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S U M M A R Y

Background: Helicobacter pylori infection has been associated with early childhood growth impairment in

high- and middle-income countries; however, few studies have examined this relationship within low-

income countries or have used a longitudinal design. The possible effects of H. pylori infection on growth

trajectories were examined in a cohort of young Ethiopian children.

Methods: In 2011/12, 856 children (85.1% of the 1006 original singletons in a population-based birth

cohort) were followed up at age 6.5 years. An interviewer-led questionnaire administered to mothers

provided information on demographic and lifestyle variables. Height and weight were measured twice,

and the average of the two measurements was used. Exposure to H. pylori infection was assessed using a

rapid H. pylori stool antigen test. The independent associations of positive H. pylori infection status

(measured at ages 3 and 6.5 years) with baseline height and weight (age 3 years) and height and weight

growth trajectory (from age 3 to 6.5 years) were modelled using hierarchical linear models.

Results: At baseline (age 3 years), the children’s mean height was 85.7 cm and their mean weight was

11.9 kg. They gained height at a mean rate of 8.7 cm/year, and weight at a mean rate of 1.76 kg/year. H.

pylori infection was associated with lower baseline measurements and linear height trajectory

(b = �0.74 cm and �0.79 cm/year, respectively), after controlling for demographics and markers of

socio-economic status. However, the positive coefficient was associated with quadratic growth in height

among H. pylori-infected children (b = 0.28, 95% confidence interval 0.07 to 0.49, p < 0.01), and indicated

an increase in height trajectory as the child increased in age. A non-significant difference in baseline and

trajectory of weight was observed between H. pylori-infected and non-infected children.

Conclusions: These findings add to the growing body of evidence supporting that H. pylori infection is

inversely associated with childhood growth trajectory, after controlling for a range of factors associated

with reduced growth and H. pylori status. Further follow-up will be important to confirm possible catch-

up in height trajectory among H. pylori-infected children as they grow older.

� 2016 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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1. Introduction

There is now good evidence that infection with Helicobacter

pylori is the principal cause of acute and chronic gastritis and
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atrophic gastritis.1–3 More recently, however, there has been
interest in the effects of H. pylori in extra-gastroduodenal
diseases.4–7 This interest has led researchers to investigate the
effects of H. pylori in a wide range of growth outcomes. Evidence for
an association between H. pylori and childhood growth im-
pairment has arisen from a range of epidemiological studies.8–12

Delayed growth,11,12 short stature,13 and growth retarda-
tion8,9,12,14 appear to be related to H. pylori infection.
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Figure 1. Butajira birth cohort followed at age 6.5 years.
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Several mechanisms by which H. pylori infection causes growth
impairment have been proposed.15,16 One hypothesis that has
attracted attention is that since infection with H. pylori is
accompanied by hypochlorhydria, this facilitates the acquisition
of other enteropathogens due to impairment of the gastric acid
barrier. This then results in diarrheal disease, iron-deficiency
anaemia, and growth impairment.15,16 This is likely to occur most
frequently in developing regions where the prevalence of H. pylori

infection is disproportionately high and multiple enteric co-
infections are common.15,17 H. pylori infection has also been
associated with impaired absorption of nutrients and vitamins,18

and reduced food intake as a result of dyspepsia,19 which in turn
impairs childhood growth. Although these hypotheses seem
biologically plausible, whether growth impairment occurs as a
direct effect of the H. pylori-induced inflammation, or as a
consequence of indirect effects (such as infection-induced
anorexia,20 H. pylori-associated intestinal permeability changes,21

and/or malabsorption or diarrheal disease22) is unclear. It has been
suggested that direct and indirect effects may both contribute to
growth impairment.4

Whilst the role of H. pylori in childhood growth impairment is
intriguing, possible bias due to potential confounding variables
such as socio-economic status, which may contribute both to
occurrences of childhood growth impairment and to H. pylori

infection, are difficult to exclude. If H. pylori can be proved to
negatively affect childhood growth, it can then be considered a
treatable cause of diminished growth and a potential target for
nutritional intervention. In Ethiopia, childhood undernutrition
continues to be a major public health problem,23 and is associated
with complex socio-demographic and economic factors.24 Few
studies have examined the possible link between H. pylori infection
and childhood growth outcomes within low-income countries or
have used a longitudinal design. It appears that no study has
attempted to investigate this relationship in Ethiopia. In this study,
data from a detailed Ethiopian birth cohort were used to assess the
effect of H. pylori infection on growth trajectories, using two-level
hierarchical linear models.

2. Methods

2.1. Study setting and design

A detailed description of the original Butajira Birth Cohort
study has been published.25,26 Briefly, the birth cohort is
nested within the Butajira Demographic Surveillance Site,27

which covers a sample of nine rural and one urban administra-
tive units in and around the town of Butajira in southern
Ethiopia,24 with a total population of approximately 33 393 in
2007. Of the 1234 women eligible in 2005–2006, 1065 were
recruited (86% of those eligible); all live singleton babies born to
these women (n = 1006) were followed-up as a birth cohort
(Figure 1).

2.2. Measurement and data collection

After informed consent was given by the mothers, information
on demographic and selected lifestyle factors was collected via an
interviewer-administered questionnaire during pregnancy, at
birth, and during the follow-up visits.

During follow-up visits at ages 3, 5, and 6.5 years, mothers
were also asked to collect a faecal sample from their child using
a leak-proof plastic container. The samples were then trans-
ported to the Butajira Health Centre laboratory for analysis, to
ascertain the child’s H. pylori and intestinal parasite infection
status.
2.3. Laboratory analyses

H. pylori status was determined using an H. pylori stool antigen
test (SD Bioline; Standard Diagnostics, Inc., South Korea). H. pylori

stool antigen (HP Ag) testing is rapid, non-invasive, easy to
perform, and can be used to detect a current infection; it can also
be used to monitor the effectiveness of eradication therapy. Tests
were performed in accordance with the manufacturer’s instruc-
tions. A portion of faeces (approximately 50 mg) was swirled with
assay diluent solution at least 10 times, until it dissolved. It was
then allowed to settle for 5 min at room temperature. One hundred
microlitres of the prepared sample was placed on the HP Ag test
strip, and the test results were read 15 min later. One red line
indicated a negative result, and a double red line indicated a
positive result.

All faecal samples were also examined qualitatively using the
modified formol–ether concentration method to ascertain the
child’s intestinal parasite infection status.

2.4. Anthropometric measurements

At each follow-up visit, the child’s height and weight were
measured in duplicate, and the average of the two measurements



Table 1
Baseline demographic characteristics of children followed at age

3 years—Butajira Birth Cohort, Ethiopia

Variables Number (%)

Sex

Female 431 (49.4)

Male 441 (50.6)

Place of residence

Urban 111 (12.7)

Rural 761 (87.3)

Ethnicity

Meskan 402 (47.4)

Mareko 111 (13.1)

Silti 200 (23.6)

Other 135 (15.9)

Religion

Muslim 683 (78.1)

Christian 193 (22.0)

Maternal education

No formal 701 (80.0)

Formal 171 (19.5)

Maternal occupation

Housewife 733 (83.7)

Farming and related 21 (2.4)

Trading and related 101 (11.5)

Other 21 (2.4)

Maternal age, years

15–24 332 (37.9)

25–34 412 (47.0)

35–44 132 (15.1)

Water sources

Piped water 725 (83.1)

Other 147 (16.9)

History of vaccinationa

Not vaccinated 361 (41.7)

Vaccinated 511 (58.3)

Birth weight (n = 544)

Low (<2.5 kg) 45 (8.3)

Normal 498 (91.7)

Vitamin A supplementationb

Yes 99 (11.8)

No 743 (88.2)

Helicobacter pylori positivity

Age 3 years, n = 616 253 (41%)

Age 5 years, n = 857 377 (44%)

Age 6.5 years, n = 848 88 (10.4%)

a Measured at 2 months.
b Measured at 1 year.
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was used. Height and weight were recorded for children without
shoes and wearing light clothes, standing straight, with their
weight distributed uniformly on both feet and their arms hanging
freely at their sides. An easy-glide bearing wall stadiometer with a
reading precision of 1 mm was used to measure height. For weight
measurement, a digital scale with reading precision of 50 g for
weights up to 50 kg and of 100 g for greater weights was used. The
accuracy of this scale was maintained using calibration weights.

2.5. Growth outcome

The growth trajectory was defined using the change in height
(in cm) and weight (in kg) per year from baseline at age 3 years to
6.5 years.

2.6. Statistical analysis

Growth curve analyses were conducted to examine the
trajectory of the children’s height and weight from age 3 to
6.5 years using hierarchical linear modelling.28,29 Growth curve
models belong to a general class of mixed models that take into
consideration the clustering of observations within persons and
also have the capacity to handle unbalanced designs (such as an
inconsistent number of observations per person).28 Such models
allow for change in scale and variance of height or weight over time
and use all available data from all eligible children under a
‘missing-at-random’ assumption.

Age was used as the indicator of time. In order to facilitate
parameter interpretation, age was centred on the initial point of
data collection on H. pylori infection status at age 3 years, since this
was the main exposure of interest for the analysis presented here.
Following the guidelines of Singer and Willett,29 unconditional and
conditional growth modelling was applied. Further details of the
statistical analysis and modelling strategies, with consideration of
potential confounders including child-, maternal-, household-, and
community-related variables, are given in the Supplementary
Material (Annex 1 and 2).

All data analyses were performed using the MIXED procedure in
IBM SPSS Statistics version 20.0 (IBM Corp., Armonk, NY, USA), with
maximum likelihood estimation and an unstructured covariance
matrix.

2.7. Ethical approval

The study was approved by the Institutional Review Board
(IRB) of the College of Health Sciences, Addis Ababa University,
Ethiopia. Written, informed consent was obtained from the
mothers after they had been clearly informed about the study. In
keeping with the requirements of the College of Health Sciences
IRB, all women and their children were reimbursed for health care
costs.

3. Results

3.1. Description of the cohort participants from 3 to 6.5 years of age

At recruitment in 2005–2006, a total of 1006 singleton babies
made up the initial birth cohort. Of these infants, 64 (6.4%) had died
and 10 (0.9%) had migrated from the study area before their first
birthday. A detailed description of the cohort at years 1, 3, and 5 is
reported elsewhere.24,26,30 At 6.5 years, a total of 856 singleton
children were successfully followed-up (85.1% of the original
cohort at birth). Complete height and weight measurements were
available for 99.5% (874/878) at age 3 years and 97.9% (838/856) at
age 6.5 years (Figure 1).
3.2. Baseline demographic characteristics of the study subjects

Socio-demographic characteristics of the study sample at
baseline (age 3 years) are presented in Table 1. At age 3 years,
50.6% (441/874) were male, and the majority (87.2%, 761/874) were
living in a rural area. Maternal demographic characteristics showed
that 47.4% (402/484) of the mothers belonged to the Meskan ethnic
group, 78.1% (683/874) were Muslim, 80.0% (701/874) did not have a
formal education, and 83.8% (709/848) were housewives (Table 1).

3.3. Relationship between potential confounders and child growth

parameters

On univariate analysis, maternal age, history of breastfeeding,
reported illness, diarrhoea, antibiotics use, history of vaccination,
history of vitamin A supplementation at 1 year, insanitary
conditions, and crowdedness of housing showed no statistically
significant associations with height or weight. However, signifi-
cant associations with both height and weight were found with the
child’s sex, place of residence, religion, birth weight category, and
relative wealth. Maternal occupation, intestinal parasite infection,
and feeding problems were also associated with the mean
difference in height at age 3 years (Table 2).



Table 2
Distribution of potential confounders and associations with anthropometric indicators (outcomes) among children followed at age 3 years—Butajira Birth Cohort, Ethiopia

Variables Overall

n (%)

Height (n = 876)

Mean (SD)

Weight (n = 876)

Mean (SD)

Mean difference

(95% CI)a

Mean difference

(95% CI)b

Sex

Male 441 (50.6) 86.2 (4.5) 12.1 (1.43) 1 1

Female 431 (49.4) 85.5 (4.2) 11.7 (1.32) �0.71 (�1.29 to �0.13)c �0.39 (�0.57 to �0.20)c

Place of residence

Urban 111 (12.7) 88.8 (4.0) 12.4 (1.32) 1 1

Rural 761 (87.3) 85.5 (4.3) 11.8 (1.40) �3.35 (�4.20 to �2.50)c �0.53 (�0.81 to �0.25)c

Ethnicity

Meskan 402 (47.4) 85.7 (4.59) 11.8 (1.47) �1.51 (�2.41 to �0.61)c �0.28 (�0.58 to 1.33)

Mareko 111 (13.1) 85.6 (3.76) 12.1 (1.23) �1.60 (�2.74 to �0.46)c 0.04 (�0.33 to 0.40)

Silti 200 (23.6) 85.8 (4.27) 11.8 (1.25) �1.38 (�2.39 to �0.37)c �0.24 (�0.56 to 0.08)

Other 135 (15.9) 87.2 (4.17) 12.1 (1.47) 1 1

Religion

Muslim 683 (78.0) 85.6 (4.44) 11.8 (1.40) 1 1

Christian 193 (22.0) 87.0 (3.95) 12.3 (1.30) 1.39 (0.63 to 2.14)c 0.41 (0.17 to 0.64)c

Maternal education

No formal 701 (80.5) 85.5 (4.39) 11.8 (1.38) �1.67 (�2.41 to �0.95)c �0.52 (�0.75 to �0.29)c

Formal 171 (19.5) 87.2 (4.23) 12.3 (1.39) 1 1

Maternal occupation

Housewife 733 (83.7) 85.9 (4.29) 11.9 (1.38) �2.72 (�5.03 to �0.41)c 0.11 (�0.62 to 0.85)

Farming and related 21 (2.4) 85.5 (4.28) 11.6 (1.45) �3.17 (�6.02 to �0.31)c �0.19 (�1.11 to 0.72)

Trading and related 101 (11.5) 85.2 (4.54) 11.7 (1.39) �3.50 (�5.97 to �1.03)c �0.06 (�0.85 to 0.73)

Other 21 (2.4) 88.7 (5.78) 11.8 (1.63) 1 1

Maternal age, years

15–24 332 (37.9) 86.4 (4.58) 12.0 (1.46) 0.64 (�0.31 to 1.6) 0.47 (�0.26 to 0.35)

25–34 412 (47.0) 85.6 (4.28) 11.8 (1.36) �0.07 (�0.99 to 0.85) �0.17 (�0.47 to 1.21)

35–44 132 (15.1) 85.7 (4.25) 11.9 (1.31) 1 1

Water source

Piped water 725 (83.1) 86.0 (4.32) 11.9 (1.38) 0.76 (�0.02 to 1.54)d 0.37 (0.12 to 0.62)c

Other 147 (16.9) 85.2 (4.76) 11.5 (1.50) 1 1

History of vaccinatione

Not vaccinated 361 (41.7) 85.9 (4.2) 11.8 (1.34) 1 1

Vaccinated 511 (58.3) 85.7 (4.5) 11.9 (1.43) �0.12 (�0.76 to 0.53) 0.05 (�0.17 to 0.23)

Birth weight (n = 544)

Low (<2.5 kg) 45 (8.3) 83.6 (4.23) 11.2 (1.50) �1.92 (�3.22 to �0.63)c �0.65 (�1.11 to �0.19)c

Normal 498 (91.7) 85.5 (4.31) 11.8 (1.38) 1 1

Vitamin A supplementationf

Yes 99 (11.8) 86.4 (5.2) 12.0 (1.42) 0.02 (�0.18 to 0.23) 0.15 (�0.21 to 0.40)

No 743 (88.2) 85.8 (4.2) 11.9 (1.38) 1 1

Availability of latrine

Yes 627 (81.6) 85.9 (4.56) 11.9 (1.38) 0.02 (�0.59 to 0.63) 0.36 (�0.47 to 1.19)

No 241 (18.4) 85.8 (3.97) 11.8 (1.42) 1 1

Number at home

1–3 58 (6.6) 86.7 (5.07) 11.8 (1.41) 1 �0.34 (�0.69 to 0.01)

4–6 501 (57.2) 85.7 (4.50) 11.9 (1.33) �0.92 (�2.12 to 0.29) �0.29 (�0.65 to 0.07)

7+ 317 (36.2) 85.9 (4.12) 12.2 (1.50) �0.69 (�1.94 to 0.55)d

Any intestinal parasitosis

Yes 291 (33.4) 85.7 (4.43) 11.9 (1.42) �0.62 (�1.24 to �0.01)c �0.08 (�0.32 to 0.14)

No 579 (66.6) 86.3 (4.27) 12.0 (1.32) 1

Still breastfeeding

Yes 93 (10.7) 86.2 (4.69) 11.7 (1.51) 0.25 (�0.72 to1.23) �0.19 (�0.50 to 0.12)

No 779 (89.3) 85.9 (4.40) 11.9 (1.40) 1

Any illness in the past

Yes 540 (61.6) 85.9 (4.35) 11.9 (1.42) 0.14 (�0.47 to 0.75) 0.09 (�0.13 to 0.26)

No 336 (39.3) 85.8 (4.52) 11.8 (1.38) 1 1

Diarrhoea

Yes 325 (38.5) 85.7 (4.39) 11.8 (1.40) �0.29 (�0.90 to 0.31) �0.08 (�0.27 to 0.12)

No 547 (61.5) 86.0 (4.41) 11.9 (1.41) 1 1

Fever

Yes 462 (57.7) 85.9 (4.42) 11.9 (1.42) 0.14 (�0.45 to 0.75) 0.07 (�0.11 to 0.26)

No 414 (43.3) 85.8 (4.40) 11.8 (1.41) 1 1

Feeding problem

Yes 24 (2.8) 87.8 (3.82) 11.8 (1.15) 1.94 (0.15 to 3.72)c �0.13 (�0.71 to 0.44)

No 848 (97.2) 85.8 (4.41) 11.9 (1.41) 1 1

Child received antibiotics

Yes 249 (26.6) 85.7 (4.36) 11.9 (1.46) �0.19 (�0.45 to 0.85) �0.06 (�0.26 to 0.15)

No 623 (73.4) 85.9 (4.54) 11.8 (1.38) 1 1

Availability of soap

Yes 557 (63.8) 86.2 (4.46) 11.9 (1.42) 0.71 (0.10 to 1.32)c 0.13 (�0.06 to 0.33)

No 315 (43.2) 85.4 (4.28) 11.8 (1.37) 1

Family had debts

Yes 52 (5.9) 85.3 (3.58) 12.0 (1.19) �0.67 (�1.72 to 0.34) �0.05 (�0.35 to 0.44)

No 820 (94.1) 85.9 (4.45) 11.9 (1.42) 1

Relative wealth

Less 402 (46.3) 85.5 (4.40) 11.7 (1.40) �1.02 (�1.63 to �0.43)c �0.27 (�0.46 to �0.08)c

More 43 (4.9) 85.9 (3.91) 12.0 (1.23) �0.48 (�1.86 to 0.89) 0.00 (�0.44 to 0.43)
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Table 2 (Continued )

Variables Overall

n (%)

Height (n = 876)

Mean (SD)

Weight (n = 876)

Mean (SD)

Mean difference

(95% CI)a

Mean difference

(95% CI)b

The same 423 (48.7) 86.4 (4.24) 12.0 (1.42) 1 1

SD, standard deviation; CI, confidence interval.
a Mean difference (95% CI) calculated by independent t-test for height and covariates.
b Mean difference (95% CI) calculated by independent t-test for weight and covariates.
c p-Value <0.2.
d Borderline significant.
e Measured at 2 months.
f Measured at 1 year.
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3.4. Unconditional growth model

3.4.1. Unconditional mean model

Table 3 presents the results for the unconditional mean without
any person-level covariates. Model 1 estimated a mean height of
98.8 cm (standard error (SE) 0.14, p < 0.001) and a mean weight of
14.8 kg (SE 0. 04, p < 0.001) averaged across all children and time
points. A significant unconditional mean model suggests that
examining predictors in the subsequent model is warranted.

3.4.2. Unconditional growth model

Fitting the basic model gives the estimated parameters of the
growth curve; the fixed-and random-effects results are reported in
Table 3. Results indicated a typical pattern of growth amongst
the children in the Butajira Birth Cohort from age 3 to 6.5 years. The
values for the intercepts, 85.7 cm and 11.9 kg, represent the
average height and weight at age 3 years, respectively. Growth
increased by 8.7 cm in height (b = 8.7, SE 0.141, p < 0.01) and
1.76 kg in weight (b = 1.76, SE 0.043, p < 0.01) per unit increase in
age. However, a second-order polynomial (quadratic term; Table 3)
indicated that both height and weight decelerate as the child
increases in age, as indicated by the negative sign in the quadratic
term (acceleration) (Table 3).

Table 3 shows additional information on the variance–
covariance matrix of the random-effects for height and weight,
Table 3
Summary of level 1 (unconditional) models

Variables Model 1:

Intercept only

Fixed-effects Parameter estimates (SE)

Intercept 98.8 (0.141)a

Linear - 

Quadratic - 

Random-effects Covariance estimates (SE)

Within-person 112.59 (1.132)a

Intercept 11.28 (0.841)a

Goodness-of-fit statistics

Model fit (�2LL) 19542.008 

Number of parameters 3 

Chi-square 

Degrees of freedom - 

Weight

Fixed-effects Parameter estimates (SE)

Intercept 14.8 (0.049)a

Linear - 

Quadratic - 

Random-effects Covariance estimates (SE)

Within-person 7.87 (0.221)a

Intercept 1.82 (0.103)b

Goodness-of-fit statistics

Model fit (�2LL) 12485.522 

Number of parameters 3 

Chi-square - 

Degrees of freedom - 

SE, standard error, t-statistic; LL, log likelihood.
a p < 0.001
b p < 0.005, Wald Z.
respectively. The significant variance terms indicated that there is
a substantial amount of variation in growth among children over
time, and additional person-level variables may explain this
variation in subsequent conditional models.

3.5. Conditional growth model

For growth as a function of H. pylori infection status, three
conditional growth models (level 2) are presented in Table 4. For
model 4, the inclusion of H. pylori exposure status (H. pylori-infected,
H. pylori non-infected) in the conditional quadratic model improved
overall model fit compared to the unconditional quadratic model
(height: D �2 log likelihood (LL) = 12 669, Chi-square (3) = 1433.5,
p < 0.001; weight: D �2LL = 777.13, p < 0.001).

3.6. Association of exposure to H. pylori with height and weight at

baseline (age 3 years)

The adjusted mean height at baseline (age 3 years) was
significantly lower amongst the H. pylori-infected children than
amongst the non-infected children (adjusted b = �0.74, 95%
confidence interval (CI) �1.27 to �0.22, p < 0.001). Similarly,
there was a non-significant difference in baseline weight
measurements between the H. pylori-infected and non-infected
children (Tables 4 and 5).
Model 2:

Linear

Model 3:

Quadratic

86.1 (0.158)a 85.7 (0.160)a

7.1 (0.040)a 8.7 (0.141)a

- �0.49 (0.039)a

8.65 (0.298)a 7.93 (0.273)a

14.2 (0.828)a 14.41 (0.825)a

14249.157 14102.558

4 5

5292.851a 146.599a

1 1

11.94 (0.054)a 11.90 (0.055)a

1.58 (0.104)a 1.76 (0.043)a

- �0.05 (0.012)a

0.76 (0.026)a 0.75 (0.026)a

1.92 (0.104)a 1.91 (0.105)a

8379.896 8362.876

4 5

1 1

4105.626a 17.02a



Table 4
Repeated-measures mixed model results for height in relation to Helicobacter pylori infection status from 3 to 6.5 years—Butajira Birth Cohort, Ethiopia

Model 4

(Unadjusted model)

Model 5

(Partially adjusted)

Model 6

(Partially adjusted)

Model 7

(Fully adjusted)

Fixed-effects ba 95% CI bb 95% CI bc 95% CI bd 95% CI

Mean height at age 3 years, (intercept) 86.08 85.66 to 86.50e 86.30 85.56 to 86.04e 88.38 86.13 to 90.63e 88.87 86.53 to 91.22e

Linear change in height, cm/year 9.04 8.63 to 9.45e 8.90 8.45 to 9.35e 9.01 8.60 to 9.41e 9.02 8.62 to 9.43e

Quadratic change in height, cm/year2 �0.61 �0.72 to �0.49e �0.56 �0.69 to �0.43e �0.59 �0.70 to �0.49e �0.59 �0.71 to �0.49e

Helicobacter pylori infection status

Infected � intercept (initial, cm) �0.73 �1.26 to �0.19e �0.87 �1.45 to �0.29e �0.76 �1.28 to �0.23e �0.74 �1.27 to �0.22e

Infected � linear growth, cm/year �0.79 �1.49 to �0.01f �0.70 �1.52 to 0.12 �0.72 �1.40 to �0.03f �0.72 �1.41 to �0.04f

Infected � quadratic growth, cm/year2 0.28 0.07 to 0.49e 0.27 �0.02 to 0.56 0.26 0.05 to 0.47f 0.26 0.05 to 0.47f

Random-effects

Between individuals

Intercept (SE) 7.95 (1.032)e 7.49 (1.212)e 6.78 (0.917)e 6.63 (0.924)e

H. pylori (SE) 1.67 (1.008) 0.64 (0.000) 1.45 (0.947) 1.43 (0.945)

Within individuals

Residual (SE) 6.62 (0.344)e 6.14 (0.422)e 6.24 (0.324)e 6.24 (0.324)e

Goodness-of-fit statistics

Model fit (�2LL) 12 669.008 9405.936 12 147.953 12 035.908

Number of parameters 13 18 23 26

Chi-square 1433.55e 3263.072e 521.055e 633.100e

Degrees of freedom 3 5 10 13

CI, confidence interval; SE, standard error; LL, log likelihood.
a Values were derived from mixed-effects models and adjusted for within-child correlation.
b Adjusted for child-related factors: sex, history of vaccination at 2 months, vitamin A supplementation at 1 year, episodes of diarrhoea, and any intestinal parasite

infections.
c Adjusted for household- and maternal-related factors: household size, relative wealth, availability of toilet, availability of soap, maternal height, maternal weight,

maternal education, religion, and residence.
d Adjusted for child-, household-, and maternal-related factors.
e p < 0.00
f p < 0.05, Wald Z.
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3.7. Association of exposure to H. pylori with height growth trajectory

The results from the fixed- and random-effect models assessing
the relationship between change in height and H. pylori exposure
are presented in Table 4. The first column of Table 4 (model 4)
incorporates only H. pylori status, the coefficient representing the
estimate for the relationship between growth and H. pylori
Table 5
Repeated-measures mixed model results for weight in relation to Helicobacter pylori in

Model 4

(Unadjusted model)

Model

(Partia

Fixed-effects ba 95% CI bb

Mean weight at age 3 years, (intercept), kg 11.93 11.80 to 12.07e 11.84 

Linear change in height, kg/year 1.71 1.58 to 1.84e 1.65 

Quadratic change in height, kg/year2 �0.04 �0.07 to �0.01f �0.01 

Helicobacter pylori infection status

Infected � intercept (initial, kg) �0.02 �0.19 to 0.15 �0.01 

Infected � linear growth, kg/year 0.09 �0.13 to 0.31 0.11 

Infected � quadratic growth, kg/year2 �0.03 �0.09 to 0.04 �0.04 

Random-effects

Between individuals

Intercept (SE) 0.87 (0.090)e 0.87 

H. pylori (SE) 0.14 (0.114) 0.18 

Within individuals

Residual (SE) 0.76 (0.036)e 0.70 

Goodness-of-fit statistics

Model fit (�2LL) 7585.750 5612.9

Number of parameters 13 20 

Chi-square 777.13e 1972.8

Degrees of freedom 3 7 

CI, confidence interval; SE, standard error; LL, log likelihood.
a Values were derived from mixed-effects models and adjusted for within-child corr
b Adjusted for child-related factors: sex, history of vaccination at 2 months, vitamin A s
c Adjusted for household- and maternal-related factors: household size, relative we

maternal education, religion, and residence.
d Adjusted for child-, household-, and maternal-related factors.
e p < 0.00
f p < 0.05, Wald Z.
infection. This estimate indicated that growth of the H. pylori-
infected children was approximately 0.79 cm per year slower than
that of non-infected children (b = �0.79, 95% CI �1.49 to �0.01,
p < 0.05). The positive coefficient associated with quadratic
growth in height in the H. pylori-infected group (b = 0.28, 95%
CI 0.07 to 0.49, p < 0.01), indicated that there were increases in
height trajectories as the children increased in age. Compared to
fection status from 3 to 6.5 years—Butajira Birth Cohort, Ethiopia

 5

lly adjusted)

Model 6

(Partially adjusted)

Model 7

(Fully adjusted)

95% CI bc 95% CI bd 95% CI

11.59 to 12.09e 11.09 10.29 to 11.90e 10.61 9.39 to 12.31e

1.51 to 1.79e 1.71 1.58 to 1.84e 1.67 1.50 to 1.82e

�0.05 to 0.03 �0.04 �0.07 to �0.004f �0.02 �0.06 to �0.02e

�0.18 to 0.17 �0.01 �0.19 to 0.17 �0.002 �0.18 to 0.17

�1.52 to 0.37 0.12 �0.12 to 0.33 0.13 �0.12 to 0.39

�0.13 to 0.05 �0.04 �0.11 to 0.03 �0.06 �0.15 to 0.03

(0.110)e 1.06 (0.141)e 0.79 (0.112)e

(0.132) 0.03 (0.000) 0.17 (0.123)

(0.042)e 0.75 (0.037)e 0.68 (0.041)e

41 7257.554 5478.967

23 25

09e 328.196e 2106.783e

10 12

elation.

upplementation at 1 year, episodes of diarrhoea, episodes of cough, and birth weight.

alth, availability of toilet, availability of soap, maternal height, maternal weight,



Figure 2. Average fractional polynomial curve of height trajectories for children by

Helicobacter pylori infection status, age 3 to 6.5 years, adjusted for confounders.

Values are predicted from the final models and represent the predicted

anthropometry.

Figure 3. Average fractional polynomial curve of weight trajectories for children by

Helicobacter pylori infection status, age 3 to 6.5 years, adjusted for confounders.

Values are predicted from the final models and represent the predicted

anthropometry.
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the linear change trajectory (b = �0.79), the rate of quadratic
growth (b = 0.28) was small, suggesting that the height growth
trajectory among H. pylori-infected children decreased at the
beginning, but this trend slowed down later on.

In the subsequent conditional growth models summarized in
Table 4, child-related factors (model 5), household- and maternal-
related factors (model 6), and all factors (model 7) were included as
confounders. All models revealed an identical pattern of results for
the association between H. pylori status and the linear and
quadratic growth trajectory in height. The final model, adjusted for
child-, household-, and maternal-related characteristics, did not
significantly modify the effect estimate observed in the unadjusted
model (H. pylori-infected � linear: b = �0.72, 95% CI �1.41 to
�0.04, p < 0.05; H. pylori-infected � quadratic: b = 0.26, 95% CI
0.05 to 0.47, p < 0.05) (Table 4).

In analyses stratified by sex, a greater decline in linear growth
trajectory in height was observed among H. pylori-infected females
than non-infected females (only female model: linear growth,
b = �0. 78, 95% CI �1.48 to �0.07, p < 0.05). A non-significantly
different decrease in linear growth trajectory was observed among
infected compared to non-infected males (only male model: linear
growth, b = �0.85, 95% CI �1.87 to 0.17, p = 0.1). Similar analyses
relating change in weight (outcomes) to H. pylori infection status
stratified by sex did not show a significant difference in linear or
quadratic weight growth among H. pylori-infected and non-
infected children of either sex. At baseline, H. pylori-infected
children were shorter than non-infected children of both sexes
(Supplementary Material, Table S1).

3.8. Association of exposure to H. pylori with weight growth

trajectory

A separate conditional growth model related change in weight
(outcomes) to H. pylori infection status. This showed no statisti-
cally significant difference in intercept (weight at age 3 years:
b = �0.02, 95% CI �0.19 to 0.15, p > 0.05) or linear growth (weight
� age: b = 0.09, 95% CI �0.13 to 0.04, p > 0.05) between groups;
however H. pylori-infected children showed a non-significant
decline in quadratic weight growth compared with the non-
infected group (b = �0.03, 95% CI �0.09 to 0.04, p > 0.05). The final
model adjusted for child-, household-, and maternal-related
characteristics did not significantly modify the pattern of the
effect estimate observed in the unadjusted model (Table 5).

3.9. Prototypical plot for height and weight in relation to H. pylori
status

Figures 2 and 3 illustrate the interaction between H. pylori

status and growth parameters. These plots were created using the
equation from the final model (Tables 4 and 5). H. pylori status was
dummy coded (1 = positive, 0 = negative). These graphs illustrate
the effect of H. pylori infection on height and weight growth, and
revealed that children who were infected with H. pylori at age
3 years had a significant decline in their linear height growth
(Figure 2) compared to non-infected children; however the
reduction in height trajectory growth disappeared with increasing
age. A non-significant difference in linear and quadratic weight
trajectory (Figure 3) was observed between the H. pylori-infected
and non-infected children.

4. Discussion

This study adds to the evidence on the influence of H. pylori

infection on childhood growth trajectory using longitudinal panel
data from the Butajira Birth Cohort. The presence of H. pylori

infection was associated with a decrease in baseline height and
linear height trajectory (b = �0.74 and �0.79 cm/year, respective-
ly). However, the positive coefficient associated with quadratic
growth in height (b = 0.28, 95% CI 0.07 to 0.49, p < 0.01), indicated
an increase in height trajectory as a child increases in age.
Compared to the linear change trajectory (b = �0.79), the rate of
quadratic growth (b = 0.28) was small, suggesting that the height
trajectory of H. pylori-infected individuals decreased at the
beginning, but this trend slowed down later on.

The significant association between H. pylori infection and
decreased linear height growth trajectory in the current study is
backed by previous epidemiological studies in different settings. In
two prospective cohort studies, Goodman et al.14 and Bravo et al.8

reported a significant association between H. pylori infection and
reduced growth velocity (on average �0.022 cm/month and
0.5 cm/year) among school-age children (4–8 years and 1–5 years,
respectively) in Colombia, after controlling for socio-economic
confounders. The present study findings are also consistent with
those of another cohort study reported by Thomas et al.9 from rural
Gambia, who found a lower value for length Z-score (difference
�0.35 for length, p = 0.04) in infants (age 3 months) infected with
H. pylori. Additionally, in agreement with the current findings,
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studies, mostly cross-sectional in nature, have reported similar
patterns of inverse associations between H. pylori infection and
growth in height.12 In rural Germany, a large population-based
cross-sectional study (n = 3315) in children aged 5–7 years showed
a significantly lower height among H. pylori-infected children
compared to non-infected children (117.6 � 5.5 cm vs.
118.9 � 5.7 cm, p < 0.01).12 Another cross-sectional study among
children from a low-income country reported a significantly higher
number of H. pylori-infected children than non-infected children
falling below the 5th percentile of height-for-age.31 In contrast with
these findings, no association between height and H. pylori infection
was reported in studies of children from Alaska,32 Australia,33 Iran,34

and Guatemala.35 These inconsistent findings could be due to
variations in age, outcome ascertainment, and differences in the
method used for the assessment of H. pylori status. More importantly,
among these studies there were differences in the distribution of
factors that affect growth in childhood, and differences in study
design, including the timing of measurements and statistical methods
used to estimate effects on growth.

In this study, the positive coefficient associated with quadratic
growth in height among H. pylori-infected children indicates an
increase in height trajectory as the child gets older. Similar
influences of H. pylori on growth were reported in two cohorts of
children from Gambia.9 There was a reduction in growth velocity in
children who acquired H. pylori infection early, at 3–6 months of
age, but reduced growth velocity was no longer detected when the
children were 5 to 8 years old. In contrast with these findings, two
cross-sectional studies by Fialho et al.10 and Perri et al.11 reported a
significant reduction in height-for-age among older children (age
8.5 to 14 years) infected with H. pylori compared to younger
children. These authors concluded that the effects of H. pylori on
school children’s height were more evident in older children with a
long-lasting infection than in younger children with a recently-
acquired infection. In contrast with this hypothesis, a cohort study
among Colombian children demonstrated that the detrimental
effect of H. pylori infection was most pronounced right after the
infection.36 Indeed, it has been argued that chronic infection, as
opposed to the initial acute phase when first colonized, might be
associated with reduced gastric inflammation, and therefore fewer
detrimental effects on growth in children.37 This argument was
supported using an animal model, which demonstrated that the
development of an anti-Helicobacter antibody response, a
biomarker for the chronic phase of infection, coincided with
reduced gastric inflammation.38 The discovery of catch-up in the
height trajectory of H. pylori-infected children as they grew older in
this study could be partly explained by this latter hypothesis. In
addition, growth retardation might be reversed if the infection
clears spontaneously (as has been reported to occur in young
children39), but might recur upon reinfection. In line with this, the
present authors have previously observed a declining pattern of H.

pylori prevalence from age 3 to 6.5 years in this cohort,7 but the
short span of the follow-up period (3.5 years) makes it very
difficult to test the hypothesis.

In this study,a non-significant difference in baseline and
trajectory of weight measurements was found between H.

pylori-infected and non-infected children. Other studies have also
shown no association between H. pylori infection and weight or
body surface area among infected and non-infected children.11,12

Various biologically plausible mechanisms have been put
forward to explain the observed association between H. pylori

infection and lower height growth trajectory. For instance,
infection with H. pylori in children might initiate a vicious cycle
of events that results ultimately in malnutrition and growth
impairment. Infection with H. pylori is accompanied by hypo-
chlorhydria, which facilitates the acquisition of other enteropatho-
gens. The resulting diarrheal diseases may lead to further
nutritional problems including iron-deficiency anaemia.40 This is
likely to occur most frequently in low-income regions where the
prevalence of H. pylori infection is disproportionately high and
multiple enteric co-infections are common.15 Others have
suggested that growth failure in H. pylori-infected children could
be a combination of a direct effect from H. pylori-induced
inflammation and indirect effects such as infection-induced
anorexia.4

The strengths of this study are that the data come from a
population-based birth cohort with a high response rate (85.1% of
the original cohort at birth were followed up at 6.5 years) and very
low missing anthropometric measurements at each follow-up
visit, thereby minimizing selection bias. A highly sensitive and
specific H. pylori stool antigen test was used.41 In addition,
anthropometric measurements were done in duplicate and
agreement between the two measurements was monitored for
quality control. The statistical method used to generate effect
estimates was hierarchical linear modelling, which does not
require either the same number of occasions per individual or that
measurements are made at equal intervals, since time is modelled
as a continuous function.42 This means that data from individuals
with different measurement patterns, some of whom may only
have been measured once and some of whom may have been
measured several times at irregular intervals, can be combined.

The results of this study should be interpreted with caution
because the study was conducted in Ethiopia, a low-income
country in which the causes of poor childhood growth are multi-
factorial. Demographic variables and markers of socio-economic
status have commonly been found to be associated with childhood
growth.23,24 Several markers of socio-economic status, demo-
graphic and lifestyle variables, and both child- and environment-
related confounding factors were therefore measured and con-
trolled for, none of which significantly modified the effect
estimates. These included markers of socio-economic status
(family size, relative wealth, maternal education, maternal
occupation, level of household crowding, availability of soap,
household water source (piped water or other origin), availability
of a latrine, and urban or rural residence), demographic and early
life variables (sex, age, birth weight, breastfeeding, gestational age,
history of vaccination at 2 months and 1 year, and vitamin A
supplementation at 1 year), selected indicators of child health
status (episodes of diarrhoea, fever, whether or not the child had a
feeding problem), and genetic factors (using maternal height as a
proxy), which suggest that the effects seen are unlikely to be
caused by residual confounding by markers of socio-economic
status, or demographic or lifestyle variables.

The study participants were apparently healthy children and
received free medical care due to their enrolment in the cohort;
this may account for the low percentage of reported common
childhood illness. However, this is unlikely to vary systematically
by H. pylori infectious status or growth velocity in this cohort, and
would therefore tend to attenuate associations toward the null.

Poor nutrition can cause growth failure and potentially increase
susceptibility to H. pylori infection.43 Data were lacking on direct
nutritional indicators such as dietary quality and quantity.
However, the most important factors associated with poor
nutrition in the literature (i.e., breast feeding, birth weight,
maternal occupation, maternal education, and other markers of
socio-economic status) were adjusted for.23,24,44,45 Given the
correlation among these measures, it is likely that they captured
the unmeasured influence of other nutritional indicators not
included in the models.

Some problems were identified with the data used in the
present study. Specifically, the spacing between visits was not
uniform, and the time span of the survey was very short (3.5 years).
One of the hallmarks of hierarchical linear modelling, however, is
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that it can accommodate lack of regularity in study visits.28 Some
of the issues related to growth could not be captured due to the
short-span of the survey, including the link between early growth
retardation and growth during adulthood, the age at which growth
reaches its peak, and when growth stops (height growth).
Nevertheless, on the basis of the information available, it was
possible to draw statistically valid estimates of the childhood
growth trajectory from this cohort.

Another limitation of this study was the lack of faecal
Helicobacter antigen testing in the earliest phases of the birth
cohort (0–2 years). Assessment of the timing of Helicobacter
infection was not possible, and neither was the duration of its effects
on growth. The acquisition of H. pylori infection in developing
countries usually occurs during infancy and very early life,22,46

which limits the possibility that growth failure preceded H. pylori

infection. Furthermore, growth patterns in early childhood (0–2
years) were not investigated in this study; however factors that
influence the growth trajectory in the first years of life such as birth
weight, maternal height (as a proxy for genetic factors), history of
vaccination at 2 months and 1 year, sex, and maternal education
were included in the multivariate models. The results were not
appreciably altered by adjustment for these early life covariates.

In conclusion, these findings add to the growing body of
evidence that H. pylori infection is inversely associated with
childhood growth trajectory, after controlling for a range of factors
associated with reduced growth and H. pylori status. From this
study, H. pylori appears to be a preventable cause of growth
trajectory restriction. Further follow-up of these children will
enable confirmation of the tendency of catch-up in height
trajectory among H. pylori-infected children as they grow older.
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