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Technical Appendix S1: The impact of realistic age structure in
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We describe a simple age-structured model of TB transmission with alternative assumptions about sur-

vivorship. We use analytic approximations of the prevalence of infection and disease and the basic repro-

ductive ratio as the basis for investigating the effect of changing survivorship in models with otherwise

identical natural history assumptions.

A basic model for TB transmission

TB dynamics can be captured by classifying individuals based on age and infection status [1–3]. Suscep-

tibles become infected at a time varying rate which reflects the prevalence of infectious cases of all ages

a at a given time and the probability of transmission, β, given an encounter between an infectious case

and a susceptible individual,

λ = βĪ := β

∫

∞

0

I(a)da.

The equations for the proportion of the population in each infection state are:

∂S(a, t)

∂t
+

∂S(a, t)

∂a
= −(λ + µ(a))S(a, t) (1)

∂E(a, t)

∂t
+

∂E(a, t)

∂a
= (1 − f)λS(a, t) − (σ + ελ + µ(a))E(a, t) (2)

∂I(a, t)

∂t
+

∂I(a, t)

∂a
= fλS(a, t) + (σ + ελ)E(a, t) − (d + µTB + µ(a))I(a, t) (3)

∂R(a, t)

∂t
+

∂R(a, t)

∂a
= dI(a, t) − µ(a)R(a, t) (4)

We take the total population size as N̄ = S̄ + Ē + Ī + R̄ = 1. In this system, the number of births and

deaths are balanced and the number of births is equal to the number of people aged zero, N(0) = S(0, t),

S(0, t) =

∫

∞

0

µ(a)N(a, t)da. (5)

The other boundary conditions are E(0, t) = I(0, t) = R(0, t) = 0. For the static population structures

used in this paper, equations (1)-(4) reduce to a system of ordinary differential equations (ODEs) [2]. We

investigate the behaviour of the model for parameter ranges taken from the literature (table S1, [4, 5]).
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Table S1: Baseline model parameters. Parameters used in the basic TB model (equations (1)–(4)),
taken from the literature [4, 5]

parameter value
transmission rate, β fitted to data

proportion of fast progressors, f 0.1
reactivation rate, σ 1.13 × 10−4

immunity, ε 0.65
recovery rate, γ 0.2

TB mortality rate, µTB 0.3

Models of survivorship

The survivorship function (l(a)) and mortality rate (µ(a)) for the three types of survival used in this

paper can be described in terms of age a and life expectancy, L:

Constant lifespan : µ(a) =











0 a ≤ L

∞ a > L

l(a) =











1 a ≤ L

0 a > L

(6)

Exponential lifespan : µ(a) = 1/L l(a) = e−µa (7)

Gompertz : µ(a) = α exp(ζa) l(a) = exp(α(1 − exp(ζa))/ζ) (8)

where l(a) = exp(−
∫ a

0
µ(t)dt) gives the probability of surviving until age a. A constant lifespan underes-

timates early mortality, although produces a reasonable approximation of a realistic survivorship curve,

while an exponential lifespan overestimates mortality in younger ages and underestimates mortality in

older age groups, resulting in an underestimation of early survival (Fig. ??). We note that in populations

with high infant mortality, fitting a constant mortality rate to mortality data yields a mortality rate

that is greater than the reciprocal of the life expectancy. For our example of the Ukraine in 2006, infant

mortality is relatively low therefore the optimal fitted mortality rate is 1/66.5 years−1, which is similar

to the reciprocal of the life expectancy of 1/69 years−1.

The Gompertz function contains positive parameters α and ζ, which we calculated as α = 3 × 10−4

and ζ = 7.35× 10−2 using Ukraine mortality data [6]. The intercept parameter α affects mortality for all

age groups; the slope parameter ζ differentially affects mortality for older ages. The Gompertz function

can be fit to mortality data by linear regression after taking the logarithm, log(µ(a)) = log(α) + ζa.

There are a number of approaches for improving the fit of the Gompertz mortality function such as the

Gompertz-Makeham equation which includes an additional constant mortality rate for all ages groups,

µ(a) = c + αeζa [7].
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Prevalence of disease

The prevalence of disease is often used as a measure of a TB epidemic, with models calibrated so that the

equilibrium prevalence is consistent observed TB notification rates [4, 8, 9]. The number of susceptibles

at equilibrium for each type of survival by integrating equation (1) twice, once with respect to time to

obtain the proportion of individuals aged a that are susceptible, S(a), and then with respect to age to

find the total proportion of susceptibles, S̄ [10]:

S̄const =
(1 − e−λL)

λL
and S̄expo =

1

1 + λL
. (9)

These formulae indicate that S̄const > S̄expo, although when exp(−λL) is small the difference is negligible.

However for TB, λL can be less than one, therefore the proportion of susceptibles estimated using constant

lifespans can be 50% larger than the proportion estimated using exponential lifespans.

To examine contribution of reinfection and reactivation to disease, we consider active cases produced

via the latent state. Very approximately, we assume the recovery rate from active TB is on the order

of years−1, the force of infection is on the order of decades−1 and the average latent period, including

individuals that do not progress from latency, occurs over centuries. If we let d ∼ ε, then λ ∼ ε2 and

σ ∼ ε3. The equations for the number of infectious people produced via latency, estimated by constant

and exponential lifespans, simplify to

Īconst =
1 − f

dL
(1 − exp(−σ′L)) + o(ε) and Īexpo =

1 − f

1 + dL

(

σ′L

1 + σ′L

)

+ o(ε). (10)

where σ′ = σ + ελ

Accordingly, due to both the higher proportion of susceptibles, and the difference in lifespans, Īconst >

Īexpo.

The remaining individuals in the population have been infected but do not currently have active

disease, i.e. individuals with a positive skin test, in the exposed (E) and recovered (R) stages of disease.

A model with constant lifespans will predict a smaller proportion of the population with latent infection

than a model with exponential lifespans, i.e. Ēconst + R̄const < Ēexpo + R̄expo. In the exponential lifetime

model, the proportion of individuals that progresses from latency to disease, either due to reactivation

or reinfection, is α = σ′/(σ′ + µ). In contrast, the proportion of individuals that progress from latency

to disease in a model with constant lifetimes is 1 − exp(−α/(1 − α)). The proportion of individuals

that progress in each model is equal for the extreme values where either noone or everyone progresses

to disease. For all intermediate values, fewer individuals will progress from latency to disease in an

exponential lifetimes model. Therefore if we used the same parameters in each model, any interventions

aimed at reducing reactivation or reinfection would have a greater impact in the constant lifetimes model.
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The basic reproductive ratio

The basic reproductive ratio is the average number of secondary cases produced by a single infectious

case and can be calculated using the survival function, l(a) [11, 12],

R0 =
β

d

∫

∞

0

(1 − exp(−da))l(a)da

(

f + (1 − f)

∫

∞

0

(1 − exp(−σa))l(a)da

)

. (11)

Equation (11) is the product of the transmission rate, β, the effective infectious period,
∫

(1−exp(−da))l(a)da,

and the probability of progressing to active disease,
∫

(1− exp(−σa))l(a)da. Thus, background mortality

affects R0 in two ways, by reducing the length of time an individual is infectious, and by increasing the

probability of a secondary infective dying while latently infected. Applying the survivorship functions

above, yields

Rconst
0 =

β

d

(

1 −
1 − e−dL

dL

) (

1 − (1 − f)
1 − e−σL

σL

)

(12)

Rexpo
0 =

βL

1 + dL

(

1 − (1 − f)
1

1 + σL

)

(13)

The equation for Rexpo
0 can be recognised as the standard form of R0 [1, 13]. The difference between

these estimates of R0 can be approximated by considering the latent period less than the life expectancy,

σ ≤ 1/L, an infectious period less than the average latent period and life expectancy, d >> σ and

exp(−dL) ≈ 0 and comparing equations (12) and (13):

Rconst
0 ≤ 0.7 Rexpo

0 .

Model generality

Our analysis uses the simple scenario of a chronic infectious disease at equilibrium to illustrate the

potential effects of ignoring the importance of the birth-death process. The effects that we report are due

to slow disease natural history (so that the majority of secondary infections never progress to disease)

and a low prevalence of disease (small λ affecting the average age of infection). The model and parameter

specification are such that these results will be potentially relevant for diseases where the average age

of infection is in adulthood, such as TB in other mammals, rabies [14] or dengue [15] in low prevalence

settings.

Further difficulties in capturing realistic TB dynamics are the variety of risk factors that have been

found to be important for infection and disease. Notably, our model does not include age-related risks

of disease and for increased realism in ageing populations, we would have to include complexities such

as declining incidence over time by a mechanism that reduces the number of contacts with transmission

potential. Relaxing the assumption of a constant population size is likely to reveal more interesting

features of TB in diverse demographic landscapes.
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