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Haematopoiesis is the complex developmental process that maintains the turn-

over of all blood cell lineages. It critically depends on the correct functioning

of rare, quiescent haematopoietic stem cells (HSCs) and more numerous,

HSC-derived, highly proliferative and differentiating haematopoietic progeni-

tor cells (HPCs). Infection is known to affect HSCs, with severe and chronic

inflammatory stimuli leading to stem cell pool depletion, while acute, non-

lethal infections exert transient and even potentiating effects. Both whether

this paradigm applies to all infections and whether the HSC response is the

dominant driver of the changes observed during stressed haematopoiesis

remain open questions. We use a mouse model of malaria, based on natural,

sporozoite-driven Plasmodium berghei infection, as an experimental platform

to gain a global view of haematopoietic perturbations during infection pro-

gression. We observe coordinated responses by the most primitive HSCs

and multiple HPCs, some starting before blood parasitaemia is detected. We

show that, despite highly variable inter-host responses, primitive HSCs

become highly proliferative, but mathematical modelling suggests that this

alone is not sufficient to significantly impact the whole haematopoietic cas-

cade. We observe that the dramatic expansion of Sca-1þ progenitors results

from combined proliferation of direct HSC progeny and phenotypic changes

in downstream populations. We observe that the simultaneous perturbation

of HSC/HPC population dynamics is coupled with early signs of anaemia

onset. Our data uncover a complex relationship between Plasmodium and its

host’s haematopoiesis and raise the question whether the variable responses

observed may affect the outcome of the infection itself and its long-term

consequences on the host.
1. Introduction
Haematopoietic stem cells (HSCs) maintain the production of red blood cells

(RBCs), white blood cells (WBCs) and platelets throughout the lifespan of ver-

tebrates. Highly quiescent, long-term (LT) repopulating stem cells are at the

apex of the haematopoietic developmental cascade. However, their downstream

progeny, short-term (ST) repopulating stem cells and progenitor cell populations,

become progressively more proliferative [1]. Progressive lineage commitment is

acquired by progenitor cells and eventually all haematopoietic cell lineages are

specified and mature within the bone marrow, from where fully differentiated

cells are released into the circulation at a rate of several billion cells/day [2].

The dynamics of this complex hierarchy of cell lineages change during normal

development (ageing) and in response to infection by pathogens.
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Infections and inflammatory cytokines act directly on HSCs,

causing them to proliferate and boost haematopoietic cell pro-

duction at the same time as immune cells are recruited into

the peripheral circulation by immune responses [3,4]. However,

this is most often detrimental to HSCs. During severe/chronic

infection, LPS, TNFa, interferon (IFN)a and IFNg and TLR

signalling have been linked to HSC proliferation and loss of

HSC function, assessed as the ability to engraft in lethally irra-

diated recipient mice [5–9]. This is usually accompanied by a

marked, and not yet completely understood, increase in the

Lin–c-KitþSca-1þ cell population, together with anomalies

in the committed progenitor cell populations, ranging from

dramatic loss of myeloid progenitors [6–10] to emergence of

atypical myeloid-primed, lymphoid-like progenitors [11]. In

some cases, this is accompanied by the loss of myeloid cells

from the bone marrow [8], reduced neutrophil production [8]

or imbalanced myelopoiesis [12].

By contrast, acute, non-lethal infections have been reported

to induce only transient perturbations of haematopoiesis [10].

Acute pneumovirus infection induces intermediate levels of

Sca-1 upregulation and has no effect on bone marrow engraft-

ment [13], and we reported increased LT engraftment of

haematopoietic bone marrow cells harvested from mice

infected by the parasite Trichinella spiralis [14]. Increased

myeloid production was shown to be mediated by IFNg

during acute infection by the bacterium Ehrlichia muris [10]

and by TNFa and IFNg during pneumovirus infection [13].

Major questions still requiring resolution include whether

diverse infections perturb haematopoiesis similarly, how the

HSC response contributes to stressed haematopoiesis during

infection, and whether simultaneous responses across mul-

tiple levels of the haematopoietic tree cooperate to support

the immune response to pathogens. Here, we used a mouse

pathogen, Plasmodium berghei, as our experimental model,

because its effect on HSCs had not yet been studied, and it

might provide information relevant for human malaria, still a

widespread disease. Malaria is a severe and life-threatening

infection, which can result in cerebral complications and/or

anaemia. It is initiated by bites from infected mosquitoes,

which inoculate sporozoite parasites in the mammalian host’s

skin. Sporozoites migrate to the liver, where each parasite gen-

erates approximately 15 000 daughter parasites (merozoites)

within 45 h. Merozoites invade and disrupt RBCs, causing

anaemia [15], while the immune response mounted against

the parasites is the cause of cerebral complications due to clog-

ging of blood vessels in the brain [16–18]. Experimentally,

malaria can be induced in rodents either by the natural route

of mosquito bites, or by direct injection of infected blood.

Early studies on haematopoiesis following inoculation of

infected RBCs (iRBCs) showed that malaria infection induces

changes in multiple blood cell populations [19–23], but also

in earlier haematopoietic cell populations, suggesting that

anaemia may partly result from a systemic disruption of

haematopoiesis [15,24]. Extensive immunophenotypic charac-

terization of haematopoietic stem and progenitor cells allowed

in recent years identification of an anomalous population of

IL7Raþc-KitHi myeloid-primed progenitors that contributed to

the clearance of iRBCs during Plasmodium chabaudi infection

[11]. However, little is known about the dynamics of the most

primitive HSCs in response to Plasmodium infection.

All these studies miss the liver stage of disease and are based

on an injection that transfers not just parasites but also cellular

and humoral components of the immune system of the
previously infected donor animal, which may proffer immedi-

ate and unnatural responses in congenic hosts [25,26]. To

understand the early haematopoietic responses to Plasmodium
infection and how they develop throughout the natural course

of disease progression, we therefore have chosen to use the

natural route of sporozoite inoculation in C57/B6 mice by

the bite of mosquitoes infected with P. berghei. We have exam-

ined the changes induced upon haematopoietic stem and

progenitor cell populations in the bone marrow, and relate

these to the downstream impact upon the RBC and WBC popu-

lations in the peripheral blood, spleen and bone marrow. We

find that multiple components of the haematopoietic tree simul-

taneously respond to/are affected by the infection, with HSCs

and early progenitors dramatically increasing their proliferative

state, more committed myeloid populations being lost and a

pre-anaemic stage developing in the bone marrow.
2. Material and methods
2.1. Parasite maintenance
Routine parasite maintenance within mice was carried out

as previously described [27]. Plasmodium berghei ANKA 2.34

was maintained in 4–10 week old female Tuck CD1 mice

(Charles River) by serial blood passage (up to a maximum of

eight passages) and according to Home Office approved proto-

cols. Hyper-reticulocytosis was induced 2–3 days before

infection by treating mice with 200 ml i.p. phenylhydrazine

chloride (PHz; 6 mg ml21 in PBS; ProLabo, UK). Stock mice

were infected by i.p. injection of blood containing parasites,

and infections were monitored on Giemsa-stained tail blood

smears as described previously [27].
2.2. Generation of infected mosquitoes and sporozoite-
derived infection of mice

For each individual experiment, a group of five 4–10-week-old

female PHz-treated CD1 mice were infected with P. berghei
ANKA 2.34 by syringe inoculation (i.p.), followed by feeding

to mosquitoes at day 3 post-infection. On day 3, five infected

mice were anaesthetized and exposed to cages containing 500

starved female Anopheles stephensi (SD 500) mosquitoes.

Unfed mosquitoes were removed and fed ones were main-

tained on 8% (w/v) fructose, 0.05% (w/v) p-aminobenzoic

acid at 198C and 80% relative humidity. Mosquitoes were

maintained until 21 days post-infection, when salivary gland

sporozoites were at their peak [27]. To infect mice with

P. berghei, individual anesthetized naive C57/B6 mice

(Harlan) were exposed to five potentially infected mosquitoes,

selected at random from the larger population. Successful feed-

ing was confirmed by the presence of blood in the abdomen of

mosquitoes after 20 min. Post-feeding, individual mosquitoes

were dissected to determine the presence of salivary gland

sporozoites. Mice were deemed infected if they received five

potentially infectious bites (confirmed by the presence of sali-

vary gland sporozoites), whereas control mice received five

mosquito bites from naive, non-infected mosquitoes in parallel.

Noting that RBCs in infected mice are potentially invaded

(at the earliest) at 45 h after infection from a P. berghei-infected

bite (post-liver stage) [28], we anticipate that properties

induced by blood infection will be delayed by approximately

http://rsob.royalsocietypublishing.org/
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2 days when compared with infections raised by direct blood

inoculation as described in previous studies [11,20,22].

2.3. Peripheral blood analysis
Parasitaemia was monitored at days 0, 3, 7, 10 post-infection by

Giemsa-stained thin blood smears and is expressed as a percen-

tage of more than 500 RBCs counted per slide. Reticulocytes

were visualized by staining on acridine orange-coated slides

[29]. RBC and WBC counts were determined by diluting

20 ml blood samples from cardiac puncture in heparin and

counting them in a haematology analyser (Sysmex X-100) or

ADVIA 2120 haematology analyser (Siemens Diagnostics).

2.4. Flow cytometry
For fluorescence-activated cell sorting analysis, bone marrow

cells were harvested from femurs and tibias of control and

infected mice, and resuspended in PBS supplemented with

2% FBS (Gibco) at a cell density of 25 � 106 ml21. Single-cell

suspensions were stained with the monoclonal antibodies

listed in the electronic supplementary material, table S1 as pre-

viously described [7,30]. For RBC development analysis, dead

cells were eliminated from the analyses by counterstaining

with DAPI (Life Technologies). Apoptotic cells were detected

by including Annexin V PE (BD Biosciences) and 7-amino-

actinomycin D (7AAD, BD Biosciences) according to the

manufacturer’s instructions.

For proliferation analysis, infected and control mice were

administered 1 mg 5-bromodeoxy-uridine (BrdU, Sigma) per

6 g of body weight i.p. 12 h prior to analysis [9]. BrdU stain-

ing was obtained using the BrdU-APC kit (BD Biosciences)

following the manufacturer’s instructions. A BD LSRFortessa

analyser was used to collect all flow cytometry data, and

analysis was performed with FLOWJO software (Tree Star).

2.5. Statistical analysis
Data are expressed as means+ s.e.m. In order to account for

variations in cell numbers due to differences in the type and

number of bones harvested for different experiments and to

show our entire dataset, for some stainings cell numbers

were normalized by dividing each value by the average of

the corresponding control values for that day. Control stage

I values were used to normalize RBC staining data.

Two tailed, unpaired t-test was used to analyse data with

unequivocal normal distribution, i.e. parasitaemia and spleen

weight. For all other data, because not all datasets had

normal distribution, the Kolmogorov–Smirnov nonpara-

metric test was used for statistical comparison between

uninfected and malaria-infected mice each day. p-Values

less than 0.05 were considered statistically significant.

2.6. Statistical and mathematical modelling
In order to estimate the increase within a cell population due

to proliferation alone during the time interval [t,t þ 1], we use

xtþ1 ¼ d ctxt,

where x is the population size, d is the cell cycle duration and

ct is the cycling fraction of cells (BrdUþ) at time t. Note that

xtþ1 does not necessarily correspond to the total population
size at time t þ 1, as it does not take into account other

processes including differentiation and cell death.

We model the dynamics of haematopoiesis in a highly

idealized manner in which four distinct cell populations

interact, namely HSCs (S), multipotent and committed pro-

genitor cells (P), and red (R) and white (W ) blood cells. The

ordinary differential equations that specify this model are:

dS
dt
¼ aSS(K1 � S� P)� bSS,

dP
dt
¼ bSSþ aPP(K2 � P� R�W)� ðbPR þ bPWÞP,

dR
dt
¼ bPRP� gRR

and
dW
dt
¼ bPWP� gWW ,

where aS, bS, aP, bPR, bPW, gR, gW, K1 and K2 are parameters

of the model. K1 and K2 are carrying capacities used to define

the compartments containing stem and progenitor cells and

progenitor and differentiated cells, respectively. For simu-

lations, we use K1 ¼ 103 and K2 ¼ 105. The remaining

parameters were set such that expected population sizes

were recovered (where the total population sizes have been

scaled by a factor of 1023): S � 10, P � 103, R � 105, W � 104.
3. Results
3.1. Haematopoietic stem and progenitor cells numbers

are affected by sporozoite-mediated Plasmodium
berghei infection

To gain a comprehensive view of the responses to P. berghei
infection in haematopoietic stem and progenitor cell popu-

lations, we performed flow cytometry analysis of multiple

bone marrow haematopoietic populations at days 2, 3, 7

and 10 post-sporozoite infection (psi). These time points

were selected to look for perturbations taking place during

the liver stage of disease (day 2), at times when parasitaemia

is barely and then clearly detectable (day 3 and 7, respect-

ively), and when the immune response is strongly engaged

(day 10), but before escalating into cerebral malaria [31]

(figure 1a). As expected, parasitaemia (i.e. the percentage of

infected erythrocytes in the blood) was rarely detectable

on day 3, but increased by day 7 and 10 psi to averages of

2.4% (+0.25 s.e.m.) and 4.7% (+0.56 s.e.m.), respectively

(figure 1b). Two animals showing no parasitaemia, one at

day 7, the other at day 10, were excluded from further analysis

as they were deemed uninfected. As noted in earlier studies,

splenomegaly was invariably observed following infection.

Spleen size (data not shown) and weight (figure 1c) doubled

by day 7 and nearly quadrupled by day 10 psi.

We used the LKS (Lineage2c-KitþSca-1þ) SLAM marker

(CD482CD150þ) combination to identify HSCs as it has been

demonstrated that SLAM markers expression is not affected

by stress [7,9,32], and CD34 expression to separate LT- and

ST-HSCs [1,7,33,34]. HSC progeny, still falling within the LKS

phenotype (but outside the SLAM-defined HSC population)

have reduced self-renewal potential, but give rise to

both myeloid and lymphoid cells. We therefore refer to them

as lymphoid/myeloid primed multipotent progenitors

(LMPPs). Further downstream progeny of LMPPs include

committed myeloid and lymphoid progenitors, which during

http://rsob.royalsocietypublishing.org/
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Figure 1. Analysis of the haematopoietic response to sporozoite P. berghei infection. (a) Timeline of P. berghei-induced malaria onset and time point analysed. On
day 0, cohorts of C57/B6 mice were exposed to bites by control or P. berghei-infected A. stephensi mosquitoes. On days 3, 7 and 10 psi, groups of 2 – 3 control and
3 – 5 infected mice were culled and their peripheral blood (PB) and bone marrow (BM) cells analysed. Boxes indicate the duration of liver/blood stages of disease
and the time of onset of cerebral complications. In this study, we analysed animals from a total of six independent infections. (b) Parasitaemia detected at days 3, 7
and 10 psi. p-Values are not shown but all ,0.005 for each pairwise comparison. Black dots in the day 7 pool and light blue dots in the day 10 pool indicate mice
that, despite showing parasitaemia, did not mount a dramatic haematopoietic response. n ¼ 20 mice culled and analysed at day 3, 32 at day 7 and 15 at day 10
psi, pooled from six independent infections. (c) Spleen weight for control and infected mice at the times indicated. n ¼ 5 mice culled and analysed at day 3, 10 at
day 7 and 5 at day 10 psi, pooled from three independent infections. (d ) Schematic of the haematopoietic stem and progenitor cell populations analysed, including
phenotypic markers and nomenclature used throughout the manuscript. HSC, haematopoietic stem cells (LT, long-term, ST, short-term repopulating); LMPP, lym-
phoid and myeloid multipotent progenitors; mCP, myeloid committed progenitors; CLP, common lymphoid progenitors; LKS, Lineage2KithiScaþ; SLAM:
CD150þCD482. (e) Gates used to identify the cell populations in (d ) using flow cytometry analysis. Above each plot is indicated the population shown, and
boxes indicate how subpopulations were identified based on the expression levels of cell surface markers.
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steady-state haematopoiesis express lower levels of the cell sur-

face marker Sca-1 [35]. All committed myeloid progenitors

together can be identified as Lin2c-KitþSca2 (we refer to this

overall population as mCP for myeloid committed progenitors)

[35]. We use the term ‘c-Kitþ HSPCs’ to refer to the whole,

mixed population of HSCs, LMPPs and mCPs (figure 1d,e).
We observed that the number of LT-HSCs fluctuated

during the course of infection: a small but significant elevation

in the LT-HSC compartment was detected at day 3 psi, reverted

to a slight decline at day 7 psi ( p ¼ 0.0246), and reappeared

significantly at day 10 psi (figure 2a). The ST-HSC population,

in contrast, was significantly reduced relative to controls as the

infection progressed (day 7 and 10 psi; figure 2b). As a result,

the overall HSC population (LKS SLAM) decreased by about

50% at day 7 psi, but had returned to normal by day 10 psi

(electronic supplementary material, figure S1). LMPPs

showed the most consistent and robust response to infection,
with a steady increase up to a 10-fold average by day 10 psi

(figure 2c). The corresponding increase in the global LKS

population (electronic supplementary material, figure S1a) is

consistent with previous observations made with severe

infections or high doses of inflammatory cytokines [3,4].

An opposing trend was observed for mCPs, which dropped

dramatically at day 7 psi, followed by a partial recovery by

day 10 psi (figure 2d). Of note, 3/23 mice at day 7 and 3/14

at day 10 psi did not show raised LMPP/LKS populations

nor loss of mCPs, nor a reduction in the proportion of HSCs

within the LKS gate (figure 2 and electronic supplementary

material, figure S1). This was due to a lack of Sca-1 upregula-

tion despite parasitaemia being similar to other mice (see

black and light blue dots in figure 1b).

Taken together, these data suggest that P. berghei infection

dramatically affects multiple stages of the haematopoietic hier-

archy simultaneously, and from very early stages of infection.
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Moreover, they raise the questions of what cellular dynamics

could be responsible for the changes observed in the stem

and progenitor cell compartments, and whether the increase

in LKS population and loss of mCPs could be linked.

3.2. Proliferation of distinct HSPC populations
differentially increases following Plasmodium
berghei infection

To shed light on the potential mechanisms behind the

dynamics of HSPC cell population changes in response to

P. berghei infection, we queried the same populations for

their proliferation and apoptosis. Infected and control mice

were administered BrdU 12 h prior to bone marrow harvest

and the proportion of BrdUþ cells in each compartment

was measured to obtain a qualitative indication of the

amount of proliferation. Despite a small but statistically sig-

nificant increase in the proportion of BrdUþ LT-HSCs at

day 2 psi, no changes were detected in either the LT- or

ST-HSCs at day 3 psi; however, a significant proportion of

LT-HSCs incorporated BrdU at later time points (approx.

20% at day 7 psi and 15% at day 10 psi; figure 3a). By contrast,

the proportion of BrdUþ ST-HSCs remained unchanged

throughout our analysis (figure 3b), thus the combined HSC

population exhibited 3.5- and 2.5-fold increases in BrdUþ
cells at days 7 and 10 psi, respectively (figure 3c). Despite the

elevation in BrdU incorporation, the proportion of live,

AnnexinVþ LT-, ST- and all HSCs appeared unchanged

throughout our analysis. While recognizing the limitations of

an ex vivo analysis of apoptosis, these data may suggest that

apoptosis does not play a significant role in driving the

observed changes in HSC numbers (figure 3d– f ).
Upon examination of the more differentiated progenitors,

we observed that a significant portion of the LMPP com-

partment incorporated BrdU at day 7 psi. By day 10, an

interesting bi-modal distribution was evident, such that the

LMPP population was highly proliferative in some mice,

and relatively non-dividing in others (figure 4a). Notably,

all four highly proliferative mice harboured an increased pro-

portion of apoptotic, AnnexinVþ LMPPs at this time point

(figure 4c). The proportion of proliferative mCPs rose on

day 2 psi but the number of apoptotic cells decreased at

day 10 psi (figure 4b,d ).
3.3. Plasmodium berghei infection leads to mixing
of LMPP and mCP populations

Dramatic swelling and parallel loss of phenotypically defined

LMPP and mCP populations, respectively, have been reported

for other models of infection [8,9] and inflammatory cytokine

stimulation [7], and can be qualitatively identified as an overall

shift in the proportion of Sca-1þ cells within the undifferentiated,

c-Kitþ lineage2 bone marrow cell population (figure 5a).

However, whether this could be the result of committed,

Sca-12 cells re-expressing Sca-1, or whether increased prolifer-

ation of the existing LMPP population alone could account for

the expanded cell numbers observed, and what the fate of the

disappearing cMPs may be remain open questions.

In the case of P. berghei infection, the shift towards high

levels of Sca-1 expression was most dramatic at day 7 psi,

with virtually no Sca-12 cells remaining at this time point.

By day 10 psi, however, a wider range of Sca-1 intensities

was observed in the Lin2 fraction (figure 5a). We therefore

targeted our examination of population dynamics to the

time window between day 3 and day 7, and built a simple

predictive model based on the BrdU incorporation rate of

LKS and mCPs at these time points to test the hypothesis

that proliferation of LMPPs was solely responsible for their

increased numbers. For the purpose of this analysis, we con-

sidered the LKS population as uniform, because HSCs are a

small fraction of it during steady state, and become a much

smaller fraction by the time infection has developed (elec-

tronic supplementary material, figure S1). We used the LKS

proliferation rate observed on day 7 relative to day 3 (elec-

tronic supplementary material, figure S2a), and made back-

calculations based on a series of assumptions to infer the

highest possible growth rate for the LKS population: (i) that

immediately after sampling at day 3, proliferation jumped to

the average elevated levels observed at day 7, (ii) that all

BrdUþ cells complete S phase and undergo mitosis within

12 h of sampling, (iii) that no increase in apoptosis took place

(consistent with sampling results at day 7; electronic supplemen-

tary material, figure S2b), and finally (iv) that no LKS cells

differentiated into mCP. Even based on these best-case scenario

assumptions to model cell growth, the resulting curve did not fit

with the observed LKS population size, leaving the majority

of LKS cells still unaccounted for on day 7 (figure 5b(i)). This

analysis indicates that HSC and LMPP proliferation alone is
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(b) and the overall HSC (c) populations analysed in control and infected mice at days 2, 3, 7 and 10 psi. n ¼ 4, 7, 10, 7 control and 6, 10, 10, 6 infected mice
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potentially insufficient to drive the expansion of the LMPP/LKS

population to the levels we detected.

A possible explanation for the observed excess in the LKS

population is overexpression of Sca-1 in the mCP population,

with these cells thus ‘masquerading’ as phenotypically

defined LKS. To test this hypothesis, we performed a parallel

modelling analysis. We assumed that each BrdUþ mCP

would complete S phase and mitosis within 12 h of sampling,

we applied a constant rate of proliferation based on the aver-

age data collected at day 3 (figure 4b), and we assumed no

overall changes in the rate of differentiation of mCP. The

resulting growth curve showed a small increase in mCP num-

bers, in stark contrast with the data that show a sharp decline

in the mCP population size on day 7. Comparison between

the LKS and the mCP populations suggested that a relatively

small proportion of mCPs upregulating Sca-1 could account

for the gap between observed and predicted LKS cells on

day 7 (figure 5b(ii), asterisk).

We then tested the newly generated hypothesis that the

observed LKS cells could indeed be a mixture of genuine

LMPPs and ‘masquerading’ mCPs by using flow cytometry

to analyse the distribution of mCP markers CD34 and

CD16/32 within the LKS population itself (figure 5c). During

steady state, these two markers clearly label mCP frac-

tions of megakaryocyte/erythrocyte progenitors (MEPs,

CD16/322, CD342), common myeloid progenitors (CMPs,

CD16/32intermediate, CD34þ) and granulocyte/monocyte
progenitors (GMPs CD16/32bright, CD34þ), but this is not the

case when the expression of the same markers is analysed in

cells within the LKS gate. As we predicted, within this gate

already an MEP-like population appears at day 3, and at

days 7 and 10 psi the MEP/CMP/GMP pattern of CD16/32

and CD34 expression is clearly recognizable. Interestingly,

the few remaining cells in the mCP gate appear to be

predominantly GMPs.

These observations raised the question whether not only

myeloid but also lymphoid progenitors could change their phe-

notype during P. berghei infection, especially given that CLP-like,

c-Kit bright, myeloid-primed progenitors had been previously

described following Plasmodium chabaudi infection [11]. Indeed,

both at days 7 and 10 psi we observed a decrease in IL7Raþ

c-Kitintermediate CLPs and we could identify IL7Raþc-Kitbright

cells instead (electronic supplementary material, figure S3). Of

note, the majority of IL7Raþ cells were Sca-1þ (electronic sup-

plementary material, figure S3a, bottom row).

3.4. Mathematical modelling excludes HSC dynamics
alone contribute to the haematopoietic
perturbations observed

While it is generally accepted that HSCs are at the origin of all

blood cell production, recent work indicates that multipotent

progenitors (MPPs, a subpopulation of our LMPPs) sustain
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the vast majority of haematopoiesis during steady state in

adult mice [36,37]. To test whether HSC proliferation alone

can account for increased blood cell production and replace-

ment of those differentiated cells lost during the immune

response, we generated an ordinary differential equation

model of a simplified haematopoietic tree, with population

sizes scaled to those of murine haematopoiesis (figure 6). We

previously showed that adding multiple intermediate cell

populations with intermediate characteristics between HSCs

and differentiated cells has little/no effect on the outcome of

the model [38]; therefore, and to maintain parsimony, we

included only four populations: stem cells (S), progenitor

cells (P), and red and white differentiated blood cells (R and

W, respectively). Stem and progenitor cells proliferate at their

individual rates aS and aP, and differentiate at rates bS and

bP. Progenitor cells give rise to both red and white blood

cells, with differentiation rates bPR and bPW (for red and

white lineage differentiation, respectively). In steady state, aS

and bS are equal because the HSC population remians constant

and, at the population level, self-renewal and differentiation

are balanced. The scenario a . b would lead to increased

self-renewal at the population level. Conversely, if b . a, this

would result in a reduction in the HSC population size due

to decreased self-renewal. The model also contains two
feedback functions, one onto HSCs and one onto progenitors;

these decrease the growth rate of each population when the

number of cells in the population itself or its direct progeny

grows large, thus inhibiting unbounded growth. This is a

simple mechanism for population growth control, used

widely for dynamical systems [39]. The feedback origin from

direct progeny or more distant descendants has little/no

effect on the model [39] and therefore, for simplicity, we used

feedback from direct progeny.

Within this model, HSC activation is a balanced increase

in both proliferation and differentiation rates, which does

not affect the size of the HSC population and is consistent

with our observations of (i) increase in BrdUþ HSCs

(figure 3c) and (ii) HSC numbers remaining essentially

unchanged (they fluctuated around a constant average—

electronic supplementary material, figure S1). One might

anticipate that this would be sufficient to lead to a (possibly

transient) increase in the downstream populations of progeni-

tor and differentiated cells, as input into the progenitor pool

is increased. However, in the model we studied here, when aS

and bS were increased equally (but aP and bP remained

unchanged), this was not observed (figure 6b1), suggesting

that HSC activation alone cannot explain the dynamics

observed in vivo.
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We next simulated a different scenario, in which not only

HSC activation occurs (as before, aS and bS increase equally),

but also proliferation and differentiation of progenitors

increase. In this case, we see changes across the haematopoietic

hierarchy, including expansion of the HSC population and
loss of progenitor cells, as observed in vivo. Under these

conditions, the model predicted loss of white cells and a

modest increase in red blood cells (figure 6b2). In this scenario,

changes in progenitor dynamics have a more profound effect

on the haematopoietic tree than changes exclusively at the
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HSC level, leading us to propose that progenitor dynamics

may be intricately involved in the haematopoietic response to

P. berghei infection.
3.5. Bone marrow and peripheral blood cellularity
change in agreement with model predictions

Because our model predicted a loss of differentiated cells,

and to gain insight into the possible dynamic changes in dif-

ferentiated haematopoietic cells, we investigated the overall

composition of peripheral blood and bone marrow of

P. berghei-infected mice.

Interestingly, the number of peripheral white blood cells

dipped at day 7 psi, in agreement with loss being driven by

both insufficient myelopoiesis and immune cell exhaustion/

tissue sequestration (figure 7a), however the haematocrit

values remained constant (figure 7b). We next measured the

percentage of reticulocytes in peripheral blood, because

their increase is a well-known hallmark of Plasmodium
infection. However, their proportion remained unchanged

(figure 7c) over the timeframe of this study, in agreement

with the overall lack of anaemia.

The overall bone marrow cellularity presented small

and statistically non-significant variations, and eventually
decreased at day 10 psi (figure 7d ), due to a notable decrease

in overall white blood cells (Ter1192; figure 7e). The reduced

white cell numbers were accompanied by a reduced CFU-C

precursor output, which we observed when we plated bone

marrow from control/infected mice at clonal density (not

shown). The observed decrease in white blood cells in periph-

eral blood and especially in the bone marrow was as

predicted by the model.

By contrast, and surprisingly for an anaemia-inducing

pathogen, but in agreement with model predictions, the

overall number of erythroid cells (Ter119þ) in the bone

marrow remained unchanged in the period of observa-

tion (figure 7f ). This raised the question of how red cell

homeostasis could be maintained despite the dramatic loss

of committed myeloid progenitors. Initial observation of

persistent decline in bone marrow erythroblast precursors,

identified through the BFU-E assay (not shown), starting as

early as day 3 psi prompted us to investigate bone marrow

erythroid differentiation in greater detail.

Despite the number of fully differentiated erythroid cells

(stage V based on Ter119, CD71, CD44 expression and cell

size) showing little fluctuation, we observed consistent falls

in baso-, poly- and ortho-erythroblasts (stages II, III and IV of

terminal RBC development [30]) at days 7 and 10 psi

(figure 7g and electronic supplementary material, figure S4).
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The progressive and sequential losses in increasingly mature

cell populations suggested that the input to the erythroid

lineage may have been constrained, in agreement with the

observed loss of mCPs, and that if infection were to develop

further anaemia would occur. Interestingly, in a transplant set-

ting in which bone marrow from infected animals was injected
into lethally irradiated, syngeneic mice, we observed 20% para-

sitaemia by three weeks post-transplant (i.e. pbi), and severe

anaemia and pan-cytopenia (data not shown), indicating that

a decline in RBC counts will occur in our experimental

model, when the lethal complications of cerebral malaria

are avoided.
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4. Discussion
Infection of a mammalian host causes complex cellular haema-

topoietic responses, encompassing not only mature immune

cells but also their precursors, including stem cells. Malaria

infection places additional stress on these populations, causing

significant direct and indirect haemolysis of mature erythro-

cytes. Here we provide a systematic dissection of the murine

haematopoietic response to natural infection by P. berghei spor-

ozoites, and link responses in the stem and progenitor cell

compartments to fluctuations in terminally differentiated

white and red blood cells, from the early pre-erythrocytic

phase of the disease until a mounting parasitaemia and a

pre-anaemic state are detectable.

We found the number of LT-HSCs and LMPPs significantly

increased as early as day 3 psi and mCP proliferation at day 2 psi,

an indication that perhaps subtle, but critical responses take

place in the haematopoietic stem and progenitor cell compart-

ment from very early stages following sporozoite infection and

before blood stage parasitaemia is detectable by microscopy.

This is consistent with the fact that sporozoite infection of hepato-

cytes is known to influence immune responses [17,26] and results

in both CD8þ-mediated [40] and a type 1 IFN response produ-

cing the antimicrobial cytokine IFNg as early as 1 day after

sporozoite infection [41,42]. Additionally, changes in iron/hep-

cidin metabolism have been noted prior to RBC infection [43]

and they too could contribute to these early responses. Detection

of early changes in HSPCs was made possible by our choice of

mosquito bite and sporozoites as the means of infection, which

importantly is the physiological mechanism of disease trans-

mission. These observations further strongly support the

hypothesis that the activation of early haematopoietic stem and

progenitor cells during infection is direct and not a late,

domino-effect response to the exhaustion of immune cells [3,4].

From the stem cell perspective, perhaps the most interest-

ing observation is that of significant proliferation of primitive

HSCs at days 7–10 of infection. Because this proliferation is

not accompanied by significant/prolonged expansion, nor

death, of cells in this population, our observation is consistent

with the hypothesis that the fate of proliferating HSCs could be

asymmetric. Whether this results from asymmetry in single cell

divisions or at the population level will have to be determined

by further studies. Another important question, relevant to

hosts that recover from malaria, is whether such balanced but

sustained HSC proliferation may have long-term consequences

on HSC fitness, given that replication stress has been associated

with loss of functionality of aged HSCs [44] and return to

quiescence has been associated with HSC functional recovery

from interferon exposure [7,34].

Sustained increase in Sca-1þ early haematopoietic progeni-

tors and HSC proliferation have been shown to be hallmarks

of haematopoietic responses to bacterial and viral infections

[7–10,34], and here we report that this is the case also for para-

sitic infections, specifically P. berghei. We show that this is

probably the product of the sum of increased proliferation of

the LMPP population itself (previously reported only in

response to pulsed INFa stimulation [7]), and of re-expression

of Sca-1 by some pre-existing mCP cells. Moreover, the qualitat-

ive analysis of expression of mCP markers CD16/32 and CD34

in the expanded LMPPs suggests that during P. berghei infection

the boundary between LMPP and mCP subpopulations is

blurred, and we hypothesize that this may result not only

from upregulation of Sca-1 by existing mCPs but also from
potential accelerated differentiation of LMPPs, such that

normal downregulation of Sca-1 is not completed. Myeloid-

biased, Sca-1high haematopoietic progenitors were observed

during the course of P. chabaudi infection [11]. Future studies

will reveal whether this is the case for other infections.

The decrease in mCP numbers at day 7 psi, the absence of

increased apoptotic proportion, and calculation that only a

small proportion of mCPs are likely to upregulate Sca-1 and

return to an LMPP-like state, raise the question of how this

relatively large cell population may be lost. One possibility is

that the cells rapidly differentiate into red and white cells, for

which we observed still normal levels in both bone marrow

and peripheral blood at day 7 psi, the other is that these cells

could have migrated to the spleen. The latter is in agreement

with the splenomegaly we recorded from day 7, and with

multiple reports of extramedullary haematopoiesis during

inflammatory stress [9,19,45,46], including human and rodent

Plasmodium infections [15,47–51]. Of note, re-appearance of

Lin2c-KitþSca-12 cells within the Lin2 c-Kitþ gate could reflect

regeneration of the committed progenitor cell compartment

following their initial dramatic perturbation.

We made the unexpected observation that a small pro-

portion of infected mice, which developed parasitaemia

within the expected range, did not respond to it by upregulat-

ing Sca-1 expression in the bone marrow. Future studies will

need to uncover what epigenetic/environmental mechanisms

may underpin such variability. We hypothesize that HSPC

and immune responses are deeply linked and mice that fail

to upregulate Sca-1 also develop aberrant immune responses

and may be protected from cerebral complications.

Both our experimental data and mathematical model indi-

cated that multiple points of the haematopoietic cascade are

affected simultaneously in response to P. berghei sporozoite

infection. Some malaria parasites, including P. berghei, have

been found in bone marrow [52]. This may induce very

local ‘cytokine storms’, which may contribute to the multifa-

ceted changes in haematopoietic cell populations that we

report, including loss of bone marrow white blood cells

and the development of a pre-anaemic state. The latter two

observations are in agreement with earlier studies of blood

stage P. berghei infection showing that bone marrow erythroid

colony formation potential decreases rapidly [22].

We conclude that P. berghei infection provides an appro-

priate and biologically relevant model system to further

investigate the cellular and molecular mechanisms involved

in the complex haematopoietic response to a natural infection.
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