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     INTRODUCTION 

 Schistosomiasis remains one of the most serious and prev-
alent diseases worldwide. In 2003, there were an estimated 
207 million people infected, with 89% of these people living 
in the less-developed areas of sub-Saharan Africa and South 
America. 1,  2  Although highly effective anti-schistosomal drugs 
have been marketed for over 25 years, 3  there remain signifi-
cant challenges to providing treatment (or preventive ther-
apy) to those who are at highest risk for disease. 4,  5  Because, 
until recently, implementation of a large-scale of anti-schis-
tosomal treatment has been very limited, there remain sig-
nificant gaps in our knowledge about the expected benefits 
of repeated treatment in areas that continue to have high risk 
for  Schistosoma  reinfection after therapy. 6  These communi-
ties, which often have the highest prevalence and intensity 
of infection, pose a particular challenge to program devel-
opment for schistosomiasis morbidity control. 7,  8  Clinical and 
epidemiologic studies indicate that 10–15 year old children 
typically carry the highest rates of schistosome infection and 
the highest risk of inflammation-related disease associated 
with infection. 9,  10  The more lethal, late outcomes of infection 
are more common among adult age groups, and result from 
progressive infection-associated fibrosis of vital organs. 11,  12  
However, of recent note, researchers and policy-makers have 
come to appreciate that schistosomiasis can also be a signifi-
cant risk factor for chronic anemia, childhood growth stunt-
ing, protein calorie malnutrition, cognitive disability, and poor 
school performance. 13–  19  These sub-clinical morbidities are 
physiologically important but more subtle than the easily rec-
ognized, advanced forms of schistosomiasis. 12  Nevertheless, 
these “subtle morbidities” can have serious day-to-day con-
sequences in the setting of rural poverty, 17,  20  and may, in fact, 
given the substantial numbers of persons who are affected 
by these pathologies, represent the bulk of schistosomiasis-

associated disability and health burden among endemic 
populations. 21  

 How can available resources be best allocated to prevent 
both the prevalent sub-clinical morbidity associated with schis-
tosomiasis and the more severe forms of advanced disease 
(including developmental stunting)? In this analysis, we use a 
calibrated computer simulation to estimate the relative benefits 
of different treatment strategies for school-age schistosomia-
sis control programs. The World Health Organization (WHO) 
presently advocates schistosomiasis control by a strategy of 
periodic drug treatment of affected populations, focusing on 
school-age children as the highest risk group for infection and 
consequent disease formation. 22  Large-scale control programs 
have already begun in many countries, 4  but important opera-
tional questions regarding the optimal timing and distribution 
of treatment efforts still remain. To address these questions in 
greater detail, our present modeling approach builds partly on 
earlier modeling efforts of Medley and Bundy, 23  Chan and oth-
ers, 24  and Gurarie and others. 25,  26  Those articles focused on late-
term  Schistosoma- related morbidity outcomes and the analysis 
of the optimal timing for targeted or population-based therapy 
for control or prevention of “classical” forms of schistosomiasis. 
The current article takes a different approach, focusing instead 
on predicting the best means to use available therapy for preven-
tion of the detrimental impact of schistosomiasis on childhood 
growth and development. 15,  16,  27–  29  Because available field data 
are presently quite limited, we calibrated a growth-development 
model for ages 0–20 yr using the Centers for Disease Control 
and Prevention (CDC) National Center for Health Statistics 
(NCHS) database (see  Figure 1 ), 30  and evaluated the age-
dependent impact of “schistosomiasis-like” chronic infection 
that causes growth retardation. The model was benchmarked 
using detailed anthropometric and infection data collected for 
Kenyan villagers in a  Schistosoma haematobium  endemic area. 31  
In addition, the approach was nuanced to include innate age- and 
gender-related differences in individual risk for growth-related 
disease formation, 32,  33  and the projected impact of preventing 
reversible nutritional morbidities of childhood. 13,  15,  34,  35  

  As a basis for discussion in current program planning, 
we addressed the unanswered questions about long-term 
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treatment impacts by developing outcome predictions based 
on a bounded modeling system that accounted for 1) age-
related parasite exposure 36–  38 ; 2) the kinetics for development 
of inflammation-related disease 39–  42 ; 3) the impact of infec-
tion on early and mid-childhood growth retardation 17,  43 ; and 
4) a child’s potential for catch-up growth at different stages 
of childhood and adolescence. 44  Our analysis indicates that 
optimal drug-based control strategies have the potential to 
substantially reduce developmental morbidities found among 
schistosomiasis-affected populations. 

   MATERIALS AND METHODS 

  Modeling approach.   Given the limited amount of data on 
long-term clinical outcomes of schistosomiasis control pro-
grams, and to estimate and compare the potential long-term 
benefits of different operational approaches to drug-based 
control of schistosomiasis, we sought to simulate the deleteri-
ous effect of chronic infection on early-life development (0 to 
20 yr) by a dynamic model that coupled parasite worm acqui-
sition during childhood to observed deviations from normal 
human growth patterns among children with schistosomia-
sis 27,  29,  45,  46  (see  Figure 2  and the Supplemental Appendix for 
details). This linked system allowed us to explore the relative 
quantitative impacts of different age-targeted control strate-
gies on cumulative schistosomiasis-associated nutritional mor-
bidity at 20 years of age, although in a stationary population 
with a stable environmental transmission pattern. 6,  8  

      Age plays an important role in the schistosome transmis-
sion, as it is strongly correlated with behavioral factors linked 
to risk for transmission (water contact rate, snail contamina-
tion, and new infection), 36–  38  and to the phenomenon of gradual 
acquisition of age- or experience-dependent partial resistance 
to new infection. 39–  42  The modeling system used for this analy-
sis can be viewed as the average state of growth, infection, and 

disease (mean worm burden, accumulated damage, and result-
ing developmental impairment) of an age cohort for whom 
infection and disease state are then “perturbed” by various 
treatment intervention strategies. 23,  24  

 Because morbidity and developmental stunting in schisto-
somiasis are linked to infection intensity and its cumulative 
duration, 10  chemotherapy-based disease control can take its 
cues from two different perspectives: 1) a global reduction of 
community intensity of infection (average worm burden) at a 
given time  t , to be effected in the short term through broad-
based drug treatment intervention; or 2) a targeted, age-based 
reduction of infection, based on a person’s year of life (as a 
surrogate of his or her current infection intensity and pro-
jected exposure to infection over the near future). 25  In this 
work, we focused on the latter, i.e., age-targeted treatment and 
its effects on age-dependent patterns of development. 

 Details of the mathematical modeling approach, and its pro-
gramming and calibration are presented in the Supplemental 
Appendix. The related Mathematica programming used for 
this analysis is available from authors DG and XW. 

    RESULTS 

 On the basis of modeling of schistosomiasis-associated 
growth retardation observed among untreated children 
(shown in  Figure 2 ),  Figure 3  shows potential remediation of 
growth deficits by a hypothetical, three-session praziquantel 
(PZQ) treatment regimen (given at 6, 9, and 12 years of age) 
for a typical resident of a schistosomiasis-endemic area. The 
analysis indicates that, despite continuing transmission and 
risk of reinfection, improvements can occur gradually by the 
end of childhood (age 20 yr) in terms of height and weight 
among treated as compared with untreated children ( Table 2 ). 
Results of the modeling analysis, which quantified potential 
recovery from infection-associated weight deficits for both 

 Figure 1.    Examples of normal growth patterns for children: Left panels indicate Centers for Disease Control and Prevention (CDC) curves 
for normal weight and height values at different ages during childhood, indicating growth-related gains up to 20 years of age. Right panels indicate 
their corresponding normal age-specific rates of change (“growth velocity”), based on National Center for Health Statistics (NCHS) data available 
at:  http://www.cdc.gov/growthcharts/percentile_data_files.htm . 30  Representative data for boys’ height and linear growth velocity are shown in the 
upper panels. Data for girls’ weight and weight gain at different ages are shown in the lower panels. Graphed lines, from bottom to top, represent 
the observed 3rd, 10th, 50th, 90th, and 97th percentiles of normal childhood growth, respectively.    
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girls and boys, indicate that treatment campaigns with greater 
adherence (i.e., 80% as compared with 20% yearly coverage) 
would result in the greatest improvement in growth outcomes 
( Figure 4 ). 

        We next explored the relative impact of three different regi-
mens currently recommended by WHO for school-age treat-
ment of schistosomiasis in high, medium, and low prevalence 
areas. 48  These regimens were 1) treat children every year 
from age 5 to 15 yr (recommended in high [≥ 50%] preva-
lence areas); 2) treat children every 2 years from age 5 to 15 yr 
(recommended in medium [10–30%] prevalence areas); and 
3) treat children on school entry and at primary school com-
pletion (recommended in low [< 10%] prevalence areas). We 
also examined differences in outcomes among programs that 
commenced treatment either at age 4 or 6 yr. As compared 
with United States median values,  Table 2  shows the mean rel-
ative heights and weights obtained at 20 years of age by boys 

and girls living in communities following these different strate-
gies, and compares results obtained for different levels of com-
munity participation (adherence).  Figure 4  shows the same 
results from a different point of view, i.e., the resulting defi-
cits (as a percentage of normal growth) in height and weight 
for boys and girls either after no therapy, or after participa-
tion in differently timed treatment programs during the child-
hood years from 5 to 15 yr. From  Table 2  we see that for the 
benchmark population, starting treatment at age 4 yr instead 
of age 6 yr appears to make little difference in ultimate out-
comes, both for the every-1 year and every-2 year strategies. 
The model also suggests that treatment at 6, 9, and 12 years of 
age has comparable benefits to those of an every-2 year treat-
ment program. In contrast, the 2-session regimen (i.e., at only 
ages 5 and 15 yr) appears not to be very effective in improv-
ing net growth outcomes, no matter how high the adherence 
with this regimen. Overall, boys, who are often more wasted or 

 Figure 2.    Envelopes of  Schistosoma  infection intensity (worm burden, approximated by counts of excreted eggs) 47     and related effects on growth 
patterns (in terms of height and weight) for the modeled heterogeneous endemic population. Boys are indicated in the upper panels and girls are 
indicated in the lower panels. Each hypothetical gender cohort was assembled from five quantile groups, reflecting the range of their initial poten-
tial for healthy growth, i.e., normally capable of reaching the 5th, 25th, 50th, 75th, or 95th percentiles, respectively. Left panels indicate the range 
of likely egg counts for each age group. Middle panels indicate the range of likely heights, and right panels indicate the likely range of weights at 
different ages among the affected childhood populations. In each height and weight plot, the thick solid curve represents the desired United States 
median growth, dashed lines from bottom to top represent, respectively, the community minimum and maximum values as affected by recurrent 
 Schistosoma  infection; small dots represent calibration data from field studies, 31  and the thin solid line is the best-fit curve with the parameters 
shown in  Table 1 .    

 Figure 3.    Projected effects of treatment at 6, 9, and 12 years of age (with the fraction of worms killed in each session being 90%) on worm 
burden and developmental growth of an individual randomly selected from the modeled community. Solid curves are for baseline state (untreated 
infection) and dashed lines show the expected impact of the three treatment schedule.    
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stunted than girls when untreated, 29,  49  were predicted to expe-
rience greater benefits after treatment than girls, for whatever 
strategy used. 

 As shown in the lower panels of  Figure 4 , in communities 
with 80% or higher adherence to repeated annual treatment, 
cumulative deficits (estimated for 20-year-old individuals 
in the face of continuing risk for reinfection with  S. haema-
tobium ) were reduced in magnitude for height outcomes by 
70% in boys and by about 76% in girls. Corresponding weight 
deficits at 20 years of age were reduced by 72% for boys and 
by 70% in girls. Where treatment was less frequent (only 2–3 
treatments in childhood) or where adherence was less good 
(e.g., 20%; see  Figure 4 , upper panels) the impact of drug-

based treatment campaigns on the childhood population’s 
growth and development profile was projected to be much 
more modest, on the order of only 3–60% reductions in the 
cumulative height and weight deficits overall. 

   DISCUSSION 

 The nonlinear dynamics of  Schistosoma  transmission and 
the complexity of age- and time-related factors influencing 
infection-related disease formation have made it difficult for 
experts to gauge the potential lifetime benefits of repeated 
anti-schistosomal treatments in endemic communities. 50  
Risk of infection-associated morbidity increases with both 

 Table 2 
  Predicted community height and weight values (relative to United States median at age 20 yr), ensuing from different school-age treatment 

regimens *   
Female Male

Strategy Height Weight Height Weight

A. Untreated 0.962 (0.036) 0.939 (0.138) 0.924 (0.033) 0.757 (0.115)

B. Treat at school entry and completion (ages 5 and 15 yr) with:
 20% adherence 0.962 (0.036) 0.939 (0.138) 0.926 (0.033) 0.771 (0.122)
 50% adherence 0.962 (0.036) 0.940 (0.138) 0.930 (0.033) 0.792 (0.121)
 80% adherence 0.963 (0.036) 0.941 (0.138) 0.933 (0.033) 0.812 (0.122)

C. Treat at ages 6, 9, and 12 yr, with:
 20% adherence 0.968 (0.037) 0.948 (0.142) 0.934 (0.040) 0.793 (0.135)
 50% adherence 0.976 (0.038) 0.963 (0.146) 0.950 (0.043) 0.846 (0.146)
 80% adherence 0.985 (0.034) 0.978 (0.144) 0.967 (0.041) 0.896 (0.145)

D. Treat every other year beginning age 6 yr, with:
 20% adherence 0.968 (0.038) 0.949 (0.143) 0.935 (0.042) 0.799 (0.142)
 50% adherence 0.979 (0.039) 0.965 (0.147) 0.954 (0.046) 0.861 (0.154)
 80% adherence 0.989 (0.035) 0.980 (0.145) 0.973 (0.043) 0.919 (0.150)

E. Treat every other year beginning age 4 yr, with:
 20% adherence 0.968 (0.038) 0.949 (0.143) 0.935 (0.042) 0.799 (0.142)
 50% adherence 0.979 (0.035) 0.965 (0.147) 0.955 (0.046) 0.861 (0.155)
 80% adherence 0.989 (0.035) 0.980 (0.145) 0.974 (0.043) 0.920 (0.151)

F. Treat every year beginning age 6 yr, with:
 20% adherence 0.969 (0.039) 0.949 (0.143) 0.936 (0.043) 0.802 (0.146)
 50% adherence 0.980 (0.040) 0.965 (0.148) 0.956 (0.048) 0.868 (0.160)
 80% adherence 0.991 (0.035) 0.982 (0.145) 0.976 (0.044) 0.930 (0.155)

G. Treat every year beginning age 4 yr, with:
 20% adherence 0.969 (0.039) 0.949 (0.143) 0.936 (0.043) 0.802 (0.146)
 50% adherence 0.980 (0.040) 0.965 (0.148) 0.957 (0.048) 0.869 (0.160)
 80% adherence 0.991 (0.035) 0.982 (0.145) 0.977 (0.044) 0.931 (0.155)

  *   Shown are projected mean values, with standard deviations in parentheses, for the fraction of normal growth obtained by boys and girls under each regimen.  

 Table 1 
  Simulation parameter descriptions (see the Supplemental Appendix) and their best-fit values based on infection and anthropometric data from 

Kajiwe village, Kenya 31   

Type Symbol Description

Girls Boys

Height/weight Height/weight

Worm burden  S  0 Maximum force of infection among ages 31.2 52.6
 a  0 Age (in years) when the rate of new infections begins to decline 8.7 7.1
 p Exponential in contact pattern 15.13 2.96

Morbidity n 0 Maximum morbidity resolution rate 10.18 0.75
a Rate of min/max of resolution rate 0.2 0.07
 a  1 Threshold age for resolution jump 11.3 8.3
 q  1 Hill exponent for morbidity resolution 5.47 1.0

Remedial growth z
0
r

Threshold of stunting factor φ/morbidity 
accretion rate

7.67/9.85 122.96/103.61

φ 0 Maximum stunting (growth reduction) rates caused by morbidity 0.5/0.13 0.52/0.18
φ 1 Baseline stunting rates (norm = 1), caused by factors other than schisto infection) 0.99/0.82 0.96/0.8
 m Hill exponent in φ 7.1/5.15 4.93/1.7

  K Ratio of age-specific remedial growth rate to normal growth rate 11.13/8.0 9.37/7.84
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the duration and the intensity of infection, reflecting an aggre-
gate effect of local tissue injury from granulomatous inflamma-
tion to parasite eggs deposited in host tissues, and the systemic 
effects of chronic inflammation. 15,  21,  51  In particular, chronic 
anemia and growth stunting during childhood are believed 
to be the result of chronic anti-parasite inflammation that 
persists throughout childhood and adolescence. 16  Although 
school-based treatment has long been recommended as a 
means to suppress the heaviest burden of  Schistosoma  infec-
tion that occurs during childhood, 52  field studies indicate that 
such programs may fail to suppress transmission in high- and 
medium-risk communities, such that reinfection remains 
highly likely despite repeated treatments given during school 
age. 6  Although inflammation may subside after successful 
elimination of infection (with substantial benefits in terms 
of improved hemoglobin levels and rebound growth) 8,  13,  27,  45,  53  
early reinfection appears to reactivate these inflammation-
associated morbidities, resulting in only limited benefits from 
any single round of therapy. 34,  54  

 It is only recently that growth and nutrition-related mor-
bidities have become more widely recognized as significant 
components of the schistosomiasis-associated disease bur-
den. 17  Notably, only two studies have examined the long-term 
effects of repeated anti-schistosomal treatments (given dur-
ing childhood) on later adult health. 55,  56  For now, because the 
data on the late benefits of treatment are limited, and consid-
ering the need for informed policy formulation in this area, it 
is appropriate at this point to use established modeling tech-
niques (calibrated on available data) to estimate the benefits 
of repeated treatment campaigns on  Schistosoma -associated 
growth deficits that may occur during childhood. Our mod-
eling analysis, benchmarked to available individual-level 
field data, was based on the well-recognized potential of chil-

dren for “catch-up growth” following recovery from chronic 
diseases. 44  Individuals can acutely increase their post-insult 
growth velocity up to 4-fold after the growth restriction ceases. 
This is known as type A catch-up growth. In another form of 
catch-up growth, known as type B, puberty can be delayed 
by several years, allowing linear bone growth to continue for 
an extended compensatory period. 44  However, for schistoso-
miasis, the net impact of any type B recovery is likely to be 
complex, in that pubertal hormonal changes per se have been 
shown to down-modulate anti-parasite inflammation and 
reduce nutritional deficits associated with  Schistosoma japoni-
cum  infection. 57  We recognize that one of the limitations of 
our simulation model is that we are not able to distinguish the 
relative contributions of these two types of growth recovery. 
Future longitudinal studies, using careful Tanner staging for 
sexual maturity 57  will be needed to clarify the relative effects 
of type A and type B recovery following treatment. Other fac-
tors, such as diet quality and co-infection with other parasitic 
worms, including soil-transmitted helminths, may serve to limit 
actual catch-up growth in treatment campaigns. Our study is 
limited in that it focused primarily on schistosomiasis and data 
on the impact of  S. haematobium  infection. Outcomes of mass-
treatment may prove different for  Schistosoma mansoni - or 
 S. japonicum -affected areas, 29,  45,  49  particularly if the risk for 
reinfection is highly episodic or changes significantly during 
the treatment campaign. 

 Like other studies of the growth impact of schistosomia-
sis, 27,  29,  45,  49  we have used CDC/NCHS growth standards 58  as 
our norms for affected children. Even though their formulae 
were developed on the basis of sampling children within the 
United States population, these 2000 CDC/WHO standards 
are widely accepted as reference parameters for childhood 
growth among most other populations. 30,  59  New reference 

 Figure 4.    Projected impact of different schistosomiasis treatment regimens on accrued growth (relative to normal) at 20 years of age for 
infected girls and boys exposed to possible reinfection in endemic areas, based on model simulations of growth, reinfection, and potential for catch-
up growth after treatment. In each panel, clustered bars for girls and boys compare the projected outcomes of five proposed strategies: 1) no treat-
ment; 2) treatment at the time of school entry and completion (ages 5 and 15 yr); 3) treatment at 6, 9, and 12 years of age; 4) treatment every 2 years; 
and 5) treatment every year during school ages from 4 up to 15 years of age. Upper panels show substantially reduced impact when community 
participation is low (20%), as compared with where projected uptake and adherence are high (80%, lower panels).    
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standards based on sampling in six countries are being devel-
oped by the WHO, 60  but, at the time of this study, they had not 
been implemented for children > 5 years of age. Undoubtedly, 
for future research, the use of these newer international stan-
dards should be considered. 

 We should stress that, as constructed, our model gives a 
lower bound estimate of growth remediation, and the real 
benefits could be higher. Indeed, mass drug administration 
(MDA) may have a double effect in some communities—it 
can lower human infection levels and may also reduce trans-
mission in some locales, particularly if high-risk adults are 
included in the treatment campaign. Our present simulation 
does not account for the coupled process of “human-to-snail 
transmission” (only its “snail-to-human” part), so that part (1) 
of the model system could underestimate the effect of drug 
treatments on the process of contamination and snail infec-
tion. However, human-to-snail transmission remains a patchy, 
nonlinear phenomenon in which a single infected individual 
(alone) can continue to contaminate one or more snail con-
tact sites and maintain transmission for several months within 
any given community. This is the likely reason that MDA pro-
grams have not reliably reduced transmission in many high-
prevalence areas. 8,  61  Nevertheless, our projections do suggest 
an increasing benefit from repeated treatments during child-
hood, even in the face of continuing reinfection. 

 Our results suggest that repeated treatment during child-
hood has the potential to reverse most, but not all, growth 
impairment associated with schistosomiasis. In particular, 
early treatment of  S. haematobium  with PZQ beginning at or 
before 6 years of age, with repeated treatments into the ado-
lescent years, appears likely to be most effective in facilitat-
ing catch-up growth among repeatedly infected children. The 
gender-specific differences in growth observed among our 
benchmark Kenyan population ( Figure 2 ) were consistent 
with those found in treatment studies of  S. mansoni  infection 
in Brazil. 29,  49  In those studies, infected males were found to 
suffer more undernutrition, but they also had more dramatic 
improvements after anti-schistosome therapy. 49  Among our 
calibration sample of children, boys had higher average egg 
burdens than girls (geometric mean = 96 eggs/10 mL urine ver-
sus 36 eggs/10 mL urine), which might explain a higher risk of 
inflammation with corresponding worsening of growth-related 
morbidity outcomes. Another possible factor contributing to 
gender difference may be a difference in daily activity pat-
terns, with higher rates of caloric consumption and/or higher 
rates of reinfection among boys. 62  More research on the ques-
tion of the relative gender-specific, growth-related disease risk 
is needed. 

 Historically, policy-makers have tended to underestimate 
the health impact of non-lethal morbidities associated with 
schistosomiasis (compare, e.g., the conclusions stated in  Ref-
erences 63–  66  to the meta-analysis in  Reference 15 ). However, 
multiple cross-sectional studies have documented growth 
retardation in children infected with all species of  Schistosoma  
parasites. 45,  49,  67,  68  In terms of policy implications, there are 
likely to be important economic effects of childhood growth 
retardation that results in permanent stunting of adults. Short 
stature is associated with a decrease in productivity in many 
settings: previous studies estimate that a 1% decrease in adult 
stature is associated with a 1.4% decrease in productivity in 
less-developed economies. 69–  71  Unmeasured confounders, such 
as differences in food availability, undoubtedly exist, 13  but the 

reproducibility of the benefits of specific anti-schistosomal 
therapy suggest a significant growth effect of chronic schisto-
somiasis wherever it occurs. 27,  28,  45,  49  Although the durable long-
term impact of anti-schistosomal treatment in reversing wasting 
or stunting has not been as well studied, treatment outcomes 
studies, including randomized-placebo controlled trials, indi-
cate the potential for growth improvement with specific anti-
schistosomal therapy. In the Philippines, in villages endemic 
for  S. japonicum , children who were most wasted or stunted 
at baseline had the best relative outcomes after treatment. 45  
In Kenya, marked improvement in growth was observed after 
a single dose of an anti-schistosomal drug (metrifonate or 
PZQ) for the treatment of  S. haematobium  at follow-up after 
8 months. 27  Of note, an inflammatory response related to 
growth impairment has been shown when reinfection occurs 
after successful primary treatment of  S. japonicum . 54  This asso-
ciation, however, has not been examined in areas endemic for 
 S. haematobium  or  S. mansoni,  and the potential importance 
of this link to later growth impairments remains an important 
area for future study. 

 Other aspects of schistosomiasis-related morbidity and 
impairment were not included in our model. However, the age 
dynamics and reversibility of outcomes such as anemia and 
learning-related disabilities could easily be incorporated into 
future modeling efforts to identify the optimal timing and fre-
quency for their prevention. Other modifications may need to 
be considered as new data emerge. Children’s growth patterns 
exhibit different rates according to levels of bone maturity and 
sexual development. 44,  57,  72,  73  Retardation in growth will con-
tinue if inflammation persists or quickly recurs, 74  but there is 
a potential for regaining a normal growth velocity. 75  Changes 
in environment and nutrient availability are not necessarily 
sufficient to reverse early growth impairment. 72  However, the 
effect of a delayed puberty, sometimes seen in low resource 
settings, can be beneficial for catch-up growth if the caus-
ative insult has ceased. 75  Our results suggest that in the typi-
cal setting of endemic schistosomiasis, where reinfection can 
rapidly occur after treatment, mass administration campaigns 
that include periodic retreatment through adolescence may be 
needed to obtain a healthy rate of growth. 

 Data are scarce on the true prevalence of schistosomiasis 
among preschool-age children. 76  Our analysis was calibrated 
on detailed information from school-age children (5–20 yr) 
in one affected village. In the future, to assess the poten-
tial benefit of anti-schistosomal treatment during preschool 
years, it will be important to include these younger subjects in 
community-based studies, including more sensitive diagnostics 
for  Schistosoma  infection than the standard, relatively insen-
sitive assays based on egg-detection in stool and urine. 77–  81  
Quantifying pro-inflammatory markers such as interleukin-6 
(IL-6) and tumor necrosis factor-α (TNF-α) among pre-
school-age children with serologic evidence of early infection 
could provide evidence of early effects of infection before egg 
numbers reach their threshold to be reliably detected in the 
excreta. 47,  80,  81  Our simulations indicate that if growth deficits 
are associated with infection in preschool years, then starting 
treatment at earlier ages (preschool years) might yield the best 
results for achieving near-normal growth in high-risk areas. 
As structured, our model did not indicate a benefit for early 
age therapy. However, it was based only on data for children 
5 years of age and older, and in areas where earlier growth def-
icits can be tied to schistosomiasis, then initiation of treatment 
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in preschool years will likely prove beneficial. For now, and for 
the particular type of village setting studied here, our model 
clearly suggests that every other year treatments during school 
age (6–20 yrs) and high community adherence to treatment 
(> 50%) will provide the best aggregate growth outcomes 
among at-risk individuals. 
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