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Abstract 
 

South Africa is home to the largest number of people living with HIV in the world, as well as the 

world’s largest public-sector antiretroviral treatment (ART) programme. Despite the absolute majority 

of it being domestically funded, planning and budgeting for this programme has in the past been 

based on assumptions regarding target population and unit cost and on politically expedient coverage 

targets. The aim of this thesis was to improve on this situation by developing a budget impact model 

that could project the number of adults and children in treatment based on sound epidemiological 

methods, and calculate the cost of treating them based on the results of detailed bottom-up cost 

analyses at relevant clinics and hospitals in South Africa. The thesis describes the methods used in 

generating the inputs for the model, including the outpatient and inpatient cost of ART provision to 

adults and children of different ages, and the rates of CD4 cell count development, mortality, loss to 

follow-up, treatment failure, and regimen switches that were used in the model. The model was used 

to illustrate the budget impact of a number of guideline changes under discussion by the South 

African government in 2009/10, including 1.) expanding eligibility to all adults with CD4 cell counts 

<350 cells/microl, as well as to all TB co-infected and pregnant patients and all children under the age 

of 12 months regardless of immunological status, and 2.) replacing stavudine in first-line regimens 

with tenofovir for adults and with abacavir for children, with concomitant changes to second-line 

regimens. Both 1.) and 2.) had been suggested by the 2009 World Health Organization (WHO) 

guidelines (“Full WHO guidelines”). A second scenario was considered that expanded eligibility at 350 

CD4 cells/microl only to those adults who were pregnant or had active TB at initiation while also 

replacing the current drug regimens as under 2.) (“New guidelines”). Additional factors with an impact 

on cost that were considered in the model were a) the introduction of a task-shifting policy that 

allowed antiretroviral drugs to be prescribed by nurses instead of doctors, and dispensed by 

pharmacy assistants instead of pharmacists, and b) replacing the existing system of antiretroviral drug 

procurement via government tenders that favour domestic production with drugs sourced globally at 

ceiling prices based on the cheapest internationally available price for each drug, including fixed-dose 

combinations (FDCs) wherever possible. Combining all the inputs, the model showed that while the 

Full WHO guidelines scenario would increase total cost over the next two mid-term expenditure 

framework periods (2010/11 to 2016/17) by 35% to USD 19.1 billion, and the New Guidelines 

scenario by 19%, this increase could be more than offset by introducing the two additional policies. In 

this case, the total cost of the ART programme under the New Guidelines would be 32% less than 

under the Old Guidelines without FDCs and task-shifting (taken as government’s revealed willingness-

to-pay), while reaching 14% more patients, and implementing the Full WHO Guidelines would still be 

23% less costly than continuing the Old Guidelines, while reaching 23% more patients. Based in part 

on this analysis, the South African government increased treatment eligibility in two steps in April 

2010 and in August 2011, introduced the improved drug regimens, established task shifting, and, 

using the proposed reference price list, negotiated significant drug price reductions for both the 

December 2010 and the December 2012 ARV drug tender. The budget impact model, named the 

National ART Cost Model, has been used in budget planning processes for the last seven financial 
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years and, based in part on it, the government’s Conditional Grant for HIV/AIDS, the main vehicle for 

ART funding, was more than doubled in real terms over this time period. The thesis ends by 

presenting the results of a cost-benefit analysis of an alternative funding mechanism to public-sector 

funding, the provision of ART at the workplace, which was found from the company perspective to be 

cost-saving over no provision of ART, reducing the total cost due to HIV by 5%, and the cost per HIV-

infected employee by 14%, over 20 years. 
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1 Introduction 

1.1 The South African national ART programme 

South Africa is home to both the largest number of people infected with the Human Immunodeficiency 

Virus (HIV) as well as the largest number of patients on antiretroviral treatment (ART) in the world 

[1,2]. At the beginning of my work on the budget impact model presented in this thesis, in February 

2010, out of a total of about 2.9 million HIV-infected citizens [3], the public-sector ART programme 

started in April 2004 had initiated more than 1 million patients, of whom 919,923 were reported to still 

be on treatment as of November 2009 [4].1 In contrast to the ART programmes of other sub-Saharan 

countries, it was also the only one that was largely domestically funded. In 2009, 83% of total HIV 

funding was provided by the government [5]. By the beginning of 2009, demand for treatment had 

increased rapidly with over 300,000 new patients initiated per year, placing tremendous pressure on 

expenditure and service delivery capacity. Partly as a result, the financial year 2008/09 saw some 

provinces stop the initiation of new patients due to shortages of funding and staff [5].   

 

The moratoria on treatment initation were identified by the National Department of Health as being 

partly due to the lack of comprehensive planning models that allowed the estimation of ART resource 

use based on the number of patients currently in care, the number of patients in need of care in the 

future, and data on rates of death and loss from the programme, to extrapolate cost into the future. At 

the same time, the government, clinicians and civil society debated a range of changes to the national 

ART guidelines, all of which would have considerable implications for the cost of the programme. As a 

result, in April 2009, the South African National Department of Health created a task team to calculate 

the resources required for national ART provision between the financial years 2009/10 and 2016/17.  

 

The proposed changes to the national ART guidelines included adopting the World Health 

Organization’s (WHO) updated ART guidelines for resource-limited settings that were under 

discussion at the time and were released in early 2010 [6]. These increased the immunological 

threshold for eligibility from <200 CD4 cells/microl to <350 CD4 cells/microl and replaced stavudine 

(d4T) with tenofovir (TDF) in first-line ART for newly initiated adults. Proposed changes to the 

paediatric ART guidelines included initiating on treatment all children <12 months who tested positive 

by HIV PCR (Early Paediatric Treatment), regardless of clinical or immunological status, and the 

replacement of stavudine with abacavir (ABC) in first-line regimens for newly initiated children. Other 

changes the task team considered were task-shifting from doctors to nurses and from pharmacists to 

pharmacy assistants, and replacing the existing system of antiretroviral drug procurement via 

                                                      
1 In the interim, both the total number of HIV-infected South Africans and those on ART have increased several-
fold. For 2014, UNAIDS estimated that there were 6.8 million people living with HIV in South Africa, out of which 
6.5 million (96%) were adults. The country was experiencing 340,000 new cases of HIV in 2014 (52% of which 
were amongst adult women), representing an adult incidence rate of 1.27. AIDS-related deaths were estimated at 
140,000 in the same year [2]. 
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government tenders that favoured domestic production with drugs sourced globally at ceiling prices 

based on the cheapest internationally available price for each drug. 

 

To help the Department of Health assess the likely effect of these changes on ART programme costs 

and to improve the accuracy of national HIV/AIDS budget projections, a health-state transition model 

was developed that combined primary data on patient costs and outcomes with existing national 

projections of numbers of patients in need of and initiating care. The model (called the National ART 

Cost Model, NACM) allowed the Department to estimate current and future budgetary needs, assess 

proposed treatment guideline changes, and calibrate programme expansion to financial resources.  

1.2 The budget process for the public-sector ART programme 

In South Africa, the public-sector antiretroviral treatment programme is implemented at the level of the 

nine provinces and funded via two mechanisms: the HIV/AIDS Conditional Grant from the National 

Treasury that pays for antiretroviral drugs, all laboratory tests that are ordered out of ART clinics, and 

a share of the staff time at the clinic. The second mechanism is the province’s general share of 

national revenue, called the Equitable Share, which is meant to cover all remaining outpatient 

expenditure, i. e., the remaining staff costs, builidings and other overheads [7]. These budget items 

cover the outpatient expenditure for ART provision only; inpatient care for patients on ART is paid for 

by the general Hospital Grant [7]. 

 

Until early 2009 the annual conditional grant budgets that were submitted by the National Department 

of Health (NDoH) to Treasury were principally based on provincial plans that contained almost no 

analysis. As a result, the process of setting a budget for the ART programme at the national level was 

based on targets and unit costs set by provinces which in turn were most often based on past budgets 

or assumptions. A notable exception was the National Strategic Plan for HIV and AIDS & STIs 2007-

2011 which marked a turn-around in the national HIV policy away from decades of underestimation 

and several years of outright denial of the problem. This plan contained a detailed analysis of the cost 

of most interventions contained in the plan that was based on population data produced by 

epidemiological models, unit costs based on cost analyses, and coverage targets agreed on by policy 

makers [8]. It did not, however, change the budgeting process for HIV or ART in South Africa.  

1.3 Aim of the model  

As will be discussed in section 4.5, owing to its size and the contested nature of its policy foundation 

during the early years, the South African ART programme has been subjected to more economic 

scrutiny than any other ART programme outside the United States [9-20]. Again because of its 

prominent nature, together with the availability of good outcomes and cost data, the programme has 

furthermore been used as a case in point for a growing body of more extensive economic analyses of 
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various changes to ART eligibility [21-27] and monitoring strategies [28] for other countries as well as 

globally, often using extensive modelling techniques. 

 

The model developed in this thesis, the National ART Cost Model (NACM), differs from these 

economic analyses of the South African ART programme in a number of important aspects. Firstly, 

and most importantly, in contrast to the previous analyses it is a national-level budget impact model, 

which means the analytical framework is dictated by the exact budget items it will inform. In contrast 

to the other analyses that reported the cost of some of these budget items only or aimed at shaping 

global decision around antiretroviral treatment provision, the NACM aims at producing cost projections 

relevant to the South African public-sector payer and budget process, using the best available local 

data regarding numbers in need of ART, on ART, and cost. Since it is a budget impact model, the 

NACM’s projection period is eight years only, spanning two mid-term expenditure framework terms, 

the relevant planning unit for public finance in South Africa; its outcomes are numbers of people on 

treatment and cost only, instead of life-years gained or utility; and most importantly, it is limited to 

calculating the part of the cost of the programme that is relevant to the ART budget. The model 

calculates the required size of both the HIV/AIDS conditional grant and the contribution from the 

equitable share, and has an option to also calculate the share of the hospital budget that will be 

required for the inpatient care of patients on ART, but does not include costs above the clinic or 

hospital level that are associated with ART provision (as these are covered under separate budgets) 

or costs accrued by HIV-positive patients not on ART, beyond costs required for the preparation of a 

patient about to initiate ART. Secondly, in contrast to most other published studies that use a 

multitude of data sources, both cost and cohort data (such as mortality, loss, and treatment failure 

rates as well as transition probabilities between CD4 cell count-defined health states) were generated 

in the same two clinics, supporting the notion that the resources used in the model in fact contributed 

to the outcomes used in the model- Themba Lethu Clinic at Helen Joseph Hospital for adult data and 

Harriet Shezi Clinic at Chris Hani Baragwanath Hospital for paediatric data.  

 

This thesis describes the characteristics and uses of the National ART Cost Model and presents the 

research used to estimate a number of the inputs used in the model. These inputs include the 

outpatient and inpatient cost of ART provision to adults and children as well as survival, retention in 

care and CD4 cell count development of the clinic cohorts used in the parameterisation of the model. 

It finishes with an analysis of an alternative funding model to public-sector provision, ART 

programmes at the workplace level paid for by private-sector companies. 

1.4 Policy changes between 2009 and 2011 

In late 2009, the results of the model were among the factors that led the South African Government 

to revise its treatment guidelines and nearly double the budget allocation for ART [29,30]. The new 

guidelines included an increase in the adult eligibility threshold to 350 CD4 cells/microl for patients 

with tuberculosis and pregnant patients, early padiatric treatment of infants under 1 year of age, and 
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the replacement of the first-line drug d4T by TDF for adults and by ABC for children, thus bringing the 

South African guidelines closer to the 2010 WHO guidelines. These changes were announced by the 

South African president, Jacob Zuma, in a speech on World AIDS Day 2009, and the budget for the 

HIV/AIDS Conditional Grant was increased by R8.4 billion (USD 1.2 billion) or 87.9% between 

2009/10 and 2012/13 [31].  

 

In order to cope with the projected increase in patients on ART as a result of these new guidelines, 

the number of public-sector clinics accredited to provide ART was increased from 497 in December 

2009 to 814 by July 2010 [32] and to 2,205 by May 2011 [33]- a more than 5-fold increase in a mere 

18 months. At the same time, task-shifting from doctors to nurses was implemented, and by May 

2011, 2,000 nurses had been trained to initiate and manage ART [33], thereby implementing one of 

the recommendations of our research for improving technical and economic efficiencies. The second 

suggested measure, the opening of the 4-yearly tender process for antiretrovirals to international 

bidders, was implemented for the ARV tender negotiated in December 2010 and led to a reduction of 

the per-drug cost by an average of 53% [33], a reduction in the cost of the standard first-line regimen 

for adults of 32% [34], and a reduction in the projected annual cost of the ART programme by 25% to 

26% [34]. Lastly, in April 2010 the Government embarked on a country-wide HIV counseling and 

testing (HCT) campaign which succeeded in counseling 14 million South Africans, and testing 12 

million of them, over 15 months, during which 2 million people were found to be HIV positive and were 

referred for further care [33].  

 

As a result of these changes, by the middle of 2011, the number of patients receiving ART in South 

Africa was estimated at 1.79 million out of a total of 3.1 million HIV-positive people, with adult ART 

coverage having increased to 79% under the old eligibility criterion (CD4 < 200 cells/microl), or 52% 

under the eligibility criterion of the 2010 WHO guidelines (CD4 < 350 cells/microl) [3].  

 

In August 2011, again based in part on the model projections, the adult guidelines were revised a 

second time, to now increase the eligibility threshold to 350 CD4 cells/microl for all adults. This last 

step meant that within less than two years the 2010 WHO ART guidelines had been fully implemented 

[35]. The National Strategic Plan on HIV, STIs and TB 2012-2016 which was issued by the South 

African National AIDS Council in December 2011 then extended adult eligibility further to include 

pregnant patients and patients with TB regardless of CD4 cell count [36]. Because coverage of 

children with ART was lagging behind adult coverage, additional resources were committed to Early 

Infant Diagnosis with PCR, and in August 2012 the age of eligibility for immediate treatment 

regardless of CD4% or clinical status was progressively raised to encompass all children aged below 

six years [37]. 

 

Beyond enabling decision makers in the South African government to commit to guideline and other 

programmatic changes, the model also improved the budgeting process for ART more generally, by 

allowing the national Department of Health in particular to scrutinise budget submissions from 
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provinces and motion for budget increases from Treasury based on real data. This aspect will be 

discussed in more detail in section 11.3. 

1.5 Alternatives to public sector provision of ART 

Despite early commitments by the South African National AIDS Council and the South African 

Business Coalition on HIV/AIDS to involve the private sector in the roll-out of ART, the private sector 

has been slow to implement HIV care. In November 2009, between 51,633 and 86,000 patients were 

reported to be on ART through private sector programmes such as workplace treatment programmes 

and disease management providers - less than 10% of the public-sector treatment cohort [4]. 

According to the National AIDS Spending Assessment conducted for 2008/09, the private sector 

contributed about 8.5% of the country’s total HIV expenditure [38]. In 2006, an analysis of 53 

companies with more than 6,000 employees in South Africa showed that while availability of treatment 

was high, uptake was low, with only 27% of HIV-positive patients enrolled in any kind of disease 

management programme [39]. The 2012-16 National Strategic Plan set out to address the 

“inadequate co-ordination of public sector, private sector and non-governmental sector responses” 

and called on all employers to ensure that employees had access to testing, prevention, pre-ART 

(“wellness”) care and treatment, with special attention given to high-risk workplaces such as mines 

[36].  

 

Among the possible alternatives to public-sector funding of ART provision, workplace provision stands 

out in that businesses, by offsetting absenteeism and high labour turnover due to HIV, have a 

potential to reap positive financial returns from a treatment programme. A synthesis of work on the 

impact of HIV prevalence and ART on companies of different sizes in sub-Saharan Africa reported 

that ART at a cost of USD 360/ year (in 2006 terms) was cost-saving for most larger companies, 

depending on HIV prevalence, the skill level of the employees and existing employment and benefit 

policies [40]. Very few analyses quantified the impact of ART on a single workforce, and none of them 

had been conducted in South Africa [41,42].  

 

The final section of the thesis reports on a cost-benefit analysis of an antiretroviral treatment 

programme supplied by a coal mining company in South Africa and discusses the impact of extending 

it to all HIV-infected employees and to the miners’ families, respectively. It is the first full cost-benefit 

analysis of ART provision at the workplace of any country that includes not only the impact on worker 

absenteeism and productivity but also healthcare costs and is based on primary data. 
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2 Background 

2.1 Economic evaluation of healthcare programmes - principles and uses 

Economic evaluation of health interventions consists of a suite of methods that allow the comparison 

of the costs and outcomes of medical interventions in order to make decisions in a situation of 

resource constraint [1], effectively providing answers in a situation in which healthcare is an economic 

good for which resources are limited while the possible uses for these resources are unbound [2]. 

Importantly, cost in this sense is not the result of an accounting procedure, but the value of the benefit 

that was forgone by not choosing the next best alternative - in other words, cost in economic 

evaluation is defined as opportunity cost [2]. Economic evaluation helps policy makers gain maximum 

benefits from a given level of resources, or minimise the cost to achieve a desired level of benefit, by 

improving the technical and/ or economic efficiency of existing practices, both when planning new 

interventions and when expanding existing ones.  

 

A full economic analysis of a healthcare intervention always includes costs as well as consequences 

and compares two or more alternatives. It can take one of three different forms [3]:  

1. Cost-effectiveness analysis, which compares the cost of an intervention with its effects, where 

the outcome is either a process or intermediary health indicator or a final health outcome such 

as life years (LY) gained. 

2. Cost-utility analysis, which compares the cost of an intervention with its outcome valued using 

health-state preferences. Results are often presented as cost per quality-adjusted life year 

(QALY) gained or cost-per disability-adjusted life year (DALY) averted. 

3. Cost-benefit analysis, which compares the cost of an intervention with its outcome valued in 

monetary terms, often in terms of the willingness-to-pay of a group of individuals or society as 

a whole.  

 

Cost-benefit analysis (CBA) is the original and most comprehensive of the techniques discussed 

above. In its purest form, a CBA evaluates as wide a range of health and other consequences of a 

new intervention as possible and compares these with the required resources in a form of 

compensation test- that is, whether those who gain from the new intervention could theoretically 

compensate those who lose due to it, and still end up in a preferred position [1,4]. It is also the only 

type of economic evaluation that allows the consideration of the value created by a healthcare 

programme that is not directly linked to changes in health, such as receiving additional information or 

reassurance. In keeping with its welfarist foundations, the perspective from which the analysis is 

conducted and which defines which costs and benefits to include is that of society as a whole. Under 

specific circumstances, such as when the payer for a healthcare programme is clearly defined and 

reaps all or most of the benefits from the programme, the perspective can be changed to be that of 

the particular payer (i.e., a government, an individual or a company). The decision rule based on the 

results of CBAs is simple: if the sum of the benefits of an intervention if greater than the sum of its 
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costs (in other words, if the net benefit, the difference between benefits and costs, is positive), it 

should be undertaken on the grounds of efficiency [2]. 

 

A cost-effectiveness analysis (CEA) extends the notion of welfarism by allowing for an exogenously 

defined societal objective in terms of maximising health, and an exogenously set budget constraint for 

healthcare, a concept that has been called “extra welfarism” [5], or social decision making [1]. In other 

words, while CBA can be used to determine the overall budget in line with the most efficient resource 

allocation between interventions, CEA can be used to allocate resources most efficiently after the 

overall budget has been allocated to a particular intervention [6]. The decision rule resulting from this 

is that an intervention is cost effective if its cost per defined outcome is lower than a pre-defined 

threshold signifying the willingness-to-pay of the relevant payer (which can be a government, society, 

an individual or a company). As in a CBA, this payer also defines the perspective that the analysis 

takes. 

 

Cost-utility analysis extends the notion of the societal objective in terms of maximising health by 

adding an explicit valuation of utility to it; as a result, it is for example able to compare the resources 

spent on an intervention or policy option with its impact not only on length but also on quality of life. 

Utility, or quality weights, can be elicited from society as a whole, healthcare providers, or patients, 

each of which will result in different values. The same decision rule as for CEA applies, though the 

willingness-to-pay threshold will be different. 

2.2 Budget impact analysis in healthcare - principles and uses  

Budget impact analysis (BIA) is an evaluation of the financial consequences arising from a 

reimbursement decision regarding a healthcare technology, intervention or programme in a specific 

healthcare setting [8]. In contrast to the normative framework of a full economic evaluation which 

allows policy makers to prioritise between interventions by comparing the relative cost of 

implementing a new intervention or scaling up an existing one with the relative outcomes of the 

intervention, a budget impact analysis focuses on the costs and use of other resources by an 

intervention and its alternatives only, leaving out all considerations of outcomes, and as such allows 

policy makers to decide on an intervention’s affordability and sustainability [9]. While an economic 

evaluation seeks to include all benefits from an intervention, potentially requiring a societal 

perspective and modelling over the lifetime of the patient cohort in question, a BIA is typically 

conducted from the perspective of the relevant payer (which can be the government or any other 

funder or funders, such as reimbursement agencies), and its timeframe is defined by this payer’s 

planning and budgeting cycles [9].  

 

BIAs are now part of the standard requirement for submissions to a number of national regulatory 

agencies, such as the National Institute for Clinical Excellence (NICE) in England and Wales and the 

Pharmaceutical Benefits Advisory Committee (PBAC) in Australia, as well as several managed care 
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organisations in the US [9]; however, the degree to which the information on budget impact informs 

the decisions of these regulators differs. Generally, it is important to note that decisions on whether or 

not a specific healthcare intervention will be funded will depend mostly on the robustness of evidence 

on effects and cost-effectiveness of an intervention, while the BIA’s role is mostly in aiding planning 

and budgeting for the intervention once a decision to fund it has been made [10]. Thus, a BIA tends to 

supply secondary information regarding affordability and, potentially, sustainability to supplement the 

primary information regarding value added that is conveyed in an economic evaluation [7]. 

 

BIA was introduced into the health economic literature by Mauskopf in 1998 [11] as a complement to 

standard economic evaluations. She proposed that a full economic assessment of a new drug should 

include a CEA in order to establish product efficiency and value from a societal perspective, as well as 

a BIA to determine affordability as well as the impact on service use and population health from a 

national health insurance perspective [11]. Since then, a number of national and international 

guidelines have been issued that describe principles of good practice for the execution of BIAs [8-

10,12-14].  

 

In 2007, the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 

published the report of a task force that had been formed to issue good research practices for 

modellers and end users of BIAs [8]. One focus of the recommendations was that the perspective of 

the specific healthcare decision maker was paramount in selecting data on the target population for a 

health intervention, the current and expected new treatment mix, and the relevant resource use and 

costs. Additionally, scenario analysis representing alternatives of relevance for the decision-maker 

should be added, similar to sensitivity analyses in CEAs. Another recommendation was that the 

simplest possible analytical framework that would produce transparent, valid estimates should be 

chosen; though that if a health-state transition model was needed, all possible health outcomes, 

together with their cost, for the total population affected by the intervention should be included [8]. 

Finally, a recommendation was made to present the resulting costs undiscounted since these reflect 

financial streams over time, but to leave the framework open for the decision maker to add 

discounting if the need arose, using local practice [8]. 

 

In 2014, the same organisation convened another task force to update these recommendations. 

Concerns regarding potential access restrictions, the anticipated uptake, and the use and effects of 

the new interventions as well as current interventions that might be replaced by them were added. In 

terms of methods, again simplicity was paramount, with a specific recommendation for a simple 

spreadsheet-based cost calculator approach unless anticipated changes in the target population, 

disease severity mix or treatment pattern would call for a condition-specific cohort or patient 

simulation model. In terms of uncertainty analysis, the recommendations limit it to parameter 

uncertainty of the input values and structural uncertainty in the choice of the analytical framework. 

Since data for a new intervention is often limited, standard approaches such as one-way and 

stochastic analysis can often not be carried out meaningfully, in which case the task force 
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recommended scenario analysis taking into account plausible alternative input parameter values and 

structural assumptions. Finally, a recommendation for validation of the computing framework and 

input data was added, including, at the least, a check for face validity with the decision makers and 

the verification of calculations [10]. 

 

In a review of existing BIA guidelines, including the first of the ISPOR guidelines, in 2011 Garattini 

and van de Vooren summarised the existing national and international recommendations at the time 

to generate a single definition of a state-of-the-art BIA: a “BIA should be defined as an EE [economic 

evaluation] conducted: (1) according to the budget holders’ perspective; (2) with a short TH [time 

horizon] (<3 years) and within a clearly specified setting; (3) where results are expressed as 

undiscounted cost differences between the new scenario (including the new technology) and the 

current/ reference scenario; (4) taking account of the potential trade-offs in healthcare resources 

induced by the effectiveness of the new technology, and (5) examining the results using SA 

[sensitivity analysis] responsive to the uncertainty surrounding future market developments (like 

scenario analysis), and easy to understand by budget holders (like the analysis of extremes)” [7]. To 

this one could add that rather than restricting the time horizon for the analysis to an arbitrary 3 years, 

this, as the rest of the analytical framework, should be defined by the planning horizon of the payer 

whose perspective the BIA takes, be this a budget cycle, a government tender period, or similar.  

 

In South Africa, guidance on economic analyses, including budget impact analyses, for priority setting 

in the public sector is lacking. Since 2013 the country has had a set of guidelines for 

pharmacoeconomic analyses that guides submissions to the Pricing Committee of the directorate for 

Pharmaceutical Economic Evaluations of the National Department of Health [15]. While these 

guidelines are very detailed in their description of the required aspects of such analyses, including 

modelling methods, they currently apply to submissions for the private sector only, and do not give 

any details on budget impact analyses [15]. 

2.3 Cost-effectiveness analysis vs. budget impact analysis: What is useful for 
governments? 

Trueman et al in 2001 defined the BIA as an analysis that “falls somewhere between a simple 1-year 

accounting model and the costing side of an economic evaluation from a societal point of view” [8]. 

Despite the fact that BIA is a somewhat simpler and restricted method than an economic evaluation, 

in our experience it has an important role to play in allowing a government that has made up its mind 

about its priorities to decide on the exact strategy for initiating or increasing coverage with a new 

programme and commit the necessary resources. The answer a BIA gives might be simple, but often 

it is exactly the answer to the question that a government has asked. 

 

The notion of policy makers at national government level prioritising information on affordability over 

information regarding cost-effectiveness is borne out by recent reviews of the criteria used in 
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healthcare priority setting by decision-makers around the world. A review of 40 papers describing 

either surveys amongst policy makers or tools used in priority-setting found that criteria relating to 

cost, budget impact, or financial impact were mentioned as relevant 29 times, while cost effectiveness 

was mentioned 23 times [16]. Likewise, a review of 36 studies concluded that cost effectiveness had 

limited influence on healthcare decision-making at different political levels [17]. Garattini and van de 

Vooren argue that it is exactly the preference for complexity that is inherent in an economic evaluation 

- and more especially a cost-effectiveness analysis -, such as a societal perspective and a time 

horizon that includes all potential benefits of a new intervention or technology, that makes the results 

unwieldy for decision makers and has given rise to the popularity of BIAs for budget holders [7]. 

 

As mentioned in chapter 1, because of its size and its ability to generate and record relevant data, by 

2009 the South African public-sector ART programme had already been subjected to a large number 

of economic analyses, including cost analyses, cost-utility and cost-effectiveness analyses. A number 

of analyses had furthermore sought to extrapolate from South African data to answer questions about 

the relative cost effectiveness of increases in eligibility and of treatment for HIV prevention for low- 

and middle-income countries generally. An important finding from our work with the South African 

Department of Health and Treasury was that the final decision to change the national antiretroviral 

treatment guidelines in order to increase eligibility and provide better drugs was not made based on 

criteria of cost effectiveness but on criteria of affordability. It stands to reason however that some or all 

of the numerous cost-effectiveness analyses that had been conducted previously were important in 

preparing this decision, in particular two analyses of the cost effectiveness of replacing d4T by TDF in 

the first-line regimen for adults [18] and of increasing the eligibility threshold from 200 to 350 CD4 

cells/microl [19].  

 

Be this as it may, in 2009, the South African government, after having answered the question “Is an 

expansion of the ART programme a good investment?” in the affirmative, needed an answer to the 

question “What will it cost compared to the planned health budget?”. This type of question could only 

be answered by a budget impact analysis.    

2.4 Modelling in the economic analysis of healthcare interventions 

In both economic evaluations and budget impact analyses, mathematical models are used as a 

means of extrapolating data from a clinical trial or the literature in a way that goes beyond the original 

setting of the trial or study, both in terms of time period as well as populations covered. As the review 

of existing literature on budget impact analyses of HIV interventions in Chapter 4 will show, it would 

have been impossible to calculate the cost and budget impact of ART provision under a number of 

different eligibility scenarios and combinations of drug regimens for a national-level cohort comprising 

both adults and children without taking respite to a detailed mathematical model. Despite the 

differences in purpose and design mentioned above, much of the structure of such a model will be 
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similar between an economic evaluation and a budget impact analysis, so the principles informing the 

choice of this structure are reviewed together here. 

 

In general, models used in the economic evaluations and budget impact analyses of healthcare 

interventions consist of a set of mathematical operations that structure the extrapolation of an 

intervention’s effects and cost over time [1] and allow linking observable intermediate endpoints (for 

example, a CD4 cell count) to final endpoints (for example, HIV disease progression or survival) [2]. 

Models can be used whenever input data from more than one source have to be synthesised in a 

meaningful way, allowing the analyst to deal with uncertainty arising from these different sources 

systematically [2]. 

 

Standard literature on the methodology of models used for economic analysis in healthcare settings 

suggest that the analytical framework should incorporate the following aspects [1,2,3]: 

1. Consideration of all relevant scenarios for comparison that could be used in practice, 

including, where appropriate, a “do nothing” scenario; 

2. A framework for evidence synthesis that incorporates all relevant evidence; 

3. An appropriate time horizon that is able to capture the relevant differences in cost and/ or 

outcomes between the scenarios; 

4. An explicit treatment of uncertainty in both the observed data and techniques used in their 

extrapolation which allows the user of the model results to see how uncertainty in the 

evidence translates into uncertainy surrounding the decision. 

 

While models are primarily a means of expanding the knowledge generated by other forms of 

research beyond the limits of the observed, they also bear the risk of adding uncertainty, especially in 

terms of parameter uncertainty in the data points chosen and in terms of structural uncertainty in 

terms of the choice of analytical framework. Another source of bias lies in the nature of the 

extrapolation, where outcome data is often based on surrogate markers requiring additional 

assumptions regarding the relationship between the observed marker and the outcome. The use of 

uncertainty analysis or, in the case of models used for BIA, scenario analysis is therefore paramount. 

 

A number of different techniques have been devised over the last decades for use in modelling 

healthcare interventions. An important distinction between these methods is whether their inputs are 

based on data from single patients (microsimulation models) or on cohort averages and their ranges 

(decision trees and health-state transition models). Cohort-based models often follow groups of 

people through a series of mutually exclusive and collectively exhaustive health states that together 

fully describe the course of a disease. Health states are meant to be differentiated from each other by 

important differences in terms of either the outcomes (eg, probability of survival) or the cost attached 

to the categories used to describe them, or both. Decision trees are organised in such a way that 

movements between health states follow a fixed sequence and each health state can be occupied 

only once by a group of individuals, while health-state transition models typically allow groups of 
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individuals to revisit health states and are often run until all individuals have entered into an absorbing 

state from which there is no exit (most often the “Dead” state). Another important difference between 

decision trees and health-state transition models is the use of time - in decision trees, time is often not 

explicitly defined and is mostly relevant for defining the sequence of events; health-state transition 

models on the other hand evaluate the evolution of health states over defined time periods, called 

model cycles [2].  

 

In both types of models, transitions between health states depend on a set of transition probabilities 

that are conditioned on the characteristics of the current health state, and costs get accumulated 

along the path a group of individuals take through the model. The most frequently used type of health-

state transition models are Markov models in which transition probabilities often are characterised by 

two additional criteria: firstly, the “Markovian assumption” of zero memory which defines that transition 

probabilities can only ever be conditional on the last health state, and all “memory” of previous events 

is lost; and secondly, the time homogeneity of transition probabilities, in which all probabilities apply to 

the same length of time (called a model cycle, defined as a time period relevant for the disease or 

intervention in question).  

 

A second important distinction between types of disease models is whether they are solved using 

deterministic or stochastic methods. While microsimulation models tend to be stochastic models that 

are evaluated using between ten thousands to millions of model runs, for decision trees and health-

state transition models, this choice is open to the analyst.  
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3 Research question 
 

This thesis sets out to investigate how the results of cost and outcome analyses in routine care can 

be used to parameterise a budget impact model in a way that informs budgets and guideline changes 

and other policy decisions regarding HIV policy and programming. The thesis firstly reviews available 

global evidence from and methods used for modelled estimates of the cost of providing antiretroviral 

treatment (ART) as well as estimates of the budget impact of HIV interventions more generally. It then 

summarises the findings of cost and outcome analyses of adult and paediatric ART provision at the 

outpatient and inpatient level collected at seven different hospitals in various regions of South Africa. 

In a next step, the thesis describes how these findings were used to parameterise a health-state 

transition model predicting the size of the treatment cohort and budget required for the South African 

national public-sector treatment programme between 2009/10 and 2016/17, and discusses how this 

model has been used to inform the national ART budget, changes to clinical guidelines, and other 

policy decisions in South Africa over the last seven financial years. Lastly, the thesis examines the 

cost benefit of ART provision by the employer at the workplace level as an alternative to public-sector 

provision. 
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4 Literature review: Past use of economic evaluation and budget-
impact models of HIV-related interventions worldwide 
 

This chapter summarises the findings of a review of the literature on economic analyses, including 

budget impact analyses, of HIV interventions worldwide, covering the last 27 years. The literature was 

reviewed in two parts: The first search focused on budget impact analyses of any HIV intervention, 

including HIV prevention and testing interventions as well as antiretroviral treatment, with the aim of 

describing the methods used in these analyses, with particular reference to the best practice 

principles established in the ISPOR guidelines reviewed in section 2.2 [1,2], in order to establish any 

methodological gaps left by these analyses. Because of the limited number of such analyses and the 

fact that even fewer of them used health-state transition models such as the model described in this 

thesis, a second search considered all economic analyses of antiretroviral treatment that had made 

use of a health-state transition model, with the aim of describing the methods used in the construction 

of these models.  

 

Due to the purpose they fulfilled in the development of this thesis, the searches cover different time 

periods. The search for economic evaluations was done at the beginning of my work on the budget 

impact model discussed in this thesis, with the aim of establishing methodological gaps and informing 

the structure of this model; it covers the time period from 1988 to 2011. The time period for the budget 

impact analyses however was extended until 2014 due to the scarcity of such publications by 2011. 

4.1 Background 

4.1.1 Nomenclature 

Categorising the literature as either pertaining to a budget impact analysis or an economic evaluation 

(including cost, cost-effectiveness, cost-utility and cost-benefit analyses) was difficult, in part due to 

the fact that BIA as a separate method was introduced much later than economic evaluation, in 1998 

[3], and was only formally defined fully in 2001 [4]. In addition, many papers that reported the results 

of a BIA were not labelled as such by the authors, while many papers on economic evaluations 

included limited information also relevant to a BIA, such as the full cost of the intervention, but without 

the intention of informing a budget (i.e., often without having identified a payer or giving consideration 

to this payer’s budget period).  

 

For the purposes of this review, based on the ISPOR guidelines summarised in section 2.2 [1,2], I 

therefore defined as budget impact analysis any paper that gave information on the future cost of an 

intervention from the perspective of a distinct payer or payers which had been declared by the 

analyst(s). Additionally, at least one of the results of such an analysis needed to be the full or 

incremental cost of introducing or scaling up an intervention, over a time period not exceeding five 

years; papers giving average costs per patient or per patient year only, or reporting costs over longer 
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time periods were not considered to be BIAs. Papers reporting resource needs estimates, often for a 

whole number of low- and middle-income countries together, were equally not classified as BIAs, 

since although they tended to report full costs, they did not explicitly mention the payer or payers. 

Lastly, papers retrospectively reporting expenditure rather than future costs were not considered BIAs 

either. 

 

On the other hand, all papers that were declared by the authors to be cost, cost effectiveness, cost-

utlity or cost-benefit analyses were considered to be economic evaluations for the purposes of this 

review. As the focus of this thesis is on budget impact analyses, the review of economic evaluations 

was restricted to modelled evaluations of ART only, and these were reviewed mostly for information 

regarding the methods used in constructing health-state transition models, while the review of BIAs 

included analyses of any HIV intervention and both analyses that made use of a model and those that 

did not. If a paper reported on both a BIA and an economic evaluation using a health-state transition 

model, the two methods were considered separately in this review. 

 

4.1.2 Principles and eras of antiretroviral therapy 

Since many of the reviewed papers regarding ART compare drug regimens from different time periods 

of antiretroviral drug development with each other, the following section summarises the principles 

and recommendations governing the different “eras” of antiretroviral treatment over the past 30 years, 

in particular delineating the differences between monotherapy, combination therapy and highly active 

ART (HAART). 

 

From the wealth of potential targets within the replication cycle of a human immunodeficiency virus, 

only a few lend themselves to successful therapeutic interference. Of these targets, the enzymes 

reverse transcriptase and protease can be targeted by orally administrable drugs - by reverse 

transcriptase inhibitors (RTI) and protease inhibitors (PI), respectively. A combination of three 

antiretroviral drugs, including at least one PI or one non-nucleoside RTI, known as highly active 

antiretroviral therapy, or HAART, employs a highly effective strategy of targeting the viral enzymes 

from different angles while controlling resistance-inducing mutations to a far wider degree. 

 

In high-income countries with a high coverage of antiretroviral drugs, the time since the advent of 

antiretroviral therapy can be divided into three eras: 

 

Era 1: 1987 to 1991 Monotherapy with zidovudine (AZT or ZDV)     

Era 2: 1991 to 1995 Combination therapy with 2 or 3 nucleoside reverse transcriptase inhibitors  

Era 3: 1995 to date  Highly active antiretroviral therapy (HAART), using a combination of at least 

three drugs, including at least one protease inhibitor or one non-nucleotide reverse transcriptase 

inhibitor.  
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For antiretroviral programmes in low- and middle-income countries, the World Health Organization 

(WHO) initially recommended the following HAART regimens as first line therapy (2 NRTI + 1 

NNRTI) [5]: 

Stavudine or zidovudine + lamivudine + nevirapine or efavirenz. 
 

In 2010, this recommendation was changed due to the accumulating evidence on the severe and 

irreversible long-term side effects of stavudine, to 

 

Tenofovir + lamivudine + nevirapine or efavirenz [6]. 
 

While the development of severe side effects of a single drug might necessitate the replacement of a 

single drug, in case of treatment failure a replacement of the whole treatment regimen will become 

necessary. In this case, the recommended second line therapy (2 NRTI + 1 PI) for developing 

countries was initially: 

 

Tenofovir disoproxil or abacavir + didanosine + lopinavir (ritonavir-boosted) or saquinavir (ritonavir-

boosted [5]). 

 

In 2010, this recommendation was changed to  

 

Zidovudine + lamivudine + lopinavir (ritonavir-boosted) [6]. 

 

4.2 Search strategy 

4.2.1 Budget impact analyses 

For the review of budget impact analyses of HIV-related interventions, I searched PubMed using the 

terms “((hiv[Title]) OR antiretroviral[Title]) AND "budget impact"[Title/Abstract]” for the years 1988–

2014 which retrieved 20 abstracts, of which 17 were selected as relevant based on the abstract. After 

reviewing the full paper, eleven papers were deemed to be full budget impact analyses using the 

criteria set out in section 4.1.1. An additional eleven papers from the reference lists of these 17 

papers were included in the review, out of which six were deemed to be of relevance based on the 

abstract. Of these, two were deemed to be real BIAs based on review of the paper. An additional two 

papers were identified from the reference lists of these six papers, of which one was deemed to be of 

relevance based on review of the full paper. 

 

Information from the 14 included papers was retrieved using the criteria and recommendations for 

budget impact analyses detailed in the 2007 and 2014 ISPOR budget impact analysis guidelines 

described in Section 2.2 [1,2].  

 



 

33 
 

4.2.2 Economic evaluations 

I searched eight databases (PubMed, HealthSTAR, POPLINE, EconLit, HEED, Web of Knowledge 

[Science and Social Sciences], Embase and CAB Health) for the years 1988–2011 using any 

combination of the terms cost*, econ*, and HIV or AIDS. The identified articles were supplemented by 

reviewing the reference lists of identified articles, additional review articles, and grey literature 

(conference presentations and proceedings, books, and manuals). All articles in any language that 

contained modelled cost data of any kind as well as ART as an intervention were included, except 

where ART was used for the prevention of mother-to-child transmission only. Editorials and letters, 

articles without quantitative data, and articles that did not include a modelled estimate, such as 

papers reporting cost data from a single site, were excluded. The latter have been reviewed 

repeatedly in the past [7-10]. Fourty-five published articles, one conference abstract, and four reports 

on modelled economic analyses of ART provision worldwide were included. Thirty-eight analyses 

were for single countries, four were for wider regions, and eight were global.  

 

The included articles were reviewed with regards to their economic evaluation method, the type of 

model used, their time horizon, the outcome metric and result, and whether the input cost (often in the 

form of average per patient cost per unit time) was constant or had been varied by determinants such 

as types of regimens used, health state, time on treatment, and mode of delivery, in either the main or 

the sensitivity analysis.  

4.3 Past budget impact analyses of HIV interventions including ART 

Compared to economic evaluation, budget impact analysis is a younger method, and relatively few 

such analyses have been undertaken for HIV-related interventions specifically. The search retrieved 

14 analyses covering the time between 20002 and 2014 and eight countries (in order of frequency, 

US, Spain, Italy, Chad, Vietnam, Uganda, Canada and France). More details on the papers included 

in this review can be found in the Appendix to chapter 4. 

 

Two of the 14 papers covered prevention interventions [11,12] (including a comprehensive range of 

prevention interventions in Chad [11], and methadone replacement therapy in Vietnam [12]), three 

covered HIV counselling and testing (HCT) [13-15], and the remaining ten covered ART, with the 

earliest paper comparing highly active ART with monotherapy [16], four papers analysing the impact 

of increasing ART eligibility [17-20], two considering simplifications to treatment regimens in the shape 

of fixed-drug combinations or “less-drug regimens” [21,22], and two analysing the impact of the fairly 

novel proteinase inhibitor (PI) darunavir (boosted with ritonavir, DRV/r) [23,24] which was approved by 

the US Food and Drug Administration (FDA) in 2006. One analysis in particular included not only the 

                                                      
2 The earliest included paper, from 2000, was first-authored by Josephine Mauskopf, the author of the 2001 
seminal paper defining BIA and one of the authors of the 2007 and 2014 ISPOR BIA guidelines [16]. Even though 
in the 2000 paper the analysis is not defined as a BIA, one of the keywords is “Budget impact” and the abstract 
talks about “total ADAP budget impacts” [16]. 
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impact of increasing eligibility (from a threshold of 350 to 500 CD4 cell counts/microl, in Italy) but also 

of a range of cost-saving measures that could offset the necessary increase in the required budget, in 

particular of increasing the use of NNRTI-based regimens in new starters, single tablet regimens and 

PI/r-based monotherapy, and replacing branded drugs by their generic equivalent [20]. For more 

details see Table 1 in the Appendix. 

 

While four of the analyses combined a BIA with a cost-effectiveness analysis [11,12,15,18], another 

paper reported on both budget impact and cost per patient [20]. Perhaps of note is that four of the 14 

papers had at least one co-author who was in the employ of a pharmaceutical company [16,21,23,24]; 

in all cases, these were the companies producing the drug under analysis.  

 

4.3.1 Methods used in budget impact analyses of HIV interventions 

4.3.1.1 Perspective 
The choice of a perspective is of importance in a BIA since much of the remainder of the analysis 

follows from it. All but one paper [23] gave details regarding the perspective adopted (see Table 2 in 

the Appendix). In all but the US papers, this was the public health system (even though two papers 

from Spain gave the perspective as “perspective of pharmaceutical expenditure” [19] and “hospital” 

[21], respectively). In the US papers, owing to the complexity of funding for HIV-related healthcare in 

that country, the perspective was defined as that of the relevant payer or payers for the intervention 

under study, with two papers focusing on the Veterans Health Administration system [14,15], one 

analysis focusing on one state’s AIDS Drug Assistance Program (ADAP) programme [16], and two 

more papers specifically analysing the distribution of costs between all relevant funders (ADAP as 

well as federal Medicaid and Medicare) [13,17].  

 

4.3.1.1.2 Target population 
The ISPOR guidelines [25,26] specifically recommend for the perspective chosen to define a) the 

target population, b) the current and expected new treatment mix, and c) the resource use and cost 

that should be included in the analysis. While all of these aspects are important for the relevance and 

stability of the final outcomes, in the reviewed papers, the second two aspects tended to receive more 

attention than the definition of a target population. Of note is also that the target population for 

prevention and testing interventions is, by definition, different to that of a treatment intervention; while 

treatment is reserved for HIV-positive people at differing levels of immunological and clinical eligibility, 

testing is targeted at the general population, regardless of HIV status, and most prevention 

interventions are specifically designed for HIV-negative people, such as pre-exposure prophylaxis or 

medical male circumcision. As a result, defining a target population for prevention and testing 

interventions only requires data on the size of the general population, while deciding on a target 

population for treatment interventions requires data on, at the least, HIV prevalence and incidence 

over the analysis period, and current coverage with ART. Additionally, for analyses of the impact of a 

change in eligibility, a further break-down of the cohort of people requiring ART into categories 

defining eligibility (such as CD4 cell count strata) is needed; for analyses of the impact of a change in 
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drug formulations or a switch between single drugs, information on the distribution of the current and 

projected future treatment cohort into treatment regimens is required, including, for the budget impact 

of second-line drugs such as proteinase inhibitors, assumptions on the prevalence of treatment failure 

and drug resistance mutations. 

 

In all reviewed papers but two [16,18], the target population appeared to be relevant to the chosen 

perspective. The exceptions are one analysis which used identically sized target populations for both 

monotherapy and highly active ART (HAART), seemingly assuming that HAART would not confer a 

survival benefit over the three years of the analysis [16]. The analysis of ART at different eligibility 

levels in Uganda assumed a closed cohort of people requiring ART at one of two eligibility levels, 

seemingly excluding any cases becoming newly eligible over the projection period [18]. 

 

In the reviewed papers on prevention interventions, the target population was based on an external 

epidemiological model (EpiModel [11] and Mode of Transmission Model [12]). In the case of the 

papers evaluating testing, the target population was a function of current testing coverage and 

different assumptions regarding increasing uptake as a result of the intervention [12-14]. One of these 

papers in particular gave detailed justifications for the population groups included and excluded in the 

analysis, based on the populations targeted by the payers under analysis [14]. BIAs of treatment 

options fell into two groups: Those analyses that used a detailed, pre-established model of HIV 

disease and treatment impact that had been used in economic evaluations of ART before [13,16,17], 

and those analyses that were based on the authors’ own extrapolations of the number of people 

either currently receiving ART in a single cohort or group of hospitals, region or country, or registered 

as being HIV-positive, with additional assumptions about inflation for non-registered cases and 

incidence going forward [19-23].  

 

4.3.1.1.2 Treatment mix 
Of similar importance to the result of a BIA are assumptions about the current and future mix of 

interventions and intervention coverage, both at baseline and as a result of the programme(s) under 

study being rolled out. The paper analysing a host of prevention interventions in Chad did not give 

enough information about coverage levels to be able to analyse this [11]. Of the remaining 13 papers, 

ten included comprehensive changes in coverage resulting from the scale-up of the intervention or 

interventions under study [12-17,20-22,24], while three papers considered some, but not all likely 

changes in coverage resulting from the intervention [18,19,23]: The study of different ART eligibility 

options in Uganda included the impact on TB, but no other opportunistic infections [18], one analysis 

of different eligibility options in Spain applied the same distribution of the treatment cohort into 

treatment regimens as at baseline [19], and one analysis of DRV/r use in Spain limited the analysis to 

those options included in a single trial [23]. Only one paper of ART explicitly included a change in 

regimen distributions in both the baseline and the intervention scenario [24].  

 

 



 

36 
 

4.3.1.1.3 Resource use and cost 
Only half of the papers included all resource use and cost implications of the scale-up of the 

intervention in question, as far as could be ascertained based on the information given. The largest 

omission across both those papers focused on ART and those reporting on prevention and testing 

interventions was the failure to include all HIV-related healthcare costs, not just the cost of the 

immediate intervention under study. Standard guidance [25] suggests that in an incremental cost 

analysis, those cost items for which resource use and prices are likely to be the same both at baseline 

and in the intervention scenario can be excluded from the analysis, but for this it either needs to be 

shown that they are the same, or the assumption has to be justified otherwise. This was not the case 

in any of the papers that omitted these cost items; it is furthermore questionable if the same guidance 

should apply to BIAs unless it is clear that the budget in question is limited to, for example, ARV 

drugs. 

 

The more comprehensive papers included both inpatient and outpatient resource use and costs, with 

outpatient costs including ARV and non-ARV drug costs, the cost of laboratory tests and other 

diagnostics, visit costs, and overheads, and, for HCT in particular, the cost of the entire testing 

algorithm, including confirmatory tests in the case of rapid tests being the first test, the cost of pre- 

and post-test counselling where applicable, and if it was not done at the same visit, the cost of staff 

following up patients for post-test counselling. 

 

4.3.1.2 Analytical framework 
In terms of analytical framework, four of the 14 papers used a simple spreadsheet-based calculator 

only [11,19,21,23]; three of these papers were analyses of ART eligibility [19] or drug options [21,23], 

and all of them concerned European countries (see Table 3 in the Appendix). For the analyses of 

drug options, the choice of a simpler analytical framework (and the restriction to incremental cost 

items only, see above) could have been warranted if the perspective had indeed been limited to the 

payer of a drug budget only, but it is hard to know if this was the case given the limited information 

regarding perspective in the same papers (the perspective taken is given as "perspective of 

pharmaceutical expenditure" [19] and “hospital” [21] in the first two papers, and is not mentioned at all 

in the third analysis [23]). Of the remaining 10 analyses, five employ a health-state transition model 

[13,17,18,20,24] and the other five some other type of model, the classification of which varies widely 

- one is termed a “decision-tree model” [12], one a “dynamic model” [14], one a “decision tree” [15], 

one a “static deterministic model” [16], and one a “simple budget impact model” [22].  

 

For all but the calculator-based analyses and the one termed a “simple budget impact model”, I 

reviewed the appropriateness of assumptions regarding changes in population, disease severity and 

treatment patterns, as well as the comprehensiveness of included health outcomes and costs, as 

stipulated by the ISPOR guidelines [1,2] - though there is some overlap between the latter aspect and 

the aspects covered under 4.3.1.1. 
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4.3.1.2.1 Assumptions regarding changes in population, disease severity and treatment 
patterns 
Assumptions in all except three of the nine model-based analyses seemed warranted, based on the 

available information. In the remaining three papers, analysts chose unusual limitations to their 

analysis, and did so without appropriate justification: In the paper on methadone-replacement therapy 

(MRT) in Vietnam, the model was only run for one year, with the size and distribution of the population 

assumed constant thereafter and only MRT coverage being scaled up [12]; in the early paper of the 

impact of HAART vs. monotherapy, the different regimens seem to impact OI incidence only, but not 

mortality [16], and in the budget impact analysis of DRV/r for highly treatment-experienced patients in 

France [24], the unusual decision was taken to compare DRV/r to a baseline in which most patients 

with PI resistance would be given ritonavir-boosted tipranavir (TPV/r) instead which was not available 

in France at the time, effectively turning this BIA of DRV/r into a head-to-head comparison of DRV/r 

and TPV/r for highly treatment-experienced patients, and possibly underestimating the cost savings 

from DRV/r.  

 

4.3.1.2.2 Health outcomes included  
Even though a budget impact analysis does not traditionally take health outcomes into account, 

outcomes such as survival in care are still relevant for the calculation of the overall size of the 

treatment cohorts and the cost of treating them, especially where survival or retention in care, or both, 

is likely to differ between treatment arms. For this reason, I reviewed the methods used in calculating 

health outcomes in the included models alongside their other characteristics.  

 

Five of the nine model-based analyses included all HIV-related health outcomes for the affected 

population [12,13,17,20,24]. None of the analyses included non-HIV related outcomes. Of the four 

analyses with limited outcomes data, two of the HCT analyses included either the results of the test 

only, or the results of the test and of ensuing ART only, but no other outcomes such as morbidity and 

mortality [14,15]. As mentioned before, the analysis of HAART vs. monotherapy in the US included an 

impact on OI incidence only, but not on mortality [16], and the analysis of changing ART eligibility in 

Uganda included TB, but no other OIs [18]. Those BIAs that were based on trial data only [24] might 

have overestimated the intervention’s effectiveness in a routine setting. Across analyses, and by 

design, the short-term time frame necessary in a BIA will have led to an underestimation of both the 

health and cost impact of longer-term side effects. 

 

4.3.1.2.3 Costs included  
Somewhat related to the decisions regarding inclusion and exclusion of health outcomes above, six of 

the nine analyses included comprehensive resource use and costs [13,16,17,18,20,24]. As stated 

under 4.3.1.1, the shortfalls in accounting for cost items were mostly with regards to cost items 

beyond those necessary for the intervention under study - such as the inclusion of ART in HCT 

studies, or inpatient care in ART studies. Across the board, the most comprehensive analyses were 

those of ART eligibility changes, which included both inpatient and outpatient care, and all outpatient 

costs, not just the cost of ARVs [17,20,24].  
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4.3.1.3 Impact on access and uptake 
A third major concern expressed in the ISPOR guidelines is that BIAs include a realistic approximation 

of accessibility and uptake of the new intervention over the examined time period, as well as an 

acknowledgement of its replacement effect on existing interventions and services [1,2]. The first two 

items were not always easy to delineate if only a combined assumption concerning coverage, or of 

coverage scale-up, was given; where this was the case, a single coverage point estimate was 

interpreted as “access”, and a change in coverage over time was read as “uptake”. Using this 

approach, only three papers paper did not take access or uptake into account at all - one simply 

tagged coverage (of ART at higher eligibility) to the baseline level, 53%, throughout the analysis [18], 

and two did not supply any information regarding this [11,23] (see Table 4 in the Appendix). 

 

In terms of access restrictions, essentially a supply-side concern, only five of the 14 analyses included 

in this review explicitly took these into account, mostly through assuming a certain limit to how far 

coverage could be scaled up [12,13,19,22,24]. All of these access limitations appeared reasonable 

and grounded in the realities at the programme level. For example, the analysis of MRT scale-up in 

Vietnam assumed a 70% coverage cap [12]; the analysis of the impact of expanding HCT on the 

budgets of “US government discretionary, entitlement, and separate testing programs” purposely 

excluded privately insured patients and those covered by US Veteran Affairs programmes [13]; the 

analysis of new ART eligibility guidelines in Spain capped the uptake of the new guidelines at 80% 

[19]; the analysis of “less-drug” ART regimens in Italy restricted access to these regimens in some of 

the analysed scenarios [22]; and the analysis of the scale-up of DVR/r in France targeted highly 

experienced patients with PI mutations only [24]. 

 

In terms of limitations in uptake, a demand-side concern, one analysis did not give any information on 

whether and how this was taken into account [11]. Those papers that ignored uptake did so mostly 

because they only modelled the budget for a single year [12,19]. Out of the remaining 13 papers, a 

full nine took uptake, or a change in uptake, into account [13-17,20-22,24], mostly by varying uptake 

to some degree either over time, as a function of the scenario of analysis, for example by varying ART 

uptake from 66% for monotherapy to 100% for HAART [16], or as a function of another model 

parameter, for example by varying ART uptake from 20% to 85% depending on CD4 cell count 

stratum [20].  

 

With regards to their treatment of a replacement effect, in other words, whether the use and effects of 

both the new intervention as well as any current interventions that might be replaced by the new 

intervention had been included, only seven of the 13 analyses seemed to take this into account 

comprehensively [13,14,16,17,18,20,24]. Since all of these analyses also made use of a health-state 

transition model, it could be argued that the distribution of a cohort into different service modalities 

that is necessary for the consideration of replacement effects is difficult to achieve in a simple 

calculator spreadsheet. One of the papers, the paper comparing a number of prevention interventions 

in Chad, reported on a full (rather than incremental) analysis in which the comparator was “do 
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nothing”, which means that the exclusion of replacement effects was likely warranted [11]3. The 

remainder of the analyses did not consider replacement effects comprehensively because, just as 

seen in the review of the health outcomes and resource use in Section 4.3.1.2, they did not include 

the full spectrum of interventions that would be impacted by the scale-up or change to the service 

they analysed, which would have meant including ART in HCT analyses, or inpatient care in ART 

analyses. Other analyses artificially restricted the replacement effect by limiting the entry population 

[18], assuming the same distribution into ART regimens as at baseline [19], or having an artificial 

baseline containing a drug that was not currently available in the setting under study [24].  

 
4.3.1.4 Uncertainty analysis and validation 
All but two of the Spanish analyses [19,23] included some form of uncertainty analysis (Table 5 in the 

Appendix). In all cases, this included a sensitivity analysis, most often a univariate one; all of these 

sensitivity analyses interrogated parameter uncertainty in input parameters, but only three papers also 

included structural uncertainty in the choice of the analytical framework in their analyses [13,15,20]. 

This was done by including a 10- instead of 5-year modelling framework [13], by broadening the 

perspective and including an impact on productivity in the analysis [18], or by assuming no restrictions 

in uptake [20]. Two papers reported on additional scenario analysis, one by testing what would 

happen if enrolment under new ART guidelines was capped in not just one, but both US states under 

study [17], and one by testing four different scenarios defined by different levels of ART eligibility and 

coverage [22]. While the former included some variation in the cost of ART in the scenario analysis 

[22], none of the two papers included variation in the inputs for health outcomes or alternative 

structural assumptions as stipulated in the ISPOR guidelines [1,2]. 

 

Finally, the 2014 ISPOR guidelines recommend validating the computing framework and input data, 

including, at the least, a check for face validity of central inputs with decision makers and the 

verification of all calculations [2]. With the exception of one paper that mentioned having used expert 

opinion in arriving at the model endpoints that would be most useful for programming [14], none of the 

reviewed papers reported on any such validation having been undertaken. 

 

4.3.2 Results of budget impact analyses of HIV interventions 

As a result of not only the wide variety in the interventions examined but also in the methods 

employed, as described above, the results of the reviewed budget impact analyses vary widely. 

These results are summarised separately for each type of intervention below.  

 

 
 
                                                      
3 It needs to be noted however that this is an artificial comparator since most of the interventions included in the 
final recommended package were already part of government policy in Chad at baseline [1]. 
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4.3.2.1 HIV prevention interventions 
The two papers reporting on the budget impact of HIV prevention interventions both found that over 

the examined time period, interventions had a positive budget impact - in other words, they were net 

costing rather than cost saving [11,12]. In the case of the analysis of a range of prevention 

interventions in Chad, this was likely because the cost of ART provision was not included since at the 

time of the study, 2003, this was not an option available in the public sector [11]. Based on the 

separate CEA, the authors found a large group of the examined interventions to be cost-effective 

against a threshold of USD 1,000 per HIV infection averted, and that those interventions found to be 

cost effective “do not require large budgets” [11]. Annual budgets for those interventions that were 

either strongly recommended or recommended based on their cost effectiveness ranged from USD 

50,000 (strengthening screening of donated blood) to USD 1 million (HIV education of high risk 

groups), and the total budget of these recommended interventions was found to be USD 3.2 million 

[11]. (Of note is that most of these interventions were already part of the current HIV strategy in Chad 

at baseline, making the authors’ choice of a baseline of “do nothing” questionable, as mentioned in 

4.3.1.3.) In the case of the analysis of MRT in Vietnam, the authors calculated a budget impact of 

USD 97 million over 5 years [12]. Again, in the accompanying CEA they found this intervention to be 

cost effective at a threshold of 3 x gross domestic product (GDP) per capita [12]. 

 

4.3.2.2 HIV counselling and testing interventions 
The three papers reporting on the budget impact of HIV counselling and testing interventions all 

focused on expanding coverage with HCT in the US, with one paper examining increasing testing 

frequency from, on average, every 5 instead of every 10 years [13], the second examining expanding 

coverage with routinely offered HCT from 2% to 15% per year [14], and the third analysing adding an 

electronic reminder system to the latter intervention [15]. As with prevention, all of the analyses found 

a positive budget impact, but of varying sizes. While the first paper found a budget impact of USD 2.7 

million over 5 years for 46,000 additionally identified cases of HIV, with testing only contributing 18% 

of this amount and the largest budget increase stemming from ART [13], the second found that their 

more limited testing intervention had a comparatively smaller budget impact of USD 290,000 over 2 

years, while only identifying 21 new cases [14], and the third found a budget impact of USD 81,726 

over 1 year for the cheapest scenario, a reminder system without pre-test counselling [15]. 

4.3.2.2 Treatment interventions 
4.3.2.2.1 Changes to ART eligibility 
Four analyses focused on the impact of increasing eligibility thresholds and criteria for antiretroviral 

treatment in a number of countries and settings [17-20]. Two of these papers looked at expanding the 

eligibility threshold from 200 to 350 CD4 cells/microl [17,18], a move supported by the 2010 WHO 

ART guidelines [26]. The first paper was specifically set up to test whether the expansion of eligibility 

did not exceed allocated Medicaid budgets in the US states of Georgia and Massachusetts in order to 

meet the criteria of a Medicaid Section 1115 demonstration application. The authors found that 

neither demonstration project would meet the 5-year test of "no increase in federal spending over and 
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above what would be expected in absence of demonstration project", contrary to what both states’ 

applications had stipulated [17]. The second paper analysed the budget impact of the eligibility 

increase for Uganda and found that covering 53% of those that became eligible in a fixed cohort of 

520,000 HIV-positive people under the 350 eligibility criterion would cost an additional USD 

261,651,942 over 5 years, and USD 872,685,561 over 30 years. Again, in the accompanying CEA 

they found this move highly cost-effective, as the cost per life-year saved was below GDP per capita 

[18].  

 

Two more papers compared the cost of expanding treatment eligibility even further, from a threshold 

of 350 to 500 CD4 cells/microl [19,20], as stipulated by the 2013 WHO ART guidelines [27]. The first 

analysed the impact of the Spanish ART guidelines from 2011 which included eligibility at <500 CD4 

cells/microl as well as additional clinical and age criteria. The authors found that applying these 

guidelines in a group of hospitals contributing to the VACH4 HIV cohort would increase the cost of 

ARV drugs by € 3,270,975, or 3%, over the first year [19]. The second analysis looked at the impact 

of similar guidelines issued in Italy in 2011 on the cost of treating the HIV-infected population of the 

Lazio region between 2012 and 2016 and found that earlier initiation would increase the budget by 

2.3% [20]. In contrast to the other papers, this paper specifically also looked at the impact of a 

number of cost-saving measures, such as increasing the use of NNRTI-based regimens in new 

starters (from 27% to 50% coverage), introducing single tablet regimens and PI/r-based monotherapy, 

and replacing branded drugs by their generic equivalent [20]. The authors found that these measures 

would decrease the budget impact by 0.3%, 1.5%, and 3.3%, respectively, more than making up for 

the budget increase from the introduction of the new guidelines [20]. 

 

4.3.2.2.2 Changes to ART regimens and drug formulations 
Five of the papers reported on the budget impact of changes in ART regimens, including changing 

from NRTI-based monotherapy to HAART [16], replacing other proteinase inhibitors by DRV/r [23,24] 

or by PI-based mono- and dual therapy [22], and of changes to drug formulations, in particular by 

substituting a number of first-line drug regimens with a fixed-dose combination of EFV, emtricitabine 

(FTC) and TDF taken as a single drug [21].  

 

The first paper, reporting on the impact on the New York State AIDS Drug Assistance Program of 

replacing monotherapy by HAART [16], is much older than the others - HAART became the 

recommended standard therapy around 1995, see section 1.4 - and, as mentioned above, is one of 

the oldest BIAs ever published. The authors found that introducing HAART would increase the state’s 

ADAP budget by 115%, though the entire budget increase would be recouped by savings on OI 

treatment costs as a result of the higher effectiveness of HAART especially with regards to 

maintaining patient’s immunocompetence and high CD4 cell count levels, resulting in a net decrease 

in the required ADAP budget of 0.4% [16].   

                                                      
4 “VACH” being short for “VIH y AdvanCedHIV” 
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One of the two papers examining the impact on ARV drug expenditure of DRV/r in Spain looked at the 

cost of switching those 15% of Spanish ART patients who at baseline were on a regimen of 2 NRTI + 

PI or NNRTI to either a regimen of 2 NRTI + DRV/r or alternatively to DRV/r monotherapy [23]. The 

authors found that this would save € 62 million over 3 years [23]. The second paper examined the 

evolution of the ARV and non-ARV budget over 3 years as a result of scaling up DRV/r coverage of 

highly treatment-experienced patients from 20% to 70% in France [24]. This paper found a net saving 

of € 11.4 m (2.9% of total budget) under the DVR/r scale-up, mostly again from preventing patients’ 

CD4 cell count levels falling, with the associated higher hospitalisation costs [24].5 The third paper 

examined the budget impact of PI-based dual and monotherapies over the current mix of ARV 

regimens over 3 years in Italy and found that, depending on the chosen scenario, ART expenditure 

would decrease by between 6.7% and 12.8% in the examined hospitals, or by 1.1% to 1.2% for the 

entire Italian National Health Service [22]. 

 

The last paper examined the impact of substituting a number of first-line drug regimens with a fixed-

dose combination of EFV, FTC and TDF in Spain over 1 year and found that the incremental budget 

would increase by between -1.99 and +6.73%, based on the replacement scenario chosen [21]. 

 

4.3.3 Conclusions: Lessons learned from the review of past budget impact analyses 
of HIV interventions 

A number of conclusions can be drawn from the review of past budget impact analyses of HIV 

interventions. 

 

1. A budget impact analysis is of limited use without a clearly identified payer and a 
circumscript budget. As seen with a number of the BIAs for European countries, in contrast 

to the US system where HIV-related healthcare costs are borne by specific payers, some of 

which (such as ADAP) are specifically designed to bear costs from HIV only, budget analyses 

for a country’s public sector more generally sometimes struggle with identifying a designated 

payer and a clearly delineated budget that they can inform. 

 

2. The budget impact of most interventions will be positive, unless specific measures are 
included that decrease costs. In comparison to the BIAs of prevention interventions, a 

number of the reviewed ART-related budget impact analyses started from a different premise, 

by specifically examining ways to make an existing rather expensive intervention cheaper to 

implement and roll-out further. Accordingly, many of them managed to identify negative 

budget impacts, or cost savings. 

                                                      
5 As mentioned in section 4.3.1, the results of this study are likely an underestimate, as the baseline contains a 
novel PI, TPV/r, which was not available in the public sector in France at the time, making the baseline artificially 
expensive [24]. 
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3. The target population for BIAs of antiretroviral treatment that have a period of analysis 
of more than 1 year needs to be informed by the current cohort of identified HIV-
positive people in a country or region plus additionally eligible and identified cases. In 

most cases this will mean that incidence has to be taken into account as well as the 

distribution of people into eligibility-defining health states and, in the case of BIAs of different 

drug regimen choices, into regimens have to be taken into account. This seems to be easiest 

done in comprehensive health-state transition models. 

 

4. BIAs of both prevention/ testing interventions and ART from a public-sector 
perspective need to take into account more than just the resource use and cost of the 
intervention under analysis in order to capture the full impact on the budget. For BIAs 

of prevention/ testing interventions this means including the down-stream costs of ART in 

those people for whom prevention fails and who test HIV-positive. For BIAs of ART-related 

interventions this means including both outpatient and inpatient costs, and at the outpatient 

level more than just ARV drug costs. The only exception to this is if the perspective has been 

clearly and justifiably chosen to be that of the ARV drug budget alone, and there is 

demonstrated reason to believe that all other costs will stay the same. 

 

5. If more than ARV drug costs or HIV test costs are included, costs should be modelled 
in a way that links resource use to disease progression, by using a metric such as CD4 

cell counts. 

 

6. Almost none of the reviewed papers provided any information on a validation of their 
analytical framework and input data. Such information regarding validation is standard in 

the reporting on epidemiological models and should be included in economic models and 

analyses as well. 

 

4.4 Past modelled economic evaluations of antiretroviral treatment 
4.4.1 Types of analyses identified 

Starting in 1992, a wealth of papers have been published on the economics of antiretroviral treatment. 

The first papers were prompted by the need to make the economic case for public-sector provision 

and funding of ART in high-income countries, pointing to the beneficial effect of ART not only on 

survival and quality of life but also on shifting resources from expensive inpatient care to cheaper 

outpatient care and from the treatment to the prevention of opportunistic infections. From about 2001 

on, the same methods were used to also make the case for extending ART provision to low- and 

middle income countries (LMIC) characterised by both higher HIV prevalence and lower ability to pay 

for the programmes themselves.  
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Publications included two modelled cost analyses for two high-income countries and 23 modelled 

cost-effectiveness or -utility analyses for nine high-income countries (HIC) as well as 13 cost-

effectiveness or -utility analyses for six low- and middle income countries. Furthermore, the search 

identified four analyses of regional cost and cost-effectiveness of ART and eight studies of the global 

cost and cost benefit of ART, either for all countries world-wide or for a large number of LMIC. The 

details of these papers are summarised in the Appendix for chapter 4. 

 

Thirty-eight analyses modelled ART programmes within a single country [28-65] (Table 6 in the 

Appendix). Most of the 25 analyses from high-income countries (HIC) compared the incremental cost 

and effectiveness of a new drug regimen with that of an older one [36,38-40,47,50-53]; only one 

analysis considered the impact of a change in eligibility criteria [63]. Amongst the fourteen low- and 

middle-income-country analyses, twelve analyses focused on the choice of eligibility criteria 

[28,29,54-59,61,62,64,65]. Two of these were analyses of the cost and cost benefit of universal 

testing and treatment [28,29]. One analysis compared ART with no ART [57], one, first-line treatment 

with first- and second-line treatment [54], and one, different regimens for women previously exposed 

to single-dose nevirapine as part of prevention of mother-to-child transmission [61].  

 

The four regional studies [66-69] all focused on sub-Saharan Africa (with one study [69] additionally 

including Southeast Asia) (Table 7 in the Appendix). These studies modelled the cost of defined 

increases in ART coverage from a low baseline [66,67] and the cost effectiveness of ART provision 

through the specific setting of an antenatal care clinic [68].  

 

The eight global studies, published between 1997 and 2011, describe a clear evolution in both data 

availability and modelling techniques [70-77] (Table 7 in the Appendix). The older analyses estimate 

cost based based on assumptions only [70,71], while later analyses model global cost under concrete 

programmes, based on per patient cost estimates from relevant LMICs and more advanced 

epidemiological models of the number of patients in need of ART [73-77].  

 

4.4.2 Methods used in past modelled economic evaluations of ART 

4.4.2.1 Types of analyses 
The search identified 38 modelled economic analyses of single-country ART programmes [28-65]. 

Most of the 25 HIC analyses compared the incremental cost and effectiveness of a drug regimen of 

one phase of antiretroviral drug development to that of one of the former, with the biggest output of 

such analyses being prompted by the introduction of new classes of antiretroviral drugs such as 

protease inhibitors [36,38-40,47,50,52] and a fusion inhibitor [51-53]. Apart from six studies adopting 

a societal perspective [34,42,45,46,63,65] (only one of which specifically including indirect costs [34]), 

all analyses analysed cost from a provider perspective, with some specifically identifying the payers 

and comparing different cost reimbursement strategies [41,48], or the impact of earlier treatment 

initiation [28-30,41,44,45].  
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Four analyses modelled the cost of ART provision in a specific region [66-69], all of which focused on 

sub-Saharan Africa (with one study additionally including South East Asia [69]). Studies modelled the 

cost of defined increases in ART coverage from a low baseline [66,67] and the cost effectiveness of 

ART provision through the specific setting of an antenatal care clinic [68]. Details with regards to 

model characteristics or sources of input data were unavailable for two analyses [66,67]; one 

publication was a systematic review of cost-effectiveness analyses of HIV interventions, with the cost 

of ART modelled on the cheapest available prices at the time [68]; the other used an epidemiological 

model [69]. All analyses were conducted from the provider perspective. Time horizons, where 

available, were five years [66], eight years [67], and lifetime [69]. One paper used the same constant 

input cost for all patients [67]; two papers varied input cost by regimen [66,69].  

 

Eight papers estimated the cost of global antiretroviral treatment provision [70-77]. Published between 

1997 and 2011, they show a clear evolution in both data availability and modelling techniques. Almost 

all papers analyse the global cost of ART provision only, with the exception of one paper modelling 

the incremental cost effectiveness of UNAIDS’ new “investment approach” to achieving universal ART 

access [77] and one paper analysing the cost benefit of maintaining the 2011 cohort of patients 

supported by the Global Fund to Fight AIDS, Tuberculosis and Malaria  [76]. While the older analyses 

estimate cost only based on the number of HIV positive people from a number of sources, varying 

assumptions of start coverage, and cost modelled on both guidelines and prices from high-income 

countries [70-72], later analyses model global cost under concrete programmes, such as WHO’s “3 by 

5” programme [74] and the GFATM [73,75], based on per-patient cost estimates from relevant low- 

and middle income countries and more advanced epidemiological models of the number of patients in 

need of ART, such as the Spectrum model [75,76] and the Resource Needs Model [77]. Accordingly, 

all analyses are conducted from the provider perspective, with the exception of the cost-benefit 

analysis which adopted a societal perspective [76]. Time horizons vary between one and ten years. 

 

Three of the eight analyses used constant input costs for all patients [70-72]; two varied input cost by 

regimen [74,75], and one additionally by health state [75]. One study included the impact of access to 

pool procurement prices negotiated by the Clinton HIV/AIDS Initiative on per patient cost [74], one 

varied drug prices by per capita Gross National Product [73] and one assumed a reduction of per 

patient cost by 65% by 2020 as a result of task-shifting and cheaper point-of-care diagnostics [77].  

 

4.4.2.2 Interventions considered 
Amongst the thirteen LMIC analyses, nine analyses focused on the choice of eligibility criteria 

[28,29,54-56,59,62,64,65], with three analyses prompted by the revised World Health Organization 

(WHO) treatment guidelines issued in late 2009 [59,60,29] and one examining the impact of universal 

testing and treatment, i.e., regardless of CD4 cell count-linked eligibility [28]. One analysis compared 

ART with no ART [57], one first-line treatment with first- and second line treatment [58], and one 

different regimens for women previously exposed to single-dose nevirapine as part of PMTCT [61].  
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4.4.2.3 Source and treatment of cost data 
The source of cost data for all single-country analyses were real world settings - trial data for most 

HIC analyses, single-site clinic cohorts for most LMIC settings. Data for drug costs often came from 

national formularies, using average wholesale prices, or, for studies in LMIC, from drug price 

databases maintained by WHO (Global Price Reporting Mechanism), the Clinton Health Access 

Initiative (CHAI), or the Global Fund for AIDS, Tuberculosis and Malaria (GFATM). Inpatient costs and 

resource utilisation were distilled from databases or insurance reports or from data maintained by 

WHO’s CHOICE team. Data on laboratory costs came from individual hospitals’ payment offices or 

from previously published studies. Most papers varied input cost (ie, the cost per patient per unit of 

time) by protocol-related factors such as treatment regimen, health state (defined by the absence and 

presence of symptoms, opportunistic infections or AIDS-defining diseases and/ or CD4 cell count 

levels) and/ or by time on treatment (see Table 1). Only three papers, both of them on LMIC, varied 

cost by level of care (secondary vs. tertiary) [57] or mode of healthcare provision (public vs. private) 

[58,64]. 

 

Costs were discounted in almost all studies at rates between 3% and 6% per annum, with the majority 

of studies in LMIC using a 3% discount rate. Very few studies varied the discount rate in sensitivity 

analysis [33,40,43].  

 

4.4.2.4 Analytical framework 
A majority of the analyses employed health state transition models, mostly using Markov techniques, 

with seven studies using versions of the Cost-Effectiveness of Preventing AIDS Complications 

(CEPAC) model [44-47], a health state transition model evaluated by Monte Carlo simulation, or its 

international version [55,59,61]. The time horizon of these models, i.e., the period over which 

outcomes and/ or cost were projected forward, was set at between one and 20 years; or analyses, 

most often in Markov models, were run for the lifetime of the cohort without further specification. 

Seven of the 33 analyses were run over five or less years [30,35,36,38,40,41,43,56], eleven for five to 

25 years [32,33,36,38,39,40,43,49,54,58,60], one each for 30 [29] and 43 [28] years, and 17 for the 

lifetime [31,34,37,44-48,53,55,57,59-61,64,65] or the half life of the cohort [50]. Three models 

projected for two different time horizons [36,38,53]; four analyses did not give information on their 

time horizons [42,49,51,52]. Models further varied according to their assumptions about the duration 

of a beneficial effect of the ART regimen under study and their output parameter - about half of all 

analyses used cost per life-year saved and the other half used cost per quality-adjusted life-year 

(QALY) gained.  

 

4.4.3 Conclusions: Lessons learned from the review of modelled economic 
evaluations of antiretroviral treatment 

A number of conclusions can be drawn from the review of modelled economic evaluations of 

antiretroviral treatment. 
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1. As with budget impact analyses, the number of health states should be enough to 
include all those that represent a clear difference with regards to cost, survival in care, 
or both. While most of the reviewed papers used some or other patient-level category to 

distinguish health states, including CD4 cell count at initiation and at present, viral loads, time 

on treatment, and drug regimens, very few took all those categories into account that would 

make a difference in terms of cost or survival or both, and almost none justified their choice of 

states. This includes differentiating cost and/ or transition probabilities between the first year 

on treatment and later years, and explicitly modelling the change in regimens over time - not 

only between first and second (or third line) but also single-drug changes within these lines, 

should these have an important impact on costs (including those to treat side effects) and/ or 

outcomes. 

2. Differences in results between analyses cannot be interpreted without information on 
break-down of both input costs and cost results by item (eg, staff, drugs, diagnostics, 
inpatient vs. outpatient costs). The high variation in results between countries point to the 

fact that the relative cost effectiveness of a given regimen might rely more on intra-country 

factors such as the cost of inpatient care and the quality of HIV care than on the regimen 

used. The generalisability of cost results from the reviewed papers is therefore hampered by 

the fact that most studies included aggregated costs only, with no information on unit costs 

and quantities other than for drugs, or on the amount in which capital costs (eg, building, 

equipment) or administrative costs and salaries were included into inpatient and outpatient 

costs. 

3. Where possible, data regarding resource use and outcomes need to come from the 
same setting in order to uphold the claim that these resources led to these outcomes. 

This was the case in very few of the reviewed models, though increasingly so in the later 

analyses and those from LMIC. 

4. The still prevalent contention that HAART saves economic resources might be a result 
of effectiveness studies conducted in the ‘window of opportunity’ phase in 1996 and 
1997 when HAART had just been registered, whose results have been used widely in 
the analyses presented here. The only other economic analyses that see actual cost 

savings are those that include an effect of ART on transmission - though often only after 

decades of very high population coverage under a universal test and treat scenario. 

4.5 The scope of economic analyses of ART in South Africa 

At the start of my work on this thesis, a single economic analysis had been undertaken for South 

Afica, a cost-utility analysis of antiretroviral treatment in the ART clinics in Khayelitsha, a collaboration 

between Medicins Sans Frontieres and the provincial government of the Western Cape [57]. This 

study was also the first incremental cost-effectiveness study of antiretroviral treatment provision in any 
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low- or middle-income setting that was based on real-world data rather than modelling. Using cost and 

survival data from a cohort of patients treated in the local clinic and surrounding hospitals in 2002 and 

extrapolating these over a 10-year time horizon using Markov modelling techniques, the analysis 

arrived at an incremental cost-effectiveness ratio (ICER) of HAART of USD 1,806 per quality-adjusted 

life year, compared with a ICER of current therapy without ART of USD 2,040 per quality-adjusted life 

year. 

  

Since then, as mentioned in section 1.4, the South African ART programme has been subjected to 

more cost analyses than any other ART programme outside the United States [78-88], though none of 

these analyses used modelling techniques, and none were designed to inform budgets (and have 

therefore not been included in the review above). Many more economic evaluations for low- and 

middle-income countries generally have used South Africa as a case in point, in part due to the 

superior availability of outcomes and cost data, including six of the studies reviewed in section 4.4 

[28,29,59,60,62,65]. These included economic evaluations of various changes to ART eligibility 

[28,29,59,60,62] and monitoring strategies [65]. None of these studies however was a budget impact 

analysis; in fact, with the exception of the study by Cleary et al mentioned above, none of them seems 

to have been aimed at informing decisions by the South African government, but rather used South 

Africa as a case study for decisions facing any funders, most often international donors, supporting 

ART programmes in sub-Saharan Africa. 

4.6 Choosing an analytical framework for the budget impact analysis 

Based on the recommendations of the ISPOR guidelines [1,2] discussed in section 2.2, as well as the 

research question and the above review of existing models used in economic evaluations and of 

budget impact analyses of HIV interventions, an analytical framework and specific model elements 

were chosen for the budget impact model of changing the ART guidelines in South Africa. This 

chapter introduces both. 

 

4.6.1 Incorporating current guidelines for budget impact analyses 

In this section, I summarise the recommendations for budget impact analyses reviewed in section 2.2 

[1,2] and explain how they have been implemented in the budget impact model presented in this 

thesis. 

 

The ISPOR committees’ recommendations for good practice in budget impact analyses [1,2] urge the 

analyst to: 

1. let the perspective of the specific healthcare decision maker define which data to use 

regarding the target population, current and expected new treatment mix, and relevant 

resource use and costs [1];  

2. use the simplest possible analytical framework that produces transparent, valid estimates 

[1];  
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3. only use a condition-specific cohort or patient simulation model (instead of a simple 

spreadsheet-based cost-calculator) if there are anticipated changes in the target population, 

disease severity mix or treatment pattern [2]; 

4. if using a health-state transition model, make sure that all health outcomes and costs for 

the total population affected by the intervention are included [1];  

5. include the impact of potential access restrictions, anticipated uptake, and the use and 

effects of the new interventions as well as current interventions that might be replaced by 

them [2];  

6. restrict uncertainty analysis to parameter uncertainty in input values and structural 

uncertainty in the choice of the analytical framework [2]; if that’s not possible due to the lack 

of data on the proposed new intervention, undertake a scenario analysis representing 

alternatives of relevance for the decision-maker [1] taking into account plausible alternative 

input parameter values and structural assumptions [2]; 

7. undertake validation including, at the least, a check for face validity with decision makers and 

verification of calculations [2]. 

 

In line with recommendation 1, the analysis presented in this thesis takes the perspective of public-

sector payer. As a result, the model calculates inpatient and outpatient cost of ART separately, in 

order to inform both the ring-fenced Conditional Grant for HIV/AIDS, which pays for all ART provision 

at the outpatient level, and the HIV-related share of the general hospital budget which pays for 

whatever inpatient care might be utilised by patients on ART, though the model’s main focus remains 

on the calculation of outpatient cost. Also due to this perspective, the modelling timeframe is defined 

by South African budget planning cycles. Based on a request by the National Department of Health, 

the model was set up to run for 8 years, covering two mid-term expenditure framework periods of 3 

years each, with one additional year added at the beginning and the end, resulting in a projection 

period from financial year 2009/2010 to 2016/17.  

 

In terms of the choice of analytical framework (recommendations 2, 3, and 4), the complexity of the 

development of HIV disease, especially under antiretroviral treatment, called for the use of a health-

state transition model, rather than a simple cost calculation spreadsheet. Sections 4.6 and 9.2 give 

more details on the structure of this model and a justification for each of its elements.  

 

In terms of considering the impact of restrictions in accessing the new intervention or programme and 

its anticipated uptake (recommendation 5), I discarded the first since the new treatment guidelines 

were aimed at increasing (not restricting) access as an effect of lowering treatment eligibility 

thresholds, and carefully extrapolated data regarding potential future uptake resulting from a similar 

eligibility change in the private sector (see Chapter 9 for more details). 

 

In terms of sensitivity analysis (recommendation 6), due to a lack of relevant, context-specific data on 

the cost and outcomes of the specific guideline changes under discussion, I restricted our treatment 
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of uncertainty to a scenario analysis involving the treatment guidelines in practice at the time of 

analysis (baseline scenario) as well as two different sets of future guidelines that were being 

discussed by government. 

 

In terms of model validation (recommendation 7), all model calculations have been scrutinised 

repeatedly by other analysts internal and external to this analysis, and the framework and results of 

the analysis have been discussed in detail with both local and international policy makers and 

programme experts.  

 

4.6.2 Elements required for a budget impact model of new ART guidelines in South 
Africa 

As mentioned, due to the complexity of the disease and the large number of replacement effects 

between types of care, especially when new drugs are introduced, for this budget impact model a 

health-state transition model was chosen as the analytical framework. In summary, the model 

incorporates the following elements: 

• Scenarios of analysis (old guidelines vs. two sets of potential new guidelines), defining 

eligibility criteria and choice of drug regimens 

• Health states defined by  

o age group (adults: current age; children: current age and age at ART initiation) 

o type of care (pre-ART, first-line ART, first-line treatment failure, and second-line ART) 

o type of drug regimens (up to 3 first- and second-line regimens, depending on 

scenario of analysis) 

o CD4 strata based on patients’ current CD4 cell count or, for children, percentage. 

 

Based on an analysis of cost, mortality and loss to follow-up in the large South African ART cohort 

that contributed data to the analysis of model parameters, I decided to define health states by a) age 

group, b) type of care, c) type of drug regimen (for cost only) and b) patients’ current CD4 cell count or 

percentage.  

 

In terms of age groups, I differentiated an adult population (>15 years of age) from a paediatric 

population, with the paediatric population further differentiated by current age as well as age at 

treatment initiation, in order to capture the different treatment regimens recommended in the South 

African ART guidelines. Each age group is then distributed into types of care which include pre-ART 

(differentiated by cost only), first-line ART, first-line treatment failure, and second-line ART. Within 

types of care, outpatient cost is further differentiated by regimen, with up to three different first-line 

and second-line regimens for adults and children each, depending on the scenario, while inpatient 

cost is differentiated between pre-ART and ART care as well as CD4 cell count category. CD4 cell 

count categories for the adult population are defined as >350, 200-350, 50-199, and <50 cells/microl. 

For children aged 6 to 13, CD4 strata are defined as >35, 15-35, 5-14, and <5%. CD4 strata for 

children under 6 are defined as CD4 >35, 20-35, 5-19, and <5%. 
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I chose to solve the model deterministically but introduced time heterogenicity by conditioning all 

transition probabilities between health states (including mortality, loss to follow-up, treatment failure, 

and coverage with second line treatment) on time since treatment intiation for the largest sub-

population in the model, adults on first-line treatment.  

 

Table 1 summarises these elements as well as the sources for their data, and indicate which of the 

following chapters contain further details on the estimation of the parameters. 

 

Table 1: Model elements and data sources for National ART Cost Model 

Model element Categories of 
differentiation/ 
stratification levels 

Data source 

Health states Age group, type of 
care1, regimens, CD4 

Defined by differences in mortality in 
TLC data 

Target population Scenario, age group, 
CD4, year 

 
Number of adults initiating ART  ASSA2003 (with relative rate of initiation 

at CD4 200-350 cells/microl based on 
AfA data) 

Number of children initiating ART ASSA2003 (with additional assumptions 
regarding scale-up of Early Paediatric 
Treatment) 

Other epidemiological parameters   
Transition probabilities between health 
states 

Age group, type of 
care1, CD4, time on 
treatment2 

TLC/ HSCC data 

Mortality TLC/ HSCC data 
Loss to follow-up TLC/ HSCC data 
First-line treatment failure TLC/ HSCC data 
Switching from treatment failure to 2nd line 
treatment 

Age group, CD4, 
time in failure 

 

Incidence of side effects necessitating 
first-line drug change 

Age group, time on 
treatment 

TLC/ HSCC data 

Cost parameters   
Cost of HCT Age group  
Outpatient cost (adults) Scenario, type of 

care3 
CMH/ TWC data (see Chapter 5) 
+ TLC data for treatment failure and 
second line 

Inpatient cost (adults) Type of care4, CD4 CHBH/ TH data (see Chapter 6) 
Outpatient cost (children) Scenario, age group, 

type of care5 
HSCC/ ESRU data (see Chapter 7) 
 

Inpatient cost (children) Age group, type of 
care1, CD4 

CHBH/ TH data (see Chapter 6) 
For separate analysis of inpatient cost in 
children <1, see Chapter 8 

ASSA2003 Actuarial Society of South Africa AIDS Model 2003; AfA:Aid for AIDS; TLC Themba Lethu Clinic; 
HSCC Harriet Shezi Children’s Clinic; CMH Charlotte Maxeke Hospital; TWC Tshepong Wellness Clinic; CHBH 
Chris Hani Baragwanath Hospital; TH Tintswalo Hospital; ESRU Empilweni Services and Research Unit 

1 First-line ART vs. first-line treatment failure vs. second-line ART 
2 For adult first-line population only 
3 Pre-ART vs. first-line ART vs. first-line treatment failure vs. second-line ART 
4 Pre-ART vs. ART only 
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Appendix to chapter 4 

NB, this appendix uses the same references as the main text of Chapter 4. 

 

Table 1: Summary of details and findings of reviewed budget impact analyses 

First author, year Country Intervention Stand-alone 
BIA or 
combination  

Purpose Findings 

Hutton 2003 [11] Chad HIV prevention BIA + CEA evaluates the BI of prevention activities compared 
to ART 

"most cost-effective preventive options do not require large 
budgets, with the most expensive intervention being the 
education of high risk groups at around US$1 million annually" 
"the total budget requirements of all the recommended 
preventive options is US$3.2 million annually, and rises to 
US$3.8 million when the strategies ‘to be considered’ are 
included" 

Tran 2012 [12] Vietnam Methadone replacement therapy 
(MRT) 

BIA + CEA CEA and BIA of MRT in HIV prevention and 
treatment (BIA from 2011 to 2015) 

BI is $97 million over 5 yrs (at 65% coverage) or $49 m for 
80,000 IDUs; ce at 3 GDP pc 

Martin 2010 [13] US Expanded HCT BIA BI of expanded testing (every 5 instead of every 
10 years) to "US government discretionary [Ryan 
White Act funding, in part via ADAPs], entitlement 
[Medicare and Medicaid], and separate testing 
programs" over 5 yrs 

incremental cost over 5 yrs $2.7 billion for 46,000 additional 
cases; most budget increases from treatment (testing only 18% 
of total budget increase) 

Anaya 2012 [14] US Expanded HCT BIA BI of increasing coverage with routinely offered 
HCT in VA system from 2% to 15% per year, and 
offering ART to people found to be HIV+ 

additional BI $290,000 over 2 yrs, for 21 new HIV infections 
identified 

Chan 2014 [15] US HCT reminder BIA + CEA 
(cost per test) 

BIA and CEA of "clinical reminders with telephone 
notifications for negative results" with and without 
"nurse-based streamlined pre-test counseling" 
and either risk-based or routine and either 
required or just "recommended" post-test 
counselling for HIV+ 

$81,726 over 1 year; cost per new diagnosis lowest under 
reminder system without pre-test counselling 

Mauskopf 2000 [16] US HAART vs. monotherapy BIA effect on NY state ADAP programme of shift from 
monotherapy to HAART 

ART costs alone would increase by 115%, though all would be 
recouped by savings in OI costs, resulting in a net decrease of 
0.4% 

Schackman 2005 [17] US Early ART (CD4 > 200 cells/microl) BIA test whether Section 1115 demonstrations 
applications by Georgia (stand-alone 5-yr cost 

Neither demonstration project would meet the 5-year test of "no 
increase in federal spending over and above what would be 
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First author, year Country Intervention Stand-alone 
BIA or 
combination  

Purpose Findings 

can't exceed Medicaid budget) and Mass. (cost 
can't exceed budget surplus for project over 2 yrs) 
don't exceed allocated Medicaid budget 

expected in absence of demonstration project"; limitation: 
potentially 5 years too short a horizon 

Mills 2012 [18] Uganda Early ART (350 vs. 200) BIA + CEA CEA and BIA of 2010 WHO GL (eligibility at 350 
CD4) over current GL (eligibility at 200 CD4), over 
5 and 30 yrs, at current levels of coverage (53%) 

53% coverage of the eligible population will cost an additional 
$261,651,942 over 5 yrs, and $872,685,561 over 30 yrs ICERs 
suggest highly cost-effective (as below GDP per capita) 

Grupo de trabajo de la 
Cohorte VACH 2012 [19] 

Spain ART eligibility at 500 (vs. 350) + 
clinical and age criteria for initiation 
>500 

BIA BIA of applying new (2011) Spanish GL with 
eligibility at 500  

GL application would increase ARV cost in VACH cohort 
hospitals by €3,270,975, or 3%, over 1 yr 

Angeletti 2014 [20] Italy Eligibility at 500 CD4 and cost-saving 
measures 

Cost and BIA analyse short and medium-term cost trends 
resulting from 2011 GL on "on the costs of 
treating an HIV-infected population over the 
period 2012–2016" in the Lazio region 

earlier initiation increase budget for HIV in Lazio region by 
2.3%; increasing NNRTI-based regimens in new starters from 
27% to 50% reduces budget by 0.3%; single tablet regimens 
and PI/r-based monotherapy saves 1.5%; introducing generics 
saves a further 3.3% 

Oyagüez 2009 [21] Spain EFV-FTC-TDF FDC BIA estimate the BI of substituting different first-line 
regimens with EFV-FTC-TDF FDC 

incremental cost would be between -1.99 and +6.73% of current 
budget over 1 yr, based on the replacement scenario chosen 

Restelli 2014 [22] Italy 'Less-drug regimen' ART BIA BI of PI-based dual and monotherapies over 
current regimen mix over 3 yrs 

ART expenditure would drop by 6.7% and 12.8% in the 
examined hospitals, or 1.1%-2.1% in the Italian National Health 
Service 

Pasquau 2012 [23] Spain DRV/r BIA BIA of switching the 15% of Spanish ART pts who 
are currently on 2 NRTI + PI or NNRTI to DRV/r 
+/- 2 NRTI, with resource use based on MONET 
trial 

switch to DRV/r saves €62 m over 3 yrs 

Colin 2010 [24] France DRV/r vs. TPV/r BIA evolution of ARV and non-ARV cost over 3 yrs 
under scale-up of DRV/r from 20% to 70% 
coverage for highly treatment-experienced pts 

net saving of €11.4 m (2.9% of total budget) with DVR/r, mostly 
from preventing lower CD4 and associated hosp costs 
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Table 2: Summary of methods of reviewed budget impact analyses: Perspective 
First author, year Country Intervention Perspective For this perspective,   
 …relevant target population? …relevant current and expected 

new treatment mix? 
…relevant resource use and cost? 

Hutton 2003 [11] Chad HIV prevention government yes (based on EpiModel) not enough information no (mostly literature) 

Tran 2012 [12] Vietnam Methadone 
replacement therapy 
(MRT) 

health-care system yes yes, though capped at current 
population 

no (MMT costed comprehensively, but for 
ART, cost limited to ARV drugs only) 

Martin 2010 [13] US Expanded HCT RW and Medicaid/ -care 
funders (5-yr horizon 
reflects "the 3 to 5-year 
interval typical of RW 
reauthorizations") 

yes (only paper to give reason for exclusion of 
children, as funded differently, and including 
treatment, but excluding testing costs for the 
elderly, as these not part of current GL); based 
on national prevalence and incidence 
estimates (incidence assume constant) 

yes yes (testing and treatment; for testing, 
great level of detail incl. admin cost for 
"nonreturn for results" etc) 

Anaya 2012 [14] US Expanded HCT payer (Veterans 
Healthcare 
Administration) 

yes yes yes (including comprehensively costed 
ART) 

Chan 2014 [15] US HCT reminder payer (Veterans 
Healthcare 
Administration) 

yes yes no- no ART or other care costs included 

Mauskopf 2000 [16] US HAART vs. 
monotherapy 

ADAP somewhat- though cohort size seems to be 
based on past data (no mortality benefit of 
triple tx?) 

yes- all on monotherapy are 
switched to triple tx 

yes 

Schackman 2005 [17] US Early ART (CD4 > 200 
cells/microl) 

payer (Medicaid) yes (newly identified uncovered individuals) yes (no waiver vs waiver scenarios 
with annual cohorts tracked over 5 
years, with careful delineation of 
payers (ADAP vs Medicaid vs 
"other") in either scenario) 

yes (non-drug cost based on ACSUS and 
BMC accounting system and adjusted for 
differences between States, and 
comparable to other data) 

Mills 2012 [18] Uganda Early ART (350 vs. 200) ministry of health not sure- seems limited to closed cohort to some extend (impact on TB, but 
no other OIs) 

yes 
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First author, year Country Intervention Perspective For this perspective,   
 …relevant target population? …relevant current and expected 

new treatment mix? 
…relevant resource use and cost? 

Grupo de trabajo de 
la Cohorte VACH 
2012 [19] 

Spain ART eligibility at 500 
(vs. 350) + clinical and 
age criteria for initiation 
>500 

"perspective of 
pharmaceutical 
expenditure" 

limited to one clinical cohort spanning several 
hospitals 

no (distribution into regimes based 
on current cohort) 

no (cost limited to ARV cost) 

Angeletti 2014 [20] Italy Eligibility at 500 CD4 
and cost-saving 
measures 

Lazio Regional Health 
System 

yes (including current regional cohort and 
modelled incidence and testing/ treatment 
coverage) 

yes yes (including hospital admissions, ARV 
and non-ARV drugs, outpatient visits and 
lab tests) 

Oyagüez 2009 [21] Spain EFV-FTC-TDF FDC "hospital" yes (based on national AIDS registry, inflated 
for non-registered case based on survey of 
hospitals, corrected for eligibility (CD4<35) and 
current coverage (83.2%) based on same 
survey; added assumed new cases) 

yes   no (ARV costs only) 

Restelli 2014 [22] Italy 'Less-drug regimen' 
ART 

National Health Service yes (includes reasonable new entries and 
exits) 

yes (4 possible scenarios) no (only ARV drug cost included) 

Pasquau 2012 [23] Spain DRV/r not mentioned yes no (limited to those options 
included in 1 trial) 

no (only ARV costs) 

Colin 2010 [24] France DRV/r vs. TPV/r public healthcare system yes- "highly treatment-experienced, HIV-
infected adults who have failed more than one 
PI-containing regimen" only, based on data 
covering 50-60% of French ART pts and 
multiplied out to all of France's HIV pos (4.6% 
of 130,000) 

yes (including a change in 
treatment regimens in the baseline 
scenario!) 

yes (including non-ARV and inpatient 
costs) 
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Table 3: Summary of methods of reviewed budget impact analyses: Analytical framework 
First author, year 
 

Analytical framework for 
BIA 

Analytical 
framework for CEA 
or cost analysis 

If simulation model, 
...is assumption of changes in total 
population, disease severity or 
treatment pattern warranted? 

...are all health outcomes for affected 
population included? 

...are all costs for affected population included? 

Hutton 2003 [11] calculator EpiModel + cost    
Tran 2012 [12] decision-tree model decision-tree model; 

epi: Modes of 
Transmission model 

no (model only run for 1 yr, then 
population assumed to  be constant over 
5 yrs, with coverage increasing from to 
70%) 

yes  no (MMT costed comprehensively, but for ART, cost 
limited to ARV drugs only) 

Martin 2010 [13] CEPAC model  yes yes yes (testing, treatment and routine care); no pre-test 
counselling as not part of current GL (and also 
varies by state) 

Anaya 2012 [14] dynamic model  yes no (ART and HCT only, no other 
outcomes) 

no (ART and HCT only, no other costs) 

Chan 2014 [15] decision tree  yes no (HCT outcomes only) no (HCT costs only) 
Mauskopf 2000 [16] static deterministic model no (OI incidence only, looks like mortality 

set to be same between arms) 
no (OI incidence only, looks like mortality 
set to be same between arms) 

yes (OI treatment and prophylaxis, ARVs, PCR 
monitoring for triple tx) 

Schackman 2005 [17] “state-transition” simulation model (precursor to 
CEPAC model) 

yes yes yes 

Mills 2012 [18] Markov model yes (apart from crude approximation of 
prevention benefit of ART) 

no (only TB) yes   

Grupo de trabajo de 
la Cohorte VACH 
2012 [19] 

calculator     

Angeletti 2014 [20] deterministic health-state transition model yes yes yes (including hospital admissions, ARV and non-
ARV drugs, outpatient visits and lab tests) 

Oyagüez 2009 [21] calculator      
Restelli 2014 [22] simple BI model     
Pasquau 2012 [23] calculator      
Colin 2010 [24] health-state transition model no (in the comparator scenario, most pts 

with PI resistance would be given TPV/r 
instead which was not available in France 
at the time- might have led to an 
underestimation of savings?) 

yes (although use of trial data only might 
have overestimated the beneficial impact 
on CD4 cell count development, and do 
not include longer-term outcomes or side 
effects) 

yes (including non-ARV and inpatient costs) 
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Table 4: Summary of methods of reviewed budget impact analyses: Impact on access and uptake 
First author, year 
 

Impact on access and uptake   

 Are potential access restrictions included? Is the potential uptake included? Are the use and effects of both the new 
intervention and current interventions that might 
be replaced included? 

Hutton 2003 [11] no not enough information no- full analysis (ie, comparator is "do nothing") 
Tran 2012 [12] yes (coverage capped at 70%) no (modelled over 1 yr only) no (MMT costed comprehensively, but for ART, cost 

limited to ARV drugs only) 
Martin 2010 [13] yes (only non-privately insured and non-VA 

pts) 
yes yes (incl. treatment and routine care) 

Anaya 2012 [14] no yes yes 
Chan 2014 [15] no yes no (HCT cost only) 
Mauskopf 2000 [16] yes yes- coverage increased from 66% for monotx to 

100% for triple tx 
yes 

Schackman 2005 [17] yes yes yes 
Mills 2012 [18] no (coverage tagged to current level, 53%) no   yes- though somewhat limited by having limited entry 

population 
Grupo de trabajo de la Cohorte VACH 2012 [19] coverage of GL set to 80% no, only over 1 yr no- assumes same distribution into regimens as 

current cohort 
Angeletti 2014 [20] no restrictions  yes- coverage is between 20 and 85%, by CD4 

stratum 
yes 

Oyagüez 2009 [21] no yes no (ARV costs only) 
Restelli 2014 [22] yes, through some scenarios yes, through some scenarios no (effects not fully considered as only ARV drug 

costs, no SE or hosp. cost) 
Pasquau 2012 [23] no no no 
Colin 2010 [24] yes- target population are highly experienced 

pts with PI mutations only 
yes yes (with the exception that in the comparator 

scenario, most pts with PI resistance would be given 
TPV/r instead which was not available in France at the 
time- might have led to an underestimation of 
savings?) 
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Table 5: Summary of methods of reviewed budget impact analyses: Uncertainty analysis 
First author, year 
 

Uncertainty 
analysis 

Sensitivity 
analysis? 

If sensitivity analysis,  Scenario 
analysis? 

If scenario analysis, are plausible alternative 
input parameters included 

If scenario 
analysis, are 
plausible 
alternative 
structural 
assumptions 
included? 

 …is parameter 
uncertainty in input 
values included? 

 …is structural 
uncertainty in choice 
of analytical 
framework included? 

…for cost? …for outcomes? 

Hutton 2003 [11] yes (based on 
EpiModel) 

yes yes no no    

Tran 2012 [12] yes yes yes (PSA) no no    
Martin 2010 [13] yes yes yes yes (10- instead of 5-

yr modelling 
framework) 

no   

Anaya 2012 [14] yes yes yes no no    
Chan 2014 [15] yes yes yes no no    
Mauskopf 2000 [16] yes yes yes no no    
Schackman 2005 [17] yes yes yes no yes (and if 

initiation was 
according to GL 
in base case in 
both states) 

somewhat (20% 
reduction in drug 
costs, but no other 
costs tested) 

somewhat (tested what 
would happen if 
enrolment was capped 
in both states) 

no 

Mills 2012 [18] yes yes yes to some extent 
(inclusion of 
productivity impact) 

no   

Grupo de trabajo de la Cohorte 
VACH 2012 [19] 

no     no    

Angeletti 2014 [20] yes yes yes no restrictions  no  
Oyagüez 2009 [21] yes (univariate +/- 

20%) 
yes yes no no    

Restelli 2014 [22] yes   yes   yes- 4 
scenarios of 
differing 
coverage and 
eligibility 

no no no 

Pasquau 2012 [23] no    no    
Colin 2010 [24] yes (one-way) yes yes no no    



 
 

 

Table 6: Economic evaluations for single countries 

First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Oddone 1993 
[30] 

US Incremental cost effectiveness of 
early (at recruitment) vs. late (at 
200 CD4 cells/microl) initiation of 
ZDV monotherapy (1500 mg vs. 
500 mg per day)  

Markov; 4 years Provider Cost per month 
without AIDS 

$17,944 (1500 mg); $6,538 (500 mg) Health state; 
 
SA: ZDV dosage 

Schulman 1991 
[31] 

US Incremental cost effectiveness of 
ZDV monotherapy over no 
treatment 

Health state 
transition; 
lifetime 

Provider Cost per life year 
saved 

$9,027 (when continuous benefit is 
assumed) to $84,882 (when one-time 
benefit is assumed) 

Constant cost in main analysis; 
 
SA: ZDV cost +/- 50%; lifetime cost in AIDS 
state +/- 50% 

Davies 1999 
[32] 

UK Incremental cost effectiveness of 
ZDV+3TC over ZDV alone in 2 
different London clinics 

Markov; 25 years Provider Cost per life year 
saved 

$14,400 to $32,171 Regimen, health state (CD4 200 | 500 
cells/microl); 
 
no SA 

Chancellor 
1997 [33] 

UK Full and incremental cost 
effectiveness of ZDV and 
ZDV+3TC 

Markov; 20 years Provider Cost per life year 
saved 

$13,781 (ZDV, full) 
$17,330 (3TC incremental over ZDV) 

Regimen, health state (CD4 200 | AIDS);  
 
SA: Community cost included 

Mauskopf 1998 
[34] 

US Incremental cost effectiveness of 
3TC+ZDV over ZDV alone 

Markov; lifetime Provider Cost per life year 
saved / per QALY 

$14,918 to $26,852/ 
$20,885 to $40,279 

Regimen, health state (CD4 100 | 200 | 350 
| 500); 
SA: Cost not included 

Simpson 1994 
[35] 

France, 
Germany, 
Italy, 
Switzerland, 
UK 

Incremental cost effectiveness of 
ddC+ZDV over ZDV alone 

Markov; 1 year Provider Cost per life year 
saved 

$27,741 (France), $37,154 (Germany), 
$25,275 (Italy), $31,374 (Switzerland), 
$42,944 (UK) 

Regimen, incidence of opportunistic 
infections (OI) and AIDS-defining disease 
(ADD) by CD4 (no details on CD4 
categories); 
SA: Future cost +/- 50%, OI/ ADD 
incidence +/- 50% 

                                                      
6 For health states, the notation “CD4 200 | 350” denotes the cut-off values between CD4 cell count categories; the corresponding categories would be <200, 200-350, and >350 cells/microl 



 

67 
 

First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Biddle 2000 [36] France, 
Germany, 
Italy, Spain, 
US 

Incremental cost effectiveness of 
NVP-containing triple therapy 
over dual therapy 

Markov (based 
on Simpson 
1994 (6) and 
Chancellor 1997 
(4)); 1 year/ 15 
years 

Provider and 
patient 

Cost per life year 
saved 

$24,509 (France), $25,070 (Germany), 
$23,328 (Italy), $12,507 (Spain), $20,376 
(US) 

1 year analysis: same as Simpson 1994 (6) 
15-year analysis: modified from Chancellor 
1997 (4): Regimen, health state (CD4 200 | 
500 | AIDS);  
 
SA: Admission rates in Italy set to be the 
same as in Spain 

Sendi 1999 [37] Switzerland  Incremental cost effectiveness 
of HAART over non-HAART 
 

Markov; lifetime 1. Provider, 
2. Societal 

Cost per life year 
saved 

1. (provider perspective): 
$71,111 (pessimistic scenario), 
$42,149 (base case),  
$22,124 (optimistic scenario) 
2. (societal perspective): 
$17,383 (pessimistic scenario), 
cost savings in base case and optimistic 
scenario 

Health state (CD4 200 | 500, both with and 
without AIDS); 
 
SA: 95% confidence intervals around all 
estimates (probabilistic SA) 

Cook 1999 [38] US Incremental cost effectiveness of 
ZDV+3TC+IDV over ZDV+3TC 

Health state 
transition with 
semi-Markov 
model; 5/ 20 
years 

Provider Cost per life year 
saved 

$19,174 Regimen, health state (CD4 200 | 500 | 
AIDS); ART given until VL returns to 
baseline;  
SA: Different set of cost estimates (but 
same CD4 categories); ART given until 
time of index ADD or death 

Trueman 2000 
[39] 

UK Incremental cost effectiveness of 
triple over dual NRTI therapy 

Markov (same as 
Chancellor 1997 
(4)); 20 years 

Provider Cost per life year 
saved/ per QALY 

$17,217/ 
$20,598 (optimistic scenario), 
$33,064 (pessimistic scenario) 

Regimen, health state (CD4 200 | AIDS); 
 
SA: Time horizon 5 years only 

Miners 2001 
[40] 

UK Incremental cost effectiveness of 
HAART over dual NRTI  

Markov; 20 years Provider Cost per life year 
saved/ per QALY 

$35,897/ $43,508  Regimen, health state (CD4 200 | AIDS) 
and time on treatment (first year vs 
consecutive years); 
SA: Increase in cost of third drug; time 
horizon 10 years 

Kahn 2001 [41]  US Incremental cost effectiveness of 
increased access to HAART by 
expanding Medicaid  

Markov; 5 years Provider Cost per life year 
saved with limited 
benefits package 
(drugs and 
outpatient care) 

$17,383 Health state (CD4 200, asymptomatic | 
500, asymptomatic | symptomatic, pre-
AIDS | AIDS (1993 definition) | AIDS (1987 
definition)); medication payer; full vs. 
limited benefit paid 
SA: Cost of ART +/- 20%; cost of all other 
medical care +/- 40%; insurance mix; 
eligibility expansion 
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First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Risebrough 
1999 [42] 

Canada Incremental cost benefit of 
IDV+ZDV+3TC and 
ABC+ZDV+3TC over ZDV+3TC 

Markov; n.a. Society Cost per life year 
saved 

$54,589 (IDV+ZDV+3TC), $4,389 to 
$27,516 (ABC+ZDV+3TC, depending on 
salvage regimen used) 

Regimen (HAART vs. salvage therapy), 
health state (200 | AIDS); 
 
SA: n.a. 

Caro 2001 [43] US Cost and effectiveness of EFV- 
or IDV-containing HAART 
regimens 

Monte Carlo 
simulation; 5 and 
15 years 

Provider Daily cost of EFZ 
and IDV; mortality 
rate and 
progression to 
AIDS after 5 years 

$14.71 (EFV), $20.72 (IDV);  
11% less mortality and 1,9% less 
progression to AIDS with EFV over IDV 

Regimen (two 1st line, one 2nd line, salvage 
therapy), health state (“responsive, tolerant 
and willing to adhere” | treatment failure | 
AIDS | final year); 
SA: Treatment cost 10-200% (EFV-
containing regimen), 50-300% (IDV-
containing regimen) 

Schackman 
2002 [44] 

US Full cost effectiveness of early 
initiation of HAART (i.e., at ≤ 
350 vs. ≤ 200 CD4 cells/microl) 
in patients with low viral load 

Health state 
transition with 
Monte Carlo 
simulation 
(CEPAC model); 
lifetime 

Provider Cost per QALY 
gained 

$16,430 (early initiation without QoL 
adjustment for fat redistribution syndrome), 
$21,485 to $295,113 (with QoL adjustment 
for fat redistribution syndrome) 

Regimen (1st, 2nd, 3rd and 4th line) and 
incidence of OIs and ADDs by health state 
(CD4 50 | 100 | 200 | 300 | 500); 
 
no SA 

Schackman 
2001 [45] 

US Incremental cost effectiveness 
and state budget impact of early 
(i.e., at CD4 ≤ 500 cells/µl) and 
late (i.e., at CD4 ≤ 200 cells/µl) 
initiation of HAART over no 
therapy 

CEPAC model; 
lifetime(?) 

Society Cost per QALY 
gained 

$22,839 (early), $26,403 (late)  One triple therapy regimen only; health 
state (CD4 50 | 100 | 200 | 300 | 500); 
acute OI episodes (not by health state); US 
state (MA/ NY/ FL/ national average); 
 
SA: Additional 3rd and 4th line; drug prices 
+/- 50% 

Yazdanpanah 
2002 [46] 

France Lifetime cost and cost by clinical 
stage  
 

CEPAC model; 
lifetime 

Society Lifetime cost; cost 
per pt month 

Lifetime cost $310,345; 
cost per pt month from $739 (CD4>500) to 
$11,090 (final month before death) 

Regimen (1st, 2nd, 3rd , and 4th line) and 
health state (no history of or current AIDS, 
by CD4 cell count | current AIDS | history of 
ADD but currently no AIDS | final month of 
life); 
SA: Dosage of ARV drugs (+/-25% and +/- 
50%), duration of outpatient medication 
usage (50%, 75%, 90%), four consecutive 
lines of very efficacious/ low efficacy ART 

Freedberg 2001 
[47] 

US Incremental cost effectiveness of 
HAART using data from 4 
different cohorts (ACTG, JH, 
INCAS, Dupont) 

CEPAC model; 
lifetime(?) 

Provider Cost per QALY 
gained 

$32,076 (ACTG), $23,708 (JH), $18,129 
(INCAS and Dupont) 

Regimen (1st/ 2nd line) and health state 
(CD4 50 | 100 | 200 | 300 | 500 and VL 500 
| 3000 | 10,000 | 30,000 cop/ml); 
SA: Drug prices +/- 50%; OI treatment and 
routine care cost +/- 50% 
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First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Mauskopf 2000 
[48] 

US Incremental cost to medical 
system of treating 100 pts under 
the AIDS Drug Assistance 
Program (ADAP) 

Static 
deterministic 
health state 
model; lifetime 

Provider(?) Incremental cost Incremental ADAP cost for HAART to 100 
pts.: $924,383 
Decrease in total medical care cost, 
including drugs, for 100 pts.: $9,914  

Health state (CD4 100 | 200 | 350 | 500); 
 
SA: Drug cost +/- 10%; OI event cost +10% 
and +/- 25% 

Moore 1996 
[49] 

US Incremental cost effectiveness of 
3TC+IDV+ZDV over ZDV alone 

Health state 
transition; n.a. 

Provider Cost per life year 
saved 

$16,201 to $29,162 (depending on the 
increase in other healthcare cost) 

Regimen; health state (CD4 200 | 500 | 
AIDS); 
no SA 

Simpson 2004 
[50] 

US Incremental cost effectiveness of 
LPV/r+d4T+3TC over 
NFV+d4T+3TC as first line 
regimen 

Markov model; 
run until 50% of 
pts had died 

Provider Cost per life year 
saved/ per QALY 
gained 

$8,058/ $8,408 (not taking resistance 
development into account), cost savings 
(taking resistance into account) 

Regimen, health state (CD4 50 | 200 | 350 | 
500 and VL 400 | 20,000 | 100,000 cop/ml) 
and ) and incidence of OIs and ADDs by 
health state; 
SA: Cost of OI events by 50-200%; cost of 
LPV/r 

Munakata 2003 
[51] 

Canada Incremental cost effectiveness of 
adding enfuvirtide to an 
(unspecified) ART background 
regimen for treatment-
experienced pts 

Markov model; 
n.a. 

Provider Cost per life year 
saved/ per QALY 
gained 

$178,915/ 
$248,189 

Regimen; no other information available; 
 
no SA 

Snedecor 2005 
[52] 

US Incremental cost effectiveness of 
HAART over non-HAART and of 
unspecified ‘rescue regimen with 
10% greater efficacy’ over 
HAART 

Monte Carlo 
Markov model; 
n.a. 

Provider Cost per QALY 
gained 

HAART: $27,164 
rescue regimen: $16,029 

Regimen (two 1st line regimens, one rescue 
regimen) and health state (CD4 categories 
n.a.); 
 
no SA 

Sax 2005 [53] US Incremental cost effectiveness of 
a 4-drug regimen (2 PI+2 NRTI) 
plus enfuvirtide (ENF) over 4-
drug regimen alone 

Health state 
transition with 
Monte Carlo 
simulation; 
lifetime 

Provider Cost per QALY 
gained 

$89,229 (if ENF is administered only until 
VL returns to pre-treatment level); 
$215,947 (if ENF is given until death) 
 

Regimen and health state (CD4 50 | 100 | 
200 | 300 | 500 and VL 500 | 3000 | 10,000 
| 30,000 | 100,000 cop/ml); ENF given until 
VL returns to baseline; 
SA: ENF cost (50-200%), continuation of 
ENF until death 
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First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Long 2006 [54] Russia Effectiveness and cost-
effectiveness of providing 
HAART to HIV+ IDUs and non-
IDUs in Russia, comparing 
providing HAART only to IDUs 
(IDU-targeted strategy), only to 
non-IDUs (non-IDU targeted 
strategy), or to all HIV+ patients 
regardless of IDU status 
(untargeted strategy) 

Dynamic 
compartmental 
model; 20 years 

n.s. Cost per QALY 
gained over next 
best strategy, 
infections averted  
 
20 yr time horizon 

IDU targeted strategy: incremental cost 
effectiveness over non-IDU targeted 
programme $1,682 per QALY gained 
 
Non-IDU targeted strategy: incremental 
cost effectiveness over current program 
$2,883 per QALY gained 
 
Untargeted strategy: incremental cost 
effectiveness over IDU targeted strategy 
$2,104 per QALY gained 
 
Optimistic untargeted strategy: incremental 
cost effectiveness over untargeted strategy 
$2,048 per QALY gained 

Constant cost; 
 
SA: Variation on ART and counselling cost 

Goldie 2006 
[55] 

Cote d'Ivoire Incremental cost effectiveness of 
22 different starting and 
treatment options in ARNS trial 
cohort 

Health state 
transition with 
Monte Carlo 
simulation; 
lifetime(?) 
 

Modified 
societal 
(patients’ time 
and travel cost 
excluded) 

Incremental cost 
per life year 
gained for a) 
cotrimoxazole 
prophylaxis, 
b) for ART and 
cotrimoxazole 
without CD4 
testing,  
c) for ART and 
cotrimoxazole with 
CD4 testing  

a) US$ 295, 
b) US$ 761, 
c) US$ 1,449 

Only 1st line in main analysis (2nd line in 
SA); health state (CD4 200 | terminal care); 
OI incidence dependent on CD4 and 
history of previous OI; 
 
SA: Additional 2nd line  

Paton 2006  
[56] 

Singapore Cost and cost-effectiveness of 
ART for HIV based on CDC 
stage of HIV infection (1. dual 
ART and 2. HAART)  

n.a.; 5 years Provider Incremental cost 
per life year 
gained  

CDC stage A : 
1. $11,247; 2. $14,886 
CDC stage B : 
1. $7,187; 2. $13,949 
CDC stage C: 
1. $6,512; 2. $10,920 
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First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Cleary 2006 
[57] 

South Africa Cost and incremental cost-
effectiveness of ART over no 
ART treatment 
 

Markov model; 
lifetime 

Provider Total (incremental) 
cost per patient 
year/ per QALY 
gained  
 
a) ART compared 
to No ART 
  
b) Initiating ART 
when CD4<50 
compared to 
starting when CD4 
50-199 

Cost per patient year:  
a) $14,901 and $13,203 
b) $15,018 and $14,781 
 
Cost per QALY gained:  
a) $18,280 and $18,851 
b) n/a 
 
Incremental cost per QALY gained:  
a) $18,106 
b) $12,722 

Regimen (1st line, 2nd line) and, for the first 
6 months on ART, health state (CD4 50 | 
200), time on ART (3-monthly until 6 
months on ART, 6-monthly until 36 
months), inpatient cost by type of hospital 
(secondary vs. tertiary); 
 
SA: 95% confidence intervals for all results 
(probabilistic SA) 
 

Over 2007 [58] Thailand Cost effectiveness of Thailand’s 
National Access to Antiretroviral 
Program for People Living with 
HIV/AIDS (NAPHA) programme  

Deterministic 
difference-
equation model 
with conditional 
demand 
allocation for 
different 
treatment modes; 
20 years 

Provider Cost per life year 
saved  

First-line drugs only: 
 $868 per LY saved 
 
First- and second-line drugs:  
- currently: $2,540 per LY saved 
- after issuing compulsory licenses (leading 
to a 90% reduction in the future cost of 
second-line drugs): $1,108 per LY saved 

All cost (including inpatient and outpatient 
service cost, not only drug cost!) by 
regimen (drug costs as weighted averages 
of six 1st line regimens and two 2nd line 
regimens, resp.); health state 
(asymptomatic | symptomatic), and mode 
of service delivery (public vs. augmented 
public vs. private) 
 
Other scenarios considered: Compulsory 
licensing for 2nd line drugs 

Walensky 2010 
[59] 

South Africa Incremental cost effectiveness of 
implementing elements of the 
2010 WHO guidelines: 
1. Routine CD4 monitoring 
2. d4T- vs. TDF-based first line 
3. Initiation by WHO stage vs. at 
<200 CD4 cells/microl vs. at 
<350 CD4 cells/microl 
4. First-line only vs. first- and 
second-line ART 

CEPAC-
International 
model; lifetime(?) 

n.a. Cost per life year 
saved  

Three “economically efficient” 
combinations: 
- Stavudine/ <350/ml/ one line: $614/ YL 
saved 
- Tenofovir/ <350/ml/ one line: $1,197/ YL 
saved 
- Tenofovir/ <350/ml/ two lines: $2,489/ YL 
saved 

Regimen (two 1st line, one 2nd line), health 
state (CD4 50 | 100 | 200 | 300 | 500 and 
VL 500 | 3000 | 10,000 | 30,000 cop/ml); 
 
SA: Cost of TDF, 2nd line and CD4 cell 
count tests 
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First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Bendavid 2011  
[60] 

South Africa Incremental cost-effectiveness 
of different first-line regimens: 
1.TDF/3TC/NVP 
2. TDF/3TC/EFV  
3. AZT/3TC/NVP  
4. AZT/3TC/EFV  
5. d4T/3TC/NVP 

Simulation 
model; lifetime 

Societal Cost per QALY 
gained  

1. Base 
2. Dominated 
3. $1,098 per QALY gained 
4. Dominated 
5. $6,250 per QALY gained 
 

Regimen (five 1st line , one 2nd line), health 
state (200 | 350) 
 
SA: probabilistic 

Ciaranello 2011 
[61] 

South Africa Incremental cost effectiveness of  
1.no ART 
2. LPV/r-based ART 
3. NVP-based ART 
in women after sdNVP exposure 
for PMTCT 

CEPAC-
International 
model; lifetime(?) 

Modified 
societal 

Life years saved, 
cost and ICERs  

1. 1.6 yrs; $3,130 
2. $851/LY saved (vs. 1) 
3. $1,597/LY saved (vs. 2) 

Regimen (4 regimens and “3rd line 
maintenance” regimen) and health state 
(200 | terminal care) 
 
SA: Frequency of VL monitoring, additional 
3rd line regimen 

Bachmann 
2006 [62] 

South Africa Incremental  cost effectiveness 
of early (CD4<350) and late 
(CD4<200) prevention of 
progression of HIV/AIDS with 
ART or antibiotics 

Markov Monte 
Carlo simulation; 
10 years  

Provider Cost per QALY 
gained 
 
 

Early intervention: 
ART only $3,345 
ART+ antibiotics $15,324 
Antibiotics $295 
 
Late intervention: 
ART only $2,983 
ART+ antibiotics $3,024 
Antibiotics only $21 
  

Time on treatment (first 3 months vs. 
thereafter) and health state (tuberculosis | 
other infection | no infection, at below or 
above CD4 200); 
 
no SA 

Long 2010 [63] US Incremental cost effectiveness of 
expanded HIV testing and ART 

Dynamic model; 
20 years 

Societal Cost per QALY 
gained 
 
20 yr horizon; 
lifetime costs 

One-time screening: $22,649 per QALY 
gained 
 
Expanding ART coverage to 75% of 
eligible persons: $20,542 per QALY gained 
 
Combination strategy: $21,840 per QALY 
gained 

One regimen cost only; health state 
(untreated asymptomatic | untreated 
symptomatic | treated symptomatic | 
untreated AIDS | treated AIDS) 
 
SA: Cost not included 
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First author, 
year 

Country Aim and intervention(s) Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD  Factors influencing input cost  
(including in sensitivity analysis, SA)6 

Over 2004 [64] India Cost-effectiveness of national 
ART programme 2003 to 2033 
- for 40% of eligible pts falling 
under the poverty line (“Below 
the Poverty Line”) 
- for 25% of mothers and 1.5% 
of fathers of children eligible for 
PMTCT (“MTCT+”) 
- capacity building and subsidies 
for laboratory tests, with 
antiretroviral treatment paid for 
by patients (“ADHERE”) 

Epidemiological 
model; lifetime(?) 

Provider Cost per life year 
saved 

Below the Poverty Line:  
- no change in condom uptake: $378 per 
LY saved 
- 70% condom use rate: $69 per LY saved 
- 90% condom use rate: $40 per LY saved 
 
MTCT+: 
- no change in condom uptake: $268 per 
LY saved 
 
ADHERE: 
- no change in condom uptake: $197 per 
LY saved 

Time on treatment (first 3 years vs. year 
before death); health state (symptomatic, 
non-AIDS | AIDS); unstructured vs. 
structured treatment provision 
 
SA: Cost not included 

Vijayaraghavan 
2006 [65] 

South Africa Incremental cost effectiveness of 
implementing DHHS treatment 
guidelines (initiate treatment at 
CD4<350 or viral load>100,000 
and monitor with CD4 counts 
and viral load every three 
months) over WHO guidelines 
(initiate treatment at CD4<200 or 
for patients with AIDS and 
monitor using CD4 counts every 
6 months) 

Markov model 
with Monte Carlo 
simulation; 
lifetime 

Societal Incremental cost 
per QALY gained  
a) not including 
impact on 
transmission 
b) including impact 
on transmission 
c) including 
indirect costs 
(without 
transmission) 

a) $5,865 per QALY gained 
b) $4,594 per QALY gained 
c) $1,550 per QALY gained 
 
‘Over a five-year period, treating all HIV 
patients in South Africa according to US 
DHHS versus WHO guidelines would 
increase direct medical costs by US$14.5 
billion but would result in approximately 
400,000 fewer deaths and 1.1 million fewer 
new AIDS cases.‘ 

Regimen (1st line, 2nd line) and health 
state (if not on ART: CD4 350 | 200 and 
asymptomatic | symptomatic | AIDS; if on 
ART, additionally: unsuppressed | toxicity | 
suppressed | without additional treatment 
options) 
 
SA: Cost of VL and of 2nd line +/- 25%,  

Granich 2009 
[28] 

South Africa Impact of universal voluntary 
testing and immediate treatment 
(UTT) on annual cost, HIV 
incidence and prevalence 

Deterministic 
transmission 
model and 
stochastic 
survival model; 
43 years 

Provider(?) Impact on 
incidence, 
prevalence, and 
overall programme 
cost  

Incidence: reduction to <1/1000 per year 
by 2016 (within 10 yrs of full 
implementation of UTT) 
 
Prevalence: reduction to less than 1% 
within 50 years 
 
Cost: same as base case until 2032 
(US$1.7 billion); lower thereafter 

Regimen (1st line, 2nd line); 
 
no SA  

Hontelez 2011 
[29] 

South Africa Incremental cost benefit of ART 
initiation at different CD4 cell 
count thresholds (<200 vs. 
<350) 

Simulation 
model; 30 years 

Provider Total cost of ART 
programme  

Initiation at <350 costs 7% more per 
annum during first 5 years, with cost 
decreases due to reduction in incidence 
and ART need after 7 years; break-even in 
cost after on average 16 years 

Regimen (1st line, 2nd line), baseline (not 
current) CD4 cell count (100 | 200 | 350) for 
first three years; 
 
SA: Cost varied by +/- 33% 
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3TC: lamivudine; ABC: abacavir; AZT: zidovudine; d4T: stavudine; ChoICE: WHO’s “CHOosing Interventions that are Cost-Effective” Team; DALY: disability-adjusted life-year; 
ddC: zalcitabine; EFV: efavirenz; GFATM: Global Fund to fight AIDS, Tuberculosis and Malaria, HAART: highly-active antiretroviral therapy; ICER: incremental cost-
effectiveness ratio; IDV: indinavir; LPV/r: lopinavir/ ritonavir; LY: life years; n.a.: not available; NRTI: nucleoside reverse transcriptase inhibitor; NVP: nevirapine; PMTCT: 
prevention of mother-to-child transmission; pt: patient; pts: patients; QALY: quality-adjusted life-year; QoL: quality of life; SA: sensitivity analysis; TDF: tenofovir; USD: US 
dollar; VL: viral load; WHO: World Health Organization; yr: year; ZDV: zidovudine



 
 

Table 7: Regional economic analyses  

First author, 
year 

Region Aim and method Modelling 
method; time 
horizon 

Perspective Measure Result in 2011 USD Factors influencing input cost  
 (including in sensitivity analysis, SA) 

Bonnel 2000 [66] Sub-
Saharan 
Africa 

Cost of scaling up ART by 10% in 
countries with very low and low 
current HIV programme strength, 
and by 25% in countries with a 
medium or strong current HIV 
programme 

n.a., 5 years Provider Cost per patient 
year  
 
Total annual cost  

$2,993 - $5,208 
 
 
$2.3 - 3.6 billion 

Regimen (drug costs set at 73%-86% of 
current US drug prices); 
 
no SA 

Kumaranayake 
2001 [67] 

Sub-
Saharan 
Africa 

Incremental cost of ART provision 
(target coverage of 48% in 2007 
and 62% in 2015) 

n.a.; 8 years Provider Total annual cost  $4.0 to 6.5 billion (2007); 
$5.8 to 9.3 billion (2015) 

No details available, but cost likely to be 
constant; 
 
no SA 

Creese 2002 [68] Sub-
Saharan 
Africa 

Incremental cost-effectiveness of 
ART based on previously published 
estimates  

Systematic 
review ; n.a. 

Provider Cost per life year 
gained  

$1,582 -2,608 Constant cost; 
 
no SA 

Hogan 2005 [69] Sub-
Saharan 
Africa and 
South East 
Asia 

Cost effectiveness of ART provided 
through antenatal care clinics 
 

Epidemiological 
model; 
lifetime(?) 

n.a. 1) Cost per infection 
averted  
 
2) Cost per DALY 
averted  

No intensive monitoring, 1st line drugs: 
1) $42,109  2) $835 
Intensive monitoring, 1st line drugs: 
1) $52,302  2) $895 
No intensive monitoring, 2nd line drugs: 
1) 271,985  2) $3,019 
Intensive monitoring, 2nd line drugs: 
1) $278,436  2) $2,969 

Regimen (1st line, 2nd line), type of 
monitoring; 
 
SA: Variation of programme cost in relation 
to patient cost 

3TC: lamivudine; ABC: abacavir; AZT: zidovudine; d4T: stavudine; ChoICE: WHO’s “CHOosing Interventions that are Cost-Effective” Team; DALY: disability-adjusted life-year; 
ddC: zalcitabine; EFV: efavirenz; GFATM: Global Fund to fight AIDS, Tuberculosis and Malaria, HAART: highly-active antiretroviral therapy; ICER: incremental cost-
effectiveness ratio; IDV: indinavir; LPV/r: lopinavir/ ritonavir; LY: life years; n.a.: not available; NRTI: nucleoside reverse transcriptase inhibitor; NVP: nevirapine; PMTCT: 
prevention of mother-to-child transmission; pt: patient; pts: patients; QALY: quality-adjusted life-year; QoL: quality of life; SA: sensitivity analysis; TDF: tenofovir; USD: US 
dollar; VL: viral load; WHO: World Health Organization; yr: year; ZDV: zidovudine



 
 

Table 8: Global economic analyses  

First author, 
year 

Countries/ 
Regions 

Aim and method Modelling 
method; time 
horizon  

Perspective Measure Result in 2011 USD Factors influencing input cost  
 (including in sensitivity analysis, SA) 

Floyd 1997 [70] Worldwide Cost of global ART provision (100% 
coverage) 

Estimation 
based on 
population and 
prevalence 
data; n.s. 

Provider Cost per patient 
year  
 
 
Total annual cost  

- AZT monotherapy: $6,252 to $8,269  
- triple ART (excluding ritonavir): $15,368 to 
$24,344 
 
-Triple ART: $133.3 - $176 billion globally 
(Sub-Saharan Africa: $74.5 - $98.4 billion, 
Southeast Asia $41.7 - $55 billion,  
Latin America $6.6 - $8.8 billion,  
North America $5.9 - $7.9 billion,  
Western Europe $4.5 - $5.9 billion) 

Constant cost data using drug prices from 
US, laboratory and hospital cost data from 
US, Uganda, South Africa and Malawi, 
resource use modelled on UK guidelines; 
 
no SA 

Hogg 1998 [71] Worldwide Cost of global ART provision (25% 
coverage) 

Estimation 
based on 
population and 
prevalence 
data and 
coverage in 
British 
Columbia; 1 
year 

Provider Total annual cost  $110 billion globally (95% CI 35 - 189 billion 
(Sub-Saharan Africa  $75 billion, 
South and South East Asia $22 billion, 
Americas $8 billion, 
Western Europe $1.7 million) 

Constant drug cost using data from the US; 
 
SA: Drug cost reduced by 50, 75, 90 and 
99%; additional probabilistic analysis 

Attaran 2001 [72] Worldwide Cost of global ART and prevention Estimation 
based on 
prevalence 
data and 
assumed cost 
of ART; 3 
years  

Provider Total annual cost  $10.8 billion Constant assumed cost of ART and 
palliative care $500, and of prevention $10 
per pt yr; 
 
no SA 

Schwartländer 
2001 [73] 

135 low- and 
middle-
income 
countries 

Cost of global ARV drugs and 
laboratory monitoring for eligible 
patients  
 

Model based 
on UNAIDS 
estimates of 
population in 
need, access 
to care 
assumptions, 5 
years  

Provider Cost per patient 
year in 2005  
 
Total annual cost  

$826-5,467 
 
 
$3.8 billion (27% of total resource need for 
treatment and prevention) 
 
 
 

Per-capita Gross National Product 
(differential pricing for drugs), age (cost of 
care for children assumed to cost 50% of 
adult care); 
 
no SA 
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First author, 
year 

Countries/ 
Regions 

Aim and method Modelling 
method; time 
horizon  

Perspective Measure Result in 2011 USD Factors influencing input cost  
 (including in sensitivity analysis, SA) 

Guiterrez 2004 
[74] 

Worldwide Cost of 3 by 5 programme (ART to 3 
million eligible patients by 2005) 

Health-state 
transition 
model; 2 years  

Provider Total cost of 
programme  

$6.4 - 7.4 billion Regimen (two 1st line, one 2nd line), current 
prices or prices negotiated by Clinton 
Foundation; 
 
no SA 

Stover 2011 [75] 104 low- and 
middle 
income 
countries 
receiving 
support from 
GFATM 

Cost of maintaining 3.5 million 
people currently supported (with 
25% of total cost) by GFATM on 
ART in 2011-2020 

Spectrum 
model; 10 
years 

Provider Annual cost of ART 
to 2011 GFATM 
cohort  
 
Life-years saved 
per year 

$2 billion (2011), $1.8 billion (2020) 
 
 
830,000 (2011), 2.3 million (2015-2020) 

Regimen (1st line, 2nd line); end-of-life 
treatment separately 
 
SA: Reduction in ARV drug prices per year: 
5% in 1st line, 11% in 2nd line drugs; 
replacement of d4T by other drugs; 
migration to 2nd line 6% per year 

Resch 2011 [76] 104 low- and 
middle 
income 
countries 
receiving 
support from 
GFATM 

Cost benefit of maintaining 3.5 
million people currently supported 
(with 25% of total cost) by GFATM 
on ART in 2011-2020 

Spectrum model; 
10 years 

Societal Total programme 
cost  
 
Total programme 
benefit  
 

$14.9 billion 
 
$13-$36 billion (94% of which due to 
productivity gains) 

Cost based on Stover 2011; benefits: 
- productivity gains (valued by per-capita 
income) 
-  orphanhood avoided (cost based on 
literature) 
- end of life care postponed (literature) 
 
SA: Productivity of treated/ untreated 
patients in relation to asymptomatic 
patients; valuation of productivity by friction 
cost only 

Schwartländer 
2011 [77] 

Worldwide Incremental cost effectiveness of 
“investment approach” to achieving 
universal access to HIV prevention, 
treatment, care and support 
(including interventions, social and 
programme ‘enablers’ and 
synergies with other development 
sectors) 

Resource Needs 
Model; 9 years  

Provider Cost per LY saved Incremental cost-effectiveness ratio $1,077 
per life year saved 
Cost: $22 billion; 12.2 million HIV infections 
averted; 7.4 million deaths from AIDS 
averted; 29.4 million life-years gained; 
“additional investment proposed would be 
largely offset from savings in treatment 
costs alone” 

Not much information given, but “average 
cost per patient of antiretroviral therapy is 
assumed to decline by about 65% between 
2011 and 2020, with a large proportion of 
the cost savings after 2015 coming from an 
increasing shift to primary care and 
community-based approaches and cheaper 
point-of-care diagnostics”; 
 
no SA 

3TC: lamivudine; ABC: abacavir; AZT: zidovudine; d4T: stavudine; ChoICE: WHO’s “CHOosing Interventions that are Cost-Effective” Team; DALY: disability-adjusted life-year; 
ddC: zalcitabine; EFV: efavirenz; GFATM: Global Fund to fight AIDS, Tuberculosis and Malaria, HAART: highly-active antiretroviral therapy; ICER: incremental cost-
effectiveness ratio; IDV: indinavir; LPV/r: lopinavir/ ritonavir; LY: life years; n.a.: not available; NRTI: nucleoside reverse transcriptase inhibitor; NVP: nevirapine; PMTCT: 
prevention of mother-to-child transmission; pt: patient; pts: patients; QALY: quality-adjusted life-year; QoL: quality of life; SA: sensitivity analysis; TDF: tenofovir; USD: US 
dollar; VL: viral load; WHO: World Health Organization; yr: year; ZDV: zidovudine
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Preamble for paper 1 

Given the scarcity of relevant cost analyses of public-sector ART provision in South Africa at the start 

of my work on the model, as described in chapter 4, the National ART Cost Model draws on a number 

of inputs from other analyses. This paper gives the details of a bottom-up analysis of the cost of ART 

provision to adults in the urban and semi-urban public sector in South Africa. Data for this analysis 

was collected in 2006-2008, i.e., three to five years into the public-sector roll-out of ART, in two typical 

stand-alone specialised ART clinics. While the urban clinic was part of the outpatient department of a 

tertiary hospital in central Johannesburg, the semi-urban clinic was set in a township in the 

predominantly rural North West province; the paper therefore represents two common models of care 

in the early years of the ART roll-out.  

 

Paper 1 is one of the few papers of the cost of ART in South Africa that includes outpatient and 

inpatient cost for the same cohort; and it is the only such paper that compares the cost of two cohorts 

in different geographic locations using identical methods. Note that only the outpatient costs (which 

were almost identical between the settings, although with a vastly different distribution across different 

cost items such as staff and other fixed costs, and laboratory costs) were included as inputs for the 

NACM, and that the ARV drug costs in the paper had been adjusted to represent the 2011 drug 

tender prices which were used only in the “Reference List” sub-scenario in the NACM. 

 

The analytical framework for the calculation of fixed cost used in this analysis was developed by 

Sydney Rosen and Lawrence Long. All co-authors contributed comments and edited the paper. All 

other work, including study design, data collection, data analysis, and writing the first and consecutive 

drafts of the paper, was the candidate’s.  
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Paper 1 

Cost and resource use of patients on antiretroviral therapy in the urban and semi-urban public 
sectors of South Africa 
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ABSTRACT 
Background: South Africa has the world’s largest number of patients on antiretroviral treatment 

(ART). As coverage expands beyond urban environments, the cost of care is becoming increasingly 

important. 

Methods: Health care cost data for the first year after initiation were analysed for cohorts of patients 

in a semi-urban and an urban public-sector ART clinic in South Africa. We compared mean cost by 

CD4 cell count and time on ART between clinics.  

Results: Patients in both clinics had comparable CD4 cell counts at initiation and under treatment. In 

the urban clinic, mean cost per patient year on ART in 2011 USD was $1,040 (95% confidence 

interval, CI, $800-$1,280), of which outpatient cost was $692 (67%) and inpatient cost $348 (33%). 

14% of urban patients required inpatient care at a mean length of stay (LOS) of 9 days and mean cost 

per hospitalised patient of $1,663 (95% CI $1,103-$2,041). In the semi-urban clinic, mean cost per 
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patient year on ART was $1,115 (95% CI $776-$1,453), of which outpatient cost was $697 (63%) and 

inpatient cost $418 (37%). 7% of semi-urban patients required inpatient care at a mean LOS of 28 

days and mean cost per hospitalised patient of $3,824 (95% CI $1,143-$6,505).  

Conclusions: Outpatient ART provision in the semi-urban setting cost the same as in the urban 

setting, but inpatient costs are higher in the semi-urban clinic due to longer hospitalisations. Cost in 

both clinics was highest in the first 3 months on ART and at CD4 cell counts < 50 cells/microl. 

 

Keywords: HIV, economics, middle-income, antiretroviral treatment, cost analysis, rural 

 

 

INTRODUCTION 
 

South Africa is home to both the largest number of people infected with HIV and people on 

antiretroviral treatment (ART) worldwide1. In order to plan for a programme that currently covers more 

than 1.5 million patients, or 20% of the world’s population on ART in low- and middle-income 

countries1,2, information on the cost of ART provision is needed. Since 2004, a number of studies 

have been undertaken which have resulted in cost estimates of ART provision for a variety of different 

settings and models of care in South Africa3-7. These studies almost exclusively focus on large clinics 

in urban settings, while recent policy changes have led to a re-focussing of the national ART 

programme on increasing coverage of currently underserved semi-urban and rural communities.  

In order to reach the target of 80% ART coverage of the eligible population by the end of financial 

year 2010/11 set by the 2007 National Strategic Plan8, the 2010 National ART Guidelines introduced 

nurse-initiation and management of ART (NIMART)9. Involving the nurse cadre, together with 

strengthened political leadership, has led to a rapid increase in the number of clinics accredited for 

ART provision from 497 in January 2010 to 1,668 by January 201110. Most of the additional clinics are 

primary healthcare clinics (PHC) outside large urban centres. To help with planning and budgeting to 

sustain this effort, information on the cost of ART provision in more remote settings is urgently 

needed. 

 

This study compares resource utilisation and the cost of providing antiretroviral treatment to large 

numbers of patients in two different settings in the South African public sector: an urban clinic in 

central Johannesburg and a semi-urban, township-based clinic in the North West province, using 

identical methods. In order to correct for differences in case mix and disease severity, the 

development of per-patient costs are then compared to patients’ CD4 cell count development over 

time. 

 

METHODS 
 
Study setting 
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Data on the cost of ART provision was collected in two South African cohorts of patients initiating ART 

at a clinic attached to Charlotte Maxeke Johannesburg Academic Hospital (CMH), an urban tertiary 

academic hospital in the inner city of Johannesburg, Gauteng, between April 2006 and August 2008 

(n=181), and at a clinic attached to Tshepong Hospital (TWC), a secondary hospital in the township of 

Jouberton close to Klerksdorp, North West Province, between January 2007 and December 2008 

(n=184). Both clinics started providing routine ART care as part of the national antiretroviral treatment 

roll-out in the public sector commencing in 2004. While TWC is situated in a densely populated area 

with formal and informal semi-urban housing, it is further removed from central urban infrastructure 

than CMH. 

 

Patient cohorts 

A consecutive sample of patients was enrolled into the study during the period of treatment 

preparation, before ART initiation. Patients’ consent was obtained for three-monthly interviews and 

review of their clinical information.  

In order to enter each clinic, patients had to fulfil eligibility criteria as detailed in the 2004 national 

antiretroviral treatment guidelines: they had to have tested HIV-positive and have at least one 

recorded CD4 cell count of <200 cells/microl and/ or WHO stage 4 HIV disease11. Before treatment 

initiation, patients underwent a series of preparatory visits including medical examination, laboratory 

and other diagnostic tests as indicated, and up to three individual or group counselling sessions with 

an adherence counsellor. Only those patients initiated on ART during their participation in the study 

were included in the analysis.   

 

Cost and resource use included 

We collected information on the economic costs incurred for each patient in a cohort of patients 

initiated on ART in each of the two clinics from the healthcare provider perspective, using a 

microcosting approach to resource use and costs at the outpatient and hospital level12. We included 

all healthcare resources used by patients from up to three months before ART initiation until either 12 

months after ART initiation or, in case of patients dying, defaulting from care, or being down-referred 

to another clinic during the first year on ART, until the last visit to the clinic. Down-referral is a process 

by which patients who are stable on therapy and have achieved an undetectable viral load get 

referred to a clinic at primary health-care level closer to their home. The cost analysis includes the 

cost of drugs (antiretroviral and non-antiretroviral drugs), of diagnostic and monitoring tests (including 

laboratory tests and radiological examinations), labour cost, and overheads, staff training in HIV 

management, infrastructure and medical equipment and furniture.  

 

Data sources 

Outpatient cost 
Resource use 

Data on patients’ resource use was obtained via a retrospective review of the clinic files of study 

patients. The number of laboratory tests was confirmed by a review of the patient records of the 
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public-sector National Health Laboratory Service at each hospital; the number of radiological 

examinations by a review of the electronic database of the radiology department where available. 

With regards to non-ARV costs, we made a number of assumptions and exclusions. All patients with 

CD4 cell counts below 200 cells/microl were assumed to be prescribed cotrimoxazole for the 

prevention of opportunistic infections. Every patient was assumed to have been prescribed 

multivitamins throughout their stay in the clinic. We excluded all tuberculosis treatment costs since, 

although the first dose of such treatment might be prescribed at the ART clinic, TB is managed 

entirely off-site at primary health-care clinics. In order to focus the analysis on the cost of antiretroviral 

treatment provision alone, we excluded this resource use. 

 

Unit costs 

Data on unit costs came from government drug depots (medication), the public-sector National Health 

Laboratory Service (laboratory costs), the hospitals’ radiology departments (x-ray examinations and 

ultrasound), clinic management (staff numbers and levels, numbers of patients and visits per year) 

and the finance, human resources, asset and store departments of both hospitals involved (staff 

salaries, equipment, supplies, overheads). Data was collected in an electronic format where available 

and otherwise abstracted from print-outs and paper-based price lists. 

 

All fixed cost data for one clinic was entered into an Excel spreadsheet to impute totals and calculate 

the average fixed cost per patient month, taking into account the number of patients in both ART and 

in pre-ART care in the clinic, the average number of visits for both of these patient subgroups by year, 

and the number of months spent in the clinic by each of the study patients. Space and utilities costs 

for the entire hospital were allocated by using the ratio of clinic-to-hospital space as calculated from 

hospital floor plans and measurements of the clinic space.  

 

Inpatient cost 
Resource use 

Patient files were reviewed for information on the dates of admission and discharge, discharge 

diagnoses and names of hospitals that patients were admitted to. To capture the cost of inpatient 

resource use under ART only, we excluded any hospitalisations that occurred before ART initiation. 

To complement the information available from the files, we asked patients during 3-monthly interviews 

after ART initiation about any hospital stays since the last interview and recorded length of stay, 

hospital, and diagnosis where available. If there was incongruence between interviews and files with 

regards to hospitalisation events, we deferred to the information from the interviews. We assumed 

that the length of stay of those hospitalisations with missing admission and/ or discharge dates was 

the same as the average length of stay of those patients with complete dates.  

 

Unit costs 

For the unit cost of inpatient days we used the cost per patient day equivalent (PDE) of the hospitals 

the patients were admitted to. This information is collected by the management of all public-sector 
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hospitals in South Africa which divides total hospital expenditure during a financial year by the total 

number of visits to the hospital. For the denominator, the number of visits to day wards or outpatient 

clinics is weighted by their average duration in relation to a full day of inpatient stay so that the result 

represents the average cost per inpatient day. Cost per PDE is calculated annually, allowing us to use 

the cost specific to the year that a patient was hospitalised in. 

 

CD4 cell count data 
In both clinics, patients’ responsiveness to ART is measured by regular CD4 cell count measurements 

which are undertaken once before and every three to six months after treatment initiation. The clinic 

files of participants as well as the electronic laboratory database were reviewed for laboratory data on 

participants‘ CD4 cell counts for the duration of the study.  

 

Data collection and analysis 

Data on resource use, clinical status and CD4 cell count was collected using paper templates from 

which data were entered into Excel spreadsheets, with 10% of the sample double-entered for quality 

control. Mistakes were found in 5% of the double-entered data and most often pertained to the 

dosages of non-antiretroviral drugs, a component that does not contribute much to total cost (see 

below). 

 

Capital costs were annualised using the government depreciation rate of 10% for telephones, 20% for 

computers and other electronic equipment, 6.7% for other office equipment, and 1% for buildings13. 

For patients who were in care for less than a year due to defaulting, death or down-referral, mean 

total costs were annualised. Unit costs were taken from the year in which the corresponding 

resources were used (2006-2008) and were adjusted for inflation to 2011 USD, using the 2009 

average conversion rate of 1 USD =  8.442 ZAR and the country’s average Consumer Price Inflation 

Index 14, with one exception: Since the prices of ARV drugs have halved on average since the data 

collection period, we used 2011 unit costs for ARV drugs rather than upward-adjust their cost for 

inflation. All costs are presented in 2011 USD.  

 

For the comparison between cost and CD4 cell count by 3-month intervals since ART initiation, the 

results of CD4 cell count tests were attributed to the same 3-month time period since ART initiation as 

cost, depending on the date on which the test was undertaken. If CD4 cell counts were missing for 

one or two consecutive 3-month periods, their values were interpolated linearly from CD4 cell counts 

in the adjacent periods. Baseline CD4 cell counts were defined as the lowest CD4 cell count during 

the three months before ART initiation. We used two-sided t-tests and Wilcoxon sum rank tests to 

compare mean cohort CD4 cell count and mean and median cost in each 3-month period on ART, 

and mean and median cost associated with each CD4 cell count stratum, respectively, in between 

clinics. All statistical analysis was done in SAS version 9.1.  
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The study was approved by the Human Research Ethics Committee of the University of the 

Witwatersrand and the Ethics Committee of the London School of Hygiene and Tropical Medicine. 

 

RESULTS 
 
Patient status and length of follow-up 
Cohort length of follow-up differed between the two settings, largely as the result of higher rates of 

down-referral at TWC during the second half of the study period. 28% of patients at TWC had been 

down-referred by month 9, and 39% by month 12, as opposed to 2% and 3% at CMH. This resulted in 

TWC contributing 1,878 patient months to the study, compared to 2,040 at CMH. Default and death 

rates were comparable in both clinics, with 1 patient (1%) having died and 16 patients (9%) having 

defaulted by 12 months at CMH, as compared to 4 (2%) and 11 patients (6%) at TWC, respectively.  

 

Development of CD4 cell count over time  
In both clinics cohort CD4 cell counts increased steadily under ART (Table 1). Differences in mean 

CD4 cell count by all 3-month periods on treatment between the two clinics were not significant at the 

<0.05 level, except for month 1 to 3 after initiation where the average CD4 cell count at TWC was 

much lower, and for month 7 to 9 after initiation where it was higher. 

 

Table 1: Development of mean CD4 cell counts over time on ART, by clinic 

  Johannesburg (CMH)  Jouberton (TWC)   

Months 
on ART n 

Mean CD4 cell count 
(95% confidence 
interval) 

 n 
Mean CD4 cell count 
(95% confidence 
interval) 

 
 p for comparison 
between clinics  
(t-test) 

-3 - 0 178 99 (89-109)  182 97 (89-106)  0.8310 
1 - 3 181 166 (153-180)  182 123 (110-136)  <.0001 
4 - 6 177 210 (193-228)  168 187 (166-207)  0.0826 
7 - 9 158 239 (219-259)  143 297 (271-322)  0.0006 
8 - 12 126 284 (260-309)  98 312 (277-351)  0.1720 
 

Cost and resource use 

Outpatient cost and resource use 
Table 2 summarises outpatient resource use and unit costs for both clinics. 

Table 2: Outpatient resource use and unit cost [2011 USD] 

Resource use item7 Johannesburg (CMH) Jouberton (TWC) 
Antiretroviral drug 
regimen 

Patient months 
(% of total) 

Cost per patient 
month 

Patient months 
(% of total) 

Cost per patient 
month 

d4T + 3TC + EFV 2,066 (89) 10 1,589 (91) 10 
d4T + 3TC + NVP 77 (3) 8 25 (1) 8 
AZT + 3TC + EFV 188 (8) 17 124 (7) 17 
AZT + ddI + LPV/r - 69 - 69 

                                                      
7 This table gives the details of all cost items apart from non-antiretroviral drugs, which are too many to 
summarise. 
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Diagnostics and 
monitoring 

Number of tests in 
cohort 

Cost 
per test 

Number of tests in cohort Cost 
per test 

CD4 cell counts 468 10 296 10 
HIV viral loads (VL) 511 50 401 50 
Alanine 
transaminase 554 6 140 6 
Albumin 308 5 31 5 
Aspartate 
transaminase 534 6 143 6 
TB culture (liquid) 37 4 98 4 
TB culture (R/M) 128 26 111 26 
Bilirubin 291 3 33 3 
Creatinine 218 4 134 4 
Full blood count  469 7 198 7 
Hepatitis (per 
antigen) 151 16 41 16 
U+E 211 10 128 10 
Alkaline phosphatase 293 5 32 5 
TB smear 
microscopy 149 5 106 5 
Radiology Number of 

examinations in 
cohort 

Cost 
per examination 

Number of examinations 
in cohort 

Cost 
per examination 

Chest x-ray 261 19 136 12 
Abdominal 
ultrasound 71 87 3 36 
Electrocardiogram - - 2 18 
Mammogram - - 1 12 
Fixed cost     
Staff Number of staff in 

clinic (average8) 
Total annual salary 
cost for clinic  
(all staff) 

Number of staff in clinic  Total annual salary 
cost for clinic  
(all staff) 

Physicians  
 

0.24 consultant, 2.75 
registrars, 0.8 
medical officer, 0.45 
intern, 2 doctor 
advisors 

991,291 (2006); 
841,792 (2007); 
1,054,840 (2008) 

0.24 chief specialist, 2 
principal medical officers, 
1 medical officer, 1 
community service 
doctor, 0.3 intern 

1,230,102 (2007); 
1,224,148 (2008) 
 

Nurses 6 clinical nurse 
practitioners, 1 senior 
enrolled nurse, 1 
nurse 

3 senior nurse 
practitioners, 2 senior 
nurse assistants, 2 
clinical nurse 
practitioners, 1 senior 
staff nurse, 1 nursing 
assistant 

Counsellors 5 lay counsellors 4 lay counsellors 
Administrative staff 0.75 manager, 1 

project manager, 4 
clerks 

5 admin clerks grade 2, 1 
data capturer, 1 admin 
officer 

Support staff 1 social worker, 3 
pharmacists, 2 
pharmacy clerks, 1 
quality improvement 
manager, 1 quality 
improvement nurse 

2 senior pharmacists, 1 
senior medical social 
worker, 1 senior dietician, 
1 defaulter tracer, 1 
quality assurance officer, 

                                                      
8 In CMH, the number of staff changed between the years of data collection (2006-2008); the numbers given here 
are averaged over those years. 
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practitioner, 1 
defaulter tracer, 2 
cleaners 

2 food services aides, 5 
cleaners, 1 porter 

Equipment Items Annual cost for clinic Items Annual cost for clinic 
Capital cost 
(annualised) 

IT equipment 905 IT equipment , medical 
equipment, furniture 

18,555 

Recurrent cost 
(average) 

Supplies 4,191 Supplies 187,127 

Overheads Items Annual cost for clinic Items Annual cost for clinic 
Capital cost 
(annualised) 

N/A - Building refurbishment, 
clinic space, clinic 
database 

3,000 

Recurrent cost 
(average) 

Building 
maintenance, utilities 

123,446 Utilities 10,841 

 

 

At CMH, the average total cost per patient per year on ART was $1,040 (95% confidence interval, CI, 

$800 to $1,280). The average outpatient cost was $692 (67% of total cost). The cost of antiretroviral 

drugs contributed 16% to this cost, with laboratory tests and radiology contributing 50%, fixed costs 

including staff and overhead costs 31%, and non-ARV drugs 2% (Table 3). Of fixed cost, 95% were 

due to staff cost, 4% due to building and utility costs, and 1% due to equipment and supplies (data not 

shown). 

 

At TWC, the average cost of ART provision per patient per year on ART was $1,115 (95% CI $776 - 

$1,453) (Table 3). The average outpatient cost was almost the same as at CMH, $697, or 68% of total 

cost. The largest contributor to outpatient cost was fixed cost with 63%, followed by ARV drug cost 

(13%), diagnostics cost (21%) and non-ARV drug costs (3%). Of fixed cost, 85% was due to staff 

cost, 1% due to building cost, and 14% due to equipment and supplies.  

 

Table 3: Mean annual cost per patient, total and per cost item [2011 USD] 

 Johannesburg (CMH)  Jouberton (TWC) 

Cost item Mean cost per patient year 
(95% confidence interval) 

% of total 
cost  

Mean cost per patient year 
(95% confidence interval) 

% of 
total 
cost 

Total cost 1,040 (800-1,280)   1,115 (776-1,453)  
Total outpatient cost 692 (630-754) 67  697 (673-720) 63 
of which      
ARV drug cost 110 (105-115) 161  90 (81-99) 131 
Non-ARV drug cost 17 (13-20) 21  18 (15-22) 31 
Fixed cost 216 (210-222) 311  441 (435-446) 631 
Diagnostics cost 349 (293-405) 501  148 (132-164) 211 
of which      
Laboratory cost 289 (248-330) 832  137 (123-152) 932 
Radiology cost 60 (38-82) 172  10 (7-13) 72 
Total inpatient cost 348 (145-550) 33  418 (81-756) 37 
 1of total outpatient cost; 2of total diagnostic cost 

 

Inpatient cost and resource use 
At CMH, 26 of the 181 study patients (14%) required inpatient care after the initiation of ART, at a 

mean length of stay (LOS) of 9 days (range, 1 to 30 days). At a cost per day equivalent to the cost per 
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PDE in 2007/08 of $158 ($176 in 2011 values), the resulting mean cost per hospitalised patient was 

$1,663 (95% CI $1,103 to $2,041) and mean cost of inpatient care amongst all patients on ART, 

whether hospitalised or not, was $348 (28% of total cost) (Error! Reference source not found.Table 

3). The average time on ART at hospitalisation was 132 days (range, 13 to 363). Thirteen of the 

hospitalisations were due to opportunistic infections, seven of which occurred in the first three months 

after initiation, the typical time window for the development of immune reconstitution syndrome. At 

least eight other admissions were related to side effects of ART (pancytopenia, lactic acidosis, 

peripheral neuropathy and gastric ulcers).  

 

At TWC, only 12 of the 184 study patients (7%) required inpatient care after the initiation of ART, at an 

average length of stay of 28 days (range, 1 to 63 days). At a cost per PDE of $226 in 2007/08 ($252 

in 2011 values), this led to a mean cost per hospitalised patient of $3,824 (95% CI $1,143 to $6,505) 

and a mean cost of inpatient care amongst all patients on ART of $418 (32% of total cost). The 

distribution of hospitalisations over time was rather different than at CMH, with only 23% of 

hospitalisations and cost within month 1 to 3 and 54% of hospitalisations and total inpatient cost 

falling into the time period of month 7 to 9 on ART. The average time on ART at hospitalisation was 

107 days (range, 2 to 232). Four of the hospitalisations were due to opportunistic infections, with only 

one occurring in the typical time window for the development of immune reconstitution syndrome. 

Three of the other admissions were related to side effects of ART (progressive neuropathy and lactic 

acidosis). 

 

We also analysed whether patients requiring inpatient care also had higher outpatient resource use. 

At CMH, patients with inpatient resource use had a mean outpatient cost of $848 (95% CI $553 to 

$1,143), compared to a mean outpatient cost of patients without inpatient resource use of $662 (95% 

CI $612 to $712) (p >0.2). At TWC, patients with inpatient resource use had a mean outpatient cost of 

$734 (95% CI $677 to $792), compared to a mean outpatient cost of patients without inpatient 

resource use of $693 (95% CI $668 to $718) (p >0.1). In summary, although in both clinics mean 

outpatient cost was somewhat higher for those patients who required inpatient care, the differences 

were not significant at the <0.05 level. 

 

Development of cost with time on treatment and with CD4 cell count 

Total cost, including both outpatient and inpatient cost, varied with time on treatment in both clinics, in 

part as a result of the treatment protocol asking for specific monitoring during the first visits, in part 

due to the higher incidence of opportunistic infections during the first months on treatment when CD4 

cell counts were still low, some of which required hospitalisation. As can be seen in Table 4, the 

highest cost per 3-month period on ART was found in the first 3 months after ART initiation in both 

clinics, after which cost decreased with every three months on ART except for the 7-9 month period at 

TWC which had high inpatient cost. Additionally, in both clinics cost was highest in the lowest stratum 

(<50 cells/microl). Differences in mean cost between clinics were not significant at the <0.05 level in 

any time period or CD4 cell count stratum except for the 10-12 months on ART time period where 
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care at TWC was cheaper. Differences in median cost (data not shown) however were significant at 

the <0.05 level for the 1-3 to 7-9 month periods and the <50 and 50-199 cells/microl CD4 cell count 

strata. 

 

Table 4: Mean cost by time on ART and by CD4 cell count stratum, by clinic [2011 USD] 

 Johannesburg 
(CMH) 

 Jouberton (TWC)    

n 

Mean cost per 3-
month period  
(95% confidence 
interval)  n 

Mean cost per 3-
month period (95% 
confidence 
interval)  

p for 
comparison 
of mean cost 
between 
clinics (t-test) 

p for 
comparison of 
median cost 
between 
clinics 
(Wilcoxon sum 
rank test) 

Months on 
ART      

 

-3 - 0 181 130 (120-141)  184 128 (121-134)  0.6498 0.7552 
1 - 3 181 276 (190-364)  184 399 (140-658)  0.3753 <.0001 
4 - 6 177 187 (140-235)  169 190 (109-271)  0.9568 0.0027 
7 - 9 158 136 (106-165)  143 267 (45-490)  0.2491 <.0001 
10 - 12 126 183 (111-255)  98 103 (89-116)  0.0315 0.0857 

CD4 stratum 
(cells/microl) n 

Mean cost per 3-
month period 
(95% confidence 
interval) 

 

n 

Mean cost per 3-
month period 
(95% confidence 
interval) 

 
p for 
comparison 
of mean cost 
between 
clinics (t-test) 

p for 
comparison of 
median cost 
between 
clinics 
(Wilcoxon sum 
rank test) 

  

<50  93 247 (113-382)  120 455 (55-854)  0.3311 0.0031 
50-199  393 181 (151-211)  392 219 (132-305)  0.4263 <.0001 
200-350  244 170 (128-213)  142 136 (117-156)  0.1531 0.1110 
>350  90 166 (117-216)  119 142 (108-175)  0.4155 0.1965 
 

 

DISCUSSION 
 

Our study shows that the cost of ART provision is similar between an urban and semi-urban site, and 

that in both sites cost is highest at low CD4 cell counts. Nonetheless, average total cost per patient 

year at TWC was 6% higher than average total cost at CMH, with most of the difference borne by the 

difference in inpatient cost, which was a result of a number of patients with very long lengths of stay at 

TWC. The median outpatient cost per patient year in 2011 USD of five previously published analyses 

of the cost of antiretroviral treatment provision in the South African public sector is $1,377 (range 

$1,204-%1,438); median inpatient cost in the public sector is $369 (range $258 - $660)3-7. The annual 

per-patient cost of $1,040-$1,115 found in both clinics examined in this paper fall within the spectrum 

found in these past analyses. In our analysis, two factors are associated with higher cost in either 

clinic: low CD4 cell counts and the higher risk of hospitalisations in the first three months on 

treatment. Both factors have been described as drivers of the cost of ART provision in previous 

studies, for both the private sector5 and the public sector of South Africa3,4,15. At both clinics in our 

study, patients with CD4 counts below 50 cells/microl drive costs significantly in the first 3 months of 
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treatment, costing between double and triple that of those initiated at CD4 cell counts above that 

threshold.  

 

Inpatient care periods varied significantly between the two sites, although the small number of 

patients requiring inpatient care in both cohorts limit the generalisability of this difference. From 

subsequent discussions with staff at the sites, we believe this is driven by a higher illness threshold 

for admission in the semi-urban site, radiology investigations and specialist referrals during inpatient 

care taking longer to arrange, as well as the fact that patients live further away from the hospital and 

are poorer, leading local clinicians to retaining patients in inpatient care for longer.  

 

Although total cost at the outpatient level is very similar, the contribution of single cost items is 

different between the settings, reflecting differences in clinic operations: At TWC, fixed cost is almost 

twice as expensive per patient than at CMH, while average ARV drug cost are only 33% of total 

outpatient cost, and average diagnostic cost are less than half that at CMH. In all past estimates of 

ART provision in South Africa, ARV cost contribute at least 50% to total outpatient cost3-7,16-18. The 

higher ART and diagnostics cost at CMH can be explained by more patients having been switched to 

second line therapy, its academic status and better access to specialist care in the  clinic. In contrast, 

the higher fixed cost at TWC is a result of the higher staff numbers, with the nurse contingent being 

almost double that of CMH due in part to nurses doubling as translators between doctors and 

patients. The higher equipment cost for TWC is a result of the clinic operating out of the hospitals 

previous nurses’ quarters, thus requiring higher initial refurbishment and equipment expenditures than 

CMH where the clinic operates out of a previously established outpatient clinic. 

 

Patients’ status after 12 months on antiretroviral treatment and time in the cohort differed significantly 

between the two clinics, mostly as a result of much higher down-referral at TWC (39% at TWC vs. 3% 

at CMH). This did not, however, lead to a bias towards sicker patients remaining in the cohort, as from 

7 months on ART onwards the mean cohort CD4 cell counts were higher at TWC than at CMH, 

though not significantly. The increase in down-referral to PHC clinics in the patients’ immediate 

communities at TWC during the study period resulted in part from an analysis of the association 

between patients’ travel cost and loss to follow-up which showed a strong linear relationship between 

distance travelled and risk of defaulting from care in the study cohort19,20. Acting on these findings in 

2007 the provincial government of the North-West province accredited a number of additional ART 

clinics in the immediate vicinity of TWC and the clinic management of TWC accelerated down-referral 

to these sites as a means of preventing further patients defaulting from ART care. Although this 

resulted in lower numbers of patients defaulting from care during the remainder of the study, it did 

lead to a higher overall loss from the cohort through down-referral.  

 

The generalisability of the results of this study is limited by a number of factors. Average cost at both 

facilities were collected for the first year on treatment and in two clinics only and are at least in part a 

result of specific operational circumstances (such as the high rate of down-referral during the study 
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period at TWC); however, costs were similar between the two clinics, as well as compared to other 

studies, suggesting they are useful to guide policy makers. Differences in clinic populations in terms of 

poverty level and educational background could have impacted follow-up rates, rendering direct 

comparison of cost between the clinics difficult - although the distribution of baseline CD4 cell counts, 

as a proxy for disease severity and case-mix, were very similar at both clinics. The analysis is limited 

to the resources used by the cohort while in the care of the clinics under study, which means that not 

all cost of care is included, particularly for patients that were down-referred before the end of the 

study period. Since the cost of care at those down-referral sites is likely to be lower, this would likely 

mean that we over-estimate the cost of care for the semi-urban site somewhat. Finally, both clinics 

are attached to a hospital complex, and most South African patients will in the future be initiated at 

primary care clinics, limiting generalisability of staff and fixed costs. 

  

CONCLUSIONS 
 
The cost of providing antiretroviral treatment in the public sector of South Africa has been well 

researched but analysis has so far focused on urban centres. The results presented in this paper 

show that provision in semi-urban settings costs almost the same at the outpatient level as in urban 

settings, while inpatient cost tends to be higher as a result of longer lengths of stay. Significant cost 

reduction within the programme is possible, through identifying, retaining and initiating patients on 

ART at a higher CD4 cell count, hence preventing hospitalisation, which is the major preventable 

driver of cost. Task shifting away from professional staff may also offer cost reductions.  

Cost at both clinics analysed here fall within the spectrum of cost estimates that are already available 

for South Africa and that have been used as the average cost per adult patient in government 

budgeting and planning exercises21,22, suggesting that provision at this cost level is expected by 

government, planned for, and, as a result, potentially sustainable. Recent reductions in staff cost due 

to task-shifting and in the cost of antiretroviral drugs due to the opening of the South African market to 

international bidders have brought the cost of ART provision further down22,23. 
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Preamble for paper 2 

While the primary objective of the National ART Cost Model was to inform the ring-fenced budget item 

of the HIV/AIDS Conditional Grant, we received an additional request from the Department of Health 

to include the cost of inpatient care for patients both before and after ART initiation. All public-sector 

hospitals in South Africa are funded through a separate budget item, the Hospital Grant. Since HIV-

positive patients are only a subset of the total inpatient population across disease areas, this 

additional analysis was not planned to be used to inform the full budget for this grant, but rather add 

data to help explain recent changes in this grant. 

 

Paper 4 is the first analysis of hospitalisation frequency and costs of HIV-positive patients before and 

after ART initiation in South Africa that are drawn from the same cohort - i.e., most patients 

contributed data to both the pre-ART and the ART population. In order to fit the results with the health 

states used in the model, we further stratified hospitalisation rates and cost by patients’ current CD4 

count. 

 

Alana Brennan assisted with data analysis for this paper and wrote some sections of the first draft; the 

candidate shares first authorship with her. All co-authors contributed comments and edited the paper. 

All other work, including study design, most data analysis, and writing the first and consecutive drafts 

of the paper, was the candidate’s.   
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ABSTRACT 

 

Few studies have compared hospitalisations before and after antiretroviral therapy (ART) initiation in 

the same patients. We analysed the cost of hospitalisations among 3,906 adult patients in two South 

African hospitals, 30% of whom initiated ART. Hospitalisations were 50% and 40% more frequent and 

1.5 and 2.6 times more costly at a CD4 cell count <100 cells/microl when compared to 200-350 

cells/microl in the pre-ART and ART period, respectively. Mean inpatient cost per patient year was 

USD 117 (95% confidence interval, CI, 85-158) for patients on ART and USD 72 (95% CI, 56-89) for 

pre-ART patients. Raising ART eligibility thresholds could avoid the high cost of hospitalisation before 

and immediately after ART initiation. 

 

Keywords: hospitalisation, in-patient, admission, resource-limited setting, pre-ART 

 

 

INTRODUCTION 

 

Worldwide, the introduction of antiretroviral therapy (ART) has resulted in a large decrease in hospital 

admissions amongst HIV-positive patients. Analyses from seven North American and European 

countries showed a decrease in frequency, average length of hospital stay, and cost per stay of 

between 32% and 77% in patients on ART compared to those not on ART[1-9]. The reduction in cost 

due to decreased need for inpatient care has been used to make the economic case for public-sector 

provision of ART in many high-income countries[10-18]. Initiating ART at low CD4 cell counts, 

however, has been strongly associated with high inpatient costs[3,4]. Data from low- and middle-

income countries show that a significant number of HIV-infected patients on ART still require 

hospitalisation, especially those initiating at low CD4 counts [19-23].  

 

Few studies have measured rates of hospitalisation in a single cohort both before and after ART 

initiation to evaluate the effect of treatment on hospital admissions[10,17,22,24,25]. South Africa, a 

middle-income country, started its public-sector ART programme in 2004. Though several studies 

have examined the programme’s cost and cost-effectiveness[19,20,22-30], only a handful have 

included a description of inpatient cost in patients on and off ART in the public sector[20,24,26,27]. 

None of these studies controlled for patients’ CD4 count, making it hard to compare studies across 

cohorts with different levels of disease severity.  

 

To establish whether ART reduces hospitalisations while controlling for the patients’ CD4 counts, we 

compared hospitalisation rates and costs in a South African cohort of HIV-positive patients before and 

after ART initiation stratified by patients’ current CD4 count.  
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METHODS 

 

We analysed data from an adult HIV cohort study[31-33] conducted from July 2003 to October 2010 

at Chris Hani Baragwanath Hospital, a large, urban, tertiary hospital in Soweto in Gauteng Province, 

and Tintswalo Hospital, a rural hospital in Mpumalanga Province. Patients were recruited after testing 

HIV positive in the same hospital and were provided with pre-ART HIV care (regular clinic visits for 

CD4 count monitoring and nurse-led care for opportunistic infections) and initiated on ART once 

diagnosed with WHO stage 4 disease or a CD4 count <200 cells/microl[34,35]. Recruiting at HIV 

testing allowed us to include a sizable group of patients who were followed up until they became ART 

eligible and then were started on ART and continued to be followed up. Eligible patients for this 

analysis were >18 years old with at least one follow-up visit and one CD4 count after enrolment into 

the study. Participants were interviewed about their demographic and socioeconomic characteristics 

and medical history at baseline and about admission and discharge dates of hospitalisations and 

reasons for admission both at baseline and at follow-up visits four to seven months apart. CD4 counts 

were collected at enrolment and up to six-monthly thereafter.  

 

Patient baseline characteristics were summarised using descriptive statistics. Hospital admissions 

occurring during pre-ART and ART periods were stratified by most recent CD4 count in the same six-

month time period as the admission. For this we divided person-time for each subject into 6-month 

periods, starting at enrolment into the study for pre-ART person-time and the date of treatment 

initiation for person-time on ART. For each 6-month period a patient contributed one observation 

indicating whether hospitalisation occurred in this period, as well as a current CD4 cell count, which 

was the first CD4 cell count within that period of observation. For missing CD4 count data (30.2%), we 

created 25 randomly imputed datasets each for the pre-ART and the ART populations, with missing 

values modeled on existing data (hospitalisation, site, square root of available CD4 counts and time 

from either enrolment or ART initiation), and took the mean of the imputed CD4 counts for each 

missing observation[36]. We estimated incident rate ratios (IRR) of hospitalisation stratified by CD4 

counts in the same six-month period.  

 

We estimated the cost of hospitalisations from the health care provider perspective using cohort data 

on length of stay and the 2008 cost per patient-day equivalent (PDE) of the hospitals’ districts[37]. 

The cost per PDE is a proxy of cost per inpatient-day and is collected by all public-sector hospitals in 

South Africa, dividing total hospital expenditure during a financial year by the total number of hospital 

visits[38]. The cost per PDE for Baragwanath Hospital was USD 164.19, and the cost per PDE for 

Tintswalo Hospital was USD 176.29. All costs are presented in 2009 USD using the 2009 average 

currency conversion rate of 1 USD=7.11 ZAR. 

 

Ethical approval was granted by review boards of the University of the Witwatersrand and Boston 

University. 
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RESULTS 

 

Patient characteristics 

Of 3,906 patients in our analysis, 140 (3.6%) initiated ART prior to enrolment into the study and 913 

(23.4%) initiated ART after being enrolled. Overall patients were predominately female (76.6%) with a 

median age of 33 years (inter-quartile range, IQR, 28-39). Pre-ART patients had a median CD4 count 

of 269 cells/microl (IQR 136-442) at study enrolment, while ART patients had a median CD4 count of 

154 cells/microl (IQR 91-239) at study enrolment which declined to a median CD4 count of 117 

cells/microl (IQR 57-183) at treatment initiation. Median time in pre-ART care prior to initiation onto 

ART was 7.0 months (IQR 1.5-15.9). Patients on treatment were predominately (71%) treated with 

stavudine, lamivudine and efavirenz, the most common first-line regimen in South Africa until 2010. 

 

Frequency of hospitalisations 

Among the 3,906 patients, 534 hospitalisations occurred during a median follow-up of 13.1 months 

(IQR 6.3-28.2). 344 (64%) hospitalisations were in pre-ART patients, while 190 (36%) occurred after 

ART initiation (Table 1). Most patients had a single admission; however, 28 patients in the pre-ART 

period and 19 patients in the ART period had more than one admission, with a maximum of 5 and 4 

admissions per patient in the pre-ART and ART period, respectively. The leading reasons for 

admission in patients not on ART were pulmonary tuberculosis (TB) (15.1%), Pneumocystis jirovecii 

pneumonia (6.4%), and trauma (5.5%); in patients on ART they were pulmonary TB (15.2%), 

Pneumocystis jirovecii pneumonia (7.9%), and headache of any kind (6.8%). The incidence of 

hospitalisations related to pulmonary TB was 0.74 and 1.0 per 100 patient years in the pre-ART and 

ART period, respectively; the incidence of admissions for extrapulmonary TB was 0.13 and 0.3 per 

100 patient years, respectively. During the first 6 months on ART, the incidence of admissions for 

pulmonary TB was, at 2.8 per 100 patient years, almost 3 times as high, pointing at the possibility of 

immune constitution syndrome.  

 

As current CD4 count increased, the rate of hospitalisation decreased. Hospitalisation rates were 

highest for patients with CD4 counts <100 cells/microl. Patients with a CD4 count of >350 cells/microl 

had a reduction in the rate of hospitalisation compared with patients with a CD4 count of <100 

cells/microl of 70% pre-ART, and of 80% under ART (pre-ART IRR 0.3, 95%CI: 0.2-0.5; ART IRR 0.2, 

95% CI: 0.1-0.3). Hospitalisation rates were higher for ART patients than pre-ART patients in all CD4 

strata, with most of this difference being driven by the rural cohort, a much smaller population. When 

removing events unlikely to be HIV related (trauma and accidents; 43 events in the pre-ART period 

and 6 in the ART period), events in patients initiating ART with a CD4 cell count above 200 

cells/microl, and all events in the first 3 months after ART initiation, the average rates of 

hospitalisation in the pre-ART and ART cohorts did not change, and the effect was still significant 

(Table 2A-2C).  
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Cost of hospitalisations 
Mean length of stay (LOS) per hospitalisation was 8.7 days (95% confidence interval, CI, 7.5-9.9) for 

pre-ART patients and 10.1 days (8.4-11.8) for ART patients and decreased with increasing CD4 count 

in both populations (Table 1). Mean LOS was slightly higher amongst ART vs. pre-ART patients in all 

CD4 strata except at >350 cells/microl and was higher in the rural clinic, regardless of ART status. As 

a result, the inpatient cost per patient year was higher for ART patients in every stratum, and higher in 

the rural than in the urban site in almost all strata, partly due to the higher rural cost per PDE. The 

resulting mean inpatient cost per patient year for ART patients was 63% higher than for pre-ART 

patients (USD 117 vs. 72). Regardless of treatment status, hospital stays were longest and most 

costly in patients with a CD4 count <100 cells/microl, with mean inpatient cost per patient year being 4 

times higher at <100 cells/microl than at >350 cells/microl in the pre-ART period, and 9 times higher in 

the ART period. Combined hospitalisation rates for both sites after removing events not related to 

HIV, in patients initiating ART at CD4 cell counts > 200, and during the first three months after ART 

initiation are available in the technical appendix of this paper. 

 

Figure 1 shows inpatient cost as a function of CD4 count over the lifetime of a representative patient, 

extrapolated from the mean inpatient cost per CD4 cell count stratum found in our analysis.  

 

Figure 1: Schematic of development of CD4 cell count and inpatient cost per patient year 
before and after ART initiation.  
ART indicates antiretroviral therapy; USD, US dollars. CD4 cell count development is modelled for a hypothetical 
individual, based on a summary of South African cohort studies[38]; inpatient cost is based on the mean inpatient 
cost per patient year by CD4 cell count stratum in this study. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

103 
 

Table 1: Hospitalisation rates and cost by current CD4 cell count and site (urban versus rural) in patients before and after ART initiation in a 
prospective cohort study in two sites in South Africa.  

ART: antiretroviral treatment; CI: confidence interval; IRR: incidence rate ratio  

CD4 cell count stratum 
Total patient 
years (%) 

Number of 
hospitalisations 

Hospitalisation 
rate per 100 
patient years 
(95% CI) 

Crude IRR of 
hospitalisation 
by CD4 count 
(95% CI) 

Mean length of 
stay [days] 
(95% CI) 

Mean cost per stay 
[2009 USD] (95% CI) 

Mean inpatient 
cost per patient 
year in cohort 
[2009 USD]  
(95% CI) 

Both sites        
Pre-ART        
≤100 cells/microl 602.8 (8.6) 60 10.0 (7.6-12.8) 1.0 10.4 (7.4-13.4) 1,759 (1,254-2,263) 176 (95-290) 
101-200 cells/microl 1,233.9 (17.6) 78 6.3 (5.0-7.9) 0.6 (0.4-0.9) 8.6 (5.9-11.2) 1,453 (988-1,919) 92 (49-152) 
201-350 cells/microl 2,275.6 (32.5) 109 4.8 (3.9-5.8) 0.5 (0.3-0.7) 8.7 (6.7-10.6) 1,452 (1,126-1,778) 70 (44-103) 
>350 cells/microl 2,889.5 (41.3) 97 3.4 (2.7-4.1) 0.3 (0.2-0.5) 7.8 (5.6-10.0) 1,290 (934-1,645) 44 (25-67) 
All pre-ART patients 7,001.7 344 4.9 (4.4-5.4) - 8.7 (7.5-9.9) 1,460 (1,267-1,657) 72 (56-89) 
On ART         
≤100 cells/microl 134.8 (5.3) 27 20.0 (13.2-29.1) 1.0 12.1 (6.6-17.5) 2,043 (1,128-2,957) 409 (149-860) 
101-200 cells/microl 456.9 (17.4) 44 9.6 (7.0-12.9) 0.5 (0.3-0.8) 13.4 (8.0-18.7) 2,241 (1,345-3,137) 216 (94-405) 
201-350 cells/microl 1024.8 (35.2) 75 7.3 (5.8-9.2) 0.4 (0.2-0.6) 9.3 (7.4-11.2) 1,559 (1,241-1,876) 114 (72-173) 
>350 cells/microl 1123.7 (42.1) 44 3.9 (2.8-5.3) 0.2 (0.1-0.3) 6.9 (4.8-9.0) 1,158 (805-1,511) 45 (23-80) 
All ART patients 2740.2 190 6.9 (6.0-8.0) - 10.1 (8.4-11.8) 1,693 (1,409-1,976) 117 (85-158) 
Urban clinic        
Pre-ART         
≤100 cells/microl 357.2 (6.9) 40 11.2 (8.0-15.2) 1.0  8.9 (4.9-13.0) 1,465 (801-2,129) 164 (64-324) 
101-200 cells/microl 827.1 (16.0) 57 6.9 (5.2-8.9) 0.6 (0.4-0.9) 6.4 (5.2-7.5) 1,049 (861-1,236) 72 (45-110) 
201-350 cells/microl 1,695.6 (32.6) 88 5.2 (4.2-6.4) 0.5 (0.3-0.7) 7.6 (5.8-9.5) 1,256 (950-1,562) 65 (40-100) 
>350 cells/microl 2,314.6 (44.6) 90 3.9 (3.1-7.8) 0.3 (0.3-0.5) 7.6 (5.3-9.9) 1,253 (876-1,631) 49 (27-127) 
All pre-ART patients 5,194.5 275 5.3 (4.7-5.9) - 7.6 (6.4-8.7) 1,242 (1,057-1,428) 66 (50-84) 
On ART        
≤100 cells/microl 96.1 (4.4) 16 16.6 (9.5-27.0)  1.0 12.0 (3.6-20.4) 1,970 (595-3,345) 328 (57-903) 
101-200 cells/microl 355.0 (16.1) 34 9.6 (6.6-13.4) 0.6 (0.3-1.0) 12.3 (6.1-18.4) 2,014 (1,001-3,027) 193 (66-406) 
201-350 cells/microl 833.7 (37.8) 53 6.4 (4.8-8.3) 0.4 (0.2-0.7) 9.3 (6.8-11.8) 1,524 (1,110-1,938) 97 (53-161) 
>350 cells/microl 918.5 (41.7) 34 3.7 (2.6-5.2) 0.2 (0.1-0.4) 6.4 (3.9-8.9) 1,053 (648-1,457) 39 (17-76) 
All ART patients 2203.3 137 6.2 (5.2-7.4) - 9.6 (7.5-11.7) 1,581 (1,239-1,923) 98 (64-142) 
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Rural clinic        
Pre-ART        
≤100 cells/microl 245.6 (13.6) 20 8.1 (5.0-12.6) 1.0 13.3 (9.1-17.5) 2.,345 (1,608-3,081) 191 (80-388) 
101-200 cells/microl 406.7 (22.5) 21 5.2 (3.2-7.9) 0.6 (0.3-1.4) 14.5 (5.1-23.9) 2,552 (894-4,210) 132 (29-333) 
201-350 cells/microl 580.0 (32.1) 21 3.6 (2.2-5.5) 0.4 (0.2-0.9) 12.9 (6.6-19.2) 2,275 (1,171-3,379) 82 (26-186) 
>350 cells/microl 574.9 (31.8)  7 1.2 (0.5-2.5) 0.1 (0.06-0.4) 10.0 (4.4-15.6) 1,763 (776-2,750) 21 (4-69) 
All pre-ART patients 1,807.1 69 3.8 (3.0-4.8) - 13.2 (9.7-16.7) 2,328 (1,716-2,939) 89 (51-141) 
On ART        
≤100 cells/microl 38.7 (7.2) 11 28.4 (14.2-50.9) 1.0 12.2 (4.7-19.7) 2,148 (826-3,469) 611 (117-1766) 
101-200 cells/microl 101.9 (19.0) 10 9.8 (4.7-18.0) 0.3 (0.1-0.9) 17.1 (4.4-19.8) 3,015 (783-5,246) 296 (37-944) 
201-350 cells/microl 191.1 (35.6) 22 11.5 (7.2-17.4) 0.4 (0.2-0.9) 9.3 (6.7-12.0) 1,643 (1,174-2,111) 189 (85-367) 
>350 cells/microl 205.2 (38.2) 10 4.9 (2.3-9.0) 0.2 (0.06-0.4) 8.6 (3.9-13.2) 1,516 (692-2,340) 74 (16-211) 
All ART patients 536.9 53 9.9 (7.4-12.9) - 11.2 (8.4-14.1) 1,982 (1,473-2,492) 196 (109-321) 
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Impact on the average inpatient cost per patient in the national treatment programme 

We parameterised a previously published model of the cost of the South African national ART 

programme[40,41] with the results of this analysis. Between financial years 2012/13 and 2016/17, the 

total inpatient cost of patients on ART is projected to increase from USD 85 million per year to USD 

121 million (5% of total programme cost) as a result of a planned increase in patient numbers from the 

current 1.7 million to 3.6 million in 2017. The mean inpatient cost per patient year on ART, however, 

will decrease by 9% from USD 37 to USD 34 as a result of a maturation of the cohort on ART and 

redistribution into higher CD4 counts. From 2010/11 onwards, the average annual inpatient cost of 

patients on ART is lower than that of patients not on ART (Figure 2). 

 

Figure 2: Mean inpatient cost per patient year pre-ART and on ART in the national ART 
programme 

 
 

DISCUSSION 

 

Our study shows that, as in high-income countries[3,4], hospitalisations in HIV-infected adults in 

South Africa are more frequent, longer, and more costly at lower CD4 counts. We found this to be true 

regardless of ART status. Patients on ART were hospitalised more often and for longer durations than 

pre-ART patients. This difference can be explained in part by a higher risk of immune constitution 

syndrome (IRIS) in patients initiating ART at lower CD4 counts, especially in a population with high TB 

co-infection rates[21,42]. The incidence of hospitalisations related to pulmonary and extrapulmonary 

tuberculosis, the opportunistic infections most frequently associated with IRIS in South Africa[21,42], 

was higher in the ART than in the pre-ART cohort, and highest in the 6 months immediately after ART 

initiation. Likewise, the difference in hospitalisation frequency and cost between the pre-ART and ART 

populations was driven by the rural population and could at least in part be due to a bias of physicians 

towards patients on ART who they have already invested in and whose prognosis is far better. 

 

Similar to our analysis, three of four studies of the cost of inpatient care for public-sector patients on 

ART in South Africa showed an increase in inpatient care cost for patients on ART, with a median 

inpatient cost per stay in 2009 USD of USD 1,769 (range 1,319 - 2,080)[19,20,27]. Our mean cost per 
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stay of patients on ART of USD 1,642 is comparable. A study of a private South African medical aid 

programme showed a dramatically increased inpatient cost in the 6 months around ART initiation, 

when CD4 cell counts are at their lowest[22]. When comparing our mean annual per patient inpatient 

cost of USD 110 to the median cost of outpatient care in 2009 USD for patients on ART in South 

Africa from a number of published studies, USD 1,233 (range 1,078 to 1,287)[23,28-30], inpatient 

care adds about 10% to the total annual per patient cost of a patient on ART. It thus accounts for a 

small but not trivial share of the total cost of caring for HIV/AIDS patients in South Africa. 

 

A potential limitation of our study is the assumption that the published cost per patient-day equivalent 

is a good proxy for the inpatient costs of HIV-positive patients, which could lead to an over- or 

underestimation of real inpatient cost. However, a recent in-depth study of the inpatient cost of 

patients on ART in a different hospital in Johannesburg has shown that cost per PDE is very similar to 

total per day cost as evaluated in a bottom-up cost analysis using the detailed review of inpatient 

files[19]. Secondly, since our study cohort had a higher median CD4 count at ART initiation than most 

public-sector clinics in South Africa, the cost of inpatient care for patients on ART was lower than is 

likely in routine care. Lastly, while diagnoses were available for all admissions included in this study, 

their accuracy was somewhat limited by the experience and expertise of the attending health care 

workers as well as their access to diagnostic modalities, especially in the rural cohort. 

 

CONCLUSION 
 
Our findings provide evidence to support earlier initiation of ART in low- and middle-income countries. 

We saw a decrease in hospital admission rates by 50%, and of cost by 250%, when comparing CD4 

200-350 to <100 in the pre-ART period. Currently, allowing patients’ CD4 counts to drop to very low 

levels before initiating them on ART burdens the health system three-fold: firstly through the high cost 

of inpatient care immediately before and after ART initiation, then with the cost of life-long ART, and 

finally with the high cost of end-of-life care once limited treatment options are exhausted. One of the 

benefits of initiating patients on ART at higher CD4 counts could be avoiding the first of these costs. 

In the absence of sufficient drug options to avoid the third, terminal cost, and in a situation of 

decreasing international funding for ART programmes in low- and middle-income countries, avoiding 

the depletion of patients’ CD4 cells and the associated high likelihood of expensive inpatient care is 

one of the few options available to national ART programmes to reduce the costs of HIV care. 
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Technical appendix: Re-analysis of hospitalisation rates for both sites after removing events not related to HIV, in patients initiating ART at CD4 
cell counts > 200, and during the first three months after ART initiation 
 

Table 2A: Hospitalisation rates and cost by current CD4 cell count with non-HIV related events removed  

CD4 cell count stratum 
Total patient 
years (%) 

Number of 
hospitalisations 

Hospitalisation rate 
per 100 patient years 

Mean length of 
stay [days] 
(95% CI) 

Mean cost per stay 
[2009 USD] (95% CI) 

Mean inpatient cost 
per patient year in 
cohort [2009 USD]  

Both sites       
Pre-ART       
≤100 cells/microl 591.9 (8.6) 59 9.9 (7.6-12.9) 9.8 (6.6-13.0) 1,749 (1,236-2,263) 138 (94-292) 
101-200 cells/microl 1,216.6 (17.8) 76 6.2 (4.9-7.8) 8.1 (5.3-10.9) 1,485 (1,009-1,961) 113 (49-153) 
201-350 cells/microl 2,215.2 (32.3) 99 4.5 (3.6-5.4) 7.8 (5.7-9.9) 1,443 (1,090-1,795) 58 (39-97) 
>350 cells/microl 2,825.4 (41.3) 92 3.2 (2.6-4.9) 6.4 (4.3-8.4) 1,207 (869-1,544) 39 (23-76) 
All pre-ART patients 6,849.1 326 4.7 (4.3-5.3) 7.8 (6.6-9.0) 1,442 (1,240-1,643) 68 (53-87) 
On ART        
≤100 cells/microl 133.9 (5.0) 26  19.4 (12.7-28.5) 12.3 (6.7-18.0) 2,089 (1,143-3,036) 406 (145-865) 
101-200 cells/microl 452.4 (16.8) 44 9.7 (7.1-13.1) 13.4 (8.0-18.7) 2,241 (1,345-3,137) 218 (95-411) 
201-350 cells/microl 1001.3 (37.3) 70 7.0 (5.4-8.8) 9.5 (7.4-11.5) 1,586 (1,249-1,923) 111 (67-169) 
>350 cells/microl 1097.6 (40.9) 42 3.8 (2.8-5.2) 7.0 (4.8-9.2) 1,173 (804-1,542) 45 (23-80) 
All ART patients 2,685.2 182 6.8 (5.8-7.8) 10.2 (8.5-12.0) 1,721 (1,426-2,016) 117 (83-157) 

 

Table 2B: Hospitalisation rates and cost by current CD4 cell count in patients before and after ART initiation after removing events in patients 
initiating ART at CD4 cell counts > 200 mm3  

CD4 cell count stratum 
Total patient 
years (%) 

Number of 
hospitalisations 

Hospitalisation rate 
per 100 patient years 
(95% CI) 

Mean length of 
stay [days] 
(95% CI) 

Mean cost per stay 
[2009 USD] (95% CI) 

Mean inpatient cost 
per patient year in 
cohort [2009 USD] 
(95% CI) 

Both sites       
Pre-ART       
≤100 cells/microl 602.8 (8.6) 60 10.0 (7.6-12.8) 10.4 (7.4-13.4) 1,759 (1,254-2,263) 176 (95-290) 
101-200 cells/microl 1,233.9 (17.6) 78 6.3 (5.0-7.9) 8.6 (5.9-11.2) 1,453 (988-1,919) 92 (49-152) 
201-350 cells/microl 2,275.6 (32.5) 109 4.8 (3.9-5.8) 8.7 (6.7-10.6) 1,452 (1,126-1,778) 70 (44-103) 
>350 cells/microl 2,889.5 (41.3) 97 3.4 (2.7-4.1) 7.8 (5.6-10.0) 1,290 (934-1,645) 44 (25-67) 
All pre-ART patients 7,001.7 344 4.9 (4.4-5.4) 8.7 (7.5-9.9) 1,460 (1,267-1,657) 72 (56-89) 
On ART        
≤100 cells/microl 132.3 (5) 27 20.4 (13.5-29.8) 12.1 (6.6-17.5) 2,042 (1,128-2,957) 417 (152-881)  
101-200 cells/microl 441.6 (18) 41 9.3 (6.7-12.6) 14.0 (8.3-19.7) 2,343 (1,387-3,300) 218 (93-416)  
201-350 cells/microl 945.2 (40) 70 7.4 (5.8-9.4) 9.6 (7.6-11.6) 1,611 (1,279-1,943) 119 (74-183)  
>350 cells/microl 910.3 (37) 35 3.8 (2.7-5.3) 6.0 (4.4-7.6) 1,006 (728-1,284)  39 (20-68)  
All ART patients 2,429.5 173 7.1 (6.2-8.2) 10.3 (8.5-12.1) 1,730 (1,427-2,032) 123 (88-167)  
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Table 2C: Hospitalisation rates and cost by current CD4 cell count in patients before and after ART initiation after removing events during the first 
three months after ART initiation 

 

CD4 cell count stratum 
Total patient 
years (%) 

Number of 
hospitalisations 

Hospitalisation 
rate per 100 
patient years 
(95% CI) 

Mean length of 
stay [days] 
(95% CI) 

Mean cost per stay 
[2009 USD] (95% CI) 

Mean inpatient 
cost per patient 
year in cohort 
[2009 USD] 
(95% CI) 

Both sites       
Pre-ART       
≤100 cells/microl 603 (9) 60 10.0 (7.6-12.8) 10.4 (7.4-13.4) 1,759 (1,254-2,263) 176 (95-290) 
101-200 cells/microl 1,234 (18) 78 6.3 (5.0-7.9) 8.6 (5.9-11.2) 1,453 (988-1,919) 92 (49-152) 
201-350 cells/microl 2,276 (33) 109 4.8 (3.9-5.8) 8.7 (6.7-10.6) 1,452 (1,126-1,778) 70 (44-103) 
>350 cells/microl 2,890 (41) 97 3.4 (2.7-4.1) 7.8 (5.6-10.0) 1,290 (934-1,645) 44 (25-67) 
All pre-ART patients 7,001.7 344 4.9 (4.4-5.4) 8.7 (7.5-9.9) 1,460 (1,267-1,657) 72 (56-89) 
On ART       
≤100 cells/microl 137.8 (5) 21 15.2 (9.4-23.3) 11.5 (5.2-17.8) 1,914 (879-2,948) 292 (83-687) 
101-200 cells/microl 468.1 (17) 25 5.3 (3.5-7.9) 10.2 (4.6-15.8) 1,694 (768-2,320) 90 (27-183) 
201-350 cells/microl 1,048.5 (38) 60 5.7 (4.4-7.4) 9.7 (7.3-12.0) 1,617 (1,230-2,004) 93 (54-148) 
>350 cells/microl 1,134 (41) 39 3.4 (2.4-4.7) 6.3 (4.6-8.0) 1,055 (763-1,347) 36 (18-63) 
All ART patients 2,788.4 145 5.2 (4.4-6.1) 9.1 (7.5-10.8) 1,522 (1,248-1,796) 79 (55-110) 
       



 
 

7 Outpatient cost and outcomes of paediatric antiretroviral treatment 
in South Africa 
 

Cost and outcomes of paediatric antiretroviral treatment in South Africa 

 

1. For a ‘research paper’ already published 

1.1. Where was the work published?    AIDS 

1.2. When was the work published?     2012 

1.3. Was the work subject to academic peer review?  Yes 

1.4. Have you retained the copyright for the work?   No  

If yes, attach evidence of retention 

If no, or if the work is being included in its published format, attach evidence of permission from copyright 

holder (publisher or other author) to include work  See exemption on next page 

 

2. For a ‘research paper’ prepared for publication but not yet published 

2.1. Where is the work intended to be published?  

2.2. List the paper’s authors in the intended authorship order 

2.3. Stage of publication – Not yet submitted/Submitted/Undergoing revision from peer reviewers’ 

comments/In press 

 

3. For multi-authored work, give full details of your role in the research included in the paper and in the 

preparation of the paper. (Attach a further sheet if necessary) 

 

The candidate collected all the data, did all the data analysis and wrote the first draft of the 
publication. 
 

 

Candidate’s signature  

Dr Gesine Meyer-Rath 

 

Supervisor or senior author’s signature to confirm role as stated in (3)  

 
Dr Alec Miners 

Supervisor 

  



 

112 
 

    

 

 

 

 

Title: Cost and outcomes of 
paediatric 
antiretroviral 
treatment in South 
Africa 

Author: Gesine Meyer-Rath, 
Alana Brennan, 
Lawrence Long, et al 

Publication: AIDS 
Publisher: Wolters Kluwer 

Health, Inc. 
Date: Jan 1, 2013 
Copyright © 2013, (C) 2013 
Lippincott Williams 

 

 

 

 
 
This reuse is free of charge. No permission letter is needed from Wolters 
Kluwer Health, Lippincott Williams & Wilkins. We require that all authors 
always include a full acknowledgement. Example: AIDS: 13 November 
2013 - Volume 27 - Issue 17 - p 2679-2689. Wolters Kluwer Health 
Lippincott Williams & Wilkins© No modifications will be permitted. 

  

 

   

Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved. 
Privacy statement. Terms and Conditions.  
Comments? We would like to hear from you. E-mail us at 
customercare@copyright.com  

 
 

  

http://www.copyright.com/
http://www.copyright.com/content/cc3/en_US/tools/footer/privacypolicy.html
javascript:paymentTerms();
mailto:customercare@copyright.com
javascript:goHome()
javascript:createAccount();
javascript:openHelp();
https://na4.mycontactual.com/SC/sc_chat_entryway.php?queue_id=cccenter01%7E%7Equeue%7E%7Echat%7E%7E120&channel_name=Licensee&direct_entry=sc_chat


 

113 
 

Preamble for paper 3 

An important requirement of the National ART Cost Model was the inclusion of the cost of both adult and 

paediatric ART provision. In the few models of ART cost in South Africa in existence before the NACM, 

paediatric ART provision had received short shrift: In one of the models used previously for budget 

planning and decision making in South Africa, the Cape Town ARV Costing Model, the cost of paediatric 

ART had been set equal to that of adult ART, with the exception of ARV drug costs which were set at 

1.35 times that of adults, based on an assumption of the authors [1]. In the most recent cost analysis of 

national HIV policy before the National ART Cost Model, the NSP 2007-2011 Costing Model, paediatric 

ART was excluded altogether [2]. 

 

Anecdotal evidence had long suggested that paediatric ART provision is more resource intensive, 

especially in terms of the number of visits and clinic staff required, and more costly, in part due to the 

more complex and expensive paediatric formulations of antiretrovirals, most of which are formulated as 

syrups for children under the age of five to aid with intake. There had not, however, been a single 

published analysis of the cost of paediatric ART in a low- or middle-income country. This is in sharp 

contrast to the magnitude of the burden of disease due to HIV amongst children, the HIV-related mortality 

in this age group which is much higher than amongst adults, and the fact that at the time of the analysis, 

ART coverage amongst children in South Africa was only 36% of the eligible population, as opposed to 

55% amongst adults [3]. 

 

Paper 3 adds to the body of knowledge by providing the first bottom-up analysis of the cost of paediatric 

ART provision at the outpatient level in sub-Saharan Africa. The analysis was undertaken in two of the 

largest paediatric ART clinics in South Africa, one in inner-city Johannesburg and one in Soweto, using 

identical methodology. The analysis also included an evaluation of patient-level outcomes such as 

retention in care and treatment success and allowed the differentiation of cost by patient outcome (cost 

per patient in care and responding, cost per patient in care but not responding, cost per patient no longer 

in care) which in turn meant the cost categories better fitted the model categories of the NACM with 

regards to types of care. 

 

The analytical framework for the cost-outcomes analysis of paediatric antiretroviral treatment was 

developed by Sydney Rosen and Lawrence Long. All co-authors contributed comments and helped edit 

the paper. All other work, including data collection and analysis and writing the frist and consecutive 

drafts of the thesis, was the candidate’s. 

 

 

 
 



 

114 
 

 
References 
1. Cape Town (CT) ARV Cost Model. School of Public Health and Family Medicine, University of Cape 

Town/ Department of Health, Provincial Administration of the Western Cape, South Africa. September 

2004. 

2. Cleary, S. 2007. Costs of the South African National Strategic Plan for HIV and AIDS & STIs 2007-

2011. Health Economics Unit, University of Cape Town, Cape Town. 

3. World Health Organization. Global HIV/AIDS response: epidemic update and health sector progress 

towards universal access: Progress report 2011. Geneva, Switzerland: WHO; 2011. 

  



 

115 
 

Paper 3 

Cost and outcomes of paediatric antiretroviral treatment in South Africa 

 

Gesine Meyer-Rath1,2, Alana Brennan1,2, Lawrence Long2, Buyiswa Ndibongo2, Karl Technau3,4, Harry 

Moultrie3,5, Lee Fairlie3,5, Ashraf Coovadia3,4, Sydney Rosen1,2* 

 
1 Center for Global Health and Development, Boston University, US 
2 Health Economics and Epidemiology Research Office (HE2RO), Department of Medicine, Faculty of 

Health Sciences, University of the Witwatersrand, Johannesburg, South Africa 
3 Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the 

Witwatersrand, Johannesburg, South Africa 
4 Empilweni Services and Research Unit, Rahima Moosa Mother and Child Hospital, Johannesburg, 

South Africa 
5 Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South 

Africa 

 

*Corresponding author: Sydney Rosen, Boston University Center for Global Health and Development, 

801 Massachusetts Ave, Rm 380, Boston, MA 02118 USA. Tel + 1 617 414 1273. E-mail 

sbrosen@bu.edu.  

 

 

Source of Support: U.S. Agency for International Development 

Potential Conflicts of Interest: The authors declare that they have no conflicts of interest. 

Previous Presentation of Findings: Partial results of this study (preliminary data from one study site) 

were presented in Abstract 685, 18th Conference on Retroviruses and Opportunistic Infections, Boston, 

February 27-March 2, 2011. 

 

ABSTRACT 
Objective: Little is known about the cost of paediatric antiretroviral treatment (ART) in low- and middle-

income countries. We analysed the average cost of providing paediatric ART in South Africa during the 

first two years after ART initiation, stratified by patient outcomes. 

Methods: We collected data on outpatient resource use and treatment outcomes of 288 children in two 

Johannesburg public hospitals, Empilweni Services and Research Unit (ESRU) and Harriet Shezi 

Children’s Clinic (HSCC) from 2005 and 2009. Patient-level resource use was estimated from patient 

records. Unit cost data came from site accounts and public-sector sources. Patient outcomes at month 12 

and 24 after initiation were defined based on weights, CD4 cell counts/percentages, viral loads, and the 

presence of new WHO stage 3/4 conditions. 

mailto:sbrosen@bu.edu
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Results: Median age/mean CD4 percentage at initiation were 4.03 years/13.23% in ESRU and 5.84 

years/14.61% in HSCC, respectively. 62% and 91% of patients remained in care and responding to 

treatment at month 12 in ESRU and HSCC, respectively, and 68% and 80% at month 24. The average 

cost per patient in care and responding was $830 in year 1 and $717 in year 2 in ESRU and $678 and 

$782 in HSCC. ARV drugs comprised 33-52% of total cost, clinic visits 23-31%, lab tests 12-16%, and 

fixed costs 8-18%.  

Conclusions: Costs varied between the two clinics but were comparable to those of adult ART. Few very 

young children accessed ART in either clinic and those who did were already very ill, emphasizing the 

importance of early infant treatment. 

 

Keywords: South Africa, paediatrics, antiretroviral therapy, costs, outcomes, cohort studies 

 

 

INTRODUCTION 
 

To achieve national and international targets for treatment of paediatric HIV/AIDS, provision of paediatric 

antiretroviral therapy (ART) must continue to expand in low- and middle-income countries. In South 

Africa, as in many countries, access to paediatric treatment services has lagged behind that of adult 

services, with reported coverage of just 36% of the estimated 300,000 South African children eligible for 

ART in 2010, compared to adult coverage of 55% of the approximately 2.5 million treatment-eligible 

adults[1]. In response, South Africa’s National Strategic Plan for its HIV/AIDS program sets a target of 

initiating 90% of eligible children on ART and of ensuring that 85% of eligible children remain on 

treatment by 2016[2].  

 

According to a recent meta-analysis and several cohort studies, children on ART in Africa experience 

high survival and large improvements in immunological function and growth over the first 1-3 years on 

ART[3-9]. In a pooled analysis of data from multiple African countries, 82.3% of children remained alive 

and in care 24 months after treatment initiation[8]. In the Western Cape Province of South Africa, 82% of 

children remained in care after 3 years, with the proportion of patients with viral suppression estimated at 

73-75% and the proportion with CD4 percentages >20% increasing from 58% after 6 months of treatment 

to 83% after 36 months[9]. In South Africa’s Gauteng Province, 83% remained in care after 36 months, 

and 96.2% of those remaining in care at 24 months were virally suppressed [7]. 

 

Encouraging as these findings are, securing the additional funding needed to increase coverage among 

children, at a time of flat or declining donor budgets, will continue to be a major challenge. Essential to 

overcoming that challenge will be accurate, policy-relevant information on the actual costs of delivering 

paediatric ART. There is only one published estimate of the costs of providing paediatric ART in resource-
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constrained countries available to policy makers, however, and South Africa is not included in its 

analysis[10]. Decisions about the scale-up of paediatric ART in South Africa and other countries are thus 

being made with incomplete information about their consequences. The objective of this study was to 

estimate and analyze the average cost of providing paediatric ART, stratified by patient outcome. This 

information will assist local policy makers, private and nongovernmental providers, and funding agencies 

to understand the factors that influence paediatric ART costs and outcomes, estimate resource needs, 

and improve the efficiency of the national treatment programme.  

 

 

METHODS  
 

Settings and cohorts 

We collected data on outpatient resource use during the first 24 months after ART initiation at two 

paediatric ART clinics in Gauteng Province: Empilweni Services and Research Unit (ESRU) of Rahima 

Moosa Mother and Child Hospital, with data collected for 2005-2009; and Harriet Shezi Children’s Clinic 

(HSCC) at Chris Hani Baragwanath Hospital [7], with data for 2007-2009. The sites were both located in 

public sector academic hospitals in urban areas, but they differed sharply in scale (patient volume). At 

ESRU, the number of children on ART increased from 518 to 1,253 over the study years from 2005 to 

2009. At HSCC, it grew from 1,617 to 2,434 over the study years from 2007 to 2009. Both sites followed 

South African guidelines for treatment initiation and ARV regimens[13]. During most the study period, 

ART initiation criteria included more than two hospitalisations per year or prolonged hospitalisation (>4 

weeks) for HIV-related disease; modified WHO Stage 3 or 4 disease; or a CD4 percentage <20% in a 

child under 18 months old or <15% in a child over 18 months old, both irrespective of disease stage. The 

recommended paediatric regimens consisted of stavudine, lamivudine, and lopinavir/ ritonavir for children 

initiated at less than 3 years of age and of stavudine, lamivudine, and efavirenz for children initiated at 3 

years or older [13].  

 

We enrolled into the study a consecutive sample of 150 children in each clinic who had initiated ART 

below the age of 13 years, based on a register of patients in care by March 2008 (ESRU) and January 

2009 (HSCC). Patients who had been enrolled in a clinical trial, initiated while admitted in a hospital ward, 

or transferred out of the clinic during the first two years after treatment initiation were excluded, since the 

resource use noted in their outpatient files was likely incomplete or, in the case of participation in a clinical 

trial, not representative of routine care.  

 

Approval for this study was granted by the Human Research Ethics Committee of the University of the 

Witwatersrand and the Institutional Review Board of Boston University Medical Campus. 
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Resource use and unit cost 

The methods used to analyse the costs and outcomes have been described previously[11]. Patient-level 

data were collected from patient files. This included the number of patient visits and consultations by type 

of health worker (doctor, nurse, pharmacist, social worker, counselor, dietician), amount and type of 

antiretroviral drugs and non-antiretroviral drugs dispensed, and laboratory and other diagnostic or 

monitoring investigations, including radiograms, electrocardiograms, and ultrasounds. We reviewed clinic 

and hospital accounts for the number and salaries of staff, the quantities and prices of clinic equipment 

and supplies, and infrastructure, utilities, clinic administration and management, maintenance, equipment 

and supplies, and security costs. Drug unit cost data were collected from the nearest government drug 

depot and laboratory costs from the National Health Laboratory Service. All other unit costs came from 

financial records or interviews with administrative staff.  

 

Fixed costs, including the cost of staff who do not provide direct patient care, building, equipment and 

supplies, were summed per year and divided by the total number of patient-months of care provided in 

that year to generate an average fixed cost per patient-month of care. This amount was then allocated to 

each study subject per month the subject remained in care. Buildings were valued based on market rental 

rates for similar structures in the neighbourhoods surrounding the sites; equipment was depreciated 

according to standard South African accounting practices[12]. Costs for resources not reported in site 

medical records, such as inpatient care, costs above the level of the treatment facility (e.g. government 

costs of oversight and training), and costs to the patients themselves were excluded from the analysis. 

 

Resource usage was analysed from the provider perspective. Cost data were from 2009 and were 

converted to US dollars at a rate of USD 1 = ZAR 8.28, the average exchange rate for 2009. Data were 

collected using CSPro version 3.3 and analysed in SAS version 9.1.  

 

Outcome status 

Using a paediatric adaptation of a previously published methodology[11], each subject was assigned to a 

single outcome on the basis of vital status, attendance status, laboratory results, or the presence of a new 

or recurring WHO stage 3 or 4 event 12 months and 24 months after initiating ART. The criteria for 

defining the outcomes, which were mutually exclusive, were assigned using a hierarchical decision 

process that takes into account the variability and timing of available information (Table 1). To cope with 

inconsistent timing of visits and laboratory tests, information reported in the subject’s medical record 

within 3 months on either side of the 12- and the 24-month endpoint was used to assign an outcome.  
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Table 1: Definitions of treatment outcomes  

Outcome Criteria for 
assigning outcome 

Definitions of criteria Medical record data required to use 
each criterion 

Excluded 
from study  

Transferred Transferred to another treatment site Record notation of transfer in month 0-24 
Never started ART Never collected first month’s supply of 

ARVs 
No medication pickup recorded in month 
0-24 

No longer 
in care  

Died Died Confirmation of death in month 0-12/ 0-
24 by record notation or death certificate 

Stopped attending 
clinic (lost to follow 
up) 

≥3 months late for last scheduled 
consultation or medication pickup 

Date of last scheduled consultation or 
medication pickup  

In care but 
not 
responding  

Unacceptable clinical 
condition 

Weight gain ≤ 0 or new or recurrent 
WHO stage 3 or 4 event at most recent 
visit (excluding irreversible conditions) 

Clinic visit closest to month 12/24 within 
9-15/ 21-27 month window  

Detectable viral load Viral load > lowest detectable level of 
test used 

Viral load test closest to month 12/24 
within 9-15/ 21-27 month window; 
assumes no unacceptable clinical 
condition. 

Unacceptable CD4% 
or count 

 CD4 count or percentage at baseline and 
closest to month 12/24 within 9-15/ 21-27 
month window; assumes no viral load 
test available 

Age 24-35 months CD4% < 20% or < baseline value 
Age 35-59 months CD4% < 15% or < baseline value 
Age >59 months CD4% < 15% or < baseline value; or  

CD4 count < 200 or < baseline value 
In care 
and 
responding  

Undetectable viral 
load 

Viral load ≤ lowest detectable level of 
test used. 

Viral load test closest to month 12/24 
within 9-15/ 21-27 month window 

Acceptable CD4% or 
count 

 CD4 count or percentage at baseline and 
closest to month 12/24 within 9-15/ 21-27 
month window; assumes no viral load 
test available 

Age 24-35 months CD4% > 20% and > baseline value 
Age 35-59 months CD4% > 15% and > baseline value 
Age >59 months CD4% > 15% and > baseline value; or 

CD4 count > 200 and > baseline value 

 Acceptable clinical 
condition 

No new or recurrent WHO stage 3 or 4 
event at most recent visit (excluding 
irreversible conditions) 

Clinic visit closest to month 12/24 within 
9-15/21-27 month window; assumes no 
viral load test or CD4% or count available 

 

 

Subjects who died or stopped attending the study clinic during the 12- or 24-month period were classified 

as “no longer in care.” “Stopped attending” was defined as not having returned for a scheduled visit 

during the three months before the end of the 12- or 24-month period. If no next visit date had been 

scheduled, subjects were classified as “stopped attending” if they did not have a visit for at least four 

months before the end of the 12- or 24-month window.  

 

Among those still in care, any subject having a new or recurrent WHO stage 3 or 4 event at most recent 

visit (excluding irreversible conditions) or whose most recent weight was the same or had dropped below 

the weight at initiation was considered “in care but not responding.” For those who remained in care and 

did not meet these event or weight criteria, viral load and CD4 cell counts or percentages (depending on 
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age) were considered for those whom these test results were available. Subjects whose medical record 

reported a detectable viral load, defined as >400 copies/mL, at 9-15 or 21-27 months after ART initiation 

were classified as “in care but not responding”; those whose viral load was undetectable were classified 

as “in care and responding.” For subjects for whom no viral load test was reported, a CD4 percentage or 

cell count in month 9-15 or 21-27 was used. Subjects whose CD4 percentage or cell count showed an 

increase from baseline were defined as in care and responding. If neither viral load nor CD4 results were 

reported in month 9-15 or 21-27, but the child remained in care and did not have a current WHO Stage 3 

or 4 event and the most recent weight, where available, was above the weight at initiation, a default 

outcome of in care and responding was assigned. 

 

Cost per patient 

For each patient outcome and site, the mean and median cost per patient for the first and second years 

after treatment initiation were calculated. For purposes of the cost analysis, 24-month outcomes were 

used for patients whose outcomes changed between 12 and 24 months. We evaluated the breakdown of 

average cost per patient among the main resources used (drugs, lab tests, clinic visits, fixed costs) and 

considered changes between the first and second years after initiation. Finally, the mean cost to produce 

a patient in care and responding at 12 months after ART initiation was calculated by dividing all costs for 

all the patients in the sample by the number of patients in care and responding at 12 months, and a 

similar calculation was performed for 24 months using 24-month outcomes and total costs.  

 

 

RESULTS 

 

Characteristics of study samples 

Characteristics of study subjects at treatment initiation are described in Table 2. After enrolment, 12 

children at HSCC were found to have been initiated while admitted for inpatient care and were 

subsequently excluded from the study, producing a final sample size of 138 at HSCC and 150 at ESRU. 

 

Patients at HSCC were on average older at initiation than those at ESRU and had slightly (though not 

significantly) higher starting CD4 percentages. In part as a consequence of the older cohort, HSCC was 

more likely to have used EFV, rather than LPV/r, in its starting ARV regimen. No patient at either site was 

prescribed second-line regimens containing didanosine during the first two years after treatment initiation. 
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Table 2. Characteristics of study samples at treatment initiation 

Characteristic  ESRU HSCC 
n 150 138 
Median age at initiation in years (inter-quartile range) 4.03 (1.61-7.19) 5.84 (2.88-8.21) 
Median CD4% at initiation (inter-quartile range) 12.40 (7.09-17.75) 14.05 (8.69-19.80) 
ARV regimens (% of all patient-months in care)   
Year 1   
d4T/ 3TC/ EFV 56 71 
d4T/ 3TC/ LPV/r 31 23 
ABC/ 3TC/ EFV or LPV/r 1 2 
any second line 0 0 
other 12 4 
Year 2   
d4T/ 3TC/ EFV 51 68 
d4T/ 3TC/ LPV/r 32 24 
ABC/ 3TC/ EFV or LPV/r 4 4 
any second line 0 0 
other 13 4 
 

Outcomes  

The percentage of children with each outcome and the indicators used to assign the outcomes are shown 

in Table 3. As noted above, outcomes were assigned solely on the basis of information available in 

existing medical records. For Year 1 at ESRU, for example, 30% of patients were categorized as in care 

and responding on the basis of an undetectable viral load, but only 9% were categorized as in care but 

not responding due to a detectable viral load. This simply indicates that only 39% of patients in the 

sample remained in care, did not have an unacceptable clinical condition, and did have viral load results 

reported in the relevant time period (9-15 months after ART initiation), following the definitions in Table 1. 

Patients who were in fact virally suppressed at 12 months but did not have a viral load result reported in 

their records could not be assigned an outcome on this basis. Except for any who had an insufficient CD4 

cell response, these patients would still have been categorized as in care and responding, but their 

outcome would have been assigned by default (not meeting the criteria for any other outcome), rather 

than as a result of a viral load result.  
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Table 3: Outcomes for year 1 and year 2 after treatment initiation  

Outcomes 
ESRU HSCC 
Year 1 Year 2 Year 1 Year 2 
n % n %  %  % 

Total number of subjects enrolled (n) 150 100% 150 100% 138 100% 138 100% 
Categorised as in care and responding, based on:         
Undetectable viral load 45 30% 45 30% 17 12% 35 25% 
Acceptable CD4 change 4 3% 1 1% 4 3% 4 3% 
No new WHO Stage 3/4 condition 44 29% 56 37% 104 75% 71 51% 
Total in care and responding 93 62% 102 68% 125 91% 110 80% 
Categorised as in care but not responding, based on:         
New WHO Stage 3/4 condition  1 1% 0 0% 0 0% 1 1% 
Weight gain <=0 0 0% 0 0% 0 0% 0 0% 
Detectable viral load 14 9% 6 4% 4 3% 12 9% 
Unacceptable CD4 change   6 4% 1 1% 2 1% 6 4% 
Total in care but not responding 21 14% 7 5% 6 4% 19 14% 
Categorised as no longer in care, based on:         
Died 7 5% 7 5% 2 1% 3 2% 
Stopped attending site (lost to follow up) 29 19% 34 23% 5 4% 5 4% 
Total no longer in care 36 24% 41 27% 7 5% 8 6% 
 

Patients in the cohort at HSCC did better throughout the study period, with 91% of patients in year 1 and 

80% in year 2 in care and responding to treatment. At ESRU, only 62% of patients were classified as in 

care and responding at the end of year 1 and 68% at the end of year 2, with a much higher percentage no 

longer in care than in HSCC (24% and 27% vs. 5% and 6% at 12 and 24 months, respectively). 

Importantly, at ESRU two thirds of the children with a 12-month in care but not responding outcome 

recovered during the second year on treatment. The 12-month in care but not responding outcomes were 

mostly due to intermittent increases in viral loads and resulting unacceptably low CD4 cell counts/ 

percentages which later subsided without necessitating a switch of regimens, resulting in an in care and 

responding result at 24 months. This did not occur at HSCC, where several children developed newly 

detectable viral loads between 12 and 24 months on treatment. 

 

Resource utilisation and costs 
The top panel of Table 4 describes average resource utilisation per year in care for each study site. 

Across both study sites and years after ART initiation we estimated an average cost per patient-year in 

care of $693, regardless of outcome. As reported in the lower panel of Table 4, the average cost per 

patient remaining in care and responding at 24 months was $826 in year 1 and $717 in year 2 at ESRU, 

and $678 and $782 in years 1 and 2, respectively, at HSCC. At ESRU the second year on treatment was 

slightly less expensive for all outcome categories, due mainly to fewer visits to all types of staff and a 

halving of fixed costs by the second year as result of increasing facility scale. Average fixed costs per 

patient-month in care fell in the second year as a result of a steady increase in patient numbers at ESRU 

over the course of the study period, such that each study subject’s second year reflected economies of 
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scale relative to the same subject’s first year. In contrast, at HSCC the second year on treatment was 

more expensive across all outcome categories, largely as a result of a doubling of the staff contingent in 

2008, which coincided with the second year on treatment for most patients in our cohort, to compensate 

for past under-staffing and prepare for an anticipated future increase in patient numbers. The cost of the 

ARV medications comprised a third to a half of total cost, with higher ARV costs at ESRU where patients 

were younger at initiation and thus more likely to be treated with LPV/r than at HSCC. At both sites, 

patients made substantially more clinic visits in the first year after treatment initiation than in the second, 

reflecting the need for more frequent monitoring in the period immediately after initiation. By the second 

year, most patients who are still in care have stabilised and require less frequent clinical monitoring. 

 

The average cost per patient initiated on treatment, as shown in Table 4, is substantially lower than the 

cost per patient with an in care and responding outcome, due to the large number of patients who did not 

remain in care for the full 12 or 24 months. If outcomes improve, the total cost of treatment each 

hospital’s population of paediatric patients will thus increase from current expenditure levels. The total 

cost of producing a patient in care and responding to treatment was $1,117 and $829 in years 1 and 2 in 

ESRU, respectively, and $819 and $937 in HSCC. This measure, which allows us to summarise cost and 

outcomes of each clinic in a single metric, divides the total cost accrued by each clinic cohort by the 

number of in care and responding patients produced by each clinic. Because the patients in our sample in 

ESRU had better outcomes in year 2 than in year 1, the production cost decreased by 26% during the 

second year, while in HSCC it increased by 14%, mostly due to the increase in staff cost that was not 

offset by changes in patient outcomes.  
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Table 4: Resource utilisation and cost per 24-month outcome and distribution of cost by item for 
year 1 and year 2 after treatment initiation, by clinic  

 

ESRU HSCC Both 
sites and 
years  

For comparison: 
Adult clinic (based 
on [11]) 

Year 1 Year 2 Year 1 Year 2 Year 1 
Average resource utilisation per patient-year in care 
CD4 cell counts/ 
percentage tests 1.74 0.82 1.60  1.69 1.48 2.7 

Viral load tests 2.30 0.87 1.59 1.70 1.63 1.4 
Visits per year to the 
following type of staff:       

Doctor 7.87 4.98 7.07 4.92 6.25 6.1 
Nurse 7.49 4.81 7.08 6.38 6.49 6.1 
Pharmacist 7.37 4.87 7.07 6.39 6.47 9.0 
Dietician 1.69 0.49 1.20 0.49 0.98 no data 
Social worker 0.13 0.01 0.20 0.08 0.11 no data 
Counsellor 7.50 4.81 6.76 4.77 5.99 no data 
Physiotherapist1 no data no data 0.22 0.10 0.16 no data 
Average staff cost/ doctor 
visit [2009 USD] 32.50 32.83 18.77 31.58 28.76 18.28 

Fixed costs/ patient month 
in care [2009 USD] 9.01 8.46 10.15 11.95 9.94 6.85 

Mean cost per 24-month outcome [2009 USD] (standard deviation) 
In care and responding  830 (274)  717 (28)  678 (177)* 782 (177) 752 802 (388) 
In care but not 
responding  1,080 (324)  773 (461)  625 (139)* 748 (157) 806 803 (123) 

No longer in care  478 (286)  163 (303)  355 (326) 281 (460) 324 403 (302) 
All subjects in sample 746 (327) 616 (426) 653 (197)* 748 (229)* 693 674 
All subjects remaining in 
care  846 (283) 786 (331) 670 (173)* 776 (174) 769 802 

Distribution of annual cost per patient in care and responding [2009 USD] (% of total cost) 
ARV drugs 343 (41)  375 (52)  226 (33) 274 (35) 302 (40)  326 (41) 
Non-ARV drugs  23 (3)  28 (4)  19 (3) 21 (3) 23 (3)  13 (2) 
Diagnostic tests  103 (12)  88 (12)  105 (16) 106 (13) 101 (13)  146 (18) 
Clinic visits  255 (31)  168 (23)  207 (31) 242 (31) 219 (31)  165 (21) 
Fixed costs 106 (13) 58 (8) 120 (18) 139 (18) 107 (18)  132 (16) 
Total 830 (100) 717 (100) 678 (100) 782 (100) 752 (100)  802 (100) 
1 Physiotherapist visits are not included in the estimation of cost, since only one clinic (HSCC) had full records of 
these visits.  
* Difference from ESRU significant at 5% level using t-test for the means of two samples. The same levels were 
obtained using Wilcoxon sum-rank test assuming a non-normal (t) approximation for the medians of two samples. 
 

Comparison with cost of adult ART 

At a public sector, hospital-based adult ART clinic in the same province of South Africa, located just 2 km 

from one of the paediatric sites, average costs for adult patients remaining in care (responding or not) in 

2009 USD were $802 for year 1 and $795 for year 2, or a total of $1,597 for the two-year period (based 

on [11], updated to 2009 unit costs) (see Table 4). Paediatric treatment at our study sites was thus less 

expensive than adult treatment at a comparable site. 
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DISCUSSION 

 

South Africa’s public sector began to offer ART to HIV-infected children in South Africa nearly a decade 

ago and had some 152,000 children on treatment by mid-2011[14], representing fully a third of all 

paediatric ART patients in low and middle income countries [1]. Despite this, there are still no empirical 

estimates available of the actual cost of providing paediatric ART at typical treatment delivery sites in the 

country. In this paper, we report the average cost per child initiated on ART and per outcome achieved 

during the first two years after treatment initiation for two large paediatric ART clinics in Gauteng 

Province, where around 22% of the paediatric ART population is cared for. Our results will assist program 

managers, policy makers, and funding agencies to improve the accuracy of their planning and budgeting, 

as well as helping paediatric clinics understand and improve the quality of care they provide. 

We found that two years after treatment initiation, 83% of children in the overall study sample remained in 

care and 76% were classified as in care and responding to treatment. These outcomes are consistent 

with previous studies’ findings for paediatric cohorts in South Africa. At comparable adult clinics in South 

Africa, studies using identical methodology have estimated rates of retention in care at 12 months of 

71%[11]. The aggregate 12-month retention rate for children in this study, 85%, suggests that paediatric 

clinics are achieving outcomes comparable to or better than adult clinics. There was variation between 

our two study clinics, however. In ESRU, the proportion who died or were lost to follow-up was substantial 

in year 1 and rose modestly in year 2, and the proportion in care but not responding fell in year 2. 

Seventy-three percent of patients ended the study period in care and responding. In HSCC, the 

proportions of patients no longer in care and in care but not responding were much lower throughout, with 

a small increase in these outcomes between year 1 and year 2. 

 

Across both of our study sites and years after ART initiation, without regard to outcome, we estimated an 

average cost per patient-year in care of $693. While costs did vary by site and year, the average over the 

24-month period for patients remaining in care and thus having complete follow-up differed by less than 

6%, at $1,547 for the two-year period in ESRU and $1,460 in HSCC. The costs we estimated for 

paediatric treatment were slightly less than the cost of adult treatment at a nearby facility. The only 

published study of paediatric and adult ART costs, which considered three African countries but not South 

Africa, reported that paediatric treatment was considerably more expensive than adult treatment in 

Ethiopia and Nigeria, but cost much less than adult treatment in Uganda[10]. In that study, cost 

differences between adult and paediatric treatment nearly vanish when ARV drug procurement is 

excluded, suggesting that ARV drug costs are the most important driver of the total cost of treatment. Our 

findings are also explained in part by differences in ARV drug costs. In our study, one of the reasons for 

the modest cost of paediatric ART may be the lower cost of paediatric antiretroviral regimens (except for 

those containing LPV/r) when compared to adult regimens.  
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Our study had a number of limitations. First, the study includes only two sites, both of which are paediatric 

ART clinics based at large, urban, academic hospitals in Gauteng Province. They may thus not be 

representative of the costs or outcomes to be expected at smaller sites, primary health care clinics, or 

other provinces or settings. Second, findings are based on relatively small sample sizes at each site, 

resulting in large standard deviations for average cost estimates for the smaller outcome categories. 

Third, results represent average, not marginal, costs and may therefore not reflect the cost of further 

program expansion. Fourth, inpatient costs were not included, because ART clinic records do not report 

inpatient care. Previous work by the study team at ESRU suggests that inpatient care may comprise an 

important share of the total cost of providing HIV care to children[15], though the relative contributions of 

inpatient and outpatient care to total cost are unknown and may as much depend on the accessibility of 

paediatric inpatient facilities as on actual need for inpatient care. Children who transferred to another 

treatment facility during the first 24 months after treatment initiation or who initiated ART while admitted 

for inpatient care were also excluded and may have differed in costs or outcomes from our study sample. 

Lastly, and importantly, the patients included in this study initiated ART between 2005 and 2008, which is 

prior to the adoption of early infant diagnosis and treatment strategies in South Africa. The fact that few 

very young children or infants were enrolled into this study is a result of this and could potentially alter 

average cost in the future.  

 

Despite these limitations, this study offers policy makers and funding agencies the first empirical 

estimates of the actual cost of providing HIV/AIDS treatment to children in South Africa. Costs in the two 

clinics were comparable both to each other and to those of adult ART. This is of importance for future 

policy development and counters the assumption that paediatric ART provision will be substantially more 

expensive than adult ART due to the different drug formulations and higher potential staff and time needs. 

We did not see evidence of either in our study. The advanced age (4-6 years) and low CD4 percentage 

(13-14%) at initiation, however, suggests that few very young children accessed ART in either clinic 

between 2005 and 2008 and that those who did were already very ill. Implementing the new WHO 

guidelines for paediatric ART[16], already part of South Africa’s new National Strategic Plan for HIV[2], is 

thus a high priority. 
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8 Outpatient and inpatient cost of early vs. deferred paediatric 
treatment  

8.1 Background 

Across the globe, the roll-out of paediatric antiretroviral therapy (ART) in low- and middle-income 

countries has lagged behind that of adult ART, despite the fact that children and in particular infants have 

the highest risk of dying from HIV. Without treatment, one third of children infected with HIV during 

pregnancy or birth die before they turn one; 50% die before they turn two. The reasons for low coverage 

of paediatric ART are manifold and range from the lack of drug formulations appropriate to children and 

their life circumstances, the delay in training health personnel to test for HIV and administer ART to 

children, and the slow roll-out of PCR-based diagnostic tests allowing for early diagnosis [1]. 

 

In 2007, the Children with HIV Early Antiretroviral Therapy (CHER) randomised clinical trial conducted in 

two centres in South Africa established the effectiveness of early antiretroviral treatment (initiation at 6-12 

weeks of age) in asymptomatic HIV-infected infants with a CD4 percentage above 25% over treatment 

initiation under the 2006 WHO paediatric treatment guidelines that deferred treatment initiation until their 

CD4% fell below 25% or clinical criteria were met (CDC stage C or severe stage B) (hazard ratio for 

death: 0.24 (95% CI 0.11 to 0.51; p<0.001); hazard ratio for disease progression: 0.25 (95% CI 0.15 to 

0.41; p<0.001) [2]. In the deferred treatment arm, treatment was initiated in 66% of infants after a median 

follow-up of 40 weeks, 26% progressed to CDC stage C or severe stage B disease, compared to 6% in 

the early treatment arm, and 16% of infants died, compared to 4% in the early treatment arm [2]. After 

data review, all children in the deferred treatment arm were re-assessed for early initiation of treatment 

[2]. In a follow-up analysis of the trial data after a median follow-up of 4.8 years, early ART still had better 

outcomes than deferred ART even if this early treatment was later interrupted [3]. 

 

Following this, the World Health Organization in 2010 published a three-fold recommendation: a) to 

ascertain the exposure status of all children with unknown or uncertain HIV exposure around the time of 

birth; b) to test all children known to be exposed for HIV at 4-6 weeks with virological assays (i.e., PCR 

either from blood or dried-blood spots), and c) to initiate all children diagnosed in the first year of life on 

ART immediately after diagnosis [4,5]. Implementation of these guidelines has been hampered by a 

number of concerns including an apprehension about the cost of early paediatric treatment (EPT) as 

compared with paediatric treatment initiated later in a child’s life and the affordability of full coverage with 

paediatric treatment.  

 

We compared the cost of treatment initiation at 6-12 weeks with the cost of initiation based on CD4% 

threshold or clinical criteria according to 2004 WHO guidelines in trial conditions from the provider 
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perspective, with the aim of analysing whether the additional resource use in terms of antiretroviral drug 

provision due to earlier treatment initiation would outweigh the savings from reduced resource use in 

other care, including inpatient and outpatient care for opportunistic infections. For comparison we then 

added information on the cost of care for HIV-positive children under the age of 1 in a routine, non-trial 

setting.  

 

8.2 Methods 

8.2.1 Cohorts 

We collected data on the outpatient and inpatient resource use during the first 12 months of life in 373 

children randomised to either early ART initiation (arms 2/3 combined, n=284) or deferred ART initiation 

(arm 1, n=89) in the CHER trial, a phase 3 randomised open-label trial conducted at paediatric ART 

clinics maintained by the Perinatal HIV Research Unit, Chris Hani Baragwanath Hospital, in Soweto, and 

the Children’s Infectious Diseases Clinical Research Unit, Tygerberg Children’s Hospital, in Cape Town. 

All children were enrolled between the ages of 6 and 12 weeks of treatment and had to have a CD4% of 

25% or more. First-line treatment consisted of ZDV and 3TC and LPV/r twice daily; second-line treatment 

of ddI, ABC and NVP. Children were recruited through PMTCT clinics in both hospitals and seen every 

four weeks until 24 weeks, then every 8 weeks until 48 weeks of age, and 12-weekly thereafter. 

 

8.2.2 Resource use and cost data 

We analysed the cost of HIV-related care during the first year of life of two cohorts of HIV-positive children 

from the provider perspective. Patient-level resource use data were collected from patient files and 

contained the number of consultations within the clinics, the amount and type of antiretroviral and other 

drugs dispensed, laboratory tests, and the number of inpatient days. We reviewed clinic and hospital 

accounts for the number, level, and salaries (including benefits) of staff, the quantities and prices of clinic 

equipment and supplies, and overheads including utilities, maintenance, and security costs. Drug unit 

cost data was collected from the nearest drug depot; laboratory costs from the South African national 

laboratory service. Since no information on resource use during hospital admissions was available for the 

trial cohorts, apart from information on the dates of admission and discharge, and a common unit cost 

across both trial sites was necessary, we estimated the cost of inpatient care using information on the 

length of stay for each admission from the files and the cost per patient-day equivalent (PDE) of a 

representative children’s hospital in the vicinity of one of the clinics, Rahima Moosa Mother and Child 

Hospital. Cost per PDE is a measurement of average inpatient cost per patient day and is collected 

routinely by all public-sector hospitals in South Africa. 
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All cost data was adjusted to 2009 prices and converted to USD using the 2009 average exchange rate of 

1 USD = 8.28 ZAR. Data were collected using CSPro version 3.3 and analysed in SAS version 9.1.  

 

8.3 Results 

8.3.1 Cohort characteristics 

Even though mean age at study enrolment and mean follow-up time was very similar between the two 

cohorts (Table 2), mean age at ART initiation was 10 weeks for the early treatment cohort (CHER trial 

arm 2 and 3) and 20 weeks for the deferred treatment cohort (CHER trial arm 1), due to the deferred 

nature of treatment initiation in the latter cohort [2]. Early Paediatric Treatment in a group of children 

diagnosed in the first weeks of life could thus halve the time to ART initiation compared to initiation 

according to criteria set out in the 2006 WHO paediatric treatment guidelines. 

 

Table 2: Demographic and treatment characteristics of the two CHER trial cohorts 

 Early treatment  
(CHER trial arm 2 and 3) 

Deferred treatment  
(CHER trial arm 1) 

Sample size 284 89 
Mean age at study enrolment in 
weeks (median, IQR9) 

7.88 (7.57, 6.57-8.86) 7.78 (7.14, 6.43-8.86) 

Mean follow-up time on treatment 
in weeks (median, IQR9) 

 39.09 (41.43, 40.71-41.71) 
 

39.55 (41.86, 40.14-41.57) 

  

8.3.2 Resource use 

Resource use in children in both arms was high, in part due to the more frequent clinic visits and 

additional laboratory test dictated by the trial protocol. Children in the deferred treatment cohort had on 

average more clinic visits and more than twice as many inpatient days, compared to the early treatment 

cohort (Table 3). They also used much higher volumes of antiretroviral drugs, and slightly higher doses of 

non-antiretroviral drugs prescribed at the outpatient level, most often for the treatment (or prevention) of 

opportunistic infections. These higher volumes, especially of the antiretroviral drugs, are in large parts 

due to the comparative older age at initiation of the cohort.  

 

 
 
 
 
                                                      
9 IQR: inter-quartile range 
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Table 3: Average resource use per child in the first year of life in the two CHER trial cohorts  

 Early treatment  
(CHER trial arm 2 and 3) 

Deferred treatment  
(CHER trial arm 1) 

Services   
Clinic visits  12  16 
Inpatient days  1.8 6.5 
Laboratory tests   
CD4 tests 5 7  
HIV viral load tests 1 1 
Full blood counts 5 7 
Liver function tests 4 6 
Antiretroviral drugs   
AZT syrup (200 ml; 50 mg/ml) 19 70 
d4T powder for oral solution  (200 ml; 1 mg/ml) 0.37 0 
3TC oral solution (240 ml; 10 mg/ml) 6 17 
LPV/r oral solution (60 ml; 80 mg + 20 mg/ml) 8 14 
ABC oral solution (240 ml; 20 mg/ml) 0.01 0 
Other drugs10   
Amoxicillin powder for syrup (125 mg/ml) 0.9 1.7 
Aqueous cream (500 g) 0.4 0.7 
Amoxicillin and clavulanate suspension (250 mg + 125 mg/ ml) 0.6 1.7 
Betamethasone valerate ointment (15 g) 0.2 0.5 
Cotrimoxazole oral solution (100 ml) 1.1 1 
Miconazole oral gel (30 g; 2%) 0.5 1 
Hydrocortisone cream (20 g; 1%) 0.6 0.8 
Mycostatin ointment (15 g) 0.7 1.2 
Paracetamol syrup (100 ml; 120 mg/ 5ml) 2.1 3.7 

 

8.3.3 Average cost per child 

The mean cost for the first year of life per child in deferred ART was USD 2,432 (95% CI 1,982-2,889), 

significantly more expensive than the mean cost per child of early ART (USD 1,349, 95% CI 1,244-1,464) 

(Table 4). In the deferred ART cohort, more than half (51%) of the cost in the first year of life was due to 

inpatient care, 30% due to staff and overhead costs, 14% due to laboratory costs, and 5% due to drug 

cost (Table 4). In the early treatment cohort, only 26% of the cost was due to inpatient care, 38% due to 

staff and overhead costs, and 18% each due to drug costs and to laboratory costs. The per-patient cost of 

inpatient care in the early arm (USD 346) was less than a third of the inpatient cost in the deferred arm 

(USD 1,237).  

 

 
 
 
 
                                                      
10 Only the 9 most commonly prescribed drugs are summarised here; a total of 24 different drugs were prescribed at 
the outpatient level during the trial and included in the analysis. 
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Table 4: Total cost for first year of life per child and cost per item by CHER cohort [2009 USD] 

Cost (% of total cost) Early treatment  
(CHER trial arm 2 and 3) 

Deferred treatment  
(CHER trial arm 1) 

Outpatient cost (% of total cost) $1,004 (74%) $1,195 (49%) 
 - Drug cost  $245 (18%) $127 (5%) 
 - Diagnostics  $243 (18%) $341 (14%) 
 - Staff and overhead cost $515 (38%) $726 (30%) 
Inpatient cost (% of total cost) $346 (26%) $1,237 (51%) 
Total cost (95% CI2) $1,349 (1,244-1,464) $2,432 (1,982-2,889) 

 

As can be seen in Table 4, there is a clear inverse relationship between the speed with which children 

were initiated on ART and the inpatient cost they accrued during their first year of life. This inpatient cost 

explains most of the dramatic difference in cost between the care scenarios. While in the early treatment 

arm of the CHER trial, children were hospitalised for a mean of 2 days, children in the deferred treatment 

arm were hospitalised for an average of 5 days. Compared to total average cost, the cost of ARV and 

other drugs is small in each scenario, with 18% and 5% for the early treatment and deferred treatment 

arms, respectively.  

 

8.3.4 Comparison with the cost of routine care in children initiating ART in the first year 
of life 

In order to give an indication of how the trial results compare to routine implementation, we compared the 

cost of ART in the two trial arms with the outpatient and inpatient resource use of 138 infants who had 

initiated ART during their first year of life at Empilweni Clinic, the paediatric ART clinic at Rahima Moosa 

Mother and Child Hospital, between 2005 and 2007. ART was initiated in these children at a mean age of 

27 weeks (median 23.71; IQR 17.79-38.71), at a mean CD% of 19.73 (median 17.90; IQR 12.00-26.00). 

In part due to the later initiation, follow-up was much shorter than in the trial cohorts, at a mean of 3.96 

months (median 3.91 months; IQR 1.56-6.37). Among these infants, average cost of inpatient and 

outpatient care during the first year of life was more than double that of early therapy at USD 2,908 (95% 

CI 2,273-3,743), 84% of which was due to inpatient cost, 9% due to staff and overhead costs, 1% due to 

drug costs, and 2% due to laboratory costs. The very high mean inpatient cost of $2,523 is due to an 

average of 13 days of inpatient days for this cohort (with a maximum of 121 days, or four months) - twice 

as much as even the deferred care trial cohort, and almost 7 times as much as the early treatment cohort. 

This difference becomes especially stark when compared with the mean follow-up time for each of the 

cohorts (see Table 2), translating to 0.2, 0.8, and 4.3 inpatient days per patient month of follow-up, 

respectively. 
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8.4 Discussion 

When comparing the cost during the first year of life of three cohorts of HIV-infected children initiating 

antiretroviral treatment in a trial at an average of 10 weeks, regardless of immunological and clinical 

status, with those who initiated treatment when meeting immunological and clinical eligibility criteria at an 

average of 20 weeks in the same trial, and at 27 weeks in routine care, we found that early treatment 

initiation was cost-saving in the first year of life compared to both other options, mostly due to a reduction 

of inpatient cost by 72% and 84% compared to deferred initiation in the trial and in routine care, 

respectively.  

 

One of the main shortcomings of this analysis is that it was based on observed data only and did not 

attempt to model cost past the first year of life. Since survival is also higher under early therapy, this 

strategy, even if more expensive in an evaluation of lifetime cost, is however likely to be cost-effective. A 

second limitation was that the estimation of inpatient cost was based on the average cost per inpatient 

day across all wards in one representative children’s hospital, in the absence of complete inpatient 

resource use data captured during the CHER trial. This assumes that children with HIV cost the same on 

average as all other children which is very likely an underestimation. The cost estimates we present for all 

scenarios are therefore conservative; the real costs of inpatient care are likely to be higher, possibly by 

much, and, since the children in the deferred arm were sicker on average than those in the early 

treatment arm, the cost differences and hence the cost saving from early initiation are potentially much 

greater than estimated here. This difference will potentially be much greater still when compared to 

routine care. Third, the cost of screening of all HIV-exposed children is not included; based on the cost of 

a PCR test in South Africa and unpublished data about the HIV yield of early infant diagnosis at the time 

of the analysis in South Africa, we estimate that this would add about $300 per child. Fourth, in terms 

especially of the generalisability of these findings to other countries, the early treatment arm of the trial 

was different from how early treatment will likely be implemented in practice, in that it had very good 

follow-up and all children were initiated on an LPV/r-containing regimen. Loss to follow-up along the care 

cascade between testing and treatment initiation in routine care is expected to be 50% even in 

programmes with the best reported follow-up [7]. All cohorts were furthermore limited to children surviving 

to ART initiation, and in the case of the routine care cohort, the convenience sample of cases included in 

this analysis might have introduced a strong selection bias. Lastly, the difference in cost depends on 

children being presented for hospital admission when sick, which might not always be the case, 

especially in poorer countries. 

 

Based on the 2010 World Health Organization recommendations, a number of countries, including South 

Africa, has since implemented a policy of early paediatric treatment initiation for HIV-positive children 

immediately after the first positive test result. Over the last five years, the South African government has 

successively increased the age limit for this policy from 1 to 3 to 5 years of age [8]. 
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8.5 Conclusion 

In HIV-infected infants, initiating early ART at a median age of 7 weeks is cost-saving in the first year of 

life compared with deferring ART until an average age of 20 weeks, at which children in a clinical trial with 

regular monitoring qualified based on clinical grounds, or until 27 weeks, at which children in our sample 

were initiated in routine care. While with deferred treatment, inpatient and outpatient treatment costed 

about the same in our analysis, in routine care, the much lower outpatient care costs are overwhelmed by 

high inpatient costs before ART initiation. “Routine” care with delayed access to ART is, at more than 

twice the average cost during the first year of life as early treatment, in fact exceptionally expensive. The 

fact that children in our sample of routine care were followed up for an average of three months only in 

their first year of life also points to the much higher risk of loss to follow-up and mortality in this sample. 
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9 Modelling the cost of the South African national treatment 
programme 

9.1 Introduction 

South Africa is home to both the largest number of HIV-infected people and the largest number of 

patients on antiretroviral treatment (ART) in the world [1]. The public-sector ART programme started in 

April 2004 had initiated more than 1 million patients by February 2010, of whom 919,923 were reported 

as remaining on treatment as of November 2009 [2]. Demand for treatment had increased rapidly to over 

300,000 new patients initiated per year, placing tremendous pressure on funding and service delivery 

capacity. At the same time, government, clinicians, and civil society debated a range of changes to the 

national ART guidelines, all of which would have considerable implications for the cost of the programme. 

 

In 2009, the South African National Department of Health created a task team to calculate the resources 

required for national ART provision between 2009/10 and 2016/17, while also considering the potential 

costs of the proposed changes to the national ART guidelines. These changes included adopting the 

World Health Organization’s (WHO) updated ART guidelines for resource-limited settings, which increase 

the immunological threshold for eligibility from <200 CD4 cells/microl to <350 CD4 cells/microl and 

replace stavudine (d4T) with tenofovir (TDF) in first-line ART for newly initiated adults [3]. Proposed 

changes to the paediatric ART guidelines included initiating on treatment all children <12 months who test 

positive by HIV PCR, regardless of clinical or immunological status, and the replacement of stavudine 

with abacavir (ABC) in first-line regimens for newly initiated children. Other changes the task team 

considered were task-shifting from doctors to nurses and from pharmacists to pharmacy assistants and 

replacing the existing system of antiretroviral drug procurement via government tenders that favour 

domestic production with drugs sourced internationally at ceiling prices negotiated by the Clinton 

Foundation. 

 

To help the Department of Health assess the likely effect of these changes on ART programme costs and 

to improve the accuracy of national HIV/AIDS budget projections, the task team commissioned the 

development of a health-state transition model that combined primary data on patient costs and outcomes 

with existing national projections of patient numbers. The model allows the Department to estimate 

current and future budgetary needs, assess proposed treatment guideline changes, and calibrate 

programme expansion to financial resources. In 2010, the results of the model were among the factors 

that led the South African Government to revise its treatment guidelines and nearly double the budget 

allocation for ART. Here we present the model and the estimated total cost of the old and new guidelines. 
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9.2 Methods 

9.2.1 Model structure 

We developed a dynamic population model to estimate the number of patients in care over seven 

financial years (2010/11 to 2016/17). Based on a total population of HIV-infected individuals in need of 

ART, the model calculates the number of patients on first-line ART, the number who fail first-line ART, 

and the number who initiate second-line ART (Figure 1). During each 6-month time interval, patients can 

either transition between these sub-populations, be lost to follow up, or die, according to estimated rates 

of ART coverage, treatment failure, loss to follow-up (LTFU), and death.  

 

Figure 1: Health-state transition model  
with ar: age rate, tp: transition probability, fr: failure 
rate, cr: rate of coverage with second-line ART, dr: 
default rate, mr: mortality rate. Blue arrows and 
boxes represent drug choices and transitions under 
the Old Guidelines scenario, red arrows and boxes 
represent the New Guidelines and Full WHO 
Guidelines scenarios. Drugs and transitions that are 
the same in all scenarios are represented in grey 
and white. For better legibility, rates are represented 
for the first row or column only; for drug choices, 
colours in the first row are representative of all rows, 
and only those drugs that change between scenarios 
are mentioned.       

*15% and **16% for children in the age group 6-13 

 

 

 

 

 

 

 

 

 

 

Within each of the sub-populations, we used a health-state transition model to calculate the number of 

patients in each CD4 cell count/ percentage stratum. For adults, CD4 strata are defined according to 

differences in mortality and LTFU and categorised as >350, 200-350, 50-199, and <50 cells/microl. For 

children aged 6 to 13, CD4 strata are defined as >35, 15-35, 5-14, and <5%. CD4 strata for children <6 

are CD4 >35, 20-35, 5-19, and <5%. The probabilities of transitioning between these strata vary by age, 
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CD4 cell count, type of treatment, and, for adult first-line ART, time on treatment. The equations used in 

the model can be found in the Appendix to chapter 9. 

 

Table 5 summarises the main model elements and their sources, including which of the previous chapters 

contain a description of the data and methods involved in their estimation. 

 

Table 5: Summary of model elements and data sources for NACM 

Model element Data source 
Health states Defined by differences in mortality in TLC data 
Number of adults initiating ART  ASSA2003 

Number of children initiating ART 
ASSA2003 (plus additional assumptions regarding scale-up of 
Early Paediatric Treatment (EPT); for separate analysis of EPT, 
see Chapter 8) 

Mortality TLC/ HSCC data 
Loss to follow-up TLC/ HSCC data 
First-line treatment failure TLC/ HSCC data 
Incidence of side effects necessitating drug change TLC data (applies to adults only) 
Transition probabilities between health states TLC/ HSCC data 
Outpatient cost (adults) CMH/ TWC data (see Chapter 5) 
Inpatient cost (adults) CHBH/ TH data (see Chapter 6) 
Outpatient cost (children) HSCC/ ESRU data (see Chapter 7) 

ASSA2003 Actuarial Society of South Africa AIDS Model 2003; TLC Themba Lethu Clinic; HSCC Harriet Shezi 
Children’s Clinic; CMH Charlotte Maxeke Hospital; TWC Tshepong Wellness Clinic; CHBH Chris Hani Baragwanath 
Hospital; TH Tintswalo Hospital; ESRU Empilweni Services and Research Unit 

 

9.2.2 Scenarios for analysis 

We analysed numbers of people initating ART, their survival in care and the resulting cost under three 

scenarios (Table 6). The Old Guidelines scenario kept the same eligibility thresholds (<200 CD4 

cells/microl or WHO stage 4 for adults or 15%-20% of total lymphocyte count or WHO stage 3 or 4 for 

children) and ART regimens (d4T + 3TC + EFV or NVP as first line, AZT + ddI+ LPV/r as second line for 

adults and children above 3 years of age; d4T + 3TC + LPV/r as first line,  AZT + ddI + NVP as second 

line for children below 3 years of age) for adults and children as the 2004 South African ART guidelines  

[3]. Under the New Guidelines scenario, the adult eligibility threshold was raised to <350 cells/microl for 

patients with TB and for pregnant women while continuing to initiate all other adults at <200 cells/microl, 

and treatment was initiated for all HIV-positive babies <12 months of age immediately after the first 

positive PCR (Early Paediatric Treatment). The New Guidelines scenario also replaced d4T in first-line 

regimens with TDF for adults and abacavir (ABC) for infants for newly initiated patients or those 

experiencing severe d4T toxicity. Finally, the Full WHO Guidelines scenario increased the eligibility 

threshold to <350 cells/microl for all adults, while keeping paediatric eligibility and all regimens the same 

as in the New Guidelines scenario. We assumed that survival in care would change between scenarios 

as a function of the higher eligibility threshold (calculated based on CD4 cell count dependent transition 
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probabilities), but would be the same between different drug regimens; both eligibility and drug regimen 

changes however impacted on cost. 

 

Table 6: Scenarios of analysis 
Scenario Old Guidelines New Guidelines Full WHO Guidelines 
Eligibility criterion 

Adults <200 CD4 cells/microl 
or WHO stage 4 

For HIV/ TB co-infected 
and pregnant patients: 
<350 CD4 cells/microl 
For all other patients: 
<200 CD4 cells/microl 
or WHO stage 4 

<350 CD4 cells/microl 
or WHO stage 4 

Children 
15% to 20% of total lymphocyte 
count or WHO stage 3/4 

After first positive PCR in 1st year of life, regardless of 
CD4 cell percentage or WHO stage (Early Paediatric 
Treatment) 

Drug regimens 

First-line  Adults d4T + 3TC + EFV or NVP For all new initiates and those with d4T toxicity: 
TDF + 3TC + EFV or NVP 
For all else: 
d4T + 3TC + EFV or NVP 

Second-
line  

AZT + ddI+ LPV/r For those failing d4T- or AZT-containing regimens: 
TDF + 3TC + LPV/r  
For those failing TDF-containing regimens: 
AZT + 3TC + LPV/r 

First-line  Children <3 yrs: d4T + 3TC + LPV/r 
>3 yrs: d4T + 3TC + EFV or NVP 

<3 yrs: ABC + 3TC + LPV/r 
>3 yrs: ABC + 3TC + EFV or NVP 

Second-
line  

<3 yrs: AZT + ddI + NVP 
>3 yrs: AZT + ddI + LPV/r 

 

Within each of the scenarios, we also examined two other proposed changes: the impact of task-shifting, 

defined as ART initiation and management by nurses under physician supervision and the dispensation of 

ART by pharmacy assistants under pharmacist supervision; and the impact of procuring antiretroviral 

drugs at Clinton Foundation ceiling prices and wherever possible as fixed-dose combinations (FDC).  

 

9.2.3 Data sources and assumptions 

9.2.3.1 Population in need and initiating ART 
The model calculates the cost of treating all patients in need of ART between 2010/11 and 2016/17, 

including those patients already in care by the beginning of the financial year 2010/11, in April 2010 

(965,005 adults and 336,267 children). Data on the population in need of and initiating ART were 

obtained from an adaptation of the Actuarial Society of South Africa (ASSA) AIDS model from 2003 

(ASSA2003) [4,5]. This update includes the breakdown of the population assumed to initiate ART by CD4 

cell count, allowing patients to enter care in a specified CD4 count stratum. The model allows for a 

change in the number of patients initiating care if immunological eligibility is defined at <350 CD4 cells/µl 
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rather than <200 cells/µl. In line with the South African National Strategic Plan for HIV and AIDS & STIs 

for 2007-2011, the number of individuals starting ART per year was assumed to be 80% of those newly 

eligible for ART from 2009/10 onward [6], of whom 90% were assumed to be treated in the public sector. 

Under the Full WHO Guidelines scenario, we assumed that the rate of ART initiation in adults with CD4 

cell counts of 200-350 cells/microl was 30% of the rate of ART initiation in adults with CD4 cell counts 

<200 cells/microl. Coverage of children with Early Paediatric Treatment was assumed to increase from 

55% in 2010/11 to 85% in 2016/17. 

 

The assumption that the rate of ART initiation in adults with CD4 cell counts of 200-350 cells/microl is 

30% of the rate of ART initiation in adults with CD4 cell counts <200 cells/microl under the Full WHO 

Guidelines scenario, is based on the CD4 cell count profile in people starting ART in the Aid for AIDS 

programme, compared to the CD4 cell count distribution in the general population [5]. The Aid for AIDS 

programme is a South African medical aid programme that started providing ART in the private sector in 

2001, well before the public-sector roll-out in 2004. Protocol was to start ART in all patients with CD4 cell 

counts of <350 cells/microl. During 2001-2002, only 67% of patients initiated ART with CD4 cell counts of 

<200 cells/microl, with the rest initiating with CD4 cell counts between 200 and 350 cells/microl. In the 

same time period, the proportion of the untreated HIV-positive population in the <200 cells/microl and 

200-350 cells/microl categories were 13% and 24% respectively.  

 

If r is the rate of ART initiation in the CD4 <200 cells/microl category and x is the relative rate of ART 

initiation in the CD4 200-350 cells/microl category then  

 

0.67 = 0.13r /(0.13r + 0.24*rx) 

 

from which it follows that 

 

x = (0.13/0.67 - 0.13)/0.24 

 

which solves to 27% which we rounded up to 30% for this analysis. 

 

It should be noted that neither the model nor the ASSA2003 model that produces the numbers of people 

initiating ART takes into account an impact of treatment coverage on the numbers of people requiring 

ART in the future, as under the eligibility scenarios evaluated here any impact of ART coverage on 

transmission and incidence would only reduce numbers of people requiring ART beyond the 6 year time 

horizon that the model calculates. 
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Table 7 gives the details of the numbers of patients assumed to be added between 2010/11 and 2016/17 

under the different scenarios, and assumptions regarding the distribution of initiating patients into health 

states. 

 

Table 7: Assumptions regarding target population and coverage 

Parameter Value Source 
Number of adults initiating ART 
(Old Guidelines) 

2010/11 399,548 1,685,389 
2011/12 401,892 1,642,145 
2012/13 395,343 1,595,009 
2013/14 384,941 1,525,087 
2014/15 374,339 1,461,836 
2015/16 364,228 1,408,444 
2016/17 355,174 1,360,833 

 

ASSA2003, adapted to 
reflect 80% coverage from 
2009/10 onwards [4] 

Number of adults initiating ART  
(New Guidelines) 

2010/11 478,502 
2011/12 468,852 
2012/13 454,751 
2013/14 434,367 
2014/15 416,497 
2015/16 401,392 
2016/17 387,898 

 

ASSA2003, together with a 
CD4 cell count staging 
model [5] and assumptions 
regarding TB incidence and 
CD4 cell count distribution in 
pregnant HIV+ women (see 
below) 

Number of adults initiating ART  
(Full WHO Guidelines) 

2010/11 584,141 
2011/12 558,948 
2012/13 520,776 
2013/14 480,671 
2014/15 445,254 
2015/16 416,514 
2016/17 390,472 

 

ASSA2003, together with 
CD4 cell count staging 
model [5] 

Proportion of adults with CD4 cell counts between 
200 and 50 cells/mm3 out of those initiating ART with 
CD4 cell counts <200  
(All scenarios) 

20010/11 to 2011/12: 0.8 
2012/13 to 2016/17: 0.9 

Authors’ assumption 

Proportion of adults initiating ART in the public sector 
(All scenarios) 

0.90 
 

[5] 

Number of children initiating ART 
(Old Guidelines) 

2010/11 46,512 
2011/12 44,123 
2012/13 41,026 
2013/14 37,206 
2014/15 33,071 
2015/16 29,679 
2016/17 27,163 

 

ASSA2003 

Number of children initiating ART under Early 
Paediatric Treatment 
(New Guidelines + Full WHO Guidelines) 

2010/11 73,132 
2011/12 69,164 
2012/13 66,228 
2013/14 64,297 
2014/15 60,254 
2015/16 56,902 
2016/17 54,377 

 

modelled based on numbers 
of births to HIV-positive 
mothers and proportion 
breastfeeding from 
ASSA2003 

Of above, proportion of children initiating ART by 
CD4% stratum  
(Old Guidelines) 

>35% 0.01 
21%-35% 0.04 
5%-20% 0.05 

Authors’ assumption 
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<5% 0.90 
 

Of above, proportion of children <12 months initiating 
Early Paediatric Treatment by CD4% stratum  
(New Guidelines + Full WHO Guidelines) 

>35% 0.25 
21%-35% 0.05 
5%-20% 0.30 
<5% 0.40 

 

Authors’ assumption 

Proportion of children initiating ART in the public 
sector  
(Old Guidelines) 

0.90 
 

[5] 

Proportion of children below 12 months initiating Early 
Paediatric Treatment in the public sector  
(New Guidelines + Full WHO Guidelines)11 

2010/11 0.55 
2011/12 0.60 
2012/13 0.65 
2013/14 0.70 
2014/15 0.75 
2015/16 0.80 
2016/17 0.85 

 

Authors’ assumption 

Incidence of TB in patients with CD4 cell counts 
between 200 and 350 cells/microl not on ART (per 
100 patient years) 
(New Guidelines) 

Western Cape: 10 [7] 

all other provinces: 5.7 N. Martinson, unpublished 
data 

Number of births to HIV-positive mothers 
(New Guidelines + Full WHO Guidelines) 

2010/11 256,984 
2011/12 259,260 
2012/13 261,135 
2013/14 262,506 
2014/15 263,348 
2015/16 263,679 
2016/17 263,533 

 

ASSA2003 

Ratio of pregnancies to births in HIV-positive women 
with CD4 cell counts between 200 and 350 
cells/microl 
(New Guidelines + Full WHO Guidelines) 

1:0.95 [8] 

Proportion of pregnant women with CD4 cell counts 
between 200 and 350 cells/microl out of all pregnant 
HIV-positive women 
(New Guidelines + Full WHO Guidelines) 

0.25 Unpublished data 

 

9.2.3.2 Early Paediatric Treatment  
The number of HIV-positive children requiring Early Paediatric Treatment in the New Guidelines and the 

Full WHO Guidelines scenarios was calculated based on the assumed uptake of HIV testing in 

pregnancy, PMTCT coverage and effectiveness, and the proportion of HIV-positive mothers assumed to 

be breastfeeding. For this, all PMTCT was assumed to be dual therapy comprised of single dose NVP 

intrapartum to mother and single dose NVP immediately postnatally to child plus AZT for twelve weeks 

antenatally and single dose intrapartum to the mother, plus AZT one week postnatally to both mother and 

child. 

 

                                                      
11 Children not covered by Early Paediatric Treatment are assumed to initiate ART only once AIDS-sick 
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9.2.3.3 Rates of death, loss to follow-up, and transition between CD4 cell count strata 
We calculated rates of mortality, LTFU, treatment failure and development of side effects necessitating 

regimens changes amongst adult patients using data of 9,502 adult patients accessing ART at Themba 

Lethu Clinic (TLC), Helen Joseph Hospital, Johannesburg between April 2004 and May 2009. During this 

time period, the clinic initiated 10,200 adult patients on ART, rendering it one of the largest adult ART 

clinics in South Africa, and providing patients meeting government eligibility criteria with standard public 

sector ART (stavudine (d4T), lamivudine (3TC) and either efavirenz (EFV) or nevirapine (NVP) as first line 

and didanosine (ddI), lopinavir/ritonavir (LPV/r) and zidovudine (AZT) as second line). CD4 cell counts 

and HIV viral loads were monitored at roughly 6-monthly intervals after ART initiation. Data on mortality, 

loss to follow-up, and treatment failure rates amongst paediatric patients (14 years and younger) was 

based on an analysis of data from a longitudinal cohort of paediatric patients accessing ART at Helen 

Shezi Paediatric Clinic at Chris Hani Baragwanath Hospital, Gauteng, between April 2004 and May 2009. 

During this time period, the clinic initiated around 4,000 paediatric patients on ART, making the clinic one 

of the largest paediatric ART clinics in the world. 

 

For the analysis of mortality, loss to follow-up (LTFU), and failure rates on first-line treatment, we included 

all adult patients on regimens not containing a protease inhibitor in the first-line sub-population, and all 

children on first-line regimens as specified in the 2004 South African guidelines. Any previously 

virologically suppressed patient with two consecutive unsuppressed viral loads (>400 copies/ml for adults, 

>1000 copies/ml for children) was transitioned to the treatment failure (TF) sub-population, and any 

patient in the TF sub-population who switched to a protease-inhibitor containing regimen was transitioned 

to the second-line sub-population. Within each sub-population, we stratified all events (death, LTFU, 

treatment failure) by the patient’s last CD4 measure within a 6-month interval, and for adult patients on 

first-line ART, also by the patient’s time on ART. For patients missing a single 6-month CD4 cell count, we 

linearly interpolated this value from the adjacent CD4 cell counts. For children, we additionally corrected 

for a non-linear relationship between time and CD4 percentage during the first six months on treatment 

[22].  

 

LTFU was defined as >6 months since last clinic visit and was net of patients returning back into care 

during the same time period in which they were lost. Mortality, LTFU, and transitions between health 

states were independent of whether d4T or TDF/ ABC were used. Deaths were considered only if the 

patient could be linked to an entry in the national death register. If patients were confirmed dead more 

than six months after their last visit to the clinic, they were classified as lost to follow up rather than dead, 

as their deaths would most likely have taken place after the patients had discontinued treatment. Data 

were collected by clinic staff for routine patient management purposes in electronic databases 

(TherapyEdge™ in Themba Lethu Clinic, Microsoft Access in Harriet Shezi Children’s Clinic) and 

abstracted, cleaned, and analysed using SAS version 9.1. 
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Some of our estimates of mortality, loss and treatment failure within the sub-strata of CD4 count and time 

were unstable. In order to prevent undue influence of any single estimate on the results and to account 

for the variability in the estimates, we smoothed the estimated probabilities within CD4 count and time 

stratum. To do this, we first fit a simple linear regression model with the estimated probabilities (stratified 

by CD4 count) as the dependent variable and time (fit as a quadratic line by also including time squared) 

as the independent variable. This gave us a predicted probability for each time point and CD4 count 

stratum. The actual estimated probability from the data was then shrunk towards the predicted value as a 

function of the variance of the estimate using an Empirical-Bayes shrinkage estimator [23]. This resulted 

in estimated probabilities with low variance being far from the predicted curve and those with high 

variance being very close to the fitted line. Figure 2 summarises the impact of this fitting procedure on 

rates of mortality, loss to follow-up and treatment failure in selected adult health states.  

 

Figure 2: Selected results of linear regression and Empirical-Bayes shrinkage for time-dependent 
rates of mortality (A), loss to follow up (LTF, B) and first-line treatment failure (C), all for adults with CD4 

cell counts > 350 cells/microl 

A       B 

 

C 

 

The resulting rates of mortality and LTFU and transitions between health states can be found in Table 8 

below (adults) and in Table 1 in the appendix (children). 
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Table 8: Probabilities of death, loss to follow-up, and treatment failure and transition probabilities 
between CD4 cell-count defined health states per 6-month cycle, by type of treatment, CD4 cell count 
stratum, and (for first-line ART) time on treatment (Adults) 
 

First-line ART (Adults) 

Months 
on first-
line ART 

6-month probability of Probability of transition to CD4 cell count 
stratum: 

Death 
Loss to 
follow-

up 

Treat-
ment 

failure 
<50 

cells/mm3 
 50-199 

cells/mm3 
200-350 

cells/mm3 
>350 

cells/mm3 

if CD4 cell count >350 cells/mm3 
1 - 6 1.6% 5.4% 0.5% 0% 2.9% 10.7% 86.4% 
7-12 1.6% 4.2% 0.8% 0% 1.9% 17.7% 80.4% 

13-18 1.6% 3.2% 0.9% 0.2% 0.9% 10.4% 88.5% 
19-24 1.6% 2.0% 0.9% 0.07% 0.5% 9.6% 89.8% 
25-30 0% 1.6% 1.0% 0.07% 1.3% 9.5% 89.2% 
31-36 0% 1.2% 0.8% 0% 0.7% 8.0% 91.3% 
37-42 0.1% 0.6% 0.6% 0.2% 0.5% 9.2% 90.1% 
43-48 0.1% 0.6% 0.5% 0.3% 0.5% 7.5% 91.8% 
>48 0% 0.4% 0.3% 0.1% 0.9% 5.4% 93.6% 

if CD4 cell count 200-350 cells/mm3 
1 - 6 1.4% 5.1% 0.1% 0.7% 8.4% 57.0% 33.8% 
7-12 1.0% 3.6% 0.9% 0.3% 7.8% 62.3% 29.7% 

13-18 0.4% 2.9% 1.4% 0.2% 5.4% 57.2% 37.3% 
19-24 0.5% 2.3% 1.6% 0.07% 5.2% 63.2% 31.5% 
25-30 0.3% 1.9% 1.5% 0.09% 5.8% 63.8% 30.3% 
31-36 0.3% 1.6% 1.6% 0% 4.5% 63.9% 31.6% 
37-42 0% 1.4% 1.6% 0% 5.1% 61.3% 33.6% 
43-48 0.2% 1.3% 1.0% 0% 5.9% 56.3% 37.9% 
>48 0.2% 1.1% 0.7% 0% 5.4% 56.9% 37.6% 

if CD4 cell count 50-199 cells/mm3 
1 - 6 2.6% 6.5% 0.3% 1.0% 39.9% 45.3% 13.8% 
7-12 1.7% 4.7% 1.3% 0.9% 56.0% 39.0% 4.2% 

13-18 1.2% 4.0% 1.7% 1.7% 52.7% 41.8% 3.8% 
19-24 1.1% 3.3% 2.1% 0.9% 52.9% 42.9% 3.4% 
25-30 0.7% 3.1% 2.8% 1.2% 55.2% 41.3% 2.3% 
31-36 0.5% 2.5% 3.2% 0.5% 54.8% 38.6% 6.1% 
37-42 0.4% 2.8% 3.4% 0% 54.3% 38.8% 6.9% 
43-48 0% 3.0% 4.2% 0% 50.9% 43.6% 5.5% 
>48 0% 3.2% 4.9% 0% 54.3% 31.4% 14.3% 

if CD4 cell count <50 cells/mm3 
1 - 6 8.0% 9.7% 0.6% 11.6% 71.2% 15.0% 2.2% 
7-12 5.9% 7.5% 1.2% 23.6% 65.2% 9.4% 1.7% 

13-18 5.8% 6.0% 2.4% 31.4% 45.1% 19.6% 3.9% 
19-24 5.3% 4.8% 0.0% 29.4% 50.0% 11.8% 8.8% 
25-30 0% 4.1% 7.8% 25.0% 58.3% 8.3% 8.3% 
31-36 0% 0% 0.0% 25.0% 50.0% 25.0% 0% 
37-42 3.8% 6.6% 0.0% 0% 33.3% 33.3% 33.3% 
43-48 0% 9.0% 0.0% 0% 33.3% 33.3% 33.3% 
>48 0% 0% 0.0% 0% 33.3% 33.3% 33.3% 

First-line treatment failure (Adults) 

Probability of Probability of transition to CD4 cell count 
stratum: 

Death Loss to 
follow-up 

Switching to 
second line 

<50 
cells/mm3 

50-199 
cells/mm3 

200-350 
cells/mm3 

>350 
cells/mm3 

if CD4 cell count >350 cells/mm3 
0% 2.9% 81.7% 0% 2.6% 17.4% 80.0% 

 if CD4 cell count 200-350 cells/mm3 
0.8% 5.5% 77.3% 0% 16.2% 61.9% 21.9% 
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if CD4 cell count 50-199 cells/mm3  
1.3% 5.0% 76.8% 7.7% 66.3% 24.0% 1.9% 

if CD4 cell count <50 cells/mm3 
2.8% 7.0% 75.7% 32.3% 58.1% 9.7% 0% 

Second-line ART (Adults) 

Probability of Probability of transition to CD4 cell count 
stratum: 

Death Loss to follow-
up 

<50 
cells/mm3 

50-199 
cells/mm3 

200-350 
cells/mm3 

>350 
cells/mm3 

if CD4 cell count >350 cells/mm3 
0.4% 0.3% 0.6% 0.0% 13.6% 85.8% 

 if CD4 cell count 200-350 cells/mm3 
0.7% 0.5% 1.0% 10.6% 59.6% 28.8% 

if CD4 cell count 50-199 cells/mm3  
1.2% 0.5% 4.0% 61.8% 30.2% 4.0% 

if CD4 cell count <50 cells/mm3 
5.1% 1.3% 34.6% 50.0% 11.5% 3.8% 

      
 

9.2.3.4 Changes between drug regimens 
We also calculated rates of toxicity development requiring single-drug substitution of d4T with TDF and of 

TDF with AZT used in the New Guidelines scenario (Table 9). Estimates of mortality, LTFU, and 

treatment failure rates amongst paediatric patients (≤13) were based on data from a cohort of 3,748 

paediatric patients accessing ART at Harriet Shezi Children’s Clinic (HSSC), Chris Hani Baragwanath 

Hospital, Johannesburg, between April 2004 and May 2009. Children ≤3 receive d4T, 3TC and LPV/r as 

first line and AZT, ddI and either NVP or EFV as second line; children >3 receive the same regimens as 

adults.  

 

Table 9: Assumptions regarding drug toxicity 

Parameter Value Source 
Incidence of severe d4T toxicity in adults (per number 
of months on treatment) 
(New Guidelines + Full WHO Guidelines) 

0 - 5 0.0399 
6-11 0.1067 
12-17 0.1333 
18-23 0.0621 
24-29 0.0289 
30-35 0.0135 
36-41 0.0063 
42-47 0.0029 
> 47 0.0014 

 

TLC data, based on [9] 

Incidence of severe renal failure under TDF (per 
number of months on treatment) 
(New Guidelines + Full WHO Guidelines) 

0 - 6 0.0171 
> 6 0.0158 

 

TLC data 

 

 

9.2.3.5 Cost data 
9.2.3.5.1 Outpatient cost 
Outpatient resource utilisation and unit costs data were collected at the ART clinic at Charlotte Maxeke 

Hospital (CMH) in Johannesburg, Gauteng, and at Tshepong Wellness Clinic (TWC) at the Tshepong/ 
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Klerksdorp Hospital Complex in Jouberton, North West province, between 2006 and 2008 for adult 

ART (see Chapter 5), and at Empilweni Services and Research Unit (ESRU) at Rahima Moosa Mother 

and Child Hospital and Harriet Shezi Children’s Clinic (HSCC), both in Johannesburg, Gauteng, between 

2005 and 2009 for paediatric ART (see Chapter 7), and were analysed from the provider perspective. Unit 

costs were updated to 2011 prices.  

 

We added a number of cost estimates to those presented in Chapters 5 and 7. Data on additional 

resources involved in treating adult patients with first-line treatment failure and on second-line treatment 

was obtained from Themba Lethu Clinic (TLC) [10,11]. In order to represent the difference in 

recommended drug regimens between paediatric age groups, the drug cost component of paediatric ART 

was additionally based on the mean weight of children in care at HSSC as a guide to average drug 

dosages by age group (<12 months, 1-5 years, 6-13 years), and for children above the age of 3 cost was 

further differentiated by age at ART intiation (≤3 years, >3 years). Since South Africa secures a buffer 

stock of 2 months of treatment for every patient initiating treatment, drug costs were increased by 17% in 

the first six months of treatment. The cost of pre-ART outpatient care was analysed using an ingredients 

approach based on the national treatment guidelines and includes the cost incurred by patients who were 

prepared for but never initiated ART, based on data from two large South African clinics [12]. We also 

added the cost of voluntary counselling and testing for every patient initiating ART [13], including the cost 

of an HIV PCR test for every child initiated on ART. The annual per patient cost under the three scenarios 

is summarised in Table 10. 

 

9.2.3.5.2 Inpatient cost 
Inpatient cost was based on an analysis of hospitalisation frequency and duration of patients off and on 

ART in two hospitals in South Africa (see Chapter 6). We used the results of the sub-analysis after 

removing events deemed unrelated to HIV, by CD4 cell count stratum and ART status from Table 2B in 

chapter 6 (see also Table 10). 

 

9.2.3.5.3 Adjustment of cost data by scenario 
Average cost per patient was set to differ between types of treatment (first-line treatment, first-line 

treatment failure, second-line treatment), drug regimens (d4T- vs. TDF/ABC-containing regimens), and 

age groups (defined as adults vs. children, and for children depending on current age and age at 

treatment initiation- see Table 10), but was assumed not to vary by CD4 cell count. For the alternative 

drug cost scenario, we used Clinton Foundation ceiling prices from August 2009 for ARV costs [14]. For 

the task-shifting scenario, we replaced all physicians by senior-level nurses and all pharmacists by 

pharmacy assistants, while allowing for supervision time by the replaced cadre. In the New Guidelines 

scenario, the number of CD4 cell counts and viral loads per patient are reduced to only one per year. 
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Inpatient cost inputs by CD4 cell count remained the same across scenarios as these were not affected 

by the guideline changes under discussion.  

 
Table 10: Cost inputs in 2011 USD 
Parameter Value 
1. Outpatient cost by scenario  
A. Old Guidelines  
Annual per patient cost (Adults) 

Cost of first-line therapy during first six months 
Cost of first-line therapy after first six months 
Cost of failed first-line therapy 
Cost of second-line therapy 

 

 
447.97 
863.58 
755.30 

1,578.30 
 

Annual per patient cost (Children) 
 

Cost of first-line therapy during first six months 
Cost of first-line therapy after first six months 
Cost of failed first-line therapy 
Cost of second-line therapy 

 

  Initiated at ≤3 yrs Initiated at >3 yrs 
<12 mts 12-35 mts 3-5 years 6-13 years 3-5 years 6-13 years 
426.19 505.57 576.29 583.35 479.57 511.90 
645.18 781.25 902.48 914.58 736.68 792.12 
547.70 685.44 808.16 820.41 668.37 696.44 
815.05 994.19 798.72 903.40 1,136.92 1,189.75 

 

B. New Guidelines + Full WHO Guidelines  
Annual per patient cost (Adults)  

Cost of first-line therapy during first six months 
Cost of first-line therapy after first six months 
Cost of failed first-line therapy 
Cost of second-line therapy 

 

TDF-containing regimens AZT-containing regimens 
552.18 466.49 
984.45 848.22 
894.53 624.20 

1,139.39 1,281.57 
 

Annual per patient cost (Children) 
 

Cost of first-line therapy during first six months 
Cost of first-line therapy after first six months 
Cost of failed first-line therapy 
Cost of second-line therapy 

 

  Initiated at ≤3 yrs Initiated at >3 yrs 
<12 mts 12-35 mts 3-5 years 6-13 years 3-5 years 6-13 years 
797.02 937.74 1,023.93 1,104.03 609.80 715.17 
736.75 977.97 1,125.72 1,263.02 959.93 1,140.55 
640.39 939.72 1,034.14 1,173.12 919.44 1,049.15 
815.05 994.19 798.72 903.40 1,136.92 1,189.75 

 

2. Inpatient cost (All scenarios)  
Annual per patient cost (Adults and 
children)  

>350 cells/microl Cost of first-line therapy during first six months 
200-350 cells/microl Cost of first-line therapy after first six months 
50-199 cells/microl Cost of failed first-line therapy 
<50 cells/microl Cost of second-line therapy 

 

   

Pre-ART ART 
39 45 
58 111 

113 218 
138 406 

 

 

We calculated total cost by multiplying the numbers of patients in each sub-population in each 6-month 

model cycle by the appropriate average 6-month unit cost, as Total cost = Number of patients in care * 

Per patient cost. Deaths and losses were assumed to occur on average in the middle of the cycle and 

thus only incur 50% of the half-year unit cost in the cycle in which they occured. All costs are 

undiscounted and presented in 2009 USD (1 ZAR = 0.1304 USD). 

9.3 Results 

9.3.1 Number of patients initiating ART and remaining in care 

The total numbers of patients initiating ART between financial years 2010/11 and 2016/17 in the Old 

Guidelines, New Guidelines, and Full WHO Guidelines scenarios were 2.9 million, 3.3 million, and 3.6 

million, respectively. In all three scenarios, the majority of patients were adults (89% with Early Paediatric 
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Treatment). In each scenario the number of patients alive and in care more than doubled over the seven 

years (Table 11). Table 2 in the Appendix gives the distribution of patients into antiretroviral drug 

regimens under each scenario. 

 
Table 11: Total number of patients on ART [thousands], 2010/11-2016/17 

Scenario 
Total number of patients 
initiated on ART  
(% change on Old 
Guidelines) 

Total patients on ART  
(% change on Old Guidelines) 

2010 2016 % change over time 
Old Guidelines 2,928 1,333 3,061 130 
New Guidelines 3,334 (14) 1,409 (6) 3,491 (14) 148 
Full WHO Guidelines 3,596 (23) 1,655 (24) 3,855 (26) 133 
 

Figure 3 gives the distribution of adult patients into antiretroviral drug regimens under each scenario. 

While under the Old Guidelines, only four regimens are considered (including 3 first-line and only one 

second-line regimen), and the absolute majority of patients remains on d4T throughout the projection 

period, under both the New Guidelines and the Full WHO Guidelines d4T is being replaced by TDF as the 

most prescribed drug from the first year on due to a larger number of new initiates being eligible under 

these scenarios and inittaed on TDF, and the single second-line regimen available under the Old 

Guidelines is complemented by two additional regimens, depending on the first-line regimen that is being 

replaced. (Note that the model somewhat underestimates AZT usage in first-line regimens, as only 

patients with severe renal failure under TDF are assumed to switch to AZT. In reality, some patients 

within the South African treatment programme are initiated on AZT.) 

 

Figure 3: Distribution of adult patients into antiretroviral regimens 
A. Under the Old Guidelines 

 
 
 
 



 

149 
 

B. Under the New Guidelines 

 

C. Under the Full WHO Guidelines 

 

 

9.3.2 Total and average annual outpatient cost  

The annual outpatient cost of the programme in 2010/11 was estimated to be USD 1.1 billion under the 

Old Guidelines, USD 1.3 billion under the New Guidelines, and USD 1.5 billion under the Full WHO 

Guidelines (Table 12). This cost was predicted to increase by 149%, 180%, and 164% by 2016/17 under 

each scenario, respectively. The percentage growth in cost was larger than the growth in number of 

patients for two reasons: increasing numbers of patients move to second-line ART over time; and, in the 

New Guidelines and Full WHO Guidelines scenarios, increasing numbers of patients were initiated on 

more expensive first-line regimens containing tenofovir and abacavir. As a result, average annual cost per 

patient in care increased from USD 856 to USD 929 under the Old Guidelines, from USD 885 to USD 999 

under the New Guidelines, and from USD 882 to USD 1,000 under the Full WHO Guidelines.  
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Table 12: Total outpatient cost by scenario, 2010/11-2016/17 [million 2009 USD] 

Scenario 

Full unit cost 
(Staffing and drug cost as current) 
(% change on Old Guidelines) 

Reduced unit cost 
(with task-shifting and fixed-dose combinations) 
(% change on Old Guidelines) 

2010/11 2016/17 % change 
over time Total 2010/11 2016/17 % change 

over time Total % change 
on Full cost 

Old Guidelines 1,141 2,844 149 14,095 631 1,563 148 7,744 -45 
New Guidelines 1,247 (9) 3,486 (23) 180 16,751 (19) 695 (10) 2,017 (29) 190 9,553 (23) -43 
Full WHO Guidelines 1,459 (28) 3,954 (36) 164 19,048 (35) 809 (28) 2,220 (42) 174 10,804 (40) -43 
 

The total cost of the national public-sector ART programme over seven years was USD 14.1 billion under 

the Old Guidelines, USD 16.8 billion under the New Guidelines, and USD 19.1 billion under the Full WHO 

Guidelines (Table 12). This amounted to a 19% increase in total cost over the Old Guidelines for the New 

Guidelines, and 35% for the Full WHO Guidelines. This means that the percentage increase in the cost of 

the programme as a result of increasing numbers in need of ART – an annual cost increase of 164% to 

180% depending on the scenario – was significantly larger than the percentage increase caused by 

expanded eligibility or improved first-line drug choices, which was just 23% to 36% per year. 

 

9.3.3 Cost savings from use of fixed-dose combinations and task-shifting 

If antiretroviral drugs were accessed at current Clinton Foundation ceiling prices, and as fixed-dose 

combinations wherever possible, the total projected outpatient cost of the programme would decrease 

from the estimates presented above by 23%, 22%, and 22% under the Old Guidelines, New Guidelines, 

and Full WHO Guidelines scenarios, respectively. Task-shifting alone would reduce cost by a similar 

amount. If both the low-cost FDCs and task-shifting were combined, total cost would decrease by 45%, 

43%, and 43%. In this case, the total cost of the ART programme under the New Guidelines would be 

32% less than under the Old Guidelines without FDCs and task-shifting, while reaching 14% more 

patients. Implementing the Full WHO Guidelines would still be 23% less costly than continuing the Old 

Guidelines, while reaching 23% more patients (Table 12). 

 

9.3.4 Inpatient cost 

Inpatient cost is much smaller than outpatient cost, with total inpatient cost being between 5% and 6% of 

total outpatient cost in each scenario (Table 13). Because of this, even though inpatient cost increases 

somewhat under the New and Full WHO Guidelines (by 5 and 11%, respectively) as a result of the more 

frequent hospitalisations and longer length of stay experienced by patients on ART seen in Chapter 6, 

this is not enough to offset the large savings from the introduction of fixed-dose combinations and task-

shifting into outpatient care. 
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Table 13: Total inpatient cost by scenario, 2010/11-2016/17 [million 2009 USD] 

Scenario 

Full cost 
(% change on Old Guidelines) 

 

2010/11 2016/17 % change 
over time Total 

% of total 
outpatient 
cost 

Old Guidelines 82 136 66 778 6 
New Guidelines 84 (2) 142 (4) 69 814 (5) 5 
Full WHO Guidelines 93 (7) 146 (7) 57 860 (11) 5 
 

9.3.5 Budget impact 

The total government allocation for health in the 2010/11 South African Mid-Term Expenditure Framework 

was close to USD 13.9 billion, USD 15.0 billion, and USD 16.0 billion for the financial years 2010/11, 

2011/12, and 2012/13, respectively [14]. Assuming these allocations would not increase, the total 

outpatient cost of the ART programme projected for these years would have required 8%, 9%, and 10% 

of the planned health budget under the Old Guidelines, 8%, 10%, and 12% under the New Guidelines, 

and 10%, 13%, and 15% under the Full WHO Guidelines. If the expected cost savings from Clinton 

Foundation ceiling prices and task-shifting had been achieved, the total cost of the programme would 

have equalled 5%, 6%, and 7% of the planned health budget under the Old Guidelines, 5%, 7%, and 8% 

under the New Guidelines, and 7%, 8%, and 10% under the Full WHO Guidelines. 

9.4 Discussion 

This study assessed the cost implications of adopting the 2009 WHO ART guidelines in the largest ART 

programme in the world. Our estimates suggested that for South Africa, adoption of the 2010 WHO 

guidelines would have increased per patient cost and far extended treatment eligibility, resulting in an 

increase of total programme cost by 36% over seven years.  

 

We also describe the cost implications of the proposed new South African ART guidelines. The 

government increased the immunological ART eligibility threshold to a CD4 cell count of below 350 

cells/microl for a subset of the population in need (i.e., patients who either have active TB or are 

pregnant). These two groups - pregnant women and TB patients - were singled out because they would 

likely benefit most in terms of preventing mortality and vertical transmission of HIV. Even with this limited 

change in eligibility, total cost was set to increase by 23% over the cost of keeping the old threshold of 

200 CD4 cells/microl for all patients.  

 

Under both scenarios the increase in cost was dwarfed by the increase in total cost resulting from the 

growth in the population in need of ART, regardless of eligibility criteria. HIV incidence and prevalence, in 

other words, will continue to be stronger drivers of treatment costs than eligibility thresholds or drug 
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choices. Our model indicated, however, that the projected increases in treatment cost under both 

scenarios could have been entirely offset by the introduction of cost-saving measures. If drugs were 

accessed at Clinton Foundation ceiling prices and task-shifting introduced, the incorporation of better first-

line drugs and the increase in eligibility for both adults and children would become cost-neutral, 

regardless of whether the 350 cells/microl threshold is applied to all patients or only a subset.  

 

Our analysis incorporates a number of innovations, the most important being the addition of time on 

treatment to the analysis of transition probabilities between health states for the majority of the model 

population, adults on first-line treatment. Our analysis of survival in care and CD4 cell count development 

for adults showed that transitions between CD4 cell count strata, mortality, and loss to follow up under 

first-line ART depend on time on ART as well as on the patient’s current CD4 cell count. As a result we 

parametrised the model with transition matrices for adults on first-line ART stratified by time on ART as 

well as CD4 cell count category. This is the first health-state transition model of ART used for economic 

evaluations known to us that was parametrised in such detail, adding to the precision in estimating the 

numbers of people on ART and, hence, the total cost of the national ART programme. 

 

There are a number of limitations to the study. Our model was set up to make maximum use of patient-

level laboratory and outcome data, allowing us to extrapolate mortality, LTFU, and treatment failure at a 

high level of detail, while cost was differentiated by type of treatment and age group only and assumed to 

be uniform across CD4 cell counts and time on treatment. A limited number of studies suggest that per 

patient costs tend to be lower when ART is initiated at higher CD4 cell counts [15,16], which means that 

our results especially for the New Guidelines and Full WHO Guidelines scenarios might have been an 

overestimation. On the other hand, the assumption that under the Full WHO Guidelines scenario the rate 

of ART initiation amongst patients with CD4 cell counts between 200 and 350 cells/microl is only 30% of 

that of patients with CD4 cell counts below 200 cells/microl might have been too conservative, leading to 

an underestimation of the cost of this scenario. We also assumed that mortality, LTFU, and failure rates 

remain constant under any of the three scenarios and cost-saving measures. If the substitution of 

tenofovir for stavudine reduced loss to follow-up by reducing side effects, numbers of active patients and 

thus costs might have been higher under the New Guidelines and Full WHO Guidelines scenarios. 

Similarly, task-shifting of care from doctors to nurses could have resulted in better or worse patient 

outcomes, with corresponding consequences for total costs. Lastly, we did not include the potential 

impact of high-level population coverage with ART on HIV transmission which could ultimately reduce 

total treatment cost by reducing the number of patients becoming newly eligible [17,18], though the effect 

during our 7-year projection period would likely have been negligible. 

 

Based in part on the results of our study, the National Department of Health in 2009 decided to change 

the national ART guidelines for both adults and children and considerably increase the funding available 
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to the programme. New guidelines announced in April 2010 increased the eligibility threshold to 350 CD4 

cells/microl for patients with active TB and pregnant women, switched d4T to TDF for adults and to ABC 

for children for new patients, and introduced early paediatric treatment for all children less than 12 months 

with a positive PCR. In order to reach the target of 80% coverage of those in need of ART as quickly as 

possible, the ART budget within the 2010/11-2012/13 Medium-Term Expenditure Framework was 

increased by 90%, task-shifting was approved by government, and the number of accredited ART clinics 

was doubled. At the end of April 2010 the government embarked on a national HIV Counselling and 

Testing (HCT) campaign that aimed at testing 15 million South Africans, about a third of the country’s 

population, by June 2011. The generation of the cost projections described here by the task team 

established by the Department helped convince the government that the country can afford to make these 

changes and thereby improve both the quality and reach of its HIV/AIDS programme.  
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Appendix to chapter 9 

NB, this appendix uses the same references as the main text of Chapter 9. 

 

Table 1: Probabilities of death, loss to follow-up, and treatment failure and transition probabilities 
between CD4 percentage-defined health states per 6-month cycle, by type of treatment and CD4 

percentage stratum (Children)  

First-line ART (Children < 12 months) 
Probability of Probability of transition to CD4 % stratum: 

Death Loss to 
follow-up 

Treatment 
failure <5 5-20 21-35 >35 

if CD4 % >35 
7.1% 0% 0% 0% 0% 55.6% 44.4% 

if CD4 % 21-35 
2.3% 0.8% 0% 0.6% 14.3% 80.0% 5.7% 

if CD4 % 5-20 
5.2% 0% 0% 0% 43.8% 49.3% 6.9% 

if CD4 % <5 
15.6% 0% 0% 0% 70.0% 30.0% 0% 

 
      

First-line ART (Children 1 – 5 years) 
Probability of Probability of transition to CD4 % stratum: 

Death Loss to 
follow-up 

Treatment 
failure <5 5-20 21-35 >35 

if CD4 % >35 
2.0% 0.2% 0.9% 0.3% 0.6% 32.2% 66.9% 

if CD4 % 21-35 
0.5% 0.2% 1.0% 0.1% 5.6% 78.8% 15.4% 

if CD4 % 5-20 
0.2% 0.3% 0.5% 0.7% 48.3% 48.1% 2.9% 

if CD4 % <5 
0% 1.3% 0.5% 15.2% 78.1% 6.7% 0% 

First-line treatment failure (Children 1 – 5 years) 
Probability of Probability of transition to CD4 % stratum: 

Death Loss to 
follow-up 

Switching to 
second line <5 5-20 21-35 >35 

if CD4 % >35 
0.005% 0.005% 80% 0% 0% 40.0% 60.0% 

if CD4 % 16-35 
0.005% 0.005% 80% 1.6% 10.9% 79.7% 7.8% 

if CD4 % 5-15 
0.005% 0.005% 80% 0% 70.8% 29.2% 0.0% 

if CD4 % <5 
0.005% 0.005% 80% 100.0% 0% 0% 0% 
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First-line ART (Children 6 – 13 years) 
Probability of Probability of transition to CD4 % stratum: 

Death Loss to 
follow-up 

Treatment 
failure <5 5-20 21-35 >35 

if CD4 % >35 
0.2% 0.6% 0.8% 0% 0% 26.4% 73.6% 

if CD4 % 16-35 
0.1% 0% 0.5% 0% 1.7% 90.5% 7.8% 

if CD4 % 5-15 
0.1% 0.5% 0.9% 1.0% 33.8% 64.7% 0.6% 

if CD4 % <5 
1.5% 0.8% 1.0% 22.5% 62.8% 14.2% 0.5% 

First-line treatment failure (Children 6 – 13 years) 
Probability of Probability of transition to CD4 % stratum: 

Death Loss to 
follow-up 

Switching to 
second line <5 5-20 21-35 >35 

if CD4 % >35 
0% 0.005% 80% 0% 0% 26.7% 73.3% 

if CD4 % 16-35 
0% 0.005% 80% 0% 3.6% 92.3% 4.1% 

if CD4 % 5-15 
0% 0.005% 80% 9.0% 61.2% 29.9% 0.0% 

if CD4 % <5 
0% 0.005% 80% 16.7% 83.3% 0% 0% 

Second-line ART (Children 6 – 13 years) 
Probability of Probability of transition to CD4 % stratum: 

Death Loss to follow-up <5 5-20 21-35 >35 
if CD4 % >35 

0% 0.7% 0% 0% 100.0% 0% 
if CD4 % 16-35 

0% 0.7% 0% 6.4% 87.2% 6.4% 
if CD4 % 5-15 

0% 0.7% 0% 66.7% 33.3% 0% 
if CD4 % <5 

0% 0.7% 100.0% 0% 0% 0% 
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Model equations 
All transition probabilities and rates of mortality, loss to follow-up, treatment failure and coverage with 

second-line ART were combined to calculate the number of patients in each health state using the set of 

difference equations given below. 

 

Equation 1 (Patients on first-line ART): 

 IART1(c+1)(s,a,t+1) = IART1(c)(s,a,t) + In(c)(s,a) * cr1(s,a,t)  

  - IART(c)(s,a,t) * (m1(s,a,t) + l1(s,a,t) + tf(s,a,t) *(1-(tph,h-x(s,a,t) - tph,h+x(s,a,t)) * (1- ar(aj)) 

  + IART1(c)(sh-x,a,t) * (m1(sh-x,a,t) + l1(sh-x,a,t) + tf(sh-x,a,t)) * tph-x,h(sh-x,a,t)  

  + IART1(c)(sh+x,a,t) * (m1(sh+x,a,t) + l1(sh+x,a,t) + tf(sh+x,a,t)) * tph+x,h(sh+x,a,t)  

  + IART1(c)(sh-x,aj-1,t) * (m1(sh-x,aj-1,t) + l1(sh-x,aj-1,t) + tf(sh-x,aj-1,t)) * tph-x,h(sh-x,aj-1,t) * ar(aj-

1)  

  + IART1(c)(sh+x,aj-1,t) * (m1(sh+x,aj-1,t) + l1(sh+x,aj-1,t) + tf(sh+x,aj-1,t)) * tph+x,h(sh+x,aj-1,t) * 

ar(aj) 

 

with  I ART1(c+1) = Infected sub-population on first-line ART in cycle c+1  
 In = Infected in need 
 cr1 = rate of coverage with first-line ART 
 s = CD4 cell count/ percentage stratum h1,..,4 

 a = age group j1,…,4  

 t = time on treatment (half years) 
 cr = coverage rate 
 tf = rate of treatment failure development  
  m = mortality rate 
 l = rate of loss to follow up 
 ar = aging rate 
 tp = transition probability 
 x = 1,…,3 (i.e., up to three health states higher or lower) 
 

Equation 2 (Patients in first-line treatment failure): 

ITF(c+1)(s,a,t+1) = ITF(c)(s,a,t) + IART(c)(s,a,t) * tf(s,a,t)  

  - ITF(c)(s,a,t) * (m2(s,a,t) + l2(s,a,t) + cr2(s,a,t) *(1-(tph,h-x(s,a,t) - tph,h+x(s,a,t)) * (1- ar(aj)) 

  + ITF(c)(sh-x,a,t) * (m2(sh-x,a,t) + l2(sh-x,a,t) + cr2(sh-x,a,t)) * tph-x,h(sh-x,a,t) 

  + ITF(c)(sh+x,a,t) * (m2(sh+x,a,t) + l2(sh+x,a,t) + cr2(sh+x,a,t)) * tph+x,h(sh+x,a,t) 

  + ITF(c)(sh-x,aj-1,t) * (m2(sh-x,aj-1,t) + l2(sh-x,aj-1,t) + cr2(sh-x,aj-1,t)) * tph-x,h(sh-x,aj-1,t) * ar(aj-1)  

  + ITF(c)(sh+x,aj-1,t) * (m2(sh+x,aj-1,t) + l2(sh+x,aj-1,t) + cr2(sh+x,aj-1,t)) * tph+x,h(sh+x,aj-1,t) * 

ar(aj) 

 
with  ITF(c+1) = Infected sub-population on first-line treatment failure in cycle c+1 
 cr2 = rate of coverage with second-line ART 
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Equation 3 (Patients on second-line treatment): 

IART2(c+1)(s,a,t+1) = IART2(c)(s,a,t) + IART2(c)(s,a,t) * cr2(s,a,t) 

  - IART2(c)(s,a,t) * (m2(s,a,t) + l2(s,a,t) *(1-(tph,h-x(s,a,t) - tph,h+x(s,a,t)) * (1- ar(aj)) 

  + IART2(c)(sh-x,a,t) * (m2(sh-x,a,t) + l2(sh-x,a,t)) * tph-x,h(sh-x,a,t) 

  + IART2(c)(sh+x,a,t) * (m2(sh+x,a,t) + l2(sh+x,a,t)) * tph+x,h(sh+x,a,t) 

  + IART2(c)(sh-x,aj-1,t) * (m2(sh-x,aj-1,t) + l2(sh-x,aj-1,t)) * tph-x,h(sh-x,aj-1,t) * ar(aj-1) 

  + IART2(c)(sh+x,aj-1,t) * (m2(sh+x,aj-1,t) + l2(sh+x,aj-1,t)) * tph+x,h(sh+x,aj-1,t) * ar(aj) 

 

with  IART2(c+1) = Infected sub-population on 2nd line ART in cycle c+1   
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10 Cost benefit of workplace provision of ART 
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analysis 
 

1. For a ‘research paper’ already published 

1.1. Where was the work published?    PLoS Medicine 

1.2. When was the work published?     2015 

1.3. Was the work subject to academic peer review?  Yes 

1.4. Have you retained the copyright for the work?   Yes 

If yes, attach evidence of retention    See first page of publication stating 
the candidate being the copyright holder on next page 
If no, or if the work is being included in its published format, attach evidence of permission from copyright 

holder (publisher or other author) to include work 

 

2. For a ‘research paper’ prepared for publication but not yet published 

2.1. Where is the work intended to be published?    

2.2. List the paper’s authors in the intended authorship order 

Stage of publication – Not yet submitted/Submitted/Undergoing revision from peer reviewers’ 

comments/In press       

 

3. For multi-authored work, give full details of your role in the research included in the paper and in the 

preparation of the paper. (Attach a further sheet if necessary) 

 

The candidate built the model, analysed all data except the healthcare cost and absenteeism data, 
contributed to the stochastic fitting procedure and the probabilistic sensitivity analysis, and wrote 
the paper. 
 

Candidate’s signature  

Dr Gesine Meyer-Rath 

 

Supervisor or senior author’s signature to confirm role as stated in (3)  

 
Dr Alec Miners 

Supervisor  



 

160 
 

  



 

161 
 

Preamble for paper 4 

The South African government is now for the first time calling for increased private sector involvement in 

the implementation and funding of HIV programs, after years of dramatically increasing domestic funding 

for the HIV/AIDS Conditional Grant in general, and in the ART budget in particular, between 2009/10 and 

2014/15, based in part on the results of the National ART Cost Model, and in view of impending 

reductions in international donor contributions [1]. The rationale is that increasing HIV testing and 

treatment uptake at the workforce level could have benefits for both companies (if losses to productivity 

and workforce turnover are reduced, and less transmission to spouses and children occurs, in particular 

in companies paying for healthcare provision for both employers and their families) as well as society as a 

whole (by reducing morbidity and mortality due to HIV, and limiting the burden of ART provision on the 

public sector).  

 

We conducted a cost-benefit analysis of the oldest and largest private-sector ART programme in the 

country, run by a coal mining company in a number of colleries in Mpumalanga since 2002. This is the 

first such analysis based on primary data that includes both the cost of the ART programme as well as its 

impact on worker absenteeism, turnover cost, and benefit payments. Due to detailed cost and impact 

data available from within the programme for both employees on and off ART, we were able to capture 

the full cost benefit of the ART programme compared to no ART - something that is hard to do in the 

public sector where records on HIV care before the advent of ART are sparse and incomplete due to the 

emergency nature of this care, in contrast to the more complete records involved in chronic care such as 

ART. We were also able to draw on unusually complete reporting of both inpatient and outpatient 

resource use since most care to employees is rendered at clinics and hospitals that are part of the mining 

compounds where miners work and live. 

 

This analysis draws on an analysis of the cost of inpatient and outpatient HIV care and treatment by 

Debbie Muirhead and Andrew van Zyl as well as an analysis of employee absenteeism by Debbie 

Muirhead. A subset of the transition probabilities used in the Workplace Impact Model is based on data 

analysed by Dr Sue Ingle. The model was audited by Prof Peter Vickerman and Emma Beruter; the 

stochastic fitting procedure, probabilistic sensitivity analysis, and analysis of variance were added by Prof 

Peter Vickerman in collaboration with the candidate. All co-authors commented on and edited versions of 

the manuscript. All other work, including deciding on the analytical framework, developing and coding the 

model, analysing all other model inputs from the workforce data, and writing the first and consecutive 

drafts of the paper, was the candidate’s. 
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ABSTRACT  

Background: HIV impacts heavily on the operating costs of companies in sub-Saharan Africa, with many 

companies now providing antiretroviral therapy (ART) programmes in the workplace. A full cost–benefit 

analysis of workplace ART provision has not been conducted using primary data. We developed a 

dynamic health-state transition model to estimate the economic impact of HIV and the cost–benefit of 

ART provision in a mining company in South Africa between 2003 and 2022. 
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Methods and Findings: A dynamic health-state transition model, called the Workplace Impact Model 

(WIM), was parameterised with workplace data on workforce size, composition, turnover, HIV incidence, 

and CD4 cell count development. Bottom-up cost analyses from the employer perspective supplied data 

on inpatient and outpatient resource utilisation and the costs of absenteeism and replacement of sick 

workers. The model was fitted to workforce HIV prevalence and separation data while incorporating 

parameter uncertainty; univariate sensitivity analyses were used to assess the robustness of the model 

findings. As ART coverage increases from 10% to 97% of eligible employees, increases in survival and 

retention of HIV-positive employees and associated reductions in absenteeism and benefit payments lead 

to cost savings compared to a scenario of no treatment provision, with the annual cost of HIV to the 

company decreasing by 5% (5th to 95th percentile range 2%–8%) and the mean cost per HIV-positive 

employee decreasing by 14% (5th to 95th percentile range 7%–19%) by 2022. This translates into an 

average saving of US$950,215 (5th to 95th percentile range US$220,879–US$1.6 million) per year; 80% 

of these cost savings are due to reductions in benefit payments and inpatient care costs. Although 

findings are sensitive to assumptions regarding incidence and absenteeism, ART is cost-saving under 

considerable parameter uncertainty and in all tested scenarios, including when prevalence is reduced to 

1%—except when no benefits were paid out to employees leaving the workforce and when absenteeism 

rates were half of what data suggested. Scaling up ART further through a universal test and treat strategy 

doubles savings; incorporating ART for family members reduces savings but is still marginally cost-saving 

compared to no treatment. Our analysis was limited to the direct cost of HIV to companies and did not 

examine the impact of HIV prevention policies on the miners or their families, and a few model inputs 

were based on limited data, though in sensitivity analysis our results were found to be robust to changes 

to these inputs along plausible ranges. 

Conclusions: Workplace ART provision can be cost-saving for companies in high HIV prevalence 

settings due to reductions in healthcare costs, absenteeism, and staff turnover. Company-sponsored HIV 

counselling and voluntary testing with ensuing treatment of all HIV-positive employees and family 

members should be implemented universally at workplaces in countries with high HIV prevalence. 

 

INTRODUCTION 

HIV disease hits adults in the prime of their working lives. Companies therefore take a heavy toll in 

countries with high HIV prevalence [1,2]. To counter this, some companies provide their workforce with a 

number of HIV services, ranging from prevention activities to HIV testing and antiretroviral therapy (ART). 

While several companies in sub-Saharan Africa started ART programmes from 2002 onwards [3–5], 

quantifying these programmes’ costs and benefits has proven difficult [3]. Even in sophisticated in-house 

medical programmes, longitudinal data collection is fraught with difficulty, and the relationship between 
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costs and benefits, such as regained productivity, can be hard to establish [3]. This makes it hard for 

companies to plan and budget for additional HIV-specific health programmes, and impossible to ascertain 

the programme’s impact on the company’s operations and profits. 

HIV disease increases rates of absenteeism, labour force turnover, and, ultimately, the costs of company 

operations in sub-Saharan Africa. A number of studies have quantified the impact of HIV on labour forces 

in the region, with the cost of HIV ranging from 0.7% of wages [6] or 1% of labour cost [7] to 1%–9% of 

profits [8]. Only one study, amongst Kenyan tea pluckers, has estimated the impact of HIV on the 

productivity of a single worker, finding an 18% decrease in earnings in the year before termination 

amongst HIV-positive workers [9], in a setting where earnings are directly related to productivity. 

South Africa is the sub-Saharan African country with the largest number of people living with HIV [10,11], 

with 18.8% of the working-age population (15–49 y old) being HIV infected [12]. In the last large-scale 

survey of 22 companies in South Africa, between 1999 and 2005, the workforce HIV prevalence in a non-

representative sample averaged 11% [13], though estimates varied over time and between industries 

[3,13]. Similarly, the costs of HIV vary, with the estimated increase due to HIV in the cost of doing 

business (termed AIDS “tax” [1]) ranging from 0.4% to 5.9% of the annual wage bill of six South African 

companies in 2001 [1,2], or a 0.6%–10.8% increase in labour costs amongst companies from six 

countries in sub-Saharan Africa [3]. The cost per employee also varies considerably by skill level [2]. 

None of these studies, however, included the impact of workplace ART provision. 

HIV care, including ART, has been provided by mining companies in South Africa since 2002, predating 

ART provision in the public sector [4,5]. While there are numerous estimates of the cost [14–27] and cost-

effectiveness [28–45] of public sector ART provision in South Africa, the cost and impact of private sector 

ART provision at the workplace level have not yet been established. And while some aspects of this 

impact have been estimated in other countries, such as Kenya [46–50], Botswana [50], and Uganda [51], 

none of these estimates included productivity as well as healthcare costs, and none was a full cost–

benefit analysis based on real-world programme data. In order to provide evidence for company 

management and policy-makers alike, we evaluated the impact and cost of both HIV and ART in a mining 

company in South Africa, and analysed the incremental cost–benefit balance of the company’s ART 

programme compared to no ART provision.  

METHODS 

Workplace under Study 

We report on the ART programme of a coal mining company operating at a number of collieries in 

Mpumalanga province since 2002. The programme is run from the mines’ own clinics and hospitals and 

provides care for employees, contractors, and employees’ dependants. Annual anonymous HIV 

counselling and testing (HCT) campaigns in the mines provide easy access to testing. HIV-positive 
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employees are enrolled in an HIV wellness programme that provides CD4 cell count testing every 3 mo 

and interventions, such as isoniazid and cotrimoxazole prophylaxis, for the prevention and treatment of 

opportunistic infections. Employees were initiated on ART once their CD4 cell count was at or below 250 

cells/mm3 during the period 2003–2007, or at or below 350 cells/mm3 during 2008–2010, or if presenting 

with WHO stage 3/4 disease, and their CD4 cell count and viral load (VL) were monitored twice annually 

thereafter. By the end of 2010, out of 9,252 employees, 1,149 had tested HIV positive in confirmatory 

tests and had been enrolled in the company’s wellness programme. Since 2002, 629 employees have 

been initiated on ART, with 555 employees retained on ART by the end of 2010.  

Model Description 

A dynamic Markov health-state transition model, the Workplace Impact Model (WIM), was developed to 

evaluate both the past and future impact and costs of introducing ART into the workforce from the 

perspective of the employer. The model is run twice, under a scenario of no ART provision (no ART 

scenario) and again under a scenario representing the scale-up of ART in the workforce (ART scenario). 

Both scenarios also include the cost and impact of other components of HIV healthcare such as HIV 

testing, wellness care, and other outpatient and inpatient care for HIV. The model projects the HIV-

positive and -negative workforce over 20 y from 2003, taking into account planned changes to the 

workforce size as well as ageing and promotions. This time period is necessary to capture the full impact 

of the gradual scale-up of ART. The model calculates, in 3-mo time steps, employees’ HIV prevalence, 

their HIV test uptake and coverage with and loss from wellness and ART care, the number of employees 

leaving the workforce as a result of mortality and morbidity due to HIV (separations), the number of 

recruits to the workforce (some of which are HIV infected) that are required to offset this loss, the change 

in CD4 cell count (an indicator of immune system function) in HIV-positive employees, and the 

incremental costs of the ART programme itself, of additional outpatient and inpatient healthcare, and of 

absenteeism and workforce turnover (Fig. 1).  
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Fig. 1. Population model of changes within the workforce.  
Recruits join the susceptible or infected (I) workforce depending on their HIV status at first employment. Employees 
move from the susceptible to the infected population according to prevalence and incidence. In the infected 
population, employees change between sub-populations representing different types of care (not tested, tested but 
not yet in care, wellness care, successful first- or second-line ART, and first-line or second-line treatment failure) 
according to coverage rates and, in case of treatment failure, to failure rates. Employees can drop out of care, i.e., be 
lost to retention, at any time and go back to the no care sub-population according to loss-to-retention rates; they can 
also leave the workforce for reasons related or unrelated to HIV (separations). Within each of the sub-populations, 
additional unidirectional changes due to ageing and promotion rates apply (not shown here); within each of the 
infected sub-populations, additional bi-directional changes due to transitions between CD4-cell-count-defined health 
states apply.  
 

 

 

In order to capture important differences in survival and/or in healthcare and absenteeism costs, the HIV-

infected workforce is divided into two genders, three age groups, six job grades, and five CD4-cell-count-

defined health states, although not every parameter is differentiated by all four categories. Table 1 

summarises the population categories used in the model; Table 2 gives more detail on the stratification 

levels. 
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Table 1. Job grade, health state, and age group categories used in model 

Parameter Category 
Patterson band1  
A Job grade 1 (unskilled worker) 
B lower Job grade 2 (semi-skilled worker) 
B upper Job grade 3 (semi-skilled worker) 
C lower Job grade 4 (skilled worker) 
C upper Job grade 5 (skilled worker) 
D and E Job grade 6 (management) 
CD4 cell count stratum (cells/mm3)  
>350 Health state 1 
200–350 Health state 2 
100–199 Health state 3 
50–99 Health state 4 
<50 Health state 5 
Age range (years)  
<30 Age group 1 
30–50 Age group 2 
>50 Age group 3 

1South African system of grading jobs according to the level of skill required for a certain job. 

 

Due to the difficulty in capturing the programme’s benefit to dependants, this analysis is limited to 

employees. The model incorporates HIV incidence in the workforce but does not model HIV transmission 

from the workforce or the effect of ART on HIV transmission. Separations, i.e., losses to the workforce 

other than through retirement or retrenchment, most often due to ill-health or death, are differentiated into 

three categories (death, ill-health/disability, and other) in the model and are further differentiated by HIV 

status, job grade for HIV-negative employees, and CD4 cell count stratum for HIV-positive employees. 

More details on the methods used in estimating each parameter are given in Tables 2–4 and in Text S1, 

which also gives the model equations.



 
 

Table 2. Details of parameter estimation, level of stratification, and data sources 

Model Input or 
Assumption 

Level of Stratification Source of Data 
(2003–2010) 

Method of Estimation 

2003–20101  2011–2022 

1. Changes in workforce     
Workforce needed at end 
of year 

Job grade, year Company data  Data taken as is to calculate 
number of recruits or 
retrenchments required 

Assumed to remain same as in 
2010 

Number of recruits Job grade, year  Set to produce workforce 
needed at end of year 

Same as for 2003–2010 

Prevalence of 
recruits/retrenchees2  

Job grade, gender, year 
(for retrenchees, also by 
age) 

Company data  N: all new employees with a 
positive first HIV result in the 
year of recruitment; D: all new 
employees with a positive or 
negative first HIV result in the 
year of recruitment 

Assumed to remain same as in 
2010 

Distribution of recruits  Age group, gender, year Company data 
(distribution set to be 
same as workforce 
distribution in database 
in 2003–2010) 

N: number of employees in 
database by year, job grade, 
gender, and age group; D: total 
number of employees across all 
job grades, age groups, and 
genders by year  

Assumed same as average 
2003–2010 

Annual rate of promotion  Job grade, year Company data for 
2005/2006 

Assumed to remain same as in 
2005/2006 

Assumed to remain same as in 
2005/2006 

2. Start population and coverage 
Distribution of start 
population (all employees) 

Age group, gender, job 
grade 

Company data Number of employees in 
database by 31 Dec 2002 by job 
grade, gender, and age group 

N/A (start year only) 

HIV status of start 
population (all employees) 

HIV status of those 
employees with an HIV 
test 

Company data Number of HIV-positive 
employees tested before 31 Dec 
2002 and assumptions 
regarding untested employees’ 
HIV status  

N/A (start year only) 

Distribution of start 
population into CD4 cell 
count categories (HIV-
positive employees) 

CD4 cell count category No data Same proportion assumed in 
each CD4 cell count strata 

N/A (start year only) 
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Model Input or 
Assumption 

Level of Stratification Source of Data 
(2003–2010) 

Method of Estimation 

2003–20101  2011–2022 

Baseline HCT coverage3 Age group, gender, job 
grade 

Company data Number of employees tested 
before 31 Dec 2002 by job 
grade, gender, and age group 

N/A (start year only) 

3. Costs     
Average basic salary  Job grade Company data 

(payroll) 
Salaries in cost year (2006) Real cost assumed constant 

over time  
Incremental replacement 
cost for HIV-positive 
employees  

Job grade Interviews with 
company human 
resources department 

Average cost per new employee 
by job grade in cost year (2006) 

Real cost assumed constant 
over time  

Number of years that 
benefits get paid 

None Company benefit 
policy 

Company policy Real cost assumed constant 
over time  

Incremental 
inpatient/outpatient cost for 
HIV-positive employees in 
cost year (2006) 

Type of care (ART/no 
ART), CD4 cell count 
category 

Bottom-up cost 
analysis of company 
health services  

Average cost per employee in 
cost year (2006); includes non-
ARV drugs, non-ARV-specific 
laboratory tests, patient contact 
time, other medical supplies, 
site programme cost, but no 
central management cost 

Real cost assumed constant 
over time  

Annual per employee cost 
of ART in cost year (2006) 

CD4 cell count category  Bottom-up cost 
analysis of company 
health services 

Average cost per employee in 
cost year (2006); includes 
central management cost for 
ART programme, ARV drug 
cost, ART-specific laboratory 
tests (CD4, VL) 

Real cost assumed constant 
over time  

Incremental absenteeism 
cost for HIV-positive 
employees 

Type of care (ART/no 
ART only), CD4 cell 
count category, job 
grade 

Payroll data on sick 
leave days 

Absent days/shifts lost to 
sickness (sick leave) by health 
state in cost year (2006) 
multiplied by job-grade-specific 
salary per day/shift 

Real cost assumed constant 
over time  

4. Transitions between CD4 cell count categories 
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Model Input or 
Assumption 

Level of Stratification Source of Data 
(2003–2010) 

Method of Estimation 

2003–20101  2011–2022 

Transition probabilities Type of care, CD4 cell 
count category 

No care: public sector 
data based on [52]; all 
else: company data 

N: all employees with a CD4 cell 
count in one stratum in time 
period t who have a CD4 cell 
count in a different stratum in 
time period t + 1; D: all 
employees with a CD4 cell 
count in one stratum in time 
period t that also had a CD4 cell 
count in time period t + 1 

Assumed constant over time 

Transition probabilities Type of care, CD4 cell 
count category 

No care: public sector 
data based on [52]; all 
else: company data 

N: all employees with a CD4 cell 
count in one stratum in time 
period t who have a CD4 cell 
count in a different stratum in 
time period t + 1; D: all 
employees with a CD4 cell 
count in one stratum in time 
period t that also had a CD4 cell 
count in time period  t + 1 

Assumed constant over time 

5. HIV incidence; coverage with testing, care, and ART; and treatment failure and retention 
Incidence Job grade, CD4 cell 

count category4, year 
Change in HIV 
incidence over time 
fitted to company data 
on HIV incidence [53]; 
job grade weights: 
company data; CD4 
cell count category 
weights: assumed 

HIV seroconversion was 
assumed to occur at the 
midpoint between the first 
positive and the last previous 
negative HIV test; N: all 
employees with a calculated 
seroconversion date in one 
year; D: all employees with a 
negative HIV result and no 
seroconversion date in the 
previous year. This analysis 
excludes employees whose HIV 
test result was given as 
“unknown” 

Assumed same as average of 
2008–2010 

Coverage with HIV testing, 
wellness care, and ART 

Type of care, year, and, 
for ART, also CD4 cell 
count category 

Company data Model fitted to reported 
proportions of HIV-positive 
employees in each type of care  

Assumed same as average of 
2008–2010, except transition 
to first-line ART from wellness 
care, which is used to achieve 
~92% ART coverage of 
eligible population 
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Model Input or 
Assumption 

Level of Stratification Source of Data 
(2003–2010) 

Method of Estimation 

2003–20101  2011–2022 

Rate of treatment failure  Year (same for first- and 
second-line ART) 

Company data N: employees with a failure start 
date during time period t; D: all 
employees on ART at the 
beginning of time period t 

Assumed same as average of 
2008–2010 

Loss-to-follow-up rate Type of care, year  Company data N: all employees with a care 
stop date (wellness care and 
ART only) during time period t; 
D: all employees in wellness 
care and ART, respectively, at 
the beginning of time period t 

Assumed same as average of 
2008–2010 

6. Separation rates     
HIV-related Type of separation, CD4 

cell count category 
Company data Ill-health, death, and other non-

transfer separations were 
allocated to a CD4 cell count 
category using the last available 
CD4 cell count before exit from 
the workforce from the 
database; N: all HIV-positive 
employees with an employment 
stop date by separation 
category and CD4 cell count 
category; D: all employee-years 
in the same CD4 cell count 
category  

Assumed constant over time 

HIV-unrelated Type of separation, job 
grade  

Company data N: all HIV-negative employees 
with an employment stop date 
by separation category and job 
grade; D: all employee-years in 
the same job grade 

Assumed constant over time 

“Company data” refers to the mine company’s employee database of 9,211 employees and a separate database documenting the 1,149 employees who tested 
HIV positive and were enrolled in the company’s HIV care programme. The databases cover the period January 2003 to December 2010. 
1Details of analysis are given if a parameter was analysed from the company’s employee database. D, denominator; N, numerator. 
2If the workforce is set to be reduced during one year, the resulting number of recruits will be negative, signifying the number of people who will be retrenched, 
rather than recruited, during that year. 
3Coverage with all other care is set to zero at baseline. 
4Incidence is stratified by CD4 cell count category to allow the distribution of newly incident members of the infected population into CD4 cell count categories. The 
values of the weights are 0.1, 0.2, 0.3, 0.5, and 1 for the categories >350, 200–350, 100–199, 50–99, and <50 cells/mm3, respectively. 
ARV, antiretroviral; N/A, not applicable.



 
 

Table 3. Values and sources of main model inputs and assumptions 
Parameter Value by Job Grade Source 

1 2 3 4 5 6 Total  
Workforce needed at end of year 
2003 133 857 2,251 954 673 379 5,247 Business plans from 

human resource 
managers 

2004 128 858 2,250 1,122 695 400 5,453 
2005 137 894 2,282 1,276 743 450 5,782 
2006  152 982 2,326 1,534 798 507 6,300 
2007 247 1,069 2,348 1,749 875 591 6,879 
2008 324 1,243 2,590 2,105 986 722 7,969 
2009 451 1,386 2,776 2,356 1,086 820 8,875 
2010 and onwards 705 1,433 2,772 2,405 1,119 818 9,252 
Salaries and benefits in 2010 US dollars  
Average annual basic 
salary  

10,047 12,043 16,057 20,740 25,925 54,242 — Human resource data 

Employee benefits (ill-
health and death 
benefit: three times 
annual salary) 

30,141 36,128 48,171 62,220 77,775 162,726 — Interviews with pension 
and provident fund 
administrators, 
document review, and 
claims data 

Recruitment and 
training cost per new 
recruit 

55,096 55,096 55,096 55,096 55,096 84,133 — Human resource data 

HIV-unrelated separations (percent of workforce leaving per year) 
Disability/ill-health 0.66% 0.08% 0.21% 0.24% 0.09% 0.03% — Workforce data 
Death 0.99% 0.21% 0.57% 0.35% 0.28% 0.26% — 
Other1 5.63% 1.50% 1.78% 8.53% 4.79% 5.92% — 

 

Table 4. Values and sources of main model inputs and assumptions (HIV-related separations only) 
HIV-Related Separations 
(Incremental to HIV-Unrelated 
Separations) 

CD4 Cell Count (cells/mm3) 
>350 200–350 100–199 50–99 <50 

Disability/ill-health 1.20% 1.80% 2.10% 2.70% 14.00% 
Death 3.00% 4.70% 9.20% 24.80% 67.10% 
Other1 6.90% 8.20% 8.60% 9.00% 12.90% 

Source: workforce data. 
 1Other separations include dismissals in absentia. 
USD, US dollars. 

Model Parameterisation 

The model was parameterised with company data on the size, composition, and turnover of the workforce 

at the mines obtained from the company employee database of 9,211 employees, covering the period 

January 2003 to December 2010 and including job grade, gender, engagement and termination dates, 

and the coverage and results of the serial HCT campaigns. Annual coverage with linked workplace HCT 

campaigns increased from 40% of all employees in 2003 to 86% in 2008, enabling a reliable estimation of 

HIV incidence in later years. A separate database documenting the 1,149 employees who tested HIV 

positive and were enrolled in the company’s HIV care programme over the same period of time provided 
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inputs regarding coverage of wellness care and ART, retention in care, development of treatment failure, 

and employees’ CD4 cell counts over time. The two databases were anonymously linked for this analysis.  

We parameterised the model with annual HCT and ART coverage, HIV prevalence in new employees 

joining the workforce, as well as the incidence of treatment failure and loss to retention in the programme 

as reported in these databases. Based on these data, HCT coverage was set to reach 92% by 2010 and 

to remain constant thereafter. The HCT data were also used to estimate the HIV incidence and 

prevalence amongst all employees. Incidence was estimated for those employees with two or more HIV 

tests, with HIV conversion assumed to be at the midpoint between the first positive and the last prior 

negative HIV test [53]. These data suggested that HIV incidence varied between 1.2 and 2.6 per 100 

employee-years in the workforce throughout and that prevalence increased from 11% in 2005 to 16% in 

2010. ART coverage of those eligible was calibrated to increase from 11% in 2003 to 68% in 2010, as 

suggested by the workforce data, and was modelled to reach 88% by 2013 and 100% by 2022. First-line 

treatment failure was set to vary between 8% and 11% per year, and loss to follow-up between 6% and 

12% per year, likely including some migration to ART programmes outside the workforce. The values of 

important model parameters are summarised in Tables 3 and 4; the remainder of the parameters and 

their 95% confidence intervals are available in Text S1. 

Transition Probabilities 

A detailed electronic register including the results of all CD4 cell count measurements (every 3 mo) from 

all HIV-positive employees for the same period as the workforce database (January 2003–December 

2010) was used to estimate the transition probabilities between CD4-cell-count-defined health states for 

the wellness care and ART populations (Table 5). The database contained a total of 10,972 CD4 cell 

count test results, with a mean patient follow-up of 961 d (maximum 2,822 d). Since almost all employees 

who test HIV positive in the workplace testing programme immediately enter care, we used historic data 

from the South African public sector to parameterise the transitions for the undiagnosed and no care 

populations [52]. Because of insufficient data, these transitions were also applied to the treatment failure 

population. 
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Table 5. Model 3-mo transition probabilities between CD4-cell-count-defined health states by type 
of care 

Ending CD4 Cell Count 
(cells/mm3) 

Starting CD4 Cell Count (cells/mm3) Source 
>350  200–350  100–199  50–99  <50 

Untested, no care, or treatment failure 
>350 0.94 0 0 0 0 [52] 
200–350 0.05 0.92 0 0 0  
100–199 0.01 0.06 0.94 0 0  
50–99 0.001 0.01 0.04 0.91 0  
<50 0.002 0.01 0.02 0.09 1.00  
Wellness care       
>350 0.86 0.16 0.01 0 0 Workforce 

data 200–350 0.13 0.71 0.23 0.05 0.07 
100–199 0.01 0.12 0.59 0.20 0.07 
50–99 0 0 0.14 0.55 0.14 
<50 0 0 0.04 0.20 0.71 
First- and second-line ART       
>350 0.93 0.21 0.02 0 0.17 Workforce 

data 200–350 0.07 0.74 0.28 0.03 0 
100–199 0 0.05 0.69 0.41 0.33 
50–99 0 0 0.02 0.47 0.17 
<50 0 0 0 0.09 0.33 

 

Each employee’s available CD4 cell count data were allocated to each type of care in 3-mo time periods 

from the start date for this type of care up until the time period including the stop date for this type of care. 

If CD4 cell counts were missing for one or two consecutive time periods, they were linearly interpolated 

from the CD4 cell counts of the two adjacent time periods. These CD4 cell counts were then allocated to 

five different CD4 cell count strata, which in turn defined the model health states (see Table 1). 

For the calculation of transition probabilities, in order to differentiate between patients in wellness care 

and those accessing ART outside the company healthcare system, CD4 cell counts were considered to 

be wellness care CD4 cell counts only if any VL measured during the same 3-mo time period was 

unsuppressed (>50 copies/ml). If a suppressed VL count was found before the date of ART initiation in 

the workforce programme, the patient was deleted from the wellness care CD4 analysis. In order to 

exclude patients in treatment failure, CD4 cell counts were considered to be ART CD4 cell counts only if 

any VL measured during the same time period was suppressed (≤50 copies/ml), though the patient could 

still contribute other (i.e., earlier or later) CD4 cell counts to the ART CD4 population if they coincided with 

a suppressed VL. 

Cost Data 

A bottom-up patient-level analysis of economic costs from the employer perspective was conducted in 

2006 to quantify all costs of HIV/AIDS to the company. The analysis, which has been described in detail 
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elsewhere [54,55], included the cost of the ART programme, including the cost of antiretroviral drugs, 

ART-specific laboratory tests such as CD4 cell count and VL, and management and training costs within 

and above the facility level, as well as any other HIV-related cost such as inpatient and outpatient 

resource utilisation and costs, and the costs of absenteeism and replacing a sick or deceased worker, 

including the benefits paid to the worker or his/her family and the costs of recruiting and training a 

replacement. Healthcare resource use, quantified as the number of inpatient days and outpatient visits, 

was abstracted from record systems at the company health centres and averaged by CD4 cell count 

stratum, based on the employee’s most recent CD4 cell count. Absenteeism was calculated as the 

median number of days of sick leave of patients in wellness care and on ART by CD4 cell count stratum, 

based on the company’s payroll data. Both healthcare and absenteeism costs were calculated 

incrementally to that of HIV-negative employees. 

Due to the choice of an employer perspective, costs to the employee and the broader society were 

excluded, but since most employees of the mining company seek care at the workplace clinics and 

hospitals, resource use captured for this analysis is unusually complete. Cost inputs are summarised in 

Table 6. Cost data were collected in South African rands (ZAR) during 2006/2007, adjusted for inflation to 

2010, and converted to US dollars (USD) using the 2010 average conversion rate of 8 ZAR/1 USD (Text 

S1 contains an explanation of the time period for inflation adjustment). Costs are presented undiscounted 

and discounted at 5% per annum, the repurchase rate of the South African Reserve Bank during most of 

the analysis period [56].  

 

Table 6. Annual per employee cost and frequency of absenteeism by CD4 cell count category, 
incremental to that of HIV-negative employees 

Parameter Items Included Cost in 2010 USD by CD4 Cell Count 
>350 
Cells/mm3 

200–350 
Cells/mm3 

100–199 
Cells/mm3 

50–99 
Cells/mm3 

<50 
Cells/mm3 

Medical care       
Patients not on ART       
Inpatient care Mean cost of inpatient care 

per year 
335 425 557 1,832 1,153 

Outpatient care Mean cost of outpatient 
care per year 

164 152 157 129 250 

Patients on ART       
Inpatient care Mean cost of inpatient care 

per year 
222  133  219  303  1,166  

Outpatient care Mean cost of outpatient 
care per year 

122  124  120  124  147  

ART (first and second 
line) 

Drugs, laboratory tests, 
other medical supplies, staff 
time, site programme cost, 
and central management 
cost per year 

1,826 1,826 1,826 1,826 1,826 

Absenteeism       



 

176 
 

Patients not on ART Median days absent due to 
sickness per year 

18 15 24 39 55 

Patients on ART Median days absent due to 
sickness per year 

11 13 16 23 55 

Model Calibration and Sensitivity Analysis 

Because sampling uncertainty surrounds many of the important model parameters, we defined probability 

distributions around the main inputs, with the distributions based on the primary workforce, absenteeism, 

and cost data used in this analysis. Some parameters were also stratified by CD4 cell count or job grade 

(separation rates) or were time dependent (treatment failure probability). Statistical distributions were 

assigned to these parameters based on standard practice in economic evaluations [57], with specific 

details included in Text S1.  

To calibrate the model while accounting for this sampling uncertainty, 20,000 parameter sets were 

randomly sampled (using Latin hypercube sampling) from the parameter distributions, and the resulting 

model runs were compared to see if they fit within the uncertainty range for the observed HIV prevalence 

of the workforce in 2010 (12.8%–19.2%) and the average annual number of separations in HIV-positive 

(50–150) and HIV-negative (200–500) employees during 2005–2009. The 998 model runs that fit these 

data were then used to assess the uncertainty around our main outcomes (total costs, cost savings, and 

HIV prevalence), with medians and 5th to 95th percentile ranges being produced for each outcome. In 

addition, an analysis of co-variance was undertaken to quantify the contribution of different parameters to 

the uncertainty in the projected undiscounted savings due to ART.  

Additionally, we undertook univariate sensitivity analyses on selected parameters, examining the impact 

of the following: reducing all absenteeism by half; assuming the same absenteeism on ART as off ART; 

assuming the same ART cost and health-state transition probabilities as found in analyses of public 

sector ART provision in South Africa using similar methodology [58,59]; changing inpatient and outpatient 

costs by ±50% (note that in each instance only the extremes of the range were considered); changing the 

number of annual salary equivalents paid out as benefits to 0, 1, or 2 y instead of 3; changing HIV-

dependent separation rates by ±20%; changing incidence by ±50%; and, in order to examine the 

generalisability of results to a setting with low HIV prevalence, reducing incidence to an extremely low 

value of 0.0001 and prevalence in the start population and amongst new recruits each to a tenth of the 

baseline values. For each of these sensitivity analyses, the effect of the parameter change was evaluated 

on all the baseline model fits so that an average effect could be estimated. 

Lastly, in order to analyse the future impact of changes in treatment policies, we parameterised the model 

for two additional scenarios to be implemented from 2013 onwards. First, we considered a universal test 

and treat scenario in which HCT coverage was 100% each year, and 100% of employees who tested 

HIV-positive initiated ART within 6 mo, regardless of CD4 cell count or clinical status. We conservatively 

assumed no impact of this high-level ART coverage on HIV incidence since the intervention would cover 
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only employees and not their sexual partners. In a second scenario (“family treatment”), we incorporated 

the extension of ART to those family members of employees who were eligible for ART, with an assumed 

average of one ART-eligible dependant per HIV-positive employee on ART. 

Ethics Approval 

The study was reviewed and approved by the following ethics committees: the London School of Hygiene 

and Tropical Medicine Ethics Committee (application number 962), the Anglogold Health Service 

Research Ethics Committee (AHS REC 004/02), and the University of KwaZulu-Natal Biomedical 

Research Ethics Committee (BE093/08). Employees’ consent to participation in this study was waived as 

we used only data that were collected for routine care purposes and, as in most other routine care 

settings, employees did not give written consent for this care. 

Data Availability 

The fully parameterised model that incorporates all data and that was used to produce all projections 

within this paper can be downloaded from OpenBU via http://hdl.handle.net/2144/10817. 

 

RESULTS 

Patient-Level Cost and Resource Use and Absenteeism of Employees on and off ART 

The results of our bottom-up cost analyses in HIV-positive employees show that regardless of ART 

status, average annual outpatient and inpatient employee costs both increase with decreasing CD4 cell 

count, and, in contrast to analyses of the cost of public sector ART provision in South Africa [26–29], 

inpatient costs are higher than outpatient costs per patient-year (Table 6). Once employees initiate ART, 

these costs of care decrease dramatically across all CD4 cell count strata. However, when considering 

the healthcare cost of the HIV programme only, and excluding other HIV-related costs such as 

absenteeism and the cost of staff turnover, the addition of ART renders the HIV programme more 

expensive than without ART.  

HIV-positive employees not on ART have between 11 and 40 sick leave days annually over and above 

the average number of sick leave days in HIV-negative employees (Table 6). For specific CD4 strata, the 

level of absenteeism decreases by 16%–42% after ART initiation, except in employees with a CD4 cell 

count of <50 cells/mm3. As with healthcare costs, the most absenteeism is seen in the lowest CD4 cell 

count stratum, whether on or off ART.  

 

 

http://hdl.handle.net/2144/10817
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Coverage with Care, Survival in Employment, and HIV Prevalence  

Fig. 2 shows the distribution of employees into types of care over the model projection period. While the 

proportion of untested HIV-positive employees falls with increasing HCT coverage, the proportion in 

wellness care first increases and then drops slightly as the proportion of employees on ART increases. 

From 2010, the proportion of employees in each type of care remains relatively stable, with newly tested 

HIV-positive employees moving quickly through wellness care and, if eligible, onto ART, and the 

proportion of employees on second-line ART slowly increasing. From 2012, only 35%–44% of HIV-

positive employees are on ART, because many are not eligible for ART; however, 75%–97% of 

employees with CD4 cell count < 350 cells/mm3 are on ART.  

 

Fig. 2. Distribution of HIV-positive employees into types of HIV care, 2003–2022 (ART scenario) 

 

Across all available model fits, projections suggest that an HIV-infected employee with a current CD4 cell 

count > 350 cells/mm3 will have a 39% (5th to 95th percentile range 35%–43%), 57% (50%–62%), or 

78% (73%–82%) probability of surviving the following 10 y if they are in no care, in wellness care, or on 

ART, respectively. (Note that this survival does not take into account deaths in employees once they have 

left the workforce.) However, survival in the workforce at 10 y is much lower, as a result of death as well 

as disability and other separations: 16% (5th to 95th percentile range 13%–19%), 23% (20%–27%), and 

35% (31%–39%) for employees in no care, in wellness care, and on ART, respectively.  

Without ART, these survival rates lead to a total of 22,274 (5th to 95th percentile range 20,887–24,086) 

HIV-positive employee-years (or life-years in employment) at the mines between 2003 and 2022, with HIV 

prevalence increasing from 13.3% (5th to 95th percentile range 12.8%–14.4%) in 2010 to 14.3% (13.0%–
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15.9%) in 2022. With ART coverage increasing from 10% of eligible HIV-positive employees in 2003 to 

97% in 2020, the number of deaths amongst employees due to HIV over 20 y decreases by 16% (5th to 

95th percentile range 11%–21%) from 1,583 (5th to 95th percentile range 1,406–1,791) without ART to 

1,336 (1,183–1,497) with ART. Survival in employment increases by 8% (5th to 95th percentile range 

6%–12%) to 24,134 (5th to 95th percentile range 22,848–25,841) HIV-positive life-years. This increase is 

not larger because on average only 34% of HIV-infected employees are on ART at any given time (since 

only a fraction of HIV-infected employees are eligible for ART), only a portion of these would have left the 

workforce or died in absence of ART over this period, and some leave the workforce before realising the 

full benefit of treatment. The increase in survival leads to an increase in HIV prevalence from 14.3% (5th 

to 95th percentile range 13.0%–15.9%) in 2022 without ART to 16.3% (14.9%–17.8%) with ART. HIV 

prevalence is always higher in the lower job grades: 21% (5th to 95th percentile range 19%–22%) in job 

grade 1 and 21% (18%–24%) in job grade 2 in 2022 with ART (Fig. 3). 

 

Fig. 3. Prevalence by job grade, 2003–2022, with workplace ART provision 

 

Job grade 1: unskilled worker; grades 2 and 3: semi-skilled worker; grades 4 and 5: skilled worker; grade 6: 
management. 

Changes in Workforce Turnover, Absenteeism, and Separations 

With workplace ART provision, other changes are experienced by the workforce between 2003 and 2022. 

The total number of absent days due to HIV are estimated to be reduced by 8% (5th to 95th percentile 

range 6%–10%), from 330,172 (5th to 95th percentile range 297,729–367,723) to 303,897 (277,147–

335,776) days, with 33% (5th to 95th percentile range 26%–40%) fewer absenteeism days amongst 

employees with CD4 cell counts below 100 (Fig. 4). The number of employees leaving employment for 

HIV-related reasons is estimated to decrease by 5% (5th to 95th percentile range 3%–7%) to 3,626 (5th 

to 95th percentile range 3,403–3,815) over 20 y, and the number of recruits is estimated to decrease by 
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2% (1%–3%) to 17,201 (16,454–17,912). Recruitment does not decrease further because of the large 

expansion of the company over this period (from 5,247 to 9,252 employees) and the considerable 

separations in the HIV-uninfected workforce. 

 

Fig. 4. Total number of days absent due to HIV per CD4-cell-count-defined health state, 2003–2022 

 

Total and Average Cost with and without ART 

Without workplace ART provision, the undiscounted total cost of HIV to the company (including all 

healthcare, absenteeism, and turnover costs) over 20 y is estimated at US$296 million (5th to 95th 

percentile range US$274–US$320 million) (Table 7), with the mean annual cost estimated to increase 

from US$13 million (5th to 95th percentile range US$12–US$15 million) in the first 10 y to US$15 million 

(US$14–US$16 million) over 20 y, mostly due to increasing HIV prevalence. This translates to a mean 

annual cost per HIV-positive employee of US$13,271 (5th to 95th percentile range US$12,101–

US$14,522) over 20 y. With ART, over 98% of model projections suggest that these costs decrease: the 

total and mean annual costs are estimated to decrease by 5% (5th to 95th percentile range 2%–8%) over 

20 y, and the mean annual cost per HIV-positive employee by 9% (5%–13%). These savings are 

estimated to accrue from the first year of the ART programme onwards and to increase as the average 

CD4 cell count of HIV-positive employees on ART rises. Similar changes are seen with the discounted 

cost (Fig. S1). Moreover, ART is estimated to be cost-saving at even the lowest coverage level, as each 

employee on ART saves absenteeism, healthcare, and turnover costs that are greater than the per 

employee cost of ART. 



 
 

Table 7. Total cost of HIV to company with and without ART programme and cost savings due to ART (2010 USD) - main results and sensitivity analysis 
Scenario No ART ART Savings from ART 

By 2012 By 2022 By 2012 By 2022 By 2012 By 2022 
Cost of HIV to company: median (5th to 95th percentile range) from probabilistic sensitivity analysis 
Undiscounted           
Total cost (millions USD) 131 (118–147) 296 (274–320) 124 (112–140) 278 (256–299) 5% (2%–8%) 6% (1%–11%) 
Mean annual cost (millions USD) 13 (12–15) 15 (14–16) 12 (11–14) 14 (13–15) 5% (2%–8%) 6% (1%–11%) 
Mean annual cost per HIV-positive employee  14,208 (12,982–15,509) 13,271 (12,101–14,522) 12,893 (11,903–13,862) 11,488 (10,601–12,218) 9% (5%–13%) 14% (7%–19%) 
Discounted             
Total cost (millions USD) 155 (140–178) 269 (247–293) 148 (133–170) 253 (233–275) 5% (2%–7%) 6% (2%–10%) 
Mean annual cost (millions USD) 16 (14–18) 13 (12–15) 15 (13–17) 13 (12–14) 5% (2%–7%) 6% (2%–10%) 
Mean annual cost per HIV-positive employee  16,936 (15,383–18,624) 12,045 (10,948–13,242) 15,409 (14,137–16,780) 10,492 (9,614–11,287) 9% (5%–13%) 13% (8%–18%) 
Sensitivity analysis: percent relative change in total undiscounted cost 
Absenteeism reduced by 50% −9% −11% −0.4% −1% −5% −4% 
Same absenteeism on ART as not on ART1 3% 3% 3% 4% 5% 5% 
Same ART transition probabilities as public sector2 10% 13% 7% 9% 8% 10% 
Same ART cost as public sector3 3% 3% −1% −4% 8% 12% 
Change in inpatient cost: −50% −6% −7% −6% −6% 5% 5% 
Change in inpatient cost: +50% 11% 12% 10% 10% 6% 8% 
Change in outpatient cost: −50% 0.4% −0.1% −0.2% −1% 6% 7% 
Change in outpatient cost: +50% 5% 6% 5% 5% 5% 6% 
Change in benefits: two times annual salary paid  −17% −15% −17% −14% 5% 5% 
Change in benefits: one times annual salary paid  −36% −34% −35% −31% 4% 3% 
Change in benefits: no benefits paid out −56% −52% −54% −48% 1% −2% 
Change in HIV-dependent separation rates: −20% 0.1% 3% −1% 2% 6% 8% 
Change in HIV-dependent separation rates: +20% 5% 2% 5% 2% 5% 6% 
Change in HIV incidence: −50% −17% −22% −17% −22% 5% 6% 
Change in HIV incidence: +50% 21% 26% 20% 25% 6% 7% 
Change HIV incidence to 0.0001 and lower 
prevalence in starting population and recruits 

−94% −95% −94% −95% 5% 4% 

Additional scenarios: percent relative change in total undiscounted cost, 2013–2022 
Test and treat4 — — — 0.2% — 9% 
Family treatment5 — — — 9% — 1% 
1By CD4-cell-count-defined health state.2Based on [58] (public sector transition probabilities for first-line ART and first-line treatment failure only).  
3US$277, the average per patient annual cost of adult ART in the public sector for 2015/2016, with 7.5% of patients assumed on second-line ART (based on [59], updated using April 
2015 government tender drug costs). 
4100% coverage with HCT; 100% initiation on ART regardless of CD4 cell count and clinical status; 100% retention on ART; no impact on HIV incidence. 
5For every employee known to be HIV-positive, treatment is offered to one additional HIV-positive dependant on average



 
 

Average Cost and Savings by Item 

Without ART provision, the largest components of the mean undiscounted annual cost of HIV to the 

company over 20 y are estimated to be benefit payments (53% of mean annual cost) and medical care 

costs (24%), followed by absenteeism (15%), and training and recruitment (8%) (Table 8). The cost of 

medical care is dominated by inpatient care (78% of medical care costs). Once ART is introduced, we 

estimate that benefit payments and medical care costs remain the largest contributors to the annual HIV 

costs (46% and 21%, respectively), whereas the cost of the ART programme itself is estimated to be 

comparatively small, at just 7% of the total.  



 
 

Table 8. Annual undiscounted cost and savings by cost item, 2003–2022 
 Cost Item Annual Cost (Millions 2010 USD) Savings from ART 

No ART ART Total (Compared to 
No ART) (Millions 
2010 USD) 

Relative (Compared 
to No ART) 

Percent of Total 
Saving1 Cost Percent of Total Cost Percent of Total 

Medical care 3.6 (3.3–3.9) 24% (22%–27%) 3.0 (2.7–3.4) 21% (15%–26%) 0.57 (0.28 to 0.78) 15% (−7% to 34%) 27% (8% to 37%) 
Inpatient care 2.8 (2.6–3.0) 19% (17%–20%) 2.2 (2.0–2.4) 15% (11%–18%) 0.55 (0.41 to 0.68) 19% (−1% to 38%) 27% (11% to 35%) 

Outpatient care 0.8 (0.6–1.1) 6% (4%–7%) 0.8 (0.6–1.1) 6% (4%–8%) 0.03 (−0.26 to 0.19) 2% (−41% to 32%) 0% (−14% to 11%) 
Absenteeism 2.2 (2.0–2.4) 15% (13%–16%) 1.9 (1.8–2.1) 13% (10%–16%) 0.25 (0.20 to 0.30) 11% (−11% to 32%) 12% (4% to 22%) 
Benefits 7.8 (7.1–8.7) 53% (50%–56%) 6.8 (6.1–7.5) 46% (33%–54%) 1.06 (0.69 to 1.52) 13% (−2% to 39%) 52% (8% to 66%) 
Training and recruitment 1.2 (1.0–1.3) 8% (7%–8%) 1.0 (0.9–1.1) 6% (5%–8%) 0.19 (0.13 to 0.25) 15% (0.1% to 41%) 9% (0.1% to 12%) 
ART programme cost — — 1.1 (0.7–1.6) 7% (4%–11%) −1.10 (−1.61 to −0.71) — — 
Total 14.8 (13.7–16.0)   13.9 (12.8–15.0)   0.95 (0.22 to 1.62) 14% (5% to 24%)   

Values are median (5th to 95th percentile range) from the probabilistic sensitivity analysis. 
1The values presented here are the mean (rather than median) (5th to 95th percentile range) from the probabilistic sensitivity analysis.
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Overall, the average undiscounted annual savings from scaling up ART coverage over 20 y are 

estimated to be US$950,215 (5th to 95th percentile range US$220,879–US$1,616,104). The largest 

contribution to these estimated savings (52% of total savings) is the 13% decrease in benefit 

payments, followed by the 15% decrease in medical care costs (27% of total savings) (Table 8). 

Although the cost of training and recruitment is estimated to fall by 15% with ART, this makes up only 

9% of annual savings, whilst the cost of absenteeism, which falls by 11%, is estimated to contribute 

12% of savings. Without ART, the total undiscounted annual cost of HIV to the company is estimated 

to make up 3.6% (5th to 95th percentile range 3.3%–3.9%) of total company payroll between 2003 

and 2022, whereas with ART, this falls to 3.4% (3.1%–3.7%). 

Sensitivity and Uncertainty Analysis and Additional Scenarios 

The univariate sensitivity analysis showed that total costs over 20 y are very sensitive to reductions in 

benefits paid for death and disability (−33%/66%) and changes in HIV incidence (±50%), as well as to 

using public sector data for CD4 cell count transition probabilities, reductions in absenteeism (−50%), 

and changes in inpatient cost (±50%) (Table 7). However, total costs do not change much if 

absenteeism by CD4 cell count category are assumed to be the same with and without ART or if the 

HIV-dependent separation rates (±20%) or outpatient costs (±50%) are changed. Equally, there is little 

change when ART costs from recent analyses of public sector ART provision are used [59]. 

Importantly, the only assumptions under which ART provision stops being cost-saving are if 

absenteeism is reduced by 50% (over both 10 and 20 y) or if no benefits are paid out (over 20 y only); 

under all other assumptions tested, ART still saves between 3% and 12% of total costs over 20 y. 

Finally, reducing HIV incidence as well as HIV prevalence in the starting population and recruits to low 

levels results in a much reduced HIV prevalence (1%) by 2022, representative of a low prevalence 

setting; in this scenario, the cost of HIV to the company reduces by 95% both without and with ART, 

with ART still saving 4% of costs. 

The overall findings of the probabilistic sensitivity analysis agreed with the findings of the univariate 

sensitivity analysis, despite the wide ranges assigned to many model parameters, with over 98% of all 

model fits predicting that ART provision was cost-saving (Table 7). The analysis also reinforced the 

relative contribution of individual cost items to total cost (Table 8). The analysis of co-variance 

revealed that 69% of the variability in the total savings achieved with ART in the probabilistic 

sensitivity analysis (after 20 y and undiscounted) were explained by uncertainty in the costs of ART 

(64%), as well as in the difference between the upwards CD4-cell-count-defined health-state transition 

probabilities on ART compared to with wellness care (21%) (see Figs. S2 and S3), and in the 

outpatient costs on ART (15%). Interestingly, although the cost of ART is always a relatively small 

component of the total cost of HIV (5%–11%), it can contribute significantly to offsetting the cost 

savings achieved with ART, with the cost of ART cancelling out 53% (5th to 95th percentile range 

32%–87%) of all potential savings. Importantly, the model projections suggest ART will always be 

cost-saving if it costs less than US$2,057 per patient-year. The large dependence of the estimated 

cost savings on the difference between the ART and wellness care health-state transition probabilities 
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suggests that ART will not be cost-saving if it has little benefit for disease progression on top of what 

is already achieved with wellness care.  

The cost of HIV in the test and treat sensitivity scenario over 10 y (2013–2022) increases only 

marginally, by 0.2%, because of increased savings in terms of inpatient care, absenteeism, and 

benefit payments, which almost offsets the cost of the additional treatment occurring (Table 7). In the 

family treatment scenario, total cost with ART provision between 2013 and 2022 increases by 9%, but 

ART provision is still marginally cost-saving. 

 

DISCUSSION 

Using a dynamic health-state transition model, we conducted a cost–benefit analysis of an established 

ART programme operating in a number of coal mines in South Africa. Our analysis provides both a 

retrospective analysis of the programme between 2003 and 2010 and a projection of future 

developments based on the results of this retrospective analysis. When considering the impact of HIV 

on a company’s healthcare costs—as well as worker absenteeism, sickness and death benefits, and 

staff turnover—the introduction of ART to all eligible employees is cost-saving from the first year of the 

programme onwards. With ART provision, the total costs of HIV to the company over 20 y is estimated 

to be reduced by 6% (5th to 95th percentile range 2%–11%), and the cost per HIV-positive employee 

is estimated to be reduced by 14% (7%–19%). Moreover, in our probabilistic sensitivity analysis, 98% 

of the 998 model fits (selected from amongst 20,000 model runs) confirm this cost savings. The 

biggest savings are due to reductions in the benefit payments for death and ill-health retirement, 

followed by a decrease in the cost of employee healthcare use. This finding that ART is cost-saving is 

robust to the uncertainty around the model parameters as well as to other changes in numerous 

parameters or assumptions, including if absenteeism is the same for employees on and off ART, if 

there are large reductions in benefit payments, and if HIV prevalence in the workforce is decreased to 

below 1%. The only instance where ART does not save costs over 20 y is if absenteeism in HIV-

positive employees is reduced by 50% or if no benefits are paid out—though the latter strategy still 

saves costs over 10 y. In addition, a strategy of offering HIV testing to all employees and immediate 

ART to all HIV-positive employees also results in savings to the cost of the HIV programme, 

suggesting test and treat be recommended as a powerful intervention for companies trying to 

preserve their employees’ productivity. Offering ART to one family member for each HIV-positive 

employee, a generous assumption, reduces savings but is still cost-saving compared to no workplace 

ART provision. 

Previous work has shown a heterogeneous impact of HIV on absenteeism and replacement cost. In a 

study of nearly a thousand firms operating in Africa in 1997, the impact of HIV on staff turnover was 

minimal, probably because of the lower HIV prevalence at that time, with difficulties in replacing 

professional staff being the most significant problem companies were facing [60]. In another study, the 

total cost per HIV infection to South African companies was estimated at US$2,094 to US$15,000 for 

an unskilled worker (in 2001 prices) and US$8,736 to US$65,000 for a manager [2]. A study of a Natal 
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sugar mill found that on average 28 d were lost in each of the 2 y preceding retirement on grounds of 

ill-health and estimated that the cost of each HIV infection was roughly three times the employee’s 

annual salary per year [61]. Similarly, a large part of the savings in our analysis were due to a policy of 

benefits being paid to the employee or their family in the case of disability or death, which might not 

apply to other workplaces and might limit the generalisability of the results across workplaces and 

countries. 

While our analysis adds to the body of knowledge on the economic impact of HIV and ART—through 

the use of detailed modelling incorporating a wealth of data on costs of HIV and ART outcomes from 

the same setting—our study nonetheless has limitations. First, it was limited to the direct cost of HIV 

to companies. In a previous study, the life insurer Metropolitan predicted that the indirect costs of HIV 

to business (including costs due to a loss in morale, legal costs, management costs, and labour 

consultation costs) could add up to 15% of the wage and salary budget by 2010 [62]. The provision of 

ART could improve morale and retention of skilled employees [5] as well as help safeguard the 

company’s license to mine [63]. Including this added indirect benefit of ART would have increased our 

savings from workplace ART provision. Second, we used an average drug cost for first-line and 

second-line ART that slightly underestimated the cost of ART in the later years of the projection, when 

more employees needed second-line ART, and did not stratify ART cost by time on treatment. 

However, since few HIV-positive employees were on second-line treatment throughout the projection 

period and the cost of ART was a small proportion of total costs, this underestimation is unlikely to 

change our findings. Third, data for some of the model inputs, such as transitions between certain 

CD4-cell-count-defined health states, was limited, resulting in uncertainty around some estimates. The 

effect of this uncertainty was included in our model projections as well as tested in our sensitivity 

analysis, and our results were found to be robust to changes along plausible ranges for these 

parameters. However, the deterministic nature of the model prevented it from capturing the full 

inherent variability present in this workforce. Lastly, we did not examine the impact of HIV prevention 

policies on the miners or their families.  

Further work could involve evaluating the effects of prevention and treatment interventions on HIV 

incidence, including in the areas around the mines and in miners’ families, and the cost of new 

policies such as providing pre-exposure prophylaxis or increasing the accommodation of miners’ 

families in the vicinity of the mines, in compliance with the mining charter [63]. Finally, given our 

finding of the importance of the cost of ART in influencing cost savings, further reductions in the 

private sector cost of antiretroviral drugs remain crucial.  

CONCLUSION 

Providing HIV care, including ART, in a workforce with high HIV prevalence and high resulting 

absenteeism and turnover can be cost-saving for the employer, with savings being greater at higher 

ART coverage, and might provide respite to the strained resources of large-scale public sector 

programmes. Beyond making good business sense, a company-level HIV care programme including 

ART could go a long way towards improving the strained labour relations in the South African mining 
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sector, especially when improved access to healthcare extends to the entire community [64]. It is 

crucial that strategies such as those under study here are replicated in other companies in similar 

settings. 
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SUPPORTING INFORMATION 

Fig. S1. Total annual cost with and without ART (discounted and undiscounted), 2003–2022 
(2010 USD). 

 

Fig. S2. Results of analysis of co-variance: yearly cost of ART.  
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Fig. S3. Results of analysis of co-variance: difference between wellness care and ART 
transition probabilities. 

 

 

Text S1. Details on parameter estimation, probabilistic sensitivity analysis, and model 
calculations (see Annex) 
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ANNEX 
 

1. Additional details on parameter estimation and data sources 
 
Choice of parameters, distributions and shape parameters for probabilistic sensitivity analysis 

Beta distributions were assigned to binomial events such as the proportion of individuals that 

experience either a HIV-related or non HIV-related separation, treatment failure or loss to ART 

retention in a specific time period, as well as the proportion of recruits that are newly HIV-infected in a 

specific year. Normal distributions were assigned to the number of absenteeism days experienced by 

individuals on or off ART for different CD4 cell count categories. Dirichlet distributions were assigned 

to the upward and downward transition probabilities between CD4 cell-count defined health states 

(further details below table). Lastly, because of the over dispersed nature of cost data, gamma 

distributions were assigned to the costs of in- and outpatient care for individuals on or off ART and to 

the cost of ART (which includes the cost of drugs, labs, other medical supplies, staff time, site 

programme cost and central management cost). Specific details on the parameter distributions used 

for each parameter and the justification for those assumptions are given in Table S2. Notation for the 

Gamma, normal and beta distribution is standard: Beta(α,β) gives a continuous approximation to a 

binomial distribution with α successes and β failures; N(µ,s2) denotes a normal distribution with mean 

µ and standard deviation s; and G(a,b) denotes a gamma distribution with scale a and shape b. 

 

Table S2: Summary of parameter values and the distributions chosen for their ranges 

Parameter Mean and 95% CI Distribution Reason for choice of 
distribution 

    
HIV incidence 

2005 
2006 
2007 
2008 
2009 

1.9% (1.5-2.3%) 
2.2% (1.8-2.6%) 
1.6% (1.3-1.9%) 
1.4% (1.2-1.7%) 
1.6% (1.4-2.0%) 
 

Triangular with 
likeliest of 1.7% 
and min of 1.2% 
and maximum of 
2.6% 

HIV incidence varied across the 
years 2005 to 2009 with no 
obvious pattern, and so chose 
triangular distribution with most 
likely value being average 
across the years and the limits 
being the maximum and 
minimum of the 95% confidence 
intervals across the years. 

HIV-dependent separations per year 
- Disability/Ill-health 

CD4>350 
CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 
- Death 

CD4>350 
CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 
- Other 

CD4>350 
CD4 200-350 
CD4 100-200 
CD4 50-100 

 
 
0.76% (0.39-1.33%) 
1.51% (0.90-2.37%) 
2.09% (1.15-3.48%) 
2.69% (0.99-5.76%) 
13.8% (9.04-19.8%) 
 
1.90% (1.29-2.71%) 
3.94% (2.91-5.20%) 
9.25% (7.17-11.7%) 
24.7% (19.2-30.9%) 
67.25 (59.7-74.2%) 
 
6.98% (5.77-8.36%) 
8.13% (6.64-9.83%) 
8.51% (6.51-10.9%) 

 
 
Beta(12,1563) 
Beta(4,5122)) 
Beta(14,655) 
Beta(6,217) 
Beta(24,150) 
 
Beta(30,1546) 
Beta(47,1146) 
Beta(62,608) 
Beta(55,167) 
Beta(117,57) 
 
Beta(110,1466) 
Beta(97,1095) 
Beta(57,612) 

 
 
The distribution for all separation 
rates was estimated directly from 
the data used to derive it based 
on the number that separationed 
out of each CD4 health state (α 
in Beta(α,β)) from the total 
sample (α+β) for specific CD4 
health state 
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CD4<50 8.97% (5.56-13.5%) 
12.6% (8.10-18,5%) 

Beta(20,203) 
Beta(22,152) 

Non HIV-dependent separations per year 
- Disability/Ill-health 

Job grade 1 
Job grade 2 
Job grade 3 
Job grade 4 
Job grade 5 
Job grade 6 

 
- Death 

Job grade 1 
Job grade 2 
Job grade 3 
Job grade 4 
Job grade 5 
Job grade 6 

- Other 
Job grade 1 
Job grade 2 
Job grade 3 
Job grade 4 
Job grade 5 
Job grade 6 

- Retrenchment 
Job grade 1 
Job grade 2 
Job grade 3 
Job grade 4 
Job grade 5 
Job grade 6 

 
0.66% (0.31-1.21%) 
0.08% (0.02-0.20%) 
0.21% (0.14-0.31%) 
0.24% (0.16-0.36%) 
0.09% (0.03-0.22%) 
0.03% (0.00-0.14%) 
 
 
0.99% (0.56-1.63%) 
0.21% (0.11-0.38%) 
0.57% (0.44-0.72%) 
0.35% (0.25-0.48%) 
0.28% (0.16-0.46%) 
0.26% (0.12-0.48%) 
 
5.63%(4.52-6.91%) 
1.50%(1.19-1.87%) 
1.78% (1.55-2.03%) 
8.53% (7.99-9.08%) 
4.79% (4.23-5.39%) 
5.92% (5.20-6.72%) 
 
0.26% (0.07-0.68%) 
0.33% (0.19-0.53%) 
0.09% (0.04-0.16%) 
1.18% (0.98-1.41%) 
0.57% (0.39-0.81%) 
0.57% (0.36-0.86%) 

 
Beta(10,1501) 
Beta(4,5122) 
Beta(26,12,126) 
Beta(25,10,250) 
Beta(5,5405) 
Beta(1,3864) 
 
 
Beta(15,1496) 
Beta(11,5115) 
Beta(69,12083) 
Beta(36,10239) 
Beta(15,5395) 
Beta(10,3855) 
 
Beta(85,1426) 
Beta(77,5049) 
Beta(216,11936) 
Beta(876,9399) 
Beta(259,5151) 
Beta(229,3636) 
 
Beta(4,1507) 
Beta(17,5109) 
Beta(11,12141) 
Beta(121,10154) 
Beta(31,5379) 
Beta(22,3843) 

 
The distribution for all separation 
rates was estimated directly from 
the data used to derive it based 
on the number that separationed 
out of each job grade strata (α in 
Beta(α,β)) from the total sample 
(α+β) for specific job grade 
categories. 

Prevalence in recruits  
3.50% (2.41-4.91%) 

 
Beta(32,914) 

The distribution for yearly recruit 
prevalence estimates was 
estimated directly from data on 
the number of HIV positive 
recruits (32) out of the total 
number of new recruits tested 
(32+914) over years 2003 to 
2010. The same prevalence was 
used for all years. 

Outpatient cost without ART (2010 ZAR) 
CD4>350 

CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 

1,353 (sd=1,656) 
1,211 (sd=1675) 
1,253 (sd=2391) 
1,033 (sd=1331) 
1,998 (sd=5647 

G(54,24) 
G(141,9) 
G(67,19) 
G(54,19) 
G(11,181) 

As is standard practice, gamma 
distributions were assumed for 
all cost parameters because of 
their usual over dispersion. The 
shape (a) and scale (b) 
parameters for each distribution 
G(a,b) were derived using the 
method of moments where 
a=(mean/SE)2 and b=SE2/mean, 
with mean being the mean cost 
from the sample and SE being 
the standard error around the 
mean of the cost estimates in 
the sample. This was done for 
the cost data collected for in-
patient as well as out-patient 
costs with each being stratified 
by the CD4 cell count of the 
individual. This was also done 
for the cost of ART for each 
individual. This was not stratified 
by CD4 count because the cost 
of ART did not vary by this 
variable within our data. 

Inpatient cost without ART per year (2010 ZAR) 
CD4>350 

CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 

2,680 (sd=1,1827) 
3,403 (sd=1,4206) 
4,456 (sd=1,4432) 
1,4658 (sd=32,709) 
9,227 (sd=18,575) 

G(4.4,607) 
G(15,220) 
G(23,193) 
G(18,820) 
G(22,425) 

Outpatient cost with ART per year (2010 ZAR) 
CD4>350 

CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 

977 (sd=1,048) 
993 (sd=1,255) 
963 (sd=1,280) 
990 (sd=1,030) 
1,176 (sd=1,905) 

G(704,1.4) 
G(1015,1.0) 
G(62,16) 
G(373,2.7) 
G(84,14) 

Inpatient cost with ART per year (2010 ZAR) 
CD4>350 

CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 

1,779 (sd=6,415) 
1,064 (sd=9,910) 
1,755 (sd=1,1035) 
2,426 (sd=1,1388) 
9,327 (sd=27,070) 

G(62,29) 
G(19,57) 
G(2.8,637) 
G(18,132) 
G(26,357) 
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Cost of ART per year (2010 ZAR) 
 14,611 G(1034,14)  
Absenteeism days per quarter without ART 

CD4>350 
CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 

4.59 (2.70-6.48) 
3.78 (2.93-4.63) 
6.06 (4.82-7.30) 
9.63 (7.06-12.20) 
13.80 (10.54-17.06) 

N(4.6,0.56) 
N(3.8,0.25) 
N(6.1,0.37) 
N(9.6,0.76) 
N(13.8,0.96) 

The distribution for number of 
absenteeism days was 
estimated directly from the data 
used to derive it based on the 
distribution of the number of 
absenteeism days reported by 
individuals with different CD4 
cell counts. However, we did not 
sample from the full distribution 
across all individuals, but from 
the likely distribution around the 
mean for each CD4 cell count 
category. For this reason the 
standard error was used as the 
second parameter of the normal 
distribution and the mean was 
assumed to be normally 
distributed.  

Absenteeism days per quarter with ART 
CD4>350 

CD4 200-350 
CD4 100-200 
CD4 50-100 

CD4<50 

2.64 (2.20-3.08) 
3.18 (2.83-3.53) 
4.02 (3.48-4.56) 
5.64 (4.45-6.83) 
13.83 (10.79-16.87) 

N(2.6,0.13) 
N(3.2,0.10) 
N(4.0,0.16) 
N(5.6,0.35) 
N(13.8,0.90) 

Treatment failure 
2003 to 2006 
2007 to 2010 

 

 
11.2% (8.47-14.3%) 
8.09% (6.48-9.96%) 

 
Beta(53,422) 
Beta(81,918) 
 

 
The distribution for treatment 
failure rate was estimated 
directly from the data used to 
derive it based on the proportion 
of individuals on treatment that 
failed treatment in each year. 
Rates were averaged for 2003 to 
2006 and 2007 to 2010 to 
account for any variation over 
time. Rates after 2010 were 
assumed to be the same as for 
2010. 

Loss to retention from Wellness 
2003 to 2006 
2007 to 2010 

0.67% (0.27-1.37%) 
1.74% (1.18-2.46%) 

Beta(7,1045) 
Beta(31,1754) 
 

The distribution for each loss to 
retention rate was estimated 
directly from the data used to 
derive it based on the proportion 
of individuals on wellness care 
that were lost to follow up in 
each year. Rates were averaged 
for 2003 to 2006 and 2007 to 
2010 to account for any variation 
over time. Rates after 2010 were 
assumed to be the same as for 
2010. 

Loss to retention from ART or treatment failure 
2003 to 2006 
2007 to 2010 

8.42% (6.08-11.29%) 
9.89% (8.11-11.91%) 

Beta(40,435) 
Beta(99.1001) 
 

The distribution for each loss to 
retention was estimated directly 
from the data used to derive it 
based on the proportion of 
individuals on ART that were lost 
to follow up in each year. Rates 
were averaged for 2003 to 2006 
and 2007 to 2010 to account for 
any variation over time. Rates 
after 2010 were assumed to be 
the same as for 2010. 

 

For the CD4 transition probabilities, Dirichlet distributions were assumed for the alternative transitions 

from each baseline CD4 cell count strata over the next quarter- this is standard practice for variables 

that have multiple transition options. The data used to estimate the transition probabilities between 
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health states is shown below from which the Dirichlet distributions were derived for the alternatives in 

each column.  In this table, N denotes the number of 3-month periods of follow up and the numbers 

above each are the transitions that occurred over those time periods. Note that 1 = health state 1 

(CD4 > 350 cells/microl), 2 = health state 2 (CD4 200-350 cells/microl), 3 = health state 3 (CD4 = 100-

199 cells/microl), 4 = health state 4 (CD4 50-99 cells/microl), 5 = health state 5 (CD4 <50 cells/microl). 

 

 
 
2. Additional details on methods 

Inflation adjustment 
Cost are given in 2010 constant USD. Even though inflating to the most recent year for which a 

Consumer Price Index (CPI) value is available is standard methodology, in the case of the healthcare 

cost in South Africa, the use of the general CPI for adjusting for inflation the expected value of a past 

cost analysis has its limit. Healthcare costs do not follow the general CPI, since salaries are subject to 

separate negotiations and drug prices (especially for antiretrovirals) have undergone dramatic 

downward developments since 2010. We think that inflating costs over a total of eight years (from 

2006 to 2014) would have exaggerated them and render the final cost figures close to useless. 

 
Model calculations 
Standard methodology (Drummond 2005) suggests that the choice of health states in a health-state 

transition model be reflective of important differences in disease progression, or healthcare utilization 

and cost, or both, in order to best represent survival and cost associated with the disease or an 

intervention against it. In analysing the workplace data to decide on the number and definition of 

health states, we found differences in separations (morbidity and mortality) and promotion rates 

No care from 1 2 3 4 5
to 1 3,852     -         -         -         -         

2 193        2,516     -         -         -         
3 33          159        1,914     -         -         
4 5            24          81          706        -         
5 10          26          43          74          915        

Total (N) 4,093     2,725     2,038     780        915        

Wellness from 1 2 3 4 5
to 1 903 80 1 0 0

2 135 355 32 2 2
3 11 62 82 8 2
4 1 1 19 22 4
5 1 0 5 8 20

Total (N) 1,051     498        139        40          28          

ART from 1 2 3 4 5
to 1 1490 169 5 0 1

2 104 593 81 1 0
3 3 37 202 13 2
4 0 0 5 15 1
5 2 0 1 3 2

Total (N) 1,599     799        294        32          6            
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between job grades and age groups in all employees; and differences in incidence and separations 

between job grades, genders and age groups in HIV positive employees, as well as in absenteeism 

and cost between HIV-positive employees with different CD4 cell count levels. This necessitated the 

number of categories that we used in the model, and which are given in more detail below. 

 

Nomenclature 
 
Model cycle        t 

Calendar year       y 

CD4-count defined health state     s for s = 1…5 

Job grade       j for j = 1…6 

Age group       a for a = 1…3 

Gender        g for g = 1,2    

Recruits/ retrenchees12      R 

- HIV-positive recruits/ retrenchees    R+ 

- HIV-negative recruits/ retrenchees    R- 

Total required workforce in year y    Ny 

Total workforce in time step t     Nt 

Separation rate per individual     dm for m = 1…6 

Total number of separations     Dm for m = 1…6 

- non-HIV related separations   

 - Death/ ill-health retirement (non-HIV related)  D1 

 - Non-HIV disability     D2 

 - Other (dismissed in absentia, etc; non-HIV related) D3 

- HIV-related separations    

 - Death/ ill-health retirement (HIV-related)  D4 

 - HIV disability      D5 

 - Other (dismissed in absentia, etc; HIV-related)  D6 

Retirees       E 

HIV prevalence in recruits     PR 

Susceptibles -total      S  

HIV incidence in year y      ir  

Promotion rate from job grade j into job grade j+1 per year pr  

Aging rate from age group a into age group a+1 per year  ar  

Infecteds -Total       I 

 - untested      Iu 

 - without care      In 

 - in Wellness care     Iw 

                                                      
12 If the workforce is set to be reduced during one year, the resulting number of recruits will be negative, signifying the number 

of people who will be retrenched, rather than recruited, during this year. 
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 - on first-line ART     Ia1 

 - in first-line failure     Iax1 

 - on second-line ART     Ia2 

 - in second -line failure     Iax2  

 - on any type of ART (Ia1, Ia2, Iax1, or Iax2)   Ia 

 - not on ART (Iu, In, or Iaw)    Ina 

Yearly incremental coverage with  

- testing       ct 

- Wellness care from no care    cn,w 

- ART from no care     cn,a1 

- ART from Wellness      cw,a1 

- first-line ART from first-line treatment failure  cax1,a1 13 

- second-line ART from first-line treatment failure  cax1,a2 

Transitions from CD4 cell count-defined health state s into health state s-x or s+x, where x = 1…414 

 Transition probability      tp  

Treatment failure      tf 

 - first-line failure      tfa1 

 - second-line failure     tfa2 

Loss to follow-up from      ltfu 

 - Wellness care      ltfuw 

 - first-line treatment     ltfua1 

 - second-line treatment     ltfua2 

 - first-line failure      ltfuax1 

 - second-line failure     ltfuax2 

Total inpatient cost      IC 

 - of patients on any type of ART (Ia1, Ia2, Iax1, or Iax2) ICa 

 - of patients not on ART (Iu, In, or Iaw)   ICna 

Total outpatient cost      OC 

 - of patients on any type of ART (Ia1, Ia2, Iax1, or Iax2) OCa 

 - of patients not on ART (Iu, In, or Iaw)   OCna 

Total absenteeism cost      AC 

Mean days of absenteeism     AD 

 - of patients on any type of ART (Ia1, Ia2, Iax1, or Iax2) ADa 

 - of patients not on ART (Iu, In, or Iaw)   ADna 

Salary 

 - daily salary      Sd 

                                                      
13 A small proportion (default value: 0.1%) of Infecteds in first-line treatment failure are assumed to move back to successful 

first-line treatment as a result of their viral load being re-suppressed after intensified adherence counselling and an 

improvement in adherence 
14 Despite s being included as a subscript to all transition probabilities, the transition probabilities are specific to the type of care 
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 - annual salary      Sa 

Incremental death benefits of HIV+ over HIV- employees  MB 

Incremental disability benefits of HIV+ over HIV- employees DB 

Number of annual salaries used in the calculation of benefits    

 - in case of death of an employee   MY 

 - in case of disability of an employee   DY 

Total training and recruitment cost    TRC 

Annual per employee training cost    CT 

Annual per employee recruitment cost    CR 

Total ART cost       TxC 

Annual per employee ART cost     CART 

 
Equations 

 

 1. Recruits/ retrenchees15 (R)   

a) All recruits/ retrenchees 
Recruits/ retrenchees in cycle t+1(in specific job grade, age and gender group) = (Workforce required 

in year y + all separations in cycle t + all retirements in cycle t - current workforce in cycle t) * 

proportion of required workforce in year y that needed in job grade * proportion of workforce in cycle t 

that is of this gender, age, and job grade out of all workforce in this job grade in cycle t  

 

 Rt+1(a,g,j)16 = (Ny + ∑D1…6t + Et - Nt) * Ny(j) / Ny * Nt(a,g,j) / Nt(j) 

(Equation 1.1) 
b) HIV-positive recruits/ retrenchees (R+) 
HIV-positive recruits/ retrenchees in cycle t+1 = Recruits/ retrenchees in cycle t+1 * prevalence in 

recruits17 in year y (all in cycle t; all for the relevant age-, job grade- and gender-specific cohort) 
 

 R+t+1(s,a,g,j) = Rt+1(s,a,g,j) * PR(a,g,jvi,y)  

(Equation 1.2) 
c) HIV-negative recruits/ retrenchees (R-) 
HIV-negative recruits/ retrenchees in cycle t+1 = Recruits/ retrenchees in cycle t+1 - HIV-positive 

recruits/ retrenchees in cycle t+1 (all in cycle t; all for the relevant age-, job grade- and gender-specific 

cohort) 

                                                      
15 If the workforce is set to be reduced during one year, the resulting number of recruits will be negative, signifying the number 

of people who will be retrenched, rather than recruited, during this year. 
16 For each parameter, variables in brackets denote the categories that the parameter was stratified by. Parameters without 

variables in brackets denote the total population or rate across all categories.  
17 If the number of recruits is positive in a year, prevalence in recruits is based on our analysis of workforce prevalence data (by 

year, gender and job grade); if it is negative (ie, retrenchees are being calculated), prevalence in recruits is based on general 

workforce prevalence in the model in the same year (by year, age, gender and job grade)  
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 R-t+1(a,g,j) = Rt+1(a,g,j) - R+t+1(a,g,j) 
(Equation 1.3) 

 
 2. Susceptibles (S) 

 Susceptibles in cycle t+1 = Susceptibles in cycle t - HIV incident cases + HIV-ve recruits - non-HIV 

related separations - promotions to higher job grade - losses to older age group + gains from younger 

age group + promotions from lower job grade (all in cycle t; all for the relevant age-, job grade- and 

gender-specific cohort) 

  

 St+1(a,g,j) = St(a,g,j) - St(a,g,j) * ir(s,j,y)/4  + R-t+1(a,g,j)- St(a,g,j) * ∑d1,2,3(j) 

  - St(a,g,j) * (pr(j,y) + ar(a))/4 + St(a-1,g,j) * ar(a-1)/4 + St(a,g,j-1) * pr(j-1,y)/4  
 (Equation 2) 

  

 3a. Untested infected (Iu) 
 Untested infected in cycle t+1 = Untested infected in cycle t + (HIV+ve recruits + incident cases in 

cycle t) * (1 - testing coverage) - untested infected in cycle t * testing coverage - HIV related and 

unrelated separations - promotions to higher job grade - losses to older age group + gains from 

younger age group + promotions from lower job grade - transitions to lower health states18 + 

transitions from higher health states (all in cycle t; all for the relevant health state-, age-, job grade- 

and gender-specific cohort) 

  

 Iut+1(s,a,g,j) =  Iut(s,a,g,j)  + (R+t(s,a,g,j) + St(a,g,j) * ir(s,j,y)/4) * (1-ct(y)/4) - Iut(s,a,g,j) * ct(y)/4 

   - Iut(s,a,g,j) * ∑d1…6(s,j)  

         - Iut(s,a,g,j) * (pr(j,y) + ar(a))/4 + Iut(s,a-1,g,j) * ar(a-1)/4 + Iut(s,a,g,j-1) * pr(j-1,y)/4 

         - Iut(s,a,g,j) * ∑all x≥1tpu,s,s-x + ∑all x≥1Iut(s+x,a,g,j) * tpu,s+x,s 

 (Equation 3.1) 
 
 3b. Infected without care (In) 

 Infected without care in cycle t+1 = Infected without care in cycle t + (HIV+ve recruits + incident cases 

in cycle t) * testing coverage - coverage with Wellness and ART + infected in Wellness care, first-line 

ART, first-line treatment failure, second-line ART and second-line treatment failure who are lost to 

care - HIV related and unrelated separations - promotions to higher job grade - losses to older age 

group + gains from younger age group + promotions from lower job grade - transitions to lower health 

statesxiii  + transitions from higher health states (all in cycle t; all for the relevant health state-, age-, job 

grade- and gender-specific cohort) 

                                                      
18 In both the untested and the without care populations, transitions between CD4 cell count categories are unidirectional, with 

the only possible movement (for those who do not stay in the same health state) being to lower health states (see Table 2 in 

main paper) 
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 Int+1(s,a,g,j) =  Int(s,a,g,j)  + (R+t(s,a,g,j) + St(a,g,j) * ir(s,j,y)/4) * ct(y)/4 - Int(s,a,g,j) * (cn,w(y)/4 + 
   cn,a1(s,y)/4) 
   + Iwt(s,a,g,j) * ltfuw(y,g)/4 + Ia1t(s,a,g,j) * ltfua1(y)/4 + Iax1t(s,a,g,j) * ltfuax1(y)/4  
   + Ia2t(s,a,g,j) * ltfua2(y)/4 + Iax2t(s,a,g,j) * ltfuax2(y)/4 

   - Int(s,a,g,j) * ∑d1…6(s,j)  

        - Int(s,a,g,j) * (pr(j,y) + ar(a))/4 + Int(s,a-1,g,j) * ar(a-1)/4 + Int(s,a,g,j-1) * pr(j-1,y)/4  

        - Int(s,a,g,j) * ∑all x≥1 tpn,s,s-x + ∑all x≥1Int(s+x,a,g,j) * tpn,s+x,s 

 (Equation 3.2) 
 
 3c. Infected and covered by Wellness care (Iw) 

 Infected in Wellness care in cycle t+1 = Infected in Wellness care in cycle t + infected without care in 

cycle t covered with Wellness care - coverage with 1st line ART - HIV related and unrelated 

separations - loss to follow-up - promotions to higher job grade - losses to older age group + gains 

from younger age group + promotions from lower job grade - transitions to higher and lower health 

states + transitions from lower and higher health states (all in cycle t; all for the relevant health state-, 

age-, job grade- and gender-specific cohort) 

  

 Iwt+1(s,a,g,j) = Iwt(s,a,g,j) + Int(s,a,g,j) * cn,w(y)/4 - Iwt(s,a,g,j) * cw,a1(s,y)/4 

     - Iwt(s,a,g,j) * ∑d1…6(s,j) - Iwt(s,a,g,j) * ltfuw(y,g)/4 

     - Iwt(s,a,g,j) * (pr(j,y) + ar(a))/4 + Iwt(s,a-1,g,j) * ar(a-1)/4 + Iwt(s,a,g,j-1) * pr(j-1,y)/4  

     - Iwt(s,a,g,j) * ∑all x≥1  tpw,s,s+x - Iwt(s,a,g,j) * ∑all x≥1 tpw,s,s-x  

     + ∑all x≥1Iwt(s+x,a,g,j) * tpw,s+x,s + ∑all x≥1 Iwt(s-x,a,g,j) * tpw,s-x,s   

(Equation 3.3) 
 

 3d. Infected and covered by 1st line ART (Ia1)  

 Infected on 1st line ART in cycle t+1 = Infected on 1st line ART in cycle t + infected without care in 

cycle t covered with 1st line ART + infected in Wellness care in cycle t covered with 1st line ART - 1st 

line treatment failure - HIV related and unrelated separations - loss to follow-up - promotions to higher 

job grade - losses to older age group + gains from younger age group + promotions from lower job 

grade - transitions to higher and lower health states + transitions from lower and higher health states 

(all in cycle t; all for the relevant health state-, age-, job grade- and gender-specific cohort) 

  

 Ia1t+1(s,a,g,j) = Ia1t(s,a,g,j) + Int(s,a,g,j) * cn,a1(s,y)/4 + Iwt(s,a,g,j) * cw,a1(s,y)/4 - Ia1t(s,a,g,j) * tfa1(y)/4 

      - Ia1t(s,a,g,j) * ∑d1…6(s,j) - Ia1t(s,a,g,j) * ltfua1(y)/4  

      - Ia1t(s,a,g,j) * (pr(j,y) + ar(a))/4 + Ia1t(s,a-1,g,j) * ar(a-1)/4 + Ia1t(s,a,g,j-1) * pr(j-1,y)/4  

      - Ia1t(s,a,g,j) * ∑all x≥1tpa1,s,s+x - Ia1t(s,a,g,j) * ∑all x≥1 tpa1,s,s-x  

      + ∑all x≥1 Ia1t(s+x,a,g,j) * tpa1,s+x,s + ∑all x≥1 Ia1t(s-x,a,g,j) * tpa1,s-x,s  

(Equation 3.4) 
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 3e. Infected in 1st line treatment failure (Iax1) 

 Infected in 1st line treatment failure in cycle t+1 = Infected in 1st line treatment failure in cycle t + 

infected on 1st line treatment in cycle t * 1st line treatment failure rate - coverage with 2nd line ART - re-

coverage with 1st line ART - HIV related and unrelated separations - loss to follow-up - promotions to 

higher job grade - losses to older age group + gains from younger age group + promotions from lower 

job grade - transitions to higher and lower health states + transitions from lower and higher health 

states (all in cycle t; all for the relevant health state-, age-, job grade- and gender-specific cohort) 

  

 Iax1t+1(s,a,g,j) =  Iax1t(s,a,g,j) + Ia1t(s,a,g,j) * tfa1(y)/4 - Iax1t(s,a,g,j) * (cax1,a2(y)/4 + cax1,a1(y)/4) 

   - Iax1t(s,a,g,j) * ∑d1…6(s,j) - Iax1t(s,a,g,j) * ltfuax1(y)/4 

        - Iax1t(s,a,g,j) * (pr(j,y) + ar(a))/4 + Iax1t(s,a-1,g,j) * ar(a-1)/4 + Iax1t(a,g,j-1) * pr(j-
1,y)/4  

        - Iax1t(s,a,g,j) * ∑all x≥1  tpax1,s,s+x - Iax1t(s,a,g,j) * ∑all x≥1 tpax1,s,s-x  

        + ∑all x≥1 Iax1t(s+x,a,g,j) * tpax1,s+x,s + ∑all x≥1 Iax1t(s-x,a,g,j) * tpax1,s-x,s 

 (Equation 3.5) 

 

 3f. Infected and covered by 2nd line ART (Ia2) 

 Infected on second line ART in cycle t+1 = Infected on 2nd line ART in cycle t + 1st line treatment 

failure covered with 2nd line treatment - 2nd line treatment failure - HIV related and unrelated 

separations - loss to follow-up - promotions to higher job grade - losses to older age group + gains 

from younger age group + promotions from lower job grade - transitions to higher and lower health 

states + transitions from lower and higher health states (all in cycle t; all for the relevant health state-, 

age-, job grade- and gender-specific cohort) 

  

 Ia2t+1(s,a,g,j) = Ia2t(s,a,g,j) + Iax1t(s,a,g,j) * cax1,a2(y)/4 - Ia2t(s,a,g,j) * tfa2(y)/4  

      - Ia2t(s,a,g,j) * ∑d1…6(s,j) - Ia2t(s,a,g,j) * ltfua2(y)/4  

      - Ia2t(s,a,g,j) * (pr(j,y) + ar(a))/4 + Ia2t(s,a-1,g,j) * ar(a-1)/4 + Ia2t(s,a,g,j-1) * pr(j-1,y)/4  

      - Ia2t(s,a,g,j) * ∑all x≥1 tpa2,s,s+x - Ia2t(s,a,g,j) * ∑all x≥1 tpa2,s,s-x 

      +∑all x≥1  Ia2t(s+x,a,g,j) * tpa2,s+x,s + ∑all x≥1 Ia2t(s-x,a,g,j) * tpa2,s-x,s 

 (Equation 3.6) 
  
 3g. Infected in 2nd line treatment failure (Iax2) 

 Infected in 2nd line treatment failure in cycle t+1 = Infected in 2nd line treatment failure in cycle t + 

infected on 2nd line treatment in cycle t * 2nd line treatment failure rate - HIV related and unrelated 

separations - loss to follow-up - promotions to higher job grade - losses to older age group + gains 

from younger age group + promotions from lower job grade - transitions to higher and lower health 

states + transitions from lower and higher health states (all in cycle t; all for the relevant health state-, 

age-, job grade- and gender-specific cohort) 

  

 Iax2t+1(s,a,g,j) = Iax2t(s,a,g,j) + Ia2t(s,a,g,j) * tfa2(y)/4  
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      - Iax2t(s,a,g,j) * ∑d1…6(s,j) - Iax2t(s,a,g,j) * ltfuax2(y)/4  

      - Iax2t(s,a,g,j) * (pr(j,y) + ar(a))/4 + Iax2t(s,a-1,g,j) * ar(a-1)/4 + Iax2t(s,a,g,j-1) * pr(j-
1,y)/4  

      - Iax2t(s,a,g,j) * ∑all x≥1 tpax2,s,s+x - Iax2t(s,a,g,j) * ∑all x≥1 tpax2,s,s-x 

      + ∑all x≥1 Iax2t(s+x,a,g,j) * tpax2,s+x,s + ∑all x≥1 Iax2t(s-x,a,g,j) * tpax2,s-x,s 

(Equation 3.7) 
  

 4. Total separations (D)   

 a) For HIV-negative employees 

 ∑all jDm1,2,3t(j) = St(j) * ∑d1,2,3(j) 

(Equation 4.1) 
 b) For HIV-positive employees 

 ∑all j and sDm1…6t(s)  = It(s) * ∑d1…6(s,j) 

(Equation 4.2) 
 

5. Cost 

a) Inpatient cost (IC) 

 IC = ∑all sIa(s) * ICa(s) +∑Ina(s) * ICna(s) 

(Equation 5.1) 
b) Outpatient cost (OC) 

OC = ∑all sIa(s) * OCa(s) +∑Ina(s) * OCna(s) 

(Equation 5.2) 
c) Absenteeism cost (AC) 

 AC = ∑all j and sIa(j,s) * ADa(s) * Sd(j) +∑Ina(j,s) * ADna(s) * Sd(j) 

(Equation 5.3) 
d) Incremental replacement cost due to HIV 
   i. Death benefits (MB) 

 MB = ∑all j and sI(j,s) * (d4(s) - d1(j))19 * Sa(j) * MY 

(Equation 5.4) 
   ii. Disability benefits (DB) 

 DB = ∑all j and sI(j,s) * (d5(s) - d2(j)) * Sa(j) * DY 

 (Equation 5.5) 
   iii. Training and recruitment cost (TRC) (only in cycles in which Rt is >0) 

 TRC = ∑all j and sI(j,s) * (d4,5,6(s) - d1,2,3(j)) * (CT(j) + CR(j)) 

 (Equation 5.6) 
e) ART cost (TxC) 

                                                      
19 In order to calculate the incremental separations of HIV-positive employees over HIV-negative employees, we subtract the 

separation rates in HIV-negative employees from those in HIV-positive employees 
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 TxC = ∑all sIa(s) * CART 

(Equation 5.7) 
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11 Conclusions 
 

This thesis set out to demonstrate how the results of cost and outcome analysis in routine care can be 

used in a budget impact model that informs policy makers at the national government level about the 

budget and programmatic consequences of a change in policies, with an application to the national 

antiretroviral treatment programme in South Africa. The following chapter summarises the findings of 

the thesis, its contributions to HIV policy in South Africa, the limitations inherent in the employed 

methods, and topics that warrant further research in the area of HIV programming and budgeting in 

South Africa.  

11.1 Overall findings of the thesis 

The review of previous budget impact analyses of HIV interventions and modelled economic analyses 

of ART (Chapter 4) found that while previous models had been quite detailed in the treatment of 

outcomes, this amount of detail was not mirrored by the cost categories used, with most analyses 

stratifying cost by disease stage and treatment regimen only. The reviewed analyses for sub-Saharan 

Africa were a case in point in that interest in the cost of ART provision in this area started early, before 

data from in-country programmes was available, with the first analyses based on assumptions 

extrapolated from high-income countries which were only gradually replaced by locally collected and 

relevant cost and outcomes data. As a result, the range of results was wide even for the same 

outcome parameter, depending on the variation in costing and modelling methods but also 

representing an evolution in the availability and use of appropriate local cost data.  

 

In summary, the review of budget impact analyses showed that 1.) a budget impact analysis is 

useless without a clearly identified payer and a circumscript budget; 2.) the budget impact of most 

interventions will be positive, unless specific measures are included that decrease costs; 3.) the target 

population for budget impact analyses of antiretroviral treatment that have a period of analysis of more 

than 1 year needs to be informed by the current cohort of identified HIV-positive people in a country or 

region plus additionally eligible and identified cases; 4.) budget impact analyses of both prevention/ 

testing interventions and ART from a public-sector perspective need to take into account more than 

just the resource use and cost of the intervention under analysis in order to capture the full impact on 

the budget. The review of modelled economic analyses of ART indicated that 1.) the number of health 

states should be enough to include all those that represent a clear difference with regards to cost, 

survival in care, or both; 2.) differences in results between analyses cannot be interpreted without 

information on break-down of both input costs and cost results by item (eg, staff, drugs, diagnostics, 

inpatient vs. outpatient costs); 3.) where possible, data regarding cost and outcomes need to come 

from the same setting in order to uphold the claim that these resources led to these outcomes; and 4.) 

the contention that HAART saves economic resources might be a result of effectiveness studies 

conducted in the ‘window of opportunity’ phase in 1996 and 1997, when HAART had just been 

registered. 
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One of the additional factors considered in the review was the potential for the cost of ART to vary by 

geographical location and the type of population served. In our analysis of the outpatient and inpatient 

cost of ART provision in an urban and a semiurban clinic in South Africa (paper 1), we showed that 

while inpatient cost was much higher in the semiurban setting, average outpatient cost per patient 

year was nearly identical (despite variation in the distribution of average cost across cost items such 

as staff and other fixed costs and diagnostic costs, and, to an extent, ARV drug cost). Even though 

mean total cost (including inpatient and outpatient cost) decreased with increasing CD4 cell counts of 

patients, the differences between the analysed CD4 cell count categories weren’t significant, nor were 

the differences between clinics. This lends credence to the use of a uniform cost per patient year in 

the NACM without differentiation by CD4 cell count stratum or clinic location. The analysis of inpatient 

cost of adults before and after ART initiation in an urban and a rural clinic in South Africa (paper 2) 

again showed that hospitalisation frequency, length and cost differed by CD4 cell count stratum, 

location, and ART status - though again not significantly, with results bearing widely overlapping 

confidence intervals.  

 

Similarly, our analysis of the outpatient cost and outcomes of paediatric ART in two different sites in 

South Africa (paper 3) showed that the cost of providing ART to children is very close to that of adults, 

converging after the first year, and being highly dependent on the age distribution and types of 

regimens used in a clinic population. As a consequence, the NACM uses the same non-drug cost for 

both adults and children while calculating the cost of ARVs based on children’s current age (four age 

bands) and age at initiation (two age bands). Chapter 8 presents the results of a cost analysis of the 

in- and outpatient cost of children in their first years of age, stratified by the conditions under which 

they initiated treatment - either immediately or once they met the standard immunological or clinical 

criteria of the 2004 WHO guidelines, both in a clinical trial setting; or depending on immunological or 

clinical criteria in a routine care setting. Even when restricted to healthcare cost only, initiating ART in 

a child as early as possible after a positive HIV test saves cost over the first year of life. This short 

analysis did not provide a model input per se but strengthened the evidence base for the inclusion of a 

policy of Early Paediatric Treatment in the 2010 South African ART guidelines, for which a scale-up 

function and cost were included in the NACM. 

 

Based on these inputs and a set of epidemiological parameters such as mortality, loss to follow-up 

and treatment failure rates and transition probabilities from one CD4 cell count-defined health state to 

another, in 2009/10 the NACM was used to model the size and cost of the South African national ART 

programme under three possible scenarios: firstly, the existing guidelines, characterised chiefly by 

adult eligibility at a CD4 cell count of <200 cells/microl; secondly, the full 2010 WHO guidelines with 

adult eligibility at 350 CD4 cells/ microl; and thirdly, a hybrid scenario which added eligibility at a CD4 

of 350 for pregnant women and people co-infected with TB but maintained the original eligibility 

threshold of CD4 200 for everyone else (chapter 9). We analysed each of these scenarios under the 

existing unit costs as well as under two additional policies: the task-shifting of ARV prescription from 
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doctors to nurses, and of ARV dispensing from pharmacists to pharmacy assistants, and the opening 

of the South African ARV drug market to international competition, with tender prices based on the 

cheapest internationally available price for each drug formulation, including fixed-dose combinations 

wherever possible. We found that while implementing the 2010 WHO guidelines would increase total 

cost over the next two mid-term expenditure framework periods (2010/11 to 2016/17) by 35% to USD 

19.1 billion, and the hybrid scenario by 19%, this increase could be more than offset by introducing 

the two additional policies. In this case, the total cost of the ART programme under the New 

Guidelines would be 32% less than under the Old Guidelines without FDCs and task-shifting 

(government’s revealed willingness-to-pay), while reaching 14% more patients. Implementing the Full 

WHO Guidelines would still be 23% less costly than continuing the Old Guidelines, while reaching 

23% more patients. 

 

Based in part on this analysis, the South African government introduced the hybrid guidelines as well 

as Early Paediatric Treatment in April 2010 and the full 2010 WHO guidelines in August 2011, 

established task shifting, and, using the proposed reference price list, negotiated significant drug price 

reductions for both the December 2010 and the December 2012 ARV drug tender. 

 

One of the findings of the NACM analysis in 2009 was that the incremental growth in the number of 

eligible patients as a result of increased immunological thresholds would always be dwarfed by the 

growth in the number of patients due to incidence and disease progression. With a treatment 

population expected to reach 5 million adults, or 10% of the adult population, in the next five years, 

government has started to look for alternatives to exclusive public-sector provision. When analysing 

the cost benefit of workplace ART provision in a mining company in South Africa (paper 4), using a 

model that was structurally very similar to the NACM, we found that such a programme is cost-saving 

over HIV care without ART from the employer perspective, largely due to savings in benefits, 

absenteeism costs, and inpatient costs. The total undiscounted cost of HIV to the company over 20 

years between 2003 and 2022 fell by 5%, and the cost per HIV-positive employee by 14%, through 

the introduction and scale-up of a company ART programme. Under all examined scenarios, including 

treatment of family members and universal testing and immediate treatment of the workforce, ART 

remained 1-12% cheaper than no ART, except when no benefits were paid out to employees leaving 

the workforce and when absenteeism rates were half of what data suggested.    

11.2 Comparison of results with those of recent economic analyses of ART in 
South Africa 

The cost of the national ART programme has been estimated in the past, as briefly summarised in 

section 4.5. Most recently, Cleary et al’s costing of the National Strategic Plan (NSP) 2007 estimated 

the cost of providing ART for five years (2007 - 2011) to up to 80% of all adults and children in need to 

be about USD 2.6 billion in 2009 terms [1], which represents a fraction of our seven-year estimate. 

Cleary et al’s analysis however only included the cost of newly initiated patients, for which fixed 
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targets set by the NSP were used, totalling roughly 1.4 million patients over this time period. Since our 

model includes the cost of treating all patients - those initiating between 2010/11 and 2016/17 as well 

as those already in treatment by the end of 2009/10 -, with between 2.9 and 3.6 million patients, the 

numbers of patients initiating treatment in our model are higher by far. 

 

Other studies have estimated the impact on the South African programme of increasing the CD4 cell 

count threshold for ART eligibility to 350 cells/microl. A study by Badri et al in 2006 compared the 

cost-effectiveness of initiating ART at between 350 and 200 CD4 cells/microl to initiating at above 350 

cells/microl or below 200 cells/microl [2]. It found that initiating ART at 200-350 CD4 cells/microl had 

an incremental cost-effectiveness ratio of USD 616 per quality-adjusted life year gained, leading the 

authors to suggest that “ART is reasonably cost-effective for HIV-infected patients in South Africa, and 

most effective if initiated when CD4 count >200/microl” [2].  Based on these data, Cleary in 2009 

presented the budget impact of ART initiation at <350 cells/microl in a conference presentation at the 

5th International AIDS Society Conference in 2009, estimating that the annual cost for the ART 

programme at this eligibility level would be close to USD 3.2 billion by 2016/17, which closely matches 

our results [3]. Also in 2009, Walensky et al presented a cost-effectiveness analysis of starting ART in 

South Africa at below 350 or 200 CD4 cells/microl, finding that an eligibility threshold of 350 

cells/microl would lead to a discounted total cost over five years of between USD 9.98 and 12.05 

billion over the (unspecified) next 5 years, depending on the level of HIV testing and ART coverage 

[4]. These results are also very comparable to ours, suggesting convergence in the evidence base 

available to policy makers. 

11.3 Contributions of the thesis 

11.3.1 Changes in the national ART budget process 

As described in the Introduction, at the outset of our engagement with the South African government 

in early 2009 the process of setting a budget for the ART programme at the national level was 

somewhat haphazard, with targets and unit costs set by provinces based on past budgets or 

assumptions. While strategy such as the National Strategic Plan for HIV and AIDS & STIs 2007-2011 

had been based on detailed budget analyses using population data based on epidemiological models, 

unit costs based on cost analyses, and coverage targets agreed on by policy makers, the annual 

Conditional Grant budgets that were submitted by the NDoH to Treasury were principally based on 

provincial plans that contained almost no analysis. The National ART Cost Model added to this the 

possibility of analysing both national- and provincial-level cost based on detailed data regarding the 

target population, population remaining in care, and unit costs.  

 

11.3.2 Increases in the HIV Conditional Grant budget 

The addition of the National ART Cost Model into the budget planning process gave policy makers in 

the Department of Health the ability to make the case for additional funding required to increase 
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eligibility and offer better drugs, while it supplied decision-makers in the National Treasury with the 

confidence to commit to increasing the HIV Conditional Grant (M. Blecher, personal communication) 

by 30% over the originally planned amount in 2010/11, and by 100% in 2011/12. Figure 4 summarises 

the relationship between the originally planned CG amounts, the numbers of patients on ART and 

total cost of the ART programme projected by the NACM, and the final resulting CG amounts for the 

financial year 2009/10 and 2011/12.  

 

Figure 4: Development of HIV Conditional Grant amounts (2009/10 to 2011/12), in comparison 
to total patient numbers and total ART cost as calculated by NACM  

 
 

While the NACM and its results played an undeniable role in steadying the hand of the policy makers 

within the South African government in implementing more expansive guidelines and increased 

funding for HIV, while increasing programme efficiency through increasing market competition for 

antiretroviral drugs and enabling lower-level staff cadres to prescribe and dispense ARVs, it is 

important to note that the NACM was only one of the factors in this process. A main contributor to this 

change in policy was the strong leadership exerted by the current Minister of Health, Dr Aaron 

Motsoaledi, and the managers within the NDoH. Work by the Clinton Health Access Initiative was 

instrumental in making the case for the pegging of tender prices to the lowest internationally available 

prices, as well as assembling the resulting price reference list. Staff within the Affordable Medicines 

Directorate within the NDoH led the 2010 tender negotiations that resulted in a decrease of a mean of 

50% in the price of single ARVs compared to the 2008 tender, of 18% to 23% in the per-patient cost of 
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ARV provision, and of the annual cost of the ART programme by 26% [5], just as envisaged in the 

initial NACM analysis (see Chapter 9). 

 

The HIV Conditional Grant budget kept increasing between the 2012/13 and 2015/16 financial years, 

again based on the results of the NACM, amongst others, bringing the total increase in the 

government’s spending on HIV in real terms to 772% over the life of the ART programme (since 

2003/4), or 215% since 2008/09, the last year before the NACM was used to define the ART budget 

(Figure 5) [6]. 

 

Figure 5: Historic and planned government expenditure on HIV (2003/04 to 2016/17)  
Data based on [6], sources: Estimates of Provincial Expenditure/ Estimates of National Expenditure 2004/5 to 
2014/15, Medium Term Policy Statetments, Division of Revenue Bill/ Acts; all from National Treasury  

 
 

 

11.3.3 Further updates to the NACM 

In order to maintain the relevance of the NACM as a budgeting tool, it has been constantly updated to 

capture new input prices as well as updates to the target population. In 2011, input from the new NSP 

Model incorporating CD4 cell count stages was used to update the NACM in order to calculate the 

cost of ART and PMTCT for the National Strategic Plan for HIV, STIs and TB 2012-2016 [7]. In 2013, 

the treatment cohort that contributed the original data for the transition probabilities for adults had 

grown so much that we were able to update all probabilities based on data from a sample of 20,496 

patients. The size of the sample, more than twice that of the original one, allowed us to stratify all 

transition probabilities for adults by time on treatment, not only those for first-line treatment, and to 

add third-line treatment as a type of care. We also added another four years to the projection period 

so that the model now covers the years 2003/4 to 2020/21, and based the target population on new 

input from the successor model to the ASSA AIDS model, the Thembisa model, which was set up to 



 

211 
 

also provide data on the number of people initiating ART under the 2013 WHO guidelines as well as 

universal treatment [8]. Thembisa as well as the updated version of the NACM were central in the 

development of the South African HIV and TB Investment Case which investigated the cost and 

impact of an optimised HIV programme, including all treatment and prevention interventions as well as 

a number of technical efficiency factors and structural enablers [9]. Finally, in order to fulfil a request 

from the NDoH and NT, we wrote a manual for the model and trained staff from both departments in 

the use of the model. This means that the South African government will now be able to do its own 

ART budget projections going forward. Similarly, a previous version of the Workplace Impact Model 

(WIM) has been handed over to the company described in Chapter 10, after a manual and training 

materials had been developed. 

 

11.3.4 Other uses of NACM output 

In contrast to a once-off published cost analysis, the structure of the NACM allows regular updates to 

input prices and the calculation of an average cost of ART per year and patient type that is relevant to 

the current moment in time and reflects the maturation of the cohort into adults and children, new and 

established patients, and into specific first and second line treatment. These time-flexible average cost 

results have therefore been used in a wide number of other analyses, including in the preparation of 

all of South Africa’s funding proposals to the Global Fund to Fight AIDS, Tuberculosis and Malaria 

(GFATM) since 2010, an analysis of the cost of HIV prevention and treatment in South Africa until 

2031 (AIDS2031) [10], and as inputs for an analysis of the fiscal dimensions of HIV/AIDS in South 

Africa [11] and for economic analyses of HSV-2 suppressive therapy [12], treatment as prevention 

[13], and a TDF-containing microbicide [14]. Provincial estimates for KwaZulu-Natal have been used 

in a broader cost analysis of HIV prevention and treatment in this province [15] as well as in a Public 

Expenditure Tracking Survey focusing on HIV spending in the province [16]. Results of the model in 

terms of numbers of patient years per ARV regimen have been used in drug quantification reports 

compiled by WHO for the years 2009 and 2011.  

11.4 Limitations 

There are a number of limitations in the methods used in building and parametrising the NACM as 

well as the Workplace Impact Model (WIM) which have potential implications for the validity and 

generalisability of the models’ results. Beyond what has been discussed in each paper and chapter, 

some overarching themes with regards to the conceptual, methodological, structural and parametric 

uncertainty surrounding this research emerge. 

 

11.4.1 Parametric uncertainty: Choice of data sources and cost paramaters 

All inputs to the model were based on data collected in one or two clinics that were chosen based on 

their accessibility and the availability of data. There was no sampling framework, and the data in terms 

of average resource use, cost, and clinical outcomes resulting from the analysis might be severely 
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biased as a result. However, cost and outcomes data used to parametrise the NACM were purposely 

sourced in the same clinic wherever possible, meaning that the resources used conceivably lead to 

the outcomes recorded.  A possible remedy for this would be to analyse cost and outcomes data 

across a larger sample of clinics representing a wide geographic spread and all relevant models of 

care, using efficiency analysis methods such as Data Envelopment Analysis or Stochastic Frontier 

Analysis. Our input data also do not take into account a possible impact of economies of scale or, as 

ART continues to be integrated with general chronic healthcare at the primary healthcare level, 

economies of scope. However, to my knowledge, no analysis so far has found any evidence of 

economies of scale in ART provision [17]. 

 

11.4.2 Methodological uncertainty: Treatment of uncertainty 

 Although some of the analyses of inputs presented in Chapter 5 to 8 included the calculation of 

uncertainty ranges such as confidence intervals, the NACM does not currently accommodate 

systematic multivariate uncertainty analysis. The presentation of the results of both models was 

therefore restricted to scenario analysis, as suggested by the ISPOR guidelines discussed in section 

2.2.  It should also be borne in mind that the model was built on request of government staff who 

specifically requested that it should be run without recourse to additional software, and by mid-level 

staff. The NACM has been handed over to such users who have been successfully trained in its 

methods.  

 

The health-state transition model introduced in Chapter 10, the Workplace Impact Model (WIM) used 

for the analysis of the cost-benefit of ART provision at the workplace level, included both advanced 

stochastic fitting methodology as well as a probablistic sensitivity analysis. This allowed the 

presentation of results for the main analysis as the median and 5% and 95% percentiles of model runs 

with good fit, and the systematic examination of the sensitivity of the results to the uncertainty 

surrounding many of the inputs. While such functionality is certainly desirable for the NACM as well, 

and might be added in the future (see section 11.5.2), it must be borne in mind that the workplace 

model had to contend with inputs based on much less data than the NACM, with only 1,149 

employees contributing data to the estimation of HIV-relevant parameters in the WIM, as compared to 

the 9,502 adult patients contributing data to the estimation of parameters in the NACM. 

 

11.4.3 Conceptual uncertainty: The impact of treatment on HIV transmission 

Neither the original version of the NACM nor WIM include an impact of antiretroviral treatment on HIV 

transmission, an impact that has by now been quantified for discordant couples [18] and at the 

population level [19] and has been included in a number of modelling exercises of both cost and 

incidence [20-26]. It has been excluded from the NACM due to the short projection period of the 

model of six years into the future and its focus on treatment only instead of the entire period of HIV 

infection. Due to the natural history of HIV infection, during six years any impact of the incremental 

coverage with ART between scenarios on the incidence of new infections would not likely translate 



 

213 
 

into a reduction in the number of new patients initiating treatment. It has been excluded from WIM 

because of the restriction of that model on the workplace of a particular company, where it would need 

an extremely tight sexual network involving most employees for a reduction in the infectivity of 

employees to translate in a significant reduction of HIV incidence in the same workforce. 

11.5 Areas of further research 

Following from the above, there are a number of analyses that could be usefully employed to close 

the remaining gaps in the analysis of the cost of the national ART programme in South Africa.  

 

11.5.1 Cost and outcome inputs based on randomly selected sample of clinics 

Firstly, averages in the model inputs for cost and outcomes that are currently based on a single clinic, 

or two clinics, should be replaced by a number of values based on a larger population of clinics across 

different geographic locations (including rural sites), sizes, and types of care. Such an exercise 

involving 12 ART clinics in South Africa, though based on a convenience rather than a random sample 

has been conducted recently, as part of a larger multi-country study involving 161 facilities in five 

countries, with the average cost across all sites being almost identical to the average cost produced 

by the NACM for the same year [32]. Data collection from a larger number of randomly selected clinics 

is planned for the next years, as part of the district-level version of the South African HIV and TB 

Investment Case. The data collected in this exercise might then also allow for the calculation of 

marginal, rather than mean, cost, and the full estimation of flexible cost and production functions [33] 

which might be useful in more geospatially disaggregated analyses of the cost of the South African 

ART programme [34]. 

 

11.5.2 Addition of probabilistic uncertainty analysis 

One of the larger shortfalls of the NACM is the absence of a structure that allows for uncertainty in 

model estimates to translate into uncertainty around the results and, ultimately, around the decisions 

based on these results, as described in Chapter 2. While such functionality was never requested from 

the model’s immediate stakeholders, as explained in section 11.4.2, it would greatly improve the 

stability of the results and the usefulness of the model for other audiences - and, arguably, for the 

models’ immediate clients in government. The availability of parsimonious add-on software has made 

it possible to add a probabilistic sensitivity analysis to the NACM in the future, similar to the one added 

to the WIM. 

 

11.5.3 Inclusion of the impact of treatment on HIV transmission 

Under the eligibility criteria under discussion in the model analyses in Chapter 9, an impact of 

expanded ART coverage on transmission and, via that, the future need for ART did not play a role as 

due to the natural history of HIV infection any such impact would have taken longer than the six years 

the model projects for to play out. If however treatment was started at higher eligibility thresholds, 
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below 500 CD4 cells/ microl or even, under Universal Test and Treat, immediately after HIV diagnosis, 

the time period between infection and treatment start would potentially become short enough for this 

impact to become relevant even shortly after the change in guidelines. Since the NACM uses the 

number of people initiating ART as an input from a separate HIV transmission model (the ASSA AIDS 

model or, later, the Thembisa model), this impact would have to be captured in the transmission 

model rather than within the NACM itself. The update to the ASSA AIDS Model, the Thembisa model, 

was designed to include this relationship. As a result, recent analyses using this model, including the 

South African HIV and TB Investment Case, replicated the finding from earlier analyses of Universal 

Testing and Treatment [20,21,26] that scaling up ART at very high population coverage levels can 

become cost-saving once the prevention effect has been taken into account [9]. 

 

11.5.4 Expansion of the scope of analysis to include prevention interventions 

The argument about whether to spend more on treatment or on prevention is almost as old as the first 

economic analyses of ART [35]. Especially when the strongest argument for the further expansion of 

treatment is its prevention effect over its beneficial impact on an individual’s survival and quality of life, 

the appropriate comparator for these more expansive eligibility scenarios are other prevention 

interventions, not just the current treatment guidelines. To this end the South African government 

commissioned the South African HIV and TB Investment Case which included a number of relevant 

HIV and TB interventions, including ART (under current guidelines as well as universal testing and 

treatment), comprehensive condom programming, HIV counselling and testing, medical male 

circumcision, PMTCT, TB prevention, screening, diagnosis and treatment, as well as interventions for 

key populations and social behaviour change marketing. The NACM was used together with a suite of 

local epidemiological and cost models to calculate the cost of each of these interventions at current 

and optimal levels of coverage and technical efficiency in order to analyse the most efficient mix of 

interventions in terms of reducing HIV and TB infections and maximising life-years lived [9]. 

11.6 Policy relevance of research 

11.6.1 There’s no doubt the model changed policy… 

Chapter 9 describes the use of the NACM by the South African government to help make decisions 

about the adoption of the 2009 ART guidelines by the World Health Organization. Due to the above-

mentioned new evidence that has evolved especially in terms of the transmission effect of population-

level treatment provision, the WHO revised their ART guidelines again in July 2013 [27]. These 

guidelines included increasing eligibility further, to a threshold of 500 CD4 cells/microl; treating all HIV-

positive partners in serodiscordant couples, regardless of CD4 cell count; and reducing laboratory 

monitoring of ART to one annual viral load and a single CD4 cell count a year after treatment initiation 

[27]. As mentioned above, the NACM was updated to calculate the cost of these new guidelines, and, 

as before, the results were used by the Department of Health in motioning for a budget increase and 

the issue of new guidelines reflecting the 2013 WHO guidelines in early 2015 [28]. At the time of 
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writing, WHO had just issued another guideline change including Universal Testing and Treatment (or 

“Test and Offer”, to underline the non-coercive nature of treatment initiation) [29], based on this 

prevention effect as well as the outcomes of the TEMPRANO trial (and, to a lesser extend, the START 

trial) which for the first time showed a clear positive impact on the health of people initiating treatment 

at CD4 cell counts above 500 CD4 cells/microl [30,31]. The cost implications of this potential future 

guideline change for South Africa have been calculated as part of the South African HIV and TB 

Investment Case, again using the NACM to calculate the cost of ART provision to up to 6.5 million 

people in South Africa [9].  

 

11.6.2 …but should it have? 

The relative success of the NACM in supporting the change of HIV policy to allow more people to 

benefit from ART and access better drugs and in rallying for an increase in the HIV budget throws 

open the question of whether the reasons to do so were valid. In other words, should policy have been 

changed based on a single model, especially a model that was subject to all the limitations mentioned 

in section 2.4? 

 

Firstly, from the perspective of decision makers in the National Department of Health and Treasury, it 

is important to note that the model was added to a very low baseline in which data-driven analysis 

was largely absent from the budget and policy planning process for HIV. This does not mean that the 

NACM does not have to withstand scrutiny, but it certainly contributed to making the budgeting 

process more transparent and initiated a process of interrogation and clarification between the 

National Department of Health and other stakeholders in terms of inputs, assumptions, and HIV policy 

goals.  

 

Secondly, even though the absence of more refined sensitivity analysis does limit the usefulness of 

the model somewhat, most of the strongest implications of the analysis discussed in Chapter 9 were 

based on such large cost differences that the recommendations based on the model results would 

likely be the same had uncertainty been taken into account, especially the finding of cost savings from 

the opening of the drug market to international (generic) competition and from task-shifting to lower 

cadres of clinicians.  

 

Thirdly, some of the more central results of the NACM have since been verified by independent 

analyses. As predicted by the analysis in chapter 9, the 2010 tender negotiations resulted in an 

average decrease in the price of single antiretroviral drugs compared to the 2008 tender by 50%, in 

the per-patient cost of ARV provision by 18% to 23%, and in the annual cost of the ART programme 

by 26%, which might not be such a surprise since both the model and the tender process worked off 

the same price list of best prices internationally compiled by the Clinton Health Access Initiative in 

South Africa. A more important validation for a budget impact model, especially one whose results 

were produced a number of years ago, is how well actual expenditure fits predicted expenditure over 

the same period. In South Africa, expenditure against only a few of the cost items included in the 
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NACM can be tracked appropriately, even if only expenditure under the HIV/AIDS Conditional Grant is 

taken into account. One exception is the spending on antiretroviral drugs which has the advantage of 

being circumscript and easy to allocate as the resource is not shared with any other programme or 

intervention, such as staff or clinic space would be. A recent analysis of antiretroviral drug expenditure 

for the financial year 2013/14 in South Africa found average expenditure per patient year of R1,571, a 

number that was within 14% of the average antiretroviral drug cost predicted by the NACM for the 

same year (R1,377) [36].  

 

The most serious objection against the government’s use of the NACM results to increase the budget 

for antiretroviral treatment is that it is not an economic evaluation model, and only considers ART, not 

HIV prevention, nor the entire spectrum of other health interventions or even other public policy 

options. As such, as mentioned in section 2.5, my work on the NACM started from a declared aim of 

the current South African government - increasing access to and the quality of the country’s ART 

programme in a situation where the sustainability of the programme was threatened by a lack of 

funding. (Subsequent rounds of guideline changes and concomitant budget increases in South Africa 

were probably as much dictated by the desire to put recommendations and declarations of 

international agencies such as WHO and UNAIDS into practice, as by affordability or the domestic 

policy agenda, but this issue is somewhat beyond the scope of this thesis.)  

 

As stated in section 2.5, the NACM helped decision makers in the South African government do what 

they had already resolved to do - potentially to the detriment of other programmes and policies. As  

Figure 6 shows, the rate of growth in the health budget overall and the proportion of the total 

government budget spent on health has declined in real terms since 2012/13, while the HIV budget 

has continued to grow both in total terms and as a percentage of the health budget. This could create 

a situation where HIV spending potentially outcrowds spending on other, possibly equally worthwhile 

health programmes. The only way to find out would be subject all health programmes to economic 

evaluations and optimise spending under a given budgetary constraint or willingness-to-pay threshold 

by allocating resources according to each programme’s relative cost effectiveness. 
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Figure 6: Total government, health, HIV budgets/ expenditure (2009/10 - 2016/17) 
Data based on [6], sources: Estimates of Provincial Expenditure/ Estimates of National Expenditure 2004/5 to 
2014/15, Medium Term Policy Statetments, Division of Revenue Bill/ Acts; all from National Treasury. “Total 
government/ expenditure” includes allocations at national, provincial & local government level; “total health 
budget/ expenditure” includes DOH allocations at national and provincial level; “HIV budget/ expenditure (NDOH 
only) includes HIV/AIDS conditional grant allocations to provinces, NDOH allocations, and provinces' own 
equitable share allocations.  

 
  

11.6.3 A way forward 

For the first time in a decade, a number of initiatives are currently under way to improve government 

priority setting in health, across disease areas, in the public health sector in South Africa. 

 

With regards to optimising government spending on HIV between treatment and prevention 

interventions, the South African HIV and TB Investment Case went some way towards alleviating 

possible imbalances between the two areas, by including all currently available treatment and 

prevention interventions for which there was evidence regarding their effectiveness, calculating their 

cost-effectiveness using the Thembisa model and a custom-made cost model that included the 

NACM, ranking them by their cost effectiveness and defining the optimal coverage for each under a 

given budget envelope, using novel optimisation methodlogy [9]. The Investment Case has inspired a 

number of similar government-led exercises in other disease areas, such as maternal and child health 

and palliative care. 

 

In terms of improving cross-disease allocation of health spending, efforts to create a Health 

Technology Assessment (HTA) agency or network in South Africa have recently increased, in part 

building on the successful application of economic evaluation in the area of HIV in the past years. In 

March 2015, a first meeting of the International Decision Support Initiative funded by NICE-

International and the Bill and Melinda Gates Foundation was convened during which the Director-

General of the Health Department and the National Treasury’s Chief Director for Health and Social 

Services expressed a strong interest in increasing HTA capacity in South Africa, with the stated aim of 
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improving the ad-hoc way in which economic analyses are currently done and their results get used 

by policy makers [37]. While the attending representatives of academic institutions and government 

departments currently involved in HTA work could not quite agree on the formation of a stand-alone 

agency, a network of analysts and institutions was formed that will take the development of HTA 

capacity in the country forward [37]. 
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