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Objective:  Infectious  disease  spread  depends  on contact  rates  between  infectious  and  susceptible  indi-
viduals. Transmission  models  are  commonly  informed  using  empirically  collected  contact  data,  but  the
relevance  of  different  contact  types  to  transmission  is still  not  well  understood.  Some  studies  select  con-
tacts  based  on  a single  characteristic  such  as  proximity  (physical/non-physical),  location,  duration  or
frequency.  This  study  aimed  to  explore  whether  clusters  of contacts  similar  to each  other  across  multiple
characteristics  could  better  explain  disease  transmission.
Methods:  Individual  contact  data  from  the  POLYMOD  survey  in  Poland,  Great  Britain,  Belgium,  Finland  and
Italy were  grouped  into  clusters  by the  k  medoids  clustering  algorithm  with  a Manhattan  distance  metric
to  stratify  contacts  using  all  four characteristics.  Contact  clusters  were  then  used  to  fit a transmission
model  to sero-epidemiological  data  for varicella-zoster  virus  (VZV)  in  each  country.
Results  and  discussion:  Across  the  five  countries,  9–15  clusters  were  found  to  optimise  both  quality  of  clus-
tering  (measured  using  average  silhouette  width)  and  quality  of fit  (measured  using several  information
criteria).  Of  these,  2–3  clusters  were  most  relevant  to VZV  transmission,  characterised  by  (i)  1–2  clusters

of  age-assortative  contacts  in  schools,  (ii)  a cluster  of less  age-assortative  contacts  in  non-school  settings.
Quality  of fit was  similar  to using  contacts  stratified  by  a single  characteristic,  providing  validation  that
single  stratifications  are  appropriate.  However,  using  clustering  to stratify  contacts  using  multiple  char-
acteristics  provided  insight  into  the structures  underlying  infection  transmission,  particularly  the  role  of
age-assortative  contacts,  involving  school  age  children,  for VZV  transmission  between  households.

© 2016  The  Author(s).  Published  by Elsevier  B.V. This  is  an open  access  article  under  the CC  BY  license
. Introduction

Mathematical models of infectious disease transmission require

ssumptions about mixing between different subgroups in a pop-
lation that can potentially lead to transmission between infected
nd susceptible individuals. The simplest assumption is that every-

Abbreviations: AIC, Akaike Information Criterion; AICc, small-sample-size cor-
ected Akaike Information Criterion; ASW, average silhouette width; BIC, Bayesian
nformation Criterion; PAM, partitioning around medoids; VZV, varicella-zoster
irus; WAIFW, who acquires infection from whom.
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one has the same probability of contacting each other, but this can
sometimes lead to misleading results (Keeling and Rohani, 2008).
Indeed, many infection control interventions such as vaccinating
children (Thorrington et al., 2015) or closing schools during a pan-
demic (House et al., 2011) are predicated on the assumption that
certain subgroups in the population are the main transmitters.

A more realistic assumption is to subdivide the population
based on some characteristic, and introduce a matrix of contact
rates capable of transmitting infection between each subgroup,
called the “who acquires infection from whom” (WAIFW) matrix
(Vynnycky and White, 2010). Age is the characteristic most com-
monly used as a source of heterogeneity in mixing patterns. A model
with age-stratified contact rates can be fitted to age-specific data on
infection history (such as sero-epidemiological data, which marks

the prevalence of previous infection) to estimate the age-specific
effective contact rates in the WAIFW matrix.

To inform the elements of the WAIFW matrix, the number of
social contacts that individuals in different age groups report can

 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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e empirically measured and used as proxies to the actual contact
ates underlying transmission (Beutels et al., 2006; Edmunds et al.,
997; Wallinga et al., 2006). The largest such study is a diary-based
urvey of 7290 participants in eight European countries collected
n 2006 as part of the POLYMOD project (Mossong et al., 2008).
ince then contact studies have been carried out in other parts of
he world using similar methodology.

In these studies, participants are asked to record the con-
acts that they have made over a single day and classify them
sing a number of characteristics (such as physical/non-physical,

ong/short, home/school/work etc.) Since it is unrealistic to mea-
ure effective contacts (i.e. contacts that can transmit a particular
nfection) between individuals directly, some form of self-reported
ocial behaviour such as face-to-face conversation or skin-to-skin
ontact is used as a proxy. It is assumed that the age distribution
f these social contacts is related to the age distribution of effec-
ive contacts by a constant proportionality factor, an assumption
eferred to as the “social contact hypothesis” (Wallinga et al., 2006).
ence the age-specific transmission matrix is completely described
y estimating this factor. Subsequent analyses (Melegaro et al.,
011) found that stratifying the WAIFW matrix according to dif-
erent characteristics of contacts (with a different proportionality
onstant for each type of contact) significantly improved the good-
ess of fit of the models to serological markers of past infection for
espiratory infections. This implies that different characteristics of
ocial contact contribute differently to infection transmission.

A previous study explored the use of formal clustering
lgorithms to group POLYMOD survey respondents based on
he number and location of their contacts (Kretzschmar and

ikolajczyk, 2009). The study found that respondents across dif-
erent countries fell into a similar range of contact profiles, with the
ork, school and household contact profiles most common. How-

ver, this does not tell us whether there are certain types of contacts
rather than respondents) which may  be particularly relevant for
he transmission of particular infectious diseases. Furthermore, the
elevant clusters of contacts may  be disease-specific, since different
nfections have separate routes of transmission.

Hence an alternative approach would be to explore what kind of
ontacts (rather than respondents) are most relevant to infection
ransmission. The only previous work in this area has focused on
ingle dimensions of contacts (Melegaro et al., 2011). This simply
ndicated that “intimate” (i.e. physical, home, long-duration and
requent) contacts are better able to explain age-dependent pat-
erns in the acquisition of serological markers for varicella-zoster
irus (VZV) and parvovirus B19, the two infection examined in the
tudy. Since the dimensions of intimacy are highly correlated, it
ay  be more informative to take all the characteristics of social con-

acts into account collectively when stratifying the WAIFW matrix.
In particular contacts made by different respondents could be

rouped into clusters, and then examined to identify which clusters
est explain patterns of infection acquisition in the corresponding
opulations. Here, we explore the use of clustering algorithms to
etermine clusters of social contacts which are similar to each other
ased on multi-dimensional characteristics of social contacts.

A range of clustering algorithms have been developed such as
ierarchical clustering, partitioning clustering and latent class clus-
ering (Everitt et al., 2011). In hierarchical clustering, each element
s plotted on a graph to determine the optimal number of clusters.

hen the number of elements becomes very large (such as the
housands of contacts for each country in the POLYMOD survey),
his graphical method becomes very cumbersome. In latent class
lustering, a multivariate distribution is imposed on the data and

he validation of the clustering results depends on several assump-
ions such as the parametric form of the multivariate distribution,
he dependency between variables and the approximation of like-
ihood estimation. Since social contact data include different types
s 17 (2016) 1–9

of variables (binary and ordinal), some of which are structured, it
is difficult to identify an appropriate multivariate distribution to
describe the data. Hence we used partitioning clustering, and in
particular the k medoids method to classify contacts.

We then investigate whether these clusters enhance our
understanding of transmission patterns by using them to fit a
transmission dynamic model to age-dependent patterns in the
acquisition of varicella-zoster virus serological markers, as an
example of a childhood respiratory infection with clear, long-lived
markers of past infection and no vaccination history at the time of
data collection.

2. Methods

2.1. Data sources

Age-specific contact matrices were constructed using social
contact data from participants of the POLYMOD project (Mossong
et al., 2008) living in Poland (15808 contacts, 1003 participants),
Great Britain (11052 contacts, 996 participants), Belgium (8810
contacts, 747 participants), Finland (10319 contacts, 973 partici-
pants) and Italy (15788 contacts, 842 participants). Contacts with
any missing information were discarded, so our dataset differs
slightly from previous analyses (Melegaro et al., 2011). Contact
matrices were adjusted for population size and reciprocity using
well-described procedures (Melegaro et al., 2011; Wallinga et al.,
2006).

Models were fitted to data on the presence of antibodies to VZV
from serum samples collected in 1996 from 1300 participants aged
0–19 in Poland, 2091 participants aged 0–20 in England and Wales
(fitted to Great British contacts), 2760 participants aged 0–39 in
Belgium, 2500 participants aged 0–79 in Finland and 2517 par-
ticipants aged 0–79 in Italy (Vyse et al., 2004). The samples were
collected from unlinked anonymised (apart from age) residual sera
following microbiological or biochemical investigations (Osborne
et al., 2000), and tested as part of the European Commission-
funded second European Sero-epidemiological Network (ESEN2)
(Melegaro et al., 2011; Nardone et al., 2007). Children under 5 years
old were oversampled with the sample size in each age group rang-
ing from 117 to 192. For those aged 5–20 years approximately
100 sera in each one-year age group were tested. All serological
tests for VZV-specific IgG were performed at Preston Public Health
Laboratory using a commercial ELISA assay.

Population data were obtained from national statistics offices
in the five countries considered as in previous analyses (Melegaro
et al., 2011).

2.2. Cluster analysis of social contact data

A cluster is defined as a group of social contacts whose mem-
bers are more similar to each other than to non-members. The
similarity of two  contacts is defined using the Manhattan dis-
tance measure between the two (Everitt et al., 2011), based on
four contact characteristics: proximity (physical, non-physical),
duration (<5 min, 5–15 min, 15 min  to 1 h, 1–4 h, >4 h), frequency
(daily, weekly, monthly, a few times a year, first time) and
location (home, work, school, leisure, transport, other). Vari-
ables representing each characteristic were recoded so that the
distance between any two  contacts lies between 0 and 1, so
the Manhattan distance becomes the Gower’s similarity coeffi-
cient which is an appropriate proximity measurement for mixed

data (Gower, 1971) (see Appendix A1 for details in Supple-
mentary data). Contacts recorded as taking place in multiple
locations were assigned to a single location based on the following
hierarchy: home > work > school > leisure > other > transport. The
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ierarchy was based on the putative duration of contacts in the
iven settings as suggested by previous investigators (Kretzschmar
nd Mikolajczyk, 2009). Social contacts were classified into clus-
ers using the Partitioning Around Medoids (PAM) algorithm, the

ost common realisation of k-medoids clustering. This approach
re-defines a fixed number of clusters, selects typical elements
s centroids of each cluster and assigns other elements to a clus-
er according to their distance to the centroid (Kaufman and
ousseeuw, 1990).

The number of clusters was varied between 2 and 15, with the
pper limit included to avoid possible problems with data sparsity.
he optimal number of clusters for the PAM algorithm was then
etermined using average silhouette width (ASW), which mea-
ures how well each contact is assigned to its cluster (Kaufman
nd Rousseeuw, 1990). Replication analysis (Breckenridge, 2000;
alesiak et al., 2008) was performed to assess the robustness of

he clustering results, by splitting the dataset into several subsets
nd using the same algorithm separately for each subset to compare
lassification agreement.

.3. Fitting dynamic transmission models

We  constructed a realistic age-structured (Schenzle, 1984)
usceptible-infected-recovered (SIR) dynamic model of VZV trans-
ission (with no natural mortality assumed). In this model, the

ext generation matrix representing the potential number of infec-
ion transmission events per person, is calculated as the product of
he (adjusted) age-dependent contact matrix, a proportionality fac-
or q representing the proportion of contacts that can potentially
ead to a new infection and vector representing the size of the sus-
eptible population in each age group. For each cluster i of contacts
1 ≤ i ≤ N where N is the total number of clusters), we generated

 separate contact matrices Ci with corresponding proportionality
actors qi. Hence the next generation matrix is the linear combi-
ation of all contact matrices C1 q1 w + . . . + CN qN w where w is a
ertical vector of the population size in each age group. The basic
eproduction R0 was calculated as the principal eigenvalue of the
ext generation matrix.

A grid search algorithm was used to find the qi’s which
aximised the binomial likelihood of the model given sero-

pidemiological data for VZV infections (Melegaro et al., 2011;
gunjimi et al., 2009). We  defined relevant clusters as those with
orresponding best fitting qi’s that were non-zero, and hence which
ontributed to the next generation matrix. An iterative method was
sed to obtain the proportion of immunes at each age group as a
unction of the qi’s. Quality of model fit with different numbers of
lusters was measured using the Akaike Information Criterion (AIC),
ts small-sample-size corrected version (AICc) and the Bayesian
nformation Criterion (BIC). Goodness of fit was also compared to

odels with contacts stratified by a single characteristic only.

.4. Uncertainty intervals

Uncertainty intervals for the proportionality factor q and basic
eproduction number R0 were estimated by bootstrap sampling
rom both social contact data and sero-epidemiological data with
he same sample size as the original data (Melegaro et al., 2011).
or social contact data, bootstrap samples were generated by
e-sampling participants’ identity numbers. Social contact matri-
es were then estimated for each bootstrap sample. For the
ero-epidemiological data, bootstrap samples were generated by
andomly drawing from a Bernoulli distribution with probability

f success equal to the observed seroprevalence for the specific age
roup. After this, the newly generated social contact matrices and
ero-epidemiological data were matched to repeatedly estimate
he transmission parameters.
s 17 (2016) 1–9 3

All analyses were performed in R version 2.15.2 (R Core Team,
2012), using the cluster and clusterSim packages.

2.5. Sensitivity analysis

To explore whether between-country differences in fitted mod-
els were due to heterogeneity in the age ranges over which
seroprevalence data was  available, we  repeated our analysis using
only seroprevalence data in the range 0–20 years (which is the
maximum range for which data were available in all five countries).

3. Results

3.1. Optimal number of clusters

Evaluating the optimal number of clusters involves three com-
ponents: the quality of the clustering (measured using ASW), how
well the resulting clusters fit the transmission model of VZV sero-
prevalence (measured using AIC, AICc and BIC) and the number of
clusters that are actually relevant to this model fit (Fig. 1).

In all countries, ASW decreased between 2 and 5 clusters (indi-
cating worse clustering quality), probably because most contact
characteristics have either 2 (physical/non-physical) or 5 (other
characteristics) levels of encoding. After 5 clusters, the ASW grad-
ually increased, with the increases occurring at the points where
the number of relevant clusters increased. The three measures of
goodness of fit to VZV seroprevalence data (AIC, AICc and BIC) were
highly consistent with each other.

We determined the optimal number of clusters by maximiz-
ing both quality of the clustering as well as goodness of fit to the
point where further increases in the number of clusters would not
make noticeable changes in the quality of clustering, model fits or
the number of relevant clusters substantially. The optimal number
of clusters is 12 in Great Britain, 14 in Italy, 15 in Belgium, 8 in
Finland and 7 in Poland. The related corrected Rand index for the
clustering in each country ranges from 89% to 95%, which suggests
that the clustering is robust (Breckenridge, 2000). The Rand index
represents the average agreement between two  data clustering in
multiple replications (with ten replications used in this analysis)
if contact data are randomly divided into two samples and each
sample is clustered into same number of clusters separately.

3.2. Comparisons between different stratifications

When contact data are stratified by clusters, only 2–3 clusters
in each country are found to be relevant to VZV transmission (i.e.
have non-zero qi’s when the model is fitted to VZV serology). Pre-
vious work stratifying contacts by single characteristic suggested
that more intimate contacts (physical, home/school, frequent, long
duration) best explain VZV transmission (Melegaro et al., 2011).
When clustering contacts using multiple characteristics, the most
relevant clusters are still likely to contain more intimate contacts.
However, the picture is more nuanced and varies across the five
countries.

Details of the most relevant clusters are given in Table 2, Fig. 2,
Fig. 3 and Appendix A.2 (Supplementary data). Briefly, in Finland
and Italy, the countries with the most strongly age-assortative over-
all contact matrices, three contact clusters are relevant. Overall
assortativity is driven by two  clusters dominated by daily school
contacts: one physical and one non-physical. A third cluster, domi-
nated by non-physical leisure contacts in Finland and physical other
contacts in Italy, is also assortative but less so than the school con-

tacts. In both countries there are two  clusters with home contacts
which are not found to be relevant.

In Great Britain, Belgium and Poland, only two clusters are rel-
evant: one consisting mainly of highly assortative daily physical
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Fig. 1. Quality of clustering (measured using ASW), quality of fit (measured using AIC, AICc and BIC) and number of relevant clusters for models in each country with different
number  of clusters. Vertical dashed line shows the model with the optimal number of clusters.
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ig. 2. The distributions of the characteristics of contact for each cluster in Great
ndicates  the relevant cluster whose estimated q is not equal to zero. Results for ot
eferences to colour in this figure legend, the reader is referred to the web version o

chool contacts, and the second of less assortative physical home
ontacts. The home clusters show a strong secondary diagonal
robably representing inter-generational contacts, particularly in
oland. In all three countries, there are non-relevant home and

chool clusters more dominated by longer (>4 h) contacts than the
ome and school clusters actually found relevant.
in. Each cluster corresponds to one numbers below the x-axis. The red star mark
untries are given in Appendix A2 (Supplementary data). (For interpretation of the

 article.)

Table 1 compares the best fitting model with the optimal num-
ber of clusters in each country, with models of contacts stratified by
single characteristics as used in previous analyses (Melegaro et al.,
2011). In every country, a model based on clustering contacts using

multiple characteristics has a better quality fit (measuring using
AIC) than models with contacts stratified by a single characteris-
tics. However, the improved fit is at the expense of poorer model
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Table  1
Model outcomes for different stratifications of social contact data. Parantheses give 95% interval for the bootstrap distributions of q and R0.

Great Britain Italy Belgium Finland Poland

95% CI 95% CI 95% CI 95% CI 95% CI

All contacts
q 0.057 0.048–0.066 0.033 0.027–0.039 0.091 0.068–0.114 0.076 0.065–0.089 0.057 0.046–0.071
R0  4.65 3.95–5.50 4.59 3.74–5.64 7.72 5.81–10.31 5.84 4.95–7.01 6.87 5.49–8.90
AIC  264 295 277 194 181

By  proximity
q (physical) 0.090 0.073–0.107 0.043 0.026–0.052 0.114 0.083–0.142 0.030 0.000–0.095 0.078 0.058–0.095
q  (non-physical) 0.000 0.000–0.011 0.002 0.000–0.036 0.000 0.000–0.036 0.154 0.056–0.221 0.000 0.000–0.055
R0  3.70 3.29–4.40 3.55 3.12–4.71 5.74 4.46–7.64 8.34 5.78–11.19 5.47 4.47–7.43
AIC  202 273 253 182 158

By  duration
q (<15 min) 0.000 0.000–0.000 0.000 0.000–0.020 0.000 0.000–0.001 0.000 0.000–0.287 0.000 0.000–0.121
q  (15–60 min) 0.000 0.000–0.000 0.000 0.000–0.130 0.000 0.000–0.535 0.000 0.000–0.117 0.000 0.000–0.000
q  (>1 h) 0.081 0.060–0.096 0.043 0.018–0.050 0.121 0.026–0.148 0.107 0.042–0.131 0.079 0.027–0.103
R0  3.87 3.28–5.63 3.89 3.37–5.20 5.39 4.15–9.20 4.51 3.97–9.01 5.27 4.31–8.15
AIC  235 285 250 186 186

By  location
q (home) 0.185 0.092–0.213 0.021 0.000–0.074 0.105 0.000–0.305 0.044 0.000–0.131 0.224 0.082–0.326
q  (school) 0.000 0.000–0.111 0.044 0.023–0.060 0.154 0.000–0.298 0.142 0.068–0.191 0.025 0.000–0.049
q  (work) 0.000 0.000–0.000 0.000 0.000–0.012 0.000 0.000–0.000 0.000 0.000–0.000 0.000 0.000–0.000
q  (others) 0.000 0.000–0.337 0.008 0.000–0.065 0.000 0.000–0.120 0.026 0.000–0.179 0.000 0.000–0.229
R0  5.11 3.93–8.93 3.93 3.36–5.07 4.97 3.98–8.54 6.15 4.35–8.56 7.63 6.07–10.77
AIC  192 281 251 183 108

By  frequency
q (daily) 0.029 0.000–0.056 0.039 0.025–0.046 0.162 0.076–0.220 0.120 0.051–0.144 0.089 0.062–0.115
q  (weekly) 0.155 0.057–0.268 0.000 0.000–0.094 0.000 0.000–0.129 0.015 0.000–0.405 0.000 0.000–0.279
q  (less than weekly) 0.000 0.000–0.000 0.000 0.000–0.085 0.000 0.000–0.101 0.000 0.000–0.082 0.000 0.000–0.000
R0  4.62 3.68–6.60 4.19 3.50–5.33 4.83 3.80–7.50 5.35 4.60–7.17 5.53 4.03–9.82
AIC  166 282 231 183 187

By  clusters
Clusters 12 14 15 8 7
Relevant clusters 2 3 2 3 2
q  (first cluster) 0.565 0.000–0.723 0.071 0.000–0.225 0.204 0.000–0.336 0.303 0.000–0.371 0.246 0.000–0.323
q  (second cluster) 0.085 0.000–0.178 0.127 0.000–0.202 0.443 0.000–0.948 0.183 0.000–0.329 0.081 0.000–0.129
q  (third cluster) 0.064 0.000–0.105 0.030 0.000–0.357
R0  3.79 2.79–9.44 4.68 2.92–5.36 4.49 3.22–8.25 6.19 4.92–23.29 7.61 5.91–32.33
AIC  160 260 226 180 106
Rand index 0.89 0.91 0.91 0.95 0.90

Table 2
Characteristics of the most relevant clusters in each country.

Country Cluster Location Physical Frequency Duration Assortativity Importance

Great
Britain

1 (home) Home Y Mixed Mixed – ++
2  (school) School Y Daily Mixed + +

Belgium 1 (home) Home Y Daily Mixed – –
2  (school) School Y Daily Mixed + +

Poland 1 (home) Home Y Daily Mixed – ++
2  (school) School (mostly) Y Daily (mostly) Mixed + +

Finland 1 (school touch) School Y Daily (mostly) Mixed ++ +
2  (school non-touch) School N Daily (mostly) Mixed ++ –
3  (leisure) Leisure N Mixed Mixed + +

Italy  1 (school touch) School Y Daily (mostly) Mixed ++ +

e
T
t
7
i
r
2

o

When only seroprevalence data for 0–20 year olds is used in
2  (school non-touch) School N 

3  (other) Other Y 

stimations (larger uncertainty intervals) around the estimated R0.
he models based on clusters with multiple characteristics estimate
hat R0 ranges from 3.79 (95% range 2.79–9.44) in Great Britain to
.61 (95% range 5.91–32.33) in Poland. The point estimates are sim-

lar to estimates using single characteristics and consistent with a
ange of 3–8 in the literature (Goeyvaerts et al., 2010; Iozzi et al.,

010; Melegaro et al., 2011; Ogunjimi et al., 2009).

Fig. 4 shows model predictions of VZV seropositivity using the
ptimal number of clusters compared them with the true propor-
Daily (mostly) Mixed ++ +
Mixed Mixed + –

tion of seropositive samples. On the whole model predictions fit
the sero-epidemiological data well.

3.3. Sensitivity analysis
Belgium, Finland and Italy to ensure comparability with Great
Britain and Poland, the overall results are not greatly altered. The
same three highly assortative clusters (dominated by two  clusters
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F luster

o
c
a

ig. 3. The corrected age-specific contact matrices for the two  identified relevant c
f school contacts) are relevant in Italy. In Finland, two  assortative
lusters (dominated by school and leisure contacts respectively)
re relevant, so there is little overall change in age-assortativity.
s (the cluster number 1 and 5) with sampling weighting and reciprocal correction.
In Belgium, there is a slight shift as the highly assortative clus-
ter dominated by school contacts is dropped but a less assortative
cluster dominated by home contacts remains relevant, so overall
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ge.  The grey lines give the 95% bootstrap interval. (For interpretation of the referen

he contact matrix is somewhat less assortative. Full details are in
ppendix A3 (Supplementary data).

. Discussion

Understanding social contact rates is essential to most realis-
ic models of infectious disease transmission. Contact studies such
s POLYMOD and its successors have advanced the field by allow-
ng such rates to be measured empirically rather than assumed.
owever, infection transmission events cannot usually be directly
bserved so assumptions have to be made about the contribution
f different types of reported contacts used as proxies to contacts
eading to transmission. We  have conducted the first study to inves-
igate the contacts that best explain past infection status data,
aking into account more than one characteristic at a time using
lustering algorithms.

When these reported contacts are clustered using clustering
lgorithms, only a few of these clusters are found to be relevant to
ZV transmission. VZV transmission in all five countries is dom-

nated by a group of highly assortative contacts and a group of
ess assortative contacts. However, the balance between the two

roups changes across countries: the former group dominates in
inland and Italy, while the latter group dominates in Poland. Great
ritain and Belgium lie in between. These country characteristics
re robust to constraining the VZV data used to fit models to data
oportional to sample size), and model predictions of prevalence (red dash line) by
 colour in this figure legend, the reader is referred to the web version of this article.)

from 0 to 20 year olds so they do not appear to be driven by country
differences in the availability of VZV seroprevalence data.

Interestingly, although school contacts appear to play a key role
across all five countries in providing the assortativeness in contacts,
non-assortativeness in contacts derive from home, leisure or other
contacts. This matches information from VZV surveillance in Eng-
land that suggests school and preschool children play a key role in
transmission (Brisson et al., 2001). This explanation has face valid-
ity since VZV is transmitted between, as well as within, households
(Organisation for Economic Cooperation and Development, 2008).
Of note, the proportion of children 4 years and under enrolled in
education in 2006 (when the POLYMOD contact study was  con-
ducted) is highest in Belgium, followed by Italy, United Kingdom,
Finland and finally Poland. This exactly matches the order in which
assortative contacts dominate the clusters relevant to VZV trans-
mission in the five countries, with the exception of Finland. In
Finland, although formal education starts late (at age 7), there is
high enrolment in publicly subsidised day-care which is not cap-
tured in standardised inter-country statistics.

The quality of fit for models based on clusters stratified by mul-
tiple variables was only slightly better than for previous models
based on contacts stratified by a single variable alone. The simi-

larity between fit quality with single and multiple stratifications
of contacts suggests that a single characteristic largely succeeds in
capturing the dichotomy between relevant and non-relevant con-
tacts. This is probably because contacts characteristics are highly
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ssociated with each other (e.g. contacts that are physical, long
uration, home and frequent at the same time are disproportion-
tely represented among all contacts). Also, by considering several
ontact characteristics simultaneously, our clustering method gives
nsights into the infection transmission process that may  not be
een when stratifying by a single characteristic. For instance, we
an determine the relevance of short duration physical contacts for
hich single characteristic stratification would produce conflict-

ng conclusions depending on whether the stratification was by
uration or proximity.

Recent analyses have shown that using an age-specific propor-
ionality factor enables models to better fit VZV serology in many
uropean countries (Goeyvaerts et al., 2010; Santermans et al.,
015). In our analysis, we vary proportionality factors according
o other contact characteristics, but assume that they are age-
ndependent within each cluster of contacts. This was  done for
implicity and to allow direct comparison with previous work
Melegaro et al., 2011) but may  have resulted in a poorer fit to data.

. Conclusions

Using the k medoids clustering algorithms to identify clusters of
ontacts relevant to VZV transmission gives similar model fit qual-
ty and R0 values as contacts stratified by a single characteristic.
owever, considering several characteristics simultaneously pro-
ides key insights into the type of contacts that are most relevant to
nfection transmission, and those that seem not to play an impor-
ant role. Firstly, it confirms that single-characteristic stratifications
re able to provide optimal fits to data, probably because they are
ble to capture the most intimate contacts responsible for most
f transmission. Secondly, we find that school-age children play a
ey role in almost all contacts relevant to VZV transmission across
ve countries, and contacts at school in particular are most impor-
ant in countries with highly assortative contact matrices. This kind
f analysis may  therefore provide an alternative or supplementary
pproach to previous single characteristic stratification models, as
ell as validation for previous methods of contact stratification.

xtending such analyses to other countries and infections may  be
seful for future work.
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