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Estimating the relationship between food prices and food consumption – 

methods matter 

ABSTRACT  

Concerns about the growing prevalence of obesity worldwide have led researchers and policy 

makers to investigate the potential health impact of fiscal policies, such as taxes on unhealthy 

foods. A common instrument to measure the relationship between food prices and food 

consumption is the price elasticity of demand. Using meta-regression analysis we assessed 

how differences in methodological approaches to estimating demand affected food price 

elasticities. Most methodological differences had a statistically significant impact on 

elasticity estimates which stresses the importance of using meta-estimates or testing the 

sensitivity of simulation outcomes to a range of elasticity parameters before drawing policy 

conclusions.   

 

  



Introduction 

Food prices and consumers’ responses to changing food prices have gained substantial 

attention in recent years, particularly in the context of introducing fiscal policies to tackle 

unhealthy diets associated with rising prevalence of obesity and non-communicable disease 

globally. (Basu et al. 2014, Briggs et al. 2013, Leifert and Lucina 2015, Manyema et al. 2014, 

NiMhurchu et al. 2015, Tiffin and Arnoult 2011, Zhen et al. 2014) These policies can include 

both taxes on unhealthy foods or beverages, and subsidies on healthy alternatives. Also, the 

potential effect of “carbon” taxes on foods, the production of which is associated with high 

levels of greenhouse gas emissions, is another area of growing interest where consumers’ 

responses to relative price changes through taxes, is studied (Briggs et al. 2016, Green et al. 

2015, Säll and Gren 2015, Wirsenius, Hedenus, and Mohlin 2011). To evaluate the 

effectiveness of this type of policies it is crucial to know the extent to which consumers 

change consumption patterns as a response to changes in prices.  

The key instrument to predict consumer response to food price changes is the set of own- and 

cross-price elasticities (OPE’s and CPE’s). Both OPEs and CPE’s are needed to estimate the 

impact of price changes on consumption patterns which later feed into simulation models. 

The own-price effect, which in the policy context, is the direct intended impact of a tax or a 

subsidy, is generally larger in comparison to cross-price effects. However, cross-price effects 

are equally important as these can reinforce the own-price effect (i.e. complement or budget 

effect) or work in the opposite direction (i.e. substitute effect). If substantial and significant, 

these less predictable indirect effects can affect policy implications of the simulation 

outcomes (Cornelsen et al. 2014). As an example, our previous work found that in high-

income countries a 10% increase in the price of sweets (including sugar-sweetened 

beverages) was associated with a reduction in its consumption by 5.6% but a 3% increase in 

consumption of cereal, dairy and fruits and vegetables, off-setting nearly half of the calories 



lost from reduced sweets consumption (Cornelsen et al. 2014). In contrast, in low-income 

countries, a similar price increase for sweets was associated with a 7.4% reduction in its 

consumption and an increase in the consumption of other foods by 6.1%.  As the share of 

sweets in providing daily calories is much lower in low-income countries (7% in comparison 

to 13% in high-income countries), the substitution towards other foods, in particular cereals, 

far exceeded the reduction in calories from lower sweets consumption. If considering calorie 

intake as an outcome, the case for taxing sweets in high-income countries becomes much 

weaker, considering that nearly half of the calories are substituted to other sources. However, 

in low-income countries where under-nutrition is of concern, an increase in the price of 

sweets has an unexpected effect of increasing the total calories via substitution to relatively 

cheaper and staple foods.    

In order to use price elasticities when simulating policy effects, researchers have to either use 

previously published estimates or estimate these from available data. While numerous studies 

exist estimating the demand for foods and beverages aggregated into broad groups, there is a 

lack of good quality evidence on specific and detailed food items, such as sugar-sweetened 

beverages, or products with high sugar, fat and salt content. This problem is aggravated in 

low-income countries where also source data are less available. For aggregate food groups, 

for which more estimates are available, the researchers still face a difficult choice in choosing 

between models using different source data, taking different underlying assumptions, and 

thus applying varied methods and functional forms. In such cases, using meta-estimates 

combining the findings from available studies could provide more robust estimates. Equally, 

when estimating elasticities from food expenditure or other consumption data, researchers 

face similar challenges in choosing the most appropriate data and methods from available 

alternatives. 



The wide range of such alternatives, differing levels of complexity in methods and reports on 

known sources of bias in demand system estimations (Deaton 1988, Cox and Wohlgenant 

1986, Shonkwiler and Yen 1999) have led us to question if, and to what extent, there exist 

systematic differences in the estimated food price elasticity values depending on the methods 

applied. Few previous studies have attempted to analyse this using the meta-regression 

approach. Gallet (2009, 2010) analysed variations in the OPEs of meat (Gallet 2010) and fish 

(Gallet 2009) demand. Chen et al. (2015) analysed both OPEs and CPEs of demand in China 

for 12 aggregate food groups, alcoholic beverages and tobacco (Chen et al. 2015). All three 

studies used slightly different explanatory variables in the meta-regression but found 

significant effects on elasticity estimates from variables describing data type and structure, 

model structure, model specification, estimation methods and publication type.  

In our previous work we conducted a systematic review of literature estimating the demand 

for foods and beverages and provided meta-estimates for OPEs and CPEs for aggregated food 

groups in low-, middle- and high-income countries (Green et al. 2013, Cornelsen et al. 2014). 

In this study we employed the same global database of food price elasticities, extending over 

12 years, to investigate and discuss in detail the influence of various methodological aspects 

on the estimates of both OPEs and CPEs using meta-regression analysis.  

It has to be noted that it is particularly important to focus on the impact of the difference in 

methodological approach on CPE estimates. Changes in own prices have a more noticeable 

impact on consumption while the marginal impact of price change of a single alternative 

good is harder to capture. Also, CPEs found in the literature show a high degree of 

heterogeneity, including switches from positive (substitute goods), to negative 

(complementary goods).  Hence, the bias can potentially cause a change in the direction of 

the elasticity, but this will be difficult to detect because the sign of the cross-price elasticity 

cannot be assumed a priori for most foods.  



Methodology 

We used OPE and CPE estimates from a database of food price elasticities compiled from a 

systematic literature review conducted with an end date in August 2011 for OPEs and in 

November 2012 for CPEs (both data sets are available upon request from authors) [9,10]. 

Searches for studies in the review were done in academic databases (ISI Web of Science, 

EconLit, Medline, AgEcon and Agricola) and in other online resources (Google (and 

Scholar), Ideas, Eldis, websites of USDA, FAO, World Bank and IFPRI). 

The review included published and grey literature, with English abstracts, estimating food 

price elasticities of demand using data from 1990 onwards and applying multiple equation 

methods. It included studies that used nationally representative aggregate data (national 

average statistics), data from household surveys (cross-sectional) or data from longitudinal 

surveys. It is important to note that as the criteria prescribed the inclusion of studies 

employing only post 1990 data, a number of studies employing long time series data, dating 

back in cases to 1950’s, were excluded. While this ignores historic literature, it avoids any 

systematic differences in elasticities across a long period of time due to vastly changed 

economic conditions that affect the relationship between food prices and purchasing 

decisions. 

A further distinction in estimated elasticities is between uncompensated (Marshallian) and 

compensated (Hicksian) elasticities. The latter is of interest when the focus is specifically on 

price effects net of the income effects. Because of their direct policy relevance, we used only 

the uncompensated, Marshallian elasticities that combine both price and budget effects. 

The uncompensated (Marshallian) own- and cross-price elasticities were extracted and 

aggregated into nine broad categories of food – fruits and vegetables; meat; fish; cereals; 

dairy; eggs; fats and oils; sweets, confectionery and sweetened beverages (sweets); and other 



foods. Price elasticities for food groups at a higher aggregation level than that used in this 

study (e.g. ‘meat and dairy’) and cross-price elasticities that, due to aggregation, were within 

one food group (e.g. cross-price elasticity of pork to beef price) were excluded.  Price 

elasticities that were reported across different sub-population groups were averaged. 

The database included also the following information on the included studies: whether the 

study was published in a peer-reviewed journal, country and region of the study, data source 

and type and years, function and estimation type in the demand analysis and whether the 

demand system estimated was complete or conditional. Countries were assigned into low-, 

middle- and high-income countries following the classification by (Muhammad et al. 2011). 

For the purposes of this study additional, more detailed information on data and methods 

applied in the same set of studies were extracted: data frequency, whether and how censoring 

in the data was controlled for, which type of data were used for prices, and whether potential 

biases were addressed in the price data.      

Methodological aspects of demand analysis  

There are numerous methods available to estimate the demand for consumer goods and the 

choice largely depends on the theoretical and empirical assumptions the researchers are 

willing to make, and on data availability. The systematic review described above, and thus 

this paper, focused on research employing multiple equation methods for demand analysis, in 

coherence with current economic theory on consumer behaviour, prescribing that consumers 

allocate their fixed budget across the available bundle of goods depending on relative prices. 

Thus, demand functions for different goods are not independent from each other, and demand 

for a specific good is influenced by the price of all goods. This requires the joint estimation of 

demand equations as errors are correlated and cross-equation constraints exist. These demand 

systems can range from a subset of particular foods or beverages (e.g. different meats or 



beverages) or they can include the whole range of consumer goods, where the former type 

reflects ‘conditional’ demand and the latter relates to complete demand.   

In the analysis we considered following known sources of bias as well as other aspects that 

may exert a systematic influence on price elasticity estimates:   

Different data structures  

The structure of data used to estimate demand systems varies from aggregate time series of 

national food expenditure data to very detailed consumer data recorded with hand-held 

scanners for all purchases of sample households. The level of detail in the data can have an 

effect on the estimated elasticties as cross-sectional data are unable to capture the dynamic 

components of consumption while time series data can suffer from aggregation bias (Denton 

and Mountain 2001, Blundell, Pashardes, and Weber 1993). We considered three types of 

data structure a) aggregate (national average statistics including time series), b) household 

survey data (cross-sectional) and c) longitudinal survey data (panel). As in individual studies 

data are often manipulated (e.g. aggregated), we also tested whether the frequency of the time 

dimension had an impact on the elasticity estimates using three categories of monthly or more 

frequently, quarterly and annual.  

Functional form 

Different functional forms for estimating demand systems can lead to different elasticity 

estimates (Dameus et al. 2002). The most popular demand systems stem from the Almost 

Ideal Demand System (AIDS). The AIDS model is non-linear in prices, but linear in total 

expenditure and most studies adopt a linearized version (LA-AIDS) due to its simple 

implementation (Deaton and Muellbauer 1980), although this linearization has been also 

associated with potential biases in certain situations (Pashardes 1993). In more recent years 



the quadratic version (QAIDS) has become popular, as it allows for a non-linear relationship 

between income and expenditure across different income groups (Banks, Blundell, and 

Lewbel 1997). However, other systems are also used, often to address theoretical 

considerations or specific data issues. For example, the translog model is similar to AIDS but 

requires a larger data set as the number of parameters to estimate is higher (Barten 1993, 

Deaton 1986), whereas the LinQuad incomplete demand system is more flexible and imposes 

fewer restrictions on theoretical consumer preferences in comparison to AIDS (Pan, 

Mohanty, and Welch 2008). Mixed Demand models assume that for some products the prices 

are given but for some others it is the quantity that is given and prices adjust to clear the 

market (e.g. suitable for quickly perishable foods) (Moschini and Rizzi 2005). Endogeneity 

of quantities, prices and budget can also be accommodated in dynamic demand systems 

estimated through time series econometric techniques such as cointegrated demand systems  

(Pesaran and Shin 2002). 

Estimation method 

Different estimation methods may also determine elasticity estimates. Because of correlated 

errors, demand systems are typically estimated via seemingly unrelated regression (SUR), or 

full information maximum likelihood (FIML). However, some studies address dynamics, 

habit formation and/or price and/or income expenditure endogeneity by adopting instrumental 

variable methods, such as two-stage least squares (2SLS) or – more recently –the 

aforementioned cointegrated demand systems (VEC-AIDS).  

Conditionality of the elasticities 

Complete demand systems may be estimated in a single stage, or can be broken down into 

two or more subsequent stages of budget allocation. For example, Edgerton (Edgerton 1997)  

assumed a three-step budgeting decision where in the first step the decisions are made on 



how much is spent on foods compared to non-food items (health, housing etc). In the second 

step the budget for foods is divided into major categories (e.g. fruits) and in the third step the 

budget is allocated between individual expenditure to individual food items (e.g. orange 

juice). Elasticities that are estimated from a single-stage complete system are unconditional 

(i.e. price changes of individual food items affect decisions of expenditure on all consumer 

goods) whereas elasticities that are estimated from demand systems only at second or third 

level are conditional on the expenditure at higher level (i.e. price changes affect decisions on 

expenditure within the food group).  

Edgerton (Edgerton 1997)  reported that restricting the analysis to the last stage of the multi-

stage budgeting process can lead to considerable errors, and suggested correction procedures 

which are rarely adopted. Rickertsen (Rickertsen 1998) and Klonaris and Hallam (Klonaris 

and Hallam 2003) both report deviations between conditional and unconditional elasticities 

indicating possible systematic differences.  

Censored data 

If demand systems are estimated using household level data, it is likely that the dataset is 

censored (i.e. non-expenditure is observed). This can be due to genuine and deliberate non-

consumption driven by preferences and independent from prices and incomes (e.g. 

vegetarianism), non-consumption during the survey period (especially for low-frequency 

consumptions and/or short survey period) or non-consumption explained by price and income 

level (i.e. at a different price/income level consumption would occur). Including these zero-

observations without corrections has been shown to lead to biased estimates of the price 

elasticities (Heien and Wessells 1990). The most common approach to address the bias is to 

estimate the demand in two steps (Shonkwiler and Yen 1999) where the first step is the 

dichotomous decision on whether to consume or not and in the second stage the decision on 



how much to consume is taken, or to include a correction term in the demand equations, 

based on a Heckman-type correction procedure (Heien and Wessells 1990).   

Use of unit values as a proxy for price data 

As price data are often missing, particularly in household surveys, unit values, calculated as a 

ratio of expenditure to its quantity is a common type of price indicator used. This approach 

offers a solution to missing price data and provides variability in prices that using aggregate 

consumer or retail prices at one point in time (e.g. cross-sectional data) may not provide 

(Deaton 1988). Unit prices also mean that there are no discrepancies between the price and 

consumption data (Deaton and Grosh 2000). However, unit values are affected by quality 

bias and may lead to inconsistent estimates because errors in unit values are correlated with 

errors in the expenditure share or quantity data also employed in the model (Deaton 1988). 

Quality bias can arise because the goods purchased are generally at least to some extent 

aggregated (e.g. beef rather than specific cuts) and households at higher income levels might 

be purchasing more expensive (higher quality) beef cuts compared to poorer households. Any 

price change is likely to affect both decisions on quantity and quality of the foods.   

The approaches to adjust for this bias assume that households in the same geographical area 

and at the same point in time face the same prices. A basic adjustment is based on regressing 

unit values on household socio-demographic characteristics to disentangle the quality, 

quantity and price effects (Cox and Wohlgenant 1986), while a more theoretically consistent 

approach requires the joint estimation of quantity and quality demand functions (Deaton 

1988). Because consumers respond to price changes by adjusting their quality allocation, the 

price variation captured by unit values is usually smaller than the actual one. This means that 

any consumption response is ascribed to a downward biased estimate of price change, hence 

generating an overestimate of elasticities. 



Meta-regression model 

To explore the influence of these methodological approaches separately for OPEs and CPEs 

we estimated two meta-regression models. To account for study level heterogeneity we 

estimated a two-level random intercept model where the individual elasticities represented 

the second level, and study, the first level. The model was fitted using maximum likelihood 

(ML) with bootstrapped standard errors (50 replications). The dependent variable was the 

uncompensated OPE or CPE. Independent variables that were used in the model, describing 

the methodological approaches, are summarised in table 1. 

Multicollinearity across the independent variables was tested for using the variance inflation 

factor (VIF). Variables with VIF values above 10 in the model were removed through testing 

various model specifications. The best model was chosen based on the highest value for 

adjusted coefficient of determination (R2) and lowest vales for VIF.  

Extreme values of elasticities, defined as lying outside of the absolute value of three standard 

deviations of the mean, within the food group, were considered as outliers. This led to a 

removal 1.7% (n=47) and 2.41% (n=131) of the observations from OPE and CPE datasets, 

respectively. 

Results  

The final database included 130 studies estimating OPEs (n=2,749) and 78 studies reporting 

CPEs (n=5,191) for any of the nine food groups.  The electronic supplement describes each 

included study in more detail. Table 1 shows the distribution of the variables within the 

dataset. A large share of OPEs (66%, n=1,803) were from two multi-country studies using 

International Comparison Program Data (IPCD)(Muhammad et al. 2011, Seale, Regmi, and 

Bernstein 2003) while CPEs the two largest studies counted only for 28% of observations.  



Table 1 here 

For both OPEs and CPEs, there were more estimates from grey literature, largely conference 

papers. OPEs were more often estimated for low-income countries while more CPE estimates 

were available from high-income countries. This is likely due to more detailed data being 

available from high income countries allowing for more detailed food items to be included. 

Approximately one third of both OPE and CPE estimates were from Europe.  

When the two ICPD studies, estimating unconditional elasticities, were excluded, elasticities 

were most commonly estimated from complete models (CPE) or conditional on food sub-

group expenditure (OPE). Household survey data (cross-sectional) was the most common 

data structure and annual data frequency was most common for both types of elasticities, 

even if the ICPD studies were excluded. The majority of elasticities were estimated with a 

version of the AIDS function if excluding the ICPD studies where the Working Preference 

Independence (Florida) model was employed. The most common estimation type was SUR if 

the two big studies were not considered and ML if these were included (OPEs only).   

Two-step methods were the most common approach to deal with censored data. For 8% of 

OPEs (31 studies) and 18% of CPEs (23 studies) it was not reported whether censoring was 

dealt with (or if it was an issue) but based on the structure of the data used was a possible 

problem. Also, 46% of OPEs (64 studies) and 40% of CPEs (40 studies) were estimated using 

unadjusted unit values as approximations for price data, or price data had not been described 

at all. Lastly, both OPEs and CPEs were mostly estimated for fruits and vegetables or meat 

and the average data year used in estimation of elasticities was 2000 for OPE’s and 2001 for 

CPE’s, respectively. 

Meta-regression results: own-price elasticities 



Table 2 presents the meta-regression results for OPEs. The Likelihood Ratio (LR) test 

indicated that study level effects were statistically significant (p<0.001) justifying the use of a 

two-level model. We excluded the variable describing data type as it was leading to 

multicollinearity in the model and data frequency alone yielded a higher value for adjusted R2 

in comparison to data type. Since OPEs entered the model with their original (negative) sign, 

a positive coefficient indicates a lower elasticity (i.e. less sensitive demand to changes in 

prices) and a negative coefficient indicates a higher elasticity (i.e. more sensitive demand to 

changes in prices).  

Table 2 here 

As expected, OPEs indicated less sensitive demand to price changes as country income level 

increased with an average difference of 0.27 between the food price elasticity in low-income 

countries and high-income countries (p<0.001). In comparison to Europe, OPEs from Africa 

and Asia indicated more sensitive food demand to changes in prices. Differences between 

Europe and Australasia, North- or South-America were not significant at conventional levels.  

Both monthly and quarterly data were associated with higher OPEs (i.e. more sensitive 

demand to changes in prices) in comparison to annual data (p<0.05). Choice of estimation 

type was jointly significant (p=0.011) in explaining some of the variation in elasticity 

estimates although individually only the ‘other estimation method’ was significantly different 

(higher elasticity) in comparison to elasticities estimated using SUR method (p=0.001). To 

the contrary, the type of price data was jointly not significant at conventional levels 

(p=0.279) although we found OPE estimates from retail price data to be less elastic 

(p=0.015). This is confirmative evidence that using unadjusted unit prices, as a proxy for 

retail prices, leads to an overestimation of OPEs in comparison to using actual retail price 

data. 



OPE estimates were also affected by whether or not censoring in the data was addressed. In 

comparison to two-step methods, aggregating data or using any other method was associated 

with less elastic OPEs (p<0.001). Equally, when it was not reported how censoring was 

addressed or where it was not applicable (e.g. aggregate data), the elasticities were associated 

with less elastic values (p<0.001).  

Factors that were not associated with significant changes (at the 5% level) in elasticity 

estimates were whether the study was peer reviewed, whether elasticities were conditional or 

unconditional, function type employed and mean year of data.  

Meta-regression results: cross-price elasticities 

As the sign of CPE is not predictable, meaning that there is no theoretical prior on whether 

foods are complements or substitutes, and the estimates are generally much smaller compared 

to own-price elasticity estimates, the interpretation of the meta-regression results presented in 

table 3, is more complicated and cannot be compared to the a priori expectations. Similarly 

to the OPE model, multicollinearity was detected in the model leading to exclusion of 

variables describing data type and country income level. Study level effects were equally 

found to be significant (p<0.001). 

CPEs from peer-reviewed studies were weakly associated with more positive values in 

comparison to grey literature (p=0.063). Regional differences were also detected for CPEs. In 

comparison to Europe the CPEs were more positive in Asia (p<0.001), North-America 

(p=0.013) and South-America (p=0.004).  

Table 3 here 

Monthly or more frequent data were associated with more positive CPE values (p=0.012) in 

comparison to annual data, but no significant differences were detected between quarterly or 



annual data. LS estimations were associated with smaller elasticities in comparison to models 

estimated by SUR (p=0.017). However, jointly, the estimation type was significant only at 

the 10% level. 

Similarly to the OPEs, the way of addressing censoring in consumption data was found to 

jointly explain part of the variation in CPEs (p<0.001). At the individual level, only studies 

where censoring was not applicable (e.g. employing aggregate data) were associated with 

smaller cross-price elasticities (p<0.001).  

The type of price data used also explained part of the variation in CPEs (p<0.001). Adjusted 

unit prices were associated with more positive cross-price elasticities (p<0.001) in 

comparison to unadjusted unit prices. The coefficient for retail price was also positive but not 

significant at conventional levels (p=0.291). Studies applying other price data (see section 3 

for details) were associated with more negative CPE estimates (p=0.007). Mean year of data, 

function type and the conditionality of elasticities, equally to OPEs, were not associated with 

changes in elasticity estimates at conventional statistical significance levels. 

Discussion 

There are many individual studies estimating the price sensitivity of food demand across the 

globe.  Only a few have attempted to synthesise this body of research (Andreyeva, Long, and 

Brownell 2010, Cabrera Escobar et al. 2013, Chen et al. 2015, Cornelsen et al. 2014, Gallet 

2010, 2009, Green et al. 2013) and all these analyses have pointed to the wide array of data 

and methods used in the estimation of price elasticities, which inevitably leads to a question 

how this affects the sensitivity of the elasticity estimates, particularly when used in policy 

simulations.  



We have added to the literature by using a meta-regression analysis and a large existing data 

base to examine how methodological differences affect OPE and CPE estimates after 

controlling for food group, study specific effects, country income level and study region, and 

whether studies were peer-reviewed. While individual studies in economics have explored the 

bias in demand analysis of different methodological aspects, the meta-regression analysis 

approach allowed us to combine these and to explore the influence on the elasticity estimates 

in a single model.   

Similarly to the few previous studies using the same approach (Gallet 2010, 2009, Chen et al. 

2015), we found that the different methodological approaches to a smaller or larger extent do 

matter as these significantly affect food price elasticity estimates. We found statistically 

significant differences in OPEs estimated using data at different frequencies and estimated by 

different estimation methods. The latter was also found to be an important influence in the 

previous two meta-regression analyses of OPEs (for fish and meat only) (Gallet 2010, 2009) 

and in the analysis of Chinese food price elasticities (Chen et al. 2015).  

The method of addressing censoring in the data, led to significant differences in OPE 

estimates. In particular, using a two-step demand system was associated with smaller (more 

sensitive) OPEs in comparison to aggregation of data or where no adjustments were done. 

This finding has relevant implications for future studies as increasingly more disaggregated 

data is collected and analysed, such as scanner data, which by its nature is highly censored.  

For both OPEs and CPEs the type of price data used was associated with significant 

differences. As the theory predicts, quality adjusted unit values and retail prices led to larger 

(less sensitive) OPE estimates in comparison to using unadjusted unit values. Hence, 

attention should be given to which price data are used and whether adjustments for quality 

differences need to be implemented.   



Interestingly, we did not find evidence of significant influence stemming from the choice of 

functional form or conditionality of the elasticities. However, the functional form was defined 

only by two categories because the types of models that were non-AIDS were relatively few 

as by selection criteria only studies using a demand system were included. Similarly, to Chen 

et al. we found that published papers had significantly more positive CPE’s which may 

indicate some publication bias and certain expectations to the estimated values.  

In comparison to OPEs, the impact of methodological bias on CPEs can be more serious as 

CPEs can switch from negative to positive with a different interpretation for either case 

(substitute or complement products). CPEs are usually considerably smaller (not far from 

zero) and thus even small bias can cause the switch in the direction of the effect that in the 

worst case can lead to a different policy suggestion. This particularly affects studies 

modelling the potential impact of health- or environment-related food taxes or subsidies 

where it is necessary to explicitly include cross-price effects to understand the changes across 

the whole diet, rather than just taxed or subsidised products. If the demand estimation 

provides inconclusive CPE estimates or estimates that are close to zero, simulation studies 

should test the sensitivity of their findings by allowing both negative and positive cross-price 

effects to test the bounds of the outcome measures. Alternatively, meta-estimates, such as 

provided by (Green et al. 2013, Cornelsen et al. 2014, Gallet 2010, 2009, Andreyeva, Long, 

and Brownell 2010, Chen et al. 2015, Cabrera Escobar et al. 2013, Clements and Si 2015) 

should be used.  

Concluding Comments 

We conclude that studies wishing to employ food price elasticities as parameters in their 

simulation or other exercises should be careful in choosing these from previous literature or 

in the choice of methods to be used in the estimation. Where many estimates are available 



from previous studies, including measures of precision, researchers should use meta-

estimates as these can mitigate some of the bias stemming from methodological differences 

in individual studies. Where new estimates or single study estimates are used in simulation 

models, sensitivity of the findings to different values of the elasticites should be tested, 

particularly for cross-price elasticities.  

 

  



Table 1. Description of data 

 OPEs (n=2,749) CPEs (n=5,191) 

Variables Obs % Obs % 

Study peer reviewed?     

No 2,196 79.9 3,629 69.9 

Yes 553 20.1 1,562 30.1 

Country Income level     

Low 1,148 41.8 1019 19.6 

Middle 733 26.7 948 18.3 

High 868 31.6 3,224 62.1 

Region     

Africa 598 21.8 388 7.5 

Asia 723 26.3 653 12.6 

Australasia 58 2.1 161 3.1 

Europe 850 30.9 1,560 30.1 

North America 302 11.0 1873 36.1 

South America 218 7.9 556 10.7 

Data type     

Aggregate 2,002 72.8 185 3.56 

Household survey data 569 20.7 4,181 80.5 

Longitudinal survey dataa 178 6.5 825 15.89 

Data time dimension frequency     

Monthly or more frequent 306 11.1 2280 43.9 

Quarterly 58 2.1 338 6.5 

Annual 2,385 86.8 2,573 49.57 



Demand system     

Complete 1,986 72.2 2181 42.02 

Conditional on food group expenditure 383 13.9 2,098 40.02 

Conditional on food sub-group 

expenditure 

380 13.8 912 17.57 

Function type     

AIDS 738 26.9 4191 80.7 

Non AIDS 2,011 73.2 1000 19.3 

Estimation type     

SUR 372 13.5 2,088 40.2 

Least Squares 117 4.3 1,950 37.6 

Maximum Likelihood 1,881 68.4 n/a n/a 

Other 97 3.5 231b 4.5 

Not reported 282 10.3 922 17.8 

How censoring in consumption data is 

managed? 

    

Data aggregated or missing observations 

replaced by average values 

135 4.9 

2132 41 

Two-step procedure 351 12.8 1,472 28.4 

Otherc 34 1.2 529 10.2 

Not reported 232 8.4 911 17.6 

Not applicable (e.g. aggregate data) 1,997 72.6 147 2.8 

Which prices are used?     

Retail price or price index 159 5.8 1,542 29.7 

Unit price (adjusted to bias) 209 7.6 896 17.3 



Unit price (unadjusted to bias) 1,130 41.1 2,092 40.3 

Other 1,115 40.6 350 6.7 

Not reported 136 5.0 311 6 

Food Group (price change)     

Fruit and vegetables 469 17.1 1,109 21.4 

Meat 467 17.0 986 19 

Fish 373 13.6 415 8 

Dairy 395 14.4 610 11.8 

Eggs 17 0.6 174 3.4 

Cereals 376 13.7 761 14.7 

Fats and oils 305 11.1 289 5.6 

Sweets 47 1.7 442 8.5 

Other foods 300 10.9 405 7.8 

Food Group (consumption change)d     

Fruit and vegetables n/a n/a 1,140 22 

Meat n/a n/a 998 19.2 

Fish n/a n/a 422 8.1 

Dairy n/a n/a 615 11.9 

Eggs n/a n/a 179 3.5 

Cereals n/a n/a 767 14.8 

Fats and oils n/a n/a 306 5.9 

Sweets n/a n/a 464 8.9 

Other foods n/a n/a 300 5.8 

Mean Year 2000   2001  



a Studies employing scanner data were assigned one of the categories based on whether any 

manipulations had been done to the data (e.g. aggregation across time and/or households). 

b Includes CPEs estimated by ML of which there were too few for a separate category 

c Mixture of unit price and retail price, self-reported prices, comparative price levels 

d CPE model only 

  



Table 2. Meta-regression results for own-price elasticity subsample (n=2,749) 

Variables Categories Coef. p-value 

Publication type Peer-reviewed  -0.004 0.919 

Income level 

  

Middle income 0.110 <0.001 

High income 0.273 <0.001 

Region Africa -0.051 <0.001 

Asia -0.015 0.009 

Australasia -0.002 0.905 

North America -0.007 0.452 

South America -0.009 0.267 

Data frequency 

Monthly -0.253 <0.001 

Quarterly -0.109 0.037 

Demand system 

  

Complete 0.059 0.127 

Conditional on food sub-group expenditure -0.021 0.660 

Function  type Non-AIDS -0.016 0.853 

Estimation type 

  

  

  

least squares -0.098 0.198 

ML -0.065 0.306 

Other -0.199 0.001 

not reported -0.041 0.254 

Cons data 

censoring 

  

  

  

Data aggregated/based on average 0.249 <0.001 

Other 0.338 <0.001 

Not reported 0.226 <0.001 

Not applicable 0.320 <0.001 

Price type Retail price 0.093 0.015 



  

  

Unit price (adjusted to bias) 0.041 0.321 

Other 0.015 0.745 

Not reported 0.057 0.222 

Mean year of data  -0.014 0.114 

Constant  28.65 0.129 

Food groups  Included 

Random effects parameters  

Study ID SD(constant) 0.316  

  SD(Residual) 0.250  

LR test vs. linear 

regression 

 χ2 (0,1)  = 786.0 <0.001 

Note: Positive coefficients indicate less sensitive demand to changes in prices and negative 

coefficients more sensitive demand to changes in prices. Excluded categories: grey literature, 

low income country, Europe, annual data, conditional on all food expenditure demand 

system, AIDS or its variant function, SUR estimation, two-step approach to censored data, 

quality unadjusted unit price data.  

 

  



Table 3. Meta-regression results for cross-price elasticity subsample (n=5,191) 

Variables  Category Coef. p-value 

Publication type Peer-reviewed  0.028 0.063 

Income level Middle income n/a n/a 

  High income n/a n/a 

Region Africa 0.048 0.103 

 Asia 0.100 <0.001 

 Australasia 0.084 0.203 

 North America 0.071 0.013 

 South America 0.047 0.004 

Data frequency 

Monthly 0.040 0.012 

Quarterly 0.031 0.612 

Demand system Complete  0.018 0.195 

  

Conditional on food sub-group 

expenditure 

-0.005 0.779 

Function  type Non-AIDS 0.011 0.37 

Estimation type Least squares -0.042 0.017 

  Other (including ML) -0.018 0.471 

  Not reported -0.026 0.216 

Cons data censoring 

Data aggregated/based on 

average 

0.006 0.742 

  Other 0.010 0.626 

  Not reported 0.005 0.749 

  Not applicable -0.113 <0.001 



Price type Retail price 0.023 0.291 

  Unit price (adjusted to bias) 0.065 <0.001 

 Other -0.074 0.007 

 not described 0.009 0.696 

Mean year of data  0.001 0.575 

Constant  -0.651 0.893 

Food group (price change) Included  

Food group (consumption change) Included  

Food group (price change)*food group (consumption change) Included  

Constant    

Random effects parameters   

Study ID SD(cons) 0.048  

  SD(Residual) 0.161  

LR test vs. linear regression  χ2 (0,1)  = 13.3 <0.001 

Note: excluded categories: grey literature, low income country, annual data, conditional on 

all food expenditure demand system, AIDS or its variant function, SUR estimation, two-step 

approach to censored data, quality unadjusted unit price data. 
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Appendix 1. Details of included studies 

Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Abdulai, A. 2002 Switzerland Monthly HH survey QAIDS SUR Not described 

Unadj. unit 

price 

y 

Ackah, C., Appleton, S. 2011 Ghana Annual HH survey AIDS SUR Not described Other y 

Adam, S. A., Sinne, S.* 2012 Denmark Monthly Longitudinal 

2-step dynamic 

censored AIDS SUR Two-step method 

Unadj. unit 

price 

y 

Adhikari, M. et al. 2006 USA Quarterly Aggregate LA-AIDS SUR N/A Not described y 

Agbola, F.W. 2003 South Africa Annual HH survey LA-AIDS SUR Not described 

Unadj. unit 

price 

 

Agbola, F.W. et al. 2003 South Africa Annual HH survey LA-AIDS SUR Not described 

Unadj. unit 

price 

 

Akbay, C. et al 2007 Turkey Annual HH survey LA-AIDS ITSUR Two-step method 

Unadj. unit 

price 

y 

Akinleye, S.O.,Rahij, 

M.A.Y. 2007 Nigeria Annual HH survey LA-AIDS SURE Not described 

Unadj. unit 

price 

 

Alboghdady, M.A., 

Alashry, M.K. 2010 Egypt Annual Aggregate LA-AIDS RSUR N/A 

Unadj. unit 

price 

y 

Alderman, H.,del 

Ninno, C. 1999 South Africa Quarterly HH survey AIDS Not reported Not described 

Unadj. unit 

price 

y 

Alfonzo, L., Peterson, 

H.H. 2006 Paraguay Annual HH survey LA-AIDS SUR Two-step method 

Qual. adj. unit 

price 

y 

Allais, O. et al. 2010 France Monthly Longitudinal AIDS ITSUR Aggregate/average 

Qual. adj. unit 

price 

y 

Allais, O., Nichele, V. 2007 France Monthly Longitudinal MS-AID BFGS Aggregate/average 

Unadj. unit 

price 

y 

Allen, T. et al. 2009 France Monthly Longitudinal LA-AI-HABIT ITSUR Aggregate/average 

Qual. adj. unit 

price 

y 

Al-Shuaibi, A. 2011 Saudi Arabia Annual Aggregate AIDS SUR Not described Not described y 

Alviola, P., Oral, C.Jr. 2010 USA Annual HH survey 

Heckman two-step 

model OLS Two-step method 

Unadj. unit 

price 

 

Angulo, A.M. et al. 2003 Spain Annual Longitudinal GADS FIML Aggregate/average 

Qual. adj. unit 

price 

y 

Angulo, A.M., Gil, J.M. 2006 Spain Annual Longitudinal AIDS ITIP Other  

Qual. adj. unit 

price 

y 



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Angulo, A.M.et al. 2002 Spain Quarterly Longitudinal Rotterdam model SUR-GLS Not described 

Qual. adj. unit 

price 

 

Anwar, A. et al.* 2012 Pakistan Annual HH survey Rotterdam SUR Not described 

Unadj. unit 

price 

y 

Balcombe, K. et al. 1999 Bulgaria Monthly HH survey AIDS 

Empirical 

Bayesian N/A 

Unadj. unit 

price 

y 

Beach, R.H., Zhen, C. 2009 Italy Monthly Aggregate SNAP AIDS GMM N/A 

Unadj. unit 

price 

 

Berges, M.E., Casellas, 

K.S 2002 Argentina Annual HH survey 

Linear Expenditure 

System SUR Two-step method 

Qual. adj. unit 

price 

 

Bouamra Mechemache 

Z. et al. 2008 Italy Monthly Longitudinal LA-AI ML Not described Retail price 

y 

Boysen, O.* 2012 Uganda Annual HH survey QUAIDS Iterative LS Two-step method 

Qual. adj. unit 

price 

y 

Brosig, S. 2000 Hungary Annual HH survey LA-AIDS SUR Two-step method 

Qual. adj. unit 

price 

y 

Brown, M. G., Jauregui, 

C.E.* 2011 US Monthly Aggregate Rotterdam model SUR Not described 

Unadj. unit 

price 

y 

Bunte, F., Vavra, P. 2006 Netherlands Monthly Aggregate AIDS SUR N/A Retail price  

Cakir, M., Balagtas, 

J.V. 2010 USA Quarterly Aggregate LA-AIDS SUR N/A Retail price 

 

Capacci, S., Mazzocchi, 

M. 2011 UK Annual HH survey QAIDS FIML Two-step method 

Qual. adj. unit 

price 

 

Caracciolo, F., 

Cembalo, L. 2010 Italy Monthly Longitudinal LA-AIDS Not reported Two-step method 

Unadj. unit 

price 

 

Castellon, C.E.* 2012 Ecuador Annual HH survey AIDS ITSUR Two-step method 

Qual. adj. unit 

price 

y 

Castellon, CE., et al.* 2012 US Annual HH survey LA/EASI SUR Two-step method Retail price y 

Coelho, A.B., et al. 2010 Brazil Annual HH survey QAIDS 

ML, nonlinear 

SUR Two-step method 

Unadj. unit 

price 

y 

Coffey, B. et al.* 2010 US Monthly Longitudinal AIDS EM Other  Retail price y 

Conte, A. 2006 Egypt Annual HH survey AIDS SURE Aggregate/average 

Qual. adj. unit 

price 

y 

Davis, C.G. et al.  2008 USA Annual HH survey 

Censored translog 

demand system ML,ITSUR Two-step method 

Unadj. unit 

price 

y 



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Davis, C.G., et al 2011 USA Monthly Longitudinal Censored AIDS  BH Two-step method Not described  

Davis, C.G., et al.  2007 USA Annual HH survey 

Censored translog 

demand system ML,ITSUR Two-step method 

Unadj. unit 

price 

y 

Davis, C.G., et al.  2009 USA Monthly Longitudinal 

Censored translog 

demand system ML,ITSUR Two-step method Not described 

 

Dey, M.M. et al. 2008 Multiple Annual HH survey QAIDS Not reported Two-step method Not described  

Dharmasena, S., Capps, 

O.J. 2011 USA Monthly Aggregate LA/QUAIDS Not reported Aggregate/average Other 

y 

Di Giusepp, S.* 2011 Paraguay Annual HH survey 

LinQuad 

incompleted demand 

system Not reported Not described 

Qual. adj. unit 

price 

y 

Dong, D. et al. 2007 Norway Monthly Longitudinal LA-AIDS ML Other  

Qual. adj. unit 

price 

y 

Ecker, O., Qaim, M. 2011 Malawi Annual HH survey QAIDS Not reported Two-step method 

Qual. adj. unit 

price 

 

Elsner, K. 1999 Russia Annual HH survey LA-AIDS Non-linear LS Two-step method 

Qual. adj. unit 

price 

 

Erjavec, E., et al. 1998 Slovenia Annual HH survey LA-AIDS SURE Not described 

Qual. adj. unit 

price 

 

Fabiosa, J.F. 2006 Indonesia Annual HH survey Double-hurdle Likelihood fn Two-step method Retail price  

Fabiosa, J.F., Jensen, 

H.H. 2002 Indonesia Annual HH survey LA-AIDS Not reported Two-step method Not described 

y 

Fabiosa, J.F., Jensen, 

H.H. 2003 Indonesia Annual HH survey 

LinQuad incomplete 

demand system Not reported Other  Not described 

y 

Fousekis, P., Revell, 

B.J. 2004 UK Monthly Longitudinal Nonlinear AIDS Not reported N/A 

Unadj. unit 

price 

 

Frohberg, K., Winter, 

E. 2001 Lithuania Annual HH survey NQ-QES Not reported Not described Not described 

y 

Garcia Y.T., et al. 2005 Philippines Annual HH survey QAIDS Not reported Two-step method Retail price  

Gibson, J., Rozele, S. 2002 

Papua New 

Guinea Annual HH survey Share-log (Deaton) Not reported Not described Retail price 

 

Golan, A., et al. 2001 Mexico Annual HH survey AIDS GME Other  Other  

Gould, B.W. 1996 USA Monthly Longitudinal 

Censored demand 

model ML Two-step method 

Unadj. unit 

price 

 



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Griffith, R. et al.* 2012 UK Monthly Longitudinal QUAIDS GMM Aggregate/average 

Unadj. unit 

price 

y 

Guadelupe, B-R.J. et al. 2010 Mexico Monthly Aggregate 

Simultaneous 

equation system 2SLS N/A Retail price 

 

Gulseven, O., 

Wohlegant, M. 2010 USA Monthly Aggregate Rotterdam model Not reported N/A Other 

 

Gustavsen, G.W., 

Rickertsen, K. 2003 Norway Quarterly Aggregate AIDS Not reported N/A Retail price 

y 

Härkänen, T. et al.* 2011 Finland Annual HH survey QAIDS 3SLS Not described Retail price y 

Hassan, A.R. 2012 Columbia Quarterly Aggregate 

Error Correction 

Linear AIDS Not reported N/A Other 

 

Hoang, L.V. 2009 Vietnam Annual HH survey LA-AIDS Not reported N/A 

Qual. adj. unit 

price 

y 

Hoderlain, S., 

Mihaleva, S. 2008 UK Annual HH survey AIDS 3SLS/GMM Not described Other 

 

Hossain, F., et al. 2001 Latvia Monthly HH survey AIDS SUR Not described Retail price y 

Hossain, F., Jensen, 

H.H. 2000 Lithuania Monthly Longitudinal LA-AIDS OLS Aggregate/average 

Qual. adj. unit 

price 

y 

Huang, S-J., Show, C.-

R. 2010 Taiwan Monthly Aggregate AIDS iterative 3SLS N/A Other 

y 

Huq, A.S.M.A., et al. 2004 Bangladesh Annual HH survey LA-AIDS Not reported Not described 

Unadj. unit 

price 

y 

Hutasuhut, M. et al. 2001 Indonesia Annual HH survey LA-AIDS Not reported Two-step method Not described  

Ishdorj, A., Jensen, 

H.H. 2008 USA Monthly Longitudinal Censored AIDS  Bayesian Other  

Unadj. unit 

price 

 

Islam, M.R. et al. 2007 Bangladesh Annual HH survey LA-AIDS OLS Not described 

Unadj. unit 

price 

y 

Ismail, S.Z., Lofti, G.R. 2007 Egypt Annual Aggregate 

Barton mixed 

model/AIDS Not reported Not described Not described 

y 

Jabarin, A.S., Al-

Karablieh, E.K. 2011 Jordan Annual HH survey LA-AIDS ITSUR Two-step method Not described 

 

Jaffry, S., Brown, J. 2008 UK Monthly Aggregate Dynamic AIDS Not reported N/A 

Unadj. unit 

price 

 

Klonaris, S., 

Karagiannis, G. 2002 Greece Annual HH survey LA-AIDS Not reported Two-step method 

Qual. adj. unit 

price 

 



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Kuchler, F. et al. 2010 USA Monthly Aggregate LA-AIDS ISUR N/A 

Unadj. unit 

price 

 

Kumar, P., Dey, M.M. 2004 

Canada/ 

India Annual HH survey QAIDS Not reported Aggregate/average Other 

 

Lazaridis, P. 2003 Greece Annual HH survey LA-AIDS SURE Two-step method 

Qual. adj. unit 

price 

 

Le, C.Q. 2008 Vietnam Annual HH survey AIDS OLS Not described Retail price  

Lecocq, S., Robin, J.-

M. 2006 France Quarterly Longitudinal QAIDS ITSUR Aggregate/average 

Unadj. unit 

price 

 

Leffler, K.K. et al.* 2012 US Annual HH survey EASI SUR Aggregate/average 

Qual. adj. unit 

price 

y 

Lema, D., et al. 2007 

Paraguay/ 

Bolivia Annual HH survey LinQuad ISUR Two-step method 

Unadj. unit 

price 

y 

Lin, B.H., et al.  2008 USA Annual HH survey Translog model Not reported Two-step method 

Unadj. unit 

price 

 

Lin, B.H., et al.  2011 USA Monthly Aggregate AIDS ITSUR N/A 

Unadj. unit 

price 

y 

Llanto, G.M. 1996 Philippines Annual HH survey QAIDS ITSSUR Not described Not described y 

Lopez, J.A, Malaga, J. 

E. 2009 Mexico Annual HH survey 

Two-step censored 

demand model ML Two-step method 

Unadj. unit 

price 

y 

Luchini, S, R., et al. 2001 Bulgaria Monthly Aggregate AIDS SUR N/A Not described y 

Ma, H. et al. 2003 China Annual Aggregate LA-AIDS ITSUR N/A Other  

Maynard, L.J. 2000 USA Monthly Aggregate LA-AIDS ITSUR N/A Retail price  

Maynard, L.J., Liu, D. 1999 USA Monthly Aggregate LA-AIDS Not reported N/A 

Unadj. unit 

price 

 

Mazzocchi, M. 2004 Italy Monthly Aggregate AIDS SUR Aggregate/average Retail price y 

Meyerhoefer, C.D., et 

al. 2005 Romania Monthly Longitudinal 

Continuous/censored 

commodity demand 

system GMM Other  

Qual. adj. unit 

price 

y 

Minot, N., Goletti, F. 2000 Vietnam Annual HH survey LA-AIDS Not reported Not described Other  

Monnet Benoit, P.G., 

Souza-Posa, A. 2011 Cote d'Ivoire Annual HH survey LA-AIDS 2SLS Aggregate/average 

Qual. adj. unit 

price 

y 

Moschini, G., Rizzi, 

P.L. 2007 Italy Monthly Aggregate 

NQ Mixed Demand 

System ML N/A 

Qual. adj. unit 

price 

 



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Moschini, G., Rizzi, 

PL. 2005 Italy Monthly Aggregate 

Stone-Geary Mixed 

Demand Model ML N/A 

Qual. adj. unit 

price 

 

Mudassar, K. et al.* 2012 Pakistan Annual HH survey LA/AIDS ITSUR Not described 

Unadj. unit 

price 

y 

Muhammad, A., et al. 2011 Multiple Annual Aggregate Florida-Slutsky ML N/A Other  

Mutondo, J.E, 

Henneberry, S.R. 2007 USA Quarterly Aggregate Rotterdam model ITSUR N/A 

Unadj. unit 

price 

 

Niimi, Y. 2005 Vietnam Annual HH survey LA-AIDS SUR Not described Retail price  

Okrent, A.M., Alston, 

J.M. 2011 USA Monthly Aggregate FD-LAIDS ITSUR Aggregate/average Retail price 

y 

Okrent, A.M., Alston, 

J.M.* 2012 USA Monthly HH Survey GODDS GLS Aggregate/average Retail price 

y 

Ozer, H. 2003 Turkey Annual HH survey 

Linear Expenditure 

System SUR Not described Retail price 

y 

Peterson, H.H., Chen Y. 2005 Japan Monthly Aggregate Rotterdam model Not reported N/A Retail price y 

Piggot, N.E., et al. 2007 USA Monthly Aggregate Generalized AIDS  ITSUR N/A 

Unadj. unit 

price 

 

Pintos-Payeras, J.A. 2009 Brazil Annual HH survey AIDS Not reported Not described Retail price y 

Pittman, G.F. 2004 USA Annual HH survey LA-AIDS SUR Two-step method 

Unadj. unit 

price 

y 

Pofahl, G.M., et al. 2005 USA Annual HH survey QAIDS ITSUR N/A 

Unadj. unit 

price 

y 

Pomboza, R. Mbaga, 

M. 2007 Canada Annual HH survey AIDS  SUR Aggregate/average 

Unadj. unit 

price 

y 

Pruitt, J.R., Raper, K.C. 2010 USA Monthly Aggregate AIDS GMM Not described Retail price  

Quagrainie, K. 2003 USA Monthly Aggregate Dynamic AIDS 

Non-linear 

procedure in 

SHAZAM N/A Other 

 

Radwan, A. et al. 2009 Spain Monthly Aggregate Generalized AIDS  Not reported N/A Retail price  

Radwan, A., et al. 2008 Spain Monthly Aggregate Generalized AIDS 

Largest 

likelihood 

function value N/A Retail price 

 

Ragab, M.A.S., et al. 2008 Egypt Annual Aggregate LA-AIDS 3SLS Not described Not described y 



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Ramadan, R., Thomas, 

A. 2011 Egypt Annual Aggregate 

Mixed demand 

model 

Non-linear 

SUR Aggregate/average Other 

y 

Raper, K.C. 2002 USA Annual HH survey 

Linear Expenditure 

System 

Non-linear 

SUR Two-step method Retail price 

 

Razzaque, A. et al. 1997 Bangladesh Annual HH survey 

Food Characteristics 

Demand System 

(FCDS) Not reported Not described Other 

y 

Regorsek, D., Erjavec, 

E. 2007 Slovenia Annual HH survey LA-AIDS 

System linear 

regression Aggregate/average 

Unadj. unit 

price 

 

Revoredo-Giha, C., et 

al. 2009 Scotland Monthly Aggregate LA-AIDS SURE N/A 

Unadj. unit 

price 

 

Rickertsen, K., 

Kristofersson, D. 2003 Norway Annual Aggregate LA-AIDS 3SLS N/A Other 

 

Rickertsen,K. 1998 Norway Annual Aggregate AIDS SUR N/A Other  

Santarossa, J.M, 

Mainland, D.D. 2003 UK Monthly Longitudinal AIDS Not reported Aggregate/average 

Unadj. unit 

price 

y 

Schmit, T.M, et al. 2002 USA Monthly Longitudinal 

Two-step censored 

demand model ML Two-step method 

Unadj. unit 

price 

 

Sckokai, P, et al. 2009 Italy Monthly Aggregate AIDS GMM Aggregate/average 

Unadj. unit 

price 

 

Seale, J., et al. 2003 Multiple Annual Aggregate Florida-Slutsky ML N/A 

Unadj. unit 

price 

 

Shirota, R., Sonoda, 

D.Y.* 2012 Brazil Annual HH survey AIDS GLS Not described Not described 

y 

Smed, S., et al. 2007 Denmark Monthly Aggregate AIDS ML Aggregate/average 

Unadj. unit 

price 

 

Souza, G.S., et al. 2008 Brazil Annual Aggregate 

Partial Equilibrium 

Model 3SLS N/A Other 

 

Stockton, C., Capps, O. 2005 USA Annual HH survey Censored AIDS  OLS Two-step method 

Unadj. unit 

price 

y 

Taniguchi, K., Chern, 

W.S 2000 Japan Monthly HH survey AIDS ITSUR Two-step method Other 

y 

Tekguc, H.* 2011 Turkey Annual HH survey LA/AIDS FGLS Two-step method Not described y 

Tey, S.Y., et al. 2008 Malaysia Annual HH survey LA-AIDS Not reported Not described Not described  

Tey, S.Y., et al. 2008 Malaysia Annual HH survey LA-AIDS ML Two-step method Not described  



Authors Year Country Data frequency Data Function type 

Estimation 

type Data censoring Price type 

 

CPE** 

Thiele, S. 2008 Germany Annual HH survey LA-AIDS SUR Two-step method 

Qual. adj. unit 

price 

 

Thiele, S. 2010 Germany Annual HH survey LA-AIDS SUR Two-step method 

Qual. adj. unit 

price 

y 

Tiffin, R. et al.* 2011 UK Annual HH survey AIDS SUR Other  

Unadj. unit 

price 

y 

Tiffin, R., Arnoult, M. 2010 UK Annual HH survey AIDS Bayesian Other  

Unadj. unit 

price 

y 

Tinooco, J.R., et al. 2011 Mexico Monthly Aggregate AIDS 

SUR 

(SYSLIN/SUR) N/A Retail price 

y 

Turk, J., Erjavec, E. 2001 Slovenia Annual HH survey LA-AIDS SURE Not described 

Unadj. unit 

price 

y 

ul Haq, Z. et al. 2008 Pakistan Annual HH survey LA-AIDS ITSUR Not described Not described  

Ulimwengu, J.M. et al. 2009 Ethiopia Annual HH survey AIDS SUR Not described Not described y 

Ulimwengu, J.M., 

Ramadan, R. 2009 Uganda Annual HH survey AIDS Not reported Not described Not described 

 

Ulubasoglu, M. et al. 2010 Australia Quarterly HH survey LA-AIDS Not reported Two-step method Retail price y 

Verbeke, W., Ward, R. 

W. 2001 Belgium Monthly Longitudinal AIDS  Not reported N/A Not described 

 

Weliwita, A., et al. 2003 Tanzania Annual HH survey LA-AIDS 

Nonlinear 

ITSUR Two-step method 

Unadj. unit 

price 

y 

Yeboah, G., Maynard, 

L.J. 2004 Japan Monthly Aggregate Rotterdam model SUR N/A Retail price 

y 

*only cross-price elasticities are extracted from these studies as search for publications estimating cross-price elasticities was done separately and with a later end date. While 

own-price elasticity estimates are available from these studies, these are not included to avoid bias as this would exclude studies not presenting cross-price elasticities and 

dating beyond August 2011.  

**Studies present cross-price elasticities 
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