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Abstract 22 

Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its 23 

impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent 24 

preventive treatment in schoolchildren in Tororo, Uganda in 2011-12, monthly DP for one 25 

year decreased the incidence of malaria by 96% compared to placebo; DP once per school 26 

term offered protection primarily during the first month after therapy. To assess the impact 27 

of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in 28 

isolates that emerged at different intervals after treatment with DP. Blood obtained 29 

monthly and at each episode of fever was assessed for P. falciparum parasitemia by 30 

microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia 31 

were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that 32 

modulate sensitivity to aminoquinoline antimalarials utilizing a ligase detection reaction 33 

fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied 34 

polymorphisms, the prevalences of mutant genotypes were significantly greater in children 35 

who had received DP within the past 30 days compared to those not treated within 60 days 36 

(86Y 18.0% vs. 8.3%, p=0.03; 76T 96.0% vs. 86.1%, p=0.05), suggesting selective pressure of 37 

DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms 38 

selected by DP. In summary, parasites that emerged soon after treatment with DP were 39 

more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt 40 

polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials.  41 

  42 
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Introduction 43 

Malaria, in particular infection with Plasmodium falciparum, remains a huge public 44 

health problem, with the highest disease burden in sub-Saharan Africa (1, 2). Important 45 

advances have been made in malaria control recently, with a significant decrease in malaria 46 

burden and progress towards elimination noted in some areas (3). Among key tools in the 47 

control of malaria is intermittent preventive treatment (IPT), the provision of full treatment 48 

courses at regular intervals to high risk populations (4). IPT is standard practice during 49 

pregnancy (IPTp), is recommended in children living in seasonal malaria transmission 50 

settings as seasonal malaria chemoprevention (5), and is being investigated in other 51 

populations (6-9).  However, currently IPT is advocated only with sulfadoxine-52 

pyrimethamine (SP) or a combination of SP and amodiaquine (SP+AQ) (5, 10), regimens 53 

severely compromised by drug resistance in much of Africa (11-13). For malaria treatment, 54 

older regimens have been replaced by artemisinin-based combination therapies (ACTs), and 55 

a similar change may be warranted for IPT.  56 

Dihydroartemisinin-piperaquine (DP), which provides rapid killing of most parasites 57 

by dihydroartemisinin, prolonged action against any remaining parasites by piperaquine, 58 

and protection for weeks after therapy due to the long half-life of piperaquine, has recently 59 

been investigated for IPT. Compared to IPTp with SP, IPTp with DP was associated with 60 

lower risks of P. falciparum infection and symptomatic malaria during pregnancy in Kenya 61 

(14) and Uganda (15). In Ugandan schoolchildren, monthly IPT with DP was associated with 62 

reduced incidence of malaria and reduced prevalence of parasitemia and anemia compared 63 

to DP given approximately once every three months or placebo (6, 16). Similar results were 64 

observed in Ugandan infants when monthly IPT with DP was compared with daily 65 

trimethoprim-sulfamethoxazole or monthly SP (7). Thus, DP is a promising alternative to SP 66 
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or SP+AQ for IPT, but its benefits may be undone by the emergence of P. falciparum 67 

resistance to either component of the combination.   68 

Mediators of decreased drug sensitivity and selective pressures for resistance are 69 

quite well understood for some antimalarial drugs. Resistance to the aminoquinolines 70 

chloroquine and amodiaquine is mediated largely by polymorphisms in putative drug 71 

transporters encoded by pfcrt and pfmdr1 (13, 17), and these polymorphisms are selected in 72 

new infections that emerge soon after therapy with artesunate-AQ (AS/AQ) (18, 19). 73 

Piperaquine is a bisaminoquinoline related to chloroquine and amodiaquine. Resistance to 74 

piperaquine was widely reported during the pre-artemisinin era in China (20), and recently 75 

clinically relevant resistance, with frequent recrudescences after therapy with DP, has been 76 

noted in Cambodia(21-23). However, mechanisms of resistance to piperaquine are 77 

uncertain. Use of DP for treatment (24) or chemoprevention (25) did not select for the 78 

polymorphisms associated with chloroquine resistance in Burkina Faso, but in Uganda 79 

recent treatment with DP selected for pfmdr1 mutations associated with decreased 80 

sensitivity to aminoquinolines (26). Interestingly, some other antimalarials, notably 81 

lumefantrine, which is a component of the Ugandan first-line antimalarial regimen 82 

artemether-lumefantrine (AL), exert the opposite selective pressure. Thus, new infections 83 

emerging within two months of treatment with AL showed selection of wild-type sequences 84 

at the pfcrt K76T and pfmdr1 N86Y and D1246Y alleles (26-29); mutant sequences are 85 

selected at these same alleles by aminoquinolines. Of recent concern has been resistance to 86 

artemisinins, manifest as delayed parasite clearance after therapy, in Southeast Asia (22, 30-87 

32), but recent studies utilizing clinical, parasitological, and molecular markers (33, 34) 88 

suggest that the artemisinin-resistant phenotype is not yet prevalent in Uganda (26, 35, 36) 89 

or other parts of Africa (37, 38).  90 
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Taken together, available evidence suggests that DP may select for the same P. 91 

falciparum polymorphisms as other aminoquinolines, leading to decreased treatment or 92 

preventive efficacy of DP, but data on the effects of IPT with DP are very limited. We 93 

therefore assessed the prevalences of key polymorphisms in isolates that emerged at 94 

different intervals after treatment with DP using samples from a recent trial evaluating IPT 95 

with DP in Ugandan schoolchildren. 96 

 97 

Methods 98 

Clinical trial. Study samples were from a randomized, double-blinded, placebo-99 

controlled trial conducted in Tororo, Uganda from 2011 to 2012 (6, 39). In brief, 740 100 

schoolchildren aged 6–14 years from one primary school in Mulanda sub-county, Tororo 101 

District were enrolled and randomized 1:1:1 to one of three study arms: DP monthly, DP 102 

once per school term (four treatments over 12 months), or placebo. DP was administered 103 

according to weight based guidelines and treatment was directly observed. Finger-prick 104 

blood samples were obtained at enrollment, every month, and with every episode of fever 105 

to assess for malaria infection by thick blood smear, and for storage on filter paper. 106 

Episodes of uncomplicated malaria were treated with AL. Children were followed for 12 107 

months. The trial was approved by the Uganda National Council for Science and Technology 108 

and the Makerere University School of Medicine Research and Ethics Committee and 109 

registered at ClinicalTrials.gov (NCT01231880). Molecular studies were also approved by the 110 

University of California, San Francisco Committee on Human Research. 111 

Selection of samples for testing of parasite polymorphisms. We considered all 112 

samples that were positive for P. falciparum parasitemia based on evaluation of Giemsa-113 

stained thick blood smears, as previously described (6).  A total of 160 symptomatic and 114 
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1,522 asymptomatic episodes of P. falciparum parasitemia were documented. The number 115 

of samples analysed was determined by estimating the power for two-sample comparison 116 

of proportions using effect sizes observed for each mutant polymorphism in a recent study 117 

in Tororo (0.34 for pfmdr1 N86Y, 0.11 for pfmdr1 D1246Y, 0.04 for pfmdr1 184F, and 0.09 118 

for pfcrt K76), fixing α at 0.05 (26). The sample size giving the maximum power was 119 

considered in the analysis.  From these estimates, we analysed all 160 samples from 120 

symptomatic episodes, all 50 samples from children with recurrent parasitemia within 13-30 121 

days of prior therapy with DP, and 600 samples randomly selected from children with either 122 

recurrent parasitemia >30 days after prior therapy with DP or from the control arm of the 123 

study. All samples were analyzed for 4 common P. falciparum polymorphisms known to be 124 

associated with drug sensitivity: pfcrt K76T, and pfmdr1 N86Y, Y184F, and D1246Y. A subset 125 

of 25 samples from children with prior DP therapy within 13-30 days and 25 randomly 126 

selected paired samples from children in the control arm (each pair matched for collection 127 

within 15 days of each other) were subjected to sequencing of the complete pfcrt gene. 128 

Characterization of 4 pfcrt and pfmdr1 polymorphisms. DNA was extracted from 129 

filter paper blood spots into 100 μL of water using Chelex-100 as previously described (40). 130 

Gene fragments spanning all loci of interest were amplified in nested reactions (26), and 131 

failed reactions were repeated. To detect polymorphisms, multiplex ligase detection 132 

reaction–fluorescent microsphere assays were performed as previously described (26, 41).  133 

Sequencing of pfcrt. For a subset of samples pfcrt was sequenced from DNA samples 134 

as previously described (42) with minor modifications.  Briefly, pfcrt was amplified in 3 135 

nested-PCR reactions, covering exons 1-2, 3-8, and 9-13, using the published primer 136 

sequences.  For both rounds of PCR, each 25 µL reaction contained 2 mM MgSO4, 200 µM 137 

each dNTP, 1 µM each primer, 1X PCR Buffer, and 2U Platinum Taq DNA Polymerase High 138 
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Fidelity (Invitrogen). Conditions for all reactions were 94oC for 2 min; 30 cycles of 94oC for 139 

20 sec, 47oC for 10 sec, and 60oC for 3 min; and a final extension at 60oC for 5 min.  140 

Amplicons were cloned with the TOPO-TA Cloning Kit for Sequencing and transfected into 141 

One Shot TOP10 chemically competent E. coli (Invitrogen) according to the manufacturer’s 142 

instructions. Colonies were grown overnight under kanamycin selection, picked, and 143 

incubated in LB broth with kanamycin.  Plasmid DNA was purified using the PureLink Quick 144 

Plasmid Miniprep Kit (Invitrogen), digested with EcoRI to confirm the insert size, and then 145 

sequenced (Eurofins) using M13 forward and reverse primers.  DNA sequence data were 146 

assembled and edited, and mutations were detected by alignment and comparison it to the 147 

expected sequence using CodonCode Aligner v. 5.1.5.  Multiple clones were sequenced to 148 

distinguish true polymorphisms from PCR errors, including at least 3 clones for all but 3 149 

fragments, for which 2 clones were sequenced.  150 

Statistical analysis. Data analysis was done using Stata version 14 (StataCorp). 151 

Outcomes of interest were the prevalence of pure mutant alleles for each locus of interest. 152 

The exposure variable of interest was duration since prior DP dose, evaluated as a 153 

categorical variable split into 13 – 30, 31 – 60, and > 60 days (including the no treatment 154 

control group) since the last treatment. Associations between outcomes and duration since 155 

last treatment and differences between prevalences of pfcrt alleles were measured using 156 

Fisher’s exact test and expressed as relative risk. In all analyses, a 2-tailed P value <0.05 was 157 

considered statistically significant.  158 

 159 

Results  160 

Study samples. A total of 740 schoolchildren aged 6 – 14 years were randomized to 161 

one of the 3 study arms in the parent study and followed for one year from 2011 to 2012. As 162 
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previously reported, compared to either DP once per school term (approximately every 3 163 

months) or placebo, monthly DP offered strong protective efficacy against malaria (6). For 164 

this sub-study, samples collected from children with blood smears positive for P. falciparum 165 

were analyzed (Table 1). As expected due to the protective efficacy of monthly DP, fewer 166 

samples were available from this study arm than from children who received placebo or DP 167 

once per school term. A total of 810 samples from 160 symptomatic and 650 asymptomatic 168 

episodes of parasitemia were assessed (Table 1). Samples were analysed for common 169 

polymorphisms in pfmdr1 and pfcrt. Genotyping results were available for pfcrt K76T in 806 170 

(99.5%) samples and for pfmdr1 N86Y, N184Y, and D1246Y in 800 (98.8%), 810 (100%), and 171 

784 (96.8%) samples, respectively, and these results were included in the analysis. 172 

Prevalence of pfcrt and pfmdr1 polymorphisms. The prevalence of the 4 studied 173 

polymorphisms was similar to that in contemporaneous samples from Tororo that were 174 

reported previously (43). For two polymorphisms, pfcrt K76T and pfmdr1 N86Y, the 175 

prevalence of mutant genotypes was significantly higher in samples from children who had 176 

received DP within 30 days compared to those from children who had not received DP 177 

within 60 days (Table 2). For the other studied polymorphisms the prevalence of genotypes 178 

did not differ between children who had or had not received recent therapy with DP. 179 

Matching for duration since a prior episode, there was no difference in the prevalence of 180 

pfcrt and pfmdr1 mutant alleles between samples from children with symptomatic or 181 

asymptomatic parasitemia (data not shown).   182 

Sequencing of pfcrt. As DP may select for additional polymorphisms in pfcrt, we 183 

sequenced the gene in a subset of 25 parasitemic samples under strong selective pressure 184 

as indicated by emergence within 30 days of prior therapy with DP and in 25 paired samples 185 

collected near the same date from children who did not receive DP.  We successfully 186 
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sequenced the full gene in 17 pairs.  We identified 9 polymorphisms, 6 of which are 187 

commonly reported in African isolates (Supplemental Table 1). All isolates had the pfcrt 72-188 

76 CVIET or a mix of the CVIET and CVMNT haplotype, except for one isolate that had the 189 

pfcrt 72S mutation, resulting in the SVIET haplotype (in all 6 clones from a patient not 190 

receiving DP). Two additional polymorphisms, L50P and F112I, were each identified in at 191 

least 2 clones from a single isolate, the 50P mutation in a control isolate and the 112I 192 

mutation in an isolate from a child recently treated with DP (Supplemental Table 2).  We 193 

found 9 pfcrt haplotypes; the majority (76% in the DP arm and 65% in the control arm) were 194 

mutant at the six loci that are commonly mutant in Africa (74I, 75E, 76T, 220S, 271E, 371I) 195 

(17). Overall, we saw no evidence that DP selected for novel pfcrt polymorphisms in 196 

Ugandan children.  197 

 198 

Discussion 199 

Monthly IPT with DP was highly efficacious in reducing the risks of symptomatic 200 

malaria, parasitemia, and anemia in Ugandan schoolchildren (6). However, the  201 

chemoprophylactic benefits of a long-acting antimalarial such as piperaquine  may be 202 

accompanied by selection of drug resistant parasites (13). We tested whether DP selected 203 

for parasites with genotypes associated with altered sensitivity to aminoquinolines. 204 

Compared to parasites not under drug pressure, those that emerged within 30 days of IPT 205 

with DP were more likely to harbor two mutations, pfmdr1 86Y and pfcrt 76T; these 206 

mutations are associated with resistance to chloroquine and amodiaquine (36, 43-45).  207 

Thus, the marked preventive efficacy of IPT with DP may be accompanied by selection of 208 

decreased sensitivity to aminoquinolines.   209 
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Resistance to chloroquine and amodiaquine is mediated primarily by polymorphisms 210 

in putative drug transporters encoded by pfcrt and pfmdr1 (13, 46). The pfcrt 76T and 211 

pfmdr1 86Y and 1246Y mutations are selected in new infections that emerge soon after 212 

therapy with regimens including chloroquine or amodiaquine (47). Piperaquine is a related 213 

bisaminoquinoline, but mechanisms of resistance are uncertain, and studies of the selective 214 

pressure exerted by DP have yielded conflicting results. Specifically, use of DP for treatment 215 

(48), or chemoprevention (25), did not select for the polymorphisms associated with 216 

aminoquinoline resistance in Burkina Faso, but, in Uganda, recent treatment with DP 217 

selected for the  pfmdr1 86Y and 1246Y mutations (26). Our new results shed additional 218 

light on this area. In the setting of IPT in schoolchildren, recent receipt of DP was associated 219 

with selection of the pfmdr1 86Y and pfcrt 76T mutations, but not the pfmdr1 1246Y 220 

mutation. Differing results may have been due to the changing baseline of polymorphism 221 

prevalence in Uganda, with decreasing prevalence of pfmdr1 1246Y and pfcrt 76T over time. 222 

Differences in results between West and East Africa may also be explained by differences in 223 

parasite backgrounds; of note, the pfmdr1 1246Y mutation, which until recently was 224 

widespread in Uganda, has consistently been uncommon in Burkina Faso (24, 25, 28).  225 

Importantly, although we lack a head-to-head comparison, it appears that DP does 226 

not select as readily as other ACTs for key transporter mutations. In multiple studies the 227 

selective pressure of AS/AQ was marked (49), including a recent trial that showed the 228 

prevalence of the pure pfmdr1 86Y mutation to rise from 59% at baseline to 99% in 229 

recurrent infections within one month of treatment (50). AL also exerts strong selective 230 

pressure, but in the opposite direction, with selection of wild type pfcrt K76 and pfmdr1 N86 231 

and N1246 sequences in parasites that emerge soon after therapy (19, 29). Our recent 232 

findings indicate that DP selects for resistance in a manner similar to that of the other 233 
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aminoquinolines, but associations between recent therapy and transporter polymorphisms 234 

were less marked, suggesting that the selective pressure of DP is lower than that of other 235 

regimens. This difference might be due to different mechanisms of transport for 236 

piperaquine, a much larger molecule compared to chloroquine or amodiaquine. 237 

We were concerned that IPT with DP might select for additional resistance-mediating 238 

P. falciparum polymorphisms. Polymorphisms in addition to those commonly described in 239 

African isolates have been identified in other regions, in some cases with biochemical and 240 

clinical consequences (51, 52). Sequencing of pfcrt in a subset of samples either under or 241 

not under the selective pressure of DP identified a few previously unidentified pfcrt 242 

mutations, but it did not suggest that additional polymorphisms were selected by DP.  243 

Our results have important implications for the use of DP for IPT. Although it offers 244 

great promise for decreasing the malaria burden, DP use may be accompanied by selection 245 

of parasites with decreased sensitivity to DP, and also to the related ACT AS/AQ. 246 

Consideration of the opposite resistance pressures of different antimalarials has led some to 247 

recommend multiple or rotating first-line antimalarial regimens (53). For example, AS/AQ 248 

and AL have opposite selective pressures on pfcrt and pfmdr1 such that each regimen 249 

should blunt selection of resistance to the other. Our results are consistent with a prior 250 

study in Uganda indicating that DP has similar selective pressure to that of AS/AQ. Thus, 251 

considering resistance selection, using DP in IPT might be best advised when the standard 252 

treatment regimen is AL, such that the treatment and IPT regimens offer mutual protection 253 

against selection of resistance. Further, our results suggest that, with changing treatment 254 

and control practices, continued surveillance for clinical, biochemical, and molecular 255 

markers of antimalarial drug resistance in Africa is an important priority.  256 

 257 
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Table 1. Characteristics of study children that supplied samples and of episodes selected 

for analysis 

Characteristics of children with at least one episode 
of parasitemia 

N=389 

Median age (IQR) 9 (7 – 11) 
Median duration of observation in days (IQR) 366 (365 – 368)  

Female sex (n, %) 209 (53.7) 

Study group n (%)  

Placebo 178 (45.8) 

IPT once a school term 178 (45.8) 

Monthly IPT 33 (8.4) 

Characteristics of episodes of parasitemia N=810 

Malaria classification n (%)  

Asymptomatic episodes  650 (80.2) 

Clinical episodes 160 (19.8) 

Study group n (%)  

Placebo 334 (41.3) 

IPT once a school term 419 (51.7) 

Monthly IPT 57 (7.0) 

Duration since prior treatment n (%)  

15 – 30 days 50 (6.2) 

31 – 60 days 122 (15.1) 

61 – 90 days 170 (20.9) 

>90 days 134 (16.5) 

No treatment 334 (41.2) 
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Table 2: Prevalence of P. falciparum pure mutant alleles stratified by time since last dose of DP. 

Allele Days since last 

dose of DP 

Prevalence of wild-type, mixed, and mutant alleles 

n/N (%) 

RR for mutant genotype 

(95% CI) 

p-value 

  Wild type Mixed Mutant   

pfmdr1 

N86Y 

>60a 189/630 (30.0) 389/630 (62.7) 52/630 (8.3) 1  

31 – 60 53/120 (44.2) 57/120 (47.5) 10/120 (8.3) 1.01 (0.53 – 1.93) 0.98 

13 – 30 25/50 (50.0) 32/50 (32.0) 9/50 (18.0) 2.18 (1.14 – 4.16) 0.03 

pfmdr1 

N184Y 

>60a 143/638 (22.4) 458/638 (68.8) 37/638 (5.8) 1  

31 – 60 25/122 (20.5) 84/122 (68.8) 13/122 (10.7) 1.84 (1.01 – 3.35) 0.07 

13 – 30 21/50 (42.0) 28/50 (56.0) 1/50 (2.0) 0.34 (0.05 – 2.46) 0.51 

pfmdr1 

D1246Y 

>60a 261/616 (42.4) 292/616 (47.4) 63/616 (10.2) 1  

31 – 60 59/120 (49.2) 51/120 (42.5) 10/120 (8.3) 0.81 (0.43 – 1.54) 0.62 

13 – 30 24/48 (50.0) 21/48 (43.7) 3/48 (6.3) 0.61 (0.20 – 1.87)  0.61 

pfcrt 

K76T 

>60a 9/635 (1.4) 79/635 (12.4) 547/635 (86.1) 1  

31 – 60 1/121 (0.8) 13/121 (10.7) 107/121 (88.4) 1.03 (0.96 – 1.10) 0.56 

13 – 30 1/50 (2.0) 1/50 (2.0) 48/50 (96.0) 1.11 (1.04 – 1.19) 0.05 
aIncludes those given no drug (placebo group) 



Supplemental Table 1. Non-synonymous polymorphisms detected by sequencing of pfcrt in 
Ugandan isolates. 

pfcrt Allele Treatment 

Arma 

Wild 

type 

N (%) 

Mixed 

N (%) 

Mutant 

N (%) 

P-valueb 

L50P 
DP 17 (100) 0 (0) 0 (0) 

 p = 1.000 
Control 16 (94) 1 (6) 0 (0) 

C72S 
DP 17 (100) 0 (0) 0 (0) 

 p = 1.000 
Control 16 (94) 0 (0) 1 (6) 

M74I 
DP 0 (0) 2 (12) 15 (88) 

p = 0.6552 
Control 0 (0) 4 (24) 13 (76) 

N75E 
DP 0 (0) 2 (12) 15 (88) 

p = 0.6552 
Control 0 (0) 4 (24) 13 (76) 

K76T 
DP 0 (0) 2 (12) 15 (88) 

p = 0.6552 
Control 0 (0) 4 (24) 13 (76) 

F112I 
DP 16 (94) 1 (6) 0 (0) 

 p = 1.000 
Control 17 (100) 0 (0) 0 (0) 

A220S 
DP 0 (0) 2 (12) 15 (88) 

 p = 1.000 
Control 1 (6) 0 (0) 16 (94) 

Q271E 
DP 0 (0) 2 (12) 15 (88) 

 p = 1.000 
Control 1 (6) 0 (0) 16 (94) 

R371I 
DP 1 (6) 0 (0) 16 (94) 

p = 0.60 
Control 3 (18) 0 (0) 14 (82) 

aSamples from the DP arm were parasites emerging 15-30 days after therapy with DP; controls were from the placebo 
group that did not receive DP.  
bP-values are based on comparison of prevalence between treatment arms using Fisher’s exact test. 
  



Supplemental Table 2. Pfcrt haplotypes seen in sequenced samples.   

Haplotype 
Treatment arm 

L50P C72S M74I N75E K76T F112I A220S Q271E R371I DP  
N (%) 

Control 
N (%) 

1 13 (76) 11 (65) L C I E T F S E I 
2 1 (6) 2 (12) L C M/I N/E K/T F S E R 
3 0 (0) 1 (6) L C M/I N/E K/T F S E I 
4 0 (0) 1 (6) L S I E T F S E I 
5 0 (0) 1 (6) L C I E T F A Q R 
6 1 (6) 0 (0) L C I E T F A/S Q/E I 
7 1 (6) 0 (0) L C M/I N/E K/T F A/S Q/E I 
8 1 (6) 0 (0) L C I E T F/I S E I 
9 0 (0) 1 (6) L/P C I E T F S E I 

Loci with two alleles indicate a mixed genotype. 
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