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Abstract

In epidemiology many exposures of interest are measured with error. Random, or 'classical’,
error in exposure measurements attenuates linear exposure-disease associations. However, its
precise effects on different nonlinear associations are not well known. We use simulation studies
to assess how classical measurement error affects observed association shapes and power to detect
nonlinearity. We focus on a proportional hazards model for the exposure-disease association and
consider six true association shapes of relevance in epidemiology: linear, threshold, U-shaped, J-
shaped, increasing quadratic, asymptotic. The association shapes are modeled using three popular
methods: grouped exposure analyses, fractional polynomials, P-splines. Under each true association
shape and each method we illustrate the effects of classical exposure measurement error,
considering varying degrees of random error. We also assess what we refer to as MacMahon's
method for correcting for classical exposure measurement error under grouped exposure analyses,
which uses replicate measurements to estimate usual exposure within observed exposure groups.
The validity of this method for nonlinear associations has not previously been investigated. Under
nonlinear exposure-disease associations, classical measurement error results in increasingly linear
shapes and not always an attenuated association at a given exposure level. Fractional polynomials
and P-splines give similar results and offer advantages over grouped exposure analyses by
providing realistic models. P-splines offer greatest power to detect nonlinearity, however random
exposure measurement error results in a potential considerable loss of power to detect nonlinearity
under all methods. MacMahon's method performs well for quadratic associations, but does not in
general recover nonlinear shapes.

KEYWORDS: classical measurement error, dose-response, grouped exposure analysis, fractional
polynomials, P-splines
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1 Introduction

Many epidemiological exposures are subject to measurement error. For example,
biological measurements, e.g. blood pressure (MacMahon et al., 1990, Clarke et al.,
1999), are subject to within-subject fluctuations (Toniolo et al., 1997). Hence, when
the exposure of interest is ‘usual’ level, a measurement made on a single occasion
is subject to random variability. Some biological measurements are also subject to
error due to assay variability. Measurement error is a particular problem in nutri-
tional epidemiology, because measurements of long term dietary intake are subject
to error due to variability over time and limitations of measurement instruments
(Willett, 1998). We focus on classical measurement error, which may result from
random within-person variability or random error in the measurement process. Un-
der classical measurement error the observed exposure, W say, can be written as
W = X 4 U where X denotes the true underlying exposure and U is a random er-
ror term, that is U is independent of X, of any characteristics of the individual to
whom the measurement pertains, and of any outcome such as disease status whose
association with the exposure is of interest.

It is well known that use of exposures subject to classical measurement error
gives attenuated exposure-outcome associations when the association is linear (Car-
roll et al., 2006, Rosner et al., 1989, Gardner and Heady, 1973, Rosner et al., 1992,
Hughes, 1993, Spiegelman et al., 1997). In linear, logistic and proportional hazards
regressions it is respectively the estimated slope, log odds ratio, and log hazard ratio
(HR) which is attenuated. We focus on disease outcomes in proportional hazards
regression. When the shape of the exposure-disease association is nonlinear, ran-
dom error in exposure measurements can mask the features of the association so
that the observed shape is not the true shape (Carroll et al., 2006). The association
shape can have important implications for public health policy: for example, it may
be important to know whether an increase in exposure at a higher level of exposure
results in a greater change in risk than the same change at a lower level, or whether
there exists a threshold of exposure below which there is no change in risk.

The aim of this paper is to clearly outline for the first time the precise ef-
fects of classical measurement error in nonlinear models and to quantify what is
lost in terms of power to detect nonlinearity. Simulation studies are used to illus-
trate the effects of random error in exposure measurements on six exposure-disease
association shapes representing some of the shapes of interest in epidemiology.
Shapes considered are linear, threshold, U-shaped, J-shaped, increasing quadratic
and asymptotic. Examples of nonlinear shapes from the literature include an ob-
served threshold association between systolic blood pressure and risk of both car-
diovascular and all-cause death in the Framingham Heart Study (Port et al., 2000).
There is evidence of a U- or J-shaped association between alcohol intake and total
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mortality, with both heavy- and non-drinkers having higher mortality than mod-
erate drinkers (Poikolainen, 1995, Shaper et al., 1988, Bagnardi et al., 2004). U-
and J-shaped associations have also been observed between diastolic blood pres-
sure and risk of cardiac events (D’Agostino et al., 1991, Farnett et al., 1991). An
asymptotic association has been found between plasma 25-hydroxyvitamin D and
premenopausal breast cancer risk, showing a flattening of the risk for higher con-
centrations (Abbas et al., 2009) and in a study of the relationship between ethanol
intake and risk of cancer of the aero-digestive tract a flattening of the association
was observed for high ethanol intake (Polesel et al., 2005).

We investigate the effects of different degrees of random error and how its
effects are manifested under three methods for modelling exposure in proportional
hazards models: a grouped exposure analysis, fractional polynomials (FP) and P-
splines. We consider a simple method of correcting the exposure-disease asso-
ciation in a grouped exposure analysis using repeated measurements, referred to
here as MacMahon’s method (MacMahon et al., 1990), which has been used es-
pecially in large pooling projects (Prospective Studies Collaboration, 2002, Allen
et al., 2009, Liu et al., 2009, Asia-Pacific Cohort Studies Collaboration, 2004). The
validity of MacMahon’s method for nonlinear association shapes has not been pre-
viously assessed. However, our aim is not to assess correction methods in general.

In the following sections we describe the statistical methods, simulation
study and results, and we conclude with a discussion.

2 Methods for Investigating the Shape of Exposure-
Disease Associations

Let X denote a continuous exposure of interest, ¢ denote the time to disease diag-
nosis (e.g. age), and h(¢|X) denote the hazard function at 7 for an individual with
exposure X. Under the proportional hazards assumption, when the exposure-disease
association is linear the log hazard is

log {h(t|X)} =log{ho(r)} + BX (D)

where hg(t) is the baseline hazard at r and f is the log HR, representing the linear
change in log {A(z|X)} when X increases by 1 unit. Model (1) is typically extended
to include adjustment for a vector of confounders which are assumed to be measured
without error. To simplify the notation, we do not include confounders in the models
here.

To investigate whether log{A(¢|X)} is nonlinear in X, quadratic or higher
order exposure effects can be added to (1). However, this is restrictive since the
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exposure-disease association is assumed to take a particular form. Below we outline
three more flexible methods for investigating nonlinearity in the exposure-disease
association.

2.1 A grouped exposure analysis

To avoid making assumptions about the association shape, the exposure is com-
monly divided into groups, and the log HR is estimated within each group com-
pared with a reference group. We call this the grouped exposure analysis. Suppose
that the continuous exposure X is grouped into K categories. Let X (%) take value 1
if the exposure is in the kth category and value O otherwise (k =1,...,K). Under
the grouped exposure analysis the log hazard at time ¢ is modelled as

tog {1, .. XW) 1 = log {ho(1)} + BX P + BX ) -4 fx®) (2)

where f; is the log HR for an individual in the kth category of exposure (k =
2,...,K) relative to an individual in the first category. For some exposures fixed
cutpoints are typically used, for example body mass index which is often classi-
fied according to < 18.5 (underweight), 18.5— < 25 (healthy weight), 25— < 30
(overweight), > 30 (obese). For exposures for which there are no commonly used
pre-defined cutpoints or for which the distribution may differ considerably in dif-
ferent populations, quantile cutpoints are often used, with the number of categories
depending on sample size and exposure distribution. Inferences about the shape of
the exposure-disease association are often made based on a plot of the log HR for
each exposure category against the mean exposure within that category.

A grouped exposure analysis is attractive because it is simple to imple-
ment and does not make assumptions about the exposure-disease association shape.
However, this method does not provide a realistic model for disease risk. The ob-
served association can strongly depend on the number of exposure groups and posi-
tioning of cut-points. The method will perform badly if most subjects are exposed
within a narrow range and exposure effects are limited to extreme ends of the scale
(Greenland, 1995a,b).

The null hypothesis that the exposure-disease association is linear can be
tested by comparing the grouped exposure model (2) with a model which assumes a
linear association. The latter model is log {A(t|Xs)} =log{ho(¢)} + BX¢, where for
each individual in exposure category k, X takes the mean exposure in that group.
Under the null hypothesis, twice the difference between the the log likelihoods
under the two models has a y? distribution with K — 2 degrees of freedom.

MacMabhon et al. (1990) proposed a method to allow us to observe graphi-
cally the true HR estimates within exposure categories when the exposure is subject

Published by De Gruyter, 2012 15
Brought to you by | London School of Hygiene & Tropical Medicine

Authenticated
Download Date | 1/21/17 6:44 PM



Epidemiologic Methods, Vol. 1[2012], Iss. 1, Art. 2

to classical measurement error. They noted that when using an exposure measured
with random error in a grouped exposure analysis, the lowest/highest category will
include disproportionately many individuals whose single exposure measurement
happened to be lower/higher than their ‘usual’ exposure, resulting in an observed
diluted association when the association is linear. In this correction method the log
HR within each original exposure category is plotted against an unbiased estimate
of the mean ‘usual’ exposure in that category. Such an estimate can be obtained
using one or more repeated exposure measurements available for at least a subset of
the population: the means of the replicate measurements within categories defined
by the original exposure measurements provide unbiased estimates of mean usual
exposure within categories.

2.2 Fractional polynomials (FP)

It is often desirable to observe the shape of the exposure-disease association con-
tinuously across the range of exposure. FPs can give more plausible shapes with
the use of fewer regression parameters than standard polynomial analyses, which
make a priori assumptions about the shape (Royston and Altman, 1994, Royston
et al., 1999). A FP analysis uses maximum likelihood to choose the ‘best’ set of
power transformations of X, from a limited set, for inclusion in the exposure-disease
model. Using a FP of degree 2 we select the best powers p; and p; in the model

_ [ log{ho(t)} + X7 + Epx7 ifp27p
ogth = { e e gy e O

from the set of potential powers P = {—2,—1,-0.5,0,0.5,1,2,3}, where a power
of 0 denotes the log transformation (log(X)). This set is usually sufficiently rich
and FPs of degree higher than 2 are rarely required (Royston et al., 1999).

For a FP of degree 2 we can perform an approximate test of the null hy-
pothesis that the exposure-disease association is linear by comparing —2{/(1,1) —
1(2,(p1,p2))} with the y? distribution with 3 degrees of freedom (Royston and
Altman, 1994, Ambler and Royston, 2001), where (1, 1) denotes the log likelihood
from the linear model and (2, (py,p2)) denotes the log likelihood from the best
fitting FP of degree 2 with powers (51, p2). The test is approximate because esti-
mation of the powers from the set P does not consume 2 degrees of freedom, hence
the true degrees of freedom for the test is less than 3 (Royston and Altman, 1994,
Ambler and Royston, 2001).
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2.3 P-splines

Splines are continuous smooth curves which are constructed by piecing together a
series of polynomials within exposure intervals. They provide a flexible approach
to exploring the exposure-disease association because they fit models within expo-
sure intervals divided by ‘knots’, rather than assuming a parametric model across
the entire range of exposure. Here we use P-splines (Eilers and Marx, 1996, Govin-
darajulu et al., 2007) and model the log hazard as

log{A(t]X)} = log{ho(r)} + iﬁﬁ;(ﬂ @

where 7 is the number of knots, which are evenly spaced, S;(¢) are B-spline basis
functions (De Boor, 2001), and 3; are parameters to be estimated. The method
applies a penalty to the log partial likelihood /(X; ) arising from the proportional
hazards regression model in (4) to reduce the influence of the number and position
of the knots. The penalized log likelihood is

L,(X;B,A) = i Azﬁ, (5)

where A is the difference function such that A*B; = (B, — Bj—1) — (Bj—1 — Bj—2)-
We use a common approach to analysis using P-splines, which is to specify the
degrees of freedom, leading directly to the value of A (Malloy et al., 2009, Hurvich
et al., 1998, Ruppert, 2002).

For a P-spline with d degrees of freedom we can perform an approximate
test of the null hypothesis that the exposure-disease association is linear by com-
paring —2{1(1,1) — 1,(X; 3,A)} with the x? distribution with d — 1 degrees of free-
dom.

3 Simulation Study

Let X; denote true exposure for individual i, which is unobserved, and W;; their
observed exposure on measurement occasion j. Under the classical measurement
error model we have

Wij = Xi +Uij (6)
where errors U;; have mean 0 and are independent of X; and each other. For a cohort
of 15,000 individuals, values X were randomly sampled from a normal distribution
with mean 10 and variance GX 1. We first focus on observed exposure measure-
ments made on one occasion, W;;. These were obtained using (6), with the errors
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Ui being generated from a normal distribution with mean O and variance Glzj. We
consider 65 =0,0.25,0.5,1, where 0'l2, = 0 represents no measurement error. Un-
der a linear exposure-disease association the ratio of the log HR estimated using W,
to that estimated using X is called the regression dilution ratio (RDR) and is ap-
proximated by var(X)/var(W;) = 62 /(0% + o7 (Rosner et al., 1992, Spiegelman
et al., 1997). Error variances Glzj =0,0.25,0.5,1 correspond to RDRs 1, 4/5, 2/3,
172.

Table 1 shows the form of the log hazard for six exposure-disease associa-
tion shapes. We used 8; = 0.3 in the linear model and B>, 3, B4, B5, Be were chosen
so that the degree of nonlinearity in the association is the same across all nonlinear
shapes. Degree of nonlinearity was defined as the squared difference, averaged over
the distribution of X, between the true log hazard and that found by fitting the linear
model (1). We chose B = 10 and calculated values 8, = 0.28, B3 = B4 = 5 = 0.06.
The aim is to compare different methods and the effects of different RDRs for the
same true shape, not to compare the impact of measurement error between true
shapes, hence our results are likely to be similar for other choices of B, ..., Bs.

Table 1: Simulation study: Models for shapes of association between true exposure
X and the log hazard under a proportional hazards model for disease risk. (Ix~1g 1S
an indicator which takes value 1 if X > 10 and value O otherwise.)

Shape Form of log{h(z|X)}

Linear log{ho(t)} + B1(X —10)
Threshold log{ho (I)} + Bolx=10(X — 10)
J-shaped log{ho(t)} + Ba(X —9)?
U-shaped log{ho(t)} + B3 (X — 10)?
Increasing quadratic  log{/o(¢)} + Bs(X —7)?
Asymptotic log{ho(t)}+ Bs/(4 —X),

Survival times ¢ were simulated under each model in Table 1 using a con-
stant baseline hazard, chosen so that approximately 10% of individuals die during
10 years of follow-up. For each RDR and each shape, we generated 1000 simulated
data sets containing [X;, W;1,4], i =1,...,15,000.

In each simulated data set, grouped exposure, FP and P-spline analyses were
used to fit proportional hazards models, first using X; and then using W;;. For
grouped exposure analyses individuals were grouped by quintiles. In FP analy-
ses we selected the best FP of degree 2 in each simulated data set. For P-spline
analyses the exposure was divided into 10 equally spaced intervals and the model
was fitted with 4 degrees of freedom, the defaults in the pspline function of the
survival package in R.
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Power to detect nonlinearity under each nonlinear association shape was
estimated as the proportion of simulations in which the null hypothesis of a linear
exposure-disease association was rejected at the 5% level. For comparison, we
also estimated the probability of detecting a nonlinear association when the true
association is linear, that is the type I error rate, using a x> test with 3 degrees
of freedom. The sample size of 15,000 was chosen to give approximately 80%
power to reject the null hypothesis of linearity at the 5% level using a FP analysis
when there is no measurement error and the true exposure-disease association is
quadratic. We also estimated power to detect nonlinearity for smaller sample sizes
of 10,000, 5000 and 1000 to illustrate the effects of exposure measurement error
under a situation in which the power would be low using the true exposure. The
other results remain with a sample size of 15,000 as they relate to bias and are
unaffected by sample size.

We investigated the performance of MacMahon’s method by extending the
simulation study to include a second exposure measurement W, for all individuals.
An unbiased estimate of mean usual exposure within quintile k of the categorized
exposure W;; was calculated as the mean of W;; within that quintile.

4 Results

For each true exposure-disease association shape and each analysis method we
graphed the association found using true exposure (RDR=1) and using observed
exposure with RDRs 4/5, 2/3, 1/2. Figure 1 shows the results from grouped ex-
posure analyses. Log HR estimates for each quintile relative to quintile 3 were
averaged across 1000 simulations and plotted against the mean exposure within
each quintile. With the exception of the threshold association, the results from FP
and P-spline analyses were very similar so we show only the FP results here for
the other shapes (Figure 2). Results from P-spline analyses under a threshold as-
sociation are shown in Figure 3. Different FP models were selected in different
simulations; in each simulation we found the fitted value of the log HR at each
value of the observed exposure relative to the mean of the exposure, and averaged
these across 1000 simulations to give the average association shape. Parameter es-
timates from the P-spline analyses were averaged across the 1000 simulations and
the P-spline resulting from the mean estimates was found. The results from using
MacMahon’s correction method are shown in Figure 4: we obtained the average
log HR estimate within each quintile and plotted it against the mean usual exposure
within each quintile. All figures also show the true association shape.

Table 2 shows estimated powers to reject the null hypothesis of a linear
association under the three analysis methods, six shapes, and different degrees of
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measurement error for sample sizes of 15,000, 10,000, 5000 and 1000. Powers for
MacMahon’s method are not given in Table 2 because they are the same as for the
grouped exposure method.

4.1 Performance of the methods when there is no exposure mea-
surement error

Except for a linear association, HR estimates from the grouped exposure analyses
do not lie exactly on the true association curve even when there is no exposure
measurement error (Figure 1). This is particularly marked for the U-shaped asso-
ciation, and is explained in Appendix A. The reason for this is that the grouped
exposure method does not provide a correct model for the exposure-disease asso-
ciations, which is rarely mentioned in results from such analyses. The observed
association shape under the grouped exposure method lies closer to the true shape
on average when the shape within an exposure group is more linear and the number
of groups is increased.

The grouped exposure analysis does not lend itself to identifying the sharp
turning point in the threshold association, and for a J-shaped association the upward
curve for low exposures is easily missed. FPs and P-splines give association curves
very close to the true shapes, except for the threshold association (Figures 2,3).
FPs perform particularly badly under a threshold association, instead showing a J-
shape. Because FPs are used to fit a smooth shape across the range of exposure it is
not unexpected that this method cannot provide a fit to the turning point. P-splines
perform considerably better (Figure 3).

P-splines offer the highest power to detect departures from linearity. FPs of-
fer higher power compared with a grouped exposure analysis, except for the thresh-
old association where both methods suffer from low power, and except when the
sample size is small so as to offer little power to detect nonlinearity under any
method (sample size 1000) (Table 2). Decreasing the sample size by a third from
15,000 to 10,000 resulted in a proportional reduction in power of between 26%
(asymptotic) and 35% (increasing quadratic) using the grouped exposure analysis,
between 29% (U-shaped) and 37% (asymptotic) using FPs, but only of between
19% (U-shaped) and 29% (asymptotic) using P-splines. Under the FP analyses,
type I error rates for true linear associations are lower than 0.05 because estimation
of power parameters in a FP does not consume two degrees of freedom (Royston
and Altman, 1994, Ambler and Royston, 2001).
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Table 2: Estimated power to detect nonlinearity under each nonlinear exposure-
outcome association shape and estimated type I error in a test of the null hypotheses
of linearity when the true association is linear, using each analysis method.

Shape of exposure-outcome association

Linear Threshold U-shaped J-shaped Increasing Asymptotic

Method Sample Size RDR quadratic
Grouped 15000 1 0.04 0.63 0.47 0.45 0.52 0.23
exposure 4/5 005 040 0.32 0.31 0.34 0.16
2/3  0.04 026 0.23 0.24 0.26 0.12
172 0.04 0.14 0.14 0.15 0.14 0.10
10000 1 0.05 046 0.32 0.30 0.34 0.17
4/5 005 0.26 0.21 0.21 0.23 0.13
2/3  0.05 0.18 0.16 0.16 0.15 0.10
172 0.05 0.11 0.11 0.10 0.12 0.08
5000 1 0.04 0.20 0.14 0.14 0.16 0.09
4/5 004 0.12 0.09 0.10 0.10 0.08
2/3  0.04 0.09 0.08 0.09 0.08 0.06
172 0.04 0.07 0.07 0.07 0.06 0.06
1000 1 0.06 0.08 0.07 0.07 0.07 0.07
4/5 006 0.07 0.06 0.07 0.06 0.06
2/3  0.06 0.06 0.05 0.06 0.07 0.06
172 0.06 0.06 0.05 0.05 0.06 0.06
Fractional 15000 1 0.01 0.64 0.76 0.77 0.76 0.41
polynomial 4/5 001 042 0.54 0.52 0.51 0.24
2/3  0.01 0.26 0.34 0.34 0.29 0.15
172 0.01 0.10 0.14 0.16 0.12 0.10
10000 1 0.01 041 0.54 0.53 0.52 0.26
4/5 001 0.25 0.33 0.33 0.30 0.15
2/3  0.01 0.17 0.24 0.21 0.20 0.10
172 0.02 0.09 0.11 0.12 0.11 0.06
5000 1 0.01 0.18 0.22 0.22 0.21 0.09
4/5 0.02 0.11 0.14 0.13 0.14 0.06
2/3  0.02 0.09 0.09 0.09 0.10 0.05
172 0.02 0.05 0.06 0.05 0.05 0.02
1000 1 0.02 0.03 0.04 0.03 0.03 0.02
4/5 001 0.02 0.03 0.02 0.02 0.03
2/3  0.01 0.02 0.03 0.03 0.02 0.02
172 0.02 0.02 0.02 0.02 0.02 0.02
P-spline 15000 1 0.08 0.84 0.86 0.87 0.87 0.62
4/5 0.08 0.64 0.69 0.68 0.68 0.43
2/3  0.08 047 0.53 0.53 0.48 0.33
172 0.08 027 0.30 0.33 0.26 0.22
10000 1 0.07 0.65 0.70 0.69 0.68 0.44
4/5 008 044 0.50 0.48 0.48 0.31
2/3  0.07 0.33 0.38 0.38 0.36 0.22
172 0.07 0.21 0.24 0.25 0.23 0.15
5000 1 0.07 0.38 0.40 0.38 0.38 0.23
4/5 0.08 0.24 0.27 0.28 0.27 0.17
2/3  0.08 0.20 0.21 0.21 0.21 0.14
172 0.08 0.14 0.15 0.15 0.15 0.11
1000 1 0.10 0.14 0.15 0.15 0.14 0.12
4/5 0.09 0.11 0.12 0.12 0.10 0.10
2/3  0.09 0.11 0.12 0.11 0.09 0.11
172 0.09 0.10 0.09 0.10 0.08 0.10
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Figure 1: Grouped exposure analysis using quintiles: The effect of random error in
exposure measurements on the observed exposure-disease association.
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Figure 2: Fractional polynomial analysis: The effect of random error in exposure
measurements on the observed exposure-disease association.
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Figure 3: P-spline analysis: The effect of random error in exposure measurements
on the observed exposure-disease association under a true threshold association.
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Figure 4: MacMahon’s method for a grouped exposure analysis using quintiles: The
results from correcting for random error in exposure measurements in the grouped
exposure method using repeat exposure measurements.
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4.2 Effects of exposure measurement error on exposure-disease
association shapes

Random measurement error does not affect the linearity of the exposure-disease
association when it is genuinely linear, though this is an approximation under a
proportional hazards model (Carroll et al., 2006). As is well known, when the
exposure-disease association is linear the effect of random exposure measurement
error is to attenuate the degree of association, with the attenuation becoming more
severe as the measurement error becomes more severe (Figures 1, 2).

When the true association is nonlinear, the effect of classical measurement
error is to make it appear more linear. Nonlinearity becomes less obvious as the
severity of measurement error increases, 1.e. as the RDR decreases (Figures 1-3).
This comes with a potential considerable loss of power to detect departures from
linearity (Table 2). For smaller sample sizes, where the power to detect nonlinearity
would be low using the true exposure, the proportional effect of measurement error
on power is somewhat less in general. P-splines continue to offer the highest power
to detect nonlinearity across a range of sample sizes when the exposure is subject
to measurement error. Power to detect nonlinearity using FPs is more severely di-
minished by measurement error, and this method performs little better or sometimes
worse than the grouped exposure analysis when the degree of error becomes severe.

The effect of classical measurement error on nonlinear associations is not al-
ways an attenuation of the log HR estimates at a given exposure level; the bias can
go in either direction depending on the true shape. For example, using a grouped
exposure analysis the effect of classical measurement error on a true threshold as-
sociation is to attenuate the log HR estimates in the linear part of the association
beyond the threshold, while estimates below the threshold move away from the null.
There is a similar effect for the J-shaped association. When a continuous exposure
is subject to classical measurement error, categorization can result in differential
misclassification, that is misclassification depending on the outcome (Flegal et al.,
1991), which can result in bias in either direction (Dosemeci et al., 1990).

Under a true J-shape the effect of classical measurement error on the results
from FP and P-spline analyses is to shift the turning point so that the lowest risk
appears to occur at a lower exposure as the error variance increases, which has been
shown previously in quadratic regression models (Kuha and Temple, 2003). The
results obtained under true threshold, J-shaped and increasing quadratic association
shapes look very similar when the exposure measurement error is severe (Figure 2).

MacMahon’s method deattenuates the slope under a linear association and
also appears to perform well for quadratic associations, where the exposure-disease
association within groups is reasonably linear (Figure 4). However, MacMahon’s
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result does not extend in general to nonlinear exposure-disease associations and we
provide an explanation for this in Appendix B. We also note that under this method
there is a smaller difference between the mean exposures within exposure groups
compared with the situation where there is no exposure measurement error, with
the result being that the exposure-outcome association is viewed across a narrower
exposure range, exacerbating the difficulty of seeing the association shape in the
extremes of exposure.

5 Discussion

We have assessed the effect of classical exposure measurement error on the shape
of exposure-disease associations using grouped exposure, FP and P-spline analyses.

Random error in exposure measurements results in a change in the shape of
the exposure-disease association when it is nonlinear, with observed associations
appearing increasingly linear as measurement error increases. The effect is not
necessarily an attenuation of the association. The change in shape due to classical
measurement error is seen under all three methods of analysis, with only the U-
shape being clearly visually detectable under severe measurement error.

Threshold associations could be difficult to detect even when there is no ex-
posure measurement error because of limitations of the analysis methods. Under a
grouped exposure analysis there is greater ability to identify the turning point when
the number of exposure categories is increased, though this is restricted by sample
size. Similarly for a J-shaped association the upward curve for low exposures is
easily missed using the grouped exposure analysis and this problem may be less-
ened by using more exposure categories, but sufficient numbers of individuals with
very low exposure would be required. P-splines provided the closest approximation
to a threshold shape.

Even in the absence of measurement error, detecting nonlinearity of asso-
ciations typically requires large sample sizes, as is shown by Table 2. Random
measurement error further decreases power to detect nonlinearity. We found that
P-splines offered greater power to detect nonlinear associations compared with the
grouped exposure and FP methods when the exposure is measured without error,
and that for power is severely diminished by random exposure measurement error
under all three methods. The relative effect of measurement error on power to de-
tect nonlinearity is somewhat decreased in situations where power would be low
using the true exposure.

We showed that MacMahon’s method can perform well for quadratic associ-
ations, but does not recover true nonlinear exposure-disease associations in general,
including threshold associations. To our knowledge these findings are new. In the
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original application of MacMahon’s method there was concluded to be no evidence
of a threshold association between DBP and stroke or coronary heart disease mor-
tality. However, we have shown that the method may not be able to reveal such an
association if the error variation is large.

Methods for correcting for exposure measurement error include regression
calibration, in which the relevant function of X;, g(X;) say, is replaced with E(g(X;)|
W;1) in the exposure-disease model (Rosner et al., 1989, 1992, Carroll et al., 2006).
The expectation can be found using replicate measurements. Regression calibra-
tion has been particularly widely used for linear associations but also extends to
nonlinear associations (Carroll et al., 2006, Cheng and Schneeweiss, 1998). Other
correction methods for nonlinear models include simulation extrapolation (SIMEX)
(Cook and Stefanski, 1994, Carroll et al., 1999, Staudenmayer and Ruppert, 2004),
Bayesian methods for P-splines (Berry et al., 2002, Cheng and Crainiceanu, 2009),
and approaches using local polynomial estimators (Fan and Truong, 1993, Delaigle
et al., 2009).

We have focused on classical measurement error. Different types of error,
such as error depending on true exposure, multiplicative error, differential error,
that is error in the exposure measurement which depends on the outcome, or mis-
classification in a categorical exposure, could have different effects. The presence
of additional covariates measured with error in the exposure-disease model could
also result in different effects on the observed exposure-disease association. We can
partly test whether error follows the classical model using replicate measurements
(Carroll et al., 2006).

To conclude, investigators should be aware that random error in exposure
measurements can mask nonlinear exposure-disease associations and severely de-
crease power to detect nonlinearity. In light of our results, the use of more complex
methods for correcting for the effects of classical measurement error in nonlinear
exposure-disease associations should be encouraged.
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Appendices

A Grouped Exposure Analysis for Nonlinear Associ-
ations

Consider the model

log {h(t|X)} = log{ho(t) } + Bg(X), @)

where g(X) is a function of X. Under this model the true log HR at the aver-
age exposure level in the kth exposure category is Bg {E (X|x® = l)} (relative
to exposure 0 (g(0) = 0) for simplicity), where E(X|X®) = 1) is the average ex-
posure in category k. However, under the grouped exposure analysis we observe
BE {g(X)]X(k) = 1}, which equals Bg {E(X]X(k) = 1)} only when g(X) is a lin-
ear function of X.

B MacMahon’s Method for Nonlinear Associations

Let Wl(k) equal 1 if Wy is in the kth exposure category and O otherwise. An un-

biased estimate of mean exposure for individuals with Wl(k) =11is E(W2|W1(k) =
1), where W, is a repeated measurement. Under model (7), the true log HR for

an individual with exposure E (W2|Wl(k) =1) is Bg{E (Wz\Wl(k) = 1)}, while the
log HR observed using MacMahon’s plot is ﬁE{g(W2)|W1(k) = 1}. The terms
g{EWoW¥ = 1)} and E{g(W5)|W¥) = 1} are equal only when g(X) is a lin-
ear function or the replicate W, is constant within each exposure category defined
by Wl(k), ie. Var(Wlel(k) = 1) = 0. Errors in ‘corrected’” log HR estimates plotted
under MacMahon’s method therefore depend on Var(WZIWI(k) =1).
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