1	A Longitudinal Study of Systemic Inflammation and Recovery of Lean Body Mass among
2	Malnourished HIV-infected Adults Starting Antiretroviral Therapy in Tanzania and
3	Zambia
4	
5	Authors and Institutional affiliations
6	George PrayGod ^{1§} , Meridith Blevins ^{2,3} , Susannah Woodd ⁴ , Andrea M Rehman ⁴ , Kidola
7	Jeremiah ¹ , Henrik Friis ⁵ , Paul Kelly ^{6, 7} , John Changalucha ¹ , Douglas C. Heimburger ^{3,8} , Suzanne
8	Filteau ⁴ , John R. Koethe ^{3,8}
9	
10	¹ Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
11	² Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, USA
12	³ Vanderbilt Institute for Global Health, Nashville, TN, USA
13	⁴ Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical
14	Medicine, London, UK
15	⁵ Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen,
16	Denmark
17	⁶ University Teaching Hospital, Lusaka, Zambia
18	⁷ Barts & the London School of Medicine, Queen Mary University of London, London, UK
19	⁸ Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA

2	0
2	υ

21	Running title: Inflammation and body composition during early ART
22	
23	[§] Corresponding author: Dr George PrayGod, Mwanza Research Centre, National Institute for
24	Medical Research, Box 1462, Mwanza, Tanzania. Tel: +255 28 2503012. E-mail:
25	gpraygod@yahoo.com
26	
27	Abstract word count: 249
28	
29	Main text word count: 2989
30	
31	
32	Funding support: This study was funded by European and Developing Countries Clinical Tria
33	Partnership grant # IP.2009.33011.004. The funding body had no role in the design, conduct,
34	interpretation or decision to publish results of this study.

Clinical Trials

35 Abstract:

Background: The effects of inflammation on nutritional rehabilitation after starting
antiretroviral therapy (ART) are not well understood. We assessed the relationship between
inflammation and body composition among patients enrolled in the Nutritional Support for
African Adults Starting Antiretroviral therapy (NUSTART) trial in Tanzania and Zambia from
2011-2013.

41

Methods: HIV-infected, ART-eligible adults with body mass index (BMI) < 18.5 kg/m² enrolled
in the NUSTART trial were eligible for this study. Anthropometric and body composition data
were collected at recruitment and 6 and 12 weeks post-ART and C-reactive protein (CRP) was
measured at recruitment and 6 weeks. The relationships between CRP and body composition
were assessed using multiple regression.

47

Results: Of 1815 trial participants, 838 (46.2%) had baseline and 6 week CRP measurements.
Median age was 36 years, 55% were females, and median CD4 count was 135 cells/µL. A onelog reduction in CRP at 6 weeks was associated with increased mid-upper-arm circumference
(0.45 cm; 0.30, 0.61), calf circumference (0.38 cm; 0.23, 0.54), waist circumference (0.98 cm;
0.59, 1.37), BMI (0.37 kg/m²; 0.24, 0.50), fat-free mass (0.58 kg; 0.26, 0.91), but not with fat
mass (0.09 kg; -0.17, 0.34). Fat-free mass gains persisted at 12 weeks and were more closely
associated with 6 week CRP values than with baseline values.

- 56 **Conclusions**: Reduction in CRP shortly after ART initiation was associated with higher fat-free
- 57 mass gains. Further studies are warranted to determine whether interventions to reduce systemic
- 58 inflammation will enhance the gains in fat-free mass.
- 59
- 60 **Key Words**: HIV, inflammation, body composition, malnutrition, antiretroviral therapy

61 **INTRODUCTION**

Infection with Human Immunodeficiency Virus (HIV) continues to be a major public health 62 problem in Sub-Saharan Africa. Despite efforts to promote early diagnosis and treatment 63 initiation before the onset of advanced disease, over a third of HIV-infected patients initiate 64 65 antiretroviral therapy (ART) after developing malnutrition (i.e., a body mass index [BMI] <18.5 kg/m^2) and early mortality in this group is exceedingly high.^(1, 2) Prior studies in Africa 66 investigating the effects of nutritional supplementation in the early ART period have not shown a 67 mortality benefit, and some supplements may actually produce a disproportionate increase in fat 68 mass.^(3,4) A greater recovery of lean mass, as opposed to fat mass, during the early HIV 69 70 treatment period may improve survival and reduce the long-term risk of developing chronic diseases, but the factors influencing lean mass gains among malnourished adults starting ART 71 are poorly understood. ⁽⁵⁾ 72

73

Malnutrition and HIV infection are accompanied by high levels of systemic inflammation, due in 74 part to unchecked viremia, reduced mucosal defenses, and opportunistic infections.⁽⁶⁻⁸⁾ In 75 advanced HIV infection, an elevated rate of protein turnover and inappropriately low muscle 76 protein synthesis prevent weight gain despite sufficient intake of calories and protein.⁽⁹⁻¹¹⁾ With 77 78 the initiation of ART and suppression of viremia, systemic inflammation normalizes to varying degrees, with a concomitant reduction in resting metabolic expenditures and improved weight 79 gain in most undernourished patients.^(12, 13) However, abnormalities in factors related to body 80 mass partitioning, such as an elevated rate of lipolysis, can persist in some patients despite viral 81 suppression and may have effects on subsequent nutritional rehabilitation.⁽¹⁴⁾ In prior studies, 82 aggressive parenteral nutrition in critically ill patients did not markedly improve lean body 83 mass,⁽¹⁵⁾ and weight gain during treatment for pulmonary tuberculosis was primarily due to gains 84 in adipose tissue rather than lean mass. ⁽¹⁶⁾ 85

We hypothesized that a failure to normalize systemic inflammation after starting ART impairs recovery of lean mass and biases weight gain towards adipose tissue deposition. Using data from malnourished HIV-infected patients enrolled in a nutritional supplementation trial in Tanzania and Zambia, we analyzed the relationships between C-reactive protein (CRP) and fat and fat-free mass immediately before and during first 12 weeks of ART.

92

93 METHODS

This study was conducted as part of the Nutritional Support for Africans Starting Antiretroviral 94 Therapy (NUSTART) trial (registration # PACTR201106000300631), a randomized, double 95 blind, controlled trial of a lipid-based nutritional supplement (LNS; prepared by Nutriset, 96 97 Malauney, France) in 1815 malnourished HIV-infected patients starting ART in Mwanza, Tanzania and Lusaka, Zambia. The study was conducted between August 2011 and December 98 2013. NUSTART participants were randomized to receive either the LNS alone (control arm) or 99 100 fortified with additional vitamins and minerals (intervention arm; LNS-VM) in a two-stage 101 nutritional intervention designed to mimic standard protocols for management of severe malnutrition in young children. From recruitment until 2 weeks after starting ART, participants 102 103 received a low calorie (30 g) LNS, and during weeks 2-6 of ART participants received a high calorie (250 g or ~1400 kcal/d) LNS. Trial inclusion criteria were 18 years of age or older, ART-104 naive except for standard regimens to prevent maternal-to-child HIV transmission, BMI < 18.5 105 kg/m², and a CD4 count < 350 cells/µl or WHO stage 3 or 4 disease. Self-reported pregnancy 106 was an exclusion criterion. In separate analysis LNS-VM compared to LNS did not increase fat 107 108 mass or fat-free mass at 12 weeks of ART.

110 NUSTART participants underwent detailed body composition and laboratory studies as part of an intensive visit schedule. After recruitment, patients came to the clinic weekly until the start of 111 ART, and again at weeks 1, 2, 4, 6, 8, and 12 after starting ART. Height was measured at 112 113 recruitment using a stadiometer fixed to the wall and weight at each visit using a digital balance. At recruitment, 2, 6, and 12 weeks after starting ART patients underwent additional 114 anthropometric evaluation. Waist circumference, mid-upper arm circumference (MUAC), hip 115 and calf circumferences were measured using a flexible tape, and triceps and sub-scapular 116 skinfold thickness using a caliper in Lusaka only. All measurements were done in triplicate and 117 the median value was recorded for analyses. Participants also underwent bioelectrical impedance 118 analysis (BIA) to estimate fat mass and fat-free mass (Tanita, Tokyo, Japan). Venous blood 119 120 samples were taken at all scheduled visits for laboratory analyses. Serum CRP was measured at recruitment and week 6 by ELISA (AssayPro, St. Charles, MO, USA), and hemoglobin was 121 measured by Hemocue and CD4 count by local central clinical services at recruitment. We did 122 not determine viral loads due to the limited availability of testing at our sites, the high cost, and 123 because testing is not routinely available for clinical care in these settings. Furthermore, while 124 providers at clinical sites recorded their diagnoses of suspected opportunistic infections, the 125 diagnostic capacity was very limited and confirmatory testing was often not available, and 126 therefore these data were not included in this analysis. 127

128 Sample size

As part of the main study, we recruited 1876 patients ⁽¹⁷⁾. This number was sufficient to detect, at 5% significance, 90% power and 25% attrition by 12 weeks due to death or loss to follow-up, differences of 0.18 of a standard deviation in secondary continuous outcomes measured at 12 weeks. Since this was part of the secondary analyses we did calculate sample size a priori

134 Analyses were conducted using Stata 12.1 and R-software 3.0.2 (<u>www.r-project.org</u>).

135 Demographics and clinical characteristics of the cohort were presented as percentages or

medians with interquartile ranges (IQR). Participants included in the analysis cohort versus those
deceased/lost prior to 6 weeks after starting ART or without complete laboratory values were
compared using the Kruskal-Wallis and Chi-square tests. CRP and body composition
measurements were compared pairwise across baseline and 6 week, and baseline and 12 week,
time points using the Wilcoxon signed-rank test.

141

142 The primary analysis for this paper assessed the relationship between the change in CRP from baseline (pre-ART) to 6 weeks post-ART and the change in anthropometric and bioelectric 143 impedance measurements over the same period using linear regression. CRP was log-144 145 transformed while the anthropometric and BIA outcome measurements remained on a linear scale. Models were adjusted for age, sex, CD4+ count, hemoglobin, treatment arm, country, and 146 whether the subject was receiving treatment for tuberculosis before starting ART. Hemoglobin 147 was missing for 8% of cases and was multiply imputed. To account for possible non-linear 148 associations, continuous variables were modeled using restricted cubic splines with 4 knots. We 149 150 also adjusted for the number of days between enrollment and ART initiation to reduce bias associated with longer pre-ART periods on supplement. 151

152

153 A second analysis assessed the effect of changes in CRP at 6 weeks with body composition at 12 weeks to determine whether CRP measurements during the LNS intervention predicted longer 154 term nutritional status after the intervention ended. Using linear regression models, we first 155 tested for a three-way interaction effect between CRP at enrollment, 6 weeks, and the 156 intervention arm, but the interaction term was not statistically significant in any of the models 157 158 (p>0.10 for all except calf circumference [p=0.08]). We then modeled a two-way interaction between CRP values and included the intervention arm as an additive effect. The regression 159 coefficients for baseline and 6 week columns represent the average difference in 12 week body 160 161 composition for a one-log difference around the median baseline and 6 week log-CRP values,

162	respectively. Models were adjusted for age, sex, CD4+ count, hemoglobin, treatment for
163	tuberculosis, site, and the number of days between enrollment and ART initiation, and
164	continuous variables were modeled using restricted cubic splines with 4 knots.

165

The NUSTART trial was conducted according to guidelines laid down in the Declaration of 166 Helsinki and all procedures were approved by the ethics committees of the London School of 167 Hygiene and Tropical Medicine, the University of Zambia, and the National Institute for Medical 168 Research, Tanzania. All patients provided written or thumbprint informed consent. 169

170

171 **RESULTS**

172 838 NUSTART participants survived beyond 6 weeks of ART and had serum CRP measurements performed at baseline and 6 weeks post-ART. The analysis cohort was 55% 173 female with a median age of 36 years (IQR 30, 42), median pre-ART CD4+ T-cell count of 135 174 cells/µl (IQR 63, 225), and median BMI of 16.8 kg/m² (IQR 15.9, 17.6) (Table 1). Participants 175 were equally distributed between the intervention and control arms, with a higher percentage 176 (59%) enrolled in Lusaka (similar to the full cohort). Among those not included in the analysis 177 178 cohort, 340 had died at 12 weeks, 156 had withdrawn or were lost to follow-up, and the remaining 481 alive at 12 weeks either did not have a baseline or 6 week CRP measurement 179 (Table 2). In comparison to the analysis cohort, the excluded participants were more likely to be 180 male, younger, and had a lower median CD4+ T cell count and lower median BMI (p<0.01 for 181 all). 182 183

184 **Table 3** shows median serum CRP at baseline and 6 weeks of ART, and anthropometric and BIA measurements at baseline and 6 and 12 weeks. Median CRP only decreased from 38.2 mg/l (IQR 185

8.9, 124) to 34.8 mg/l (IQR 12.2, 94.5) from baseline to six weeks, which was not statistically
significant (p=0.91). The paired change from baseline to 6 weeks of ART for all of the body
composition measurements was statistically significant (p<0.001 for all), and the paired change
from 6 to 12 weeks was also significant (p<0.01 for all).

190

The intra-individual changes in serum CRP from baseline to 6 weeks were inversely associated 191 with changes in several of the body composition measurements over the same period (Table 4). 192 A one-log reduction in CRP was associated with a 0.37 kg/m^2 increase in BMI, a 0.45 cm 193 194 increase in mid-upper arm circumference, a 0.98 cm increase in waist circumference, and 0.58 kg increase in fat-free mass at 6 weeks of ART (p<0.001 for all). Other anthropometric 195 196 measurements were also inversely related to the change in CRP with the exception of BIA fat mass. These relationships appeared non-linear. While greater reductions in log-CRP were 197 generally associated with greater body composition changes, a failure to reduce log-CRP or a 198 199 rise in log-CRP on ART was generally associated with little change (Figure). The relationships of CRP at baseline and 6 weeks with body composition at 12 weeks were assessed using linear 200 regression models incorporating baseline and 6 week values, in addition to a two-way interaction 201 202 term between CRP values (**Table 5**). For the purpose of calculating the effects on body composition, the model for baseline CRP was adjusted to a median log-CRP value of 3.5, and the 203 model for 6-week CRP was adjusted to a median log-CRP of 3.6. A one-log higher CRP at 204 baseline was significantly associated with lower mid-upper arm and waist circumference at 12 205 206 weeks. However, a one-log higher 6- week CRP was significantly associated with lower BMI, mid-upper arm, waist, hip and calf circumference, and triceps skinfold thickness at 12 weeks. 207 The relationship between 6 week CRP and 12 week BIA fat-free mass approached significance 208 (p=0.06), while there was little evidence of an association of CRP with 12 week scapular 209 210 skinfold thickness and BIA fat mass.

212 Due to the complicated nature of interaction effects, we summarized the statistical models of the combined effect of enrollment and week 6 log-CRP values on the change in 12 week body 213 composition measurements using heat maps (Supplementary Figure). In these figures, deeper 214 215 shades of blue represent larger increases in body composition measurements at 12 weeks corresponding to a pair of enrollment (x-axis) and week 6 (y-axis) log-CRP values, while deeper 216 shades of violet represent smaller increases (or negative changes in some variables). The change 217 in CRP was associated only with mid-upper arm, waist and hip circumference and triceps 218 skinfold thickness (p<0.05), and approached significance for BMI (p=0.05; p-values refer to the 219 effect of the two-way interaction term [log-CRP at enrollment and week 6] on outcome 220 measurements). In general, larger increases in lean body mass metrics were seen in patients with 221 222 moderate-to-high baseline CRP and lower 6 week CRP.

223

224 **DISCUSSION**

In this study of undernourished HIV-infected patients starting ART, we found that a failure to 225 226 reduce excessively high levels of CRP in the early weeks following treatment initiation is associated with failure to accrue lean mass as measured by both anthropometry and BIA. 227 Furthermore, the accumulation of adipose tissue did not appear dependent on CRP reduction, 228 229 suggesting that weight gain in the setting of uncontrolled inflammation may actually represent an unhealthy shift towards adiposity, with potential consequences for metabolic disease in the 230 future. These findings suggest the monitoring of inflammatory biomarkers in undernourished 231 ART patients during the early treatment period, and additional interventions to identify and treat 232 sources of inflammation, could improve the nutritional and other health outcomes of this 233 234 population.

236 Restoring individuals with advanced HIV disease and malnutrition to health requires both the recovery of effective immune protection and the rebuilding of adequate stores of metabolically 237 active muscle and other lean tissues.⁽¹⁸⁾ While the initiation of ART by undernourished HIV-238 239 infected adults is usually accompanied by weight gain to varying degrees, the composition of the newly deposited tissue is also an important factor in nutritional rehabilitation and the 240 normalization of metabolic processes. Prior studies in diverse HIV-infected populations have 241 found mixed effects of ART on body composition, with some showing no effect on fat and lean 242 mass, and others suggesting that ART may lead to preferential increases in lean or fat mass.(4, 243 19-21) However, the factors responsible for this heterogeneous response have not been 244 previously explored in detail. 245

246

Our baseline and follow-up levels of CRP were higher than those reported from studies in 247 resource-rich settings and may reflect to the combination of untreated viremia, secondary 248 249 infections related to immunosuppression or local factors (e.g., parasites), and enteropathy related to both HIV infection and malnutrition.⁽⁶⁻⁸⁾ HIV infection depletes lymphoid cells in the 250 gastrointestinal mucosa integral to defense against bacterial, fungal, and parasitic pathogens, and 251 impairs tight junctions between epithelial cells, resulting in altered intestinal integrity and 252 increased translocation of microbes from the intestinal lumen to the circulation.⁽²²⁻²⁶⁾ Increased 253 microbial translocation is posited as a major contributor to elevated, chronic inflammation in 254 HIV-infected individuals, which is likely compounded in the setting of chronic malnutrition due 255 to similar impairments in intestinal mucosal integrity and the adaptive immune response in the 256 gut.^(6-8, 27) 257

258

Our observation that a higher CRP level is associated with lower lean mass gains may explainthe finding in prior nutritional supplementation trials that some patients gained no weight or

mainly fat mass during early ART, which has also been reported in patients with similar
proinflammatory states such as tuberculosis, severe trauma and cancer .^{(15, 16),}(28) and indicates
that across the spectrum of infectious and non-infectious diseases, inflammation may be a key
determinant of nutritional depletion and recovery.

265 Elevated circulating inflammatory cytokines such as TNF-alpha and interleukin-6 are associated with reduced muscle protein synthesis and deposition, and may stimulate apoptosis in muscle 266 cells precursors, suggesting that lack of lean mass gain associated with high inflammation may 267 actually be due to failure of protein synthesis rather than excessive protein breakdown.^(9, 10) The 268 finding that inflammation and lean mass recover are closely linked will be important for 269 interpreting findings of future nutritional intervention trials in low-income settings, and it may be 270 the case that any meaningful effects of nutritional interventions on lean mass will depend on first 271 reducing inflammation. Of note, a recent trial in Ethiopia found that that presence of persistent 272 HIV-1 viremia at 3 months was associated with preferential fat mass gain, while viral 273 suppression was associated with lean mass gain. ⁽²¹⁾ 274

275

In the present study, we noted that CRP levels were not closely associated with 6 or 12 weeks 276 post-ART measurements of fat mass, which may indicate that the accrual of fat mass is driven by 277 278 other factors independent of inflammation. In higher BMI populations, CRP is positively associated with fat mass. ⁽²⁹⁾ A similar relationship between fat mass and CRP was not observed 279 in our patients; and we hypothesize that any contribution of adipose tissue to circulating 280 inflammatory mediators may have been obscured by the more pronounced effect of advanced 281 malnutrition and HIV infection on systemic inflammation. However, further work is needed to 282 understand the directionality of the relationships between inflammation and body fat mass in low 283 versus normal and high BMI individuals. 284

Prior studies in Africa have shown elevated CRP, interleukin-6, and other markers of systemic inflammation are associated with increased mortality on ART, but there are fewer data on the link between inflammation and long-term outcomes.⁽³⁰⁾ As the capacity of health systems to identify and treat cardiovascular, metabolic and other non-communicable diseases in HIV patients improves in sub-Saharan Africa, epidemiologic studies are needed to determine how very high levels of inflammation affect long-term health outcomes.

292

In this study we included in the analysis about half of the patients recruited for the trial. Patients 293 294 not included in the analysis because of loss to follow-up, or death tended to be those who were severely malnourished, immunocompromised judged by CD4 count and had higher median CRP. 295 296 Although a higher baseline CRP, in the excluded survivors would have potentially resulted in a large reduction in CRP from zero to 6 weeks, assuming that the patterns of correlation remained 297 the same, this would probably not have significantly changed the associations given that we 298 299 modelled the relation between CRP and body composition parameters on log rather than normal scale. 300

301

The strength of our study was the prospective design and large sample size, which permitted the 302 assessment of longitudinal relationships between CRP and body composition between referral 303 for ART and 6 and 12 weeks post-ART. The BIA method we used was well suited to clinical 304 care in Africa and has been shown to correlate well with more complicated radiographic 305 assessments in healthy patients, but there are fewer data comparing BIA versus DEXA and other 306 radiographic methods in malnourished, HIV patients.⁽³¹⁾ However, a longer follow-up period 307 may have also provided additional insights on trends of body composition changes during ART 308 309 among undernourished patients on ART. Furthermore, our study could not assess the long-term implications of early changes in body composition on ART. We observed a 0.37 kg/m² rise in 310

311 BMI at 6 weeks in patients with a one-log CRP reduction over the same period, which represents an approximately 2%-2.5% BMI increase (depending on the baseline BMI value). Prior studies 312 have shown modest early increases in BMI are clinically important for long-term survival, but 313 314 additional studies are warranted to understand how body composition, inflammation, and other nutritional factors interact to influence health outcomes.⁽³²⁾ Although additional LNS received 315 by patients in the trial may have made them different from the rest of HIV population on ART. 316 this difference would have disappeared a few weeks after starting ART as patients on treatment 317 regained appetite and started consuming nutritionally diverse food. Thus, these findings can be 318 generalized to all malnourished HIV-infected patients starting ART. 319

320

321 CONCLUSIONS

322 In conclusion, among HIV-infected adult patients, reductions in CRP over the first six weeks of ART were associated with higher lean body mass gains; and patients with lower CRP at 6 weeks 323 continued to have greater lean mass up to 12 weeks. Promoting lean body mass gains in 324 malnourished HIV patients starting ART is important for nutritional rehabilitation and may 325 impact long-term survival and chronic disease risk. Future trials should consider interventions 326 addressing both nutritional recovery and inflammation, to elucidate mechanisms and optimize 327 328 outcomes in malnourished patients. Lastly, further studies on the effect of persistent high level of inflammation as well as fat mass gains on long-term chronic disease risk, including diabetes 329 mellitus and cardiovascular conditions, are needed in sub-Saharan Africa. 330

331

332 Figure legends

Figure. Relationship of the change in C-reactive protein and body composition measurementsbetween baseline and 6 weeks of antiretroviral therapy.

Models adjusted for sex, treatment arm, country, and age, CD4+ count, hemoglobin, and receipt
of anti-tuberculosis therapy at treatment initiation. CRP is log-transformed. Abbreviations: BMI,
body mass index.

338

ACKNOWLEDGEMENTS: This manuscript was prepared from data arising from the 339 NUSTART trial. We are therefore grateful to the NUSTART study team which includes: 340 Principal investigator: Suzanne Filteau; Senior investigators: Aase Bengaard Andersen, John 341 Changalucha, Henrik Friis, Douglas C. Heimburger, Lackson Kasonka, Paul Kelly; Statisticians 342 343 and other senior research fellows: John R. Koethe, Daniela Manno, Natasha Larke, Andrea M. Rehman, Susannah Woodd, Daniel Yilma; Steering group: David Thurnham, Andrew Tomkins; 344 Mwanza trial manager: George PrayGod; Lusaka trial managers: Molly Chisenga, Joshua Siame; 345 346 Mwanza senior clinic team: Jeremiah Kidola, Denna Michael, Kelvin Mussa, Charles Masilingi, Elizabeth Fue, Eva Masesa, Neema Mpandachalo; Lusaka senior clinic team: Anne Kanunga, 347 Likando Munalula, Brenda Kapinda, Nellie Sikanyika; Laboratory technicians: Julius Mngara, 348 George Ogweno, Piu Ikigo, Mutinta Muchimba, Memory Samwinga, Leo Beacroft, Harry Black, 349 Celeste Gregg Smith; Postgraduate students: Caroline Chisenga, Marlene Hebie, Derek 350 351 Munkombwe, Gemma Sampson; Administrators and data managers: Yolanda Fernandez, Gunda Wandore, Aswile Jonas, Hildah Banda Mabuda, Wakwoya Adugna; Pharmacists: Stephen 352 Makandilo, Mwangana Mubita, Jessy Mulenga. We are grateful also to nurses, data entry clerks, 353 354 drivers and other support staff at both NUSTART sites.

355

356 **CONFLICT OF INTEREST:** none declared by any authors

357

358 Supplementary information is available at the European Journal of Clinical Nutrition website

REFERENCES

1. Liu E, Spiegelman D, Semu H, Hawkins C, Chalamilla G, Aveika A, et al. Nutritional Status and Mortality Among HIV-Infected Patients Receiving Antiretroviral Therapy in Tanzania. J Infect Dis. 2011 Jul;204(2):282-90.

2. Gupta A, Nadkarni G, Yang WT, Chandrasekhar A, Gupte N, Bisson GP, et al. Early Mortality in Adults Initiating Antiretroviral Therapy (ART) in Low- and Middle-Income Countries (LMIC): A Systematic Review and Meta-Analysis. PLoS One. 2011;6(12):e28691.

3. Grobler L, Siegfried N, Visser ME, Mahlungulu SS, Volmink J. Nutritional interventions for reducing morbidity and mortality in people with HIV. The Cochrane database of systematic reviews. 2013;2:CD004536.

4. Ndekha MJ, van Oosterhout JJ, Zijlstra EE, Manary M, Saloojee H, Manary MJ. Supplementary feeding with either ready-to-use fortified spread or corn-soy blend in wasted adults starting antiretroviral therapy in Malawi: randomised, investigator blinded, controlled trial. BMJ (Clinical research ed. 2009;338:b1867.

5. Mulligan K, Harris DR, Monte D, Stoszek S, Emmanuel P, Hardin DS, et al. Obesity and dyslipidemia in behaviorally HIV-infected young women: Adolescent Trials Network study 021. Clin Infect Dis. 2010 Jan 1;50(1):106-14.

6. Marchetti G, Cozzi-Lepri A, Merlini E, Bellistri GM, Castagna A, Galli M, et al. Microbial translocation predicts disease progression of HIV-infected antiretroviral-naive patients with high CD4+ cell count. AIDS. 2011 Apr 18;25(11):1385-94.

 Sandler NG, Wand H, Roque A, Law M, Nason MC, Nixon DE, et al. Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection. J Infect Dis. 2011 Jan 20;203(6):780-90.

8. Elia M, Goren A, Behrens R, Barber RW, Neale G. Effect of total starvation and very low calorie diets on intestinal permeability in man. Clin Sci (Lond). 1987 Aug;73(2):205-10.

9. Yarasheski KE, Zachwieja JJ, Gischler J, Crowley J, Horgan MM, Powderly WG. Increased plasma gln and Leu Ra and inappropriately low muscle protein synthesis rate in AIDS wasting. Am J Physiol. 1998 Oct;275(4 Pt 1):E577-83.

10. Macallan DC, McNurlan MA, Milne E, Calder AG, Garlick PJ, Griffin GE. Whole-body protein turnover from leucine kinetics and the response to nutrition in human immunodeficiency virus infection. Am J Clin Nutr. 1995 Apr;61(4):818-26.

11. Powanda MC, Beisel WR. Metabolic effects of infection on protein and energy status. J Nutr. 2003 Jan;133(1):322S-7S.

12. Grunfeld C, Pang M, Shimizu L, Shigenaga JK, Jensen P, Feingold KR. Resting energy expenditure, caloric intake, and short-term weight change in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. Am J Clin Nutr. 1992 Feb;55(2):455-60.

13. Shevitz AH, Knox TA, Spiegelman D, Roubenoff R, Gorbach SL, Skolnik PR. Elevated resting energy expenditure among HIV-seropositive persons receiving highly active antiretroviral therapy. AIDS. 1999 Jul 30;13(11):1351-7.

14. van der Valk M, Reiss P, van Leth FC, Ackermans MT, Endert E, Romijn JA, et al. Highly active antiretroviral therapy-induced lipodystrophy has minor effects on human immunodeficiency virus-induced changes in lipolysis, but normalizes resting energy expenditure. J Clin Endocrinol Metab. 2002 Nov;87(11):5066-71.

15. Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein loss despite fat gain in septic intensive care patients. The Journal of trauma. 1987 Mar;27(3):262-6.

16. Schwenk A, Hodgson L, Wright A, Ward LC, Rayner CF, Grubnic S, et al. Nutrient partitioning during treatment of tuberculosis: gain in body fat mass but not in protein mass. The American journal of clinical nutrition. 2004 Jun;79(6):1006-12.

17. Filteau S, PrayGod G, Kasonka L, Woodd S, Rehman AM, Chisenga M, et al. Effects on mortality of a nutritional intervention for malnourished HIV-infected adults referred for antiretroviral therapy: a randomised controlled trial. BMC medicine. 2015;13:17.

18. Mupere E, Malone L, Zalwango S, Chiunda A, Okwera A, Parraga I, et al. Lean tissue mass wasting is associated with increased risk of mortality among women with pulmonary tuberculosis in urban Uganda. Annals of epidemiology. 2012 Jul;22(7):466-73.

19. McDermott AY, Shevitz A, Knox T, Roubenoff R, Kehayias J, Gorbach S. Effect of highly active antiretroviral therapy on fat, lean, and bone mass in HIV-seropositive men and women. The American journal of clinical nutrition. 2001 Nov;74(5):679-86.

20. Silva M, Skolnik PR, Gorbach SL, Spiegelman D, Wilson IB, Fernandez-DiFranco MG, et al. The effect of protease inhibitors on weight and body composition in HIV-infected patients. AIDS (London, England). 1998 Sep 10;12(13):1645-51.

21. Olsen MF, Abdissa A, Kaestel P, Tesfaye M, Yilma D, Girma T, et al. Effects of nutritional supplementation for HIV patients starting antiretroviral treatment: randomised controlled trial in Ethiopia. Bmj. 2014;348:g3187.

22. Brenchley JM, Schacker TW, Ruff LE, Price DA, Taylor JH, Beilman GJ, et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J Exp Med. 2004 Sep 20;200(6):749-59.

23. Mehandru S, Poles MA, Tenner-Racz K, Horowitz A, Hurley A, Hogan C, et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J Exp Med. 2004 Sep 20;200(6):761-70.

24. Sankaran S, George MD, Reay E, Guadalupe M, Flamm J, Prindiville T, et al. Rapid onset of intestinal epithelial barrier dysfunction in primary human immunodeficiency virus infection is driven by an imbalance between immune response and mucosal repair and regeneration. J Virol. 2008 Jan;82(1):538-45.

25. Brenchley JM, Paiardini M, Knox KS, Asher AI, Cervasi B, Asher TE, et al. Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections. Blood. 2008 Oct 1;112(7):2826-35.

26. Epple HJ, Schneider T, Troeger H, Kunkel D, Allers K, Moos V, et al. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut. 2009 Feb;58(2):220-7.

27. Welsh FK, Farmery SM, MacLennan K, Sheridan MB, Barclay GR, Guillou PJ, et al. Gut barrier function in malnourished patients. Gut. 1998 Mar;42(3):396-401.

28. McMillan DC. Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care. 2009 May;12(3):223-6.

29. Reingold J, Wanke C, Kotler D, Lewis C, Tracy R, Heymsfield S, et al. Association of HIV infection and HIV/HCV coinfection with C-reactive protein levels: the fat redistribution and metabolic change in HIV infection (FRAM) study. J Acquir Immune Defic Syndr. 2008 Jun 1;48(2):142-8.

30. Koethe JR, Blevins M, Nyirenda C, Kabagambe EK, Shepherd BE, Wester CW, et al. Nutrition and inflammation serum biomarkers are associated with 12-week mortality among malnourished adults initiating antiretroviral therapy in Zambia. Journal of the International AIDS Society. 2011;14:19.

31. Furstenberg A, Davenport A. Comparison of multifrequency bioelectrical impedance analysis and dual-energy X-ray absorptiometry assessments in outpatient hemodialysis patients. Am J Kidney Dis. 2011 Jan;57(1):123-9. 32. Madec Y, Szumilin E, Genevier C, Ferradini L, Balkan S, Pujades M, et al. Weight gain at 3 months of antiretroviral therapy is strongly associated with survival: evidence from two developing countries. AIDS (London, England). 2009 Apr 27;23(7):853-61.