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Abstract 

Mathematical models can be used to evaluate the health impacts of housing energy efficiency 

interventions. However by their nature, models are subject to uncertainty and variability, 

which are important to quantify if used to support policy decisions. Models that are used to 

assess the impacts on health of housing energy efficiency interventions are likely to be based 

on a pair of linked component models: a building physics model which calculates changes in 

exposures and whose outputs then feed into a health impact model. Current methods to 

propagate uncertainty in a series of models, where the outputs of one model are inputs to 

another, invariably use Monte Carlo (MC) numerical simulation.  In this paper, two methods 

are used to  quantify the uncertainty in the impact of draught proofing on childhood asthma: 

the MC simulation method and a  semi-analytical method based on integral transforms. Both 

methods give close results but it is  argued that the  semi-analytical method has some 

advantages over the MC method, particularly in quantifying the uncertainties in the main 

outputs of the building physics model before propagating them to the health model.        

Highlights: 

 Uncertainty in health risks associated with draught proofing are quantified  

 Monte Carlo method and a semi-analytical method are used to quantify uncertainty 

 Both methods give approximately the same result  

 The semi-analytical  method has some advantages over the MC method  

 It quantifies uncertainty in mould exposure before propagation to health impact 

Key words: Uncertainty propagation; risk analysis; modelling; energy efficiency. 

 

1. Introduction 
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Quantitative health impact assessment of housing policies and interventions requires the use 

of building physics and health models [1-3]. By their nature, any mathematical model is 

subject to uncertainty which could be attributed either to the uncertainty in its parameters or 

its structure. When assessing the health risks associated with a policy or an intervention, it is 

important that uncertainties and variability in the models are taken into account to aid robust 

decision-making. Although uncertainty and variability are often treated the same 

mathematically, they are different conceptually; with new evidence uncertainty is likely to 

decrease whereas variability either remains the same or even increases.  The aim of this paper 

is to quantify the uncertainty in health impacts associated with draught proofing. This is done 

using two methods:  the classical Monte Carlo (MC) method and a semi-analytical method. 

The focus is on handling parametric uncertainty and variability;  structural uncertainty will be 

addressed in a separate study.  The terms uncertainty and variability are used interchangeably 

in this paper unless  otherwise specified. 

The semi-analytical  method  combines the MC method with an integral transform method. 

The integral transform method for handling uncertainty is based on the algebra of random 

variables [4-5] and  has been applied previously in engineering [6-8]. It is not as popular as 

the MC method because of the difficulty in calculating the integral transforms analytically. 

However recent advances in mathematical software for symbolic processing would enable the 

calculation of the integrals analytically.   

The framework of analysis of this study is shown in Figure 1. The first method treats the 

building physics model and the health model as one model and applies the MC method fully 

to the combined model. The parameters of the combined building physic-health model are 

drawn from their respective distributions and the simulations are repeated as in any MC 

simulation. This method is completely numerical. The second method however applies the 

MC method only to the building physics model and propagates the uncertainty between the 
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output of the building physics model (mould exposure) and the health model analytically 

using integral transforms. This method is called semi-analytical because it combines a 

numerical method with an analytical method. The analytical component of the method entails 

symbolic (or algebraic) processing to calculate integral transforms.    

 

Figure 1. Framework of analysis. Two methods are used: a complete MC simulation and a semi-

analytical method which combines a MC method for the building physics model and a semi-analytical 

method for propagating the uncertainty between the building physics model and the health model. 

 The outline of the paper is as follows. The second section describes the methods consisting 

of (i) the building physics model which simulates changes in the indoor environmental 

exposures post-intervention, (ii) the health model which maps changes in the indoor 

exposures to health outcomes, (iii) quantifying the uncertainty in the building physics and 

health models, and finally, (iv) propagating the uncertainty between the two models. The 
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third section gives the results of the uncertainty analysis and compares the results of the full 

probabilistic Monte Carlo (MC) method with the proposed semi-analytical method. The 

discussion section gives the main findings and debates the strengths and weaknesses of our 

uncertainty approach. The last section concludes. In order to make the paper self-contained, 

four appendices are added for the purpose of providing (A) the theoretical details of the 

building physics model, (B) practical details on the building physics modelling software tool 

used, (C) background material on the integral (Mellin) transform, and (D) definitions of 

mathematical functions referred to in the paper. 

2. Methods 

Without loss of generality, we illustrate the methods on a case-study dwelling which is a flat 

(apartment) with two exposed walls (Figure 2) and an extract fan in the kitchen and bathroom 

to meet current UK building regulations [9].  
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Figure 2. Layout of zones within case-study dwelling. The pale blue rectangles show where windows 

are placed, yellow circles show airflow paths enabling flow of air and moisture between zones, dark 

blue squares show zones where moisture is generated, and green squares show zones with extract fans 

installed. 

The purpose of the analysis is to determine the uncertainty in the health risks (or benefits) 

associated with an energy efficiency housing intervention.  Draught-proofing is chosen as an 

example of an intervention that is likely to have an impact on health. Draught proofing 

increases the air tightness of the dwelling which, among other effects, can influence both 

indoor temperature and, through changes in indoor temperature and reduced ventilation, 

mould risk.  Air tightness is the resistance of a building’s fabric to infiltration and exfiltration 

where infiltration is the uncontrolled ventilation into a building and exfiltration is the 
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uncontrolled ventilation out of a building [10].  Presence of mould in dwellings is known to 

be associated with respiratory symptoms in children [11-12].   The aim is to quantify the 

uncertainty in the health risks associated with this intervention.  

Again, without loss of generality, only the mould-respiratory disease pathway is considered. 

Mould severity index (MSI) is commonly used to quantify the mould exposure in dwellings 

[13]. MSI is based on reported visible mould defined within the English Housing Survey 

[14]. If MSI is greater than unity, this indicates the presence of mould. Building physics 

models are used here to determine the change in the likelihood of MSI exceeding unity due to 

draught-proofing in the case-study dwelling. Health models are then used to associate the 

change in mould exposure with asthma in children.  Heath impacts are expressed in Quality 

Adjusted Life Years (QALYs). The QALY is a health metric which is widely used in health 

impact evaluations, combining survival and quality of life lived [15].  

 

2.1 Building physics (exposure) model 

Details of the building physics model are given in Appendix A. The likelihood of MSI 

exceeding unity (ℒ𝑀𝑆𝐼>1) in the living room is estimated from a combination of (i) a stand-

alone indoor air quality simulation model and (ii) empirical relationships derived from the 

national evaluation study of the “Warm Front” home energy intervention scheme in England 

[16]. Warm Front was a large programme in England whose aim was to reduce fuel poverty 

by improving energy efficiency in dwellings through the introduction of a number of housing 

interventions such as cavity wall insulation, loft insulation and draught proofing. 

The CONTAM indoor air quality simulation model [17] was used in this study to model the 

infiltration and exfiltration through adventitious openings, doors, and windows as well as 
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room-to-room airflows in the selected flat archetype. Information on the CONTAM setup for 

simulating the indoor environment of UK households are given elsewhere [18-20] and the 

main CONTAM input parameters of relevance to this study are given in Appendix B.  The 

airflows are a result of the wind pressures acting on the building envelope, and buoyancy 

effects induced by differences between internal and external temperatures. The dwelling is 

assumed to be ventilated through extract fans in bathroom and kitchen and by natural means 

(i.e. through cracks in the building envelope and opening of windows and doors without the 

aid of mechanical air movement systems). Moisture is modelled in this study as a non-trace 

pollutant and is assumed to be produced by occupants, cooking, showers, as well as by 

ingress from the external environment through air exchange. From the perspective of this 

study, the key inputs to CONTAM include dwelling characteristics (total ground floor area, 

permeability of the building envelope, height and orientation), occupant behaviour (affecting 

indoor moisture production rate, cooking times, and operation of windows and doors) and 

weather information (wind speed, wind direction, external moisture level, external 

temperature).  

The models are only run for eight months of winter, nominally defined between 1st October 

and 31st May, because these are the months when mould poses the biggest risk. A typical 

weather profile (CIBSE’s London Test Reference Year Weather file1) obtained from the 

Chartered Institution of Building Services Engineers [21] database is used in the simulations. 

Moisture is assumed to be produced in the kitchen during cooking, in the bathroom during 

use of shower and toilet, and in the bedrooms during sleeping times. It is also assumed that 

the kitchen and bathroom do not have windows but have extract fans which are switched on 

                                                           
1 http://www.cibse.org/Knowledge/CIBSE-other-publications/CIBSE-Weather-Data-Current,-

Future,-Combined-DSYs 
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during times of cooking and use of bathroom, and that windows in the remaining zones are 

closed during winter months.   

2.2 Health model 

The relative risk 𝑅 of incidence of asthma in children associated with mould is given by2: 

𝑅 = 𝑒𝑥𝑝(∆ℒ𝑀𝑆𝐼>1 ×  𝑙𝑜𝑔(𝑟))                                                                                                             (1) 

where ∆ℒ𝑀𝑆𝐼>1 is the change in the likelihood of MSI exceeding unity due to the housing 

intervention and 𝑟 is the asthma risk coefficient per unit change in the likelihood of MSI 

exceeding unity. For small values of ∆ℒ𝑀𝑆𝐼>1 × log (𝑟), 𝑅 can be approximated to a first 

order Taylor series expansion around ∆ℒ𝑀𝑆𝐼>1 = 0 by 

𝑅 ≅ 1 + ∆ℒ𝑀𝑆𝐼>1 × log(𝑟)                                                                                                                 (2) 

Denote the baseline prevalence of asthma in children by 𝑝, the number of dwellings which is 

to receive draught proofing by 𝑛,  the average number of children aged 14 and under per 

dwelling by 𝑐. The health impact associated with the change in the likelihood of MSI is then 

given by  [22]: 

ℎ = (1 − 𝑅) × ((1 − 𝑤) × 𝑝 × 𝑛 × 𝑐) = −∆ℒ𝑀𝑆𝐼>1  ×  (1 − 𝑤) × 𝑝 × 𝑛 × 𝑐 × 𝑙𝑜𝑔(𝑟)    (3) 

where ℎ is the health impact (health gain for a negative ∆ℒ𝑀𝑆𝐼>1 and health burden for a 

positive  ∆ℒ𝑀𝑆𝐼>1) and 𝑤 is the quality of life weight for asthma. Because the 

epidemiological evidence is often expressed in terms of the logarithm of the risk coefficient, 

𝑞 = log (𝑟) is replaced in Equation (3).  If  𝑢 = 1 − 𝑤, Equation (3) becomes: 

                                                           
2 To avoid possible confusion in a long mathematical expression, the symbol “×” is 

sometimes used to denote multiplication 
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ℎ = −∆ℒ𝑀𝑆𝐼>1 × 𝑞 ×  𝑢 × 𝑝 ×  𝑛 × 𝑐                                                                                             (4) 

which gives an expression of health impact in terms of the change in the likelihood of MSI 

exceeding unity.   

2.3 Characterisation of uncertainty and variability 

The uncertainty and variability in the parameters of the models will be characterised using 

probability density functions (pdfs). As noted in the Introduction, the main difference 

between uncertainty and variability is that uncertainty in a parameter decreases with new 

evidence and additional information, whereas variability in a parameter does not necessarily 

decrease and may even increase. Their mathematical characterisation however is the same.     

For the changes in health-related exposures, generated from the building physics model, we 

used MC simulations to capture the uncertainty and variability in the building physics model. 

There are many sources of uncertainty and variability in the inputs to CONTAM.  Naturally 

not all of them were considered in this analysis because a full treatment of uncertainty was 

not the focus of this work.  For example, only one weather scenario is used to define the 

external weather conditions.  

To make the case-study dwelling realistic, the variability in the dwelling characteristics (of 

the type shown in Figure 1) is derived from real dwellings in London using the English 

Housing Survey [14]. Data in the EHS includes information on the dwelling age, dwelling 

type, height, and ground floor area amongst many other characteristics of the dwelling. The 

EHS would be used as a database from which to sample randomly the characteristics of the 

dwellings which are similar to the case study. Variation in height, total ground floor area and 

dwelling age are sampled jointly by randomly selecting an EHS database entry that matches 

the case-study dwelling. The fraction of the total ground area contributed by each of the 
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zones is kept constant, and these fractions are given in Appendix B. Because there is no 

information on dwelling orientation in the EHS, orientation is assumed to vary uniformly 

between 0o and 360o. The wind direction is set by the selected weather file, which is not 

varied as part of the uncertainty analysis. The permeability of the dwelling is estimated from 

the age of the dwelling using SAP, a UK government-approved tool for calculating notional 

energy demand and efficiency characteristics [23].  

 In terms of parametric uncertainty, only three sources are considered. The first is the 

uncertainty in the maximum moisture production rate used in CONTAM. The moisture 

production rate in each room is expressed as a fraction of this maximum rate.  The maximum 

rate is assumed to be uniformly distributed within ± 10% of its baseline value. The second 

source of uncertainty is the estimate of the change in permeability and E-value associated 

with draught-proofing. These are based on the changes in infiltration rate measured as a result 

of draught stripping of windows, reducing floor infiltration, and any other infiltration 

adjustments in an air tightness investigation in the Warm Front study [24]. The change in 

infiltration associated with these three components is assumed to follow a uniform 

distribution bounded by the 95% confidence intervals found in the study. The third source of 

uncertainty is that associated with the parameters of the fitted empirical relations between 

indoor temperature and E-value, and likelihood of mould and relative humidity, also 

determined in the Warm Front study [13] [16]. The uncertainties in these two relations are 

accounted for by generating a different realisation of the original data used to construct the 

relations for each Monte Carlo simulation, assuming Gaussian errors. The new realisations 

are each fitted with smoothing splines that are slightly different of each other, therefore 

propagating the uncertainty in the relation to the predicted E-value and mould likelihood.    

 For the health impacts,  a disease risk coefficient based on a meta-analysis of the relationship 

between mould and asthma risk [11] is used.  It is assumed that uncertainty in this estimate is 
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represented by a uniform distribution bounded by ± 10% around the central estimate.  It is 

assumed further that the uncertainty in prevalence is represented by a uniform distribution 

prior bounded by ± 10% around the central estimate. Although it can be argued that 

variability in the quality weighting of any disease could be taken into account because this 

represents different utilities attached to the burden of the disease, it was  not  considered  for 

simplicity of exposition. Furthermore no consideration was taken of any uncertainty or 

variability in the number of dwellings affected by the interventions or in the average number 

of children living in a dwelling. 

2.4 Propagation of uncertainty in multiplicative models 

Equation (4) is a multiplicative model with three independent random (uncertain) variables 𝑞, 

𝑝 and ∆ℒ𝑀𝑆𝐼>1.  𝑢, 𝑛, 𝑐 are treated as constant . All the variables can be considered to be 

positive. 𝑞 and 𝑝 are strictly positive because 𝑞 is a risk coefficient and 𝑝 is prevalence.  

∆ℒ𝑀𝑆𝐼>1 can always be assumed to be positive because health impact can formulated as 

health gain if  ∆ℒ𝑀𝑆𝐼>1 < 0 and as health burden if ∆ℒ𝑀𝑆𝐼>1 > 0 . 

As shown in Figure 1, two methods were employed to quantify the uncertainty in the health 

impact (ℎ). In the first method (fully probabilistic), we sample the values of the building 

physics model parameters and the health model parameters simultaneously and independently 

from their respective pdfs and then construct the empirical pdf of ℎ from its sample values 

obtained by multiplying through the variables on the right hand side of Equation (4). In the 

second method (semi-analytical), we use algebraic methods based on Mellin integral 

transforms [25] to propagate the distribution of the mould exposure analytically through to 

the health model and obtain the distribution of the health impact.   

The Mellin transform (MT) of a random variable maps the random variable in probability 

space into an algebraic expression and one of its key properties is that the MT of the product 
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of independent random variables is the product of the MTs of the random variables 

(Appendix C). Using this property and ignoring for the time being the constants in Equation 

(4), we express the MT of the health impact as the product of the MTs of the terms on the 

right hand side of Equation (4): 

𝑀𝑓ℎ(𝑠) = 𝑀𝑓∆ℒ𝑀𝑆𝐼>1  
(𝑠) × 𝑀𝑓𝑞(𝑠) × 𝑀𝑓𝑝(𝑠)                                                                                    (5) 

where 𝑓∆ℒ𝑀𝑆𝐼>1 , 𝑓𝑞 and 𝑓𝑝 are respectively the pdfs of ∆ℒ𝑀𝑆𝐼>1, 𝑞 and 𝑝;  𝑀𝑓∆ℒ𝑀𝑆𝐼>1
, 𝑀𝑓𝑞  and 

𝑀𝑓𝑝 are respectively the MT of ∆ℒ𝑀𝑆𝐼>1, 𝑞 and 𝑝.   

Based on Equation (5) we use the following steps to calculate the uncertainty in ℎ. 

 Calculate the pdf of  ∆ℒ𝑀𝑆𝐼>1 via probabilistic simulations and then calculate its MT 

 Determine the pdfs of 𝑞 and 𝑝 based on information from the literature and calculate 

their respective MTs 

 Calculate the product of the MTs using equation (5) 

 Calculate the exact analytical expression of the inverse MT, if possible. If not, 

calculate the exact mean, variance and higher order moments of ℎ.  

 

3. Results 

The results are presented in the chronological order of the steps of the method described 

above, starting with the calculations of the change in the likelihood of MSI exceeding unity. 

3.1 Probability density function of the likelihood of change in mould severity index 

exceeding unity  

As noted above, there are several sources of variability and uncertainty which contribute to 

the total variation in ∆ℒ𝑀𝑆𝐼>1. We will not be able to show the uncertainty in each of the 
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sources. As an example, we show below the uncertainty associated with one of the fitted 

empirical function. Figure 3 shows the baseline fit of the likelihood of mould severity index 

exceeding unity with saturated vapour pressure. 

 

Figure 3. The observations from the Warm Front data (circles) along with the fitted line of the 

likelihood of mould severity index exceeding unity with saturated vapour pressure. 

 

For this source, we take into account the uncertainty in the fitted parameters.   

MC simulations were carried out to quantify the uncertainty in ∆ℒ𝑀𝑆𝐼>1 (Figure 4) 
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Figure 4.  Empirical probability density function of  ∆ℒ𝑀𝑆𝐼>1. 

 

A normal and a log-normal distribution are made to fit the cumulative probability distribution 

function of ∆ℒ𝑀𝑆𝐼>1 (Figure 5) 
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Figure 5. The empirical cumulative probability density function of  ∆ℒ𝑀𝑆𝐼>1 along with best fitted 

normal and log-normal distributions. 

 

It is clear that the normal distribution provides a better fit to the pdf. The fitted normal 

distribution is given by the following equation: 

𝑓∆ℒ𝑀𝑆𝐼>1(∆ℒ𝑀𝑆𝐼>1) =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 (−

(∆ℒ𝑀𝑆𝐼>1 − 𝜇)
2

2𝜎2
)                                                             (6) 

where 𝜇 is the man and 𝜎2 is the variance.  

Using Mathematica  [26], we derive an analytical expression for the MT of 𝑓∆ℒ𝑀𝑆𝐼>1 is 

derived: 
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𝑀𝑓∆ℒ𝑀𝑆𝐼>1  
(𝑠) =

2−2+
𝑠
2

√𝜋𝜎
(
1

𝜎2
)
−
𝑠
2
(√2 𝐺 (

𝑠

2
) × 𝐹 (

1 − 𝑠

2
,
1

2
,−

𝜇2

2 𝜎2
) + 2𝜇√

1

𝜎2
 × 𝐺 (

1 + 𝑠

2
)

× 𝐹 (1 −
𝑠

2
,
3

2
,−

𝜇2

2𝜎2
))                                                                                          (7) 

where 𝐺(. ) and 𝐹(. ) are the Gamma and Hypergeometric functions respectively (Appendix 

D). 

3.2 Probability density functions of health-related parameters  

As stated above, it is  assumed that the central estimates of the risk coefficient 𝑞 is uniformly 

distributed between 𝑞𝑚𝑖𝑛 and 𝑞𝑚𝑎𝑥, i.e. its probability density function is given by: 

𝑓𝑞(𝑞) =

{
 

 
1

𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛
     𝑖𝑓 𝑞𝑚𝑖𝑛 ≤ 𝑞 ≤ 𝑞𝑚𝑎𝑥

0    𝑖𝑓 𝑞 < 𝑞𝑚𝑖𝑛   𝑜𝑟 𝑞 > 𝑞𝑚𝑎𝑥 }
 

 
                                                                          (8) 

and that the prevalence of asthma is uniformly distributed between a minimum 𝑝𝑚𝑖𝑛 and a 

maximum 𝑝𝑚𝑎𝑥: 

𝑓𝑝(𝑝) = {

1

𝑝𝑚𝑎𝑥−𝑝𝑚𝑖𝑛
     𝑖𝑓 𝑝𝑚𝑖𝑛 ≤ 𝑝 ≤ 𝑝𝑚𝑎𝑥

0    𝑖𝑓 𝑝 < 𝑝𝑚𝑖𝑛   𝑜𝑟 𝑝 > 𝑝𝑚𝑎𝑥

}                                                                               (9)  

Using Mathematica,  the MTs of 𝑞 and 𝑝 are derived respectively as: 

𝑀𝑓𝑞(𝑠) =
𝑞𝑚𝑎𝑥
𝑠 − 𝑞𝑚𝑖𝑛

𝑠

𝑠 (𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛)
                                                                                                               (10) 

 

𝑀𝑓𝑝(𝑠) =
𝑝𝑚𝑎𝑥
𝑠 − 𝑝𝑚𝑖𝑛

𝑠

𝑠 (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛)
                                                                                                               (11) 
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3.3 Probability density function of health impact  

Using Equation (5) the MT transform of the health impact is given by: 

𝑀𝑓ℎ (𝑠) =
2−2+

𝑠
2

 √𝜋 𝜎
(
1

𝜎2
)
−
𝑠
2
(√2 𝐺 (

𝑠

2
) × 𝐹 (

1 − 𝑠

2
,
1

2
,−

𝜇2

2𝜎2
) + 2𝜇√

1

𝜎2
 𝐺 (

1 + 𝑠

2
)

× 𝐹 (1 −
𝑠

2
,
3

2
,−

𝜇2

2𝜎2
)) × (

𝑞𝑚𝑎𝑥
𝑠 − 𝑞𝑚𝑖𝑛

𝑠

𝑠(𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛)
)

× (
𝑝𝑚𝑎𝑥
𝑠 − 𝑝𝑚𝑖𝑛

𝑠

𝑠(𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛)
)                                                                                              (12) 

Because of the complexity of the expression on the right-hand side of Equation (12), it is not 

possible to obtain an analytical solution of the inverse MT. Although there are numerical 

procedures to approximate the solution of an inverse MT [27], we opted instead to get 

analytical expressions for the mean, and higher order moments of the health impact. The 

variance is used as a measure of uncertainty. The mean (ℎ̅) and variance (𝑣ℎ)of the health 

impact are given respectively by (Appendix C) 

ℎ̅ = 𝑀𝑓ℎ (2) =
1

 2 √𝜋 𝜎
(
1

𝜎2
)
−1

(√2 𝐺(1) × 𝐹 (−
1

2
,
1

2
,−

𝜇2

2𝜎2
) + 2𝜇√

1

𝜎2
 𝐺 (

3

2
)

× 𝐹 (0,
3

2
,−

𝜇2

2𝜎2
)) (

𝑞𝑚𝑎𝑥 + 𝑞𝑚𝑖𝑛
2

) (
𝑝𝑚𝑎𝑥 + 𝑝𝑚𝑖𝑛

2
)                                    (13) 

             

𝑣ℎ = 𝑀𝑓ℎ (3) −𝑀𝑓ℎ
2 (2)                                                                                                                     (14) 

where: 
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𝑀𝑓ℎ (3) =
2−

1
2

 √𝜋 𝜎
(
1

𝜎2
)
−
3
2
(√2 𝐺 (

3

2
) × 𝐹 (−1,

1

2
, −

𝜇2

2𝜎2
) + 2𝜇√

1

𝜎2
 𝐺(2)

× 𝐹 (−
1

2
,
3

2
,−

𝜇2

2𝜎2
)) × (

𝑞𝑚𝑎𝑥
3 − 𝑞𝑚𝑖𝑛

3

3 (𝑞𝑚𝑎𝑥 − 𝑞𝑚𝑖𝑛)
) (

𝑝𝑚𝑎𝑥
3 − 𝑝𝑚𝑖𝑛

3

3 (𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛) 
)            (15) 

and 𝑀𝑓ℎ
2 (2) is the square of the right hand side of Equation (13).   

3.4 Numerical results 

As stated in the previous section, the empirical pdf of ∆ℒ𝑀𝑆𝐼>1 was obtained by Monte Carlo 

simulations. The best fitted normal distribution to the pdf gave a mean 𝜇 = 2.3752 × 10−2 

and a standard deviation 𝜎 = 1.3294 × 10−2, respectively. The lower and upper bounds of 

the uniform distribution of the log-risk coefficients were specified as 𝑞𝑚𝑖𝑛 = 0.3827 and   

𝑞𝑚𝑎𝑥 = 0.4678 , and the lower and upper bounds of the uniform distribution of the 

prevalence were specified  𝑝𝑚𝑖𝑛 = 0.0144 and   𝑝𝑚𝑎𝑥 = 0.0176 (±10% around the mean). 

The remaining constants in Equation (13) are 𝑢 = 0.1, 𝑛 = 1 and 𝑐 = 0.4198.  Using 

Equations (23) and (24) gives the mean health impact per dwelling as −6.840 × 10−6 

QALYs and the standard deviation as 3.729 × 10−6 QALYs (or -178 QALYs and 97 

QALYs respectively for England). 

For comparison purposes, we carried out a full MC simulation for the whole chain of models 

(i.e. building physics and health model).  Figure 6 shows the estimated probability density of 

the health impact per dwelling. The mean and standard deviation of the health impact were 

−6.768 × 10−6 QALYs and 3.893 × 10−6 respectively which are close to the values 

obtained using Mellin transforms. 
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Figure 6. The empirical probability density function of the health impact. 

 

5. Discussion 

Monte Carlo simulations or Latin Hypercube Sampling are widely used to quantify 

uncertainty in model outputs [28-29]. The classical probabilistic approach for propagating 

parametric uncertainty between a series of distinct models in which the output of one model 

is an input to another model (e.g. building physics to health) is to sample the values of the 

parameters of all the models simultaneously from their respective probability density 

functions (pdfs) and then calculate the output variable(s) of interest for each combination of 

parameter values by running through the chain of models. When the models take considerable 

computing time to calculate the baseline values of relevant outputs, meta-modelling is used to 

approximate the model and perform the uncertainty analysis [30-31].  Such methods have 

been applied for quantifying parametric uncertainty in health impact assessment of 
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environmental interventions (of which draught proofing is an example) where the uncertainty 

of the environmental exposures are propagated numerically to the health outcomes [32].  

Although the above computational approach holds merit particularly because it is easy to 

implement in practice, it suffers from four disadvantages:   

 The approach can be computationally demanding although it could be argued this is 

not an issue with increasing computing power, the parallelisation of simulation 

algorithms [33] and use of meta-modelling [30-31].  

  The contribution of the uncertainty of each model is not quantified separately prior to 

propagating it to the next model in the chain.  

  If the uncertainty in a parameter or a set of parameters of one model is revised, it is 

necessary to re-do probabilistic simulations for the whole series of models.   

 The uncertainties in some of the models in the chain could only be available as 

outcome uncertainties (e.g. when they are calculated a priori).  

To address some of the above disadvantages, we proposed an alternative semi-analytical 

approach for propagating uncertainty. This approach quantifies the uncertainty in each model 

separately (using common probabilistic methods when necessary) but the propagation of 

uncertainty between the chain of models is done in algebraic space using integral transforms 

rather than in probability space.  We then compared the classical MC approach with the 

alternative approach we proposed. Although both approaches gave approximately the same 

results, the proposed approach has several merits. It isolates the uncertainty in each model 

before propagating the uncertainty between the series of models. As such, if the uncertainties 

in the parameters of one model are changed, it is not necessary to re-do the probabilistic 

simulations for all the models. It is sufficient to quantify the uncertainty in the affected model 

only and then use the MT to propagate the uncertainties. Because of its stepwise approach in 
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dealing with the uncertainty in each model separately and then propagating the uncertainty 

between the models, it can be argued that the analytical method for propagation of 

uncertainty is more transparent and efficient than a full numerical method which is applied 

across all models simultaneously.           

Naturally there are disadvantages to the proposed approach too. It is not always possible to 

determine exactly an analytical MT or an inverse MT. Although there are symbolic 

processing tools such as Mathematica (which were used in this study) to perform symbolic 

processing, an analytical solution may be intractable. In this case, some analytical 

approximations can be made.  The overall model considered in this study is a multiplicative 

type. However there could be situations when the model is not purely multiplicative. In this 

situation the analytical solution becomes more complex.  The table below summarises the 

main advantages and disadvantages of the method: 

Advantages Disadvantages 

Quantifies the uncertainty in one model 

output before propagating it through to the 

input of another model  

The integral transforms could be difficult to 

calculate exactly  

If the uncertainty in the parameters of one 

model are revised, it is not necessary to 

perform the probabilistic simulations for the 

whole chain of models 

Ideal for multiplicative models in a chain 

but more difficult to use for non-

multiplicative models 

Less computationally demanding Not easy to implement 

 

Table 1. Main advantages and disadvantages of the proposed method compared to full Monte Carlo 

method. 

Conclusions 

A semi-analytical method for quantifying the uncertainty in the health impact of a housing 

intervention has been demonstrated. The standard method for quantifying the uncertainty in 

the overall output of a series of models in which the output of one model is an input to 
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another model is to use probabilistic simulation. In the case of parametric uncertainty, this 

entails sampling randomly the parameters of all the models simultaneously from their pre-

defined probability density functions.  An alternative method is proposed in which the 

propagation of the uncertainty between the models is done algebraically rather than 

numerically using integral transforms. Compared to MC method, the main advantage of the 

proposed method is that it isolates the uncertainties in the models prior to propagating them 

though the chain of models. The disadvantage of this method is that it requires the analytical 

calculation of the Mellin Transform which can be unwieldy for complex distributions. 
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Appendix A: Building Physics Model 

All the calculations are made at an hourly time step but time dependence is not shown in the 

equations to simplify the mathematical notation. In the equations, we will differentiate 

between two types of parameters: physics constants and model parameters subject to either 

variability or uncertainty.  The physics constants are denoted by the vector 𝜽 whereas the 

model parameters are described by the five vectors 𝒂, 𝒃, 𝒄, 𝒅, 𝒆 representing different 

parameterisations. A reference to an element in a vector is denoted by the name of the vector 

with a subscript e.g. 𝑎1 is an element of 𝒂 and 𝜃1 is an element of 𝜽.   
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The CONTAM outputs are hourly values of the humidity ratio (ratio of water vapour mass to 

total air mass) in each zone of the dwelling. They are processed using empirical relations to 

calculate ℒ𝑀𝑆𝐼>1. This is done in five steps. The first step determines the indoor or internal 

vapour pressure excess (𝑉𝑃𝐸) and then standardises it (𝑆𝑉𝑃𝐸5) to “winter conditions” 

(defined as external temperature 𝑇̃𝑒 = 5 oC and external relative humidity 80%). The second 

step calculates the indoor temperature standardised to winter conditions. This is known as the 

standardised indoor temperature (𝑆𝐼𝑇5). The third step calculates the internal and external 

saturated vapour pressure standardised also to winter conditions (𝑉𝑃𝑠𝑎𝑡,𝑖 and 𝑉𝑃𝑠𝑎𝑡,𝑒 

respectively). The fourth step calculates the internal standardised relative humidity (𝑆𝑅𝐻5,80) 

and the final step calculates ℒ𝑀𝑆𝐼>1.  ℒ𝑀𝑆𝐼>1 is calculated before and after draught proofing 

of the dwelling to estimate the change in the likelihood, ∆ℒ𝑀𝑆𝐼>1.  Some of the dwelling 

characteristics such as the permeability and E-value (the required energy consumption by the 

main heating device to maintain a one degree Celsius temperature difference between inside 

and outside during steady state conditions and ignoring incidental heat gains and ventilation 

heat losses) change because of the intervention.   

Starting with the first step, CONTAM is used to generate hourly concentrations of the indoor 

humidity ratio of the dwelling: 

𝑟𝑖 = (𝒂)                                                                                                                                              (𝐴. 1) 

Assuming that the total indoor and outdoor air pressure are much greater than the indoor and 

outdoor vapour pressure respectively, the hourly 𝑉𝑃𝐸 is calculated using: 

𝑉𝑃𝐸 = 𝜃1(𝑟𝑒 − 𝑟𝑖)                                                                                                                       (𝐴. 2) 

where 𝑟𝑒 is the outdoor humidity ratio. 



 25 
 

Standardised vapour pressure excess 𝑆𝑉𝑃𝐸5 is calculated by fitting a linear regression line 

between 𝑉𝑃𝐸 and external temperatures (𝑇𝑒): 

𝑉𝑃𝐸 = 𝑏1 𝑇𝑒 + 𝑏2                                                                                                                        (𝐴. 3) 

and then substituting  𝑇𝑒 = 𝑇̃𝑒 = 5 oC in the regression Equation [A.3] to give 𝑆𝑉𝑃𝐸5. 

In the next step, 𝑆𝐼𝑇5 in the living room is calculated from the E-value of the dwelling using 

an empirical relation determined from Warm Front data [16]: 

𝑆𝐼𝑇5 = 𝜓(𝒄, 𝐸)                                                                                                                                   (𝐴. 4) 

Only mould in the living room is considered. In the following step, the indoor and outdoor 

saturated vapour pressures are calculated using the following two physics-based equations 

respectively:  

𝑉𝑃𝑠𝑎𝑡,𝑖 = 𝜃2 𝑒𝑥𝑝 (
𝜃3 𝑆𝐼𝑇5
𝜃4 + 𝑆𝐼𝑇5

)                                                                                                        (𝐴. 5) 

𝑉𝑃𝑠𝑎𝑡,𝑒 = 𝜃2 𝑒𝑥𝑝 (
𝜃3 𝑇̃𝑒

𝜃4 + 𝑇̃𝑒
)                                                                                                           (𝐴. 6) 

Using Equation (A.5) and (A.6), we can calculate 𝑆𝑅𝐻5,80 (%) via: 

𝑆𝑅𝐻5,80 = 100 × 
𝑆𝑉𝑃𝐸5 + 𝜃6 𝑉𝑃𝑠𝑎𝑡,𝑒

𝑉𝑃𝑠𝑎𝑡,𝑖
                                                                                       (𝐴. 7) 

Finally, ℒ𝑀𝑆𝐼>1 is determined from 𝑆𝑅𝐻5,80 using another empirical relationship derived 

from Warm Front data [13]: 

ℒ𝑀𝑆𝐼>1 = 𝜑(𝒅, 𝑆𝑅𝐻5,80)                                                                                                                  (𝐴. 8) 

In both Equations (A.4) and (A.8), the empirical fitting uses smoothing splines and cross-

validation to fix the smoothing parameters. 
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The mapping of the pre-intervention dwelling characteristics (𝐶𝑝𝑟𝑒) to the post-intervention 

characteristics (𝐶𝑝𝑜𝑠𝑡) as a result of draught proofing is determined using SAP: 

𝐶𝑝𝑜𝑠𝑡 = 𝜉(𝒆, 𝐶𝑝𝑟𝑒)                                                                                                                             (𝐴. 9) 

where 𝒆 is a vector of parameters representing the relation between the pre- and post-

dwelling characteristics.  The specific forms of the function 𝜉 and parameter vector 𝒆 in 

Equation (A.9) are generic and their specific forms are different for the various dwelling 

characteristics.  

Appendix B: Inputs of the CONTAM models 

As discussed in the Methods section, a single-floor flat archetype is used based on one of the 

flats discussed at length in [18-19]. The indoor conditions between 1st October and 31st May 

are simulated using CIBSE's London Test Reference Year weather file at 10s intervals, 

outputting conditions every 15 minutes.  

Dwelling geometry 

The archetype consists of five zones. The total ground floor area and height of the flat is 

given by the randomly selected entry in the English Housing Survey, but the fractional 

contribution to the total ground floor area of each zone is given below: 

 

Zones 

Room Kitchen Living Bedroom  Entrance Bathroom 
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Floor area 

(fraction of 

total) 0.11 0.40 0.28 0.14 0.07 

 

Ventilation 

Uncontrolled ventilation occurs between the indoor and outdoor environments through the 

permeability of the exposed facades. This is modelled by placing one crack at the top of the 

exposed facade, and one at the bottom [18]. The permeability can then be varied by the value 

of the crack coefficient.  The windows are assumed to be not opened during the winter 

months. There are additional extract fans in the kitchen and bathroom due to a lack of 

exposed facades in these zones. The ventilation rates and schedules of these fans are given 

below: 

 

Intermittent extract ventilation rates and schedules 

Zone 

Extract 

rate (l/s) Day Schedule 

Kitchen 60 

Weekday 

07:30-

08:30 

18:00-

19:30 

Weekend 

08:30-

09:30 

12:00-

12:30 
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18:00-

19:30 

Bathroom 15 

Weekday 

07:30-

08:30 

18:00-

19:30 

Weekend 

08:30-

09:30 

12:00-

12:30 

18:00-

19:30 

 

Contaminant generation 

Only moisture is considered as a pollutant. The moisture production rate in each zone is 

expressed as a fraction of a maximum rate of 1359g/h. The fraction of this maximum 

allocated to each zone and the schedule for the generation is given below and is based on 

previous work [18]: 

 

Moisture generation rates and schedules 

Zone Day 

Schedule and fraction of 

maximum rate generated 

Kitchen Weekday 07:30-07:45 (0.188) 



 29 
 

07:45-08:00 (0.229) 

08:00-08:15 (0.262) 

08:15-08:30 (0.255) 

18:00-19:30 (0.631) 

Weekend 

08:30-08:45 (0.188) 

08:45-09:00 (0.229) 

09:00-09:15 (0.262) 

09:15-09:30 (0.255) 

12:00-12:30 (0.483) 

18:00-19:30 (0.631) 

Living 

Weekday 

17:00-18:00 (0.107) 

18:00-18:30 (0.067) 

18:30-19:30 (0.107) 

19:30-20:30 (0.114) 

20:30-21:30 (0.148) 

21:30-22:00 (0.041) 

Weekend 

08:30-08:45 (0.188) 

08:45-09:00 (0.229) 

09:00-09:15 (0.262) 

09:15-09:30 (0.255) 

12:00-12:30 (0.483) 
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18:00-19:30 (0.631) 

Bedroom 

Weekday 

00:00-07:00 (0.044) 

07:00-07:45 (0.041) 

22:00-23:00 (0.081) 

23:00-00:00 (0.044) 

Weekend 

00:00-08:00 (0.044) 

08:00-08:45 (0.041) 

22:00-23:00 (0.081) 

23:00-00:00 (0.044) 

Bathroom 

Weekday 

07:00-07:30 (0.926) 

07:30-08:00 (0.033) 

18:00-19:00 (0.148) 

19:00-19:30 (0.369) 

19:30-20:30 (0.845) 

20:30-21:00 (0.369) 

Weekend 

08:00-08:30 (0.926) 

08:30-09:00 (0.033) 

18:00-19:00 (0.148) 

19:00-19:30 (0.369) 

19:30-20:30 (0.845) 

20:30-21:00 (0.369) 
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Appendix C: Mellin Transform  

The Mellin transform of a positive random variable 𝑥 is given by [6] [25]: 

𝑀𝑓𝑥 = ∫ 𝑥𝑠−1 𝑓𝑥(𝑥)𝑑𝑥

∞

0

                                                                                                                    (𝐶. 1) 

where 𝑓𝑥 is the probability density function (pdf) of 𝑥. The inverse of the Mellin transform is 

given by: 

𝑓𝑥(𝑥) =
1

2𝜋𝑖
∫ 𝑥−𝑠𝑀𝑓𝑥(𝑠)𝑑𝑠

𝜆+𝑖∞

𝜆−𝑖∞

                                                                                                    (𝐶. 2) 

The Mellin transform has a number of interesting basic properties.  The expected value of 𝑥𝑠 

is: 

𝑥𝑠̅̅ ̅ = ∫ 𝑥𝑠𝑓𝑥(𝑥)𝑑𝑥

∞

0

                                                                                                                           (𝐶. 3) 

From Equation (C.1), (C.3) can be written as: 

𝑥𝑠̅̅ ̅ = ∫ 𝑥(𝑠+1)−1𝑓𝑥(𝑥)𝑑𝑥 = 𝑀𝑓𝑥
(𝑠 + 1)                                                                                     (𝐶. 4)

∞

0

 

which shows the relationship between the expected value of 𝑥𝑠 and its Mellin transform. The 

expected value and variance of 𝑥 can be easily obtained by applying Equation (C.4) for a 

specific value of 𝑠: 

𝑥̅ = 𝑀𝑓𝑥(2)                                                                                                                                          (C. 5) 
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𝑥2̅̅ ̅ − 𝑥̅2 = 𝑀𝑓𝑥(3) − 𝑀𝑓𝑥
2 (2)                                                                                                           (𝐶. 6) 

The Mellin transform of the product of two independent random variables 𝑧 = 𝑥𝑦 is the 

product of their Mellin transforms: 

𝑀𝑓𝑧 = 𝑀𝑓𝑥 𝑀𝑓𝑦                                                                                                                                      (𝐶. 7) 

If 𝑧 is equal to the product of several independent random variables 𝑧1…𝑧𝑘 and a constant 𝑐: 

𝑧 = 𝑐∏𝑧𝑖

𝑘

𝑖=1

                                                                                                                                        (𝐶. 8) 

then the expected value, variance and  coefficient of variation of 𝑧  are given by respectively  

𝑧̅ = 𝑐∏𝑀𝑓𝑧𝑖
(2) 

𝑘

𝑖=1

                                                                                                                             (𝐶. 9) 

𝑧2̅̅ ̅ − 𝑧̅2 = 𝑐2 (∏𝑀𝑓𝑧𝑖
(3)

𝑘

𝑖=1

−∏𝑀𝑓𝑧𝑖
2 (2)

𝑘

𝑖=1

)                                                                             (𝐶. 10) 

 

Appendix D: Gamma and Kummer confluent hypergeometric function 

The Gamma function is defined as: 

Γ(𝑧) = ∫ 𝑡𝑧−1𝑒−𝑡
∞

0

𝑑𝑡                                                                                                                      (𝐷. 1) 

For example, Γ(4) = 6. 

The Kummer confluent hypergeometric function is defined by [34]: 

Ψ(𝑎, 𝑏, 𝑧) =
Γ(𝑏)

Γ(𝑏 − 𝑎)Γ(𝑎)
∫ 𝑒𝑧𝑡
1

0

𝑡𝑎−1(𝑡 − 1)𝑏−𝑎−1𝑑𝑡                                              (𝐷. 2) 
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As an example, Ψ(2,4,3) = 5.575 
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