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20 Abstract 

 

21 Objectives: 
 

22 Whole genome sequencing (WGS) and phenotypic methods were used to determine the prevalence 
 

23 of azithromycin resistance in Salmonella enterica isolates from the UK and to identify the underlying 
 

24 mechanisms of resistance. 
 

25 Methods:. 
 

26 WGS by Illumina HiSeq was carried out on 683 isolates of Salmonella spp. .Detection of known 
 

27 acquired resistance genes associated with azithromycin resistance were determined from WGS using 
 

28 a mapping-based approach. Macrolide resistant determinants were identified and the genomic context 
 

29 of these elements assessed by various bioinformatics tools. Susceptibility testing was in accordance 
 

30 with the EUCAST methodology (MIC ≤16mg/L). 
 

31 Results: 
 

32 Fifteen isolates of non-typhoidal Salmonella enterica (NTS) belonging to serovars S.Blockley, S. 
 

33 Typhimurium, S. Thompson, S. Ridge and S. Kentucky showed resistance or decreased susceptibility 
 

34 to azithromycin (from 6 to >16mg/L) due to the presence of macrolide resistance genes mphA, mphB 
 

35 or mefB. These genes were either plasmid or chromosomally mediated. 
 

36 Azithromycin resistant S. Blockley isolates harboured a macrolide inactivation gene cluster mphA- 
 

37 mrx-mphr(A) within a novel Salmonella Azithromycin Resistance Genomic Island (SARGI), the full 
 

38 structure determined by long read MinION sequencing .To our knowledge this is the first 
 

39 chromosomally mediated mphA gene cluster in Salmonellae. Based on phylogenetic analysis and 
 

40 epidemiological information, the mphA S.Blockley isolates were not derived from a single 
 

41 epidemiological related event. 
 

42 The azithromycin MICs of the 15 Salmonella spp. isolates showed that the presence of the mphA 
 

43 gene was associated with MIC≥16mg/L, while presence of mefB or mphB was not . 
 

44 Conclusion: 
 

45 Resistance to azithromycin, due to acquisition of known macrolide resistance genes was seen in four 
 

46 different Salmonella serovars and can be either plasmid or chromosomally encoded. 
 

47 
 

48 
 

49 
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50 Introduction 

 

51 The increased resistance to a broad range of antibiotics in both Salmonella strains that cause enteric 

52 fever and non- typhoidal Salmonella (NTS) are an emerging threat.
1,2,3,4,5,6,7,8  

Widespread of 
 

53 resistance to amoxicillin, chloramphenicol, trimethoprim-sulfamethoxazole and fluroquinolones has led 
 

54 to azithromycin being used as the preferred antimicrobial agent to treat cases of uncomplicated 

55 enteric fever reporting travel to the Indian subcontinent and South East Asia.
4 

It is also used to treat 
 

56 infections with multidrug resistant non-typhoidal Salmonella (NTS) in vulnerable patients who have 

57 prolonged or invasive infections.
7 

Azithromycin is an azalide and has excellent tissue penetration, 
 

58 concentrates in the reticuloendothelial cells and has the advantage of oral administration and a long 
 

59 half-life. Clinical trials have shown it to be the equivalent or superior to chloramphenicol, 
 

60 fluoroquinolones, and third generation cephalosporins for the management of uncomplicated typhoid 

61 fever.
9,10,11 

However, reports are emerging of azithromycin resistance in cases of enteric fever as well 

62 as invasive NTS infection.
1,10,11,12

 
 

63 Acquired resistance to macrolides/azalides may be caused by several different mechanisms of 

64 resistance.
13 

They include (i) target site modification by methylases encoded by erm genes,
14,15 

(ii) 
 

65 modifying enzymes such esterases encoded by ereA and B genes or phosphotransferases encoded 

66 by mphA,B and D genes,
16,17 

(iii) efflux pumps, e.g. mefA and msrA found mainly in Gram positive 

67 bacteria, with mefA also identified in Gram negative strains,
15 

(iv) Mutations in the rrl and rpl genes 

68 encoding ribosomal proteins L22,L4 and 23S rRNA also confer resistance in Gram positive bacteria.
18

 
 

69 Full cross resistance between erythromycin and azithromycin can be confered between these 

70 genes.
14

 

 

71 The Gastrointestinal Bacteria Reference Unit (GBRU), Public Health England (PHE) is the national 
 

72 reference laboratory for Salmonella in England and Wales. Each year, approximately 10,000 isolates 
 

73 are referred to the Salmonella Reference Service (SRS).WGS is currently used as the primary test for 
 

74 identification and typing of isolates received by SRS. 
 

75 (http://biorxiv.org/content/early/2015/11/29/033225.abstract).19 
These isolates are also tested 

 

76 phenotypically for resistance to a wide range of antimicrobial agents 
 

77 The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is responsible for 
 

78 defining clinical breakpoints for new and existing drugs within the European Union and affiliated 
 

79 nations. Currently, no clinical breakpoints for azithromycin have been defined for Enterobacteriaceae, 
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80 including Salmonella, by either the Clinical and Laboratory Standards Institute (CLSI) or EUCAST 

 

81 leading to delays in early detection of azithromycin resistance. However the epidemiological cut-off 

82 (ECOFF) for azithromycin has been accepted as ≤16 mg/L for Salmonella enterica.
11,20

 

83 The recent advancement in WGS technologies for routine microbiology is well documented.
21

 
 

84 Sequence data allows rapid identification of Salmonella serotypes by Multilocus Sequence Typing 

85 (MLST) as proposed by Achtman et al (2012).
22 

In addition, availability of the whole genome 
 

86 sequences allows in silico prediction of antimicrobial resistance that should be validated by 

87 phenotypic antimicrobial testing prior to being applied.
23,24,25

 

 

88 Here, we used available WGS data to determine the prevalence and underlying mechanisms of 
 

89 resistance of azithromycin resistance among Salmonella in the UK. 

 

90 Methods 

 
91 Bacterial isolates and phenotypic typing 

 

92 Six hundred and sixty seven Salmonella isolates from 2012 that were part of a six month (April – 
 

93 September 2013) WGS validation project were selected for this retrospective study (nine isolates 
 

94 shown in Table 1). A further 16 S. Blockley isolates from 2012 -2015 were used as comparators for 
 

95 phylogenetic analysis (Supp. Table 1). Selected isolates were identified and confirmed by serotyping 

96 and/or phage typing.
26,27

 

 
97 DNA extraction for WGS 

 

98 DNA extraction of Salmonella isolates was carried out using a modified protocol of the Qiasymphony 
 

99 DSP DNA midi kit (Qiagen). In brief, 0.7 mL of overnight Salmonella broth culture was harvested. 
 

100 Bacterial cells were pre-lysed in 220 uL of ATL buffer (Qiagen) and 20 uL Proteinase K (Qiagen), and 

101 incubated shaking for 30 mins at 56
o
C. Four uL of RNase at 100 mg/mL (Qiagen) was added to the 

102 lysed cells and re-incubated for a further 15 mins at 37
o
C. This step increases the purity of the DNA 

 

103 for downstream sequencing. 

 

104 DNA from the treated cells were then extracted on the Qiasymphony SP platform (Qiagen) and eluted 
 

105 in 100 uL of water. 
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106 DNA concentration using the GloMax system (Promega) and quality (optimal OD260/230 = 1.8 -2.0) 

 

107 using the LabChip DX system (Perkin Elmer) were determined for the following sequencing steps. 

 

108 DNA sequencing 

 
109 Extracted DNA was then prepared using the NexteraXT sample preparation method and sequenced 

 

110 with a standard 2x101 base protocol on a HiSeq 2500 Instrument (Illumina, San Diego). 

 
111 MinION sequencing was also carried out to define the complete structure of the genomic drug island 

 

112 in the S. Blockley isolate H123780513. A library was prepared using Genomic DNA Sequencing Kit 
 

113 SQK–MAP006 according to the protocol from Oxford Nanopore Technologies (Version 

114 MN006_1115_revC_14Aug2015) and following the same principles as described in Ip et al 2015 
28

 

 

115 except the following: sheared DNA was repaired using FFP repair mix (New England Biolabs, 
 

116 Ipswich, Massachusetts) and then prepared using the NEBNext Ultra II End-Repair / dA-tailing 
 

117 Module (New England Biolabs). The final ligation of adapter and hairpin was performed using 
 

118 adapters and tethers from SQK–MAP006 sequencing kit (Oxford Nanopore Technologies, Oxford, 
 

119 UK) followed by purification of the adapted and tethered DNA using MyOne C1 beads (Life 
 

120 Technologies). Purified DNA was loaded for sequencing to the flow cell (R9 chemistry) by Oxford 
 

121 Nanopore Technologies (Oxford, UK). 

 

122 Sequence assembly and detection of resistance genes 
 

123 Genome assembly was carried out using Spades 
 

124 v.3.7.0(http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3342519/) with the command line options ‘–k 21, 

125 33, 55, 77’ and ‘--careful’. Detection of resistance genes were as described by Doumith et al (2015).
29

 
 

126 Briefly reads were mapped to reference database of acquired genes including those conferring 
 

127 resistance to macrolides that were collated from the Comprehensive Antibiotic Resistance Database 
 

128 (http://arpcard.mcmaster.ca). 
 

129 Spades v.3.7.0 hybrid assembly was used to combine the MinION reads with the Illumina reads. 
 

130 MinION reads were mapped back to the hybrid assembly and this mapping was used to confirm the 
 

131 contiguity of key parts of the hybrid assembly 
 

132  
 

133  
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134  

 

135 Phylogenetic analysis 

136 Raw FASTQs were processed as previously described.
30 

These processed reads were mapped to a 

137 de novo assembled S. Blockley strain (73626) (Fig.1) using BWA mem.
31 

SNPs were then called 

138 using GATK2
32 

in unified genotyper mode. Core genome positions that had a high quality SNP(>90% 
 

139 consensus, minimum depth 10x, GQ >= 30, MQ >=30) in at least one strain were extracted and 
 

140 RAxML v8.1.17 used to derive a maximum likelihood tree for the S. Blockley genomes. 
 

141  
 

142 Location and characterization of drug resistance region 
 

143 De novo assembly graphs (in fastg format) produced by Spades v.3.7.0 of isolates were visualised 

144 using Bandage (http://github.com/rrwick/Bandage)
33 

(Fig.2). Blast analysis 
 

145 (blast.ncbi.nlm.nih.gov/Blast.cgi) was conducted to detect the macrolide resistant genes and location 
 

146 in the assembled contigs. Prokka was used to annotate genome sequences 

147 (http://www.ncbi.nlm.nih.gov/pubmed/24642063).
34      

Artemis 
 

148 (www.sanger.ac.uk/resources/software/artemis) was used to visualise the resistant region and 

149 annotated contigs of the genomic resistant island was then drawn using EasyFig.
35

 

150  
 

151 Nucleotide sequence accession number 
 

152 The nucleotide sequence of the Salmonella Azithromycin Resistance Genomic Island (SARGI) was 
 

153 assigned a GenBank accession number KX237654 
 

154  
 

155  
 

156 In silico plasmid detection 
 

157 PlasmidFinder (http://cge.cbs.dtu.dk/services/PlasmidFinder/) was used to detect known plasmid 

158 replicons types of plasmids in the isolates studied.
36

 

159  
 

160 Plasmid extraction 

161 Plasmid DNA was isolated as previously described
37 

in accordance to the methods of Kado and Liu 

162 (1981).
38

 

163 
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164 Phenotypic and PCR susceptibility testing 

 
165 Susceptibility testing for isolates harbouring azithromycin resistance determinants was performed 

 

166 using a well established breakpoint agar dilution method using Iso-sensitest agar or Muller Hinton 
 

167 agar to determine if the isolate is susceptible or resistant to a known concentration of the 
 

168 antimicrobial(1). The antimicrobial concentrations used for screening of resistance were: ampicillin 
 

169 8mg/L, chloramphenicol 8 and 16mg/L, colomycin 2mg/L, sulphonamide 256mg/L, gentamicin 2mg/L, 
 

170 tobramycin 8mg/L, amikacin 8mg/L, streptomycin 16mg/L, tetracycline 8mg/L , trimethoprim 2mg/l , 
 

171 nalidixic acid 16mg/L, ciprofloxacin 0.064 and 0.5 mg/L, ceftazidime 1 and 2 mg/L, cefotaxime 0.5 and 
 

172 1 mg/L, cefoxitin 8 mg/L, cefpirome 8mg/L , ertapenem 0.064 and 0.5 mg/L, and temocillin 128 

173 mg/L.
1,20,39 

Azithromycin susceptibility testing was performed using E tests(ABiodisk/Biomeriux, 
 

174 France) and MIC ≤ 16mg/L according to the EUCAST guidelines were used for interpretation  of 

175 resistance.
20 

Antimicrobial susceptibility testing was subjected to internal quality assurance (QA) in 
 

176 accordance with the published methods and to external quality assurance in collaboration with 
 

177 laboratories within the European Union Reference Laboratory Antimicrobial Resistance (EURL- 

178 AMR).
1,39

 

 

179 NTS isolates were classified as multidrug resistant if they were resistant to three or more antimicrobial 

180 agents.
6 

Isolates which were resistant to cefotaxime 1mg/L were subjected to an in house PCR assay 
 

181 to detect mechanisms of β-lactam resistance (CTX-M extended spectrum β-lactamases, and genes 

182 encoding for Amp C, SHV, TEM, GES, VEB, PER β-lactamases
3
). 

 
183  

 

184 Results 
 

185 Genomes of 667 Salmonella isolates were screened for known acquired resistance genes including 
 

186 those previously associated with resistance to azithromycin in Enterobacteriaceae. The presence of 
 

187 azithromycin resistance determinants mphA (n=6), mphB (n=2) and mefB (n=1), amongst other 
 

188 resistance determinants conferring resistance to β-lactams, aminoglycosides, quinolones, 
 

189 tetracycline, and sulphonamides were identified in only nine genomes as detailed in Table 1. 
 

190 Phenotypic susceptibility testing confirmed the multidrug-resistance phenotypes of the corresponding 
 

191 nine isolates and had MICs for azithromycin ranging from 6≥ or ≥16 mg/L (Table 1). 
 

192  
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193 Strains were confirmed to be NTS by MLST (MLST database : http://mlst.warwick.ac.uk/mlst/) and 

 

194 classical serology of which three were S.Typhimurium (ST19 and ST34), three S. Blockley (ST52), 
 

195 and one each of S. Thompson (ST26), S. Ridge (novel ST not found in the MLST database) and S. 
 

196 Kentucky (ST198) (Table 1). 
 

197 Table 1 shows the epidemiological data and analysis of the mechanism of drug resistance, in 
 

198 particular to azithromycin resistance detected by phenotypic (MIC), genetic (WGS) and 
 

199 molecular(PCR) methods in the nine NTS isolates studied. 
 

200  
 

201 In addition to the sequence type, we also investigated the whole genome similarity between the three 
 

202 S. Typhimurium  and  three S.Blockley isolates. The  phylogenetic analysis and  metadata  of the   S. 
 

203 Typhimurium isolates  indicated that they were not closely related (data  not shown) and        different 
 

204 genes  (mphA,  mphB  and  mefB)  associated  with  azithromycin  resistance/partial  resistance were 
 

205 involved  suggesting  it  had  been  acquired  following  separate  events  .  In  addition  to  the   three 
 

206 S.Blockley isolates harbouring mphA, a further 16 S. Blockley isolates not included in the initial 
 

207 screening process were used as background isolates in the S. Blockley phylogenetic analysis (Supp. 
 

208 Table 1 and Fig.1). Six of the additional 16 S. Blockley isolates harboured the mphA gene.The 
 

209 resultant  phylogeny  separated  the  azithromycin  resistant  S.  Blockley  isolates  harbouring  mphA 
 

210 (cluster 3) from the azithromycin sensitive isolates (cluster 1 and 2) (Fig. 1). The     diversity between 
 

211 the  azithromycin  resistant  isolates  was  not  consistent  with  them  being  derived  from  a    single 
 

212 epidemiologically related event with SNP differences ranging from 0 – 50 (Fig. 1). The inferred   point 
 

213 of insertion of the mphA gene          in the azithromycin resistant S. Blockley population is indicated in 
 

214 Fig.1. 
 

215  
 

216 When the genomic context of the resistance genes was investigated, it was found that   they were on 
 

217 contigs that showed homology to either chromosomes or plasmids. (Supp. Table 2 ).Bandage , Blast, 
 

218 Prokka and Artemis analysis of the nine S. Blockley isolates harbouring    the mphA gene and the ten 
 

219 mphA negative S. Blockley isolates shows mphA being inserted downstream from a livF gene on     a 
 

220 chromosomal contig (Fig. 2 and 3).The chromosomally mediated macrolide inactivation gene   cluster 
 

221 mphA-mrx-mphr(A) which is flanked by IS6100 and IS26 elements is part of a larger composite 
 

222 transposon  inserted  within  the  coding  sequence  of  the  ribokinase  gene(rbsK)  in  all  the nine S. 
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223 Blockley isolates (Fig.2 and 3). However, we were not able to resolve the full island structure using 

 

224 Illumina data, so long read technology was used for a representative isolate. 
 

225 We generated a total of 10913 2D MinION reads (both pass and fail were used) with a mean length of  
 

226 3133  bp. When  mapped  using  bwa  mem,  9076  reads (83%)  mapped  back  to  the  Illumina only 
 

227 assembly of H123780513 giving an average depth of 5.8x. This depth of coverage is not sufficient for 
 

228 de novo assembly, so a hybrid assembly approach was used. The hybrid Illumina-MinION   assembly 
 

229 resolved the complete structure of the c.17kb Salmonella Azithromycin Resistance Genomic island 
 

230 (SARGI)(Fig.3).The island harboured tetracycline and aminoglycoside resistance genes as well as 
 

231 phage and plasmid remnants. 

232 There are various ways of detecting plasmids from WGS sequence data using bioinformatic tools,
40,41

 
 

233 but in this study we used classical   plasmid extraction analysis to show that all the azithromycin 
 

234 sensitive isolates (except for 140242 which is a MDR isolate) were plasmid free (Fig.1 and sup Fig.1) 
 

235 . PlasmidFinder confirmed the absence of known replicon sequence types in the respective genomes. 
 

236 Two of the mphA positive S. Blockley isolates (H123780513 and 73633) did not harbour any plasmids 
 

237 while the other isolates had an incN,colpVC or col156 plasmid which did not seem to be associated 
 

238 with   the   azithromycin   resistance   (Fig.1).  Preliminary  Bandage,  Blast,   Prokka   ,  Artemis  and 
 

239 PlasmidFinder analysis also suggests that the mphA gene is present on a incFIB(K) plasmid in S. 
 

240 Thompson, incA/C2 plasmid in S. Ridge and on either an incQ1 or incH12 plasmid in S. Typhimurium 
 

241 (data  not  shown).  Characterisation  of  the  complete  resistance  regions  in  each  of  the plasmids 
 

242 belonging to the different serovars were not carried out as it was beyond the remit of this study. 
 

243  
 

244 The age of the nine cases from whom the isolates were acquired ranged from 5 to 79 years and five 
 

245 were males (Table 1). The nine isolates were recovered from urine (n=1) and stool (n=8) and were 
 

246 multidrug resistant. One isolate was acquired from a case with history of recent travel to Egypt and 
 

247 was identified as a S. Kentucky. The isolate was confirmed to be an AmpC producer by both 
 

248 phenotypic (ceftoxamine MIC> 1 mg/L and cefoxitin MIC> 8mg/L) and molecular methods (PCR 
 

249 demonstrated bla CMY-2 gene). Another multidrug resistant isolate identified as S Ridge, was acquired 
 

250 from a case with underlying immunosuppression (post bone marrow transplant) and had recent 
 

251 exposure to antibiotics. 
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252 The azithromycin MICs of the six non S.Blockley and nine S.Blockley isolates showed that the 

 

253 presence of the mphA gene was associated with MIC≥16mg/L, while presence of mefB or mphB was 
 

254 not associated with MIC≥16 mg/L (Table 1 and supp. Table 1). 
 

255  
 

256 Discussion 
 

257 Multidrug resistance in typhoidal and non-typhoidal Salmonella is an emerging threat to public 

258 health.
3,4,5,6,8 

Azithromycin is being used as the preferred antimicrobial agent to treat cases of 
 

259 uncomplicated enteric fever from Asia and multidrug drug resistant NTS in the immunosuppressed or 
 

260 with invasive infections. However there are emerging reports of azithromycin resistance in cases of 

261 enteric fever as well as invasive NTS infection.
9,10,12,42,43

 

 

262 The incidence of azithromycin resistance is increasing in E coli, Klebsiella and Shigella. Azithromycin 
 

263 resistant Shigella spp isolated from men who have sex with men (MSM) who had previous multiple 

264 exposures to azithromycin have been reported.
44 

Decreased susceptibility to azithromycin (DSA) is 
 

265 defined as a strain of Shigella with azithromycin MIC>16mg/L; such strains often harbour genes ermB 

266 and mphA which are plasmid encoded and are associated with clinical failure.
44,45,46 

A Canadian study 
 

267 showed that strains of S flexneri isolated from MSM harboured mphA gene and had azithromycin 
 

268 MIC > 64 mg/L.45 

 
269 This study identified the presence of known azithromycin resistance determinants in 15 Salmonella 

 

270 isolates. Twelve out of the 15 isolates encoded the mphA gene and these isolates had   azithromycin 
 

271 MIC between 16 mg/L to 96 mg/L, none of these isolates carried ermB (Table 1). Two isolates 
 

272 encoded only mphB while one isolate encoded only mefB; these three isolates all had azithromycin 
 

273 MICs less than 16 mg/L. These results indicate that carriage of only mphB or mefB may not lead to 

274 azithromycin resistance in Salmonella, as described previously in S. flexneri,
44  

and that the presence 
 

275 of other genes, such as the erm cluster/genes or chromosomal mutations in the rrl ribosomal   genes, 
 

276 may be  required for  a  synergistic effect to  produce higher resistance  to azithromycin (or     azalide 

277 group).
14 

However larger studies with a more diverse set of Salmonellae, and more in depth functional 
 

278 characterisations,  are  needed  to  understand  the  resistance  mechanisms associated with these 
 

279 genes. 
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280 The single isolate of S. Kentucky which was a AmpC producer and carried the bla cmy-2 gene was 

281 associated with travel to Egypt, a finding consistent with previous studies.
3  

This isolate was typed  as 

282 ST198 Kentucky and this serovar has been reported to be an ESBL producer.
47

 

 
283 It is interesting to note that the 15 Salmonella isolates were multidrug resistant and the presence of 

 

284 plasmids and mobile genetic elements may have played a crucial role in acquisition of resistance to 
 

285 multiple agents. There were various mechanisms involved in high level azithromycin resistance in the 
 

286 different Salmonella serovars studied, conferred either on the chromosome or plasmid. In S. Blockley 
 

287 azithromycin resistance was not associated with the presence of a plasmid but rather a 
 

288 chromosomally mediated macrolide inactivation gene cluster mphA-mrx-mphr(A). The macrolide 
 

289 inactivation gene cluster was part of a novel SARGI which was inserted in the same chromosomal 
 

290 rbsK gene in all the azithromycin resistant S. Blockley isolates (Fig.3).This chromosomal mphA-mrx- 
 

291 mphr(A) gene cluster has not been described previously in Salmonellae but has been recently 

292 characterised in a genomic island in Proteus mirabilis.
48 

The complete structure of the azithromycin 
 

293 drug island in S. Blockley (Fig.3) was deduced by hybrid genome assembly of long MinION reads and 
 

294 short Illumina reads. Recently the mphA gene was shown to be present on a plasmid encoded drug 
 

295 island in Salmonella Corvallis.
12

This plasmid drug island differed from the one described in the current 
 

296 study as it did not have the same macrolide inactivation cluster. Azithromycin resistance in 
 

297 S.Typhimurium, S.Thompson and S.Ridge was associated to the presence of the mphA gene located 
 

298 on a plasmid. The plasmids associated to the mphA gene in each of these serovars, S.Typhimurium 
 

299 (incQ1 or incHI2), S.Ridge(incA/C2), S.Thompson(incFIB(K)) differed from the one described by Villa 

300 et al, 2015
12 

for S. Corvallis as well as the incFII plasmid associated with azithromycin resistance in 

301 Shigella,
46 

thus providing further evidence of multiple modes of transmission for azithromycin 
 

302 resistance. 

 
303 The presence of S. Blockley isolates with chromosomally mediated high levels of azithromycin 

 

304 resistance in the UK population is a cause of concern. This stable chromosomal resistance may lead 
 

305 to the dissemination of resistant clones that can cause outbreaks. Phylogenetic analysis of the nine 
 

306 azithromycin resistant and ten background susceptible S. Blockley isolates studied indicated that the 
 

307 majority of the resistant isolates are not clonally related and the probable point of insertion of the 
 

308 mphA gene in the population is indicated on the phylogenetic tree (Fig.1) . Clonal relatedness were 
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309 observed for two resistant  isolates (78657 and 90479) which were isolated from the same patient a 

 

310 few months apart (probable treatment failure), as well as 63017 and 73615 isolated from two separate 
 

311 cases  in London and West Midland (possible undetected outbreak clone) (Supp. Table 1 and Fig.1). 
 

312 Screening for azithromycin resistance is not conducted routinely but  should be encouraged as in the 
 

313 past 3 years there has been 16 -26 S. Blockley isolates submitted to GBRU each year with most 
 

314 being domestically acquired (PHE data). 

 

315 There is also a cause of concern as plasmid mediated resistance to azithromycin is arising in multiple 
 

316 Salmonella serovars in the UK that may lead to easier and widespread onwards transmission of 
 

317 resistance. This rise of both chromosomally and plasmid mediated azithromycin resistance may be 
 

318 due to the increase of azithromycin usage and increase of azithromycin resistance in other 

319 Enterobacteriaceae   populations.
7,14,49

 

 
320  

 

321 This study demonstrated the utility of WGS data as a rapid screening tool allowing many hundreds of 
 

322 isolates to be investigated for antimicrobial resistance determinants not routinely assayed using 
 

323 phenotypic tests. The availability of WGS data as well as phenotypic and epidemiological 
 

324 investigations allows emerging threats, such as azithromycin resistance in Enterobacteriaceae, to be 
 

325 monitored in a cost effective and timely manner. High throughtput screening for surveillance is not 
 

326 only beneficial for public health purposes as it allows to detect the presence of azithromycin 
 

327 resistance in the population but enhanced surveillance of patients can be carried out to understand 
 

328 onwards transmission. Such data in turn can be used to inform clinicians to administer appropriate 
 

329 treatment. At present there is no clinical breakpoints for azithromycin that have been defined for 
 

330 Enterobactericeae by EUCAST or CLSI. However, further work on strains of NTS and those causing 
 

331 enteric fever needs to be undertaken to establish if 16 mg/L is the clinically relevant clinical MIC for 
 

332 azithromycin in Salmonella spp. This ECOFF established from wild type strains seems very high 
 

333 compared to clinical MICs for other Gram positive and Gram negative bacteria, however azithromycin 

334 has a very high tissue: serum concentration ratio.
50

 

 
335  
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336 Using WGS for detection of antibiotic resistance also lends itself to data sharing, enabling 

 

337 international collaboration in the monitoring of this global threat. As part of this approach, continued 
 

338 phenotypic characterisation of antimicrobial resistance for a subset of isolates is vital to ensure that 
 

339 novel resistance mechanisms are discovered. 

 

340  

 

341 One of the limitations of this study is the absence of a complete clinical history of each case. This 
 

342 prevents us correlating our work with clinical outcome. Moreover most of the isolates were from stool 
 

343 specimens and the cases may not have received antimicrobials if they had self limiting infections. 

 

344 Conclusion 

 
345 Azithromycin resistance is probably under-reported in the UK and globally as front line laboratories do 

 

346 not test for azithromycin resistance in NTS due to the cost. This study has shown that WGS is an 
 

347 effective method for screening large numbers of isolates for known resistance determinants .  Further 
 

348 clinical studies are needed to establish the role of various resistance genes in determination of clinical 
 

349 MIC in conjunction with WGS. Even though the numbers of azithromycin resistance in Salmonella 
 

350 spp. from the UK remained low (15/683 isolates studied), the detection of azithromycin resistance in 
 

351 multiple serovars of Salmonella  is a matter of concern and regular monitoring and surveillance 
 

352 should be a priority . 
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526 Figures 

527 
528 
529 Figure 1: 

530 Phylogenetic relationship between azithromycin resistant and susceptible S. Blockley isolates 

531 circulating in the UK between 2012 - 2015. Phylogentic tree generated by SNP analysis. 73626 was 

532 the reference strain used for de novo assembly for SNP detection. Insertion point of mphA into S. 

533 Blockley population indicated. Presence (inc group)/absence of plasmid, year of isolation and location 

534 shown beside isolate number. 

535  
536 Figure 2 : 

537 Bandage assembly of nodes(contigs) from susceptible and resistant S. Blockley isolates. Bandage 

538 allows visualisation of how contigs (in gray) are possibly connected (in black) to each other. The 

539 genes of interest (in this case livF, rbsK and mphA) are then blasted against all the assembled contigs 
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540 and its location determined. Regions around the genes of interest can then be determined using 

541 Artemis. 

542 (a)   livF and rbsK located on a chromosomal node 5 in a azithromycin susceptible S. Blockley 

543 isolate. mphA not present. 

544 (b) mphA gene (azithromycin resistance) and the other regions associated to resistance (node 

545 27, 23,20) is inserted in between rbsK in a azithromycin resistant S. Blockley isolate. 

546 The figure appears in colour in the online version of JAC and in black and white in the print version of 

547 JAC. 

548  
549  
550 Figure 3 : 

551 The chromosomal insertion site of the azithromycin resistance gene (mphA) and possible structure of 

552 the Salmonella Azithromycin Resistance Genomic Island (SARGI) . 

553 Chromosomal nodes are based on bandage assembly (Fig. 2). Insertion site of 

554 drug island in rbsK depicted by blue lines . Postulated structure of drug island, 

555  
556 neo – aminoglycoside, tet- tetracycline, 

557 mphA- macrolide (azithromycin), mrx – major facilitator protein, mphr(A) – macrolide repressor A, 

558 tnp - transposase 

559 The figure appears in colour in the online version of JAC and in black and white in the print version of 

560 JAC. 
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568 Table 1 : 

 

569 Epidemiological features and analysis of azithromycin resistance mechanisms  detected by 

570 phenotypic (MIC) , genotypic (WGS) and molecular(PCR) methods in nine Non typhiodal Salmonella 

571 enterica isolates 
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574 Supplementary Tables and Figures 

575  
576 Supplementary Table 1 : 

 

577 Epidemiological features of selected S. Blockley isolates between 2012 -2015 used for azithromycin 

578 resistance mechanisms detection and phylogenetic analysis. Isolates H123740558, H123780513 and 

579 H124040535 were used in the initial WGS screening process and the other isolates were used as 

580 background strains for the phylogenetic analysis. 
 

581 Supp.  Table 2 : 
 

582 Contigs harbouring genes associated to azithromycin (AZT) resistance and its association to either 

583 chromosomal or plasmid regions in Salmonella isolates 
 

584  
 

585 Supplementary Figure 1 4: 

586 Plasmid gel to show the absence of plasmids in azithromycin mphA resistance S. Blockley. 

587 Lane 1 : E. coli marker, lane 2 : H123780513, a mphA positive plasmid free isolate, 

588 lane 3 : H145040693, a mphA negative plasmid free isolate 
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631 Table 1 : Epidemiological features and analysis of azithromycin resistance mechanisms detected by phenotypic (MIC) , genotypic (WGS) and 

632 molecular(PCR) methods in nine Non typhiodal Salmonella enterica isolates 
 

 

N 

 

Age 

 

Sex 

 

Travel 

 
Origin of 

isolate 

 

Serotype 

 

MLST 

Azithromycin 

Resistance 

gene (WGS) 

 
Other resistance 

genes (WGS) 

 

Phenotypic resistance profile 

β      

lactamase 

( PCR) 

         AZT 

16 

 
CIP<0.064 

CIP 

> 

0.5 

Other 

antibiotics 

 

 
 

SAL1 

 
 

28 

 
 

M 

 
 

Nil 

 
 

Faeces 

 
 

Thompson 

 
 

26 

 
 

mphA 

aac-lb-cr;aac- 

ly;aadA16;qnrB6 

;arr-    

3;sul3;dfrA27;su 

l1 

 
 

16 

 
 

>0.064 

  
 

SUL-TMP 

 

 
 

SAL2 

 
 

67 

 
 

M 

 
 

Nil 

 
 

Urine 

 
 

Typhimurium 

 
 

19 

 
 

mphB 

 
aac-Iaa;aph- 

Id;TEM-98,TEM- 

1;sul3;sul2;tet(A 

)-1;dfrA1 

 
 

6 

 
 

<0.064 

  

AMP- 

SUL-STR- 

TET-TMP 

 

 
 
 

 
SAL3 

 
 
 

 
58 

 
 
 

 
F 

 
 
 

 
Nil 

 
 
 

 
Faeces 

 
 
 

 
Typhimurium 

 
 
 

 
34 

 
 
 

 
mphA 

aac-IId;aac- 

Iaa;aadA17;aph- 

ld;TEM-98,TEM- 

1;qnrS1;lnu(F);a 

rr-        

2;sul2;tet(A);dfr 

A5;dfrA14;dfrA2 

5 

 
 
 

 
96 

 
 
 

 
>0.064 

 
 
 

>0. 

5 

 

AMP- 

SUL- 

GEN- 

TOB- 

STR-TET- 

TMP- 

NAL-FOX 

 

 
 

SAL4 

 
 

79 

 
 

M 

 
 

Nil 

 
 

Faeces 

 
 

Typhimurium 

 
 

34 

 
 

mefB 

aac-    

Iaa;aadA2;aph- 

Id;TEM-98,TEM- 

1;sul2;tet(A);dfr 

A12 

 
 

8 

 
 

<0.064 

  

AMP- 

SUL-STR- 

TET-TMP 

 

20 
 
 
 



 

 

 
 
 
 
 

 
 
 

SAL5 

 
 

58 

 
 

M 

 
 

Nil 

 
 

Faeces 

 
 

Ridge 

 

 
Novel 

ST 

 
 

mphA 

aac-IIa;aac- 

Iy;aph-Id;TEM- 

98,TEM- 

1;sul2;dfrA14;tet 

(A)-1 

 
 

16 

 
 

<0.064 

 AMP- 

SUL- 

GEN- 

TOB- 

STR-TET- 

TMP 

 

H1237 

40558 

 

5 
 

M 
 

Nil 
 

Faeces 
 

Blockley 
 

52 
 

mphA 
aac-Iy;aph- 

Id;tet(A)-1 

 

24 
 

>0.064 
>0. 

5 

STR-TET- 

NAL 

 

H1237 

80513 
78 F 

Not 

known 
Faeces Blockley 52 mphA aac-Iy;tet(A)-1 24 >0.064 

>0. 

5 
TET-NAL  

H1240 

40535 
59 F Nil Faeces Blockley 52 mphA 

aac-Iy;aph- 

Id;tet(A)-1 
48 >0.064  STR-TET- 

NAL 
 

         
aac-Ie;aac- 

    
AMP- 

 

        Ib;aac(6')-    SUL-  
        Iaa;aadA7;aph-    GEN-  
 

SAL6 

 

38 

 

F 

 

Egypt 

 

Faeces 

 

Kentucky 

 

198 

 
mphB 

Id;CMY-2;OXA- 

10;TEM- 

98,TEM- 

 

8 

 

>0.064 
>0. 

5 

TOB- 

STR-TET- 

NAL- 

Amp C 

bla CMY-2 

        1;cmlA1;sul3;tet    CAZ2-  
        (A)-    CTX1-  
        1;aadA1;floR    FOX  

633  
634 Breakpoints for antibiotics: AMP- Ampicillin 8mg/L, CHL chloramphenicol 8 and 16mg/L, SUL sulphonamide 256mg/L, GEN gentamicin 2mg/L, TOB tobramycin 8mg/L, STR 
634 streptomycin 16mg/L, TET tetracycline 8mg/L , TMP trimethoprim 2mg/l , NAL nalidixic acid 16mg/L, CIP ciprofloxacin 0.064 and 0.5 mg/L, CAZ ceftazidime 1 and 2 mg/L, CTX 
635 cefotaxime 0.5 and 1 mg/L, FOX cefoxitin 8 mg/L ,AZT Azithromycin 16mg/L 

636 aac, aph, aad (aminoglycosides), qnrB6/S1 ( quinolone), arr (rifampin), sul (sulfonamide), dfr (trimethoprim), TEM-1 (Beta-lactam, ampillicin),  TEM-98(Beta-lactam, 
637 ampillicin), tet (tetracycline),  lnu (oxazolidinone), CMY-2 (Amp C Beta lactam), OXA-10 (Beta-lactam), cmlA1(Chloramphenicol), floR  (Chloramphenicol), 

638 mph,mef(macrolide) 

639 WGS – whole genome sequencing 
 

640 
 

641 
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Figure 1 : Phylogenetic relationship between azithromycin resistant and susceptible S. Blockley isolates circulating in the UK between 2012 -2015 

Phylogenetic tree generated by SNP analysis. 73626 was the reference strain used for de novo assembly for SNP detection.  

Insertion point of mphA into the S.Blockley population indicated. Presence (inc group)/absence of plasmid, year of isolation and location shown beside 

isolate number. 

 
 
 
 
 
 

 

      Cluster 1 : 

Azithromycin susceptible 
 
 
 
 
 
 
 

 

Cluster 2 : 

Azithromycin susceptible 
 
 
 
 
 
 
 
 

Cluster 3 : 

Azithromycin 

resistant . 

mphA gene 

 
 
 
 
 
 



 

 

for 

review 

only 

Chromosomal node 6 : mphA(blue)- 906bp 

: rbsK (red)- 270bp 

: livF (green) – 713bp 

green 
Node 23 

red 

blue 

Node 27 : IS26 

red 

Node 13 : rbsK(red)- 953bp 
N

o
d

e 2
0 

 

 

 
 

(a) H144600627 AZT sensitive S. Blockley (b) H123780513 AZT resistant S. Blockley 
 
 

Fig 2 : Bandage assembly of nodes(contigs) from susceptible and resistant S. Blockley isolates. 

Bandage allows visualisation of how contigs (in gray) are possibly connected (in black) to each other. The genes of interest (in this case livF, rbsK and mphA) 

are then blasted against all the assembled contigs and its location determined. Regions around the genes of interest can then be determined using Artemis.. 

 
(a) livF and rbsK located on a chromosomal node 5 in a azithromycin sensitive S. Blockley isolate. mphA not present. 

(b) mphA gene (azithromycin resistance) and the oJtohuerrnreagl ioofnAs natsismoicciarotebdiatloCrehseismtaonthceer(anpoyd:eu2n7d, e2r3,r2e0v)ieiswinserted in between rbsK 

in a azithromycin resistant S. Blockley isolate 

The figure appears in colour in the online version of JAC and in black and white in the print version of JAC. 
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(a) 67531(AZT susceptible S. Blockley) 
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Macrolide inactivation gene cluster  
(b) H123780513  (AZT resistant S. Blockley) 

 
 
 

Figure 3 : The chromosomal insertion site of azithromycin resistance gene (mphA) and structure of the Salmonella Azithromycin Resistance 

Genomic Island (SARGI) 
 

Chromosomal nodes are based on bandage assembly (Fig. 2). Insertion site of 

drug island in rbsK depicted by blue lines . 

 
neo – aminoglycoside, tet- tetracycline, 

mphA- macrolide (azithromycin), mrx – major facilitator protein, mphr(A) – macrolide repressor A, tnp – transposase 

The figure appears in colour in the online version of JAC and in black and white in the print version of JAC. 

 
 
  
 



 

 

 
 
 
 
 
 

Supplementary Table 1 : Epidemiological features of selected S. Blockley isolates between 2012 -2015 used for azithromycin resistance 

mechanisms detection and phylogenetic analysis. Isolates H123740558, H123780513 and H124040535 were used in the initial WGS screening 

process and the other isolates were used as background strains for the phylogenetic analysis. 

 

 
N Age Sex Travel Location Year Origin Serotype ML 

ST 

AZT 

resistance 

gene (WGS) 

Other resistance 

gene (WGS) 

Phenotypic 

resistance 

           AZT Other 

antibiotics 
H123740558 5 M Nil  12/9/12 Faeces Blockley 52 mphA aac(6’)-Iy;aph(6’)- 

Id;tet(A)-1 
24 STR-TET- 

NAL 

H123780513 78 F Not 

known 
 14/9/12 Faeces Blockley 52 mphA aac(6’)-Iy;tet(A)-1 24 TET-NAL 

H124040535 59 F Nil  3/10/12 Faeces Blockley 52 mphA aac(6’)-Iy;aph(6’)- 

Id;tet(A)-1 
48 STR-TET- 

NAL 

78657 57 M   23/12/14  Blockley 52 mphA aac(6’)-Iy;tet(A)- 

1;gyrA(83:S- 

F,87:D- 

G);parC(57:T-S, 

80:S-R) 

64 TET-NAL 

90479 57 M   17/2/15  Blockley 52 mphA aac(6’)-Iy;tet(A)- 

1;gyrA(83:S- 

F,87:D- 

G);parC(57:T-S, 

80:S-R) 

48 TET-NAL 

63017 85 F  London 29/10/14 Faeces Blockley 52 mphA aph(6’)-ld;aac(6’)- 

ly;strB;strA;tet(A) 

-1 

32 STR-TET- 

NAL 

73615 56 F  West Midlands 9/12/14 Faeces Blockley 52 mphA aph(6’)-ld;aac(6’)- 

ly;strB;strA;tet(A) 

-1 

32 STR-TET- 

NAL 

123874 6 M Yemen London 17/6/15 Faeces Blockley 52 mphA aph(6’)-ld;aac(6’)- 

ly;strB;strA;tet(A) 

48 ND 



 

 

 
 
 
 

 
          -1   

73633 71 M  Sussex/Surrey 10/12/14 Faeces Blockley 52 mphA aph(6’)-ld;aac(6’)- 

ly;strB;strA;tet(A) 

-1; gyrA(83:S-F); 

parC(57:T-S) 

32 STR-TET- 

NAL 

65032 62 F  Sussex/Surrey 5/11/14 Faeces Blockley 52 NP ND 0.5 Sensitive 

67531 65 M  Wales 10/11/14 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
1 Sensitive 

73626 76 M  Thames Valley 10/12/14 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
1 Sensitive 

68962 65 M  West Midlands 18/11/14 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
2 Sensitive 

31631 53 F  London 15/7/14 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
2 Sensitive 

26640 22 M  Dorset/Somerset 8/7/14 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
2 Sensitive 

20922 48 M  Dorset/Somerset 11/6/14 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
4 Sensitive 

119471 66 F  Devon,Cornwall, 

Somerset 

2/6/15 Faeces Blockley 52 NP aac(6’)-Iy; 

parC(57:T-S) 
1 Sensitive 

131502 25 M Cyprus West Midlands 21/7/15 Faeces Blockley 52 NP aph(6’)-ld;aac(6’)- 

ly;strB 

1 ND 

140242 56 M  West Yorkshire 28/7/15 Faeces Blockley 52 NP ND 1 ND 
 
Breakpoints for antibiotics: AMP- Ampicillin 8mg/L, CHL chloramphenicol 8 and 16mg/L, SUL sulphonamide 256mg/L, GEN gentamicin 2mg/L, TOB tobramycin 8mg/L, STR 
streptomycin 16mg/L, TET tetracycline 8mg/L , TMP trimethoprim 2mg/l , NAL nalidixic acid 16mg/L, CAZ ceftazidime 1 and 2 mg/L, CTX cefotaxime 0.5 and 1 mg/L, FOX 
cefoxitin 8 mg/L ,AZT Azithromycin 16mg/L 

 

aac, aph, aad , str (aminoglycosides), sul (sulfonamide), dfr (trimethoprim), tet (tetracycline), lnu (oxazolidinone), par,gyr (fluoroquinolone and nalidixic acid), 
mphA(macrolide) 

 

WGS – whole genome sequencing 
 

NP – Not present ; ND – Not determined 
 

aac(6’)-Iy (probably kanamycin not tested in the lab). 
 

parC(57:T-S) – single point mutation does not confer resistance to nalidixic acid or fluroquinolone. 

 
 
 
 
 



 

 

 
 
 
 
 
 
 
 

Supplementary Table 2 : Contigs harbouring genes associated to azithromycin (AZT) resistance and its association to either chromosomal or plasmid 

regions in Salmonella isolates 

 
 

Isolate Serotype AZT resistant gene Contig Blast results 

H122160478 Typhimurium mef mefB:active:NODE_37_length_50898_cov_51.726315:50956:347_1576 
Plasmid + 

chromosome 

H120620408 Thompson mph mphA:active:NODE_60_length_5225_cov_35.930717:5289:4251_5156 Plasmid 

H121580347 Typhimurium mph mphB:active:NODE_7_length_96182_cov_30.584007:96256:79218_80126 Plasmid 

H122040374 Typhimurium mph mphA:active:NODE_4_length_3611_cov_53.037663:3673:130_1035 
Plasmid + 

chromosome 

H122760596 Ridge mph mphA:active:NODE_31_length_6613_cov_24.291395:6673:129_1034 Plasmid 

H123740558 Blockley mph mphA:active:NODE_84_length_114820_cov_25.853493:114894:113847_114752 Chromosome 

H123780513 Blockley mph mphA:active:NODE_24_length_301287_cov_25.917475:301345:128_1033 Chromosome 

H124040535 Blockley mph mphA:active:NODE_77_length_28024_cov_28.921745:28074:119_1024 Chromosome 

H124580300 Kentucky mph mphB:active:NODE_48_length_71964_cov_24.346270:72018:7474_8382 Plasmid 



 

 

 

 

 

Supp. Fig. 1 : Plasmid gel to show the absence of plasmids in azithromycin mphA resistance S. Blockley. 

Lane 1 : E. coli marker, lane 2 : H123780513, a mphA positive plasmid free isolate, 

lane 3 : H145040693, a mphA negative plasmid free isolate. 
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