differ in a single parameter but in several of them
jointly. For example, children in high incidence settings
often have longer episodes than in low incidence set-
tings [9]. We limited the number of scenarios to just
four, covering a fairly wide range of epidemiological set-
tings and conditions. As with any more complex model
the choice of these scenarios was to some extent arbi-
trary. As in the above example of a sample size
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calculation many epidemiological settings will fall in
between the scenarios, so that the sample size calcula-
tion will still contain a fair amount of guess-work.
Future work could explore a wider range of model sce-
narios, including other types of infections and condi-
tions, which in this analysis we largely restricted to
diarrhoea and respiratory infections as the most impor-
tant in terms of morbidity and mortality [23].

As demonstrated in Figure 1 the simulated datasets
used in this analysis allowed us to explore the role of
different parameters of disease distribution under “con-
trolled conditions”. Real datasets would have been
unsuitable for this purpose because it would have been
very difficult to infer from them a similar understanding
of the stochastic processes that may influence the choice
of the appropriate sampling strategies. However, simula-
tion models by definition simplify the dynamics of
disease occurrence and as such they provide an approxi-
mation of the real data. For example, the model does
not allow for missing data, which occur in most datasets
collected in the field. The validation of the model using
the real datasets (which all contained missing data of up
to 10%) revealed that missing data do not systematically
influence the association between sampling frequency
and sample size in studies with a typical loss-to-follow
up (see the comparison of real and simulated data
shown in Figure 1). For this reason, we did not further
explore the complex issue of missing data.

As described in the sensitivity analysis section, our
assumptions regarding recall error were relatively
straightforward. For example, we assumed the same
recall error for recording point prevalence and period
prevalence data. Obtaining point prevalence data will
require a more thorough questioning of study partici-
pants compared to period prevalence (which can be
obtained with a single question). Spending more time
with the interviewees may reduce recall error.

In real datasets, recall error may also vary between dif-
ferent villages/clusters and increase during the course of
a study due to a number of factors. Towards the end
period of a study, prevalence estimates are often low
suggesting that participants or field staff lose interest in
reporting disease [11]. Some studies found that the first
(or a single) surveillance visit provides higher, at times
implausible prevalence estimates compared to subse-
quent visits [24,25]. Our model did not account for
these factors. However, the sensitivity analysis showed
that recall error hardly influences the model results.
Also, recall error could be less important for calculating
LP than incidence of disease because the timing of dis-
ease occurrence is less relevant. A recent study found
that mothers often misplaced the day at which disease
occurred in a child, but this error had little effect on the
overall prevalence estimate [26].
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Conclusions

Choosing the optimal approach to measure recurrent
infections in epidemiological studies greatly depends on
the setting, the study objectives, study design and budget
constraints. Our findings may contribute to making epi-
demiological studies more efficient, valid and cost-effec-
tive. They may also encourage more researchers to
include diarrhea or respiratory infections as a health out-
come in the first place, which previously have often been
thought to require a high logistical effort. As shown in
this paper, this need not necessarily be the case.
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