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Abstract. Transmission of Plasmodium falciparum malaria is initiated by sexual stages in the mosquito. Anti-Pfs48/
45 and anti-Pfs230 sexual stage antibodies that are ingested together with parasites can reduce parasite development and
subsequently malaria transmission. Acquisition of sexual stage immunity was studied in a cohort of 102 non-immune
Javanese individuals migrating to hyperendemic Papua Indonesia. Seroprevalence of antibodies against Pfs48/45 and
Pfs230 and functional transmission-reducing activity (TRA) were measured upon arrival and at 6, 12, and 24 months.
Asexual parasitemia and gametocytemia were assessed every two weeks. The TRA and seroreactivity increased with the
number of P. falciparum infections. The longitudinally sustained association between TRA and antibodies against
Pfs48/45 (odds ratio [OR] � 3.74, 95% confidence interval [CI] � 1.51–9.29) and Pfs230 (OR � 3.72, 95% CI �
1.36–10.17) suggests that functional transmission reducing immunity is acquired after limited exposure to infection.

INTRODUCTION

Successful transmission of Plasmodium falciparum para-
sites from humans to mosquitoes depends on the presence of
infectious gametocytes in the circulation, which are derived
from a small fraction of asexual parasites. After ingestion of
the blood meal by mosquitoes, fertilization takes place in the
midgut, which will ultimately result in the generation of in-
fectious sporozoites in the salivary glands. Specific antibodies
against sexual stages can interfere with fertilization and sub-
sequent sporogonic development when co-ingested with the
blood meal, as shown in natural and experimental infec-
tions.1–4 This transmission-reducing activity (TRA) is associ-
ated with antibodies directed against the sexual stage-specific
antigens Pfs48/45 and Pfs230.5–8 The rate of development and
persistence of TRA is largely unknown. Although it was sug-
gested to be low grade and rapidly transient,9 persistent TRA
has also been observed.10 Acquisition of immunity directed
against asexual blood stage parasites has been intensively
studied people migrating from a non-endemic to a malaria-
endemic area.11–15 In these transmigrants, clinical and para-
sitologic immunity developed quickly after exposure13 with
inconsistent evidence for an independent role of age.11–16

The objective of this study was to examine the development
of sexual stage-specific immunity in a longitudinal cohort of
Javanese children and adults from non-endemic Java after
migration to malaria endemic Papua. Antibody reactivity
against sexual stage-specific antigens Pfs230 and Pfs48/45 was
determined and compared with antibodies against asexual
stage antigen glutamate-rich protein (GLURP) and whole
parasite extracts. The GLURP-specific antibodies have pre-
viously been associated with protection against high levels of
parasitemia17 and clinical disease.18–20 The development of
sexual stage-specific immunity was evaluated by detecting cir-
culating antibodies against Pfs230 and Pfs48/45 and by assess-
ing functional TRA in the standard membrane-feeding assay.

MATERIALS AND METHODS

Study population. The study site was a newly created trans-
migration village (designated SP2) located near the northeast-
ern coast of Papua, Indonesia. After informed consent was
obtained, healthy volunteer adults between 20 and 40 years of
age and children between 6 and 12 years of age were included
in the study. The study was reviewed and approved by the
institutional ethical review boards of the United States Navy
and the Indonesian Ministry of Health under U.S. Depart-
ment of Defense Protocol #30820. The included human sub-
jects were treated according to relevant regulations of the
Indonesian Ministry of Health and the United States govern-
ment (code 32 of Federal Regulation, Part 219, Protection of
Human Subjects; U.S. Navy, SECNAVINST 3900.39B). Sub-
jects were excluded if admitting a history of residence in a
malaria-endemic area in the previous five years. Details on
recruitment, follow-up, and the epidemiology of malaria in
this cohort have been described elsewhere.16 Enrollment
started in 1996 and follow-up ended in 1999. The subjects
originated from Java and were enrolled in the study within 48
hours of arrival in Papua, Indonesia. Malaria transmission in
Java has been very low for many decades, typically around
0.01 malaria cases/1,000 person-years after the exclusion of
the few foci of hypoendemic transmission.21 In contrast, ma-
laria transmission in Papua is perennial and often hyperen-
demic to holoendemic, with incidence rates from 500 to 5,000
infections/1,000 person-years.22

Follow-up. Malaria episodes were actively detected over a
period of 24 months by periodic clinical assessments and
blood smears. Blood smears were collected at two-week in-
tervals or at any time a subject presented to the clinic with
symptoms (chills, fever, etc.) suggesting malaria infection.
Blood was microscopically examined for P. falciparum and P.
vivax asexual parasites and gametocytes by Giemsa-stained
blood films. Parasites were counted against the number of
white blood cells. A slide was considered negative after ex-
amination of 200 microscopic fields, corresponding to 1,600–
2,400 white blood cells and an estimated diagnostic threshold
of five parasites per microliter. Parasite densities were calcu-
lated using a normal density of 8,000 white blood cells per
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microliter of blood. The first episode of symptomatic or
asymptomatic P. falciparum malaria was recorded as first in-
fection. Each subsequent P. falciparum parasitemia was clas-
sified as a new infection if it occurred more than 28 days after
directly observed chemotherapy of the previous infection.
Sera were collected on the day of arrival and after 6, 12, and
24 months at SP2.12,14,16 To study the acquisition of immunity
in time, we selected samples from subjects for whom at least
three samples were available. We selected 51 subjects 6–12
years of age and 51 subjects 20–40 years of age. The incidence
of malaria infection in these individuals was not different
from that of the general population.

Enzyme-linked imunosorbent assays (ELISAs). Antigen
preparation. Mature gametocytes of P. falciparum (NF54
strain) were produced in an automated static culture system
as described by Ponnudurai and others,23 isolated,4 and
stored at −70°C until used. The NF54 gametocytes were ex-
tracted in 25 mM Tris-HCl, pH 8.0, supplemented with 150
mM NaCl, 1.0% sodium desoxycholate, and 1 mM phenyl-
methylsulfonyl fluoride. Samples were centrifuged at 13,000 ×
g for 5 minutes at room temperature to remove insoluble
debris and the supernatant was used as source of whole-
parasite antigen (Pfs48/45 and Pfs230).

Pfs230 and Pfs48/45 capture ELISA. IgG antibodies to
Pfs230 were assayed by coating Sterilin� ELISA plates (no.
53011; International Medical Products B.V., Zutphen, The
Netherlands) with mouse monoclonal antibody (MAb)
63F6D7-F(ab)2 fragments (10 �g/mL) in phosphate-buffered
saline (PBS), pH 7.4. For Pfs48/45, the plates were coated
with rat MAb 85RF45.3. Plates were blocked with 5% (w/v)
low-fat dry milk (Marvel, Premier International Foods Ltd.,
Spalding, United Kingdom) in PBS. For Pfs230 or Pfs48/45
antigen capture, plates were incubated with gametocyte ex-
tract (250,000 parasite equivalents/well). Serum samples (1:
100 dilution) were added to the wells and incubated for two
hours. Bound IgG antibodies were detected by horseradish
peroxidase–labeled goat anti-human IgG (31412; Pierce Bio-
technology, Inc., Rockford, IL). The wells were washed three
times with PBS and incubated with tetramethylbenzidine sub-
strate solution for 20 minutes. The color reaction was stopped
with 4 N H2SO4, and optical density (OD) was read at 450 nm
(Anthos 2001 microplate reader; Labtec BV, Heer-
hugowaard, The Netherlands). All incubations were carried
out at room temperature. All serum samples were tested in
duplicate with a concurrent positive control and a minimum
of four negative (Dutch blood bank donor) controls per plate.
Sera were considered positive if the OD was 3 SD above the
mean of negative controls.

Whole parasite and GLURP ELISA. Antibodies against
whole parasite extract and GLURP served as markers for
general anti-parasite and specific asexual stage immunity, re-
spectively. Sterilin� ELISA plates (International Medical
Products B.V.) were coated overnight with 250,000 parasites
per well with a diluted stock that contained 30 × 106 parasites/
mL in extraction buffer plus PBS. After blocking with 5%
milk/PBS, serum samples were incubated for two hours at
room temperature (1:100 dilutions in 0.1% milk, Tween 20,
PBS). Anti-GLURP85-213 antibodies were measured in
plasma samples by ELISA.24 Microtiter plates (Nunc Max-
isorp; Nalge Nunc International Corp., Roskilde, Denmark)
were coated overnight at 4°C with 50 �L of 0.2 �g of
GLURP85-213 /mL (final concentration) in 0.05 M carbonate

buffer, pH 9.6. The wells were washed Tween 20, PBS, and
incubated with 2.5% (w/v) milk in PBS. Plasma samples were
diluted in 0.05% PBS, Tween 20, 1.25% milk. For the detec-
tion of IgG antibodies to GLURP85-213, rabbit anti-human
IgG peroxidase (P-214; Dako, Glostrup, Denmark) was used
at a dilution of 1:10,000 in 0.05% PBS, Tween 20, 1.25% milk.
These ELISAs were carried out as for Pfs230 and Pfs48/45.

Standard membrane feeding assay (SMFA). Experimental
infections of mosquitoes were carried out as previously de-
scribed.25,26 Three-to-five-day-old colony-reared Anopheles
stephensi were allowed to membrane feed on freshly cultured
mature NF-54 P. falciparum gametocytes in batches of 50
mosquitoes each in the presence of serum. A maximum of 17
transmigrant serum samples were compared with three
batches of a single (Dutch bloodbank donor) control serum.
Immediately after the feed, non-fed and partially fed mosqui-
toes were removed. Blood-fed mosquitoes were kept at a
temperature of 26°C and a relative humidity of 80% for seven
days. Surviving mosquitoes (> 90%) were dissected and oo-
cysts were counted in extracted midguts. Twenty mosquitoes
per batch were examined for oocysts. An SMFA experiment
was considered valid when the percentage of infected mos-
quitoes was � 90% in all three control batches. The observed
TRA of serum was determined as the percentage reduction in
oocyst numbers in test samples compared with controls.27

Functional TRA was defined as a minimum of 50% reduction
in oocysts numbers in the standard SMFA. Not all sera were
analyzed in the SMFA because of resource limitations. A
random sample of individuals was therefore selected and all
available serum samples were tested in the same SMFA ex-
periment.

Statistical analyses. Analyses focused on the relation be-
tween the development of (functional) sexual stage-specific
immunity and cumulative exposure to P. falciparum, which
was quantified as the cumulative number of infections with
asexual stage P. falciparum parasites. Statistical analyses were
carried out using SPSS for Windows version 10 (SPSS Inc.,
Chicago, IL) and Stata version 7.0 (Stata Corporation, Col-
lege Station, TX). Prevalence of antibodies and functional
TRA (dichotomous variables) as a function of exposure to
asexual P. falciparum parasites were tested using multiple
logistic regression models with generalized estimating equa-
tions (GEEs). Regression � coefficients were calculated with
95% confidence intervals (CIs). Prevalence was logit-linked
analyzed. The number of infections was included as a con-
tinuous variable and a random effect was included in the
models to allow for correlations within individuals. Age group
(20–40 years versus 6–12 years) and number of P. vivax in-
fections were included in the models as covariates. Interac-
tion terms were added to the models to assess a possible
modifying effect of age on the relation between exposure to
infections and the development of immunity.

RESULTS

The malariometric indices of the study population are
shown in Table 1. Most individuals experienced at least one
episode of malaria, with a median number of three infections
during the 24-month period of follow-up. Although preva-
lence of infection was similar for adults and children, the
latter were exposed to higher densities of asexual parasites
(P � 0.02; Table 1). Gametocytes were detected in 26% of
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the children and 29% of the adults with no statistically sig-
nificant difference in gametocyte density.

The cumulative number of infections per six months is
shown in Figure 1. By six months, 20% of the 102 migrants
had experienced � 2 infections; by 24 months, this proportion
had increased to 73%. The cumulative number of subjects in
whom gametocytes were observed in peripheral blood films
was 0, 2, 8, and 18 for time points 0, 6, 12, and 24 months
post-migration, respectively.

Seroreactivity against whole P. falciparum extracts and
asexual stage-specific antigens increased with cumulative ex-
posure (Figure 2A). Antibody prevalence in the whole para-
site ELISA increased to 98% after two infections and was
maintained after further infections. The prevalences of anti-
bodies against sexual stage-specific antigens Pfs48/45 and
Pfs230 were also increased after two infections (Figure 2B).
The proportion of serum samples with TRA gradually in-
creased from 10% (3 of 29) prior to migration to 27% (3 of
11) after more than four infections. There was a clear asso-
ciation between the presence of gametocytes at the time of
sampling and TRA (odds ratio [OR] � 5.22, 95% CI � 1.87–
14.56). Nevertheless, only 31.3% (10 of 32) of sera with TRA
were derived from individuals with patent gametocytemia at
the time of sampling (n � 9) or prior to sampling (n � 1).

After adjustment for the number of infections, TRA was sig-
nificantly associated with the prevalence of antibodies to
Pfs48/45 (OR � 3.74, 95% CI � 1.51–9.29) and antibodies to
Pfs230 (OR + 3.72, 95% CI � 1.36–10.17). No statistically
significant association was observed between TRA and the
prevalence of antibodies to whole parasites (OR � 4.21, 95%
CI � 0.53–33.18) or antibodies to GLURP (OR � 1.90, 95%
CI �0.83–4.34).

To adjust for a correlation between observations from the
same individual and for potential confounders, a GEE model
was used for statistical analyses of the data shown in Figure 2.
There was a statistically significant increase in positive re-
sponse after P. falciparum infections in all ELISAs, which was
strongest for the whole parasite assay. There also was a sta-
tistically significant positive association between the preva-
lence of TRA and the number of infections (Table 2).

Seroprevalence of antibodies against Pfs230 (Figure 3),
whole parasite, and GLURP were consistently higher in
adults. In adults, 23.8% (10 of 42) of individuals had antibod-
ies to Pfs230 prior to exposure compared with 0% (0 of 32) of
the children. This higher seroprevalence for adults remained
apparent throughout follow-up. Although the intercept of the
trend lines was higher in adults (P � 0.001), the slope of both
lines was not different (P � 0.62), which indicated a similar

TABLE 1
Characteristics and Plasmodium falciparum malariometric indices of 102 study subjects from the SP2 cohort during 24 months of follow-up in

Papua, Indonesia*

Children Adults P

No. 51 51
Age, median (IQR) 9 (8–11) 32 (28–37)
No. (%) of individuals infected 49 (96.0) 49 (96.0) 1.0
No. of infections per person, median (IQR) 3 (1–3) 3 (2–4) 0.53
Asexual parasite density, GM (IQR) 2,792 (879–11,962) 1,697 (520–5,920) 0.02
No. (%) of individuals gametocytemic 13 (25.5) 15 (29.4) 0.66
Gametocyte density, GM (IQR) 112 (40–280) 176 (48–579) 0.21

* IQR � interquartile range; GM � geometric mean parasite density in parasites/�L for P. falciparum asexual parasite or gametocyte carriers only.

FIGURE 1. Cumulative prevalence of asexual stage infections in a cohort of 102 non-immune migrants from Java to Papua, Indonesia
experiencing 1-4 four infections with Plasmodium falciparum during two years of follow-up in the malaria-endemic area.
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relationship between number of infections and Pfs230 serore-
activity for adults and children. In the GEE models (Table 2),
the relationship between number of infections and whole
parasite, GLURP, and Pfs230 seroreactivity was not different
between children and adults.

DISCUSSION

This study showed that sexual stage-specific seroreactivity
develops after a limited number of P. falciparum infections in
a cohort of non-immune transmigrants. The prevalence of
antibodies to Pfs48/45 and Pfs230 and functional TRA in-
crease with the number of infections experienced.

FIGURE 2. Proportion of serum samples with Plasmodium falciparum–specific antibodies as a function of the number of prior P. falciparum
infections. A, Seroreactivity for whole parasite (�) and asexual stage–specific glutmate-rich protein (□). B, Seroreactivity for sexual-stage specific
Pfs230 (×) and Pfs48/45 (�), and functional transmission-reducing activity (TRA) > 50% (�). For TRA, 20 mosquitoes were dissected per serum
sample included in the standard membrane feeding assay. The control samples resulted in a median number of 21 oocysts (interquartile range �
7–46) per mosquito. Error bars indicate the upper limit of the 95% confidence interval.

TABLE 2
Regression coefficient of the number of prior Plasmodium falciparum

infections as a predictor of seroreactivity or transmission
reducing activity*

No.† Positive response (95% CI)‡ P

Whole parasite 102 (296) 1.30 (0.64–1.96)§ < 0.001
GLURP 102 (296) 0.49 (0.21–0.77)§¶ 0.001
Pfs48/45 95 (268) 0.40 (0.24–0.57) < 0.001
Pfs230 89 (252) 0.46 (0.25–0.67)§ < 0.001
TRA 76 (161) 0.39 (0.07–0.71)¶ 0.016

* GLURP � glutamate-rich protein; TRA � transmission-reducing activity.
† No. of individuals (no. of measurements).
‡ Regression coefficient � (95% confidence interval [CI]).
§ Estimate adjusted for age group.
¶ Estimate adjusted for number of P. vivax infections.
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Development of sexual stage-specific immunity resembles
that of immunity against asexual stages with similar patterns
for acquisition of antibodies against GLURP, Pfs230, and
Pfs48/45. Reactivity against all antigens develops quickly after
exposure, with seroprevalence increasing with number of in-
fections. Consistent with previous studies, immune response
seems to require recent but not necessarily long-term expo-
sure.11–13 Sexual stage-specific antibody responses seem to be
part of the initial immune response, which corroborates pre-
vious studies in individuals after a primary infection with P.
falciparum.28,29 The finding is remarkable because exposure
to sexual stage parasites is generally considered much lower
than to asexual parasites. In this study, less than one-third of
the individuals had microscopically detectable gametocytes
on any occasion during the two-year follow-up. This apparent
low exposure may be the result of poor sensitivity of micros-
copy in detecting low-density gametocytemia,30 which can
contribute substantially to the total exposure to gameto-
cytes.31 Sexual stage-specific antibodies may be induced by
these low-density gametocytes or by gametocytes that are se-
questered in capillary vessels.32 The combined possibilities
may explain the frequently observed reactivity against sexual
stage-specific antigens in the absence of microscopically de-
tectable gametocytes. In addition to these antibody responses,
we also frequently observed functional TRA without concur-
rent or prior detection of gametocytes. Although we may
have missed some gametocytemic periods as a result of our
screening every two weeks, we conclude that submicroscopic
levels of gametocytemia play an important role in eliciting
sexual stage-specific immune responses.

We found no evidence for age as a key determinant in the
development of immune responses in our population of 6–40-
year old transmigrants. Although other studies reported an
age-dependent acquisition of clinical and parasitic immu-
nity,12,13 we did not find a similar effect for our selected mark-
ers of asexual and sexual stage-specific immunity. The reac-

tivity in the ELISAs was higher in adults but could reflect
background reactivity because of the presence of cross-
reactive antibodies reacting with common epitopes.15 We did
not detect a difference in the relationship between exposure
to infection and the acquisition of (sexual stage-specific) im-
munity for different age groups.

Our most important finding was the presence of functional
TRA in a substantial proportion of the individuals that in-
creased with exposure. This has not been previously shown
for P. falciparum, but is analogous to transmission-blocking
immunity in P. vivax, where TRA is more prevalent and ef-
ficient after repeated infections.33–35 In this study, more than
25% of the individuals with more than four P. falciparum
infections showed TRA, i.e., > 50% reduction in oocysts num-
bers. This pattern of increasing prevalence of TRA accompa-
nies the occurrence of antibodies to Pfs230 and Pfs48/45, as
previously reported.8,36–39 The rapid development of TRA
and associated antibodies is particularly promising because
Pfs230 and Pfs48/45 are considered candidates for inclusion in
future transmission-blocking vaccines.28
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FIGURE 3. Prevalence of Pfs230 seroreactivity as a function of the number of prior Plasmodium falciparum infections. The prevalence of
Pfs230 antibodies is depicted for children (shaded bars) and adults (black bars). Error bars indicate the upper limit for the 95% confidence
interval. The number of observations for children is 0 infections (n � 32); 1 (n � 41); 2 (n � 18); 3 (n � 20); 4 (n � 5); and > 4 (n � 3). For
adults, 0 infections (n � 42); 1 (n � 35); 2 (n � 28); 3 (n � 12); 4 (n � 7); and > 4 (n � 9). Logistic trend lines are shown for adults (top line)
and children (bottom line).
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