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Abstract 
The search for tools that target malaria vector that resist insecticides and bite outdoors 

has become a research priority. Such tools will be necessary for managing residual 

malaria transmission and hastening the eradication of this devastating disease. This 

study investigated chemicals that potentially affect the oviposition substrate choices of 

Anopheles gambiae sensu lato (s.l.). It is foreseen that increased knowledge of the 

oviposition behaviour of this major malaria vectors and chemicals cues that mediate 

oviposition site-selection can be applied in the development of additional sampling 

methods and alternative interventions that to trap gravid malaria mosquitoes outdoors.  

To achieve a reproducible high egg-laying success of An. gambiae sensu stricto (s.s.) 

and An. arabiensis four factors were evaluated: (1) the time provided for mating; (2) the 

impact of cage size, mosquito age and female body size on insemination; (3) the peak 

oviposition time; and, (4) the host source of blood meals. Then four bioassays were 

optimised for studying oviposition responses of An. gambiae s.s. in the laboratory and 

semi-field conditions: a WHO-tube bioassay and a wind-tunnel that detected short-

range attraction in the laboratory; a two-tier choice egg-count bioassay that compared 

the relative proportion of eggs laid in substrates in the laboratory; and a modified BG 

Sentinel mosquito gravid trap that evaluated long-range attraction of gravid females to 

olfactory cues in the semi-field. Finally, the oviposition responses of gravid An. 

gambiae s.s. mosquitoes to water vapour, Bermuda grass hay infusion (hay infusion), 

and putative semiochemicals identified from the hay infusion and a soil infusion 

previously shown to elicit higher egg deposition compared to filtered Lake Victoria 

water (lake water) in two choice egg-count bioassays (Herrera-Varela et al. 2014), were 

evaluated. 

High oviposition rates [84%, 95% confidence interval (CI) 77-89%] were achieved 

when 300 male and 300 blood-fed female An. gambiae s.s. were held together in a cage 

for four days. The chance of oviposition in the mosquitoes dropped when human host 

source of blood-meal was substituted with a rabbit (Odds ratio (OR) 0.30, 95% CI 0.14-

0.66) but egg-numbers per female were not affected. All four optimised oviposition 

bioassays effectively showed between 15-20% shifts in oviposition substrate choices of 

mosquitoes with 80% statistical power and 5% significance. Using the WHO-tube 

bioassay, gravid An. gambiae s.s. were shown to be 2.4 times (95% CI 1.3-4.7 times) 

more likely to move towards high humidity in still air compared to non-gravid 
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mosquitoes. This was more pronounced in the airflow olfactometer where the gravid 

mosquitoes were 10.6 times (95% CI 5.4-20.8 times) more likely to fly into a chamber 

with water than a dry chamber. 

Two-choice egg-count bioassays showed that An. gambiae s.s. were less likely to lay 

eggs in six-day old hay infusion (OR 0.10, 95% CI 0.03-0.33) compared to lake water. 

Ten putative semiochemicals were identified from the hay infusion using mass 

spectrometry and published electrophysiology data: 4-hepten-1-ol, 4-ethylphenol, 

phenylmethanol, 2-phenylethanol, indole, phenol, 3-methylindole, 3-methyl-1-butanol, 

4-ethylphenol, and nonanal. Tested in two-choice egg-count bioassays, the first four 

listed compounds had no effect on egg deposition at the tested concentrations (between 

0.01-5 parts per million) but mosquitoes were less likely to lay eggs in at least one 

concentration of 3-methylindole (OR 0.39, 95% CI 0.21-0.71), indole (OR 0.57, 95% 

CI 0.37-0.87), 3-methyl-1-butanol (OR 0.32, 95% CI 0.22-0.47), phenol (OR 0.55, 

0.32-0.95), 4-methylphenol (OR 0.32, 0.18-0.57) and nonanal (OR 0.66, 95% CI 0.47-

0.91) compared to lake water. In contrast to the hay infusion and hay infusion volatiles, 

An. gambiae s.s. were about two times more likely to lay eggs in cedrol, a sesquiterpene 

alcohol identified from the soil infusion, compared to lake water (OR 1.84, 95% CI 

1.16-2.91). Cedrol attracted twice as many gravid mosquitoes in the semi-field also (OR 

1.92, 95% CI 1.63-2.27). In the field, modified BG-Sentinel traps, electrocuting nets 

and OviART gravid traps with lake water and cedrol were three times more likely to 

trap malaria mosquitoes compared to traps with water only (OR 3.3, 95% CI 1.4-7.9). 

In conclusion, water vapour was shown to be a strong, non-specific pre-oviposition 

attractant for gravid An. gambiae s.s. in still air and moving air. It is probably the long 

range cue that gravid An. gambiae s.l. use to detect the presence aquatic habitats beyond 

the range of chemical cues. Evidence showed that An. gambiae s.s. discriminate 

between potential oviposition substrates and that this selective process is in-part 

mediated by volatile organic compounds originating from the site. Water vapour leads 

gravid mosquitoes to aquatic sites but semiochemicals enable the mosquitoes to 

discriminate and select between potential habitats. It was demonstrated that synthetic 

equivalents of semiochemicals found to attract gravid mosquitoes such as cedrol can be 

used to trap malaria mosquitoes outdoors.  
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Foreword  

Insects constitute the vast majority of the eukaryote biodiversity on planet earth (Gaston 

1991). Estimated conservatively at five million species, with many not yet described, 

(Mora et al. 2011; Costello et al. 2013), this taxonomic community should command 

significant interest and research. However, insects are largely ignored, especially in 

Africa, except for those species that intimately interact with humans causing nuisance or 

impacting health, feed and economy. 

Tropical countries bear the major brunt of many infectious diseases caused by viruses, 

bacteria and parasites that are spread by insects. In Africa, species of the two-winged 

flies (Diptera) predominate as biological vectors for such pathogens. These include the 

sandflies (Psychodidae) that spread cutaneous, mucocutaneous and visceral 

leishmaniasis  (Killick-Kendrick 1990; Killick-Kendrick 1999; Sharma & Singh 2008; 

Ready 2013); the tsetse flies (Glossinidae) that transmit the African trypanosomiasis 

(Brun et al. 2010; Malvy & Chappuis 2011); and the blackflies (Simuliidae) that are 

responsible for infection with onchocerciasis and mansonellosis (McCall et al. 1998). 

However, mosquitoes (Culicidae) are far more important insect vectors of human 

diseases in Africa and beyond. 

Mosquitoes spread the largest diversity of diseases including Malaria, lymphatic 

filariasis, dengue, rift valley fever, yellow fever, chikungunya, encephalitis, and west 

Nile fever to over 700 million people annually (Caraballo & King 2014). Compared to 

all these diseases, Malaria caused by a single-celled protozoan of the genus Plasmodium 

and vectored by the Anopheles mosquito is the most widespread and imposes the 

greatest toll and burden on human life. This thesis focuses on the oviposition substrate 

choices of the most prolific vector for malaria; Anopheles gambiae sense stricto (s.s.). 

By exploring and describing chemical factors that determine their oviposition sites 

choices, it is hoped that this combination of researches will promote a better 

understanding of chemical factors that determine the spatial distribution of the species 

and provide for new ways of monitoring and controlling malaria transmission in Africa. 
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Chapter 1.General introduction 

1.1. Malaria 
Malaria is a mosquito-borne disease with an incomparable claim on human life and 

suffering (Witty 2004; Warburg et al. 2011). It imposes an insurmountable health, 

economic and social burden on human population across the tropics and subtropics, 

spreading throughout Africa into Asia and the Americas. Malaria is endemic in nearly 

100 countries worldwide and is a risk for the rest the world through travel. In 2014, the 

World Health Organisation (WHO) estimated that an average of 198 million people 

suffered from malaria with about 584,000 deaths (WHO 2014). The vast majority of the 

dead (90%) were residents of sub-Saharan Africa, most (78%) children below the age of 

five (WHO 2013). 

 

1.1.1. The biology of malaria transmission  
Malaria is comprised of a group of closely related illnesses caused by multiple species 

of protozoan parasite Plasmodium (Haemosporida: Plasmodiidae). At least five 

pathogenic species have so far been described for human malaria: P. falciparum, P. 

vivax, P. ovale, P. malariae and P. knowlesi (Kantele & Jokiranta 2011; White et al. 

2014). Most malaria cases are due to infection with P. falciparum or the less virulent P. 

vivax.. Plasmodium knowlesi is largely restricted to Southeast Asia and exhibits a 

unique zoonotic cycle through the macaque monkey (Kantele & Jokiranta 2011). 

Malarial parasites are spread by female Anopheles (Diptera: Culicidae) mosquitoes 

when they forage for vertebrate blood protein that they require to develop eggs (Beier 

1998). At least forty-one species of Anopheles have been incriminated as vectors of 

human malaria (Harbach 2013). The most competent of these vectors are found in 

Africa and belong to the Anopheles gambiae and the Anopheles funestus species 

complexes (Edmondson 1959; Gillies & Coetzee 1987). Each of these species 

complexes comprises nine distinct species unique in behaviour, blood-meal host 

preferences, larval habitat requirements and vectorial capacity for malaria transmission. 

An understanding of these distinctive characteristics underpins the approach to vector 

control (Gillies & De Meillon 1968; Gillies & Coetzee 1987). Anopheles gambiae s.s. 

(Giles) and An. arabiensis (Patton) of the An. gambiae complex and An. funestus s.s. of 
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the An. funestus complex are the most effective vectors for malaria worldwide. This is 

because An. gambiae s.s. and An. funestus prefer human blood-meal hosts over any 

alternative host and together with An. arabiensis have a strong affinity to the 

peridomestic environment. They can also adapt to a wide range of environments and 

live relatively long and easily proliferate in the tropical climate (Gillies & De Meillon 

1968; Gillies & Coetzee 1987; Sinka et al. 2012).  

Plasmodium exhibit a complex life cycle including two or more hosts; a vertebrate host 

(human or macaque monkey) and an invertebrate host (Anopheles mosquito).  

 

 

Figure 1.1 Life cycle of the malaria-causing parasite Plasmodium falciparum 

source: (Cowman et al. 2012) 

 

The sporogonic cycle commences when the female Anopheles mosquito bites an 

infected human. Gametocyte blood-stage malaria parasites are picked up with the red 

blood cells. The gametocytes differentiate into micro- and macro-gametes within the gut 

which fuse to form a diploid zygote. The zygote develops into a motile ookinete that 

actively burrows into the midgut wall and forms an oocyst which grows between the 

basal lamina and the epithelium. The oocyst undergoes sporogony through repeated 
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nuclear division to form tens of thousands of active haploid sporozoite-stage parasites. 

The sporozoites burst the oocyst and migrate to the haemocoel and salivary glands of 

the mosquito (Beier 1998; Roberts et al. 2008).  

The development of the parasite in the mosquito lasts between 10 – 18 days depending 

on many factors including external temperatures (Beier 1998). This time period could 

be punctuated by more than one oviposition cycle when the mosquito becomes gravid 

and searches for suitable oviposition sites. Targeting the gravid mosquito at this time 

could prevent subsequent infective bites and transmission of the disease or help in 

monitoring the disease vectors.  

Malaria is transmitted when humans are bitten by mosquitoes that survive beyond the 

sexual sporogonic cycle of plasmodium (Warrell et al. 2002) or more rarely through 

transfusion with infected blood. Sporozoites are introduced into the bloodstream when 

the mosquitoes inject salivary fluid to prevent the blood from clotting as it blood-feeds 

(Figure 1.1.). The sporozoites are transported with the blood to the liver cells 

(Hepatocytes) which they penetrate and develop into exo-erythrocytic schizonts. The 

cells rupture in 6 – 15 days releasing merozoites that invade the red blood cells 

(Erythrocytes) and multiply rapidly through schizogony to re-infect new red blood cells. 

This stage is characterised by the manifestation of malaria symptoms. As the infection 

progresses, some merozoites leave asexual multiplication and differentiate into sexual 

stages of the parasite, the gametocytes. The gametocytes are again picked up by 

mosquitoes that bite the host. Thus the transmission cycle is continued. (Beier 1998; 

Warrell et al. 2002; Roberts et al. 2008). 

1.1.2. Malaria vector control and surveillance 

1.1.1.1.The history of malaria control highlights the dangers of overdependence on few 

interventions and illustrates the importance of vector ecology studies 

There is evidence that humans had recognized ‘malarious areas’ in prehistoric times and 

learned to avoid such risky areas; this appears to be the earliest attempts to control the 

spread of malaria (Najera 2001). However, at the turn of the nineteenth century 

discoveries of the malaria parasite in the human blood by Alphonse Laveran and the 

role of the mosquito in its transmission by Sir Ronald Ross marked the beginning of 

systematic attempts to control vectors of malaria in many households, countries and 
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regions with the intention of eliminating and eventually eradicating the disease 

altogether (Najera 2001).  

A little over a decade later, Malcolm Watson noticed that not all Anopheles mosquitoes 

in lowland Malaysia carried and transmitted the malarial parasites. He showed that the 

chief vector for malaria in Malaysia was An. umbrosus and went ahead to demonstrate 

that by eliminating stagnant water pools that were characteristic breeding sites of this 

species it was possible to reduce the incidence of malaria. This provided early evidence 

that vector control was effective against malaria. It also highlighted the importance of 

understanding the ecology of incriminated malaria vectors as a prerequisite for 

controlling the disease (Watson 1913). 

The strategy of attacking the main malaria vectors guided by a detailed understanding of 

anopheline ecology was later developed by Swellengrebel and termed “species 

sanitation” (Kawada et al. 2012). He and others believed this to be the gold standard 

approach; the only way to effectively control vectors (Bradley 1994). They later 

discovered that the principle of species sanitation was not universally applicable and 

that the successes witnessed by Watson in Malaysia would not be repeatable in North 

Holland. There was a need to explore additional approaches to vector control. Integrated 

vector management approaches were thereafter commonplace with many early malaria 

control programmes aiming to drain swamps, treat stagnant water bodies with oil or 

Paris Green, screen houses or spray pyrethrum extracts (Najera 2001; Pinault & Hunter 

2012). However, all these early successes and tools were forgotten with the arrival of 

Dichloro-Diphenyl-Trychloroethane (DDT) during the Second World War and so was 

the research into the various malaria vectors’ ecology (Litsios 1996). 

The discovery that DDT could be used to control malaria vectors led to renewed efforts 

to eradicate malaria. DDT provided long lasting protection by killing mosquitoes resting 

on the walls of houses for more than six months after it was sprayed (Litsios 1996). This 

was a great improvement over insecticidal extracts that required frequent reapplication. 

It greatly reduced the effort and costs required for vector control interventions 

improving the sustainability of programmes.  The insecticide DDT also helped extend 

vector control to rural areas. Interest and funding in vector ecology waned. Most vector 

control experts believed erroneously that they could finally eradicate malaria only using 

DDT (Nájera et al. 2011). 
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In 1955, the World Health Organisation (WHO) launched a Global Malaria Eradication 

plan that relied heavily on spraying using DDT and using Chloroquine for clinical case 

management (WHO 1957) with extraordinary successes. In temperate countries 

especially those that also had a stable economy, malaria transmission was reduced to 

zero and eliminated. However, this global effort excluded many tropical countries and 

failed in most that implemented it. In India and Sri Lanka, malaria transmission 

continued right after the intervention was stopped (WHO 1959). Drug resistance in man 

and insecticide resistance in mosquitoes began to emerge in some areas; coupled with 

lack of community participation these challenges made elimination using DDT 

impossible in many areas (WHO 1978). The goal of eradication was abandoned in 1977 

and a more subtle approach of control favoured ever since. Once again, it was 

acknowledged that it was not possible to effectively control malaria using single 

approaches and that a profound knowledge of malaria epidemiology and vector ecology 

must precede elimination of the disease (Sharma 2012). 

 

1.1.1.2.Vector control in sub-Saharan Africa now hinges on targeting malaria 

mosquitoes in the indoor environment 

Following the failed attempt to eradicate malaria, global efforts to manage the vectors of 

the disease were abandoned. Research instead focussed primarily on finding a vaccine 

for malaria or developing effective drugs to treat the disease.  

The Roll Back Malaria (RBM) initiative of WHO was launched in 1998 with the aim of 

reducing malaria levels to 50% by the year 2000 and by 75% fifteen years later (WHO 

1999). RBM advocates for prompt diagnosis and treatment of malaria with artemisinin 

combination therapies (ACT’s) and vector control using long-lasting insecticidal Nets 

(LLINs) and indoor residual spraying (IRS). These vector control tools are hinged on 

the ecology of primary malaria vectors in Africa which have a high affinity for the 

indoor and peridomestic environment and have been very successful with malaria 

control. The burden of malaria has been reduced in many tropical and sub-tropical 

countries by many orders of magnitude due to these (Lengeler 2004; Pluess et al. 2010; 

WHO 2014) inviting prospects for eliminating the diseases. Unfortunately, progress 

towards elimination of the disease has been slow. Countries that have the highest 

burden of malaria have made the least progress implementing the frontline interventions 
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(WHO 2014). Importantly, Malaria transmission has been sustained by mosquitoes that 

bite outdoors as well as those resistant to the small class of insecticides used with 

LLINs and IRS (Enayati & Hemingway 2010; Govella et al. 2013; Killeen 2014). 

Unless new complementary strategies are developed and added to the vector control 

strategies, malaria transmission will continue in Africa (Killeen 2014). 

  

1.1.1.3.Need for more interventions, especially those that target malaria vectors 

outdoors and at different behavioural stages 

Vector control is a critical and pivotal component of malaria control today. Two 

interventions, long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) 

have been used extensively to prevent deaths of hundreds of thousands due to Malaria 

in the last decade especially in Africa (WHO 2014). These two strategies use 

insecticides to target mosquitoes in the indoor environment. Unfortunately, these leave 

mosquitoes that resist the insecticides and those that bite outdoors unchallenged and 

spreading malaria (Killeen 2014). 

All active ingredients recommended by WHO for safe use with IRS interventions fall in 

four classes of insecticides: pyrethroids, organophosphates, organochlorides and 

carbamates. Of these only pyrethroids are so far approved for use with LLINs (WHO 

2006b). Unfortunately insecticide resistance is now widespread affecting nearly two 

thirds of countries with ongoing malaria transmission and reported in all major vector 

species to all four classes of insecticides permitted for use in public health (WHO 

2006b). Widespread use of insecticide-based strategies within the last ten years has 

intensified selection pressure on resistance genes in mosquitoes. As a results, insecticide 

resistance has now been reported in about 64 countries. Importantly, resistance to 

pyrethroids - the safest effective insecticides for public health use and only group of 

permitted for use with LLINs - is the most widespread (Ranson et al. 2011). 

Resistance management is very complex because there are several mechanisms of 

insecticide resistance, the most common being metabolic resistance where there is an 

increased detoxification of the active ingredient following contact and target-site 

resistance where structural genes of the central nervous system mutate and confer 

decreased sensitivity of the target site proteins (Ranson et al. 2011; Liu 2015). The 
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WHO therefore recommends four approaches to insecticide resistance management: (a) 

rotation of insecticides having different modes of action, (b) use of combinations of 

insecticides with different modes of action, (c) mosaic spraying of different insecticides 

in different geographical areas and (d) use of mixtures of insecticide with different 

modes of action (WHO 2012). However, since only pyrethroids can be used on LLINs it 

is impossible to manage resistance with this tool that is presently more focal to 

operational malaria control programs compared to blanket spraying of household 

interiors. Resistance management is further complicated by the development of cross-

resistance and multiple mechanism resistance that limit the use of alternative 

insecticides (Ranson et al. 2009; Liu 2015).  

Moreover, vector populations that bite outdoors including An. arabiensis  and other 

vectors that play a secondary role in malaria transmission including An. rivulorum and 

An. coustani (Tirados et al. 2006; Bayoh et al. 2010). Such vector populations are little 

affected by current frontline interventions (Kawada et al. 2012; Mwangangi et al. 

2013a; Mwangangi et al. 2013b) and maintain residual malaria transmission in many 

areas (Killeen 2014). Malaria vectors also show considerable plasticity in their 

behaviour in response to vector control measures. Cryptic exophagic and diurnal 

subgroups of vector species historically known to be strongly endophilic and nocturnal 

have been reported in areas with intensive vector control (Riehle et al. 2011; 

Sougoufara et al. 2014). Also, there is an increase in the relative proportion of 

mosquitoes that feed outdoor and in the early evening before people retreat to protected 

locations (Reddy et al. 2007; Ferguson et al. 2010; Govella et al. 2010; Riehle et al. 

2011). New interventions that deal with the exophilic and exophagic vectors are 

required. 

Eliminating malaria will take the addition of new tools that can target mosquitoes at 

different stages in their life cycle and beyond the peridomestic environment (Figure 

1.2). Extensive ecological research must precede the development of such tools to 

understand how malaria mosquitoes forage for oviposition sites, mates, sugar meal and 

resting sites (Ferguson et al. 2010). A series of potentially targetable behaviours and 

alternative tools are highlighted by Killeen (Killeen 2014) and Ferguson (Ferguson et 

al. 2010). Infochemicals for these mosquito habits if found could be used as baits to 

improve larval source management, create toxic sugar baits or develop repellents. 
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Figure 1.2 Life cycle of malaria vectors showing different behaviours that enable them to avoid conventional strategies and how these might be targeted 

with new interventions (Source: (Killeen 2014)) 
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1.2. Semiochemicals in insects 
Semiochemical are defined as all chemicals that mediate specific responses altering the 

behaviour and/or physiology of recipient organism (Dethier et al. 1960; Nordlund et al. 

1981; Dicke & Sabelis 1988; Prasad & Daniel 1988). These comprise toxins, all 

infochemicals (defined as chemicals that convey information (Dicke & Sabelis 1988)) 

and nutrients (Nordlund et al. 1981; Dicke & Sabelis 1988). Infochemicals include as 

pheromones, allelochemicals and apneumones (Navarro-Silva et al. 2009). Pheromones 

and allelochemicals are emitted by living organisms and mediate intra and inter specific 

responses respectively (Brown et al. 1970; Navarro-Silva et al. 2009). Apneumones are 

produced by lifeless matter such as carrion and instigate beneficial behaviour in 

receiving organism. Allelochemicals include kairomones that benefit only the receiver 

at the expense of the emitter, allomones that act vice versa, synomones that are 

mutualistic, and antimones that repel both emitting and receiving individual (Dicke & 

Sabelis 1988; Navarro-Silva et al. 2009). This study focuses on infochemicals. 

Identified chemicals are here classified according to their effect on gravid mosquitoes. 

Compounds that cause active movement of gravid mosquitoes towards oviposition 

substrate five or more meters away (long range) without contact are termed as 

attractants. Repellents refers to chemicals that trigger substrate avoidance long range 

and without contact. In order to mediate responses from a distance attractants and 

repellents as described will be highly volatile (Dethier et al. 1960; Isoe et al. 1995b). In 

contrast with attractant and repellents, the terms stimulants and deterrents here refer to 

relatively less volatile compounds that mediate egg-laying only when the insect lands 

on substrates and makes physical contact. Stimulants encourage egg laying while 

deterrents inhibit the behaviour.  Attractants and repellents are especially important in 

developing vector control strategies (Michaelakis et al. 2007). Attractants could be used 

with traps to mass collect mosquitoes. Repellents can be used to push mosquitoes away 

from potential substrates (Xue et al. 2001) thereby increasing their foraging time and 

reducing their success with oviposition (Gu et al. 2006). It is important to therefore to 

design experiments to distinguish these behaviours in order to identify these classes of 

semiochemicals (Osgood & Kempster 1971). 

Insects use visual, physical and chemical cues to navigate while searching for mates, 

sugar meals, breeding grounds and hosts (Takken & Knols 1999). Of these cues, 

chemical cues are particularly important, especially in insects that have specific host 
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requirements and are either crepuscular or nocturnal like mosquitoes (Takken & Knols 

1999; Zwiebel & Takken 2004).  

Mosquitoes, like all insects have a highly developed chemosensory system. These 

consist of numerous sensillae primarily located on the antennae and maxillae (McIver 

1982). Sensilla are porous and house many multi-branched dendrites in lymph 

containing odour-binding protein (OBP’s). Stimuli enter through a sensillum and are 

conveyed through a rich array of tubules to dendrites of the olfactory receptor neurons 

(ORNs) by OBPs. The ORNs then transmit the signal through the central nervous 

system (CNS) leading to a modification in behaviour or physiology of the insect 

(McIver 1982; Zhou et al. 2004; Logan & Birkett 2007). Mosquitoes can be highly 

specific and sensitive to a narrow range of chemical stimuli or have a more general 

sensitivity to chemical compounds (Carey et al. 2010). Functional properties of the 

ORNs are conferred through a single olfactory receptor gene (Or Gene) (Su et al. 2009), 

79 of which have been bioinformatically identified in An. gambiae s.s. (Fox et al. 2001; 

Hill et al. 2002). 

 

1.3. Life History of the African malaria mosquitoes and the opportunity for 

using semiochemicals to develop new diseases control strategies 

Mosquitoes go through four distinct stages in their life cycle (complete metamorphosis): 

Egg, larva, pupa and adult. Adult female mosquitoes lay egg batches in water or on 

moist surfaces likely to flood with minimal precipitation (Clements 1992). The eggs 

hatch into larvae within 48 -72 hours in optimal conditions of temperature but could 

take up to three weeks in colder climates (Bayoh & Lindsay 2004). Mosquito larvae are 

filter feeders that eat bacteria, algal material and other organic debris within their 

aquatic environment (Clements 1992). Larvae molt through four instar stages eventually 

metamorphosing into non-feeding pupae. Survival of the immature aquatic stages is 

influenced by many factors including water quality, abundance and diversity of 

phytoplankton as well as predation and competition by other aquatic insects (Clements 

1992). The entire aquatic stage takes between 10-14 days in tropical conditions but 

could be longer in temperate climate (Clements 1992). After this period, the pupae split 

at the cephalothorax and adult mosquitoes with three main body sections emerge:  A 

head specialised for collecting sensory information and feeding, a thorax dedicated to 
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locomotion and a flexible abdomen that carries sugar meals, blood meals and eggs. 

Adult mosquitoes unlike their larvae and pupae, are terrestrial.  

The survival and reproductive success of the adult mosquito will depend on its ability to 

forage for sugar and blood meals, and to mate and oviposit in appropriate breeding sites. 

These behaviours are believed to be genetically determined but are governed by internal 

and external stimuli (Takken & Knols 1999). The newly emerged mosquito begins a 

random flight once the threshold value of declining sugar is reached and eventually 

encounters external plant cues that mediate the location and selection of appropriate 

sugar meal plants (Nyasembe et al. 2014). Specificity of the choice plant sugar meal 

sources will depend on availability and on the internal state of the insect. For instance, a 

mosquito in an environment with few host plants will not be as discriminative of sugar 

meal sources as one in an environment with a high abundance of these (Knols & Takken 

1997). Male mosquitoes do not require blood and therefore will use plant sugar as their 

sole source of sugar throughout their life-time. 

While female mosquitoes are usually physiologically ready for insemination, male 

mosquitoes have to undergo physical changes in external genitalia first. There is 

evidence that it takes up to 48 hours for male mosquito genitalia to rotate to positions 

that allow mating (Provost et al. 1961; Jones & Gubbins 1978). Male mosquitoes use 

several strategies to locate conspecific females (Gjullin et al. 1960; Downes 1969; 

Nijhout & Graig 1971). Males of some species of Mansonia and Aedes have been 

reported to respond to host odours increasing their chances of intercepting host-seeking 

females (Jaenson 1985). Males of some Culex and Aedes species have also been shown 

to use sex pheromones to attract females (Gjullin et al. 1960; Nijhout & Graig 1971). In 

most species though including Anopheles, Culex and Ochleroratus however, mating is 

associated with swarming: an early scotophase pre-nuptial males-only dance into which 

female mosquitoes dive and exit in-copula with a male (Harper 1943; Downes 1969; 

Charlwood & Jones 1979). Female mosquitoes that fly into swarms are identified by 

their wing beat frequencies (Charlwood & Jones 1979; Ikeshoji et al. 1985; Kerdpibule 

et al. 1989). Swarms are associated with visual markers and the onset of the dark phase 

(Downes 1969; Marchand 1985; Yuval et al. 1993; Charlwood et al. 2002). Such 

swarms are often associated with visual markers such as landmarks (Marchand 1985). 

It is controversial whether female mosquitoes will look for blood meal hosts only after 

inseminations. For An. gambiae s.l., evidence suggests plasticity in this behaviour with 
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studies showing mosquitoes to blood feed both before (Charlwood et al 2003) and after 

blood meals (Lyimo and Takken 2003) probably depending on the availability of 

appropriate blood meal hosts. Females of the main African malaria vector species, An. 

gambiae s.s. and An. funestsus show a high degree of anthropophagy and endophily in 

many areas (Service 1993). Females engage in an appetitive upwind flight behaviour 

caused by internal factors. Upon coming into contact with vertebrate host kairomones 

well before the visual range (20 – 70 meters) they begin a directional flight towards 

human dwelling. Within 20 meters to homesteads the concentrations of carbon dioxide 

above background levels become additionally important for attraction. The mosquitoes 

enter the houses through any available inlet and initiate a landing response on the host 

mediated by physical cues like heat and moisture in addition to visual and olfactory 

cues (Knols & Takken 1997). For mosquitoes that spread malaria, this host seeking 

behaviour is mainly crepuscular and nocturnal and finds human and other vertebrate 

hosts immobile. The mosquitoes then retreat to dark corners of the house or leave the 

house altogether to rest and gestate in moist environments for between 48 – 72 hours 

before seeking suitable oviposition sites. Importantly, blood meal and consequent 

physiological changes have been shown to cause changes in olfactory reception and 

behavioural responsiveness in female Ae. aegypti (Klowden et al. 1987; Siju et al. 

2010) and An. gambiae s.s. mosquitoes (Fox et al. 2001; Takken et al. 2001; Qiu et al. 

2006). Takken and others (2001) reported behavioural irresponsiveness by female An. 

gambiae s.s. mosquitoes after blood meals and showed that blood fed mosquitoes did 

not respond to host odours for up to 72 hours. Fox and others (2001) demonstrated the 

down-regulation of odourant receptors consequent to blood meals suggesting strongly 

that the post blood meal unresponsiveness of female mosquitoes to host odours was a 

result of the suppression of ORN’s. With more comprehensive electro-antennography, 

Qiu and others (Qiu et al. 2006) later showed that while there was a down-regulation of 

some classes of ORN’s after blood meals, there was also a marked up-regulation for the 

detection of some chemicals like indoles, phenols, ketones, and carboxylic acids and it 

was suggested that these compounds might be semiochemicals for oviposition. Taken 

together, these finding suggest that changes in olfactory perception and reception of An. 

gambiae s.s. may enable her locate suitable egg-laying sites and highlight the probable 

involvement of semiochemicals in the oviposition site selection process. These studies 

highlight the need to do electrophysiological studies at the time the female mosquitoes 

would seek an oviposition sites in nature to correctly capture olfactory responses 



Background 

35 
 

equivalent with that of the gravid mosquito at the time of oviposition site search and 

selection. 

 

 
Figure 1.3 Life history of the female mosquitoes and the probable role of semiochemicals 
in different behaviours 

 

1.4. Oviposition behaviour of mosquitoes 

The heterogeneous distribution of mosquito immature stages in natural aquatic sites is 

attributable to a combination of factors including the oviposition site choices of gravid 

mosquitoes, survival of immature stages and the availability of suitable oviposition 

sites. Like many hematophagous insects, mosquitoes breed in aquatic sites often far 

away from their vertebrate hosts (McCall 2008). Though many studies have suggested 

that natural chemical cues attract gravid mosquitoes to suitable substrates in these 

remote sites few have systematically described these, especially for malaria mosquitoes. 

Oviposition substrate (site) selection in mosquitoes is thought to be driven by visual, 

physical, chemical and biological characteristics of the substrate. It is thought that 
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physical cues such as water vapour, and visual cues act long-range to attract mosquitoes 

to water bodies. Near water bodies, volatile organic chemicals emanating from the 

potential oviposition sites influence short-range discrimination of sites (Bentley & Day 

1989). 

A few physical and visual cues have been shown to impact the oviposition substrate 

choices of mosquito species including An. gambiae s.s., and An. arabiensis. Early 

laboratory studies demonstrated that An. gambiae s.s., An. atroparvus and An. 

arabiensis all preferred to lay eggs in dark compared to pale substrates (Bates 1940; 

McCrae 1984). The evidence also showed that this preference was heightened when 

such substrates were presented against contrasting floors (McCrae 1984). Huang and 

colleagues later showed that visual contrast, unlike texture (Huang et al. 2005) or 

wavelength (Huang et al. 2007), was indeed oviposition site selection cues for An. 

gambiae s.l.. However, Balestrino and others later illustrated possible variation within 

the An. gambiae complex showing that the sympatric species An. arabiensis preferred 

humid substrate over free standing water and cups with rough walls over smooth cups 

(Balestrino et al. 2010). Beehlar and others (1992) found that Aedes triseriatus 

preferred to oviposit eggs in darker dyed oviposition site water. Collins and Blackwell 

(Collins & Blackwell 2000) reported that Toxorhynchites moctezuma and Tx. 

amboinesis preferred to oviposit on black rather than red, yellow, green or blue 

containers. 

Studies have also indicated microbial involvement in mosquito oviposition site selection 

by demonstrating that microbial volatiles attract and stimulate gravid mosquitoes of 

(Hazard et al. 1967; Ikeshoji et al. 1975; Hasselschwert & Rockett 1988; Pavlovich & 

Rockett 2000; Poonam et al. 2002; Trexler et al. 2003b; Sumba et al. 2004a; 

Otienoburu et al. 2007; Lindh et al. 2008). Hazard and other (1967) found that bacterial 

volatiles were the primary reason hay infusions used in oviposition traps were effective 

baits for gravid Cx. quinquefasciatus and Ae. (Stegomyia) aegypti mosquitoes. Few 

studies have investigated this for anopheline mosquitoes (Sumba et al. 2004a; Huang et 

al. 2006a; Otienoburu et al. 2007; Lindh et al. 2008; Herrera-Varela et al. 2014) with 

contradicting results: some suggest microbial volatiles could be repellent (Huang et al. 

2006a), others report these are attractant to gravid mosquitoes (Sumba et al. 2004a). 

So far, direct evidence of oviposition site selection using semiochemicals is only 

available for a few mosquito species. Potential chemical cues for oviposition from 
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natural breeding sites include pheromones, metabolites of bacteria and algae and 

volatiles from predators and competitors (Blaustein et al. 2005; Ponnusamy et al. 2008). 

Depending on mosquito species, these cues may result in increased oviposition in sites 

ideal for larval development (McCall & Cameron 1995). Relatively few chemicals have 

been shown to attract or stimulate oviposition with different mosquito species (Table 

1.1). In addition to these an oviposition pheromone -erythro-6-acetoxy-5-

hexadecanolide (ADH)- was identified in the apical droplet of mature eggs of Culex 

(Laurence & Pickett 1982) and shown to attract Cx. molestus, Cx. tarsalis, Cx. 

quinquefasciatus synergistically with the hay infusions or the key hay infusion volatile 

3-methylindole (Mboera et al. 1999; Mboera et al. 2000a; Mboera et al. 2000c). 

Another pheromone, Heneicosane, has also been identified for Ae. aegypti and shown to 

double the odds eggs being laid in water conditioned with larvae (Mendki et al. 2000). 

No pheromone has been shown yet for An. gambiae s.s.. In the contrary, evidence 

suggest that the presence of conspecifics deter oviposition in this species (McCrae 

1984).  

Anopheles gambiae s.l. generally breed in shallow, ephemeral turbid and sun-lit water 

bodies with algae but relatively little or no vegetation (Gimnig et al. 2001; Fillinger et 

al. 2009a; Mwangangi et al. 2010; Sinka et al. 2010). Unlike An. gambiae s.s., An. 

arabiensis are also common in rice paddies (Mwangangi et al. 2010) together with An. 

funestus that breed in large semi-permanent water bodies rich in vegetation and algae 

(Gimnig et al. 2001). However, the chemoecology of oviposition in An. gambiae s.l. is 

poorly understood. Except for 2-propyl phenol and 4-methylcyclohexanol (Rinker et al. 

2013) that were evaluated in systematic behavioural cage bioassays, many chemicals 

suggested to mediate the selection of oviposition substrates are yet to be confirmed as 

oviposition semiochemicals. Lindh and others (2008) profiled chemicals from bacteria 

that mediated positive oviposition responses for An. gambiae s.s. using solid phase 

micro-extraction (SPME) and gas chromatography coupled to mass spectrometry (GC-

MS). Using principal component analyses and previously published 

electroantennography (EAG) data they suggested putative semiochemicals for 

oviposition in the species (Table 1.1). Many of these compounds though known to elicit 

electrophysiological activity in An. gambiae s.s. (Blackwell & Johnson 2000; Meijerink 

et al. 2000; Qiu et al. 2006) and Culex mosquitoes (Puri et al. 2006) have not been 

confirmed to affect oviposition substrate choices of the species. Some compounds 
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including phenol, 4-methyl phenol, 4-ethyl phenol, 4-ethyl phenol, indole, 3-

methylindole, 3-methyl-1-indole, 3-carene, α-terpinene, α-copaene, α-cedrene, d-

cadinen and ethyl acetate have been presented in a recent review as oviposition 

attractants for Anopheles gambiae s.l. (Himeidan et al. 2013). Most of the data 

presented in the later paper are not supported by any behavioural evidence. This 

highlights the need for a very careful screening of the compounds suggested to date 

with accurate behavioural assays. 
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Table 1.1 Site-derived cues that influence oviposition with different mosquito species 

Bioactive material Description Source Mosquito species Response Authors 

Semiochemicals 
      

4-methylphenol (p-cresol) 3 ppm Betula papyrifera 

infusion 

 

Ae. triseriatus  Attraction  (Bentley et al. 1979) 

 0.01-100 µg/L Bermuda grass 

infusion 

 

Cx. quinquefasciatus Synergistic 

Attraction 

(Millar et al. 1992) 

 0.083, 0.83, 8.3 

mg/L 

Synthetic 

 

 

Ae. albopictus Repellency (Trexler et al. 2003a) 

 0.01 µg/L Bermuda grass 

infusion 

Larval rearing 

water 

Field-collected 

larval water 

Ae. albopictus Attraction (Allan & Kline 1995) 
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Fatty acids from C5 to C13  

Nonanoic acid 

  Cx. quinquefasciatus 

Cx. tarsalis 

Ae. aegypti 

Repellency  (Hwang et al. 1982) 

Intermediate metabolites of Capric 

and pelargonic acids 

 Breeding site water Cx. pipiens fatigans 

Cx. molestus 

Ae. aegypti 

 

Attraction (Ikeshoji et al. 1975) 

Capric acid  Synthetic Cx. resturans 

Cx. pipiens 

Cx. tarsalis 

Ae. aegypti 

 

Attraction (Maw 1970) 

3 Methylindole (skatole) 0.01-100 µg/L Bermuda grass 

infusion 

Cx. quinquefasciatus  Attraction 

 

(Millar et al. 1992) 

 08.3 mg/L  Ae. albopictus 

 

Repellency (Trexler et al. 2003a) 

 0.1 µg/L Bermuda grass 

infusion 

Larval rearing 

water 

Ae. albopictus Attraction (Allan & Kline 1995) 
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Field-collected 

larval water 

 

 0.1 µg/L Bermuda grass 

infusion 

Larval rearing 

water 

Field-collected 

larval water 

 

Ae. aegypti Repellency (Allan & Kline 1995) 

Indole 0.01-100 µg/L Bermuda grass 

infusion 

 

Cx. quinquefasciatus Synergistic 

Attraction 

(Millar et al. 1992) 

  Hay infusion 

Larval rearing 

water 

Field collected 

larval water 

 

Ae. aegypti 

Ae. albopictus  

Synergistic 

attraction 

(Allan & Kline 1995) 

4-ethylphenol 0.01-100 µg/L Bermuda grass Cx. quinquefasciatus Synergistic (Millar et al. 1992) 
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infusion 

 

Attraction 

  Hay infusion 

Larval rearing 

water 

Field collected 

larval water 

 

Ae. aegypti 

Ae. albopictus  

Synergistic 

attraction 

(Allan & Kline 1995) 

 0.1 µg/L Hay infusion 

Larval rearing 

water 

Field-collected 

larval water 

 

Ae. aegypti Attractant (Allan & Kline 1995) 

Phenol 0.01-100 µg/L Bermuda grass 

infusion 

 

Cx. quinquefasciatus Synergistic 

Attraction 

(Millar et al. 1992) 

 0.1 µg/L Hay infusion Ae. aegypti Attractant (Allan & Kline 1995) 

Acetic acid  

Propionic acid  

0.06% Purina® Lab chow 

infusion 

Cx. quinquefasciatus 

Cx. tarsalis 

Repellency (Hwang et al. 1980) 
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Isobutyric acid  

Butyric acid  

Isovaleric acid 

Caproic acid 

 

2-propyl phenol 

 

10-4 Synthetic An. gambiae s.s Attraction (Rinker et al. 2013) 

4-methylcyclohexanol 

 

10-4 Synthetic An. gambiae s.s Repellency (Rinker et al. 2013) 

o-cresol 

alpha-Ethyl-p-methoxybenzyl 

alcohol 

Phenethyl methylcarbamate 

Ethyl methylcarbamate 

alpha-conidendrol tetraacetate 

N-Ethyl-o-veratrylamine 

2,6 Dimethoxyphenol-ethylene oxide 

 

 Log pond infusion Cx. quinquefasciatus Attraction (Gjullin et al. 1965) 

Hexadecyl pentanoate, 

Tetradecyl heptanoate  

 Synthetic  Ae. aegypti 

Ae. albopictus 

Repellency (Sharma et al. 2009) 
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Tridecyl octanoate  

Octadecyl propanoate 

Heptadecyl butanoate 

Hexadecyl pentanoate 

Tetradecyl heptanoate 

 

 Synthetic An. stephensi Repellency (Sharma et al. 2009) 

Infusions of different plant matter 

Paper birch 

(Betula papyrifera ) 

600 grams of 

dried birch, 10 L 

water 

 Ae. triseriatus  Attraction  (Bentley et al. 1979) 

Bermuda grass 450 grams grass 

cuttings, 5g 

brewer’s yeast, 

20g lactoalbumen 

hydrolysate, 75 L 

water 

 Cx. quinquefasciatus  Attraction (Millar et al. 1992) 

(Allan & Kline 1995) 

 

 

Bermuda grass   Cx. tarsalis  (Isoe et al. 1995a; Isoe & 

Millar 1995) 

Larval rearing water   Ae. albopictus Attraction (Allan & Kline 1995) 
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   Ae. aegypti   

Manure   Ae. aegypti var. 

queenslandis 

Attraction (O'Gower 1963) 

Log pond water   Cx. quinquefasciatus 

Cx. tarsalis 

 

Attraction (Gjullin et al. 1965) 

Alfalfa hay 10 g dried alfalfa 

in 200 ml distilled 

water 

 

 Cx. pipens 

quinquefasciatus 

Ae. aegypti  

Attraction 

and 

stimulation 

(Hazard et al. 1967) 

Purina® Laboratory chow 1gram in 100 ml, 

10 days old 

 Cx. quinquefasciatus 

Cx. tarsalis 

 

Repellency (Hwang et al. 1980) 

Breeding site water   Cx. pipiens fatigans 

Cx. molestus 

Ae. aegypti 

 

Attraction (Ikeshoji et al. 1975) 

 

Panicum maximum 40 g of grass 

leaves, 5 L of tap 

water 

 Ae. aegypti 

Ae. albopictus 

Stimulation/

Attraction 

(Santana et al. 2006) 
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Oak leaf   Ae. albopictus 

Ae. triseriatus 

Stimulation/

Attraction 

(Trexler et al. 1998) 

White-oak leaf   Ae. aegypti 

 

Attraction (Ponnusamy et al. 2008) 

Bamboo   Ae. aegypti 

 

Attraction (Ponnusamy et al. 2008) 

Bacteria 

Aerobacter aerogenes 10 g dry alfalfa, 

200 ml water, 

24 hrs incubation 

Alfalfa hay 

infusions 

Cx. pipiens 

quinquefasciatus 

Ae. aegypti 

 

Attraction 

and 

stimulation 

(Hazard et al. 1967) 

Pseudomonascea  Unspecified hay 

infusion 

Cx. resturans 

Cx. pipiens 

Cx. tarsalis 

 

Attraction (Maw 1970) 

Pseudomonas aeroginosa  Breeding site water Cx. pipiens fatigans 

Cx. molestus 

Ae. aegypti 

Ae. albopictus 

Attraction (Ikeshoji et al. 1975) 

Hasselschwert & Rockett 

1988) 

(Pavlovich & Rockett 2000) 
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Bacilllus cereus 

 

 Bacterial cultures Ae. aegypti 

Ae. albopictus  

Stimulation/

Attraction 

(Hasselschwert & Rockett 

1988; Poonam et al. 2002) 

(Pavlovich & Rockett 2000) 

 

Pseudomonas flourescens 

Bacillus thuringiensis 

Bacillus sphaericus 

Between 100 – 

2000 ppm 

Bacteria filtrates Cx. quinquefasciatus  Attraction (Poonam et al. 2002) 

Psychrobacter immobilis 

Sphingobacterium multivorum 

Bacillus species 

 Larval rearing 

water 

Soil contaminated 

cotton towels 

Oak leaf infusion 

 

Ae. albopictus  Attraction (Trexler et al. 2003b) 

Stenotrophomonas maltophilia 

 

Bacteria filtrate Breeding site  An. gambiae s.s. Repellency (Huang et al. 2006a) 

14-18 different spp most of them 

Gammaproteobacteria 

 Bamboo leaf 

infusion 

White-oak leaf 

infusion 

Ae. aegypti Attraction (Ponnusamy et al. 2008) 
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Vibrio metschnikovii 

Proteus sp. 

Micrococcus sp. 

Bacillus sp. 

Exoguobacterium sp. 

Between  1.8×107 

to 2.0×108 

bacterial cells /ml 

Midguts and 

breeding sites 

An. gambiae s.s, Attraction (Lindh et al. 2008) 
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1.5. Tools used for studying the oviposition behaviour of mosquitoes 

Several bioassays have been developed and used to investigate oviposition substrate 

preferences and attraction in mosquitoes. Many of these bioassays were developed with 

Culex species (Isoe et al. 1995b) but are widely used to evaluate oviposition in other 

mosquito species without further modification. Some effort has been directed to 

customizing bioassays for Aedes mosquitoes (Corbet & Chadee 1993). However, to 

date, no behavioural bioassays have been developed strictly for use malaria mosquitoes. 

Forced bioassays have been attempted to evaluate the time it takes for mosquitoes to lay 

eggs in test substrates (Isoe et al. 1995b). In such studies gravid mosquitoes were 

stunned by chilling before their wings were amputated to immobilize them. The 

immobile mosquitoes were then left on the surface of substrates and the time they took 

before laying eggs compared to controls. These technique was originally developed for 

forcefully obtaining eggs from mosquitoes in the laboratory (Ikeshoji 1966). As a 

bioassay technique, these have little benefit and cannot be used to investigate pre-

oviposition responses or give a correct representation of the oviposition behaviour 

mosquitoes (Isoe et al. 1995b).  

The vast majority of oviposition studies are done in laboratory or semi-laboratory 

settings within adult mosquito holding cages. Though the cages differ in shape (Kramer 

& Mulla 1979; Isoe et al. 1995b; Poonam et al. 2002), size (Isoe et al. 1995b; Poonam 

et al. 2002; Sumba et al. 2004a) and construction (Kramer & Mulla 1979; Huang et al. 

2005), the principle of cage bioassays is the same: gravid mosquitoes are offered one, 

two or more substrates and the numbers of mosquitoes that orient to and\or lay eggs in it 

are estimated.  

Choice egg-count bioassay are the single most commonly used oviposition tool for 

oviposition studies with mosquitoes. These compare the number or proportion of egg or 

egg raft deposited on a test substrate to that of a standard or different substrate. Egg-

count bioassays have been used to describe substrate preferences by Stegomyia, Culex 

and Anopheles mosquitoes (Bentley et al. 1979; Hwang et al. 1980; Hwang et al. 1982; 

Millar et al. 1994; Sumba et al. 2004a; Sharma et al. 2008). However, because eggs are 

only the final product of oviposition choices, egg or egg raft counts provide little 

information on the pre-oviposition behaviour of mosquitoes. Further, egg-count 

bioassays allow gravid mosquitoes to come into direct physical contact with test 
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substrates making it difficult to distinguish between non-contact attraction and contact 

stimulation (Isoe et al. 1995b; Sumba et al. 2004a). The most salient flaw of these 

however is that egg-count bioassays assume that the number or proportion of eggs 

indicates egg-laying preferences. This is straight forward in for Culex mosquitoes that 

lay eggs in rafts. However for mosquitoes that lay individual eggs it should be verified 

(Corbet & Chadee 1993).  

Alternative bioassay tools have been suggested for challenges posed by egg-count 

bioassays. These include detergents and sticky screens that estimate the number or 

proportion of mosquitoes that attempt to lay eggs in substrates. Detergent bioassays 

refer to behavioural assays that add minute quantities of laboratory grade surfactants to 

substrates to break the surface tensions and therefore drown mosquitoes attempting to 

land (Isoe et al. 1995b). Sticky screens exploit the same principle but instead of 

detergents use insect glue to trap gravid mosquitoes when they attempt to access 

substrates covered by these (Isoe et al. 1995b; Trexler et al. 2003a; Dugassa et al. 

2012). These have been used to differentiate between volatile attractants and non-

volatile stimulants for Culex species. However, their effectiveness is limited to 

mosquito species that exclusively land directly on the water surface to lay eggs. Further 

the olfactory and visual interferences due to the use of detergents, glues and screens 

could hamper accurate evaluation of oviposition. 

Wind tunnels are a useful tool in evaluating short-range odour orientation in insects of 

agricultural and medical importance including An. gambiae s.l.. (Kellogg & Wright 

1962; Knols et al. 1994; Mboera et al. 1998; Mukabana et al. 2002; Olanga et al. 2010; 

Omrani et al. 2010). The first wind tunnel described for studying oviposition in 

mosquitoes was designed by Osgood and Kempster (1971). Using groups of Culex 

mosquitoes, they showed that simple air-flow wind tunnels (olfactometers) could be 

used to effectively identify oviposition semiochemicals and distinguish attractants from 

stimulants. Wind tunnels include a system that draws air through the system to initiate 

stimuli-laden plumes from trapping chambers. This paves the way for anemotaxis 

causing mosquitoes to fly into or away from compartments fitted with entry-no-return 

funnels or baffles and treated with test substrates. This provides for an effective method 

of measuring oviposition attraction. Klowden and Blackmer (1987) used the 

olfactometer designed by Osgood and Kempster to describe methyl propionate as an 

oviposition attractant for Aedes aegypti. Dual port wind tunnels\ olfactometers can also 
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been used to identify and evaluate spatial oviposition repellents (Schreck et al. 1970; 

Kline et al. 2003). However wind tunnels are limited in range; they cannot be used to 

evaluate long-range attraction over several meters such as necessary when screening 

putative attractants for the developments of baits for monitoring and controlling 

mosquitoes. For such it is necessary to design tools that evaluate mosquitoes in larger 

semi-field or field conditions. 

Few studies have attempted to evaluate oviposition substrates in the semi-field and field 

condition. Mboera and others (Mboera et al. 2000a) used counter-flow geometry traps 

to evaluate the response of gravid Culex quinquefasciatus to the synthetic oviposition 

pheromone, (5R, 6S)-6-acetoxy-5-hexadecanolide. Other studies used artificial ponds to 

investigate the effects of the hemipteran Anisops sardea on habitat selection by 

mosquitoes (Eitam et al. 2002; Blaustein et al. 2004). No study has designed tools for 

screening oviposition attraction of An. gambiae s.l. mosquitoes under semi-field or field 

conditions. 

 

1.6. Factors that potentially affect the responsiveness of mosquitoes 

prepared for oviposition studies 

1.6.1. Blood meal 

Female of mosquito species that vector diseases are haematophagous (Takken et al. 

1998). Their blood requirement is necessitated by a physiological need to obtain serum 

protein needed to complete egg development (Briegel 1985; Briegel & Horler 1993). 

Egg development begins when the mosquito has ingested an amounts of blood sufficient 

to initiate follicular development (Shelton 1972; Reisen & Emory 1976; Briegel & 

Horler 1993). The amount and number of blood meals required depends on the 

mosquito species (Lounibos et al. 1998) and body size (Lyimo & Takken 1993; Takken 

et al. 1998). In addition to sugar, blood is a source of energy; females that are blood-fed 

have been shown to live longer than those fed on sugar only (Gary & Foster 2001). In 

nature, many vertebrates are potential host sources of blood meals for mosquitoes 

ranging from avians and humans to bovines and other ruminants. However, many 

mosquito species show host preferences (Takken & Knols 1999). The malaria 

mosquitoes An. gambiae s.s. and An. funestus s.s. are thought to have preference biting 
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human hosts (anthropophagy) while An. arabiensis is considered a much more general 

vector that bites both humans and domesticated outdoor animals. However, host 

preferences are mediated by several extrinsic and intrinsic factors and could vary from 

strain to strain (Takken & Verhulst 2013). 

Captive mosquitoes intended for oviposition experiments are often blood-fed from 

narrow range of blood meal host sources. The choice of these is limited by the ease of 

handling and ethical complexities. The most common sources of blood meals in the 

laboratory include rabbits, guinea pigs, horses, and rats (Olayemi & Ande 2009). Blood 

meals are often offered by allowing sugar-starved mosquitoes timed access to 

immobilized hosts, a human arm or artificial membrane feeding devices (Cosgrove et 

al. 1994). The use of membrane feeding devices has been shown to negatively influence 

the proportions of mosquitoes that blood feed (Bunner et al. 1989). 

Adapting specialist hematophagous insects to standard laboratory blood meal host 

sources is often associated with changes in their biotic potential with effects on 

fecundity, duration of the egg maturation period and viability of eggs (Downe & West 

1963; Shelton 1972). These effects are attributable to the protein quality of blood 

(Jordan 1961).  

1.6.2. Mating and insemination 
In nature, mating and insemination occur early in the life cycle of most mosquito 

species. The age of mosquitoes has been positively correlated with mating in laboratory 

cages (Jones & Gubbins 1978; Verhoek & Takken 1994). Verhoek and Takken 

(Verhoek & Takken 1994) demonstrated that An. gambiae s.s. and An. arabiensis 

optimally mate when both sexes were between the ages of 5 and 7 days. 

In addition to the age of the male mosquito many factors are thought to affect mating in 

caged mosquito colonies including body sizes of both males and females (Yuval et al. 

1993; Charlwood et al. 2002; Okanda et al. 2002; Charlwood et al. 2003), sugar 

deprivation (Stone et al. 2009), sex ratios within adult mosquito holding cages 

(Charlwood & Jones 1979; Verhoek & Takken 1994) and lighting conditions 

(Charlwood & Jones 1980; Panicker & Bai 1980; Marchand 1985). No study has 

investigated the implication of these for oviposition studies with laboratory reared 

mosquitoes. 
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Mosquitoes are often assumed to mate before blood meals (Charlwood et al. 2003). 

However for An. gambiae many females have been shown to blood feed prior to mating 

(Lyimo & Takken 1993). The development of eggs is not dependent on the mosquitoes 

state of insemination, but for egg maturation and oviposition mating is mandatory 

(Chambers & Klowden 2001; Klowden & Russell 2004). It could be that the oviposition 

success rate of mosquitoes can be improved by conditioning cages where blood fed 

mosquitoes are held with male mosquitoes. 

1.7. Oviposition traps for mosquito monitoring and control 
The gold standard and most frequently used technique for monitoring An. gambiae s.l. 

is the human landing catches (Gama et al. 2013). Through human landing catches both 

mosquitoes that host seeking inside and outside houses can be detected and changes in 

their temporal and/or spatial feeding habits described (Gimnig et al. 2013). However, 

while this is the most effective method it exposes volunteers looking for doing the 

sampling to infective mosquito bites leading to ethical and safety concerns.  

The most common alternative monitoring tools for the presence of An. gambiae s.l. in a 

target area in the recent past were collection methods and traps located inside people’s 

houses to catch the highly endophilic and endophagic malaria vectors (Mbogo et al. 

1993). Such tools included various light traps, pyrethroid spray catches and bed net 

traps (Leiser & Beier 1982; Mathenge et al. 2002; Sithiprasasna et al. 2004). Many of 

these tools’ efficiency is density dependent and their sensitivity reduces when vector 

densities are extremely low (Mbogo et al. 1993; Hii et al. 2000; Overgaard et al. 2012). 

In areas with increasing coverage with insecticides inside houses mosquito densities 

have reduced in many areas to a very low level (Bayoh et al. 2010). Furthermore, 

vectors have adapted to this situation and avoid resting and/or feeding inside leading to 

a low and possible under -representative catch rate of adult vectors in the area with 

traditional trapping techniques (Hii et al. 1986; Zaim et al. 1986; Mbogo et al. 1993). It 

is therefore necessary to develop novel approaches to target outdoor populations of 

vectors in areas of high personal protection coverage (Fillinger et al. 2008). 

Oviposition traps would provide such a tool if suitable oviposition media or 

semiochemicals could be identified to attract gravid An. gambiae s.l.. Collecting 

mosquitoes after blood meals provides a relatively accurate way of surveying for 

disease pathogens (Reisen & Meyer 1990; Meece 2002; Braks & Carde 2007; Williams 

& Gingrich 2007). Trapping gravid mosquitoes seeking oviposition sites provides for a 
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desirable method for doing so (Kline et al. 2006; Braks & Carde 2007). Gravid traps 

have been demonstrated as effective in surveillance systems for arboviral encephalitis 

(Reiter et al. 1986) and human filariases (Jayanetti et al. 1988). Many anopheline 

mosquitoes are suspected to be involved in virus transmissions and monitoring these 

would benefit from an oviposition trap. However, even though many ovitraps and 

gravid traps exist there has been none effective for the collection of Anopheles gambiae 

s.l. until recently (Dugassa et al. 2013).  

Ovitraps were first reported by Fay and Eliason (Fay & Eliason 1966). They were 

essentially hay infusion baited stations that mimicked preferred oviposition sites of Ae. 

aegypti. Each station consisted of a wooden paddle wrapped up in brown blotting 

papers and propped into a gloss black enamel container half-filled with hay infusions. 

Ovitraps act as sinks for mosquito eggs and can be used for monitoring the presence of 

adult mosquitoes in the field (Fay & Eliason 1966). Since their introduction, ovitraps 

have been extensively used effectively to monitor the densities of many container 

breeding mosquitoes including Ae. aegypti (Fay & Eliason 1966; Jakob & Bevier 1969), 

Ae. albopictus (Zhang & Lei 2008), Ae. sirriensis (Mortenson et al. 1978) and the tree-

hole species Haemagogus equinis (Tikasingh & Laurent 1981). Ordonez-Gonzales 

incorporated insect glue into the ovitrap design and developed a novel sticky ovitrap 

(Ordonez-Gonzalez et al. 2001). Sticky ovitraps arrest gravid mosquitoes as they land 

on substrate and work well for monitoring adult Ae. aegypti (Ritchie et al. 2004) and 

Ae. albopictus (Zhang & Lei 2008). The effectiveness of ovitraps depends on the 

oviposition substrate bait. Polson and others have shown that 10% hay infusions 

increase the effectiveness of ovitraps three-fold as compared to water alone for Ae. 

aegypti (Polson et al. 2002; Santos et al. 2003). 

Reiter developed the first gravid traps with the intention of sampling gravid Culex 

mosquitoes and bettering surveillance systems for arboviral diseases (Reiter 1983; 

Reiter 1987). These traps, now available commercially as CDC gravid trap model 1712 

and Box gravid trap, have two main parts: an overhead chimney-like part holding a fan 

that creates an upward suction to trap gravid mosquitoes and (2) a pan for dispensing 

oviposition media baited with attractants (Reiter 1983; Reiter 1987). Frommer 

introduced a trapping chamber to prevent adult mosquito specimen from being damaged 

resulting into a new variant of the Reiter design trap commonly known as the Frommer 

updraft gravid trap (CDC gravid trap model 1719). Together these three constitute the 
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most commonly used gravid traps (Braks & Carde 2007). These traps have low efficacy 

with An. gambiae s.s. (Dugassa et al. 2013). Additional variants of these trap design 

include the Harris county gravid trap (Dennett et al. 2007) and counter flow geometry 

(CFG) traps adapted for gravid mosquitoes (Mboera et al. 2000b). However, only one 

gravid trap – the OviART gravid mosquito trap - has been developed specifically for 

An. gambiae s.s. (Dugassa et al. 2013) 

Trap models together with associated attributes affect the efficacy of gravid traps. Allan 

and Kline demonstrated that the CDC model 1712 and 1719 trapped more Cu. 

quinquefasciatus and Cx. nigripalpus mosquitoes compared to the box gravid trap. The 

study additionally showed that traps with dark and large pans were more effective in 

trapping these species compared to those with lighter and small pans (Allan & Kline 

2004). Braks and Carde later showed that by improving the airflow within it the Box 

gravid trap becomes two-fold more effective (Braks & Carde 2007). Russell and Hunter 

(2010) replaced the collection component of the CDC 1712 design with that of a CDC 

light trap effectively cutting the number of specimen damaged and allowing for easier 

transport, freezing and removal of mosquitoes.  

The sensitivity and specificity of gravid traps depends on the substrates used as a lure in 

the pan. Hay and grass infusions are widely used to for the surveillance of many Aedine 

and Culicine species including Ae (Ochleroratus) japonicus, Ae. albopictus, Cx. 

quinquefasciatus, Cx. nigripalpus, Cx. restuans, Cx. pipens, Cx. erraticus (Dickson & 

Dewsnup 2005; Burkett-Cadena & Mullen 2007; McPhatter et al. 2009). In addition to 

organic infusions studies have shown that it is possible to use artificial attractants as 

baits for Culex in gravid traps (Mboera et al. 2000a).  

Anopheles gambiae s.l. are not container breeders and shun the container-like design of 

ovitraps and gravid traps (Dugassa et al. 2013). While simple gravid trap that consists 

of acetate sheets treated with insect glue and suspended just above potential oviposition 

sites has been recently proposed for catching gravid anophelines when they land on a 

water surface to lay their eggs (Harris et al. 2011). However, other studies suggest that 

these mosquitoes can lay eggs in flight without landing (Dugassa et al. 2012) making 

sticky screens little effective. Without attractants involved to lure a large number of 

mosquitoes to a sticky trap only very few individuals are likely to be caught, and 

probably only in a high transmission setting as was the case in the test area of Harris 

and others (2011).  
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Rationale 

Following a decade-long consistent decline in malaria burden in Africa, elimination of 

the disease appears to be within reach for the first time in many locations. This progress 

is attributable to many factors but is most prominently linked to vector control through 

wide scale use of long-lasting insecticidal nets (LLINs) and indoor residual spraying 

(IRS) for controlling peridomestic primary malaria vectors (Lengeler 2004; Pluess et al. 

2010). These tools have together reduced malaria transmission by many orders of 

magnitude. However, studies indicate that even with complete coverage with LLINs and 

IRS, malaria elimination will remain elusive (Ferguson et al. 2010; Killeen 2014). 

Transmission of the disease will be sustained by vectors that resist insecticides and bite 

outdoors. Additional tools that can combine with the current frontline strategies to 

impact these vector populations are needed. Tools aimed at behaviours of vectors 

beyond blood-feeding might allow for controlling mosquitoes irrespective of their state 

of insecticide resistance or biting and resting inclination and are most desirable 

(Ferguson et al. 2010). For this reason, the present study seeks to provide insight for 

strategies targeting of gravid mosquitoes by identifying chemical factors that An. 

gambiae s.s use to locate and select oviposition substrates. 

An understanding of the cues malaria mosquitoes use to locate and select oviposition 

substrates could instigate an exciting possibility for targeting mosquitoes that 

successfully bite in spite of existing control. It has been hypothesised that oviposition 

cues could be manipulated and combined with insecticides to attract gravid mosquitoes 

outdoors and kill either the gravid female or the immature mosquitoes within breeding 

sites (Ferguson et al. 2010; Killeen 2014). However, to date this has not been 

systematically investigated; evidence of oviposition substrate preferences is sketchy and 

controversial. Many volatile organic compounds have been suggested to mediate this 

but none supported with appropriate scientific evidence. All studies have been restricted 

to laboratory conditions; not one chemical has been evaluated beyond the laboratory. 

There is need to systematically seek and share evidence for chemicals An. gambiae s.l. 

might use to select breeding sites and test the effectiveness of this in natural conditions. 

As a prerequisite to studying the response of gravid An. gambiae s.s. to putative 

semiochemicals, robust behavioural assays that accurately characterise and quantify the 

response of gravid malaria mosquitoes to different substrates are required. No effort has 

been made to empirically design or standardize such assays for this species. In spite of 
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at least one study with Aedes mosquitoes that suggested that mosquitoes that lay single 

eggs and skip oviposit might present unique challenges to implementing and 

interpreting egg-count bioassays, bioassays tools previously designed for use with other 

species of mosquitoes have been employed for studies with this species with no 

preliminary studies whatsoever to evaluate their appropriateness for this. 

 

1.8.Overall aim and hypotheses 
The aim of this thesis was to analyse the role of volatile organic compounds in 

oviposition substrate choices of Anopheles gambiae and An. arabiensis. Towards this 

elaborate studies were done to develop tools for investigating substrate preferences as 

well as attraction to substrates under controlled conditions and in the field. 

It was hypothesized that: 

• The proportion of An. gambiae s.s. and An. arabiensis that respond in controlled 

behavioural oviposition bioassays can be improved to over eighty percent (thereby 

increasing the accuracy of experiments) by standardizing operating procedures for 

producing gravid mosquitoes and re-aligning bioassays with the peak oviposition 

period of the strains. 

• Anopheles exhibit unique egg-laying characteristics which reduces the effectiveness 

of choice egg-count bioassays. Such bioassays can be improved to detect relatively 

small differences in substrate preferences (≤20%) with sufficient power (≥80%) and 

confidence (95% significance) by redesigning bioassays to account for the unique 

features and using the right sample sizes. Novel free-flight experiments in the semi-

field using mosquito traps can be used to confirm olfactory attraction to oviposition 

substrates. 

• Gravid An. gambiae s.s. and An. arabiensis discriminate between oviposition 

substrates and preferentially select in which to lay eggs. This choice is partially 

mediated by volatile organic compounds originating from the substrates. 

• Semiochemicals for oviposition substrate preferences can be manipulated to attract 

and trap gravid malaria mosquitoes under controlled conditions and in the field. 
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2.1. Abstract 

Background: To do effective behavioural experiments with mosquitoes it is necessary 

to have reproducible responses with different batches of the insects. This study aimed to 

improve the replicability of bioassays for oviposition by improving procedures for 

preparing batches of gravid Anopheles gambiae sensu stricto (s.s.) and Anopheles 

arabiensis so that a high (<80%) and consistent proportion of mosquitoes lay eggs in 

every round of experiments. 

Methods: First the impact of insemination on oviposition was assessed for both species. 

The chance of egg-laying in three-day old mosquitoes blood-fed and kept in cages with 

an equal number of conspecific males was compared to those blood-fed and kept in 

cages without males. Factors that could potentially influence insemination such as the 

adult mosquito holding cage size and the age and size of the mosquito were investigated 

by monitoring the rate of inseminated mosquitoes in 30 cm3 and 60 cm3 cages over four 

days. Secondly, the impact of substitute host-sources of blood-meal on the chances An. 

gambiae s.s. maturing and laying eggs was demonstrated by comparing the proportions 

of mosquitoes that became gravid and oviposited when blood-fed either on a human arm 

or a restrained rabbit (a common alternative lab host for mass production). Thirdly, to 

select an ideal time-frame for experiments a time period with the most intensive 

oviposition was identified by comparing the proportions of mosquitoes that laid eggs 

between 17:00 – 21:30 h and 21:30 – 8:00 h. Multivariable analyses with generalised 

estimating equations were used to estimate the effect of different factors on the odds of 

mosquitoes being inseminated or becoming gravid and laying eggs. 

Results: An average proportion of 84%, (95% confidence interval (CI) 77 – 89%) An. 

gambiae s.s. laid eggs when females were kept with males during and post blood-

feeding. Only 25% (95% CI 15 – 41%) of An. arabiensis laid eggs irrespective of the 

presence of male mosquitoes in the cages. Larger cages did not improve the 

insemination rate of An. arabiensis (Odds ratio (OR) 0.96, 95% CI 0.89 – 1.11) and An. 

gambiae s.s. (OR 1.18, 95% CI 0.75-1.90). There was a six-fold higher probability (OR 

6.68, 95% CI 2.57 – 17.4) of An. arabiensis being mated with every unit increment in 

wing size. The chances of egg-laying dropped (OR 0.30; 95% CI 0.14 – 0.66) when 

human arm-feeding was substituted with rabbit host. Egg numbers per mosquito were 
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however not affected by the host-source of blood-meal. The vast majority (96%, 95% 

CI 94 – 100%) of An. gambiae s.s. laid eggs between 17:00 h and 21:30 h. 

Conclusions: Oviposition experiments with An. gambiae s.s are best done between 

17:00 h and 21:30 h with mosquitoes provided with two consecutive blood-meals 24-

hour-apart from a human host, and kept in a cage with an equal number of conspecific 

age-mate males for at least 72 hours. More than eighty percent of mosquitoes prepared 

following these procedures lay eggs in experiments. Even then, mosquitoes should be 

individually provided with oviposition substrate in choices to eliminate the risk of 

including mosquitoes that do not lay eggs from the analyses and to describe skip 

oviposition.  
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2.2. Background 
For effective electrophysiological and behavioural studies with mosquitoes and other 

insects it is critical to fine-tune insect handling beforehand to ensure reproducible 

responses from the insects during experiments (Baker & Carde 1984). Mosquito 

behaviour is a function of the internal physiological state and circadian rhythms 

(Clements 1992). Factors that influence the insects’ internal state if any, should 

therefore be determined, regulated and standardised to improve the responsiveness 

during assays and make experiments repeatable. Moreover, natural behavioural changes 

should be followed over time to identify the peak period when experiments are best 

done (Baker & Carde 1984). This has never been systematically investigated for the 

preparation of gravid malaria mosquitoes aimed for oviposition studies. 

Many egg-count bioassays done with Anopheles gambiae s.l. to study its oviposition 

behaviour report very low mean egg numbers (Sumba et al. 2004a; Huang et al. 2005; 

Huang et al. 2006a; Fritz et al. 2008; Balestrino et al. 2010). This is in spite of 

laboratory and field evidence that individual Anopheles gambiae s.s. and Anopheles 

arabiensis mosquitoes frequently lay large mean numbers of eggs (Lyimo & Takken 

1993; Hogg et al. 1996). The low egg numbers could imply that many of the mosquitoes 

exposed to substrates and included in analyses failed to lay eggs during experiments. 

More importantly, it might suggest that many mosquitoes used for oviposition studies 

were not gravid and should not have been used. McCrae (1984) raised concern  over the 

very low mean numbers of eggs commonly reported in many choice egg-count 

experiments with groups of An. gambiae s.l. mosquitoes. He noted that this implied that 

“the behaviour of only three or four mosquitoes was [therefore] tested”; and sample 

sizes for these experiments grossly overestimated. Results based on these few 

mosquitoes could lead to invalid conclusions. To date, no studies have sought to 

improve the preparation of gravid mosquitoes for experiments. 

There is some evidence that whether a female mosquitoes becomes gravid or not and 

lays eggs or not depends on her state of insemination (Chambers & Klowden 2001; 

Klowden & Russell 2004), the amount and host-source of blood-meal provided to the 

female (Downe & West 1963; Shelton 1972; Downe & Archer 1975; Mather & 

DeFoliart 1983; Olayemi et al. 2011a), and the time period before blood-fed mosquitoes 

are provided with suitable oviposition media (McCrae 1983; Sumba et al. 2004b; Fritz 

et al. 2008; Dieter et al. 2012). It is beyond the scope of this study to investigate the 
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underlying mechanism that dictate how these factors influence the fecundity and 

fertility of mosquitoes. The present focus is rather to investigate the potential influence 

these factors have on the mean numbers of eggs laid by individual An. gambiae s.s. and 

An. arabiensis of the Mbita strain and the mean number of gravid mosquitoes that seek 

oviposition substrates during experiments. The mean number of eggs laid by 

mosquitoes and the mean number gravid mosquitoes that seek substrates are the primary 

measures in behavioural bioassays for oviposition.  

“For any study of oviposition to be complete it would be valuable to know the probable 

time of its occurrence as a basic guide for laboratory procedures” (McCrae 1983). 

Putative oviposition substrates often consist of age-dependent organic infusions or 

concentration-sensitive chemicals which degrade in time and should be evaluated over a 

short period of time. Knowing the peak-time when mosquitoes oviposit would reduce 

challenges due to this by advising the ideal time to set up bioassays with the test 

species. Antennal sensitivity to semiochemicals varies with blood-meal status and the 

consequent physiological transition to gravidity (Fox et al. 2001; Qiu et al. 2006). 

Moreover, insects exhibit the lowest threshold for stimuli in the period that coincides 

with the natural time the specific behaviour occurs (Baker & Carde 1984). 

Implementing experiments and electrophysiological studies during this period of peak 

responses therefore leads to findings that are closer to reality and conclusions that are 

likely to be more true to the insects’ ecology.  

Procedures for handling mosquitoes intended for studies investigating the host-seeking 

behaviour for An. gambiae s.s. are well established. As a general rule, female 

mosquitoes are deprived of a sugar-meals for between 4 - 8 hours before experiments 

(Njiru et al. 2006; Olanga et al. 2010; Smallegange et al. 2010). This incites an internal 

state of “hunger” that immediately leads to appetitive search and responsiveness when 

captive mosquitoes are released into the experimental arena and provided with low 

doses of stimuli. Moreover, host-seeking studies are best implemented at dusk 

representing the natural periodicity of the behaviour (Okumu et al. 2010b; Lorenz et al. 

2013). Insects handled following these procedures have been used successfully in host-

seeking vector studies to identify host-seeking kairomones and formulate baits to trap 

An. gambiae s.s., (Okumu et al. 2010b; Mukabana et al. 2012). In the same way, 

preparation procedures for mosquitoes for gravid mosquitoes could improve the 
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responsiveness of insects and the integrity of conclusions made from oviposition 

studies. 

It was hypothesized that by fine-tuning standard operating procedures for producing 

gravid mosquitoes and identifying the peak oviposition period the proportion of gravid 

mosquitoes that consistently detect and select oviposition substrates could be improved 

to over eighty percent. In a series of experiments carried out with caged An. gambiae 

s.s. and An. arabiensis of the Mbita strain local to western Kenya this study investigated 

(1) if keeping conspecific male mosquitoes in cages during and after blood-feeding 

increased the proportion of inseminated and gravid females, (2) if larger rearing cages 

could increase the rate of insemination in mosquitoes, and (3) if blood-feeding 

mosquitoes with convenient host-source of blood-meal (rabbits) affected the chance that 

a mosquito would lay eggs; (4) The study also sought to establish the peak oviposition 

time for gravid An. gambiae s.l. to determine the best timeframe for implementing 

experiments. 

 

2.3. Methods 

2.3.1. Study site 

Experiments were implemented at the International Centre of Insect Physiology and 

Ecology, Thomas Odhiambo Campus at Mbita near Lake Victoria, Western Kenya 

(geographical coordinates 0° 26’ 06.19” South; 34° 12’ 53.12” East; altitude 1149 

meters above sea level). Egg-count experiments were carried out in sheds, 10 m long × 

5 m wide × 2.8 m high with walls constructed from dry reed mats and roofs of 

translucent corrugated polycarbonate sheets. Every shed contained two tables with 

capacity to hold 50 cages with a gap of 40 cm between each cage (Figure 2.1). 

Experiments were done at ambient conditions of temperature, humidity (mean daily 

temperature 27 ± 5°C, relative humidity 55 ± 10%) and light. 
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Figure 2.1 Experimental set-up of the two-choice egg-count bioassay (A) makeshift 

huts (B) cages set-up in huts at icipe-Thomas Odhiambo Campus, western Kenya (From 

(Herrera-Varela et al. 2014)). 

2.3.2. Mosquito rearing procedures 

Insectary-reared An. gambiae s.s. and An. arabiensis (Mbita strains) were used for this 

study. Briefly, two to three day old mosquitoes were allowed to feed on a human arm 

for 15 minutes on two consecutive days at 19:00 h. On the third day, blood-fed females 

were allowed to oviposit on wet filter papers provided overnight in the cage. An 

unknown number of eggs was dispensed in 20 L plastic tubs (41 cm diameter, 8 cm 

deep) half-filled  with non-chlorinated tap water purified by filtering through a charcoal-

sand filter (hereafter called tap water). Hatched larvae were fed with ground Tetramin® 

baby fish food (Tetra, Melle, Germany) twice daily. Pupae were collected into 10 cm 

diameter, 250 ml plastic cups filled with 200 ml of tap water and left overnight in 

30×30×30 cm mosquito cages for adults to emerge. Adults were maintained on 6% 

glucose ad libitum using absorbent paper wicks propped in 25 ml vials filled with 

glucose solution. 

 

2.3.3. Mosquito dissections 
Female mosquitoes were immobilized by placing them in a fridge at 4°C for 15 minutes. 

Terminalia and the near terminal abdominal segment (segment IX) were severed in 

normal saline to expose spermathecae. Slide mounts of spermathecae were inspected 

using a microscope at 1000× magnification for the presence of motile spermatozoa - a 

confirmation for insemination. The abdominal segments VII and VIII were gently 

severed to expose ovaries. The ovaries were observed at a magnification of 200× to 



Improving the number of responsive mosquitoes in oviposition bioassays 
 

66 
 

evaluate stages of egg development. Mosquitoes with mature eggs, boat-shaped with 

fully developed floats, were categorised as gravid. To estimate the size of a female the 

lengths of the left wing was measured from the distal end of the alula to the wing tip 

(omitting the fringe setae) to the nearest 0.1 mm (Packer & Corbet 1989; Lyimo & 

Koella 1992). 

 

2.3.4. Cages and oviposition cups 
Experiments were carried out in standard cages (30x30x30 cm) or in large cages 

(60x60x60 cm). The cages had a steel framework on a galvanized metallic base and 

covered with fine cotton mosquito netting. The cage net also had an insert sleeve for 

introducing and retrieving oviposition substrates and gravid mosquitoes. Oviposition 

substrates were offered in 7 cm diameter, 100 ml clear borosilicate crystallising glasses 

(Pyrex®, hereafter called oviposition cups). Prior to any experiment oviposition cups 

were autoclaved and kept at 200 °C for 2 hrs to reduce the possibility of bacteria and 

odourant contamination. Individual gravid mosquitoes (indicated by an enlarged, pale 

white abdomen) were introduced into the cages and provided with either one or two 

oviposition cups containing 100 ml of tap water. 

2.3.5. Experimental procedures 

2.3.5.1 Does holding blood-fed mosquitoes with conspecific age-mate males after 

feeding improve the rate of insemination and oviposition success? 

Relatively young females are often selected and blood-fed when preparing gravid 

mosquitoes for experiments to maximise the proportion that survive until experiments 

are finished two to three days after the blood-meal. The impact of male mosquitoes in 

put in cages with young blood-fed females on the oviposition success was explored. 

To do this, two groups of 300 three-day old female An. gambiae s.s. mosquitoes were 

put in separate standard cages. These mosquitoes had spent the first three days of their 

adult lives in colony cages with between 1000-2000 male and female conspecific 

mosquitoes. In one cage 300 males of the same age were added, whilst in the other cage 

no males were included. Both groups were then starved of sugar solution for up to six 

hours. Tap water saturated cotton towels folded to a pad of 50x25 cm were placed over 

the cages to maintain the relative humidity (RH) between 68 to 75%. The starved 

mosquitoes were permitted to blood-feed from a human arm between 18:30 – 19:30 h 
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for 15 minutes in total darkness. Mosquitoes that were not fed after the first blood-meal 

were removed from the cage, killed and discarded. Sugar solution was then replaced in 

the preparation cage until 12:00 h the following day when the mosquitoes were starved 

again in preparation for a second blood-meal the same evening. The second blood-meal 

ensured that mosquitoes that all mosquitoes obtain sufficient blood-meals. After blood-

feeding the mosquitoes were left in the insectary at temperatures that averaged 27 ± 2°C 

and were only retrieved 72 hrs later at the onset of experiments. The mosquitoes were 

seven days old when egg-count cage experiments were implemented. 

Fifty females were selected from each of the two groups based on visual inspection of 

their abdomen and transferred individually to standard cages. Each female was offered a 

single oviposition cup with 100 ml of tap water. The presence and number of eggs was 

recorded after 16 hrs (17:00 - 08:00 h). This experiment was carried out on three 

occasions (rounds; 3 x 50 individual females per treatment). Identical experiments were 

carried out in parallel with An. arabiensis. 

 

2.3.5.2 Does the cage size, female age and body size affect the insemination rate of An. 

gambiae s.s and An. arabiensis? 

The previous experiment revealed a very low (<30%) oviposition rate in An. arabiensis 

even when kept with males for seven days. Therefore, an experiment was designed to 

investigate the role of cage size, age and size of females on the insemination success 

(proportion of inseminated females) of An. gambiae s.s. and An. arabiensis. 

Experiments were carried out in standard and large cages in parallel. For both species, 

1400 pupae were placed in a plastic cup (10 cm diameter) filled with 200 ml of tap 

water and each species positioned in a standard cages for 24 hrs. Three hundred newly 

emerged male and 300 female mosquitoes of each species were transferred into separate 

cages of the two sizes. Six percent glucose solution was provided in all cages ad 

libitum. After three days, 25 females were randomly selected from each cage (standard 

and large for both species) by a technician unaware of the objectives of the study and 

dissected to evaluate insemination and to measure the wing lengths. The same number 

of females was dissected on days 4, 5 and 6. The experiment was implemented for three 

rounds with different batches of mosquitoes. Mosquitoes in this experiment were not 

offered blood-meals.  
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2.3.5.3 When is the peak oviposition time of An. gambiae s.s. Mbita strain? 

To have a consistently large proportion of females respond in oviposition experiments, 

it was important to establish the optimum interval between the last blood-meal and the 

bioassay for the local mosquito strains. Furthermore, putative test substrates for 

oviposition in mosquitoes (e.g. bacteria solutions, plants infusions, volatile inorganic 

compounds) are often unstable. It is therefore important to target the experiments during 

the peak in egg laying. 

Cage experiments were carried out with different batches of mosquitoes 48 and 72 hrs 

after their second blood-meal. ‘Gravid’ mosquitoes for experiments were prepared 

following standard procedures. For each experiment, 100 An. gambiae s.s. mosquitoes 

were individually offered two oviposition cups with tap water in two-(equal) choice 

egg-count experiments at 17:00 h. In 50 of the 100 cages, both oviposition cups were 

retrieved and replaced with two new cups containing tap water at 21:30 h, the remaining 

50 cages were left undisturbed through the night. The aim here was to investigate if the 

caged An. gambiae s.s. have several oviposition peaks during the night and to explore 

when skip oviposition (defined as the distribution of an egg batch into more than one 

substrate in one oviposition cycle) occurs. Half the cages remained undisturbed as a 

control to investigate if the exchange of cups might interfere with the oviposition 

response during the night. The experiment was ended at 08:00 h the following morning 

and the number of eggs in each cup recorded. Both experiments were carried out for 

three rounds. 

2.3.5.4 Do non-human host sources of blood-meal have an impact on egg laying in An. 

gambiae s.s.? 

Anopheles gambiae s.s. is highly anthropophagic (Garrett-Jones et al. 1980) and there is 

evidence that different host sources of blood-meals have an impact on the oviposition 

rate and fecundity (Olayemi et al. 2011a) of this species. An experiment was designed 

to elucidate the impact of feeding caged An. gambiae s.s. on non-human hosts on the 

proportion of females becoming gravid and the number of eggs laid by each female.  

Different groups of mosquitoes were blood-fed on either a human arm or 1 rabbit. 

Blood-meals on the human arm were offered as described in the previous experiment. 

For rabbit host blood-meals, fur was shaved on the ventral side of the rabbit in an area 

of 15x5 cm (approximately equal to the area exposed by an extended human arm when 
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the hand was covered with a latex glove). The rabbit was then held in a restrainer that 

limited movement and exposed the shaven underside. Mosquitoes to be fed were held in 

a cage positioned at the base of the restrainer allowing free access to the shaven area. In 

each treatment a group of 300 females were fed on two consecutive days. All 

mosquitoes that did not blood-feed on the first day were removed from the cages. The 

blood-fed mosquitoes were then held together with 300 males in standard cages for 72 

hrs. A total of 100 female mosquitoes were randomly selected from each of the two 

cages, aspirated out by a technician unaware of the objectives of the research, and 

dissected to determine if they were gravid or not. Another 25 females visually appearing 

gravid were selected by an experienced technician from each of the two cages. These 25 

females were tested individually in no-choice egg-count cage experiments to compare 

the proportion of females that laid eggs and the number of eggs laid per female fed on 

either rabbit or human blood. The experiment was done for three rounds using different 

batches of mosquitoes. 

2.3.6. Statistical analyses 

Multivariable analyses were implemented using generalised estimation equations (GEE) 

to analyse how proportions were affected by test variables. Different batches of 

mosquitoes from different rounds of an experiment were considered clustered (not 

independent) and included in the GEE model as a repeated measure. To evaluate the 

impact of including male mosquitoes in cages with blood-fed females on the 

proportions of mosquitoes that lay eggs, a GEE model was fitted with binomial 

distribution, logit link function and exchangeable correlation matrix. The presence of 

male mosquitoes (coded a 1 if a male is present, and 0 otherwise) in the holding cages 

was included in the model as a fixed factor. The association between the proportion of 

female mosquitoes inseminated and cage size (standard=0, large=1), mosquito age (a 

four level categorical variable coded 3, 4, 5, and 6 days) and mosquito size (measured in 

terms of wing length) was assessed using two separate GEE models (binomial 

distribution, logit link function, exchangeable correlation matrix) for the two test 

species. An interaction term for age and cage size was also included in the model. 

Similar models were fitted for the experiment on host blood-meal sources with the 

blood-meal source as a fixed factor; and the experiment on oviposition time with time 

period as a fixed factor. The mean numbers of eggs and their corresponding 95% 

confidence intervals (CIs) for two treatments were calculated as the exponent of the 
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parameter estimates based on generalised linear models with negative binomial 

distributions with no intercept included. 

Data were analysed with IBM SPSS Statistics Version 20 (IBM-Corp 2011) and R 

software version 2.13.2 using various functions from the packages MASS, epicalc, 

lme4, effects, geepack, aod and gee (R Team 2011). 

2.3.7. Ethical considerations 
Ethical approval for this study was obtained from the Kenya Medical Research 

Institute’s Ethical Review Committee (Protocol no. 422). 

 

2.4. Results 

2.4.1. Including males in holding cages after blood-meals increases the 

proportion of ovipositing females in Anopheles gambiae sensu stricto 

A female An. gambiae s.s. was nine times more likely to lay eggs if, after a blood-meal, 

she was held with males than without them (OR = 9.0, 95% CI = 7.9 – 9.5, p<0.01). On 

average 84% (95% CI 77 – 89%) of females laid eggs per experiment repeat when held 

with males after the blood-meal compared to 36% (95% CI 29-44%) when held without. 

Whilst the total number of eggs laid by females held with males (2904 eggs (95% CI 

2844 – 2968)) was three times as high as the total number laid by females kept 

separated from males after blood-meals (994 eggs (95% CI 959 – 1030)), the mean 

number of eggs laid per female was similar in mixed-sex cages ( 66 eggs, 95% CI 44– 

99 eggs) and female only cages (54 eggs, 95% CI 36– 82) highlighting the importance 

of recording individual rather than groups of mosquitoes.  

Only an average of 25% of An. arabiensis (95% CI 15 – 41%) laid eggs. The likelihood 

of laying eggs was not associated with the presence or absence of males in the cages 

after blood-feeding (OR 1.92, 95% CI 0.62– 5.98, p=0.658) and dissections showed that 

a large proportion (>50%) of females that did not lay eggs were not inseminated. The 

mean number of eggs laid per female that laid was 63 (95% CI 59 – 68). 
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2.4.2. Age and body size of female mosquitoes can impact on insemination 

success in An. gambiae s.s. and An. arabiensis irrespective of the size of 

the holding cage 
The proportion of inseminated mosquitoes increased with time and age for both species 

(Table 2.1., Figure 2.2.). However, An. arabiensis was 6 times less likely (OR 0.16, 

95% CI 0.12-0.23, p<0.01) to be inseminated than An. gambiae s.s. The mean 

proportion of inseminated An. gambiae s.s. increased linearly to 72% (95% CI 61 – 

81%) six days after emergence. The insemination rate of An. arabiensis peaked five 

days after emergence with 45% (95 CI 36 – 57%) inseminated (Figure 2.2.). Cage size 

did not improve insemination rate for An. gambiae s.s.. In An. arabiensis, an improved 

insemination rate in larger cages was only observed for three day old females but not for 

older females (Table 2.1.). 

 

 
Figure 2.2 Insemination rates of cages An. gambiae s.s. and An. arabiensis (Mbita 

strains) in standard (30×30×30 cm) and large (60×60×60 cm) cages with increasing 

age. (n=75). 

The average length of the left wing of An. arabiensis was 4.20 mm (95% CI 4.16 – 4.23 

mm) compared to 3.76 mm (95% CI 3.70 – 3.82 mm) for An. gambiae s.s. While body 

size did not affect An. gambiae s.s. insemination, An. arabiensis females were 6.6 times 

more likely to be inseminated with every unit increase in wing length (Table 2.1.). 
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Table 2.1 Multivariable analysis of factors tested in association with the rate of 

insemination in experiments investigating the impact of cage size on the 

inseminations rate of Anopheles gambiae and Anopheles arabiensis 

Variable 
Anopheles gambiae s.s.   Anopheles arabiensis 

OR (95% CI) P value   OR (95% CI) P value 

Age of mosquito in days 
   

3 1 
  

1 
 

4 1.34 (1.30 – 1.48) <0.001 
 

3.40 (2.40 – 4.74) <0.001 

5 1.98 (1.62 – 2.43) <0.001 
 

6.23 (3.23 – 12.0) <0.001 

6 2.81 (1.75 – 4.52) <0.001   6.20 (3.99 – 9.64) <0.001 

Cage size        

standard 1 
  

1 
 

large 1.02 (0.97 – 1.07) 0.457   2.13 (1.66 – 2.73) <0.001 

Body size 
     

Wing length 0.68 (0.33 – 1.37) 0.278   6.68 (2.57 – 17.4) <0.001 

Interaction between mosquito age and cage size 

3*standard 1 
  

1 
 

3*large 1 
  

1 
 

4*standard 1 
  

1 
 

4*large 0.81 (0.63 – 1.04) 0.099 
 

0.61 (0.32 – 0.69) <0.001 

5*standard 1 
  

1 
 

5*large 0.80 (0.42 – 1.51) 0.493 
 

0.53 (0.37 – 0.75) <0.001 

6*standard 1 
  

1 
 

6*large 1.06 (0.67 – 1.70) 0.799   0.47 (0.42 – 0.52) <0.001 

OR=Odds ratio; CI=Confidence interval; *indicated interaction term 

 

2.4.3. Blood-meals from rabbits reduce the proportion of females that 

become gravid and lay eggs but does not affect egg numbers laid by gravid 

females  

Females fed on rabbit blood were less likely to become gravid compared to those fed on 

human blood (Table 2.2.). When selected from the cage randomly, on average 59% 

(95% CI 44 – 73) of those females offered blood from a rabbit were gravid and laid 
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eggs while 83% (95% CI 68 – 92%) of females fed on a human blood were gravid and 

laid eggs. Of those carefully selected as gravid based on their abdominal appearance, 

equal proportions of females from both treatments laid eggs when offered an 

oviposition medium. The mean number of eggs laid by individual gravid females also 

did not depend on the host source of blood-meals (Table 2.2.). 

 

 

Table 2.2 Effects of host source of blood-meal on oviposition of cages An. gambiae 

s.s. (Mbita strain) 

 Mean (95% CI) OR (95% CI) P value 

Percentage of blood-fed mosquitoes gravid at dissection 

Human arm 83 (68 – 92) 1  

Rabbit 59 (44 – 73) 0.30 (0.14 – 0.66) 0.030 

Percentage of gravid mosquitoes that laid eggs in cage experiments 

Human arm 72 (57 – 83) 1  

Rabbit 73 (59 – 84) 1.07 (0.95 – 1.20) 0.852 

Number of eggs per gravid female that laid 

Human arm 64.0 (57.1 – 71.8) 1  

Rabbit 62.1 (52.2 – 73.9) 0.97 (0.85– 1.11) 0.661 

OR=Odds ratio; CI=Confidence interval 

 

2.4.4. Egg-count cage bioassays with An. gambiae s.s. Mbita strain are best 

implemented 72 hrs after the last blood-meal during the peak oviposition 

time between 17:00-21.30 h.  

Due to the poor oviposition success in the colony reared An. arabiensis the following 

experiments were implemented with An. gambiae s.s. only.  

Female An. gambiae s.s. were 8.7 times (95% CI 4.3 – 18.4, p<0.001) more likely to lay 

eggs when provided with substrates 72 hrs after blood-meals compared with females 

provided with substrate after 48 hrs. On average 81% (95% CI 71 –93%) of females 



Improving the number of responsive mosquitoes in oviposition bioassays 
 

74 
 

presented with oviposition substrate 72 hrs after blood-meals laid eggs compared to 

only 33% (95% CI 32 –35%) 48 hrs after blood-meals (Table 2.3.).  

 

Table 2.3 Evaluation of egg-laying periodicity in caged An. gambiae s.s. (Mbita 

strain) 

  N 

(exposed) 

n 

(responded) 

Percentage of 

mosquitoes that laid 

eggs (95% CI) 

P value 

Time since blood-meal (cups left overnight) 

48 hours 200 75 33 (32 – 35) 
<0.001 

72 hours 150 122 81 (71 – 93) 

Egg laying period (72 hours after blood-meal) 

17:00 – 21:30 h 

150 

114 96 (94 – 100) 

<0.001 21:30 – 08:00 h 3 3 (2 – 5) 

Both periods 2 2 (1 – 4) 

Skip oviposition (72 hours after blood-meal) 

17:00 – 21:30 h 

31 

28 90 (89 – 96) 

<0.001 21:30 – 08:00 h 1 3 (2 – 5) 

Both periods 2 6 (5 – 7) 

 

Approximately 76% (95% CI 71-82) of females laid eggs whether cups were left 

untouched over night or changed by 21.30 h, suggesting that changing the cups did not 

interfere with oviposition. Ninety six percent of females that laid eggs in the experiment 

where cups were exchanged did so between 17:00 – 21:30 h (114/119).  The tendency 

for individual female mosquitoes to lay eggs in both cups (also known as skip 

oviposition) was observed in 26% (95% CI 19– 30) of all responding females and 90% 

(95% CI 89 – 96%) of it took place before 21.30 h. Only two mosquitoes laid eggs 

before and after 21.30 h (Table 2.3.) and one only after 21.30 h. 
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2.5. Discussion 

To implement empirical egg-count experiments with replicable and generalizable results 

it is vital to ensure a consistent and predictable oviposition rate in the test mosquitoes. 

This study highlighted important considerations when preparing gravid An. gambiae s.s. 

oviposition experiments: the insemination rate of the test mosquitoes, the blood-meal 

host source and the timing and duration of the actual experiments. It provided 

guidelines that lead to a high and consistent response rate in test mosquitoes (Figure 

2.3). 

 
Figure 2.3 Guidelines for preparing gravid Anopheles gambiae s.s. 

Consistent with previous studies, insemination was shown to be important for egg 

laying by An. gambiae s.l. (Chambers & Klowden 2001; Klowden & Russell 2004). The 

proportion of test females that laid eggs in the bioassays more than doubled when they 

were held in cages with males after blood-feeding providing a longer period to mate. 

This gives further evidence that at least in laboratory settings, mating in An. gambiae 

s.s. continues after the females have taken a blood-meal.  This also complements the 

Lyimo and Takken who showed that blood-feeding precedes mating in a large 

proportion of An. gambiae s.s. in the field (Lyimo & Takken 1993). Depending on the 

age of insects at blood-feeding this could be of great consequence. Cages with blood-fed 

females must be conditioned for insemination by including male mosquitoes especially 

when test females are blood-fed at a relatively young age (here two to three days). In 

experiments evaluating the rate of insemination with non-blood fed mosquitoes it was 

shown that approximately one fifth of An. gambiae s.s. were still virgins when six days 

old (the average age of test mosquitoes across studies). This might explain the similar 

proportion of test mosquitoes that failed to lay eggs in the bioassays even under 

optimized preparation procedures. Increasing the number of males in cages might 

improve both the rates of insemination and egg laying (Charlwood & Jones 1979). 

However, Verhoek and Takken (1994) have demonstrated that ratios of 3:1 male to 
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female do not significantly improve the rate of mating over a 1:1 ratio for An. gambiae 

s.l..  

Blood-meals taken on a rabbit resulted in a lower proportion of females that became 

gravid. This suggests that the common practice of substituting human hosts with rabbits, 

and possibly other secondary host sources of blood, (Munga et al. 2005; Otienoburu et 

al. 2007; Kweka et al. 2011) potentially reduces the proportion of gravid females and 

therefore increases the risk of including mosquitoes in bioassays that will not lay eggs. 

Excluding mosquitoes that did not lay eggs from the analysis showed that the actual 

mean number of eggs laid per female that became gravid after the blood-meal was the 

same irrespective of the source of blood. If groups would have been tested instead a 

false lower mean numbers of eggs with rabbit blood-meals would have been inferred. 

Great caution is advised in selecting gravid mosquitoes where secondary host sources of 

blood are used in preparing test mosquitoes. By using individuals it is possible to 

implement choice test even where the impact of the host-source of blood-meal is large 

or unknown. Mosquitoes that do not lay eggs can be removed from the final data set and 

reported as a separate entity of interest. 

The majority of the Mbita strain of An. gambiae s.s. did not yet lay eggs up to 48 hours 

after the last blood-meal; egg laying was constrained to early evening hours of the third 

night (≈72 hours) after blood-meals. This confirmed the findings of Haddow and others 

(Haddow & Ssenkubuge 1962). Consequently, egg-count cage bioassays with the Mbita 

strain were best done between 17:00 – 21:30 h on the third night after the last blood-

meal.  However, controversial results have been published in the past. Other studies 

with An. gambiae s.s. have shown that some strains lay eggs 48 hours after a blood-

meal and it was suggested that egg-laying times depend on local conditions, blood-

feeding times and temperature (McCrae 1983). Some studies also showed that An. 

gambiae s.s. can lay eggs at any time throughout the dark phase of day (McCrae 1983; 

Fritz et al. 2008). In consideration of these divergent findings, it is strongly recommend 

that oviposition periodicity studies precede all oviposition studies with different strains 

of this species. This does not only apply to behavioural bioassays but is equally 

important when investigating chemoreception in gravid females and changing sensilla 

sensitivity in response to changes to the physiological stage of a mosquito. These 

studies are often done 24 and 48 hours after a blood-meal (Qiu et al. 2006; Rinker et al. 
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2013) which might not necessarily coincide with the time a female searches for an 

oviposition site.  

The insectary-reared Mbita strain of An. arabiensis showed low rates of insemination 

compared to An. gambiae s.s. from the same area. At best 45% of all female An. 

arabiensis mosquitoes were inseminated after six days when left with an equal number 

of males throughout the period. There is some evidence that An. arabiensis is more 

difficult to mate and colonise in the laboratory compared to An. gambiae s.s. (Marchand 

1985), although others have shown contrasting results where the  rate of insemination in 

An. arabiensis of every age between 1 – 7 days was shown to be higher than that of An. 

gambiae s.s (Verhoek & Takken 1994). The latter findings were probably due to longer 

colonization of the strain which selected for this trait. Increasing the size of holding 

cages to increase mating activity and insemination success in An. arabiensis did not 

improve these activities. Low insemination and consequently low oviposition rates 

make it difficult to study the oviposition response of An. arabiensis to different 

oviposition substrates.  Especially, when groups of An. arabiensis are used caution 

should be exercised in interpreting the results examining the mean egg numbers 

critically to ensure that the majority of the exposed females actually laid eggs. It has 

been shown that larger females were more likely to be inseminated compared to smaller 

ones. Attempting to optimize larval rearing conditions to increase adult body size and 

selecting for the largest females from the colony cages for experiments might thus be a 

reasonable approach to increasing oviposition rates in egg-count cage bioassays.  

 

2.6. Conclusions 
This study demonstrated that the responsiveness of gravid An. gambiae s.s. mosquitoes 

can be enhanced by optimizing procedures for handling pre-gravid mosquitoes and 

timing bioassays appropriately. Oviposition success with this species is affected by the 

female mosquito’s state of insemination, the host-source of blood-meal and the timing 

of experiments. By ensuring that (1) female mosquitoes are inseminated, (2) provided 

with a sufficient amount of blood from a favourable host-source and (3) that the time 

when oviposition substrates are provided is aligned with the mosquito’s peak 

oviposition period, the majority will consistently lay eggs. For the Mbita strain of An. 

gambiae s.s. used in this study, responses were optimal when mosquitoes were provided 

with two, 24-hour-apart blood-meals from a human host, kept in cages conditioned with 
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an equal number of conspecific age-mate males at and after blood-meals, and provided 

with substrates 72 hours after the final blood-meal between 17:00 – 21:30 h. Low 

oviposition rates with An. arabiensis were partly due to poor insemination. While this 

study suggests that rearing larger mosquitoes might improve this, more studies should 

be done with An. arabiensis to understand and optimize other factor that contribute to 

low insemination rates before laboratory strains of this species are used for oviposition 

studies.  
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3.1. Abstract 
Background: Choice egg-count bioassays are the most popular tool for analysing 

oviposition substrate preferences of gravid mosquitoes of all species. These bioassays 

vary widely in details but all centre on the assumption that mosquitoes lay most of their 

eggs or egg raft in substrates they prefer; the number of eggs or egg-rafts therefore must 

be the indicator for substrates preferences. This study was aimed at testing this 

hypothesis with An. gambiae s.s. and ultimately improving the design of choice egg-

count experiments for measuring oviposition substrates preferences of the malaria 

vector Anopheles gambiae senso lato (s.l)., a mosquito that lays single eggs.  

Methods: Simple experiments were done to measure the distribution of eggs by An. 

gambiae s.s and test assumptions of common approaches for implementing and 

analysing egg-count experiments with this species. A total of 1600 gravid mosquitoes 

were individually provided with two oviposition cups in a cage. Both cups contained the 

same amount of the same oviposition substrate; 100 ml of tap water. The experiments 

were started at 17:00 h and the number of eggs in each cup recorded the next at morning 

at 08:00 h. Data from these experiments were used to describe the egg laying 

characteristics of this species and design a customised and improved two-choice egg-

count bioassays for measuring oviposition substrate preferences in this species. 

Results: The majority of mosquitoes provided with oviposition substrates laid eggs 

(1443 out of 1600). The number of eggs laid by individual mosquitoes was 

overdispersed (median = 52, eggs, interquartile range 1-214). Mean numbers of eggs 

laid per female differed widely between replicates and batches leading to a highly 

heterogeneous variance between groups and/or rounds of experiments. This violates a 

primary assumptions for parametric tests (homoscedasticity) and faults the common use 

of ANOVA and t-test to analyse egg-counts bioassay data for this species especially 

with small sample sizes. Moreover, one-third of the mosquitoes laid eggs unequally in 

both cups (skip-oviposited) with similar substrates giving the illusion of choice. This is 

masked when groups of mosquitoes are used for experiments. Sample size estimations 

showed that it would take 165 individual mosquitoes to power bioassays sufficiently 

(power=0.8, p=0.05) to detect a 15% shift in comparative preferences of two treatments. 

Conclusion: Two-choice egg count bioassays with Anopheles were shown to be best 

done with a two-tier design that (i) implements a parallel series of experiments with 



Improved choice egg-count bioassays 

82 
 

mosquitoes given a choice of  two identical substrates choices and (ii) uses a single 

mosquito in each test cage rather than groups of mosquitoes to assess the preference of a 

test or control solution. This approach, with sufficient replication, lowered the risk for 

detecting pseudo-preferences and drawing wrong conclusions on oviposition substrate 

preferences. 
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3.2. Background 
Anopheles mosquitoes are efficient and resilient vectors of human malaria and filariases 

in Africa. These vectors are mainly controlled by extensive use of long-lasting 

insecticidal nets (LLINs) and indoor residual spraying (IRS) of houses (Enayati & 

Hemingway 2010). The two interventions exploit the tendency of Anopheles funestus 

s.l. and An. gambiae s.l., the major vectors of malaria in sub-Saharan Africa, to bite and 

rest indoors (Takken & Knols 1999) and have together contributed to a remarkable and 

consistent decline in the transmission of malaria through the last decade (Nyarango et 

al. 2006; Ceesay et al. 2010; O'Meara et al. 2010; Mharakurwa et al. 2013). However, 

like all vector control interventions, these too have limitations and when used in 

isolation could fall short in areas with: (1) strains selected for physiological resistance to 

insecticides (Chandre et al. 1999a; Chandre et al. 1999b; Ranson et al. 2009; Ranson et 

al. 2011) (2) secondary vector species that live and bite outdoors (Tirados et al. 2006; 

Russell et al. 2011), and (3) cryptic vector sub-groups that bite in the early evening 

and/or bite outdoors (Riehle et al. 2011). These and a complex of other factors 

including increasing drug resistance and high costs of interventions make malaria 

resurgence a grim reality (Cohen et al. 2012). New strategies with novel tools that 

combine with LLINs and IRS to target these elusive groups of vectors in addition to the 

major vectors could prevent the resurgence of disease and hasten malaria elimination. 

Larval source management (LSM) can be a complementary intervention for targeting all 

strains of malaria vectors irrespective of their state of insecticide resistance or resting 

and biting tendency. However in areas with extensive oviposition sites LSM becomes 

challenging (Fillinger et al. 2008; Fillinger & Lindsay 2011). Attempts to target 

oviposition sites by identifying precisely the physical features of water bodies with 

mosquito larvae have so far been unsuccessful (Majambere et al. 2008; Fillinger et al. 

2009b). Nevertheless field studies suggest that the presence of early instar larvae in 

water bodies is non-random, which may indicate that gravid females select particular 

water bodies in which to lay their eggs. These studies imply that favourable aquatic 

oviposition sites though highly heterogeneous in form, space and time (Fillinger et al. 

2004; Majambere et al. 2008; Fillinger et al. 2009b; Ndenga et al. 2011) will display 

key features that act as signature cues for gravid mosquitoes seeking to lay eggs. 

Identifying the cues that elicit oviposition behaviour could aid the targeting of larvicides 
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into productive mosquito oviposition sites and allow the development of odour-baited 

gravid mosquito traps for Anopheles. 

Laboratory experiments within insect cages are a simple first step in identifying cues 

that guide short range habitat selection in gravid mosquitoes (Isoe et al. 1995b). Of 

these experiments, choice egg-count bioassays are the most common and have been 

used to search for cues that are preferred or avoided by mosquitoes seeking to lay eggs 

(Sumba et al. 2004a; Bukhari & Knols 2009). Here eggs or egg rafts laid in test 

substrates by groups of mosquitoes are counted and compared to those laid in a 

reference substrate, the control. Using these choice tests chemicals that influence 

oviposition have been identified for Stegomyia (Bentley et al. 1979; Hwang et al. 1982; 

Sharma et al. 2008), Culex (Hwang et al. 1980; Hwang et al. 1982; Millar et al. 1992; 

Millar et al. 1994), and recently for An. gambiae s.s (Rinker et al. 2013). In addition 

egg-count bioassays have been used to investigate the response of gravid Anopheles 

gambiae s.s. to bacteria cultures (Blackwell & Johnson 2000; Huang et al. 2006a; Lindh 

et al. 2008) with different outcomes. Many choice egg-count experiments with An. 

gambiae s.l. have been prepared, implemented and reported in a unique way making it 

difficult to generalise findings. 

It was hypothesized that the egg-laying behaviour of An. gambiae s.l. makes it 

necessary to re-design choice egg-count bioassays uniquely for this species (Herrera-

Varela et al. 2014). The need to consider the design of these bioassays for species that 

lay single eggs and exhibit skip oviposition has been well shown by Chadee and Corbet 

(1993) who proposed a new study design for Aedes: one that entailed “recording the 

distribution of eggs by individual females initially provided with an array of identical 

sites”. However, their work has been ignored in consequent studies with this genus 

(Ponnusamy et al. 2008; Seenivasagan et al. 2009; Ponnusamy et al. 2010; 

Seenivasagan et al. 2010; Bandyopadhyay et al. 2011). The present study therefore 

aimed to present new approaches for: (1) implementing tests to compare two substrates, 

and (2) analysing and reporting finding of egg-count experiments.  
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3.3. Methods 

3.3.1. Study site 
Experiments were carried out at the International Centre of Insect Physiology and 

Ecology, Thomas Odhiambo Campus at Mbita on the shores of Lake Victoria, Western 

Kenya (0° 26’ 06.19” South; 34° 12’ 53.12” East; altitude 1149 m). Choice egg-count 

bioassays were carried out in sheds, 10 m long × 5 m wide × 2.8 m high with walls 

constructed from dry reed mats and roofs of translucent corrugated polycarbonate 

sheets. Every shed contained two tables with capacity to hold 50 cages with a gap of 40 

cm between each cage. Experiments were carried out at ambient conditions of 

temperature, humidity (mean daily temperature 27 ± 5°C, relative humidity 55 ± 10%) 

and light. 

 

3.3.2. Experimental procedures 

To improve the design of two-choice egg-count bioassays and promote empirical 

evaluation of substrate preferences it is important to understand the natural egg-laying 

pattern of An. gambiae s.s. and take it into account when designing experiments. This 

experiment was aimed at identifying an appropriate layout for egg-count oviposition 

studies with An. gambiae s.s. and highlight the importance of sample size in egg-count 

experiments. Specifically (1) the number of eggs laid by individual An. gambiae s.s. 

mosquitoes was estimated and their statistical distributions and variances explored, (2) 

skip-oviposition within experimental cages was quantified and (3) the variability in egg 

counts and response towards two equal choices of oviposition substrate analysed 

between rounds. 

 

3.3.2.1. Two equal choice egg-count bioassays with individual gravid females to 

explore egg distribution and variability in egg-counts. 

For gravid mosquitoes 300 two to three-day old female and 300 male An. gambiae s.s. 

of the same age were kept in a standard adult mosquito holding cage. The mosquitoes 

were starved of sugar solution for up to six hours before they were permitted to blood-

feed from a human arm at 18:30 h for 15 minutes on two consecutive evenings. 

Mosquitoes that were not fully engorged with blood after the first blood-meal were 

removed from the cage. Individual six to seven day old gravid females were presented 
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with two equal choices of tap water for oviposition. In order to prevent any possible 

bias associated with the position of the cup, the placement of cups was systematically 

varied between adjacent cages. The four corners of every cage were named relative to 

the front of the cage (inset-sleeve end) as front left (FL), back left (BL), back right (BR) 

and front right (FR). The first cup was placed at the FL position of the first cage and 

randomly referenced as ‘control’ or ‘test’. ‘Test’ cups in subsequent cages were moved 

one corner step in a clockwise direction (Figure 3.1). The second cups were added in the 

diagonally opposite corner and referenced as ‘control’. The egg-laying response of a 

gravid female towards these test and control cups was recorded as binary data. The 

numbers of eggs laid by every female in each cup was also noted. In total 41 rounds of 

two-choice egg-count experiments with different batches of mosquitoes were 

implemented. Between 20 and 50 individual female mosquitoes were exposed to the 

two equal choices per round but only 85-92% of all exposed females responded (laid 

eggs) per round (n=17-46). The response of 1443 females were analysed in total.  

 

 
 

Figure 3.1 Illustration of the arrangement of oviposition cups and cages in two 

choice egg-count bioassays. The solid circles represent test cups which are arranged in 

the clockwise direction. Control cups (open) are positioned diagonally opposite. 

FL=front right,, BL=back left, BR=back right and FR=front right 

 

3.3.3. Sample size considerations. 

When implementing two choice bioassays with two different oviposition substrates the 

assumption is that there is no preference between the two substrates. However, it is 
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likely that the chances of a type 1 error (i.e. artefact preference for one substrate over 

then other) are increased with a small number of replicates.  Therefore the data were 

used to estimate the sample size required for routine bioassays using power calculation 

for two-sample comparisons of proportions (power.prop.test function in R software) and 

for a single proportion compared to a known proportion (Brant 2015). A 50% 

distribution was assumed when equal choices are presented (p1=0.5). Power estimates 

were generated to predict a 15% increase or decrease (p2=0.65) in oviposition response 

to a test medium at sample sizes between 5 and 225 and generated estimates of effect 

sizes generated that can be detected with 80% power at a 5% significance level for the 

same range of sample sizes. 

 

3.3.4. Statistical analyses 
Multivariable analyses were implemented using Generalised estimation equations 

(GEE) to analyse data from the two equal choice egg-count bioassays. One mosquito 

was presented with two cups with tap water for oviposition. The data derived from two 

cups for an individual mosquito was related and therefore counts/proportions of eggs 

laid in a cage by an individual mosquito were considered repeated measures in the GEE 

models. GEE models assuming exchangeable working correlation and with a negative 

binomial distribution with a log link function fitted were used to explore differences in 

egg counts between control and test cups and between rounds (fixed factors) whilst 

GEE models with a binomial distribution and logit link faction fitted were used to 

estimate the likelihood of a female choosing the test cup over the control. All mean 

counts or mean proportions per treatment and their 95% confidence intervals (CIs) were 

calculated as the exponential of the parameter estimates for models with no intercept 

included. 

Egg numbers laid by individual females were tested for normality using the 

Kolmogorov-Smirnov test. Additionally, overdispersion (i.e. meaning the variability in 

the data is not equal to the mean, as in the Poisson distribution) was assessed by 

inspecting the residual deviance which follows a Chi-squared distribution where the 

expected value should be close to the degrees of freedom if the data is not 

overdispersed. Overdispersion is a problem because it may cause standard errors of the 

estimates to be deflated or underestimated i.e. a variable may appear to be significant 

when it is in fact not. The assumption of homogeneity of variance in the correlated 
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count data collected from control and test cups was tested with the Pitman-Morgan test 

(Morgan 1939; Pitman 1939). Data were analysed with IBM SPSS Statistics Version 20 

(IBM-Corp 2011) and R software version 2.13.2 using various functions from the 

packages MASS, epicalc, lme4, effects, geepack, aod and gee (R Team 2011). 

 

3.3.5. Ethical considerations 
Ethical approval for this study was obtained from the Kenya Medical Research 

Institute’s Ethical Review Committee (Protocol no. 422).  

 

 

3.4. Results 

3.4.1. Individual Anopheles gambiae s.s. lay a highly variable number of 

eggs despite standardized preparation procedures  
The number of eggs laid by 1,443 individual mosquitoes provided with two cups of tap 

water was highly variable and ranged between 1-214 eggs (interquartile range 48), with 

a median of 52 eggs per female. Egg numbers were overdispersed with the variance 

exceeding the mean ratio indicating an overdispersed distribution (Figure 3.2) even with 

this large sample. 

 

 
Figure 3.2 Histogram showing the frequency distribution of egg-counts from 

individual An. gambiae s.s. (Mbita strain) (n=1443) 
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3.4.2. The response of gravid An. gambiae s.s. presented with two equal 

choices can be skewed when egg counts are compared 

In total 77,664 eggs were laid by 1,443 females tested individually over 41 rounds; 

41,113 (53%) eggs were laid in cups randomly labelled as test cups, and 36,551 (47%) 

in control cups. In addition to the overdispersed distribution of eggs the two correlated 

variances of the egg counts in control and test cups were not homogeneous (p<0.01). 

Generalised linear modelling with a negative binomial distribution fitted indicated that 

the differences in egg counts between control and test cups were small but statistically 

significant (rate ratio (RR) 1.13 (95% CI 1.01-1.25, p<0.01). Furthermore, counts 

differed significantly between rounds (p<0.001) with mean numbers of eggs laid per 

female in a cup in different rounds ranging between 17 (95% CI 13-20) and 46 (95% CI 

39-55).  

 

3.4.3. Comparing the proportional distribution of eggs leads to more 

reliable inference than using absolute egg counts 

Rather than evaluating the actual egg counts, the proportion of eggs laid in test versus 

control cups (experiments with groups and individuals) or the proportion of mosquitoes 

(experiments with individuals) selecting test versus control cups for oviposition can be 

compared. A total of 1,902 cups (out of 2 x 1,443=2,886 cups) received eggs; 979 test 

cups (51%) and 923 (49%) control cups in the 41 rounds of experiments. The 

distribution of individual responses towards two equal choices was therefore more 

balanced than the comparison of egg numbers (see above). Consequently, generalised 

linear modelling with a binomial distribution fitted showed that that the odds of a 

female choosing one cup over the other when both contain the same oviposition 

substrate was similar (p=0.08) with a mean proportion of 51.4% (95% CI 49.0-53.8%) 

selecting the test cup for oviposition. This relatively balanced outcome is based on a 

very large number of samples. Looking at the individual rounds containing between 17 

and 45 samples only (Figure 3.3), the proportions of females selecting the test cup is 

highly variable with significant between-round differences (p<0.01). This natural 

baseline variability must be measured during experiments and taken into account when 
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implementing choice experiments with different substrates. Otherwise, it would easily 

lead to false inferences especially where sample sizes are small. 

 
Figure 3.3 Proportion of responses (presence of eggs) received by the test cups in 

two equal choice tests out of the total responses (test cups + control cups) counted 

per experimental round (n per round = 17-46). 

 

3.4.4. High between-cage variability in egg counts and proportions must be 

expected when testing small groups of gravid mosquitoes in egg-count cage 

bioassays 

The majority of choice egg-count bioassays published for An. gambiae s.l. have been 

implemented with groups of mosquitoes (McCrae 1984; Huang et al. 2005; 

Rejmankova et al. 2005; Huang et al. 2006a; Huang et al. 2006b; Otienoburu et al. 

2007). This scenario was simulated by combining the egg counts for test and control 

cups of all individual mosquitoes tested (responders) in a round. Therefore, the 

hypothesised group sizes varied from 17 to 46 mosquitoes per cage. Conventionally, the 

number of eggs laid per female is estimated by dividing the total number of eggs 

counted by the number of females introduced in the cage. Note, that in contrast to the 

simulation under these experimental conditions investigators cannot be sure of the 

actual number of females that laid and based on here presented observations it must be 

assumed that approximately 20% of the introduced females do not lay even when 

prepared under optimal procedures. The mean number of eggs per female per group was 
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highly variable and ranged from 33 to 92 between the assumed replicate cages (Figure 

3.4). 

 

 
Figure 3.4 Mean number of eggs per female laid in test and control cup and 

proportion of eggs laid in test cup. Analysis based on 41 simulated groups (replicates) 

of mosquitoes. 

Similarly, the proportional distribution of eggs between the two cups, containing the 

same oviposition substrate, was in nearly half the groups unequal with one cup having > 

60% of all eggs laid (Figure 3.5A). Notably, there was a negative correlation between 

the number of females per cage and the difference in proportion of eggs laid in test 

versus control cups (Spearmans rho = -0.35, p=0.03). If a group consisted of less than 

30 responders an unbalanced distribution of eggs (>60% of eggs in one cup) between 

the two equal choices occurred twice as often as a balanced one (Figure 3.5B), whilst in 

groups with more than 30 responders an unbalanced distribution was less frequent 

(Figure 3.5C). 
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Figure 3.5 Frequency distribution of  the proportions of eggs laid in one cup 

(higher proportion) over the other in two equal choice tests for  simulated 

groups.(A)  all 41 groups (B) groups with ≤ 30 individuals (C) groups with > 30 

individuals. 

 

3.4.5. One third of gravid Anopheles gambiae s.s. distribute their eggs in 

more than one oviposition medium (‘skip-oviposition’) 
Individual An. gambiae s.s. females did not always make mutually exclusive choices of 

cups to lay their eggs when provided with two substrates. Of the 1,443 responders, 32% 

(459) laid eggs in both cups provided in the cage. Nevertheless, significant variability 

(p<0.01) was observed between batches of mosquitoes (rounds), with the proportion of 

skip oviposition ranging between 17% and 61% in individual experimental rounds. On 

average 32.4% (95% CI 29.0 – 35.8%) of the females per round laid eggs in both cups 

presented. Females that skip-oviposited did not lay more eggs compared to those that 

laid all eggs in one substrate (p=0.873). Importantly, most females that laid in both cups 

did not distribute their eggs equally in the identical substrates. The unequal distribution 

of eggs can therefore be wrongly interpreted as a preference for the substrate that 

received the higher number of eggs. In most cases a larger egg batch was laid in one cup 

and a smaller batch in the other cup (Figure 3.6). Three quarters of the females that 

skip-oviposited laid 2/3rd or more in one and 1/3rd or less of their eggs in the other cup.  
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Figure 3.6 Frequency distribution of the higher proportion (>0.5) of eggs laid in 

one cup by skip-ovipositing mosquitoes 

 

The unequal egg distribution might contribute to skewed egg counts, especially when 

the number of individuals tested in a sample and/or the number of replicate samples are 

low. This is illustrated by Figure 3.7 where the median proportion of eggs laid in the 

test cups is shown for every experimental round. Rarely were the proportions of eggs 

laid by skip-ovipositing females (n=4-20) equally distributed in a single round. 

Nevertheless, on average for all 459 skip-ovipositing females, 54% (95% CI 45-63%) of 

the eggs were laid in test cups emphasizing the importance of a large enough sample 

size. 
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Figure 3.7 Median proportion of eggs laid in the test cups by skip-ovipositing 

females (n=4-20) in every experimental round. 

 

3.4.6. To detect an increase in oviposition response of 15% as compared to 

the baseline proportion (80% power and 5% significance) at least 165 

responders need to be tested in each treatment group.  

Based on the design considerations presented above when implementing egg-count cage 

bioassays it is suggested to statistically compare two proportions derived from two 

independent (separate) random samples. The null hypothesis H0 is that the two samples’ 

proportions are the same. The notation for the null hypothesis is H0: p1 = p2, where p1 is 

the baseline proportion from choice experiments with two equal choices (control 

substrate vs control substrate), and p2 is the proportion from the experimental test 

comparing a putative oviposition cue against a control. The sample size will depend on 

the effect size one wants to detect. Here it was chosen to simulate (1) the relationship 

between sample size and the power of a study at 5% significance level at an effect size 

of 15% increase of p2 as compared to p1 and (2) the relationship between sample size 

and effect size (p2) at a fixed power of 80% at 5% significance level (Figure 3.8).  

Based on sample size calculations for two independent proportions, 165 responders 

need to be tested in each group (165 for p1  and 165 for p2; total 340) to detect an 

increase or decrease in oviposition response of 15% (p2=0.65) compared to the baseline 

proportion (p1=0.50) at 80% power and 5% significance. With a smaller sample size the 

effect size that can be detected increases i.e. 90 replicates in each treatment arm can 
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detect a difference between the proportions of not less than 20% (p1=0.50 and p2=0.70) 

and 30 replicates of not less than 33% (p1=0.50 and p2=0.83) (Figure 3.8).  

Figure 3.8 Description of the measurable powers (black) and effect sizes (red) of tests 

with different sample sizes (number of mosquitoes) for two proportions at the 0.05 

significance level. Solid lines: Sample size considerations based on power calculation 

for two-sample comparisons of proportions. Dashed line: Sample size calculation for 

the inference for a single proportion comparing to a known proportion (0.5) suitable for 

testing large groups where this baseline proportion can be confirmed. 

These sample size considerations apply irrespective of whether the proportions of eggs 

laid by groups of mosquitoes per cage or by individual mosquitoes per cage are 

compared since in both cases only a single data point per cage can be recorded and the 

proportion of non-responders in the cage is unknown. Nevertheless, if large groups (>30 

responders per cage for example) are used where the baseline proportion can be 

predicted to be close to 50% with some certainty it might be justifiable to use the 

sample size calculation for the inference for a single proportion comparing to a known 

proportion (0.5). In this case 85 replicate cages would be required for detecting a 15% 

increase compared to the baseline proportion at 80% power and 5% significance (Figure 

3.8). Whilst this number of replicates appears to be considerably lower it needs to be 

observed that over 7 times more gravid females would be required in this experimental 
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design (85*30=2550) than when using individual females and two treatment arms 

(2*165=330). 

 

3.5. Discussion 
Using two equal choice egg-count bioassays with individual gravid mosquitoes 

illustrated the importance of (1) suitable experimental design based on the behavioural 

ecology of An. gambiae s.s., (2) estimated sample sizes and, (3) appropriate statistical 

analyses. This study confirmed that egg counts of individual female An. gambiae s.s. of 

the same age fed on the same source of blood and reared under standardized conditions 

are highly variable and overdispersed. Lyimo and Takken (1993) previously 

demonstrated that individual newly emerged An. gambiae s.l of the Muheza strain laid 

between 48 – 178 (mean 111) eggs while wild field populations laid an equally variable 

66 to 290 (average 150) eggs. Hogg, Thomson and Hurd (1996) later confirmed this 

variation showing that wild An. gambiae s.s. and An. arabiensis of Muheza laid between 

20 – 180 eggs and 5 – 160 eggs, respectively. These wide disparities in egg numbers of 

individual females have also been shown for laboratory strains of other Anophelinae 

including:  An. stephensi (Suleman 1990),  An. sergentii (Beier et al. 1987), An. 

multicolor and An. pharoensis (Kenawy 1991) . Suleman and others (Suleman 1990) 

noted that a small portion of An. stephensi females laid a very high number of eggs per 

batch leading to a negative binomial distribution as also demonstrated for An. gambiae 

s.s. in this study. Similar heterogeneity in egg numbers between individual females have 

also been shown for Aedes aegypti (Christophers 1960). This may be a general trait of 

mosquitoes that lay single eggs  rendering the use of egg numbers to gauge oviposition 

substrate preferences inappropriate especially with small groups of mosquitoes (Corbet 

& Chadee 1993). It was demonstrated that the high variation in the number of eggs laid 

by individual females can lead to an unequal distribution of eggs in equal substrates. 

This disproportion persisted even with very large sample size.  

Exploring the pattern of ‘skip oviposition’ in An. gambiae s.s. it was demonstrated that 

approximately one third of all gravid An. gambiae s.s. distribute their eggs in more than 

one oviposition site, a behaviour that is well known in Aedes mosquitoes (Chadee & 

Corbet 1991; Chadee & Corbet 1993), but has been poorly described in  An. gambiae 

s.l. species (Ogbunugafor & Sumba 2008; Herrera-Varela et al. 2014) in laboratory egg-

count experiments possibly because most experimenters use groups of mosquitoes, 
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which masks skip oviposition. There is also indirect evidence of skip oviposition from 

one study in the field (Chen et al. 2006) showing that this is not an artefact trait of 

colonized mosquitoes but rather an inherent trait of the species. Skip oviposition 

represents a response of the gravid female to the substrates and should not be excluded 

from analyses. Skip ovipositing females choose to use both substrates, therefore not 

rejecting any, an important event with reference to comparative preference of substrates. 

Importantly, An. gambiae s.s. females do not distribute their eggs in equal proportions 

but in most cases lay 2/3rd in one and 1/3rd in the other oviposition cup. Since 

observations in this study are based on equal choices, it is clear that the larger egg batch 

does not indicate a preference. It is important to note that individual skip ovipositing 

female did not lay more eggs compared to those individual females that laid in a single 

cup.  

In experiments, where groups of females are analysed in oviposition assays, the marked 

heterogeneity of egg numbers laid by individual females combined with skip 

oviposition is likely to increase the variance in the system and this could lead to a type 1 

error where an unequal distribution of eggs between the test and control solutions is 

wrongly considered to be true, especially if group sizes are small. Here it was illustrated 

that this frequently happens when group numbers per cage are below 30 responders. 

Considering that of those probably a fifth or more mosquitoes do not lay eggs, a skewed 

distribution can be expected and only a large number of cages can be able to detect true 

differences of substrates.  Since many choice experiments with anophelines are done 

with groups much lower than thirty results need to be interpreted with caution (McCrae 

1984; Sumba et al. 2004a; Huang et al. 2005; Rinker et al. 2013).  

This study also demonstrated that observing individual mosquito’s responses to 

oviposition substrates rather than groups has a number of advantages. This approach 

ensures that only responders are included in the data analysis. It allows the analysis of 

choice based on a binary outcome, the enumeration of egg numbers of individual 

females and the observation of skip oviposition, which has previously been shown to be 

influenced by the suitability of a substrate (Herrera-Varela et al. 2014). Last but not the 

least the necessary number of replications can be achieved with a smaller number of 

gravid females compared to when groups are used.  
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Sample size considerations are rarely reported for entomological studies and the number 

of replications hardly ever justified in publications. This study illustrates that 

insufficient replication might not only hamper the ability to show a significant effect 

due to the lack of power, but also demonstrates that a small number of replicates and 

small group sizes can result in significant artefact differences in oviposition responses 

in two choice experiments purely based on stochastic effects rather than due to a 

treatment effect. Misinterpretation of results can be reduced by sufficient replication and 

validation of the experiment by implementing a control experiment preferably in 

parallel (Hurlbert 1984). 

The underlying hypothesis of a choice experiment is that when two (or more) equal 

choices are presented the response towards these choices is equally proportional with 

odds of success of 1:1 (baseline or control). Choices by virtue of the design of the 

experiment should be analysed as proportions rather than absolute counts especially 

when count data are highly variable. If an oviposition cue is presented that is either 

preferred or avoided by gravid females a significant diversion from the baseline is 

expected. It was shown that there is a high variability in the response towards a test and 

control cup containing the same substrate in individual rounds of experiments 

highlighting the importance of large sample sizes and the implementation of an 

experiment over several rounds with different batches of mosquitoes. The behaviour of 

mosquitoes from the same batch might be affected for example by their rearing history 

and/or by the climatic conditions during the experiment or other non-measurable 

random effects. Replicate tests with mosquitoes from the same batch implemented on 

the same day with the same batch of oviposition substrate should not be considered 

independent; it is pseudo-replication (Hurlbert 1984). In order to document the baseline 

including its 95% CI it is recommend that choice experiments with different test 

substrates in a cage must always be implemented in parallel with a control experiment 

with the same number of equal choices. This validates the experimental design (Corbet 

& Chadee 1993) and allows statistical comparison of the odds of success in the test 

experiment with the odds of success in the control experiment (baseline). 

The classic oviposition index represents a proportional comparison of the numbers of 

eggs, egg rafts or females (Kramer & Mulla 1979) but is rarely used in oviposition 

experiments with An. gambiae s.s.. Frequently the mean number of eggs in test and 

control cups is compared using classical ANOVA and t-tests (McCrae 1984; Huang et 
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al. 2005; Munga et al. 2005; Huang et al. 2006a; Munga et al. 2006; Huang et al. 2007; 

Otienoburu et al. 2007; Overgaard 2007; Sumba et al. 2008; Balestrino et al. 2010; 

Kweka et al. 2011; Rinker et al. 2013). These assume normality of data distribution and 

homogeneity of variance but both assumptions are violated when looking at egg counts 

of An. gambiae s.s.. Some (log-) transform egg-counts or use non-parametric tests that 

do not assume a normal distribution. However, log-transforming count data for analyses 

has recently been challenged except when dispersion is small and means are large 

(O’Hara & Kotze 2010). Moreover, non-parametric tests have reportedly been 

invalidated even by “small differences in variance and moderate degrees of skew” 

(Zimmerman 1998; Zimmerman 2001; Fagerland & Sandvik 2009). When distributions 

are skewed (such as for negative binomial distributions) differences in means are prone 

to go together with differences in variance (Fagerland & Sandvik 2009). It is also 

imperative to appreciate the non-independent nature of the data from control and test 

cups in the same cage and the dependent nature of the data derived from the same 

rounds when analysing choice egg-count bioassays. This violation of independent 

observations assumption results in downwardly biased standard error estimates, overly 

large test statistics, and inflated type I error rates. The statistical procedure used must 

therefore take account of that by including repeated measure terms. 

It is strongly suggested analysing choice bioassays using generalised regression models 

that allow for the appropriate distribution to be fit to the model rather than transforming 

the data (Sileshi 2006; O’Hara & Kotze 2010). Preference should be given to analysing 

proportions (of eggs laid or of females laying in test and control) using a binomial 

distribution than to analyse counts using a negative binomial or Poisson distribution. 

Importantly, these models allow including critical explanatory variables as well as 

random factors and/or repeated measures that might have affected the outcome. Based 

on the model, the effect size of the test can be reported using both odds ratios and 

predicted averages together with associated confidence intervals (Seavy et al. 2005). 

 

3.6. Conclusion 

Individual An. gambiae s.l. can lay a widely ranging number of eggs. A proportion of 

these may also skip oviposit, spreading their eggs in more than one substrate. These 

egg-laying patterns can lead to spurious conclusions of oviposition substrate preferences 

based on two choice egg-count bioassays. In order to increase the accuracy of these 
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bioassays designs that take into account the natural variability in the number of eggs 

and ensure sufficient replication are needed. In conclusion, experiments are most 

accurate when gravid females are prepared and selected under carefully controlled 

conditions and when implemented in a two tier design with 165 individual mosquitoes 

in each treatment arm: 165 cages each with one mosquito given a choice between a test 

and control solution and 165 similar cages where the mosquito has a choice between 

two identical control solutions. This will enable description differences in substrate 

preferences of as little as 15% with sufficient statistical power and significance. 
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4.1. Abstract 

Background: To date no semiochemicals affecting the pre-oviposition behaviour of the 

malaria vector Anopheles gambiae sensu lato have been described. Water vapour must 

be the major chemical signal emanating from a potential larval habitat, and although one 

might expect that gravid An. gambiae s.l. detect and respond to water vapour in their 

search for an aquatic habitat, this has never been experimentally confirmed for this 

species. This study aimed to investigate the role of relative humidity or water vapour as 

a general cue for inducing gravid An. gambiae sensu stricto to make oriented 

movements towards the source. 

Methods: Three experiments were carried out with insectary-reared An. gambiae s.s. 

during their peak oviposition time in the early evening: One with unfed females and two 

with gravid females. First, unfed females and gravid females were tested separately in 

still air where a humidity difference was established between opposite ends of a WHO 

bioassay tube and mosquitoes released individually in the centre of the tube. Movement 

of mosquitoes to either low or high humidity was recorded.  Additionally, gravid 

mosquitoes were released into a larger air-flow olfactometer and responses measured 

towards collection chambers that contained cups filled with water or empty cups.  

Results: Unfed females equally dispersed in the small bioassay tubes to areas of high 

and low humidity (mean 50% (95% confidence interval (CI) 38-62%). In contrast, 

gravid females were 2.4 times (95% CI 1.3-4.7) more likely to move towards high 

humidity than unfed females. The results were even more pronounced in the airflow 

olfactometer. Gravid females were 10.6 times (95% CI 5.4-20.8) more likely to enter 

the chamber with water than a dry chamber.  

Conclusions: Water vapour is a strong pre-oviposition attractant to gravid An. gambiae 

s.s. in still and moving air and is likely to be a general cue used by mosquitoes for 

locating aquatic habitats. 
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4.2. Background 
Anopheles gambiae sensu stricto and Anopheles arabiensis are the two major vectors of 

malaria in Africa. Their primary larval habitats are commonly described as small, 

temporary, open, sunlit pools (Muirhead-Thomson 1951; Gillies & De Meillon 1968), 

yet this is a gross oversimplification of the types of habitat actually colonized by these 

mosquitoes (Fillinger & Lindsay 2011). In reality, immature stages of both species can 

be found in an enormous diversity of aquatic habitats and it has been difficult to 

characterize these sites with precision (Fillinger et al. 2004; Majambere 2008; Fillinger 

et al. 2009b; Ndenga et al. 2011). Semi-permanent water bodies are frequently as 

productive or even more productive over time than the small rain-filled puddles that are 

often only abundant during the rainy season (Fillinger et al. 2004; Fillinger et al. 2009b; 

Ndenga et al. 2011). Nearly every type of water accumulation, apart from organically 

rich, may contain anopheline larvae (Chinery 1984; Fillinger et al. 2004; Sattler et al. 

2005; Awolola et al. 2007; Majambere 2008; Machault et al. 2009). The presence of 

larvae in a water body is thought to be the result of a combination of the egg-laying 

choice of gravid females that deposit their eggs in water and the survival of larvae in 

those habitats (Muirhead-Thompson 1945), although the cues that guide the gravid 

female’s choice are not well understood.  

The attractiveness of field sites may be due to general characteristics and cues such as 

their relative position in relation to the resting site of gravid females, visual cues from 

these sites and the presence of water vapour plumes, as well as more habitat-specific 

chemical cues released from water bodies serving as semiochemicals which indicate the 

suitability of an aquatic habitat (Muirhead-Thomson 1951; Bentley & Day 1989; 

Clements 1999). Although some putative semiochemicals have been suggested based on 

coupled gas chromatography-electroantennogram detection (Blackwell & Johnson 

2000; Qiu 2006; Lindh et al. 2008), to date, no semiochemical that affect the behaviour 

of gravid An. gambiae s.l. has been confirmed. Water vapour must be presumed to be 

the major chemical signal emanating from a potential larval habitat and although one 

might expect that gravid An. gambiae s.l. detect and respond to water vapour in their 

search for an aquatic habitat, this has never been experimentally confirmed for this 

species.  

The present study set out to investigate the role of water vapour in the pre-ovipositional 

behaviour of An. gambiae s.s. which results in arrival at potential oviposition sites 
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(Bentley & Day 1989). Two separate choice tests were used: in the first test the 

response of unfed and gravid An. gambiae s.s. were compared using still air in cages 

connected to WHO bioassay tubes; in the second test gravid female responses were 

tested using moving air in a newly designed airflow olfactometer. In both systems An. 

gambiae s.s. were provided with a choice of moving towards an area of low or high 

humidity without visual cues or access to the water source. 

 

4.3. Methods 

4.3.1. Study site 
The study was carried out at the International Centre of Insect Physiology and Ecology, 

Thomas Odhiambo Campus (icipe-TOC), Mbita, on the shores of Lake Victoria, Kenya 

(0o 26’ 06.19’’ S, 34o 12’ 53.13’’E; 1,137 m above sea level). This area is characterized 

by an equatorial tropical climate with an average minimum temperature of 16°C and an 

average maximum temperature of 28°C. The area experiences two rainy seasons: the 

long rainy season between March and June and the short rainy season between October 

and December. The average annual rainfall for 2010-2012 was 1,436 mm (icipe-TOC 

meteorological station). 

 

4.3.2. Mosquitoes 
Insectary-reared An. gambiae s.s. (Mbita strain) were used for all experiments. Five-

day-old females were selected 30 minutes prior to the experiment from insectary colony 

cages where they had been kept in groups of approximately 300 males and 300 females 

in 30x30x30 cm netting cages and provided with 6% glucose solution ad libitum. These 

females never had a blood-meal and are therefore referred to as unfed females. Gravid 

mosquitoes were prepared by transferring 150 female and 150 male mosquitoes, aged 

two days old, in 30x30x30 cm netting cages and provided with 6% glucose solution ad 

libitum at 25-28°C and a relative humidity between 68-75%. Saturated cotton towels, 

50x25 cm in area, were folded and placed over the cages to avoid mosquito desiccation. 

Mosquitoes were starved of sugar for seven hours and allowed to feed on a rabbit for 15 

minutes on day two and three post-emergence and rested for a further two days before 

use. Thus five-days-old gravid females were used for experiments. 
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4.3.3. Water 

For all experiments, piped non-chlorinated water pumped from Lake Victoria was used. 

The water was passed slowly through a locally made sand charcoal gravel filter for 

purify it of debris and organic chemicals. Briefly, two 50 L buckets were placed on top 

of each other. The lower bucket’s lid contained a hole and the upper bucket’s floor was 

perforated with small holes for the filtered water to pass through to the lower bucket. 

The upper bucket contained three layers of gravel, activated charcoal and sand. Tap 

water was poured into the top of the upper bucket and run slowly through the layers. 

The aim was to remove large and small particles from the water including the majority 

of algae and bacteria. The purified water is referred to as ‘filtered tap water’.  

In the two bioassays described below it is hypothesized that the tap water was attractive 

solely because of the presence of water vapour rather than because the water contained 

an attractive semiochemical. This assumption is based on a preliminary experiment, that 

was implemented comparing the oviposition response of An. gambiae s.s. to filtered tap 

water and double-distilled water. A description of the experiment and results can be 

found in Appendix A. Gravid females did not have a significant preference for either 

filtered tap water or distilled water. 

 

4.3.4. Experimental procedures 

4.3.4.1. WHO-tube bioassays 

Choice tests were carried out in the laboratory under ambient conditions. Natural light 

came from a window located 2 m from the set-up. For each choice test, three WHO 

bioassay tubes (12mm Internal Diameter), each 12 cm long, (WHO 2006a) were 

connected together with open/close gates between the inner and outer tubes. The two 

outer tubes were inserted for approximately 6 cm into small mosquito cages measuring 

15x15x15 cm. Cages were wrapped in commercially available kitchen cling-film 

(Figure 4.1). In one cage, 25 ml of silica gel desiccating crystals were spread evenly 

over the bottom of the cage, with dry filter paper covering the crystals. In the other 

cage, there were no desiccating crystals and the filter paper was dampened with 25 ml 

of filtered tap water. A 15x15 cm wire screen was fixed 5 cm above the bottom of the 

cages to prevent mosquitoes from making direct contact with the substrates. There were 

eight identical set-ups, arranged along a table 10 cm apart, with the high and low 
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humidity ends being alternated between each set of tubes. In the first of these eight set-

ups, data loggers (Tinytag, TV4500) were placed in the two cages to record the relative 

humidity. A single An. gambiae s.s. (Mbita strain) was placed in the middle tube at 

18.00 with the gates opened by 2 mm (not too wide to let the mosquito through) 

allowing some exchange of air within the central tube and the connected cages before 

the gates were completely opened at 18.30 allowing the mosquito to move freely from 

the tubes into the cages. This experiment was implemented with unfed and gravid 

females of the same age. At 19.00 the position of each mosquito either in the middle 

tube or in one of the two cages was recorded. The gates were closed at 21.30 and 

mosquitoes again counted in each cage or middle tube. The time period for observation 

was chosen based on preliminary experiments that have shown that out of 120 

individual gravid females tested (5 round x 20 females) 95% (114/120) of the local 

insectary-reared An. gambiae s.s. (Mbita strain) laid all their eggs before 21.30, which is 

similar to the time reported for the same strain previously (Sumba et al. 2004b). 

Experiments were done with eight mosquitoes each evening on nine occasions with 

unfed females and with gravid females (total 72 per physiological stage). During the 

experiment with unfed females four escaped when manipulating the gates and were 

excluded from the analyses, similarly when implementing the experiment with gravid 

females six females were found dead in the middle tube and were excluded from the 

analysis, therefore a total of 68 unfed and 66 gravid An. gambiae s.s. were tested. This 

sample size was sufficient to detect a 33% increase in the attractiveness of humid air 

(i.e, 66.5% collected in the humid air cage compared with the 50% null hypothesis) at 

the 5% level of significance and 80% power (inference of a proportion compared to the 

null proportion (Brant 2013)).  
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Figure 4.1 WHO tube bioassays to observe response of individual gravid 

Anopheles gambiae s.s. towards high or low humidity. DL = data loggers 

 

4.3.4.2. Airflow olfactometer bioassays 

Three dual port airflow olfactometers were used to study the responses of gravid An. 

gambiae s.s. to filtered tap water (Figure 4.2). Each tunnel measured 40x100x30 cm and 

was made from polymethyl methacrylate sheets. Each tunnel was partitioned into three 

compartments: one large compartment for releasing the mosquitoes and two identical 

trapping chambers (20x20x30 cm each). Two fans (diameter 8 cm, 6V computer casing 

fans (Molex, China)) drew air through the trapping chambers into the release 

compartment at 0.48 m/s. Batches of 100 gravid An. gambiae s.s. females were 

introduced at 18.20 by inserting a 10x10x10 cm cage into the underside of the release 

compartment. At the same time the fans were switched on. Mosquitoes acclimated for 

10 minutes and were then released by carefully opening the cage at 18.30. Mosquitoes 

were able to fly through a transparent polyvinyl chloride funnel into a trapping chamber. 

Alternative trapping chambers of each tunnel were baited with either an empty 70 mm 

diameter glass cup (Pyrex®) or with the same type of cup filled with 100 ml of filtered 

tap water. Prior to any experiment glass cups were autoclaved and heated afterwards in 

an oven at 200°C for at least two hours to rid them of possible odourant contamination 

and bacteria. Mosquitoes trapped in the chambers and those that remained in the release 

compartment were counted at 08.00 the following morning. Experiments were done in 

complete darkness, at ambient conditions (27-28°C, 60-70% relative humidity) in a 

room without a window. 
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Responses of gravid An. gambiae s.s. were compared for three different treatments in an 

olfactometer: (1) both chambers contained dry cups, (2) both chambers contained cups 

filled with water, and (3) one chamber contained a dry cup (control) and the other a cup 

with water (test). In all cases cups were randomly allocated as ‘control’ or ‘test’ (even if 

the same treatments were provided) to the two chambers to help facilitate the analysis.  

Each treatment was replicated 24 times (the ‘test’ cup of each treatment was located in 

each of the chambers of each of the three olfactometers four times) in order to estimate 

the variability in responses so that sample size calculations could be done. Power 

calculations were based on the formula from Hayes and Bennett (Hayes & Bennett 

1999) for comparing proportions of clustered data. When gravid females were provided 

with identical treatments in both chambers, 24 replicates resulted in a similar proportion 

in each chamber (p1=0.5). The variability of the nightly catches was used to calculate 

the coefficient of variation (ratio of standard deviation/mean), which was high at 0.33. 

Assuming that out of 100 mosquitoes released, 80 respond by entering one or the other 

collection chamber, 24 replicates in each arm (p1 and p2) can detect an increase or 

decrease in the catch rate of 20% (p2=0.7) with 90% power at a 5% significance level. 

Data loggers (Tinytag, TV4500) were placed in the two collection chambers and the 

release compartment for three nights in each of the three treatments to measure relative 

humidity.  
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Figure 4.2 Dual port airflow olfactometer. View from the top (A) and view from the 

side (B) 

 

4.3.5. Statistical analysis 
Data were analysed using generalised linear models comparing the mean proportion of 

female mosquitoes responding to the test cage or the test compartment. Responses of 

non-fed and gravid females towards the humid cage were compared in WHO-tube 

bioassays. Odds ratios were calculated in reference to the response of non-gravid 

females. In the airflow olfactometer bioassays responses of gravid females towards the 

three different experimental treatments (dry-dry, water-water, dry-water) were 

compared. Odds ratios were calculated in reference to the wet-wet comparison (equal 

treatments). The experimental treatments, the olfactometer (A, B, C) and the collection 

chamber (left, right) were entered as fixed factors to estimate their impact on the 

outcome. Since the data were highly overdispersed, quasibinominal distributions were 

used. Mean proportions per treatment and their 95% CIs were calculated using the 

parameter estimates of the models by removing the intercept from the models. All 

analyses were done with R statistical software version 2.14.2 (R Team 2011). 
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4.4. Results 

4.4.1. WHO-tube bioassays. Response to water vapour in still air. 

At the time when the gates of the WHO tubes were completely opened mean relative 

humidity differed by around 12% between high and low humidity cages. Humidity 

slowly decreased in the low cage and increased in the high humidity cage over the next 

two hours and the difference reached a maximum of approximately 44% at 20.00, with a 

mean relative humidity of 54% (95% CI 53-56%) in low and 97% (95% CI 95-99%) in 

high humidity cages (Figure 4.3). Average temperatures during the experiments ranged 

between 27 and 28°C. Conditions were similar in both experiments with unfed and 

gravid females. 

 

 

 
Figure 4.3 Average humidity in high and low humidity cages in tube bioassays 

 

At 19.00, half an hour after the gates were opened, 60% of the non-fed mosquitoes and 

72% of the gravid mosquitoes remained in the middle tube; 29% of the unfed 

mosquitoes moved to the low and 11% to the high humidity cages. Gravid females 

moved in relatively small and similar proportions to the low and high humidity cages 

(Figure 4.4). 
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Figure 4.4 Mean proportion of females (error bars = 95% confidence intervals) 

resting in release (middle tube), low or high humidity cage at start and end of 

experiment with Anopheles gambiae s.s. in tube bioassays. Non-fed females (A) and 

gravid females (B) 

 

Unfed females showed no preference for any of the two conditions provided (Table 4.1, 

Figure 4.4). When gates were closed at 21.30 half of the unfed females had moved in 

the high humidity cage and the other half either remained in the middle tube (9%) or 

moved into the low humidity cage (41%). In contrast, gravid females were 2.4 times 

more likely to move to the high humidity cage than unfed females (Table 4.1). All 

gravid females had moved out of the middle tube at 21.30 and on average 71% of them 

had moved into the high humidity cage.  
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Table 4.1 The mean percentage of gravid Anopheles gambiae s.s. attracted to the 

test cage in the WHO-tube assays and to the test compartment in the airflow 

olfactometer assays 

Experimental treatment  

 

Mean percentage (%) 

in test  (95% CI)* 

Odds Ratio 

(95% CI) 

p-value 

Response towards high humidity cage (test) in WHO-tube bioassays at 21.30 

Non-fed females 50 (38-62) 1  

Gravid females 71 (59-81) 2.4 (1.3-4.7) 0.018 

Airflow olfactometer bioassays with gravid An. gambiae s.s. in three experimental 

treatments 

Wet (control) vs. wet (test) 56 (48-64) 1   

Dry (control) vs. dry (test)  50 (29-71) 0.8 (0.3-1.9) 0.598 

Dry (control) vs. wet (test) 93 (88-96) 10.6 (5.4-20.8) <0.001 

CI = confidence interval; *based on model parameter estimates 

 

4.4.2. Airflow olfactometer bioassays. Response to water vapour in an air 

stream. 

Differences in relative humidity between areas with and without water were lower in the 

airflow olfactometer experiments than in the cage experiments. Relative humidity was 

on average 20% higher in chambers that contained water than in areas that did not 

(collection chamber and/or release compartment). Nightly relative humidity in 

collection chambers containing water was 91% (95% CI 90-92%), the average relative 

humidity in dry release compartments or dry chambers was 71% (95% CI 69-72%). The 

temperature did not differ between collection chambers and release compartments 

irrespective of the treatments and was on average 27.7°C (95% CI 27.2-27.9°C) during 

the 24 nights of experiments.  

High responses of gravid females were recorded in the experimental treatments that 

presented water in either one or both collection chambers of the olfactometer (median of 

69-83%, n=100 per olfactometer/experimental unit). In contrast, when no stimulus was 
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provided only a median of 9% of the mosquitoes responded by flying upwind in any of 

the two chambers whilst the rest remained in the release compartment (Figure 4.5). 

  

 
Figure 4.5 Comparison of response rates of gravid Anopheles gambiae s.s. to the 

three experimental treatments tested in airflow olfactometers 

 

When presented with an identical treatment the gravid females approached both 

collection chambers in equal proportion (estimated ratio 1:1) whilst on average 93% of 

the gravid females chose the chamber with water (estimated ratio 1:11), when the other 

was dry (Table 4.1) irrespective of whether the test cup was presented in the left or right 

collection chamber and irrespective of which of the three olfactometers was used for the 

test (both factors were not significantly related to the outcome). 

 

4.5. Discussion 

Here evidence is presented that gravid An. gambiae s.s. move from lower humidity 

towards higher humidity. This has been shown at short distances of 15-20 cm in still air 

and along an air stream of moving water vapour towards an area of higher humidity at 

longer distances of about 60 cm. Whilst one cannot be certain that gravid females are 

attracted to water vapour, since they could be repelled from drier areas, it is more likely 

that attractiveness of water vapour was responsible for the strong results observed since 

the relative humidity in the low humidity test areas was close to 60% and above, which 

is similar to the relative humidity of their resting places (Okech et al. 2004; Olayemi et 
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al. 2011b). This is supported by the results with unfed females which did not show any 

preference for moving into the higher humidity cage compared to the lower humidity 

cage. Nevertheless, it has been shown with all physiological stages that individuals can 

orientate to water vapour plumes or humidity differences much in the same way that a 

mosquito locates a host (Knols & Takken 1997). Early studies indicated that in Aedes 

aegypti humidity receptors were present on the antennae of females (Rahm 1958). In 

Anopheles atroparvus the hygroreceptors were located on the distal segments of the 

antennae bearing most of the grooved pegs (Ismail 1962). Studies with An. gambiae s.s. 

have confirmed that more than half the grooved pegs on the antennae increase their 

firing rate in the presence of water vapour and that some respond to low humidity, 

suggesting that these receptors play a role in humidity perception (van den Broek & den 

Otter 2000). Whilst it has been shown that humidity is important for the survival of 

mosquitoes (Bayoh 2001), a clear difference in the behaviour of unfed and gravid 

females was demonstrated in the present WHO tube experiments. It is speculated that 

the strong responses observed in gravid mosquitoes towards moving to areas of very 

high humidity is likely to increase the reproductive success of females by improving 

their chances of finding an aquatic habitat that might serve as a potential oviposition 

site. It could be an adaptive trait selected for in nature. 

In the tube bioassay, only a small number of gravid mosquitoes left the central holding 

tube immediately after the gates were opened. This might indicate that mosquitoes 

remained static long enough to detect the humidity difference, especially since the 

difference in humidity was only around 12% at the time when the gates were opened 

and no airflow was created. However, at the end of the peak oviposition period 2.4 

times more mosquitoes had moved into the humid cage than the drier one whilst the 

response of unfed females was similar towards the two treatments. The attraction of 

water vapour is demonstrated clearly with free-flying mosquitoes in airflow 

olfactometers. Here seven to eight times more gravid mosquitoes were found in the 

collection chambers when one or both chambers contain water than when both were dry. 

Furthermore, when given a choice between one chamber containing water and one that 

is dry, 11 times more gravid females were collected in the chamber with water. The 

upwind flight was probably stimulated by moist air. It is most likely that the greater 

attractiveness of water vapour in a wind tunnel than in the tubes was a result of moving 

moist air in the tunnel compared with the relatively still air in the tubes. Whilst the 
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evidence presented here shows the attraction of water vapour over relatively short 

distances, previously published work provides support that water vapour might attract 

females over several metres. Dugassa et al demonstrated that when gravid An. gambiae 

s.s. females were released into a large screened semi-field system the attractiveness of a 

reflecting surface was increased by 60% when presented close to water compared with 

when it was presented without water (Dugassa et al. 2012). In this case females 

travelled at least 5 m from the release point to the site where they were collected. 

Anopheles gambiae is highly sensitive to subtle changes in moisture as seen when 

selecting moist sites for ovipositing (Huang et al. 2005). 

It cannot be totally excluded that chemicals other than water were released from the tap 

water in the experiments described in this paper, since water purification with charcoal-

sand filters does not completely sterilize the water or remove all chemicals. 

Nevertheless, the observed attraction was very strong, especially in the airflow 

olfactometers. If this was based on semiochemicals released from the tap water, an 

effect should have been observed to larger degree in the preliminary experiments 

comparing tap water with double-distilled water. However, in these experiments only a 

very slight and insignificant preference for the tap water was recorded (Appendix A).  

The present work supports the conclusion made by Kennedy that ‘water vapour 

emanating from a surface plays an important part in evoking pre-ovipository responses 

in mosquitoes (An. atroparvus, Ae. aegypti and Culex molestus)’ (Kennedy 1942). He 

also recognized the importance of moist air currents to activate movement and help with 

orientation which ‘very probably play an important part in water-finding in the field’. 

Such conditions existed in the olfactometer experiments.  The question arises if and 

how gravid mosquitoes might use water vapour to navigate through the landscape. The 

pattern of water vapour across the savanna can be highly heterogeneous, shaped by the 

local climate, topography, vegetation, soil characteristics and presence and extent of 

water bodies (Beringer et al. 2011). The authors are not aware of research that has been 

conducted that describes the distribution, movement and concentration of water vapour 

at dusk in the savanna regions of tropical Africa at less than one metre above the 

ground; the environment encountered by gravid An. gambiae searching for a water body 

in which to lay their eggs. Such research is likely to provide further insights into the 

pre-oviposition behaviour of this important vector.  
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Water vapour is likely to be a general attractant for all mosquito species whatever their 

physiological status and it should not be considered the only attractive compound 

guiding gravid An. gambiae s.s. to an oviposition site. Water vapour has been shown to 

attract host-seeking mosquitoes (Clements 1999) and indoor-resting mosquitoes (Kirby 

2005). For host-seeking mosquitoes water vapour can indicate a human host, and for 

resting mosquitoes it provides an environment where the insect is less likely to 

dehydrate and die, so increasing its chances of survival. Nevertheless, the results 

presented here clearly show a difference between the responses of unfed and gravid 

females towards water vapour suggesting that it is an important cue for a gravid 

mosquito locating a potential water body, though it clearly cannot be the only one. If it 

was the only cue mosquitoes would accumulate in large bodies of water like lakes, 

rivers and seas, habitats inimical to their survival. Water vapour is likely to work in a 

synergistic manner with visual cues possibly over a longer range (Bernath et al. 2012) 

and with semiochemicals attracting and repelling gravid An. gambiae mosquitoes over 

short distances (Bentley & Day 1989; Sumba et al. 2004a; Rejmankova et al. 2005; 

Lindh et al. 2008) . 

 

4.6. Conclusion 
Gravid malaria vectors need to find suitable water bodies for their aquatic life stages to 

develop. Water consistently evaporates from aquatic habitats making water vapour 

probably the major chemical signal emanating from a potential larval habitat. This study 

demonstrates that gravid An. gambiae s.s. move into areas of high humidity or along 

airstreams of water vapour at the time of night they are actively seeking a site to lay 

their eggs, implicating water vapour as an important pre-oviposition attractant. More 

research is needed to address: (1) how water vapour is distributed over the landscape, 

(2) whether it assists gravid females in locating potential aquatic habitats over longer 

distances, and, (3) how it interacts with other pre-oviposition cues, either visual or 

chemical. 
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5.1. Abstract 

Background: Cues that guide gravid Anopheles gambiae sensu lato to oviposition sites 

can potentially be manipulated to create new strategies for monitoring and controlling 

malaria vectors. However, progress towards identifying such cues is slow in part due to 

the lack of appropriate tools for investigating long-range attraction to putative 

oviposition substrates. This study aimed to develop a relatively easy-to-use bioassay 

system that can effectively test chemical attractants for gravid Anopheles gambiae sensu 

stricto. 

Methods: BG-Sentinel™ mosquito traps that use fans to dispense odourants were 

modified to contain aqueous substrates. Choice tests with two identical traps set in an 80 

m2 screened semi-field system were used to analyse the catch efficacy of the traps and 

the effectiveness of the bioassay. A different batch of 200 gravid An. gambiae s.s. was 

released on every experimental night. Choices tested were (1) distilled versus distilled 

water (baseline) and (2) distilled water versus soil infusion. Further, comparisons were 

made of distilled water and soil infusions both containing 150g/l of Sodium Chloride 

(NaCl). Sodium Chloride is known to affect the release rate of volatiles from organic 

substrates. 

Results: When both traps contained distilled water, 45% (95% confidence interval (CI) 

33 – 57%) of all released mosquitoes were trapped. The proportion increased to 84% 

(95% CI 73 – 91%) when traps contained soil infusions. In choice tests, a gravid female 

was twice as likely to be trapped in the test trap with soil infusion as in the trap with 

distilled water (odds ratio (OR) 1.8, 95% CI 1.3 – 2.6). Furthermore, the attraction of 

gravid females towards the test trap with infusion more than tripled (OR 3.4, 95% CI 

2.4 – 4.8) when salt was added to the substrates.  

Conclusion: Minor modifications of the BG-Sentinel™ mosquito trap turned it into a 

valuable bioassay tool for evaluating the orientation of gravid mosquitoes to putative 

oviposition substrates using olfaction. This study describes a useful tool for 

investigating olfactory attraction of gravid An. gambiae s.s. and provides additional 

evidence that gravid mosquitoes of this species are attracted to and can be baited with 

attractive substrates such as organic infusions over a distance of several meters.  
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5.2. Background 

Malaria still causes considerable human morbidity and mortality in spite of concerted 

control efforts that have resulted in its steady decline in the last decade (Nyarango et al. 

2006). Effective interventions need to be scaled up (WHO 2013) and new approaches 

added to the armamentarium for controlling the disease and its vectors (Russell et al. 

2011; Cotter et al. 2013). The two front-line interventions for controlling malaria 

vectors in Africa, long-lasting insecticidal nets (LLINs) and indoor residual spraying 

(IRS), have exploited the indoor resting and host-seeking behaviour and the 

susceptibility of vectors to insecticides. These tools led to a major reduction of 29% in 

malaria cases worldwide (WHO 2013) justifying efforts to scale up LLINs and IRS. 

However, because of the growing problem of insecticide resistance [5-7], increasing 

importance of outdoor-biting vector populations [4] as well as heritable and plastic 

changes in vector behaviour in response to control [4, 8-12] the effectiveness of existing 

approaches may be compromised and additional strategies are required. 

In spite of many anticipated challenges and limitations (Okumu et al. 2010a), mass 

trapping of gravid mosquitoes using synthetic attractant baits offers an exciting 

possibility for an eco-friendly, sustainable complementary strategy for monitoring and 

controlling disease vectors. Such strategies target mosquitoes that rest and bite both 

indoors and outdoors irrespective of their state of insecticide resistance. Extensive 

behavioural and chemical ecology studies on host-seeking members of the Anopheles 

gambiae species complex (including Anopheles gambiae sensu stricto (s.s.) and 

Anopheles arabiensis) which are the primary vectors of malaria in sub-Saharan Africa, 

have led to progress towards identification of odourants from skin emanations of 

humans and other primary blood-meal hosts (Meijerink et al. 2000; Braks et al. 2001) 

and host plants (Nyasembe et al. 2014). These volatiles have been incorporated into 

baits and tested in traps (Okumu et al. 2010b; Nyasembe et al. 2014). In contrast, very 

little is known about the cues that gravid females of these species use to find and 

orientate towards an aquatic habitat to lay their eggs. Whilst a range of physical and 

chemical cues associated with the aquatic habitat have been suggested (Blackwell & 

Johnson 2000; Huang et al. 2006b; Huang et al. 2007; Otienoburu et al. 2007; Lindh et 

al. 2008) empirical evidence is scarce and restricted to cage and electrophysiological 

studies not least due to the lack of appropriate bioassay tools.  
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Malaria vectors bite human hosts for vertebrate blood that they require for ovarian 

development. The malaria parasite (Plasmodium sp.) inadvertently imbibed with a 

blood-meal will require at least eight days to complete the sexual stage within the 

mosquito (Florens et al. 2002; Barillas-Mury & Kumar 2005). In theory, this period is 

punctuated by two or more oviposition cycles; a period when gravid mosquitoes look 

for suitable breeding sites, lay eggs and recommence the search for new hosts to bite for 

blood (Bentley & Day 1989). Targeting gravid vectors while they forage for aquatic 

habitats for their offspring would thus conceivably provide an effective approach to 

prevent the ultimate infective bites of parous mosquitoes and reduce overall vector 

population densities. Relevant oviposition cues that malaria vectors use to detect, find 

and evaluate potential breeding sites could be identified and exploited in various attract 

and kill strategies by luring females either into traps or in to insecticides (Ferguson et 

al. 2010).  

Laboratory evidence shows that gravid females of the An. gambiae complex 

discriminate between different oviposition substrates. They are able to detect substrates 

with different levels of moisture and relative humidity (Huang et al. 2005; Okal et al. 

2013) and the presence or absence of bacteria (Sumba et al. 2004a; Huang et al. 2006a; 

Lindh et al. 2008). A recent study demonstrated that at short-range gravid An. gambiae 

s.s. can avoid or select substrates using olfactory cues (Herrera-Varela et al. 2014). In 

another comparable laboratory study one synthetic odourant, 2-propylphenol was shown 

to increase the egg-laying rate of An. gambiae s.s. in cage tests (Rinker et al. 2013). 

However, to the best of our knowledge no study has provided evidence that gravid 

females of the An. gambiae complex orient towards a suitable aquatic habitat over a 

distance of several metres using attractant chemical cues except using the bioassay here 

described (Lindh et al. 2015). 

The aim of the present study was to develop a simple bioassay for measuring olfactory 

orientation of gravid  An. gambiae s.s. in semi-field conditions and evaluate the 

response of gravid mosquitoes to soil infusions previously described (Herrera-Varela et 

al. 2014) to increase the egg-laying rate of these species in small experimental cages. 

Laboratory studies have shown that the addition of inorganic salts to aqueous solutions 

can lead to a higher release of volatile organic compounds into the headspace of the 

solution, an effect that is known as salting-out (Morrison 1944; Friant & Suffet 1979; 

Buchholz & Pawilszyn 1994; Xie et al. 1997; Nakamura & Daishima 2005; Gorgenyi et 



Semiochemicals guide An. gambiae s.s. to oviposition substrates 
 

123 
 

al. 2006; Alonso et al. 2012). For instance, Mozuraitis et al. (2010) showed that the 

amount of volatiles detected in the headspace from oestrous urine of mares increased 

eight times when the urine sample was saturated with salt compared to samples without 

salt. This study used salt to alter the volatile profile of the infusions and measure the 

sensitivity of the newly developed tool to changes in the chemical headspaces of these 

infusions. As a result, an effective tool that has since been used to describe the first 

oviposition semiochemical for the species (Lindh et al. 2015) described in detail. 

 

5.3. Methods 

5.3.1. Study site 

The study was done between March 2013 and February 2014 (time of sunset between 

18.30 h and 19.00 h) at the International Centre of Insect Physiology and Ecology, 

Thomas Odhiambo Campus (icipe – TOC) at Mbita on the shores of Lake Victoria in 

western Kenya (0° 26’ 06.19” S, 34° 12’ 5313” E; altitude 1,137 m above sea label). 

This area is characterised by a tropical climate with temperatures ranging between a 

mean minimum of 16°C and a mean maximum of 28°C and two rainy seasons each year 

between March and June and October and December.  

 

5.3.2. Mosquito preparation 
The Mbita strain of An. gambiae s.s. reared at the icipe -TOC mosquito insectaries was 

used for all experiments. Temperature and relative humidity in the insectary varied 

between 25–28°C and 68–75%. About 300 female mosquitoes held in a 30×30×30 cm 

netting cage with an equal number of males of a similar age were provided with two 

blood-meals on two consecutive nights from a human arm. Mosquitoes were starved for 

six hours before the blood-meal, which was offered for 15 min at 19:00 h. Mosquitoes 

that remained unfed after the first blood-meal were removed from the cage. A piece of 

cotton (50×25 cm) saturated with distilled water and positioned on top of the cage 

ensured that mosquitoes remained hydrated throughout oogenesis. Mosquitoes were left 

unattended for two days after the second blood-meal except for changing the 6% 

glucose solution provided as energy source and saturating the cotton on the cage with 

water twice a day. Gravid mosquitoes were selected by visual inspection on the third 

day. Females were presumed gravid when they had an opaque and pale distended 

abdomen.  
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5.3.3. Two-choice experiments  
Two-choice experiments were implemented under semi-field conditions (i.e. ambient 

temperature, humidity, light conditions) in a large netting-screened (black fibreglass 

gauze 1.7x1.5 mm) structure; 6.8 m wide and 10.8 m long (semi-field system; Figure 

5.1). A netting ceiling was stretched across the cage 2.4 m above the ground (176.3 m3). 

The floor was covered with sand to a depth of 50 cm. A roof made from transparent 

polycarbonate sheets shielded the structure from rainfall. The rectangular floor plan 

(two long walls, two short walls) of the semi-field system provided for four possible 

trap positions. Each position was arbitrarily set in each corner 1.4 m from the nearest 

adjoining walls (Figure 5.1). The two trap positions along the shorter walls of the semi-

field system received approximately the same proportion of mosquitoes whilst there was 

large variability in catches when traps were set in diagonally opposite corners in 

preliminary tests. To reduce the statistical noise in the system  the two traps constituting 

the dual-choice were always both placed at one of the two randomly selected short walls  

of the semi-field system, (site 2 + 3 and site 1 + 4; Figure 1). Gravid mosquitoes were 

released as far as possible from the traps near the opposite wall of the greenhouse, 9 m 

away from the two traps. 

The location of the traps and the position of the treatments were randomly assigned for 

every night of an experiment. Two hundred gravid An. gambiae s.s. mosquitoes were 

released into the semi-field system at 17:30 h near the opposite shorter wall of the 

greenhouse, 9 m away from the two traps. Previous cage experiments (Okal et al. 2013) 

showed that the local mosquito strain has its peak oviposition time early in the evening 

before 21:30 h. To assess the proportion of gravid females that respond within this 

period the trapping chambers of the traps were changed at 21:30 h and the second pair 

retrieved at 08:00 h. This allowed tallying of the number of mosquitoes that were 

trapped with each treatment before 21:30 h and between 21:30 – 08:00 h. Each 

experiment was carried out on 12 nights based on previous sample size considerations 

(Dugassa et al. 2014) so that trap A and B were in each possible location three times. 

With this sample size an increment of 20% in the trap rate could be detected with 80% 

power at the 5% significance level. 
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Figure 5.1 Semi-field system (A) and schematic diagram of trap positions and 

release sites (B). Trap positions are shown in circles and mosquito release points in 

triangles. Colour codes show corresponding trap positions and mosquito release points. 

 

5.3.4. Modification of the Biogents (BG)-Sentinel™ mosquito trap into a 

gravid mosquito trap  
Commercially available BG-Sentinel™ mosquito traps (Biogents, Regensburg, 

Germany) were modified and tested in this study. This is an odour-baited trap that was 

originally designed for mass trapping of host-seeking virus vectors like Aedes aegypti 

and Aedes albopictus using a chemical lure based on human body emanations (Eiras et 

al. 2004; Maciel-de-Freitas et al. 2006). One of the advantages of the trap is its size 

‘which is large enough to incorporate additional attractants such as fragrant substances, 

small living animals, worn clothing, animal hairs, light and heat sources’ (Biogents 

2014). The trap consists of a collapsible, white fabric container with white gauze 

covering its opening. The trap is 36 cm in diameter and 40 cm high. In the middle of the 
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gauze cover air is sucked into the trap through a black catch pipe by an electrical fan 

placed at its end. This draws approaching mosquitoes into a catch bag. Consequently, 

the air exits the trap through the gauze, generating ascending currents. The aim here was 

to include attractive oviposition media in the trap and to evaluate its catching efficiency 

under semi-field conditions. All oviposition sites of Anopheles mosquitoes are aquatic 

(or at least water saturated) and recent wind tunnel experiments suggested that water 

vapour is an important oviposition attractant for gravid An. gambiae s.s. (Okal et al. 

2013). Consequently, the BG-Sentinel was modified to hold 4 L of aqueous test 

substrates by inserting a tightly-fitting black plastic bucket (Pride, Mombasa, Kenya) 34 

cm high and 30 cm inner diameter into the white fabric container. Since An. gambiae 

s.s. mosquitoes rarely oviposit in container-type habitats, the entire trap was dug into 

the ground leaving only 1 cm of it above ground (Figure 5.2).  

 
Figure 5.2 Modification and set-up of BG-Sentinel trap. (A) Interior showing bucket 

for holding aqueous solutions, (B) Complete trap (C) Cross-section of modified 

Biogents (BG)-Sentinel gravid mosquito trap. 
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5.3.5. Experimental procedures 

5.3.5.1. Assessing the catching efficacy of the modified BG-Sentinel gravid mosquito 

trap 

To evaluate if and how effectively gravid An. gambiae s.s. are attracted to oviposition 

substrates contained in the traps and to generate a baseline for comparison, an 

experiment was carried out where mosquitoes were presented with two traps with 

identical substrates. Both traps (trap A and B) were filled with 4 L of fresh distilled 

water (Buyimpex Agencies LTD, Kenya), with the position of the traps allocated 

randomly. 

 

5.3.5.2. Analysing the response of gravid Anopheles gambiae s.s. to 6-day old soil 

infusions 

Recently, a positive oviposition response of gravid An. gambiae s.s. to a six-day old soil 

infusion made from water mixed with soil taken from a natural breeding site located at 

icipe-TOC was demonstrated in cage egg-count experiments and chemical cues 

suggested as the reason for this response (Herrera-Varela et al. 2014). However, egg-

count experiments do not provide information on the nature of these chemical cues, 

which could either be volatile and attract mosquitoes from a distance or could be less 

volatile and act as contact stimulants (Isoe et al. 1995b; Sumba et al. 2004a). Here, the 

same soil was used to prepare infusions in the same way as before (Herrera-Varela et al. 

2014) and tested with the BG-Sentinel gravid mosquito trap. The silty clay loam top soil 

was dug from the same location as described by Herrera-Varela et al. (2014) within the 

icipe-TOC compound and sun-dried for 24 hours. Three litres of dry soil were 

thoroughly mixed with 15 L of distilled water in a 20 L plastic tub and left undisturbed 

at ambient conditions, but protected from rain for six days except for daily water top-up 

to compensate for loss through evaporation. Throughout the six days the tub was 

covered with mosquito netting. Just before the experiments the infusion was filtered 

through a cotton cloth to remove large soil particles and small debris. Exactly four litres 

of the soil infusion were compared to an equal volume of distilled water in choice 

experiments in the semi-field system. Fresh batches of infusions and distilled water 

were used for every experimental night. 
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5.3.5.3. Analysing the response of gravid mosquitoes to alterations in the headspace of 

6-day old soil infusions 

In order to be ideal for investigating attraction and formulating oviposition baits the 

bioassays used should be sensitive to slight changes in the release rate of odourants. An 

attempt was made to manipulate the release of odourants from soil infusion by adding 

NaCl and consequently investigate the sensitivity of the bioassay to changes in the 

chemical headspace of the soil infusion.   

Following published data on salt concentrations (Mozuraitis et al. 2010), preliminary 

experiments were implemented where 45g of NaCl to 300 ml of soil infusion (150g/L) 

in a glass beaker and stirred to dissolve at room temperature. At this concentration small 

amounts of undissolved salt were observed to settle at the bottom of the beaker. Hence, 

for choice experiments, 150 g of NaCl was added per litre of the test substrates (600 g/4 

L) and stirred to dissolve 10 - 20 min before the onset of experiments at 17:30 h. Two 

experiments were implemented. First, choice tests were done with distilled water versus 

soil infusion, both with NaCl. Second, the attractiveness of soil infusion without NaCl 

was tested against soil infusion with NaCl.  

 

5.3.6. Data analysis 
Data were analysed with generalised linear models with a binomial distribution and 

logit link function fitted to compare the probability of gravid An. gambiae s.s. being (1) 

collected in the test trap (trap B) compared with the total caught in both traps (trap A + 

trap B) to show substrate preference; (2) collected in both traps out of the total 

mosquitoes released (response rate); and (3) collected in both traps before 21.30 h out of 

the mosquitoes collected during the night (early responders). The underlying hypothesis 

of a choice bioassay is that when two equal choices are presented the response towards 

these choices is similar with odds of success of 1:1 (baseline or control). We expect that 

if an oviposition cue is presented that is either preferred or avoided by gravid females 

we will see a statistically significant diversion from the baseline. Consequently, the 

assay with two equal treatments served as reference. Initially, the trap location and the 

pair (wall) were included as fixed factors in the model to test for main effects and 

interactions. Since there were no significant associations with the outcome, these 

variables were excluded from the final models. The mean proportions of mosquitoes 

trapped in each treatment and their corresponding 95% confidence intervals (CI) were 



Semiochemicals guide An. gambiae s.s. to oviposition substrates 
 

129 
 

calculated as the exponential of the parameter estimates for models with no intercept 

included. Data analyses were done with R statistical software version 3.00 with various 

functions contributed from the packages MASS, effects, epicalc, multcomp, lme4, gee, 

aod (R Team 2011). 

 

5.3.7. Ethics statement 
Ethical approval for this study was obtained from the Kenya Medical Research 

Institute’s Ethical Review Committee (Protocol no. 422).  

 

5.4.Results 

5.4.1. The modified BG-Sentinel gravid mosquito trap is an effective tool 

for analysing oviposition attraction of malaria vectors under semi-field 

conditions 
When two traps baited with distilled water were provided in choice tests, 45% of the 

released mosquitoes were recovered. Importantly, trap A and B caught equal 

proportions of the mosquitoes (50%, 95% CI 0.43 – 0.57%), which validates the 

experimental design. Only about one third of all mosquitoes (36% 95% CI 28 – 45%) 

were trapped before 21:30 h (Figure 5.3, Table 5.1). 
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Figure 5.3 Explanatory data analyses of oviposition response of Anopheles gambiae 

sensu stricto to test substrates. Box-and-whisker plots indicating the median value by 

the central horizontal line and the lower and upper quartiles by corresponding ends of 

the box. The whiskers show the range of the data. Dots show outlying values. (A) 

Proportion of females responding to the test substrate (INF =soil infusion, INFsalt=soil 

infusion with NaCl) compared to distilled water or infusion controls (DW=distilled 

water, DWsalt=distilled water with NaCl) in choice tests; (B) Response rate of the 

females released (N=200); (C) Response of mosquitoes before 21:30h out of the 

females trapped per night. 

 

5.4.2. Soil infusions contain odourants that attract gravid Anopheles 

gambiae s.s. 
Gravid mosquitoes were twice as likely to be trapped in BG-sentinel gravid mosquito 

traps when the test trap (trap B) contained soil infusion as when the test trap contained 

distilled water in the bioassays with two equal choices (OR 1.8, 95% CI 1.3 – 2.6). 

Moreover, adding NaCl increased the attractiveness of the infusion; females were 3.4 

(95% CI 2.4 – 4.8) times more likely to choose the infusion than distilled water. In 

direct comparisons of soil infusion with NaCl to soil infusions without NaCl, gravid 

females were nearly two times (OR 1.8, 95% CI 1.3 – 2.5%) more likely to be collected 

in the trap containing the infusion with salt (Figure 5.3, Table 5.1). 
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Table 5.1 Oviposition response of gravid Anopheles gambiae sensu stricto to substrates 

in two-choice tests. Generalised linear model outputs. 

 

Oviposition substrates 

Control (trap A) 

 

Test (trap B) 

Mean proportion 

(95% CI) 

Odds ratio  

(95% CI) 

p-value 

Proportion of gravid females trapped in test (trap B) in two choice experiments of the females trapped 

Distilled water Distilled water 0.50 (0.43 – 0.57) 1  

Distilled water  Infusion 0.64 (0.58 – 0.70) 1.8 (1.3 – 2.6)   0.004 

Distilled water + NaCl  Infusion + NaCl  0.77 (0.72 – 0.81) 3.4 (2.4 – 4.8) <0.001 

Infusion  Infusion+ NaCl  0.67 (0.60 – 0.69) 1.8 (1.3 – 2.5)   0.001 

Response rate of released gravid females during experiments with different substrate combinations 

Distilled-Distilled 0.45 (0.33 – 0.57) 1  

Distilled-Infusion 0.51 (0.39 – 0.63) 1.3 (0.6 – 2.5) 0.438 

Distilled+NaCl – Infusion+NaCl 0.74 (0.63 – 0.84) 3.7 (1.8 – 7.5) <0.001 

Infusion - Infusion+NaCl 0.84 (0.73 – 0.91) 6.8 (3.1 – 15.0) <0.001 

Response of gravid females before 21:30 h of the females trapped during the night (early responders) 

Distilled-Distilled 0.36 (0.28 – 0.45) 1  

Distilled-Infusion 0.56 (0.46 – 0.67) 1.59 (1.11 – 2.29) 0.003 

Distilled+NaCl – Infusion+NaCl 0.66 (0.58 – 0.74) 1.92 (1.38 – 2.68) <0.001 

Infusion - Infusion+NaCl 0.64 (0.54 – 0.73) 1.76 (1.29 – 2.44) 0.001 

 

 

5.4.3. The presence of attractive odourants in the semi-field system 

increases the response rate of gravid Anopheles gambiae s.s. 

When salt-saturated infusions were present in one of the traps it was 3.7-6.8 times more 

likely a mosquito would respond and be collected in either trap than when only distilled 

water was presented in both traps (Figure 5.3, Table 5.1).   

 

5.4.4. Odourant cues from soil infusions prompt early oviposition site 

seeking in Anopheles gambiae s.s.  
The presence of soil-infusion odourants doubled (OR 1.92, 95% CI 1.38 – 2.68) the 

proportion of mosquitoes that responded before 21.30 h (Figure 5.3, Table 5.1). 
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5.5. Discussion 

Minor modifications of the commercially available BG-Sentinel mosquito trap 

optimised it into a valuable bioassay tool for evaluating the orientation of gravid 

mosquitoes to putative oviposition substrates using olfaction. The modified traps 

excluded any possible contact stimuli or visual cues (e.g. light reflections from water) 

from the test substrates and showed a strong discrimination effect enabling the detection 

of small differences (≥20%) in the proportion of gravid mosquitoes attracted to one of 

two competing substrates (odourant blends). The BG-Sentinel mosquito trap is simple 

to set up and allows for rapid replacement of collection bags making it possible to 

evaluate the response of gravid mosquitoes at different periods during the night. 

With this system we provide evidence that gravid females of the major malaria vector 

An. gambiae s.s. can detect and respond to attractive odourant cues over at least nine 

metres to locate and choose between potential oviposition sites. Many studies have 

suggested the involvement of chemical cues in the selection of breeding sites 

(Blackwell & Johnson 2000; Sumba et al. 2004a; Lindh et al. 2008; Herrera-Varela et 

al. 2014). However, all of these studies were egg-count bioassays done in small cages 

(30×30×30 cm) with gravid mosquitoes released directly over test substrates. 

Consequently, none of the studies were able to prove attraction or describe an attractant, 

defined as cues that draws insects towards substrates (Dethier et al. 1960; Miller et al. 

2009). This study shows that odourants from the soil infusions reported by Herrera-

Varela et al. (2014) attract gravid An. gambiae s.s.. Furthermore, our results show that 

oviposition attraction to odourant chemicals is affected by the strengths of the cue, as 

shown from the salting-out experiments. This observation is important if one wanted to 

use odour-baited traps for the surveillance or control of gravid mosquitoes since it 

indicates that olfactory cues can be manipulated to attract and mass trap gravid malaria 

vectors.  

This study confirms earlier laboratory findings that gravid An. gambiae s.s.  use water 

vapour to locate breeding sites (Chapter 5). Previous studies were done in small, closed 

laboratory systems, free of external odourants with standardized water vapour gradients 

(Huang et al. 2005; Okal et al. 2013). With the bioassay, where both traps contained 

distilled water only, this study provides evidence that malaria vectors use water vapour 

to orientate to substrates in more natural and fairly complex chemical spaces over larger 
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distances. It is likely that water vapour is a general selective cue, but provides no 

information about the quality of the habitat which might be the reason for the observed 

slow and low response of gravid females. In the complex chemical space of natural 

ecosystems it is unlikely that a species with such a highly developed olfactory apparatus 

should evolve to employ water vapour as the major cue for selecting favourable water 

bodies. Water vapour most likely indicates the presence of water bodies while chemical 

odourants enable mosquitoes to assess the suitability of this potential niche.  

Based on the findings of this study it was hypothesised that the soil infusions tested 

contained at least one odourant that prompted habitat searching in gravid An. gambiae 

s.s.. The odourant bouquet of soil infusions evidently compelled passive gravid An. 

gambiae s.s. mosquitoes to fly towards the potential oviposition sites, especially when 

the infusions were saturated with salt. This was in contrast to the response when only 

distilled water was provided. A similar response has been shown for host-seeking 

mosquitoes when exposed to carbon dioxide which triggers long-range directed host 

seeking flight in otherwise inactive females of the An. gambiae complex (Gillies 1980). 

In nature such an odourant or collection of odourants would shorten the period for 

foraging for suitable aquatic sites by gravid mosquitoes. Gravid mosquitoes would use 

less energy and reduce the risk for mortality that is likely associated with prolonged 

habitat search and altogether improve the odds for successful breeding. 

This is the first study to exploit the principle of salting-out volatile chemicals to 

demonstrate the potential use of NaCl in behavioural bioassays to manipulate the odour 

profile of organic infusions. This study shows that adding NaCl to soil infusions 

increased the attraction of gravid An. gambiae s.s. to soil infusions two-fold and the 

response rate three-fold. This adds proof that An. gambiae s.s. respond to chemical cues 

in soil infusion. Whilst it cannot be excluded that the addition of salt affected the 

microbial organisms in the soil infusion and therefore changed the chemical 

composition of the volatile headspace, the increase in attractiveness of the already 

highly attractive soil infusion suggests that it is more likely that the addition of salt led 

to an increased release of already present attractive odours. Numerous studies using a 

wide range of inorganic salts have shown that these increase the concentration of 

volatile organic compounds (VOC) in the headspace above the salt containing solution 

(Morrison 1944; Xie et al. 1997; Nakamura & Daishima 2005; Mozuraitis et al. 2010; 

Alonso et al. 2012). The presence of salt decreases the solubility of the VOCs which are 
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pushed into the headspace. This effect is commonly known as the salting-out effect and 

can be quantified by the Setschenow constant (Morrison 1944) which most frequently is 

positive (salting-out) but can also be negative (salting-in) (Ni & Yalkowsky 2003). In 

preliminary studies (Lindh JM, personal communication) aimed at optimizing the 

collection of volatiles in the headspace above water from mosquito breeding sites, 

which should be similar in chemical composition to the soil infusion studied here, 

addition of NaCl increased the amount detected of the majority of the compounds and 

pushed many previously undetected organic compounds above the detection limit. This 

theoretically represents an inexpensive advancement of harnessing NaCl saturated 

natural infusions to produce relatively inexpensive baits for gravid malaria mosquitoes 

for use in gravid traps. However, at very high concentrations, NaCl will corrode and 

quickly destroy metallic parts in the traps. More work might be useful to evaluate if 

smaller amounts of NaCl can still improve the odour plume and reduce the damage to 

the traps. 

The high efficiency of BG-Sentinel gravid mosquito traps baited with NaCl saturated 

soil infusions in collecting gravid An. gambiae s.s. suggests their potential use in the 

field as an odour-baited gravid trap. The trap does not damage specimens, making it 

ideal for sampling wild mosquito populations in studies that require intact specimens or 

requires mosquitoes to be captured alive. The trap has been the subject of many 

explorative evaluations with host-seeking mosquitoes (Schmied et al. 2008; Gama et al. 

2013) proving its versatility and effectiveness. This study now shows that with only 

small modifications it has potential for collecting gravid mosquitoes too. Its potential 

use in large-scale ecological studies or in vector control programmes should be 

evaluated in natural field conditions. 

 

5.6. Conclusion 

In summary this study  (1) describes an efficient bioassay tool and potential new odour-

baited trap for gravid females of the An. gambiae species complex; (2)  provides 

evidence for the importance of olfaction in the location and selection of potential 

breeding sites by An. gambiae s.s.; and  (3) describes the compulsive response of gravid 

females to attractive chemical cues. Research needs now to be invested in analysing the 

volatile chemical headspace of the attractive soil infusion to identify attractant 

semiochemicals for oviposition in An. gambiae s.s.. 
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Hay infusion in the making (Source: Jenny M. Lindh) 
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6.1. Abstract 
Background: The responses of individual gravid Anopheles gambiae sensu stricto (s.s.) 

to hay infusions volatiles were evaluated under laboratory conditions. Such infusions 

have long been known to attract a few mosquito species of the genera Aedes and Culex 

to egg-laying sites. Consequently, these infusions and semiochemicals identified from 

them have been used effectively as baits for monitoring mosquitoes that vector arboviral 

and filarial diseases. This study investigated the response of An. gambiae s.s., the chief 

malaria vector, to Bermuda grass hay infusions. 

Methods: Hay infusions were formulated by adding 90 g of sun-dried Bermuda grass to 

24 L of lake water and leaving the mixture in a covered bucket for three days. The 

proportions of eggs laid by gravid An. gambiae s.s. in diluted (10%) and concentrated 

infusions (≥25%) was compared to that laid in lake water in two-choice egg-count 

bioassays. Volatile compounds in the infusion’s headspace were collected with Tenax 

TA polymer traps for 20 hours over hay infusion aliquots saturated with sodium 

chloride (NaCl). The polymer traps were thermally desorbed in a Gas chromatograph- 

Mass spectrometer (GC-MS) and compared to electronic chemical mass libraries to 

identify chemical constituents emitted by the infusions. Ten volatiles identified from 

headspace and previously indicated as putative oviposition semiochemicals for An. 

gambiae s.s. or confirmed semiochemicals for other mosquito species were tested in 

egg-count bioassays in concentrations of between 0.01 – 5.00 ppm chemical in lake 

water. 

Results: Gravid An. gambiae s.s. did not discriminate between diluted hay infusion and 

lake water but were 10 times less likely to lay eggs in the concentrated hay infusion 

compared to the water (Odd ratio (OR) 0.10, 95% Confidence interval (CI) 0.03 – 0.33). 

Six out of ten compounds identified from the headspace of hay infusion showed 

behavioural activity in two-choice egg-count bioassays. Mosquitoes avoided laying 

eggs in nonanal, 3-methylindole, indole and 3-methyl-1-butanol at low concentrations 

(≤ 1.0 ppm). Mosquitoes also avoided 4-ethyl phenol and phenol when the two 

compounds were presented at a relatively high concentration of 5.0 ppm in two choice 

tests with lake water. 
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Conclusions: Contrary to a number of culicine species, An. gambiae s.s. is not attracted 

to hay infusions. The compounds nonanal, 3-methylindole, indole, 3-methyl-1-butanol, 

4-ethyl phenol and phenol likely contribute to the unfavourable oviposition response 

towards the infusions. It is speculated that these might partially explain why An. 

gambiae s.s. larvae are less common in water bodies with high organic content and why 

field studies with hay infusion baits in oviposition traps have never reported trapping of 

malaria vectors. 

 

6.2. Background 

Immature stages of all mosquito species (Diptera: Culicidae) are aquatic (Rozendaal & 

Organization 1997). Gravid adults therefore need to find suitable water bodies (or in 

case of many Aedes species suitable sites where water is likely to collect) to lay eggs in 

(Bentley & Day 1989). The larvae and pupae of these can be found in a large variety of 

heterogeneous habitats but individual species may have more defined preferences for 

certain habitat characteristics and water qualities (Bentley & Day 1989). For instance, 

Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), Culex quinquefasciatus (Say), 

Culex tarsalis (Coquillett) all often preferentially lay eggs in water bodies rich in 

organic matter (Gjullin et al. 1965; Kramer & Mulla 1979; Reiter 1983; Beehler et al. 

1994; Allan & Kline 1995; Burkett-Cadena & Mullen 2007; Ponnusamy et al. 2010). 

Gravid females of these species are attracted to specific volatile chemicals that emanate 

from microbial breakdown of organic matter within these aquatic sites (Hazard et al. 

1967; Rockett 1987; Benzon & Apperson 1988; Hasselschwert & Rockett 1988; Isoe & 

Millar 1995). For this reason, hay infusions that mimic these oviposition sites (Gjullin et 

al. 1965) have been formulated and used as lures in gravid traps and ovitraps for 

detection and surveillance of vectors of mosquito-borne diseases such as dengue, 

dengue haemorrhagic fever, West Nile virus and St. Louis encephalitis (Reisen et al. 

2004; Lukacik et al. 2006; Williams & Gingrich 2007; WHO 2009; Mackay et al. 2013; 

Barrera et al. 2014). Recent studies in Tanzania show that semiochemicals identified 

from such infusions might be useful for monitoring of Cx. quinquefasciatus and 

xenodiagnosing bancroftian filariases in Africa (Irish et al. 2013; Irish et al. 2014). 

Anopheles gambiae s.l. larvae are frequently found to share habitats with culicine 

mosquito species in Africa (Fillinger et al. 2004; Ndenga et al. 2011). This could 
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suggest that gravid mosquitoes of these diverse species can, to a certain degree, make 

the same choices for breeding sites. In addition, at least two volatile compounds 

identified from of hay infusions, indole (Blackwell & Johnson 2000; Himeidan et al. 

2013)) and 4-methylphenol (Walker 2011; Himeidan et al. 2013) have been suggested 

to attract gravid An. gambiae s.s. in low concentrations. However, no behavioural 

studies have been implemented and reported investigating if hay infusions or these 

chemicals affect the behaviour of gravid An. gambiae s.s.. 

Previous studies have successfully identified semiochemicals from hay infusions made 

from Bermuda grass that attract Culex mosquitoes. Millar and others (1992) 

characterised chemicals in Bermuda grass hay infusion through solvent extraction and 

guided by bioassays showed that active fractions contained phenol, 4-methylphenol, 4-

ethylphenol, indole and 3- methylindole. One of the compounds, 3-methylindole, was 

shown to be attractive to Cx. quinquefaciatus in laboratory cage tests leading to further 

field studies (Millar et al. 1994; Barbosa et al. 2010). In a follow up study by Du and 

Millar (Du & Millar 1999b), using electroanntenography to screen volatiles, additional 

odourants were detected, among them nonanal. Nonanal has also been tested as a 

potential replacement for 3-methylindole in commercial baits since nonanal-based lures 

would be less pungent and can therefore be more acceptable to users (Irish et al. 2013). 

All these compounds have been demonstrated to be physiologically active in 

electroanntenographic studies with An. gambiae s.s. (James Broom, pers comm., 

Appendix B). In addition, many of them have been suggested as putative oviposition 

semiochemicals for An. gambiae s.s. based on presence in substrates that elicited high 

eggs rates in laboratory studies with these species (Blackwell & Johnson 2000; Lindh et 

al. 2008; Walker 2011; Himeidan et al. 2013). However, none of these have actually 

been confirmed with empirical behavioural studies.  

This study set out to (1) evaluate the response of gravid An. gambiae s.s. to hay 

infusions made from Bermuda grass, one of the best know oviposition attractant used in 

traps to collect a number of mosquito species but which has never been tested for 

malaria vectors; (2) identify the major odourants in the headspace of the hay infusion; 

and (3) investigate the role of these odourants in meditating the observed oviposition 

responses of An. gambiae s.s. to the hay infusion  
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6.3. Methods 

6.3.1. Mosquitoes 

All mosquitoes used for this study were supplied by the mosquito insectaries at the 

International Centre of Insect Physiology and Ecology, Thomas Odhiambo Campus 

(icipe-TOC), Mbita, western Kenya (0° 26’ 06.19” South; 34° 12’ 53.12” East; altitude 

1149 m). The mosquitoes were reared following standard operating procedures 

described by Herrera-Varela and others (Herrera-Varela et al. 2014). Approximately 

300 female and 300 male mosquitoes of the An. gambiae s.s. Mbita strain were 

randomly selected from an adult mosquito holding cage with more than one thousand 

two to three days old mosquitoes. The selected mosquitoes were starved for about 7 

hours (between 12:00 – 7:00 h) before the females were allowed to blood-feed from a 

human arm for 15 minutes at dusk. Cotton towels saturated with water were placed over 

the cage throughout to maintain the relative humidity and temperature of 68-75% and 

25-28°C, respectively. Female mosquitoes that did not blood-feed, as judged by an 

engorged abdomen, were removed from the cage and a vial containing 6% glucose with 

a paper towel wick were introduced in the cage immediately after blood-feeding for ad 

libitum sugar supply. A second blood-meal was provided 24 hours later at 19:00 h. On 

the fifth days after the first blood-meal, presumed gravid mosquitoes (based on their 

abdominal appearance) were selected by experienced technicians from the cage at 16:30 

h and used for behavioural bioassays.  

 

6.3.2. Preparation of hay infusions 

Hay infusions were prepared from Bermuda grass (Cynodon dactylon (L.)) which is 

widely distributed throughout the world and has frequently been used for the 

preparation of hay infusions for baiting gravid culicine mosquitoes (Mboera et al. 

2000a; Mboera et al. 2000c; Burkett-Cadena & Mullen 2007). Here, fresh grass was 

harvested locally and sun-dried for 48 h to make hay. Infusions were prepared by 

mixing 90 g of the hay with 24 L of lake water in a plastic bucket. The mixture covered 

with net of mesh size 0.6 mm x 0.6 mm was left outdoors in a roofed and shaded area at 

ambient temperature and humidity (mean daily temperature 27 ± 5°C, relative humidity 

55 ± 10%) for three days. Thereafter, the infusion was filtered through a clean piece of 

cotton cloth to remove large debris. Different dilutions of the hay infusions (10%, 25%, 
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and 50%) were formulated for egg-count cage bioassays by diluting the infusion with 

lake water. A new batch of hay infusions was prepared for every round of bioassay 

experiments. Five, aliquots of 5L of the infusion were frozen at -70°C for chemical 

headspace collection. 

 

6.3.3. Handling and use of glassware  
All glassware were washed with a mild detergent, rinsed with water and acetone and 

then placed in a 200ºC oven over night. Volatiles were sampled from Erlenmeyer flasks 

(E-flasks) fitted with gas wash bottle heads (QuickFit joined ware, Staffordshire, United 

Kingdom). Oviposition substrates were offered in 7 cm diameter, 100 ml clear 

borosilicate crystallising glasses (Pyrex®, hereafter called oviposition cups). Prior to 

any experiment oviposition cups were autoclaved and kept at 200 °C for two hours.  

6.3.4. Behavioural bioassays with hay infusion.  

To evaluate the response of gravid An. gambiae s.s. to hay infusions, two-choice egg-

count bioassays were implemented following a recently described method (Okal et al, 

submitted). In this approach individual gravid females are exposed to two putative 

oviposition substrates in a cage. Two glass cups (Pyrex®, 100 ml, 70 mm diameter), 

one test cup, and one control cup, were set in diagonal corners of each 30x30x30 cm 

cage. In the two choice experiments, the control cup was filled with 100 ml of lake 

water and the test cup with an equal amount of the infusion. Bias that could stem from 

the position of oviposition cups within the cages was minimized by systematically 

altering the position of the cups in each cage relative to the preceding cage. The first test 

cup was randomly set in one of the four possible corners in the first cage. Subsequent 

test cups were rotated in the next possible corner in a clockwise direction relative to the 

position of the test cup in the preceding cage. One cup containing lake water was added 

in each cage diagonal to the test cup to complete a two-choice set-up. An equally 

replicated set of cages with lake water in both cups (two equal choices) was 

implemented and used as a baseline with which to compare responses in the choice tests 

with two different substrates.  

One gravid mosquito was introduced in each cage at 18:00 h. The presence and number 

of eggs was scored for every cup the next morning at 08:00 h. Mosquitoes that did not 

lay eggs were excluded from the analysis. Six round were implemented with between 
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ten to fifty replicate cages per round for every treatment (Table 6.1). All experiments 

were done in make-shift sheds at icipe-TOC at ambient conditions of temperature, 

humidity and light but protected from rain. 

 

6.3.5. Dynamic headspace sampling of volatile compounds released from 

hay infusion. 

Adsorbent traps were made by adding 25 mg of Tenax TA of mesh size 60/80 (Supelco, 

Sigma-Aldrich Sweden AB, Stockholm, Sweden) in a GERSTEL-Twister Desorption 

glass liner (GERSTEL, Muelheim an der Ruhr, Germany) and held in place with glass 

wool (Supelco, Sigma-Aldrich Sweden AB, Stockholm, Sweden). The traps were 

washed 10 times with 2 ml of methyl-tert butyl ether (MTBE, Supelco, Sigma-Aldrich 

Sweden AB, Stockholm, Sweden) and then placed in a 50ºC oven with both ends 

covered with PTFE tape for at least six hours before use. 

Previously frozen infusion was naturally thawed at room temperature (25 – 28°C) on the 

day of headspace sampling. Headspace samples were collected over 300 ml aliquots of 

defrosted and undiluted soil infusion in a 500 ml E-flasks. Exactly 150 g/L of sodium 

chloride (NaCl, reagent grade Scharlau, Sentmenat, Barcelona, Spain) was added to 

every aliquot. Charcoal filtered air was pumped through the E-flasks at 0.5 L/min and 

drawn out through Tenax TA adsorption traps. All connections were made airtight using 

glass and polytetrafluoroethylene (PTFE) tubing and sealed with PTFE tape. Volatiles 

were sampled for twenty hours. Empty E-flasks served as baselines for analyses. This 

was repeated over five rounds. After headspace collection the polymer traps were sealed 

with PTFE tape and stored at -70 ºC. 

6.3.6. Chemical analyses of hay infusion headspace samples. 

Samples were analysed with an Agilent 7890A gas chromatograph (GC) connected to 

an Agilent 5975C inert MSD mass spectrometer (MS) (Santa Clara CA, United States). 

The GC system was fitted with GERSTEL Multi-Purpose Sampler (MPS: Gerstel 

GmbH & Co. KG, Mülheim an der Ruhr, Germany) and an Agilent HP-5MS (5% 

phenyl and 95% dimethyl polysiloxane) capillary column (30 m, 250 µm internal 

diameter and 0.25 µm film thickness). 
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Tenax traps were thermally desorbed in splitless mode in a GERSTEL thermal 

desorption unit (TDU) at initial temperature 40°C, then increased by 120°C / min to 

270°C which was held for 5 min. One microliter heptyl-actetate (3.16 ng / µl) was 

added to the Tenax trap in the TDU unit prior to analysis. The desorbed volatiles were 

focused in a GERSTEL CIS inlet at 10°C. The CIS inlet operated in splitless mode was 

then heated at a rate of 12°C/s to 280°C. The GC oven was programmed to start at a 

temperature of 40 °C for 1 minute; then increased by 4°C / min to 280°C. The final 

temperature was held for 3 minutes. Helium at a pressure of 34 psi was used as the 

carrier gas. The MS was set to full scan and identified mass ranges from 30-400 m/z 

with electron ionization at 70 eV and ion source temperature at 230ºC.  

GC-MS data was captured and processed with the enhanced ChemStation software 

version E.02.01.1177 (Agilent Technologies, Santa Clara, CA, USA). All peaks that had 

unique retention times and/or mass spectra were manually integrated. The empty bottle 

baselines/ controls were used to adjust for background volatiles. Peaks present in both 

the empty bottle and sample collections were only retained if they were at least two 

times as large in the sample. The areas of such peaks were adjusted by subtracting that 

of the matching peak in the empty bottle. An internal standard was used as a marker to 

match peaks between different samples. Mass spectra of all peaks were compared to 

those of the NIST 2008 library for tentative identifications.  

The identity of compounds of interest were confirmed with authentic standards;  (3-

methyl-1-butanol, 3-methylindole, phenylmethanol and indole (Sigma-Aldrich Sweden 

AB, Stockholm, Sweden); phenol, 2-phenylethanol and 1-octen-3-ol (Lancaster, 

Chemtronica, Stockholm, Sweden), 4-methylphenol and 4-hepten-1-ol (Alfa Aesar, 

Chemtronica, Stockholm, Sweden), 4-ethylphenol (TCI Europe NV, Chemtronica, 

Stockholm, Sweden). All standards tested had a purity of at least 95%. For each 

compound, one microliter of a 10-4 M dilution in methyl-tert-butylether was injected 

into thermal desorption unit using the same GC-MS settings described above. 

6.3.7. Behavioural bioassays with chemicals identified from hay infusions 

Ten compounds (purchased from Sigma Aldrich, St. Louis, USA and >99% pure, unless 

otherwise stated) were analysed in two choice bioassays following the same procedures 

as described for the bioassays with infusion. A chemical identified from the 

chromatograms was considered for further analyses if it was: (1) a dominant constituent 
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of the hay infusion headspace: 4-hepten-1-o l (97%, Alfa Aesar, Chemtronica, 

Stockholm, Sweden), 4-methyl-phenol, 4-ethyl-phenol, 3-methylindole (98%, Acros 

organics, New Jersey, USA); (2) detected  in the headspace of the hay infusion and

6.3.8. Statistical analyses 

 

previously suggested to influence the oviposition behaviour of Anopheles: 3-methyl-1-

butanol,  phenylmethanol, 2-phenylethanol (>99%, Fisher scientific, Loughborough, 

UK) and indole (>99%, Acros organics, New Jersey, USA); (3) extensively referenced 

in other oviposition studies with mosquitoes and identified in the headspace of hay 

infusions: phenol and nonanal (both 95%, Sigma Aldrich, St. Louis, USA)). The 

compounds were tested at various concentrations of between 0.01 – 5.00 parts per 

million (ppm) in lake water. Details available in Table 6.1 

Generalised linear models with quasibinomial distributions were used to analyse 

behavioural data from two-choice egg-count bioassays with hay infusions and putative 

semiochemicals. The proportion of eggs laid by gravid female mosquitoes in the test 

cup in the experiments with two different choices was compared to that in the test cup 

in cages with two equal choices. It was hypothesised that gravid females presented with 

equal choices respond to both in an approximately equal proportion (p=0.5). The 

statistical analyses were aimed at revealing if the treatment of interest (e.g. different 

concentrations of grass infusion or chemicals) elicited an increase or decrease in the 

proportion of eggs laid as compared to the distribution in the experiments with equal 

choices. The test treatment (lake water, infusions or chemicals) and the round of 

experiment were included in the model as fixed factors. Mean proportions and 

associated 95% confidence intervals were predicted from the fitted model. Data were 

analysed in R (R Team 2011). 

6.3.9. Ethical considerations 

Ethical approval for this study was obtained from the Kenya Medical Research 

Institute’s Ethical Review Committee (Protocol no.422). 
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Table 6.1 Summary of two-choice egg-count bioassays to evaluate the egg laying 
preferences of gravid Anopheles gambiae s.s. to hay infusion volatiles compared to 
lake water 

Test substrate Concentration of 
test substrate a 

No. of 
rounds 

No of mosquitoes 

   Tested Laid eggs 
Hay infusion 0 8 375 075b 

10%  3 150 126 
25% 3 030 022 
50% 3 030 025 

100% 3 030 028 
3-methyl-1-butanol 0 5 250 209 

0.010ppm 3 151 133 
0.100ppm 5 250 197 
1.000ppm 4 300 209 

4-hepten-1-ol 0 9 265 185 
0.100ppm 6 148 110 
0.500ppm 4 119   091 
1.000ppm 4 116   088 
5.000ppm 5 149   094 

phenol 0 9 265 185 
0.100ppm 5 107 107 
0.500ppm 3 148 110 
1.000ppm 3 090   071 
5.000ppm 5 147 102 

phenylmethanol 0 6 210 175 
0.500ppm 5 175 144 
1.000ppm 5 175 138 
2.500ppm 5 210 149 
5.000ppm 6 230 169 

4-methylphenol 0 11 417 319 
0.100ppm 5 208 130 
0.500ppm 4 119   087 
1.000ppm 5 238 171 
5.000ppm 5 146 109 

2-phenylethanol 0 7 200 165 
0.100ppm 4 200 162 
0.500ppm 5 155 125 
1.000ppm 5 155 131 
2.500ppm 4 180 144 
5.000ppm 6 195 168 

nonanal 0 4 400 360 
0.050ppm 4 150 116 
0.100ppm 3 250 190 
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0.500ppm 4 060 032 
1.000ppm 4 060 043 

4-ethylphenol 0 6 220 169 
0.100ppm 5 148 110 
0.500ppm 3 080   060 
1.000ppm 3 087   060 
5.000ppm 3 132 109 

indole 0 5 430 203 
0.100ppm 4 060  037 
0.500ppm 4 060  040 
1.000ppm 5 225 160 
5.000ppm 5 205 158 

3-methylindole 0 8 290 195 
0.010ppm 8 130 102 
0.100ppm 8 130 098 
0.500ppm 8 160 110 
1.000ppm 8 250 170 

a “0” indicate pure lake water i.e. two equal choices used as control (baseline); b Data from 

seventy five control-control cages was randomly selected from a total of 375 cages from eight 

different rounds in previous experiments using an excel add-in random sorter. 

 

6.4. Results  

6.4.1. Oviposition response of Anopheles gambiae s.s. to hay infusions. 

When two equal lake water choices were presented, females laid a similar proportion of 

eggs in the test and control cup (0.47, 95% CI 0.32 – 0.63) validating the experimental 

design and serving as baseline for comparison. The distribution of eggs in the two 

choice test with a dilute 10% hay infusion did not significantly differ from the baseline 

(Figure 6.1). However, gravid An. gambiae s.s. laid a lower proportion of eggs in 25% 

infusions (0.11, 95% CI 0.03 – 0.33), 50% infusions (0.07, 95% CI 0.02 – 0.26) and 

100% infusions (0.06, 95% CI 0.02 – 0.22) when given a choice to lay in lake water 

instead. The differences in the response to infusions with concentrations of 25% and 

above were not significant (P=0.69) and the data was pooled for final analysis. Eggs 

were 10 times less likely to be laid in the test cup when the choice was a concentrated 

hay infusion (≥25%; test) versus lake water (control) than when the choice was lake 

water (test) versus lake water (Figure 6.1). 
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6.4.2.Chemical constituents of the hay infusion headspace 
The most dominant compounds in the headspace of hay infusions were 4-heptan-1-ol, 4-

methylphenol, 3-methylindole and 4-ethylphenol. Other key compounds included 3-

methyl-1butanol, phenylmethanol, 2-phenylethanol, indole and phenol which have all 

been suggested to attract gravid An. gambiae sensu stricto (Blackwell & Johnson 2000; 

Lindh et al. 2008; Himeidan et al. 2013). 

 

Figure 6.1 Egg-laying responses of individual gravid Anopheles gambiae sense 

stricto to hay infusion compared to lake water 

 

Nonanal was not detected from the infusion headspace using our chemical analysis 

method but was tested because it has been detected previously in hay infusions (Leal et 

al. 2008) and has been used in attractant blends for other mosquito species (Irish et al. 

2014). All these compounds except for 4-heptan-1-ol have been previously shown to 

elicit electrophysiological responses in An. gambiae s.s. (Blackwell & Johnson 2000; 

Carey et al. 2010). (Table 6.1) 

 

Table 6.2 Frequency and abundance of key volatile organic compounds detected in 

the headspace of hay infusions and evaluated in egg-count bioassays 

Putative semiochemical 

(in order of abundance) 

No. of samples (rounds) 

with compound 

Average amount 

detected (ng/µL) 

4-hepten-1-ol 5 11.261 

4-methylphenol 5 9.625 

3-methylindole 4 5.336 

4-ethylphenol 5 6.300 

indole 4 2.176 
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phenyl methanol 1 0.822 

2-phenylethanol 4 0.656 

phenol 4 0.777 

3-methyl-1-butanol 5 0.051 

Nonanal 0 0.000 

 

6.4.3. Oviposition response of Anopheles gambiae sensu stricto to key hay 

infusion volatiles 
Six out of ten test compounds affected the egg-laying choices of Anopheles gambiae 

s.s.. (Figure 6.2). The mosquitoes laid a lower proportion of eggs in very low doses of 

the alkyl aldehyde nonanal (≥ 0.1 ppm) compared to lake water. The proportion of eggs 

laid in 3-methylindole and indole only dropped significantly when the test doses were 

raised to 0.5 ppm. This same effect was recorded for 3-methyl-1-butanol at a ten-fold 

higher concentration of 1.0 ppm. The chemicals 4-ethyl phenol and phenol were only 

avoided for egg-laying when presented at a high concentration of 5.0 ppm; 2-

phenylethanol, phenylmethanol, 4-ethylphenol and 4-hepten-1-ol did not affect the 

oviposition choices of An. gambiae s.s at any of the tested concentrations (0.01 – 5.00 

ppm). None of the chemicals increased the oviposition response of An. gambiae s.s.. 

 

6.5.Discussion 
This study demonstrated that hay infusions are an unfavourable oviposition substrate for 

An. gambiae s.s. except at very low dilutions. At a low dose of 10% mosquitoes laid the 

same proportion of eggs in the hay infusion and lake water. However, there was only a 

one-in-ten chance of finding an An. gambiae s.s. egg in more concentrated hay infusions 

(25-100%) compared to lake water. This is in sharp contrast to Cx. quinquefasciatus, 

Cx. cinereus, Cx. tigripes, and Ae. albopictus which are all attracted to such infusions 

and readily deposit eggs and egg rafts in it (Allan & Kline 1995; Mboera et al. 1999) 

and might be the primary reason why field studies with hay infusion-baited traps rarely 

report trapped gravid An. gambiae s.s. even when implemented in areas with high 

densities of these species. A notable example is the studies by Mboera and others 

(2000a) in Muheza, Tanzania who evaluated traps baited with hay infusions at a time 

when the densities of An. gambiae s.s. in the area were markedly high (Mboera et al. 
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2000b) but failed to trap any. One might argue that the commercially available Box 

gravid traps models (BioQuip, Rancho Dominguez, CA) used in the majority of these 

studies were not designed for An. gambiae s.s. and that might be a reason for the lack of 

efficacy in field trials. However, a recent study showed that these traps capture a 

considerable number of this species in the semi-field when baited with just lake water 

(Dugassa et al. 2013). 
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Figure 6.2 Egg-laying responses of individual Anopheles gambiae sensu stricto to 

key organic volatiles from hay infusions 
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Furthermore, another study by Mboera and other (2000a) used counter-flow geometry 

traps (CFG) - a popular choice for odour baiting of An. gambiae s.s. (Njiru et al. 2006; 

Qiu et al. 2007; Schmied et al. 2008; Smallegange et al. 2010; Nyasembe et al. 2014) 

with similar negative results. Herrera-Varela and others (2014) recently demonstrated 

high mortality of Anopheles larvae in infusions with high organic content and suggested 

that the avoidance of such infusions might be an evolutionary trait that female 

mosquitoes exhibit to enhance the survival of offspring. 

Gravid An. gambiae s.s. also avoided or disregarded synthetic equivalents of volatile 

organic compounds identified from the organic infusions. All these compounds, except 

4-heptan-1ol have been shown to elicit eletrophysiological responses in An. gambiae 

s.s. (Blackwell & Johnson 2000; Meijerink et al. 2000; Qiu et al. 2006; Carey et al. 

2010).  The latter chemical did not instigate or supress egg-laying suggesting that it is 

not an important semiochemical in the context of oviposition with this species even 

though it was the most dominant chemical released from the infusion. Similarly 2-

phenylethanol and phenylmethanol, though strongly suggested to be oviposition 

attractant for gravid An. gambiae s.s. previously (Lindh et al. 2008; Himeidan et al. 

2013), did not attract more eggs compared to lake water. Another compound, 4-

ethylphenol, though detected frequently and in relatively high amounts had also no 

effect on oviposition choice in spite of the evidence that female An. gambiae s.s. 

mosquitoes are sensitive to it post blood-meal (Qiu et al. 2006). This apparent disregard 

for compounds in spite of these being in high abundance and showing 

electrophysiological activity proves that while these indices could be predictors of 

behavioural importance, only behavioural bioassays can confirm the relevance of any 

compound as an oviposition semiochemical. 

Anopheles gambiae s.s. laid few eggs in low concentrations of 3-methlindole and 

indole. These compounds are well-known attractants of gravid Cx quinquefasciatus both 

in the laboratory (Millar et al. 1992) and in the field (Mboera et al. 2000c) at a low 

average concentrations of 0.8 ppm. Trexler and others (2003a) have also found that the 

compound repelled Aedes albopictus, but at a relatively high concentration of 8.3 ppm. 

In the same study however, Aedes albopictus did not show antennal detection of the 

compound (Trexler et al. 2003a). It appears therefore that 3-methylindole may have 

acted as a physical irritant at very high concentration to deter egg-laying as opposed to 

being an olfactory repellent. Concentrations tested in this study were constrained to 
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between 0.1 – 5.0 ppm, which was considered to be a good range in which the potential 

olfactory response threshold would probably be included. Nonanal, although not readily 

identified in this study is a known constituent of Bermuda grass hay infusions (Du & 

Millar 1999a). It elicited a reduced egg-laying at a very low concentration. This 

compound has also been identified in rabbit food pellet infusions (Leal et al. 2008) that 

has been recently shown to repel gravid An. gambiae s.s. (Herrera-Varela et al. 2014). It 

might be an important cue for the avoidance of such organic infusions. Since the 

compound repelled mosquitoes at the lowest concentration it might be speculated that it 

could be an early warning avoidance cue for gravid females to avoid environments that 

would be highly stressful to their larvae. All these compounds, especially, indole and 3-

methylindole are common in nature and a common constituent of stagnant water bodies 

(Kaushik et al. 2013) and might to some degree explain habitat partitioning between the 

different species of mosquitoes in the wild.  

One of the tested compounds, 3-methyl-1-butanol, has been shown to be a synergistic 

attract for host-seeking An. gambiae s.l. and constituted into novel baits used for 

monitoring and controlling the host-seeking vectors (Mukabana et al. 2012). Gravid An. 

gambiae s.s. however preferred to lay eggs in lake water compared to water treated with 

this chemical. Notably, it had been suggested to be an oviposition attractant for malaria 

vectors after it was detected in the headspace of bacterial isolates from field collected 

water samples shown to be colonized by An. gambiae s.l. (Sumba et al. 2004a; Lindh et 

al. 2008).  

Two compounds, 4-methylphenol and phenol only affected egg-laying at the highest 

concentrations tested. At this high concentrations these compounds likely cause 

physical irritation to the advancing gravid adult as opposed to providing an olfactory 

signal for avoidance. The commonly found compound 4-methylphenol has been 

suggested to attract egg-laying An. gambiae s.s. at low doses (Walker 2011; Himeidan 

et al. 2013). All doses evaluated here however did not attract more egg-laying than did 

lake water alone. Results from the volatile analyses showed that this compound was one 

of the most abundant in the hay infusion. It is therefore possible that it exists in the 

infusions in sufficiently high amounts to elicit an irritation or repellence: The hay 

infusion might have contained enough 4-methylphenol to inhibit egg-laying by An. 

gambiae s.s..  
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This study also rekindles the question: What is the role of bacteria and other microbes 

in the oviposition substrate choices of An. gambiae s.l.? Whilst most agree that 

Anopheles gambiae s.s. are sensitive to bacteria derived odours (Sumba et al. 2004a; 

Huang et al. 2006a; Lindh et al. 2008), the exact role of these volatiles remain 

unknown. There is contradicting information on the perceived role of these; a few 

studies appeared to have provided some evidence that some microbes and their volatiles 

could attract gravid An. gambiae s.s. to oviposition sites (Sumba et al. 2004a; Sumba et 

al. 2008) while others only record a repellent effect (Huang et al. 2006a). All the 

compounds identified and evaluated in this study are associated with microbial activity 

and metabolism. Some of these have been previously identified from bacteria (Lindh et 

al. 2008). This study indirectly adds evidence that An. gambiae s.s. avoids substrates 

rich in bacteria produced metabolites and volatiles. If there are any bacteria derived 

volatiles that increase oviposition responses remains elusive and warrant further 

investigation. 

This study also highlighted three novel chemical constituents of Bermuda grass hay 

infusions: 3-methyl-1butanol, 2-phenylethanol, phenylmethanol and 4-heptan-1-ol. This 

is probably due to the use of the porous adsorbent polymer Tenax  TA that is 

particularly effective for collecting volatiles over samples with high moisture content 

and the highly sensitive thermal desorption alternative to the common liquid desorption. 

However, our approach failed to detect nonanal, a compound which based on the 

bioassay results is important for oviposition choices in An. gambiae s.s.. While this 

could stem from non-standardised infusions profiled in various studies, it likely 

confirms that different methods for volatile sampling and analyses lead to different 

number and quantity of volatiles detected (Agelopoulos & Pickett 1998). One method is 

not sufficient for exhaustively profiling the headspace of organic samples; multiple 

approaches provide a better chance of discovering behaviourally active compounds. 

6.6.Conclusion 
Anopheles gambiae sensu stricto avoid laying eggs in organic matter rich hay infusions. 

This unfavourable oviposition response in probably mediated by bacterial volatiles 

including 3-methylindole, indole, nonanal and 3-methyl-1-butanol, compounds that 

have been previously shown to be highly attractive to a number of culicine disease 

vectors. This study also highlighted the need for behavioural assays. It demonstrated 

that electrophysiological activity alone cannot be used to confirm semiochemicals. With 
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behavioural bioassays it is was shown that many compounds suggested to be 

oviposition attractants based on electrophysiology repelled mosquitoes or failed to elicit 

behavioural activity.  
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7.1. Abstract 
Background: New strategies are needed to manage malaria vector populations that 

resist insecticides and bite outdoors. This study describes a breakthrough in developing 

‘attract and kill’ strategies targeting gravid females by identifying and evaluating an 

oviposition attractant for Anopheles gambiae s.l.. 

Methods: Previously, the authors found that gravid An. gambiae s.s. females were two 

times more likely to lay eggs in lake water infused for six days with soil from a natural 

oviposition site in western Kenya compared to lake water alone or to the same but 

autoclaved infusion. Here, the volatile chemicals released from these substrates were 

analysed with a gas-chromatograph coupled to a mass-spectrometer (GC-MS). 

Furthermore, the behavioural responses of gravid females to one of the compounds 

identified were evaluated in dual choice egg-count bioassays, in dual-choice semi-field 

experiments with odour-baited traps and in field bioassays. 

Results: One of the soil infusion volatiles was readily identified as the sesquiterpene 

alcohol cedrol. Its widespread presence in natural aquatic habitats in the study area was 

confirmed by analysing the chemical headspace of 116 water samples collected from 

different aquatic sites in the field and was therefore selected for evaluation in 

oviposition bioassays. Twice as many gravid females were attracted to cedrol-treated 

water than to water alone in two choice cage bioassays (odds ratio (OR) 1.84; 95% 

confidence interval (CI) 1.16-2.91) and in experiments conducted in large-screened 

cages with free-flying mosquitoes (OR 1.92; 95% CI 1.63-2.27). When tested in the 

field, wild malaria vector females were three times more likely to be collected in the 

traps baited with cedrol than in the traps containing water alone (OR 3.3; 95% CI 1.4-

7.9).  

Conclusion: Cedrol is the first compound confirmed as an oviposition attractant for 

gravid An. gambiae s.l.. This finding paves the way for developing new ‘attract and kill 

strategies’ for malaria vector control.  
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7.2. Background  
Mosquitoes of the Anopheles gambiae species complex (An. gambiae sensu lato (s.l.)) 

including An. gambiae sensu stricto (s.s.) and Anopheles arabiensis are among the most 

efficient vectors of malaria on the planet and are responsible for most deaths from this 

disease in sub-Saharan Africa (WHO 2013). The most effective way to prevent malaria 

to date is vector control. The interventions used to reduce vector numbers primarily 

target host-seeking mosquitoes indoors (Lengeler 2004; Pluess et al. 2010). While these 

interventions are effective, increasing evidence suggests that malaria elimination is not 

achievable by these methods alone since residual malaria transmission is maintained by 

vectors that feed and rest outdoors or feed on animal hosts (Killeen 2014). The 

development of an efficient attract-and-kill strategy for oviposition site-seeking females 

could be one of the novel vector control tools that is urgently called for (Ferguson et al. 

2010; Govella & Ferguson 2012).  

To date, there has been relatively little research investigating how An. gambiae s.l. 

females find and choose oviposition sites. It is known that water vapour helps to guide 

them (Huang et al. 2005; Okal et al. 2013), however, in nature many aquatic sites 

remain uncolonized suggesting that some are more attractive to gravid females than 

others (Fillinger et al. 2009b; Ndenga et al. 2011; Gouagna et al. 2012). Recently, the 

authors found that mosquitoes were two times more likely to lay eggs in lake water 

infused for six days with soil from a natural oviposition site in western Kenya compared 

to lake water alone in two-choice egg-count cage bioassays. This preference was lost 

when the infusion was autoclaved (Herrera-Varela et al. 2014) suggesting that volatile 

chemicals, rather than visual cues attracted the mosquitoes. Although a number of 

chemicals have previously been proposed as oviposition semiochemicals for An. 

gambiae s.s. (Blackwell & Johnson 2000; Lindh et al. 2008; Rinker et al. 2013), none 

of these have been shown to attract gravid females over a larger distance (more than a 

few cm) in laboratory, semi-field or field settings.  

Volatiles released from autoclaved and unmodified soil infusions, and the lake water 

used as control in the study by Herrera-Varela and others (2014) were analysed. One of 

the compounds was selected for evaluation in: i) two choice egg-count cage bioassays to 

test for preferential egg-laying; ii) large semi-field systems with free-flying females to 

test for attraction over larger distances; and, iii) under natural field conditions. Through 
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these experiments the first confirmed oviposition attractant for gravid An. gambiae s.l is 

described. 

 

7.3. Methods 

7.3.1. Volatile collections from soil infusions 
All glassware used was first washed with an odourless detergent (Teepol, general 

purpose detergent, Teepol Industries, Nairobi, Kenya) rinsed in water and acetone and 

then placed in an oven at 200°C for at least two hours before use. Volatiles released 

from lake water, autoclaved and unmodified six-day old soil infusions were collected in 

parallel with behavioural cage bioassays previously published (Herrera-Varela et al. 

2014). All the unmodified infusions elicited higher oviposition responses than the lake 

water or the autoclaved infusion in these bioassays (Herrera-Varela et al. 2014). 

Infusions were prepared by mixing 15 L of lake water with 2 kg of soil sourced from a 

natural Anopheles breeding site, located within the compound of the International 

Centre of Insect Physiology and Ecology-Thomas Odhiambo Campus (icipe-TOC) at 

Mbita, western Kenya (0°26’06.19” South; 34°12’53.12” East; altitude 1,149 m). The 

soil was collected and sun-dried for one day prior to preparation of the infusion. On the 

day of the experiment the infusions were sieved through clean pieces of cotton cloth to 

remove large debris from the soil. One half of the infusion was autoclaved at 120°C for 

20 minutes and left to cool to ambient temperatures. Volatiles were collected on Tenax 

traps made from GERSTEL-Twister Desorption glass liners (GERSTEL, Muelheim an 

der Ruhr, Germany), glass wool (Supelco, Bellefonte, PA, USA) and 25 mg of Tenax® 

TA polymer (60-80 mesh, Supelco, Bellefonte, PA, USA). The traps were washed with 

3 ml of methyl-tert butyl ether (MTBE, Sigma-Aldrich, Steinheim, Germany) the 

openings covered with polytetrafluorethylene (PTFE) tape and kept in an oven at 50°C 

for at least two hours before use. Dynamic headspace collections were performed from 

300-ml aliquots of the three sample types in 500-ml conical borosilicate glass 

Erlenmeyer flasks with 24/29 sockets (Quickfit® glassware). Forty-five grams of 

sodium chloride (NaCl, ≥99.8%, Sigma -Aldrich, Steinheim, Germany) were dissolved 

in all aqueous samples before volatile collections to improve the release of volatile 

chemicals (Morrison 1944; Mozuraitis et al. 2010). E-flasks were fitted with gas wash 

bottle heads and charcoal-filtered air was pumped at 100 ml/minute through the inlet 

and drawn out at the same speed through the Tenax trap over 20 hours after which the 

traps were stored at -70°C. Empty bottles sampled the same way served as control for 
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background compounds. Volatiles were collected in parallel from empty bottles, lake 

water and duplicates of soil infusions (autoclaved and non-autoclaved). This was 

repeated over seven rounds. 

 

7.3.2. Analysis of soil infusion volatiles 

The gas-chromatograph-mass spectrometer (GC-MS) system consisted of a 7890A GC 

(Agilent Technologies, Santa Clara, CA, USA) fitted with a 30-m long HP-5MS column 

(Agilent Technologies) with an inner diameter of 0.25 mm and 0.25 µm film thickness 

coupled to a 5975C MS (Agilent Technologies) with electronic ionization set at 70 eV, 

the ion source at 230°C and the quadrupole at 150°C. Tenax traps were thermally 

desorbed in a GERSTEL thermal desorption unit (TDU, GERSTEL, Muelheim an der 

Ruhr, Germany) initially held at 20°C and then increased at 120°C/minute to 250°C, the 

end temperature was held for five minutes. The volatile chemicals were transferred in 

splitless mode to a cooled injection system (CIS) injector fitted with a Tenax liner 

(GERSTEL). The CIS injector was held at 10°C during the TDU programme and was 

then heated at a rate of 12°C/second to 260°C during which the volatiles were 

transferred to the column in a splitless mode. Helium was used as carrier gas at a 

pressure of 34 psi. The temperature of the GC oven was held at 40°C for one minute 

and then increased by 4°C/minute to 260°C and kept there for three minutes.  

Heptyl acetate (35 ng, SAFC, Sigma-Aldrich, Steinheim, Germany) in Methyl tert-butyl 

ether (MTBE) was injected as external standard with each sample. A hydrocarbon 

standard with the C8-C20 compounds (10 ng of each in cyclohexane) was run and used 

to calculate Kovats retention indices (RI). GC-MS data from the lake water and soil 

infusion samples were compared to those of the empty bottle controls for each round. 

All peaks that were present in the samples (both duplicates for the soil samples) and had 

a different retention time and/or mass spectra compared to the empty bottle control were 

manually integrated. Volatiles with a peak-area at least twice as big in the sample 

compared to the control were also included. The peak-area of the control was subtracted 

from the peak-area of the sample when a volatile was present in both chromatograms. 

The area of each integrated peak was normalized against the area of the external 

standard heptyl acetate injected with each sample and Kovats retention indices (RI) 

calculated (Appendix B). Peaks with similar RI and mass spectra where given the same 
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compound identification number (ID). Mass spectral data were compared using to the 

electronic mass spectral library, NIST 2008 for a tentative identification.  

 

7.3.3. Identification of cedrol in the soil infusion samples with authentic 

standard 
The identity of ID 276 was confirmed using an authentic standard: (+)-cedrol, ≥99.0% 

sum of enantiomers, GC, optical activity αD
20 +10.5 ±1º (Sigma-Aldrich, Steinheim, 

Germany). The compound was diluted in MTBE to 0.8 mg/ml and 1 µl was injected in a 

CIS-injector, set to a splitless mode, held at 40°C for 0.5 minutes and then heated at a 

rate of 12°C/second to 260°C. All other GC-MS parameters were as for the soil infusion 

samples above.   

 

7.3.4. Standard curve for cedrol 
Eight different amounts (0.008, 0.016, 0.032, 0.08, 0.1, 0.2, 0.4, 0.8 µg) of cedrol 

≥99.0% (sum of enantiomers, GC, Sigma-Aldrich, Steinheim, Germany) dissolved in 

MTBE were injected in preconditioned Tenax traps in the TDU unit on the GC-MS 

system (described above). All settings and temperature programmes were as described 

above for the soil infusion samples. The area of the peaks was utilised to create a 

standard curve, which was used to calculate the amount of cedrol collected in the soil 

infusion samples.  

 

7.3.5. Screening of volatile collection samples from field sites 
Water samples were collected from 116 natural water bodies (puddles, pools, ponds, 

drains, swamps, and pits) on Rusinga Island, western Kenya (0°24’33.08” South; 

34°10’14.84” East; altitude 1,377 m), during the long rainy season in 2012. Water 

samples were filtered into 250-ml wide-neck polypropylene bottles (Thermo Scientific, 

UK) through a clean piece of cotton cloth to remove large debris and transported in a 

cool box to the laboratory. The samples were transferred into 500-ml E-flasks. Volatiles 

in the headspace above the water samples were collected on polydimethylsiloxane/ 

divinylbenzene (PDMS/DVB) solid-phase microextraction (SPME) fibres (65 µm 

Stable Flex™, Supelco, Bellefonte, PA, USA) for 20 hours. A bottle containing distilled 

water, stored, transported and sampled the same way as the field samples, served as 

control for background compounds. SPME fibres were analysed immediately after 
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volatile collection on a GC-MS system with the same instruments, GC-column and 

settings as described above. The GC injector was kept at 250°C in a splitless mode; 

helium with a flow of 1.2 ml/minute was used as carrier gas. The oven temperature 

programme started at 40°C for three minutes followed by an increase of 5°C per minute 

to 260°C which was held for three minutes.  

The GC-MS files were screened for the main ions of the four compounds closely 

associated with the unmodified soil infusion samples in the principal component 

analysis (PCA) (compound IDs 51, 263, 276 (cedrol) and 286). Only cedrol was found. 

The amount of cedrol in the field samples was often close to the detection limit of the 

volatile collection method. Hence, all samples with a peak containing two of the main 

mass spectra ions of cedrol (95 and the compound specific 150) at the retention time 

that matched cedrol were scored as positive for the compound.  

 

7.3.6. Mosquito preparation 
Laboratory and semi-field experiments were carried out with insectary-reared An. 

gambiae s.s. (Mbita strain) supplied by the mosquito insectaries at icipe-TOC, Mbita, 

and reared following standard operating procedures. Gravid mosquitoes were prepared 

by selecting 300 female and 300 male mosquitoes, two to three days old, from their 

rearing cages at 12.00 hours and keeping them in 30x30x30-cm netting cages at 25-

28°C and 68-75% relative humidity. To avoid mosquito desiccation, folded cotton 

towels, saturated with tap water were placed over the cages. Mosquitoes were starved of 

sugar for seven hours before blood-feeding and allowed to feed on a human arm for 15 

minutes at 19.00 hours. Afterwards unfed female mosquitoes were removed from the 

cages. Mosquitoes were then provided with 6% glucose solution ad libitum. This 

procedure was repeated the following day. Fed female mosquitoes were kept together 

with males for two days after the second blood-meal and used on the third day for 

experiments (i.e., four to five days after first blood-meal). At 16.30 on the day of an 

experiment visually presumed gravid females (enlarged, pale white abdomen) were 

selected from the holding cage (Herrera-Varela et al. 2014).  
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7.3.7. Experimental procedures 

7.3.7.1. Preparation of cedrol solutions for bioassays and field experiments  

Stock solutions of 10,000 ppm cedrol in ethanol were prepared by adding 150 mg of 

(+)-cedrol (≥99.0%, sum of enantiomers, Sigma-Aldrich) to 15 ml of absolute ethanol 

(puriss. pa, absolute, ≥99.8% (GC), Sigma-Aldrich). Dilutions were made by adding the 

appropriate amount of stock solution to lake water. For example, to make a 5-ppm 

solution of cedrol in water, 3.5 mL of the stock solution was added to 7 L of lake water; 

for each round 2.5 L of this was used for cage bioassays and 4.5 L for semi-field 

experiments with free-flying mosquitoes. The same formulation procedures were used 

to create 5-ppm cedrol preparations for all traps in the field.  

 

7.3.7.2.  Dual-choice cage bioassays to study substrate preferences 

Experiments were done in previously described (Herrera-Varela et al. 2014) make-shift 

sheds at icipe-TOC (Figure 7.1A). All experiments were carried out at ambient 

conditions of temperature, humidity (mean daily temperature 27 ± 5°C, relative 

humidity 55 ± 10%) and light. Each cage (30x30x30 cm) had two glass cups (Pyrex®, 

100 ml, 70 mm diameter) covered with a metal ring and filled with 100 ml of either the 

control or test water. The control water was lake water pumped from Lake Victoria, 

stored in a settlement tank and drawn from a tap. The test water was the same water 

treated with the respective concentration of cedrol. The position of the test cups were 

randomly allocated to one of the four corners of a cage and alternated between adjacent 

cages to control for possible position effect. One control cup was added in each cage 

diagonal to the test cup to complete the two choice set-up. Five treatments were tested 

in parallel: 1) two untreated cups of lake water in a cage which served as the reference 

group; 2) lake water (control) versus lake water treated with 2.5 parts per million (ppm) 

cedrol (test); 3) control versus 5 ppm test; 4) control versus 10 ppm test; and, 5) control 

versus 20 ppm test. Cage experiments were implemented over 15 rounds with fresh 

cedrol stock solution and different batches of mosquitoes for every round. Fifteen to 25 

replicate cages per treatment were set up per round. Cages were set at a minimum 

distance of 30 cm. A single gravid female was introduced per cage at 18:00. The next 

morning between 08.00 and 09.00 the absence or presence, and the number of eggs was 
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recorded for the control and test cup in each cage. Non-responders (mosquitoes that did 

not lay eggs) were removed from the analysis. 

 

7.3.7.3. Semi-field experiments with free-flying gravid mosquitoes to study attraction 

and odour discrimination 

Experiments designed to evaluate attraction (defined as the oriented movement of an 

insect to the source of a chemical cue from a distance of several metres (Dethier et al. 

1960)) of free-flying gravid female An. gambiae s.s. were done in a screened semi-field 

structure (10.8 m long × 6.7 m wide × 2.4 m high) at icipe-TOC, using modified BG-

Sentinel mosquito traps (Biogents AG, Regensburg, Germany). The BG-Sentinel 

mosquito traps were sunk into the sand and a plastic container inserted to hold 4.5 L of 

aqueous solutions (Figure 7.1B). Two traps were set 1.5 m away from the shorter wall 

of the semi-field system so that they were 4.5 m apart and equidistant to the mosquito 

release point, 9.5 m away towards the opposite short wall. Treatments were randomly 

allocated to four possible corners in a randomized complete block design. Two-hundred 

gravid mosquitoes were released per round over 12 rounds. Mosquitoes were introduced 

at 18:00, about five minutes after the BG-Sentinel traps were started. Gravid mosquitoes 

that oriented towards either trap were sucked into a catch bag in the trap.  

The peak oviposition time of the caged An. gambiae s.s. is between 19:00 and 21:30 

(Okal et al. 2013). To be able to compare the oviposition response within this time 

period to the remainder of the night the catch bags were changed at 21.30 and then 

collected the next day between 08:00 and 09:00. Two treatments were tested: 1) two 

traps with 4.5 L lake water, this served as the reference group; 2) 4.5 L lake water 

(control) versus 4.5 L lake water with 5 ppm cedrol (test). 
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7.3.7.4. Estimation of release rates of cedrol from bioassay cups and BG-Sentinel 

mosquito traps 

Cage bioassays and BG-Sentinel mosquito traps were set up in the same way as 

described for experiments (section 7.3.7.2). Tenax traps prepared and cleaned described 

in section 7.3.1 were used to collect volatiles above the oviposition cups and gravid 

traps. A pump was used to draw air through the Tenax traps at a speed of 100 

ml/minute. Collections were made 3 cm above the water surface of untreated lake water 

and lake water containing 5 or 10 ppm cedrol in the bioassay cups between 17:30 and 

08:30. BG-Sentinel traps were set up in the semi-field system and collections made 5 

cm above the netting covering the trap where the air current leaves the trap. The BG-

Sentinel traps where baited with untreated lake water or lake water containing 5 ppm 

cedrol. Tenax traps were changed hourly for 12 hours. Two rounds of samples in 

duplicates were taken for cage tests and three for semi-field tests. Tenax traps were 

Figure 7.1 Experimental set-up (A) Cage bioassays with individual gravid females under 

ambient conditions in makeshift huts; (B) Modified BG sentinel traps in a semi-field system; 

(C) Field set-up of square of electrocuting nets (up) and OviART gravid trap (down). 
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eluted with 200 µL of MTBE containing 20 ng of β-caryophyllene (>98.5 sum of 

enantiomers. Sigma-Aldrich, Steinheim, Germany) as an internal standard. The samples 

were analysed using the same GC-MS instrumentation, settings and programme as 

described for SPME fibres above. The amount of cedrol in the samples was determined 

by comparing peak areas to that of the internal standard and converted to per minute 

release rates by dividing with the collection time. 

 

7.3.7.5. Field assessment of trapping efficiency of wild mosquitoes with odour-baited 

gravid traps  

Fieldwork was implemented during the end of the long rainy season in June 2014 

approximately 7 km south of icipe-TOC in Kaugege location. Collecting gravid malaria 

vectors has never been done routinely and gravid traps have only been developed 

recently (Harris et al. 2011; Dugassa et al. 2013). Whilst the modified BG-Sentinel 

mosquito traps worked well as gravid traps in the semi-field system (Okal et al. 2015) 

and were therefore an obvious choice to be taken to the field for comparison with the 

semi-field data, they had never been tested under field conditions prior to this work. 

Two other novel gravid traps, a square of electrocuting nets (E-nets) (Dugassa et al. 

2012) and the OviART gravid traps (Dugassa et al. 2013), had previously been 

developed and preliminary field tests had shown that they performed well in the study 

area (S Dugassa, pers comm). Therefore, E-nets and OviART  (Figure 7.1C)gravid traps 

were run in parallel to BG-Sentinel traps in the field to evaluate the effect of cedrol 

treatment and trap type on the collection of gravid mosquitoes. The operating 

procedures for these devices have been published in detail elsewhere (Dugassa et al. 

2012; Dugassa et al. 2013). 

Three study sites in close vicinity to residential houses and within 200 m of the lake 

shores were selected. The sites were separated by between 70 and 500 m. In each site 

four trap locations were chosen 10-20 m apart from each other and 5 m from the nearest 

house. One out of the three sites was randomly selected to receive two squares of E-nets 

and two OviART gravid traps whilst the other two sites received BG-Sentinel traps in 

all four locations. The different trap types were not set simultaneously at the same site 

to avoid a competition between visual and chemical cues. The OviART gravid trap and 

the square of E-nets provide a visual stimulus with their open water surface whilst the 

BG-Sentinel trap relies exclusively on chemical cues released from the trap with its 
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convection currents. However, the trap types were rotated randomly through all three 

sites so that the OviART gravid trap and square of E-nets were tested in all three 

locations. All trapping devices provided artificial oviposition sites filled with lake 

water; the BG-Sentinel trap contained 4.5 L whilst the OviART gravid trap and the 

square of E-nets contained 8 L each. At each study site half of the traps (per type) were 

treated with 5 ppm of cedrol whilst the other half remained untreated. Treatment 

location per site was allocated randomly in such a way that each location had received 

the test treatment twice during the test round (eight days). Cedrol treatment was done 

just before the traps were switched on at 17.00. Mosquitoes were collected from the 

traps in the morning at 06.00. All traps were freshly set up in the afternoon in the same 

position for eight days, then the location of the OviART gravid traps and E-nets were 

relocated randomly to another study site. This was repeated twice to ensure that the 

alternative traps (OviART and E-nets) were in each site once (three rounds of eight 

days). 

In order to have an estimate of the mosquito population density in the area, more 

established host-seeking vector collections were implemented weekly in parallel to the 

gravid collections from 12 households a minimum of 100 m apart from each other and 

within 1 to 2 km from the locations of the gravid traps. Collections were made indoors 

in inhabited houses with CDC light traps (Service 1993) and outdoors with cattle baited 

traps (CBT) (Tirados et al. 2006). The two different collection methods were chosen to 

gain a better estimate of potential malaria vectors with varying feeding and resting 

behaviour. Mosquitoes were morphologically identified to genus level and Anopheles 

mosquitoes to species level (Gillies & De Meillon 1968; Gillies & Coetzee 1987). 

Molecular tools were used to identify members of the sibling species of the An. gambiae 

complex and the Anopheles funestus complex following published procedures (Scott et 

al. 1993; Koekemoer et al. 2002). 

 

7.3.8. Statistical analyses  
GC-MS data were explored using PCA with supplementary variables. Only volatiles 

present in at least four out of the seven rounds for at least one of the sample types were 

included in the analysis. The data was centred and standardized by volatiles prior to 

analysis with Canoco 5 (Ter Braak & Smilauer 2012).  
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Dual choice cage bioassays and semi-field experiments were analysed using generalised 

linear models with a quasibinomial distribution fitted to account for overdispersion in R 

statistical software version 2.13 (R Core Team 2014). The proportion of responses (eggs 

laid or females trapped) received by the test cups in cage bioassays or test traps in the 

semi-field systems of the experiments with two different choices were compared with 

the responses received by the test cups/traps in cages/semi-field systems with two equal 

choices (lake water in both cups/traps). It was hypothesized that gravid females 

presented with identical treatments respond to both cups/traps in an approximately equal 

proportion (p=0.5). The statistical analysis aimed to reveal if the test treatment of 

interest (e.g., increasing concentration of cedrol) received an increased or decreased 

proportion of responses as compared to the lake water only treatment. The experiment 

(two-choice, equal choice) and the round of experiment were included as fixed factors 

to analyse their impact on the outcome. Rounds were not significantly associated with 

the outcome in any of the experiments and therefore removed from the final models.  

Field data were analysed using generalised estimating equations (GEE) in IBM SPSS 

version 20. Prior to the final analysis the data was tested for significant between-group 

variations in trap location and study area. Only study area varied significantly and was 

included in the final analysis as repeated measure with an exchangeable correlation 

matrix. The data fitted a negative binomial distribution. Treatment and trap type were 

included in the model as fixed factors. Interactions were tested but no significant 

associations found. All reported means and their 95% confidence intervals (CIs) were 

estimated as the exponentials of the parameter estimates for models with no intercept 

included.  

 

7.3.9. Ethical considerations 
Ethical approval for this study was obtained from the Kenya Medical Research 

Institute’s Ethical Review Committee (Protocol no. 363 and protocol no.422).  
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7.4.Results 

7.4.1. Identification of putative oviposition semiochemicals 

Volatile chemicals emitted from autoclaved and unmodified soil infusions as well as the 

lake water were sampled in parallel to behavioural assays and analysed by GC-MS 

(Figure 7.2). 

 
Figure 7.2 Example chromatograms from round five of volatile collections. One 

chromatogram of each sample type (unmodified soil infusion, autoclaved soil infusion 

and lake water) and empty bottle control. All compounds included in the multivariate 

analysis are marked by the corresponding ID number. Kovats retention index (RI) and 

mass spectral data for each compound can be found in Appendix A. 
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Exploration of the GC-MS data using PCA indicated similarities in volatile profiles 

within the replicates of the same sample type but different chemical profiles between 

the treatments (Figure 7.3). Four compounds (IDs 51, 263, 276, 283) grouped closely 

with the unmodified soil samples. GC-MS data with volatiles emitted from water 

samples from natural aquatic habitats situated along the shores of Lake Victoria in 

western Kenya were screened for these four compounds. ID 276 was above the 

detection threshold in 62 of the 116 samples whereas none of the other three compounds 

was detected. ID 276 was identified as the sesquiterpene alcohol cedrol by comparison 

of mass spectral data to the NIST08 library and an authentic standard. Based on its 

presence in natural Anopheles oviposition sites and the ease of its identification, cedrol 

was selected for further evaluation. 

 
Figure 7.3 Biplot of the GC-MS data from lake water, unmodified and autoclaved 

soil infusions. The three sample types form distinct groups, mainly separated by the 

second principal component. Four compound IDs (51, 263, 276 and 283) group closely 

with the unmodified soil samples. Data from seven rounds of each sample type were 

centred and standardized by the volatile compounds before being subjected to principal 

component analysis with supplementary variables. The supplementary variables were 

the three sample types indicated with WATER (lake water), AUTO (autoclaved soil 

infusion) and SOIL (unmodified soil infusions). Each sample is indicated with a letter; 
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W, A or S for lake water, autoclaved soil infusion and unmodified soil infusion 

respectively. The number following the letter indicates the round; volatiles were 

collected in parallel from samples with the same number. 

 

Cedrol was present in all the soil infusion samples investigated (n=14 for unmodified 

and autoclaved samples combined) and the amount was three times as high in the 

unmodified soil infusion (mean 15.8 ng, 95% CI 9.36-22.2), which was preferred for 

egg-laying in the previous study, compared to the non-preferred autoclaved infusion 

(mean 5.7 ng, 95% CI 4.6-6.7). In contrast, it was only detected in two out of seven lake 

water samples (mean of those two samples: 4.2 ng, 95% CI 3.8-4.5). 

 

7.4.2. Cedrol attracts laboratory-reared gravid Anopheles gambiae s.s. 

females 

A series of experiments was carried out in the laboratory and semi-field with insectary-

reared An. gambiae s.s. to determine whether gravid females respond to cedrol (Figures 

7.3 and 7.4). The cage bioassays demonstrated a dose-dependent response of gravid 

females with increasing concentrations of cedrol increasing the probability of a female 

laying her eggs in the test solution. Interestingly, the dose-response matched the 

previously observed (Figures 7.4A and 7.4B) results for the soil infusions of increasing 

incubation time when compared to lake water.  
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Figure 7.4 Mean per cent of gravid Anopheles gambiae responding to control and 

test treatments in choice experiments (A) Cage bioassays with soil infusions of 

increasing incubation time and comparison of autoclaved versus unmodified infusion. 

The data from Herrera-Varela and others (Herrera-Varela et al. 2014) have been re-

analysed for this figure to show the per cent of females responding. These data present 

the background for the current study. Headspace collections for identification of volatile 

chemicals were implemented for autoclaved and unmodified six-day old soil infusions 

in parallel to these behavioural assays. (B) Cage bioassays with cedrol-treated lake 

water in increasing concentrations. (C) Semi-field evaluation of response off free-flying 

gravid females to cedrol-baited traps. 

Since these egg-count cage bioassays cannot distinguish between contact stimulants and 

long-range attractants (Isoe et al. 1995b) experiments were implemented in a large (174 

cu m) semi-field system using modified BG-Sentinel traps (Figure 7.1B). These odour-

baited traps enabled the researchers to assess the relative attractiveness of volatiles 

released from a trap, without the influence of visual cues or contact stimulants since the 

mosquitoes are prevented from seeing or accessing the test substrate. The experiments 

confirmed that cedrol was attractive with 69% (95% CI 66-71%) of released females 

collected in the treated trap (Figure 7.4C). The response towards the cedrol-baited trap 

was consistent and high from night-to-night with very little variation. Furthermore, on 
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average 89% (95% CI 84-92%) of released gravid mosquitoes were recollected during 

the choice experiment when a cedrol-baited trap was present. This was in sharp contrast 

(p <0.001) to the experiment where both traps contained only lake water in which only 

34% (95% CI 29-38%) of the released females were recollected.  

The peak oviposition time of the caged An. gambiae used in this study has previously 

been determined to be between 19:00 and 21:30 (Okal et al. 2013). In the semi-field 

experiment 68% (95% CI 57-78%) of the females were collected during this period, 

with 74% (95% CI 70-76%) choosing the cedrol-treated trap over the trap with lake 

water only. However, the response after 21.30 was nearly balanced, with only a slightly 

higher proportion of females collected in the 5 ppm test trap (58%, CI 53-62%).  

Volatile headspace collections from both bioassay systems confirmed that cedrol was 

released from the test substrates but not from the controls. Besides the cedrol peak, no 

consistent difference was observed in the chromatograms from test and control 

treatments hence, no breakdown products of cedrol were detected. Oviposition cups 

treated with 5 ppm cedrol released 8.7 ng/minute (95% CI 5.9-12.7 ng/minute) and 

those treated with 10 ppm released 22.8 ng/minute (95% CI 18.0-29.0 ng/minute) 

during the 12 hours of experiment. The release rate from the BG-Sentinel traps treated 

with 5 ppm cedrol was on average 8.0 ng/minute (95% CI 5.4-12.0 ng/minute). Cedrol 

was released at consistent rates over the 12-hour experimental period with no significant 

difference (p=0.293) between the peak oviposition time (19:00-21:30) and the rest of 

the night. 

 

7.4.3. Cedrol attracts wild malaria vectors 

Under natural field conditions a total of 933 female mosquitoes were collected in 288 

gravid trap nights (12 traps per night for 24 nights); 91% were Culex species. Of the An. 

gambiae species complex, only An. arabiensis were collected in the field sites, 

representing 4% of the total catch. In addition, a small number (1%) of the malaria 

vector An. funestus s.s. were collected. Trap catches also included 2% of the secondary 

malaria vector Anopheles coustani and 2% Aedes species. Traps baited with cedrol were 

3.3 times (95% CIs 1.4-7.9) more likely to trap a female An. arabiensis than traps 

containing lake water only, irrespective of the trap type (Table 7.1, Figure 7.5).  



Cedrol – the first attractant for gravid malaria mosquitoes 
 

174 
 

 

 
Figure 7.5 Estimated mean number of female mosquitoes per trap night (all trap 

types pooled) collected during the field trial Error bars represent 95% confidence 

intervals. 

 

However, the three trap types performed differently under field conditions with more 

An. arabiensis females caught in devices that included visual water cues like the squares 

of electrocuting nets and the OviART gravid trap irrespective of site and location (Table 

7.1). Collections of host-seeking females indoors with CDC light traps and outdoors 

with CBTs at the same time confirmed that the overall population density of vectors in 

the study area was low during the study period. In CDC traps a mean of 0.73 (95% CI 

0.28-1.90) and in CBTs a mean of 2.1 (95% CI 1.1-4.0) females of the An. gambiae 

complex were collected per trap night; 96% of which were An. arabiensis, confirming 

the predominance of this sibling species in the field setting.  
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Table 7.1 Probability of a mosquito female being trapped in field tests 

 
Rate ratio (95% confidence interval) 

 Anopheles 

arabiensis 

Anopheles 

funestus s.s. 

Anopheles 

coustani 

Aedes 

sp. 

Culex 

sp. 

Treatment 

Control 1 1 1 1 1 

Test 3.3 (1.4-7.9) 2.6 (0.97-6.96) 0.5 (0.3-0.8) 0.4 (0.3-0.6) 0.8 (0.7-0.9) 

Trap 

BG 1 1 1 1 1 

OviART 5.2 (0.9-30.9) 6.3 (1.6-25.4) -a -a 1.1 (0.5-2.3) 

E-nets 10.0 (5.6-18.0) 12.4 (2.9-52.5) 12.9 (5.0-32.6) 3.5 (1.3-9.1) 8.7 (5.0-15.1) 

 

Interestingly, the data indicate that An. funestus might show a preference for cedrol-

treated oviposition sites, however due to the small sample size this result is only of 

borderline significance (p=0.057, Table 7.1). On the contrary, An. coustani, Aedes 

species and the abundant Culex species preferred the untreated traps (Table 7.1).   

 

7.5.Discussion 

This study describes the identification of the first oviposition attractant for malaria 

vectors of the An. gambiae species complex. Caged gravid females selected lake water 

treated with cedrol over lake water without cedrol for laying their eggs. Furthermore, 

the odourant attracted colonized free-flying gravid mosquitoes in large semi-field 

structures and increased the trap catches of wild gravid mosquitoes in the field. The 

attractiveness of cedrol was established in comparison to natural water from Lake 

Victoria which constitutes the majority of the natural, highly productive anopheline 

habitats in the study area (Fillinger et al. 2004) and which previously was found “to be 

the most stimulatory water treatment [for An. gambiae] uncovered to date” in egg-count 

cage bioassays (Otienoburu et al. 2007). This comparison is considered more realistic 

than one using distilled water as a comparator, since it is an artificial water source that 

wild mosquitoes are unlikely to encounter. It can though not be excluded that volatile 

compounds released from the lake water contributed to the attractiveness of cedrol. 
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However, preliminary cage bioassays (unpublished) implemented with distilled water 

gave similar results as those with lake water. 

The recently developed systems of analysing oviposition responses in comparison to a 

baseline that provides two equal, untreated choices (Herrera-Varela et al. 2014), and of 

measuring attraction of gravid mosquitoes to oviposition substrates with modified BG-

Sentinel mosquito traps (Okal et al. 2013) allowed a more detailed description of the 

behaviour of gravid Anopheles in response to odourants, since the response of 

individual females could be studied and stochastic effects affecting the distribution 

could be estimated and included in the analyses. It was shown here that cedrol not only 

increased the proportion of gravid females that were caught in the test trap out of the 

total number caught, but it also increased the proportion that responded out of the 

mosquitoes released. Furthermore, the presence of cedrol in the system induced a fast 

response, with two thirds of gravid mosquitoes trapped by 21:30.  

With the ethanol-based cedrol formulation utilized here, cedrol was released in 

consistent rates over the entire 12 hours trapping period each night and therefore does 

not explain the nearly balanced response of gravid females to the traps in the semi-field 

experiment after 21.30. Less than one third of the collected mosquitoes were trapped 

after 21.30. It might be that these specimens were not fully gravid and therefore 

responded to high humidity to locate a resting place rather than to locate an oviposition 

site. For future studies, there may be value to work out better ways to formulate and 

dispense cedrol. The fact that it is a stable compound of relatively low volatility means 

that it should be well suited for development of long-lasting attractive baits. 

The field study was implemented in an area of relatively low vector density as 

confirmed by collections of host-seeking mosquitoes. Considering that only a 

proportion of mosquitoes that host seek obtain sufficient amount of blood and survive 

long enough to become gravid, it was not unexpected that collections in gravid traps 

were an order of magnitude lower than catches in host-seeking traps. Despite low 

densities, it was three times more likely to trap An. arabiensis (the predominant species 

of the An. gambiae species complex in the study area) when the trap was cedrol-baited 

than when it only contained lake water. Previous reports from the study area show that 

the two sibling species An. arabiensis and An. gambiae s.s. share the same aquatic 

habitats (Chen et al. 2008; Ndenga et al. 2011; Minakawa et al. 2012) and therefore it is 
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not surprising that they appear to use the same odourants for orientation and selection of 

oviposition sites. The collections from the gravid traps also suggested that it is worth 

testing the attraction of the malaria vector An. funestus to cedrol since a slight 

preference for cedrol-treated traps was recorded. Finding a semiochemical or blend that 

could attract gravid females of the three most important vectors of human malaria in 

Africa, An. gambiae, An. arabiensis and An. funestus, would represent a tremendous 

breakthrough for the development of novel interventions. The fact that Anopheles were 

caught in an area with very low densities and that cedrol attracted An. arabiensis, a 

vector that is becoming increasingly important in areas where indoor interventions have 

impacted mosquito densities, indicates a promising future for the development of an 

odour-baited surveillance tool (Tirados et al. 2006; Bayoh et al. 2010).  

The results presented here confirm that the modified BG-Sentinel mosquito traps work 

extremely well under semi-field conditions but were less effective in the field. It is 

hypothesized that visual cues interact with olfactory signals (Bernath et al. 2012), 

explaining the better performance of traps with open water surfaces in the study. Further 

understanding of the interaction between visual and chemical cues which may result in 

more effective traps will increase the possibility to efficiently lure vectors into 

oviposition traps when competing with natural oviposition habitats.  

Cedrol-treated lake water, attracted similar proportions of gravid females in the semi-

field experiments as the soil infusions from which it was identified (Herrera-Varela et 

al. 2014). To achieve this, a release rate of cedrol, which was much higher than from the 

natural source, was required. A lower concentration of cedrol might be enough to attract 

gravid malaria vectors if released in combination with other attractants. For instance, 

blends of synergistic attractants have been shown to be essential for effective trapping 

of host-seeking Anopheles mosquitoes (Braks et al. 2001; Okumu et al. 2010b; 

Mukabana et al. 2012). The analysis of the GC-MS data suggests another four putative 

semiochemicals, yet to be identified, that may play a role in the attractiveness of the six-

day old soil infusion to gravid mosquitoes however, in contrast to cedrol none of these 

could be detected in the samples from natural oviposition sites in Kenya. 

Cedrol is a sesquiterpene alcohol best known for its presence in the essential oil of 

conifers, especially in the genera Cupressus and Juniperus. However, it has been found 

in a large variety of plants including Sorghum (Khwatenge 1999), Artemisia (Mercke et 
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al. 1999) and swamp grasses of the genus Cyperus (Olawore et al. 2006), which are all 

common in the study area. Sesquiterpenes are also known metabolites of fungi and to 

some extent bacteria (Agger et al. 2008; Nakano et al. 2011; Kramer & Abraham 2012). 

It was shown here that the amount of cedrol released from a soil infusion was higher 

than from the same infusion that had been autoclaved and previously that the 

oviposition preference increased with increasing incubation time of the infusion 

(Herrera-Varela et al. 2014). This suggests that the release of cedrol is associated with 

microbial activity, possibly by metabolism of plant products. Finding the source of 

cedrol might further elucidate why An. gambiae s.s. and An. arabiensis prefer to lay 

eggs in habitats containing this compound and might help predict habitat selection and 

guide malaria vector control interventions. 

 

7.6.Conclusions 

This study provides evidence that gravid females of the An. gambiae complex can use 

attractive chemical cues when orienting towards potential oviposition sites. The findings 

demonstrate that these chemical cues can be exploited for trapping female malaria 

vectors. The discovery of an oviposition attractant provides prospects for novel 

ecological studies and progress in developing ‘attract and kill’ strategies against gravid 

malaria vectors. This could provide a novel tool in targeting residual malaria 

transmission in areas where current gold-standard indoor vector control interventions 

are applied at full coverage but are not enough to eliminate malaria (Govella & 

Ferguson 2012; Killeen 2014). 
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Chapter 8. Synthesis 
The tremendous success in controlling malaria transmission in the last decade should 

restore confidence in vector control as an effective frontline strategy for curbing the 

spread of malaria and other mosquito-borne diseases. Peridomestic malaria vector 

control using LLINs and IRS has lowered the burden of malaria and renewed hopes for 

eliminating the disease from sub-Saharan Africa (WHO 2013). However transmission 

of the disease is sustained by vectors that defy interventions by biting and/or resting 

outdoor or by surviving insecticides. These challenges make malaria elimination elusive 

in the region and instigate a growing need for supplementary vector monitoring and 

control methods (WHO 2013). To break the transmission cycle of the diseases strategies 

that take into account the ecology beyond blood-feeding processes are more desirable 

(Ferguson et al. 2010). 

All major malaria vectors in Africa (An. gambiae s.l. and An. funestus s.l.) lay eggs in 

outdoor water bodies away from their human hosts dwelling. If identified, volatile 

organic chemicals that guide oviposition substrate location and discrimination in these 

species could be manipulated to attract and trap or kill gravid females foraging for 

oviposition substrates or combined with insecticides to kill their offspring. This study 

paved way for the development of such approaches by (1) originating and calibrating 

effective tools for analysing putative semiochemicals for oviposition in An. gambiae 

s.s., (2) identifying and characterizing the role of multiple volatile organic chemicals for 

oviposition and (3) providing proof that odour baited traps can be used for targeting 

gravid An. gambiae s.l. and An. funestus s.l..  

 

8.1.Key findings 

8.1.1. Improved responsiveness of gravid An. gambiae s.s. with 

standardized production of mosquitoes and re-alignment of oviposition 

bioassays with the peak oviposition period. 

The study recorded the highest responsiveness and egg-rates of gravid An. gambiae s.s. 

in oviposition studies with the species. More than 80% of mosquitoes either laid eggs or 

flew to oviposition substrates in different experiments. This improvement was the 
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consequence of systematic standardization of procedures for preparing mosquitoes and 

careful considerations to re-align the periods for implementing bioassay with the natural 

peak oviposition period of this species. Firstly, it was shown that conditioning mosquito 

preparation cages containing young, 2-3 day old, blood-fed females with conspecific 

age-mate male mosquitoes, can enhance post-blood meal mating and improve the 

average proportion of mosquitoes that laid eggs to a consistent eighty percent. 

Secondly, preliminary evaluations demonstrated that secondary host-sources of blood 

meal such as rabbits could hamper the responsiveness of mosquitoes. The majority of 

mosquitoes blood-fed on rabbits failed to lay eggs during experiments. Consequently, 

human host-source of blood meals were recommended for the production of An. 

gambiae s.s. mosquitoes aimed for oviposition studies. Thirdly, scheduling oviposition 

experiments 72 hours after blood meal at dusk (which coincided with the peak 

oviposition time for the Mbita strain of mosquitoes) ensured prompt oviposition 

constrained to the early evening. This fine-tuning increasing the odds of mosquitoes 

remaining alive throughout the oviposition studies whilst also indicating an ideal time-

frame for evaluating unstable substrates that degrade with time. 

However, these guidelines did not improve the responsiveness of the An. arabiensis (a 

sympatric species of the An. gambiae s.s. complex) highlighting the need for customised 

production procedures with every species before oviposition studies. This study 

indicated that this is a secondary impact of low insemination rates especially in 

relatively smaller female mosquitoes. 

 

8.1.2. Unique egg-laying characteristics of the malaria Anopheles gambiae 

s.s. and Anopheles arabiensis reduces the effectiveness of egg-count 

bioassays. 

Unique egg-laying characteristics of An. gambiae s.s. and An. arabiensis highlighted the 

detrimental effects of these on egg-count choice tests. Studying the egg-laying in a large 

number of mosquitoes individually allowed to measure and describe a number of 

important characteristics. Firstly, colonised An. arabiensis were shown to be little 

responsive to oviposition substrates. An average proportion of just 25% of mosquitoes 

laid eggs in spite of careful preparation guidelines. The markedly low egg-rate of 
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colonised An. arabiensis had been reported in relatively old studies (Marchand 1985) 

but its potential consequence ignored by recent oviposition studies with this species. 

This study warns that substrate preferences reported in such oviposition studies might 

be based on the response of only a few mosquitoes that laid eggs; the conclusions might 

be misleading. Secondly, An. gambiae s.s. females were shown to exhibit unique egg-

laying patterns that necessitated the development of different approaches to 

implementing choice egg-count bioassays. Egg numbers recorded for individual 

mosquitoes were overdispersed. In addition to this, the mean numbers of eggs laid by 

individual female mosquitoes were found to be highly variable between different 

replicates of experiments leading to a highly heterogeneous variance 

(heteroscedasticity). These characteristics violate primary assumptions of parametric 

tests widely used for analysing eggs numbers including t-tests and ANOVA. Recent 

statistical advances show that heteroscedasticity will also weaken non-parametric tests. 

Importantly, one-third of mosquitoes laid eggs unequally in identical substrates when 

presented in a two-choice test (skip-oviposited) giving an illusion of choice. Skip-

oviposition makes it difficult to interpret unbalanced egg numbers in two cups in a 

choice test; showing oviposition substrate preferences especially with the low numbers 

(sample size) of mosquitoes. Similar challenges had formerly been recorded for Ae. 

aegypti another species known to lay single eggs and skip-oviposit, and important 

considerations for bioassaying mosquitoes that lay individual eggs suggested (Corbet & 

Chadee 1993). Their suggestions were almost universally ignored.  

 

8.1.3. Improved and new tools and approaches for detecting egg-laying 

substrate preferences and measuring the attraction of gravid Anopheles 

gambiae s.s. to putative oviposition cues. 

Effective existing or new tools and methods for behaviourally evaluating the 

chemoecology of oviposition with An. gambiae s.s. were evaluated in this study. To 

investigate relative preferences for egg-laying substrates a new approach for using egg-

count bioassays was developed. Two-choice egg count bioassays were shown to be best 

done in two tier designs that (i) implement a parallel series of experiments with 

mosquitoes given a choice of two identical substrate choices and (ii) uses a single 

mosquito in each test cage rather than groups of mosquitoes. This approach with 
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sufficient replication, lowered the risk of detecting pseudo-preferences and drawing 

wrong conclusion oviposition substrate preferences. Sample size estimations and power 

tests for these bioassays were done. This marks the first reporting on these in 

oviposition studies with An. gambiae s.l.. It was demonstrated that with 165 individual 

in each treatment arm: 165 cages each with one mosquito given choice between a test 

and a control substrate and 165 similar cages where the mosquito has a choice between 

two identical control solutions. This enabled the description of differences in substrate 

preferences of as little as 15% with sufficient statistical power (80%) and significance 

(95%). Importantly, the appropriateness of (1) using generalised linear models with 

untransformed data instead of parametric methods and (2) analysing egg proportions 

instead of numbers were both demonstrated. A wide range of substrates were analysed 

using these. 

In the laboratory, a WHO tube bioassay method was developed for investigating the 

response of gravid mosquitoes to humidity in the short range. Consisting only of two 

small cages, silica gel and two, fifteen centimetre pipes, this simple bioassay provided a 

good model of a robust but simple bioassay for individual mosquitoes. A larger air-flow 

wind tunnel built from polymethyl methacrylate (Perspex) sheets provided a dependable 

tool for investigating the ovipositional response flight of An. gambiae s.s. to putative 

cues in the short range. These two tools used together effectively described the role of 

water vapour in the oviposition choices of An. gambiae s.s.. 

Finally, with little modification the BG-Sentinel mosquito traps were turned into 

effective tools for investigating the oriented flight of gravid mosquitoes to water vapour 

and volatile chemical substrates in the semifield and under field conditions. This tool 

provides a way measure pre-oviposition flight over a distance of several meters. 

 

8.1.4. Volatile organic chemicals interact with water vapour to attract 

gravid Anopheles gambiae s.s. to oviposition substrates. Such chemicals 

can be identified and used in the field to attract and trap gravid African 

malaria mosquitoes 

The role of water vapour in the pre-oviposition behaviour of gravid An. gambiae s.s. 

was described. Using standardized laboratory bioassays water vapour was shown to be a 
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major pre-oviposition cue that mosquitoes use to locate potential oviposition substrates. 

It attracted gravid An. gambiae s.s. in still and moving air in the shorter range and under 

semifield conditions when water was provided in BG sentinel traps However, the 

response to water vapour was found to be non-specific; the cue is little indicative of the 

quality of the oviposition site and probably provides the mosquito with little 

information with which to select suitable breeding sites, this was nicely demonstrated 

when presented in modified BG sentinel traps in two equal choice tests in the semi-

field. When only water was provided less than half the released mosquitoes responded 

slowly to the cue and were trapped. This was in sharp contrast to the experiments with 

an attractive organic chemical. Volatile organic chemicals were shown to interact with 

water vapour to mediate oviposition substrate choices of An. gambiae s.s. that either led 

to the selection/preference of an oviposition substrate or the avoidance of it.  

Anopheles gambiae s.s., unlike many culicine species (Allan & Kline 1995; Mboera et 

al. 2000a), consistently avoided laying eggs in ≥25% hay infusions and laid eggs in lake 

water instead. Many of the chemicals identified from the hay infusion elicited a similar 

negative response when presented singly in water at low doses. Many of these 

chemicals found in infusions such as 3-methylindole and p-cresol are known attractants 

for Culex species (Bentley et al. 1979). On the contrary, an infusion made from soil 

collected from a vibrant larval habitat of An. gambiae s.l.  attracted gravid females to 

modified BG sentinel traps from a distance under semifield conditions. The first 

reported oviposition attractant for An. gambiae s.s. was identified from this soil 

infusion, the sesquiterpene alcohol cedrol. When added to water, cedrol treated 

substrates consistently attracted more eggs compared to lake water in egg count 

bioassays and attracted twice as many gravid females to BG sentinel traps in the 

semifield. The addition of the chemical also caused a stronger overall response of the 

majority of gravid females locating the substrates before 21:30 h. In addition to this, it 

attracted An. arabiensis under field conditions and led to an increased but not 

significantly higher number of An. funestus which warrants further testing with the latter 

species. The compound was found to be widespread in natural aquatic habitats in the 

study area. This study provided proof of principle that it is possible to attract and trap 

gravid African malaria vectors in the field using semiochemicals for oviposition. This 

opens up ways for the development of new strategies targeting gravid mosquitoes for 

monitoring and controlling malaria. 
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This study screened a large number of compounds that have previously been suggested 

to attract gravid An. gambiae s.s.. Many of these suggestions are based on evidence 

from electrophysiological studies that this species could detect these compounds. 

However, this study demonstrated that not all compounds that elicit electrophysiological 

activity are attractive to mosquitoes or important for oviposition site selection. Here, ten 

compounds many of which were suggested oviposition attractants only repelled gravid 

mosquitoes. 

8.2. Limitations of the study  

8.2.1. The role of semiochemicals and water vapour in the oviposition 

substrate choices of Anopheles gambiae s.s. in the wild is still unknown 

While this study clearly demonstrated that water vapour and volatile organic chemicals 

contribute to oviposition substrate choices of An. gambiae s.s. it did not evaluate this in 

their natural oviposition environment. The entire study, except for the small scale field 

test at the end was done in standardized laboratory and semi-field systems where the 

potential role of additional cues such as vision was limited. Furthermore, the 

semiochemicals that were described were derived from studies of arbitrarily formulated 

infusions (hay and soil) and not natural breeding sites. Therefore, until large scale field 

ecological studies are done to confirm the presence and role of these compounds in the 

natural ecosystem, these should by no means be regarded as the determinants of 

oviposition site selection with the species. 

8.2.2. Geographically limited study and findings 

This is the first study to confirm the existence of olfactory oviposition attractants for An. 

gambiae s.s. and report an empirically tested semiochemical attractant. Cedrol was 

shown to attract gravid mosquitoes in the laboratory, semi-field and field. Its occurrence 

was discovered and demonstrated to be wide within the study area. Nonetheless, the 

whole study was done in one geographical area and it is possible that the compound 

may only be a regional specific cue as has been suggested for the species (Ogbunugafor 

& Sumba 2008). The compound should be evaluated in other regions with different 

local mosquito strains. There is also evidence that mosquitoes like many insects exhibit 

spatial memory and could improve their ability to find resources, oviposition sites and 

mating sites by learning the location of these (McCall et al. 2002). While the olfactory 
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memory (Kaur et al. 2003) in gravid An. gambiae s.s. is yet to be demonstrated and 

remains unlikely (Herrera-Varela et al. 2014), this study cannot rule out or confirmed its 

contribution to the attractiveness of cedrol. 

8.2.3. Unknown sources of semiochemical evaluated in the study 

The sources of the compounds described and tested in this study remain unknown. 

While the hay infusion volatiles tested have been clearly attributed to bacteria in various 

studies (Allan et al. 2005; Lindh et al. 2008; Allan et al. 2010), the exact metabolic 

pathway that leads to their formation and the bacteria species that instigate these 

processes in the substrates tested were not investigated. The cedrol detected in 

oviposition sites across the study area could have been from a wide range or sources 

including microbes or plants (Khwatenge 1999; Mercke et al. 1999; Olawore et al. 

2006; Agger et al. 2008; Nakano et al. 2011; Kramer & Abraham 2012). 

 

8.3. Future work 

A number of new questions arose from the here presented studies that are worth 

pursuing in the future. Providing answers to the questions might be invaluable to the 

development of attract and kill strategies for malaria mosquitoes across Africa. 

8.3.1. Identification of unknown putative oviposition attractants 

In the presented experiments a release rate of cedrol which was much higher than from 

the natural source was required to observe a preferential oviposition response. This 

might be because a single compound was used rather than a blend of odourants which 

would present the more natural situation for a mosquito. This has been extensively 

shown for host-seeking mosquitoes, where blends are required for efficient attraction 

(Braks et al. 2001; Okumu et al. 2010b; Mukabana et al. 2012). A lower concentration 

of cedrol might be enough to attract gravid malaria vectors if released in combination 

with other attractants. This study strongly associated at least six compounds with the 

oviposition attraction of gravid An. gambiae s.s.. GC-MS evaluation and PCA analyses 

linked these to the soil infusion that strongly attracted the species. However, only one of 

these compounds was readily identified as cedrol. This is because the remaining 

compounds were only detectable in trace amounts insufficient for further analyses 
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through advanced techniques such as nuclear magnetic resonance. Even though these 

other unknown compounds were not as widespread in the study area as cedrol, evidence 

of their contribution to the oviposition substrates preferences should be investigated 

further. Their identification might lead to the formation of blends of semiochemicals 

that are stronger attractants of An. gambiae s.s.. In addition more natural habitat sources 

need to be investigated to identify a range of attractive (and repellent) chemicals 

involved in oviposition.  

 

8.3.2. Investigating the origin of cedrol for oviposition in Anopheles 

gambiae s.s. 

The attractant cedrol is best known for its occurrence in the woody plants Cypressus 

and Juniperus. However, it has also been associated with common African plants such 

as Sorghum, Artemisia, and the swamp grass Cyperus (Khwatenge 1999; Mercke et al. 

1999; Olawore et al. 2006). Certain grass species have been implicated to play a role in 

habitat selection in the South American malaria vectors An. albimanus by releasing 

attractive semiochemicals (Torres-Estrada et al. 2005). Cedrol also can be metabolite of 

fungi (Nakano et al. 2011; Kramer & Abraham 2012), a group of microbes that has not 

been extensively investigated for its role in mosquito oviposition site selection. Finding 

the source(s) of cedrol might further elucidate why An. gambiae s.l. prefers to lay eggs 

in habitats containing it and might help predict habitat selection and guide malaria 

vector control interventions. The sources may provide for the isolation of a marker for 

high potential oviposition sites. Such markers could benefit mosquito control through 

target larviciding thus tremendously improving the efficiency and cost-effectiveness of 

such interventions. Furthermore, more attractants than those identified here might be 

produced from these sources.  

 

8.3.3. Development of optimal formulated chemical baits and repellents  

Work on formulation and presentation of cedrol (and other semiochemicals) will be a 

critical next step in the development of an attract and kill (or push and pull) strategy. 

Cedrol is crystalline at ambient temperatures (melting point 82-86°C) and not water 
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soluble, making it difficult to standardise the presentation in bioassays and traps. Here 

cedrol was mixed with ethanol to dissolve the crystals in a stock solution. However, the 

high variability in response rates observed in the cage bioassays indicates that our final 

test solutions might have contained different amounts of the active ingredient between 

test nights. Studies need to be done to improve the dose, release rates and delivery of 

cedrol and other semiochemicals identified in this study.  

8.3.4. Improvement of gravid traps  

It was shown that the modified BG-Sentinel gravid trap worked extremely well under 

semi-field conditions and is an important new tool in evaluating putative oviposition 

semiochemicals but is less effective in the field. It is likely that visual cues interact with 

olfactory signals (Bernath et al. 2012) and enhance the search for oviposition sites, 

explaining the better performance of traps with open water surfaces in the study. This 

hypothesis is supported by the findings from field surveys that highly turbid water is 

consistently colonized by early instars in the field (Herrera-Varela et al 2014) and 

preferred over less turbid or clear water in semifield choice tests (Okal, unpublished). It 

is likely that turbid surfaces reflect polarized light especially during dusk and make 

these habitats more visible in the landscape. Further understanding of the interaction 

between visual and chemical cues and more effective traps will increase the possibility 

to efficiently lure vectors into the traps when competing with natural habitats.  

8.3.5. Field trials under different eco-epidemiological conditions 

Future work needs now to be invested in developing optimal traps that can be baited 

with synthetic odourants for routine use to test cedrol (and other yet to be identified 

odourants) under different eco-epidemiological field conditions. 

 

8.4. General conclusions 

Increasing evidence suggests that existing vector control strategies though effective will 

not achieve malaria elimination in Africa. These tools focus on the indoor environments 

and work with a relatively small group of insecticides to impact mosquitoes. For this 

reason, exophilic mosquitoes and those that are resistant to insecticides survive to 

maintain transmission even in areas earmarked for elimination of the disease. To target 
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malaria vectors outdoor there is an urgent need to study mosquito ecology beyond that 

which directly relates to blood feeding and develop tools that could be used outdoors. 

This thesis presents useful work in developing tools and advancing the understanding of 

oviposition substrate selection in Anopheles gambiae s.s.. Adoption of the tool kit 

proposed here for investigating the chemocecology of gravid malaria mosquitoes and 

the development of efficient formulations based on the compounds identified could lead 

to new strategies for monitoring and controlling vectors for malaria in Africa. 

8.4.1. Anopheles gambiae s.s. make informed oviposition substrate choices 

cued partially by semiochemicals 

Results here show that gravid malaria mosquitoes make informed choices when 

selecting oviposition substrates. These choices are partially mediated by water vapour 

and volatile organic chemicals. This study extensively demonstrated the response of 

gravid mosquitoes to water vapour, infusions and putative semiochemicals. It showed 

that while water vapour attracted mosquitoes to any aquatic substrate, volatile organic 

chemicals elicited a discriminative response in the malaria mosquito. Infusions and 

semiochemicals routinely used to attract and sample gravid Culex and Aedes diseases 

vectors were avoided by the mosquito giving a hint for the ineffectiveness of such traps 

and the determinants of niche differentiation among mosquito genera. On the other hand 

aged soil infusions and one compound identified from them attracted mosquitoes 

demonstrating olfactory attraction to potential oviposition site. 

 

8.4.2. An optimised toolkit is essential for the effective identification and 

evaluation of oviposition semiochemical for malaria mosquitoes 

A newly developed toolkit comprising of the WHO tube bioassay, a dual port 

olfactometer, a re-designed egg-count bioassays and a modified BG Sentinel trap 

enabled the identification and description of many oviposition repellents and an 

attractant for An. gambiae s.s., An. arabiensis and potentially An. funestus. No previous 

study has systematically reviewed common bioassays used for investigating the 

oviposition behaviour of malaria mosquitoes. The toolkit described here can be equally 

useful with Aedes mosquitoes that lay single eggs and skip-oviposit. It also provides a 
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guideline for future studies seeking to optimise bioassays for studying the olfactory 

response of gravid mosquitoes.  

 

8.4.3. Targeting gravid mosquitoes using chemical cues could be a 

supplementary strategy for monitoring and controlling malaria vectors 

This study demonstrated that it is possible to attract and trap gravid mosquitoes 

outdoors using chemical cues. It was shown that six day old infusions attracted more 

An. gambiae s.s. mosquitoes to modified BG Sentinel traps in the semi-field that than 

did water alone. One chemical identified from the infusions (cedrol) equally 

consistently attracted more mosquitoes in the semi-field and in the field. In addition to 

this, cedrol also attracted wild populations of An. arabiensis a sympatric species to An. 

gambiae s.s. that is believed to be more exophilic and thus elusive to LLINs and IRS. A 

third species An. funestus was also trapped in the field. These findings indicate that 

although further work is needed to develop traps, identify more compounds and 

optimise the release rates and presentation of semiochemicals in traps, research for new 

tools along this hypothesis is well founded. 
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Chapter 10.Appendices 
Appendix A:  

Cage bioassays comparing the oviposition response of Anopheles gambiae s.s. to 

filtered tap water and distilled water in two choice experiments 

Oviposition bioassays need to be replicated in large numbers to account for the 

variability in responses of gravid females from different egg batches and under 

different climate conditions. Consequently, a large amount of water is needed as 

oviposition substrates. Distilled water is frequently used in oviposition bioassays but 

can be a limiting factor when working at remote field sites. The authors therefore 

aimed to evaluate whether purified lake water can be used as alternative to distilled 

water in oviposition bioassays.  

Methods: Piped non-chlorinated water pumped from Lake Victoria was passed slowly 

through a sand charcoal gravel filter for purification (referred to as filtered tap water). 

The aim was to remove large and small particles from the water including the majority 

of algae and bacteria. Two choice cage bioassays were carried out comparing the 

oviposition response of 300 individual gravid Anopheles gambiae s.s. females to 

filtered tap water versus double-distilled water. Bioassays were done in 30×30×30 cm 

cages. The cages had a steel framework founded on a galvanized metallic base and 

covered with fine mosquito netting. The cage-net also had an insert sleeve for 

introducing and retrieving oviposition substrates and gravid mosquitoes. Oviposition 

substrates were offered in 70 mm diameter glass cups (Pyrex®) that were autoclaved 

and afterwards kept in an oven at 200°C for at least 2 hours before experiments. In 

each cage two cups were provided in opposite corners one filled with 100 ml filtered 

tap water (test) and the other cup filled with 100 ml double-distilled water (control). 

The arrangement of oviposition cups was systematically altered between adjacent 

cages to adjust for position effect. The test cup was randomly placed in one corner of 

the first cage and test cups in subsequent cages were moved one corner step in a 

clockwise direction relative to that of the preceding cup. Corresponding control cups 

were added in each cage diagonal to the test cup to complete a two choice set up. 

Adjacent cages were placed on a table a minimum of 30 cm apart. The experiment was 

carried out under ambient light and temperature conditions in makeshift huts. Two huts 

were used containing two tables each. Twenty-five cages were placed per table 
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totalling 100 cages per experimental nights.  The experiment was replicated for three 

rounds using different batches of mosquitoes. Individual mosquitoes were placed in the 

cages at 18:00h and the response (presence of eggs) per treatment and cage recorded at 

8:00h in the morning. 

Data analysis: Data was analysed with R statistical software version 2.14.2 using the 

one sample proportions test with continuity correction. This test investigates whether 

the response rate of individual gravid females towards the two treatments differs 

significantly from 0.5 hypothesizing that if the two treatments would be equally suitable 

for oviposition 50% of the females should have laid in the test and 50% in the control.  

 

Results: In total 242 out of the 300 females laid eggs (81%). Out of the 242 females 33 

(14%) laid in both test and control cups. The remaining 209 females laid either in test or 

control. Therefore in total 275 responses were recorded. The bioassays were carried out 

in three rounds. Table A1 shows the results of the proportion tests for the individual 

rounds and for the pooled data. 

Table A1: Response of Anopheles gambiae s.s. towards the filtered tap water  

*null hypothesis: response rate equals 50%  

The test cup with the filtered tap water received 56% of all responses (eggs laid) 

towards the two treatments both in the individual rounds as well as when all data were 

pooled for analyses. This only slightly increased proportion was neither significantly 

different from 50% for the individual rounds nor when the data were pooled at the ≤0.05 

significance level. Nevertheless, when the data were pooled the difference approached 

significance.  

 

Number of Response rate (%) for  p-value*  

responses (n/N) filtered tap water (95% CI)   

Round 1  59/105  56 (46-66)  0.242  

Round 2  50/89  56 (45-67)  0.289  

Round 3  45/81  56 (44-66)  0.341  

TOTAL  154/275  56 (49-62)  0.054  
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Conclusion: Gravid An. gambiae s.s. females did not show any strong preference for 

the filtered tap water over the double-distilled water. The approaching significance level 

when the data were pooled might indicate a genuine effect likely reflecting a difference 

in water quality due to the incomplete filtration of algae and bacteria from the water. 

Nevertheless, the difference between the two water sources was so small that the 

authors conclude that the filtered tap water does not contain strong oviposition 

semiochemicals and can be used for studying the oviposition behaviour towards 

chemical and visual cues as a replacement for distilled water.  

  



Appendices 
 

233 
 

Appendix B 

Short report of the Gas Chromatograph –Electroanntenogram (GC-EAD) analysis 

of Anopheles gambiae s.s. electrophysiological responses to putative oviposition 

semiochemicals 

 
James Broom1, Steve Torr11, David Hall1 

1Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 

4TB, UK 

 
 
Introduction: Electroantennogram (EAG) responses of Anopheles gambiae s.s. to 

synthetic chemicals potentially involved in affecting oviposition behaviour were 

measured.  Previous such studies have delivered the stimulus by blowing air over a 

piece of filter paper impregnated with the compound. When testing compounds having 

different volatilities this approach gives very different, generally unquantified, amounts 

of the chemicals actually delivered to the insect antenna. To overcome this problem, in 

this study the same amounts of each compound were delivered to the insect antenna 

through a gas chromatograph coupled directly to the EAG preparation. In order to 

correct for variations between different EAG preparations, a reference compound was 

included in every run. A whole insect preparation was used rather than isolated antennae 

or heads used previously. 

Materials and Methods: Female Anopheles gambiae s.s. were drawn from a stock 

colony of Mbita origin maintained at NRI, Chatham, UK.  Adult males and females 

were reared together, provided with a 10% sucrose solution and offered a blood-meal 2-

5 days prior to EAG experiments.  Females that fed successfully were selected visually 

for EAG recording.  Responses were recorded from whole insects mounted on filter 

paper using solvent-free correction fluid. 

Test compounds were 2-tridecanone, 2-phenylethanol, benzyl alcohol, 3-methylbutan-1-

ol, based on the work of Lindh et al. (2008), indole (Lindh et al., 2008; Blackwell and 

Johnson, 2000; Meijerinck et al., 2000) ,3-methylbutanoic acid (Lindh et al., 2008; Cork 

and Park, 1996), 1-octen-3-ol (Cork and Park, 1996; Blackwell and Johnson, 2000), 6-

methyl-5-hepten-2-one and geranyl acetone (Meijerinck et al., 2000).  The reference 

compound was 4-methylphenol which gave a good EAG response in preliminary studies 

and was also reported as a stimulus by Cork and Park (1996), Meijerinck et al. (2000) 
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and Blackwell and Johnson (2000).  Each run included two or three of the test 

compounds and 4-methylphenol, all at 10 ng which delivers 5 ng to the insect antenna. 

Results: Only runs (32) in which the reference compound, 4-methyl-phenol, elicited a 

clear EAG response were included in the analysis. Table A2 shows both mean EAG 

responses to test compounds for all the runs and also for only the runs where a 

significant EAG response to that compound was recorded. The data are shown 

graphically in Figure A1. 

Of the test compounds, geranyl acetone gave a response in 7 out of 8 runs; 2-

phenylethanol in 6/7 runs; benzyl alcohol in 6/7 runs and indole in 7/9 runs. A small 

EAG response to 6-methyl-5-hepten-2-one was only observed in 1/8 runs.  No 

compound gave a higher mean EAG response than the reference compound, 4-

methylphenol, and the above four compounds gave the highest mean responses of the 

compounds tested. 

Discussion: EAG responses were recorded from female Anopheles gambiae s.s. of 

Mbita origin that were blood-fed and assumed to be mated.  Using coupled GC-EAG to 

deliver accurately a known dose of the test compounds, 4-methylphenol gave the 

highest and most consistent responses, followed by benzyl alcohol, 2-phenylethanol, 

geranyl acetone and indole,  2-Tridecanone, 3-methylbutanoic acid, 3-methylbutanol, 1-

octen-3-ol and 6-methyl-5-hepten-2-one gave lower and less consistent EAG responses.  

All these compounds have previously been implicated as semiochemicals affecting 

host-finding and/or oviposition by mosquitoes. 
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Table A2. Mean EAG responses of mated female Anopheles gambiae s.s. to compounds 

(5 ng) relative to the response to 4-methylphenol, showing means for all runs and for 

only runs in which a response was observed.  

  Relative EAG response 

 responses/  all runs responses only 

  runs mean SE mean SE 

4-methylphenol 32/32 1.00 - 1.00 - 

2-phenylethanol 6/7 0.74 0.14 0.86 0.07 

benzyl alcohol 6/7 0.79 0.18 0.92 0.15 

geranyl acetone 7/8 0.66 0.13 0.75 0.10 

indole 7/9 0.57 0.14 0.65 0.11 

3-methylbutanoic acid 5/8 0.41 0.14 0.66 0.28 

2-tridecanone 5/7 0.44 0.15 0.62 0.13 

3-methylbutanol 3/8 0.31 0.16 0.84 0.12 

1-octen-3-ol 4/9 0.18 0.08 0.32 0.09 

6-methyl-5-hepten-2-one 1/8 0.08 0.08 0.61 0.08 

 

 

 
 

Fig. A1.   Mean EAG responses (± standard error) of mated female Anopheles gambiae 

s.s. to compounds (5 ng) relative to the response to 4-methylphenol, showing means for 

all runs. 
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