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A B S T R A C T

Drug-resistant tuberculosis (TB) is a major health threat in Myanmar. An initial study was conducted to

explore the potential utility of whole-genome sequencing (WGS) for the diagnosis and management of

drug-resistant TB in Myanmar. Fourteen multidrug-resistant Mycobacterium tuberculosis isolates were

sequenced. Known resistance genes for a total of nine antibiotics commonly used in the treatment of

drug-susceptible and multidrug-resistant TB (MDR-TB) in Myanmar were interrogated through WGS. All

14 isolates were MDR-TB, consistent with the results of phenotypic drug susceptibility testing (DST), and

the Beijing lineage predominated. Based on the results of WGS, 9 of the 14 isolates were potentially

resistant to at least one of the drugs used in the standard MDR-TB regimen but for which phenotypic DST

is not conducted in Myanmar. This study highlights a need for the introduction of second-line DST as part

of routine TB diagnosis in Myanmar as well as new classes of TB drugs to construct effective regimens.

� 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Chemotherapy of

Infection and Cancer. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
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1. Introduction

Myanmar is one of the 22 high-burden tuberculosis (TB)
countries, with a high prevalence of multidrug-resistant TB (MDR-
TB) [1]. Rapid detection is essential to treat patients with drug-
resistant TB. Yet conventional drug susceptibility testing (DST)
takes several weeks owing to the culturing requirement and
subsequent laborious phenotypic testing. Consequently, molecular
DST using the Hain GenoType MTBDRplus v.2.0 (Hain Lifescience
GmbH, Nehren, Germany) and, more recently, the Cepheid
GeneXpert MTB/RIF (Cepheid, Sunnyvale, CA) has been established
in Myanmar. However, these assays only interrogate the most
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frequent resistance mutations for a limited number of antibiotics.
Whole-genome sequencing (WGS) has the potential to overcome
this limitation and can be used to identify patients with drug-
resistant TB [2–4]. Whilst WGS is being considered for routine
diagnosis and management of drug-resistant TB in well-resourced,
low-TB burden settings, currently there are no plans for routine
implementation in resource-limited, high-TB burden countries.
Since it is important that new tools with the potential to improve
TB control are adopted as early as possible especially in countries
where these tools are needed the most, a preliminary evaluation of
the utility of WGS in the diagnosis and management of drug-
resistant TB in Myanmar was conducted.

2. Materials and methods

According to Myanmar national guidelines for the management
of MDR-TB [5], suspected MDR-TB patients (Table 1) who are
sputum smear-positive are referred to the National TB Reference
ty for Chemotherapy of Infection and Cancer. This is an open access article under the
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Table 1
Treatment category by type of tuberculosis (TB) patient and recommended treatment regimens [5].

Treatment category

Cat I Treatment for new patients with first-line anti-TB drugs (2 months of INH, RIF, EMB, PZA/4 months of INH, RIF)

Cat II Re-treatment regimen with first-line anti-TB drugs (2 months of STR, INH, RIF, EMB, PZA/1 month of INH, RIF,

EMB, PZA/3 months of INH, RIF, EMB)

New A patient who has never had treatment for TB or who has taken anti-TB drugs for <1 month

Close contact Close contacts of MDR-TB patients who develop active TB

Failure A patient previously treated for TB who is started on a re-treatment regimen after previous treatment has failed

Relapse A patient who was previously declared cured or treatment completed and is diagnosed with bacteriologically-positive

(sputum smear or culture) TB

Standard MDR-TB regimen 6 months of AMK, PZA, LFX, ETH, DCS/18 months of PZA, LFX, ETH, DCS a

INH, isoniazid; RIF, rifampicin; EMB, ethambutol; PZA, pyrazinamide; STR, streptomycin; MDR, multidrug-resistant; AMK, amikacin; LFX, levofloxacin; ETH, ethionamide;

DCS, cycloserine.
a Para-aminosalicylic acid will be added to the regimen if a resistance mutation in the inhA promoter is detected with MTBDRplus or if the patient cannot tolerate ETH or

DCS.
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Laboratories in Yangon and Mandalay for genotypic testing with
the Hain GenoType MTBDRplus v.2.0 as well as phenotypic DST.
Sputum specimens are decontaminated and are then inoculated
onto Löwenstein–Jensen medium for culturing and phenotypic
DST of isoniazid, rifampicin, ethambutol and streptomycin [6]. The
MTBDRplus is performed according to the manufacturer’s instruc-
tions and DNA is extracted as described previously [7]. The
National Reference Laboratories in Myanmar do not currently
perform DST of second-line drugs or pyrazinamide as part of
routine diagnosis of drug-resistant TB and do not store culture
isolates.

DNA of 14 isolates from MDR-TB patients were selected for this
study and were further purified using an UltraClean1 Microbial
DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA). DNA was
sequenced using paired-end 250-bp reads on an Illumina MiSeq
using the NexteraTM XT DNA Kit (Illumina Inc., Hayward, CA). The
resulting sequencing data were submitted to the European
Nucleotide Archive (PRJEB10037). Using version 1 of PhyResSE
with version 27 of the variant list and, where applicable, literature
review, resistance genes for the following antibiotics that are
commonly used in the treatment of drug-susceptible and MDR-TB
in Myanmar were interrogated: rifampicin; isoniazid; ethambutol;
streptomycin; ethionamide; pyrazinamide; amikacin; and levo-
floxacin [8]. In addition, genes involved in para-aminosalicylic acid
(PAS) resistance (folC, ribD and thyA) were analysed [2]. PhyResSE
was also used for strain classification.

3. Results

3.1. Strain diversity

The Beijing lineage dominated, with 11 of the 14 strains
belonging to that particular lineage. The remaining three strains
belonged to the East-African Indian and Euro-American lineages
(Table 2).

3.2. Genotype–phenotype concordance for drugs that were tested

phenotypically in Myanmar

The WGS results for rpoB, inhA and katG were in full agreement
with the results of the MTBDRplus (Table 2). Moreover, two katG

mutations were detected in isoniazid-resistant strains that cannot
be detected with the MTBDRplus: G299C in M00011, which is
known to be associated with isoniazid resistance; and a frameshift
in M00020, which should result in high-level isoniazid resistance
[9].

Of the 14 strains, 7 were phenotypically resistant to ethambutol
and harboured known resistance mutations in embB or mutations
that were previously associated with ethambutol resistance. One
phenotypically susceptible strain (M00004) had a known resis-
tance mutation [4,10].

With respect to streptomycin, all but one strain was phenotyp-
ically resistant, but genotypic resistance was identified in only 10
of the 13 resistant strains, due to mutations in rpsL that are known
to be associated with streptomycin resistance or to potential
resistance mutations in gidB [4]. It was not possible to test whether
these discrepancies were due to laboratory error, given that the
strains were not stored.

3.3. Genotypic drug susceptibility testing for drugs used in multidrug-

resistant tuberculosis treatment

No phenotypic DST results were available for ethionamide,
pyrazinamide, amikacin, levofloxacin, PAS and cycloserine. In
addition to the two inhA mutants, two strains were identified that
were likely ethionamide-resistant as a result of a previously
described ethA mutation [11]. Of the 14 strains, 6 had mutations
that are known to be associated with pyrazinamide resistance [12].
Strain M00017 was predicted to be resistant to amikacin as a result
of an rrs G1484T mutation [13]. Two strains had high-confidence
gyrA resistance mutations to levofloxacin [14]. Strain M00005 was
most likely resistant to PAS as a result of a premature stop codon in
thyA [15]. Three more strains were potentially resistant to PAS
owing to novel mutations in folC or thyA. No genotypic prediction
for cycloserine was performed as the genotypic basis of resistance
is poorly understood.

4. Discussion

This is the first study to report WGS data for drug-resistant TB
from Myanmar and provides possibilities for incorporating WGS
into clinical management of drug-resistant TB in Myanmar. For
example, WGS can provide a diagnosis of resistance to multiple
drugs more quickly than standard phenotypic DST so that it can be
used to guide treatment of highly drug-resistant cases such as
extensively drug-resistant TB (XDR-TB) cases. It can also serve as a
tool for quality control to monitor laboratory performance.
Furthermore, it could be used to understand transmission in a
population. A larger study is planned in Myanmar to explore these
possibilities given that sequencing costs are reducing rapidly (now
less than US$200 per Mycobacterium tuberculosis isolate) and the
availability of fully automated analysis is underway.

Predominance of the Beijing lineage in this study confirmed
prior findings of MDR-TB in Myanmar [16]. Isoniazid and
rifampicin resistance was primarily due to mutations in codon
315 of katG and in codon 531 of rpoB, respectively, as previously
observed [17,18]. The detection of rare mutations in katG that
cannot be detected with the MTBDRplus highlights the added value
of WGS to resolve discrepancies between phenotypic and



Table 2
Summary of patient details and comparison of phenotypic drug susceptibility testing (DST) results, where available, with whole-genome sequencing (WGS) results.

ID Age

(years)

Sex Type of patient Genotype RIF INH EMB STR ETH PZA AMK LFX PAS

DST rpoB DST Genotype DST embB DST pncA rrs gyrA

M00001 55 F Cat II, failure Beijing R S531L R katG S315T R L402V R rpsL K43R a W119G b

M00003 28 M Close contact (new) Beijing R S531L R katG S315T R G406D R rpsL K43R a

M00004 32 M Cat II, failure Beijing R S531L R katG S315T S M306I c,d R rpsL K43R a FS b A90V c,d,e,f

M00005 36 F Close contact (new) Beijing R H526Y R katG S315T R G406A R rpsL K43R a Q10P b thyA W80*

M00008 75 M Relapse after Cat II Euro-American R H516V R katG S315T S R

M00010 24 F Cat II, failure Beijing R S531L R katG S315T S R rpsL K43R a

M00011 63 M Cat I, failure Beijing R S531L R katG G299 g R M306V c,d R A90V c,d,e,f

and D94A c,d,e,f

M00012 44 M Cat II, failure East-African

Indian

R H526Y R katG S315T S R thyA F176L h

M00013 19 M Cat II, failure Beijing R S531L R katG S315T R M306V c,d R rpsL K43R a ethA M1R Y103*,b folC M54I h

M00016 48 M Cat II, failure East-African

Indian

R S531L R inhA C-15T S R gidB E40G h inhA C-15T

M00017 68 M Relapse after cat II Beijing R S531L R katG S315T R E504D R rpsL K43R a Q10P b G1484T a,c,e

M00018 63 F Cat II, failure Beijing R S531L R katG S315T S R gidB P75T h

M00019 27 M Cat II, failure Beijing R S531L R katG S315T R M306V c,d R rpsL K43R a ethA M1R T142A b folC M54I h

M00020 42 M Relapse after cat II Beijing R S531L R katG FS g,

inhA C-15T

S S inhA C-15T,

ethA FS

RIF, rifampicin; INH, isoniazid; EMB, ethambutol; STR, streptomycin; ETH, ethionamide; PZA, pyrazinamide; AMK, amikacin; LFX, levofloxacin; PAS, para-aminosalicylic acid; R, resistant; S, susceptible; FS, frameshift.

The Hain GenoType MTBDRplus v.2.0 (Hain Lifescience GmbH, Nehren, Germany) results for rpoB, katG and inhA were in agreement with the WGS data. Where applicable, alternative genotypic DST assays that could have been used

to detect additional resistance mutations are listed, although it should be noted that low-level heteroresistant mutations might be below the detection limits of some of these assays, which are not well understood [20].
a Covered by AID TB Resistance Module STR/AMK/CAP (AID Diagnostika GmbH, Straßberg, Germany).
b Covered by Nipro PZA line probe assay (Nipro Corp., Osaka, Japan).
c Covered by Hain GenoType MTBDRsl v.1.0 (Hain Lifescience GmbH, Nehren, Germany).
d Covered by AID TB Resistance Module FQ/EMB (AID Diagnostika GmbH).
e Covered by Hain GenoType MTBDRsl v.2.0 (Hain Lifescience GmbH).
f Covered by Nipro FQ line probe assay (Nipro Corp.).
g Mutation not covered by MTBDRplus.
h Novel mutation with unknown effect.
* Stop codon.
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genotypic results. The discordance between the genotype and
phenotypic ethambutol results in this study was in line with
previous findings that ethambutol DST is less reproducible than for
other first-line drugs [4].

The drugs used in the MDR-TB regimen in Myanmar consist of
6 months of amikacin, pyrazinamide, levofloxacin, ethionamide
and cycloserine, followed by 18 months of pyrazinamide,
levofloxacin, ethionamide and cycloserine (and PAS if ethion-
amide resistance is detected) (Table 1) [5]. None of the strains in
this study were predicted to be XDR-TB. However, 9 of the 14
isolates were likely resistant to at least one of the drugs in the
aforementioned standard MDR-TB regimen. Moreover, four of
the strains (M00004, M00013, M00017 and M00019) were likely
resistant to two drugs, which would reduce the number of
effective drugs to three in the intense phase and to two during
the extended phase (three in the case of M00017). For the strains
with gyrA mutations, resistance to levofloxacin might have been
overcome by replacing levofloxacin with moxifloxacin, to which
these mutations generally confer low-level resistance [14]. By
contrast, adding PAS to the regimen of the two potentially
ethionamide-resistant strains with ethA M1R mutations (accord-
ing to standard treatment guidelines) might not have been
effective if the folC mutations in both strains also caused
resistance. Replacing amikacin with kanamycin or capreomycin
in the patient with the rrs mutation would not have been an
option as this mutation confers cross-resistance to all of these
aminoglycosides [13]. Consequently, novel classes of TB drugs
are required in Myanmar to construct appropriate regimens.

This study highlights the need to introduce second-line DST
in routine diagnosis in Myanmar to substantially increase the
proportion of MDR-TB patients for whom DST is conducted (in
2013, only 4.4% of confirmed MDR-TB cases were tested for a
fluoroquinolone and second-line injectable drug) [1]. This could
also provide clarity regarding the prevalence of XDR-TB, which
is currently unknown despite the first reported case in 2007
[19]. This could be achieved using phenotypic methods or by
introducing one of the current commercial genotypic DST assays
such as AID Resistance Module FQ/EMB and STR/AMK/CAP (AID
Diagnostika GmbH, Straßberg, Germany), MTBDRsl v.1.0 or 2.0
(Hain Lifescience GmbH) and the Nipro FQ and PZA line probe
assay (LiPA) (Nipro Corp., Osaka, Japan) [20]. It should be noted,
however, that their ability to detect low-level heteroresistance
is poorly understood. Moreover, LiPAs are relatively labour
intensive and slow. More decentralised testing for XDR-TB
would be preferable (e.g. with the XDR cartridge that is
currently being developed for the GeneXpert and GeneXpert
Omni). At the same time, this study revealed that even if a
prompt and accurate DST service is introduced, new classes of
TB drugs are urgently required in Myanmar to construct
regimens that are sufficiently active to adequately treat drug-
resistant TB cases.
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