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Abstract 

Quantifying uncertainty in environmental health impact assessment models is 

important, particularly if the models are to be used for decision support. This thesis 

develops a new non-probabilistic framework to quantify uncertainty in 

environmental health impact assessment models. The framework takes into account 

two different perspectives of uncertainty: conceptual and analytical in terms of 

where uncertainty occurs in the model. The first perspective is concerned with 

uncertainty in the framing assumptions of health impact assessment, whereas the 

second perspective is concerned with uncertainty in the parameters of a model. The 

construction of the framework was achieved by focusing on five specific objectives: 

(i) to describe the complexity of how uncertainty arises in environmental health 

impact assessment and classify the uncertainty to be amenable for quantitative 

modelling;(ii) to critically appraise the strengths and limitations of current methods 

used to handle the uncertainty in environmental health impact assessment; (iii) to 

develop a novel quantitative framework for quantifying uncertainty from the 

conceptual and analytical perspectives; (iv) to formulate two detailed case-study 

examples on health impact assessment of indoor housing interventions; (v) to apply 

the framework to the two case-studies. After critiquing the uncertainty quantification 

methods that are currently applied in environmental health impact assessment, the 

thesis develops the framework for quantifying uncertainty, starting with the 

conceptual uncertainty (uncertainty associated with the framing assumptions or 

formulation of the model), then quantifying the analytical uncertainty (uncertainty 

associated with the input parameters and outputs of the model). The first case-study 

was concerned with the health impact assessment of improving housing insulation. 

Using fuzzy cognitive maps, the thesis identifies key indoor factors and their 
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pathways highly sensitive to the framing assumptions of the health impact 

assessment. The second case-study was concerned with estimating the uncertainty in 

the health burdens in England, associated with three ventilation exposure scenarios 

using fuzzy sets and interval analysis. The thesis presents a wider uncertainty 

framework as a first step forward in quantifying conceptual and analytical 

uncertainty in environmental health impact assessment when dealing with limited 

information.  

. 
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1. Introduction 

 

1.1. Background 

Uncertainty is central to every human health impact assessment exercise. It can arise 

due to our lack of understanding or knowledge of the “system” comprising the 

affected population and its surrounding environment. Uncertainty can also arise from 

random variations due to the stochastic nature of most real-life situations. 

Uncertainty is often broadly classified in the literature by two dimensions: its nature 

and its location. 
1-3

 The nature of uncertainty relates to its underlying causes in the 

assessment. Walker et al. (2003) used the term “variability uncertainty” to describe 

the nature of uncertainty due to a random process, and the term “epistemic 

uncertainty” to describe the nature of uncertainty due to incomplete information or 

impartial understanding of the system’s underlying processes. Some authors also 

categorised uncertainty in terms of its location. 
2-4

 The location of uncertainty relates 

to where it occurs within the assessment model, for example in the parameters, the 

model structure or the input data.  

 

Various qualitative frameworks used to classify and define uncertainty have been 

combined to report uncertainty more explicitly. 
2, 5

Questions have been raised, such 

as “when” and “how” to deal with uncertainty and whether or not uncertainty needs 

to be reduced. Also, debates have arisen on how best to tackle the greatest source of 

uncertainty in the assessment, including the order in which to address uncertainties, 

given their magnitude. 
6
 Some authors have adopted a broader definition of 
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uncertainty in terms of its location in an attempt to “include” rather than “exclude” 

all sources of uncertainty. 
7
  

 

Concepts relating to uncertainty in risk assessment are derived from existing 

theoretical frameworks. 
2-4

 Knol et al. (2009) offered a typology of uncertainty to 

help structure, assess and reduce the uncertainties. One author reviewed and adapted 

uncertainty concepts from other authors. 
3
 Of particular interest is the concept of 

“contextual uncertainty”, defined as the type of uncertainty that arises in choosing 

the boundaries of the system or defining the scope of the assessment. Knol et al. 

(2009) argue that any assessment outcome can be sensitive to the definitions of the 

system boundaries. They concluded that there is no single approach to deal with 

“contextual uncertainty”, but rather a general guideline should be provided to 

consistently report the chosen boundaries and definitions. One example of a general 

set of guidelines based on expert judgement is the Dutch National Agency for Public 

Health and The Environment, and the Netherland Environmental Agency 

(RIVM/MNP) guidance for uncertainty. 
7
 The RIVM/MNP guidance provides a 

systematic approach to document and communicate uncertainty, starting with 

problem framing. However, one limitation of approaches, such as that of 

RIVM/MNP, is that they rely heavily on qualitative assessment and expert 

judgement. Nevertheless their idea of assessment outcomes being highly sensitive to 

the choice of system boundaries or defining the scope of the assessment overlaps 

with the focus of this research, which is to provide a quantitative framework to deal 

with uncertainty in the field of environmental health impact assessment. 
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In addition, Briggs et al. (2009) provided a framework to address the need to report 

uncertainty more systematically in health risk and impact assessments. The authors 

classified uncertainty in terms of its location in three stages. One of the stages is 

“conceptualisation”, which is the type of uncertainty associated with the “framing of 

the problem” or formulation of the model. Briggs et al. (2009) argue that the best 

strategy to protect against the complications of conceptual uncertainty is by sharing 

the assumptions made with others, and by using more participatory approaches at the 

problem formulation stage. Briggs et al. (2009) are concerned about the lack of 

attention paid to uncertainty relating to the framing assumptions made in the 

assessment model, such as problem framing and boundary definition (this overlaps 

with one of the concerns of the current research project). Problem framing relates to 

uncertainty as to how to conceptualise the issues at hand in the assessment.   

 

Walker et al. (2003) synthesised numerous contributions from other fields in order to 

provide an interdisciplinary framework for dealing with uncertainty. In attempting to 

synthesise and characterise all different types of uncertainty in the literature, the 

authors found that many “uncertainty experts” from other disciplines agreed on one 

aspect: that of distinguishing between the view of uncertainty held by the modeller 

and that of the decision-maker. There are many other views of uncertainty held by 

other stakeholders such as campaigning non-governmental organisations, citizens 

groups, managers or owners of polluting industries. However, the focus of this thesis 

is primarily on the modeller’s view of uncertainty conducting an environmental 

health impact assessment. 
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1.2. Aims and Objectives 

The overall aim of this research is to determine how best to deal with quantitative 

measures of uncertainty, in a more explicit and systematic way than current best 

practice, in the context of environmental health impact assessment. This will be 

achieved by focusing on five specific objectives, to:  

 

1. Describe the complexity of how uncertainty arises in environmental health 

impact assessment and classify the uncertainty to be amenable for 

quantitative modelling. 

2. Critically appraise the strengths and limitations of current methods used to 

handle the uncertainty in environmental health impact assessment. 

3. Develop a novel quantitative framework as a step forward for quantifying the 

uncertainty in environmental health impact assessment 

4. Formulate two detailed case-study examples on health impact assessment of 

indoor housing interventions.  

5. Apply the framework to the two case-studies 

 

1.3. Thesis structure 

The remaining chapters of the thesis are structured as follows.  

The second chapter describes the quantitative framework of the thesis. The 

framework is derived from different sets of concepts from other disciplines based on 

a literature review on uncertainty. These have been adapted for environmental health 

impact assessment. The chapter also defines the key uncertainty "perspectives" 

considered in the thesis. 
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The third chapter comprises a research paper which provides a systematic review of 

uncertainty quantification methods applied in environmental health impact 

assessment. It presents a critical appraisal of the literature describing the strengths 

and limitations of current methods used to deal with uncertainty. 

 

The fourth chapter comprises a second research paper based on a case study 

example, which contains a framework, alongside a novel method detailing five main 

steps to deal with uncertainty associated with framing assumptions (conceptual 

uncertainty). In addition, the chapter provides a supplementary material of the 

method proposed in the case study to deal with uncertainty in a non-probabilistic 

domain. It will be argued that it is necessary to assess the sensitivity of the 

assessment to the framing assumptions (i.e. the mapping of the assumed causal 

pathways or structure to health outcomes), prior to conducting a detailed quantitative 

HIA of an environmental intervention. The framework was applied to determine the 

key pathways which have the most influence on health. This was done by analysing 

the causal map, associated with the framing assumptions, which links the potential 

effect of an environmental intervention of improving housing insulation to health 

outcomes.  

 

The fifth chapter comprises the third research paper. It provides a quantitative 

framework to deal with the uncertainty associated with the parameters of a HIA 

model in a non-probabilistic domain (analytical uncertainty). It highlights the 

processes in the quantification of an HIA followed and it describes the potential 

health impacts and uncertainty in a case-study example of housing ventilation 
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exposure scenarios for England. Supplementary materials on the method proposed to 

deal with uncertainty in the case study are also provided.  

 

The sixth chapter provides an overview of the findings of the thesis and main 

contributions, drawing results from all the research papers. The chapter 

acknowledges the limitations of the thesis and it identifies areas for further research.  

The conclusion of the chapter highlights the implications for applied researchers and 

policy makers. 

 

1.1. Overall contribution of the research 

The contribution of this PhD research is to expand the way uncertainty is taken into 

account in current environmental health impact assessment practice, particularly in 

relation to the handling of uncertainty when modelling environmental interventions 

or potential exposure scenarios.  New sets of tools are introduced across two 

uncertainty “perspectives” (conceptual and analytical) in a non-probabilistic domain. 

The thesis identifies and handles different sources of uncertainty in relation to a 

health impact assessment of indoor housing and health. As a contribution to current 

consideration of uncertainty, this thesis aims to move debates from a narrow 

definition to a broader perspective of uncertainty. This broader perspective is 

required to define a wider assessment of impacts in environmental health impact 

assessment. An assumed causal structure can be quantified within the wider issues 

surrounding housing and health so that uncertainty can be dealt with in an explicit 

way. It is worth noting that a decision-maker might not be interested only in the 

analytical sources of uncertainties, but more fundamentally in the conceptual sources 

associated with the framing assumptions used to define the assessment of impacts 
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Providing an analytical framework that extends beyond handling the usual 

uncertainties, by incorporating conceptual sources of uncertainties in an explicit and 

systematic way can be an initial step forward in quantitative HIA. The added value 

of this research is in the attempt to include, rather than exclude, the framing 

assumptions quantitatively or semi-quantitatively in the appraisal of uncertainty. 

This can be used for decision support and could be a contribution to current 

environmental health impact assessment modelling practice. In addition, this 

research attempts to deal with analytical sources of uncertainty in a non-probabilistic 

domain. Under the proposed framework, the thesis provides a conceptual framework 

to deal explicitly with conceptual and analytical sources of uncertainty in a non-

probabilistic domain. 

 

1.2. Contribution of the candidate to the thesis 

The candidate conceptualised the ideas for all the research papers included in the 

thesis and conducted most of the investigations himself, hence he is the first author 

of the resulting papers. Research paper 1 was designed by the candidate. He 

conducted the systematic review, synthesised the strengths and limitations of each 

method, discussed the findings and drafted the manuscript. Zaid Chalabi and Anna 

Foss reviewed the methods, interpretation and discussion. Tazio Vanni contributed 

to the section on Bayesian methods. This paper has been published in the 

International Journal of Environmental Health Research. 

 

In research paper 2, the mathematical method was conceived and adapted by the 

candidate. He developed the model and the case study example through a literature 
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review on the relationship between housing insulation and health. The candidate 

designed the analytical framework, discussed the results and drafted the manuscript. 

Zaid Chalabi provided advice on the main manuscript and suggestions for the 

development of the mathematical details of the appendix. Anna Foss also reviewed 

this paper. The candidate wrote the code to implement the mathematical details of 

the method. This paper has been published by the journal Environment International. 

 

The candidate led on the conception and conceptualisation of the methods for 

research paper 3 in collaboration with his supervisor, Zaid Chalabi. The candidate 

developed the health impact model of housing ventilation exposure scenarios and 

conducted the systematic review alongside a meta-analysis in relation to housing 

ventilation and health. The candidate was responsible for designing, conducting and 

interpreting the analysis. Also, the candidate wrote the code to implement the 

mathematical details of the method.  Zaid Chalabi and Anna Foss reviewed this 

paper. This paper has been published by the journal Environment International. In 

addition a corrigendum of the paper has been published by the same journal. 

 

Further details on the specific contributions of the candidate are shown in the cover 

page of each research paper. 
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2. Quantitative framework 

2.1. Perspectives of uncertainty  

The need for a shared and coherent understanding of uncertainty has been deemed 

important in health risk and environmental health impact assessment. In this chapter, 

some of the concepts for dealing with uncertainty in terms of its location 
2-4

 are 

combined to form two main “perspectives” of uncertainty. These two main 

perspective are “conceptual`’ and “analytical” and are incorporated in the thesis 

framework (as shown in Figure 1).  The conceptual perspective combines Briggs et 

al.’s (2009) own definition of “conceptual uncertainty” and Knol et al.’s (2009) 

definition of “contextual uncertainty”. The analytical perspective derives from the 

three sets of definitions of analytical uncertainty and the conventional modeller’s 

views of uncertainty, such as those associated with the analytical outcome of the 

models. 
2-4

  

 

The assumption of the proposed framework in the thesis is that uncertainty is often 

difficult to examine from all possible perspectives simultaneously. Analysts often 

see uncertainty from different viewpoints. As a result, two main perspectives are 

chosen as a way of narrowing the examination of uncertainty so that some aspects of 

uncertainty can be emphasised at one stage while others are dealt with at another. 

The proposed framework is provided in this PhD, to handle the uncertainty in an 

explicit and systematic way, so that the actions when conducting a quantitative HIA 
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are clear, particularly when attempting to quantify and propagate the uncertainty in 

the assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In relation to uncertainty in HIA, it is important to distinguish between a “conceptual  

learning process” and an “analytical learning process”. 
8
 A conceptual learning 

process can be defined as the process of conceptualising the model by refining the 

issues at hand, the questions, or refocusing the problem in order to gain new insights; 

it is thus not a linear process. In other words, a conceptual learning process does not 

progress from one stage to another with a clear starting point and an ending point. 

The “analytical learning process” on the other hand is defined as the process of 

finding solutions for a particular problem in the assessment so that the uncertainty 

can be looked at in relation to its defined purpose. It is also important to note that at 

the “conceptual level”, the uncertainty is often characterised by a lack of knowledge. 

 

Analytical  
perspective

• How to characterise the 
uncertainty in the inputs  and 
outputs of the model?

Conceptual 
perspective

• How to characterise the 
uncertainty in the 
formulation of the model

Extension proposed in the thesis

Figure 1: The different perspectives of uncertainty 
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As we move down to the “analytical level”, the uncertainty can often be 

characterised by variability. Lack of knowledge can also be present as part of the 

“analytical perspective” to some degree, but is less pervasive than at the conceptual 

level. The same applies to variability, which can also be present to some degree at 

the conceptual level due to the stochastic nature of the impact of the environment on 

health. 

 

2.1.1. Conceptual perspective 

Conceptual uncertainty deals with the uncertainty associated with the formulation of 

the problem to be investigated. It is more concerned with the characteristics of the 

system that is being modelled, which can involve uncertainty in the formulation of 

the assumed causal pathways. Conceptual uncertainty is not concerned with the 

analytical aspect of the model, such as the type and statistical associations between 

variables, but rather on defining and formulating the assessment. Classical 

quantitative methods such as Monte Carlo (MC) simulations are less appropriate at 

this level since the uncertainty resides at a more fundamental conceptual level than 

in the model parametrisation. The need to enhance the problem and model 

formulation phase of any HIA makes it worth closely investigating conceptual 

sources of uncertainty. At the start of any assessment exercise, it is important to 

identify the framing assumption that defines the assessment as part of the model 

formulation. Including this conceptual perspective of uncertainty in the framework 

will help to move away from a narrow focus and definition of uncertainty towards a 

systems-based approach to uncertainty, focusing on the framing aspects of the 

assessment. 
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2.1.2. Analytical perspective 

The analytical uncertainty perspective views uncertainty from a modeller’s point of 

view, where the main emphasis is on quantifying and characterising the uncertainty 

in the input parameters and the model outputs. Most of the methods for dealing with 

uncertainty in environmental health impact assessment are based on this analytical 

model-based view. Current methods in environmental health impact assessment, as 

identified in research paper 1, deal with parametric uncertainty in environmental 

health impact assessment. Analytical perspective specifically refers to uncertainty 

propagation  methods used for estimating and quantitatively propagating the impact 

of errors or biases in the model outputs. In other words, the analytical perspective 

quantifies and propagates the impact of parametric sources of uncertainty in the 

outcome of the assessment. Methods are used under the analytical perspective to 

perform sensitivity analyses or uncertainty analysis to explore parametric 

uncertainty. 

 

2.2. Quantitative tools proposed in the framework 

In this framework, a set of tools is introduced across the two uncertainty perspectives 

operating in a non-probabilistic domain. The two uncertainty perspectives 

characterise the uncertainty in terms of its location.  The set of tools handles 

uncertainty in terms of its nature. They assume lack of knowledge rather than 

random variations in the propagation of uncertainty. One of the reasons for choosing 

to work in a deterministic domain is that constructing some probabilistic models may 

require unrealistically detailed data information (as described in research paper 1 in 

the following chapter). Another reason is that suitable assumptions (given the limited 
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information) regarding the statistics of the variability of an uncertain parameter 

cannot be made. Limited quantitative information is often encountered when 

modelling environmental impacts on health. 
9, 10 , 11

 In developing this uncertainty 

framework, insufficient data for probabilistic characterisation is assumed such as 

specific assumptions about the correlations of variables and random variations in 

probability distributions. Techniques that other disciplines use as alternatives to 

probabilistic methods are proposed under this framework. Fuzzy cognitive map 

techniques, as found in graph theory, are proposed to deal with conceptual 

uncertainty in HIA. Other analytical methods, not commonly applied in 

environmental health such as fuzzy set theory, using interval analysis, are proposed 

under the analytical perspective of the framework. A summary of the tools proposed 

for the framework for dealing with the two perspectives of uncertainty is shown in 

(Figure 2). It is worth noting that conceptual uncertainty perspective is sub-divided 

by two aspects: (i) uncertainty in defining the context of the assessment or the 

boundaries of the model to deal with contextual issues of time and space, and (ii) the 

uncertainty in the framing assumptions to deal with aspect of problem framing 

relating to the mapping of the causal pathways to health outcomes. The proposed 

tool to deal with conceptual uncertainty addresses the second aspect.  

 

Fuzzy cognitive maps are proposed to deal with conceptual uncertainty in relation to 

the formulation of a health impact model, particularly in the framing or the mapping 

of the assumed causal pathways to health outcomes. A fuzzy cognitive map is a 

causal diagram that can be used for the interpretation of causal assumptions. 
12

 It can 

map the interpreted causal pathways explicitly in the health impact model. The 

framing assumptions of a model can be conceptualised by constructing a graphical 
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model for representing perceptions about the assumed pathways of the problem to be 

formulated.  By using fuzzy cognitive maps, quantitative and qualitative information 

can be combined into a single diagram. 
13

 Some authors have suggested coding the 

graphical representation of cognitive maps into matrices using graph theoretical 

indices. 
14, 15

Fuzzy cognitive maps can ground a causal network structure on a 

mathematical foundation by using graph theoretic indices such as the centrality 

index. The added value of representing a structure in a mathematical foundation is 

that sources of uncertainty at the model formulation level can be explored in the 

assessment, particularly in the mapping of the causal pathways. The fuzzy cognitive 

map method has been shown, in other areas of research, to have advantages over 

other methods used for conceptual or causal modelling such as Bayesian networks. 

This is particularly useful in situations where data is limited, and the elicitation of 

probabilities has proven to be difficult. 
14

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analytical Conceptual 

•Uncertainty in the 
parameters of model

•Uncertainty in  defining 
the context of the 
assessment or the 

boundaries in the model

•Uncertainty in the 
framing assumptions or 
the mapping  of causal 

pathways to health 
outcomes in the model.

Analytical Conceptual

•Interval analysis with 
fuzzy sets  

(deterministic 

domain)

•Graph theory with 
fuzzy cognitive maps 

(deterministic domain) 

for second aspect

Methods for dealing with the different perspectives of uncertainty 

The different perspectives of uncertainty
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As an analytical perspective tool, fuzzy sets using interval analysis can deal with 

parametric uncertainty in a deterministic domain. Interval analysis using fuzzy sets is 

used to compute interval bounds in the outputs of a model, assuming input values are 

fuzzy or imprecise, and bounded in intervals. By using fuzzy sets, an input value can 

be assumed to lie within an imprecise interval (fuzzy set). 
16-19

 The uncertainty in the 

parameter values expressed as a fuzzy interval is propagated through the model using 

interval arithmetic. This method allows for imprecise definitions or errors in the 

measurements to be incorporated in the propagation of uncertainty. Interval analysis 

with fuzzy sets does not depend on sampling, statistical variance or probability 

elicitation.  In addition, this method can represent uncertainty in relation to "lack or 

limitation in knowledge", 
20

 which is one of the reasons it is included in the 

framework to handle parametric uncertainty. When there is limited information 

about parameter values, lack of knowledge can be represented in the form of fuzzy 

interval and “nothing else” is assumed. This is done without the need to assume 

uniform distributions and therefore assert that each value can be “equally likely to 

occur”. 
21

  The scope of the proposed methods and how to what extent they address 

the uncertainty are discussed in the supplementary material of chapter 3. Further 

mathematical details and definitions of the proposed methods and techniques are 

shown in supplementary material of chapter 4 and chapter 5 of the thesis.  
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3. Uncertainty quantification methods in an environmental 

health impact assessment 

 

3.1. Preamble to research paper 1 – Literature review 

The conceptual review provides a background to the use of uncertainty frameworks 

and indicates the need for a coherent understanding of uncertainty quantification 

methods. Uncertainty can be a substantial element in environmental health impact 

models due to the complex associations between environmental exposures and health 

outcomes; however more research is needed to quantify its impact. Research paper 1 

aims to highlight the research gaps in the literature by providing a systematic review 

and critically appraising current methods used to quantify uncertainty in an 

environmental health impact assessment (HIA). Research paper 1 considers current 

quantitative methods and tools for characterising and handling uncertainty and the 

ways in which they are applied in environmental health impact assessment. It 

provides a detailed discussion of the strengths and limitations of these methods and 

tools and also looks at the theoretical frameworks that have been employed in the 

past to deal with uncertainty. The findings from research paper 1 provide a 

justification for the methodological approaches chosen for the framework, which are 

described in detail in chapters 4 and 5 of the thesis. 
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3.2. Research paper 1 
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Abstract 

Environmental health impact assessment models are subjected to great 

uncertainty due to the complex associations between environmental exposures 

and health. Quantifying the impact of uncertainty is important if the models are 

used to support health policy decisions. We conducted a systematic review to 

identify and appraise current methods used to quantify the uncertainty in 

environmental health impact assessment. In the 19 studies meeting the 

inclusion criteria, several methods were identified. These were grouped into 

random sampling methods, second-order probability methods, Bayesian 

methods, fuzzy sets and deterministic sensitivity analysis methods. All 19 

studies addressed the uncertainty in the parameter values but only 5 of the 

studies also addressed the uncertainty in the structure of the models. None of 

the articles reviewed considered conceptual sources of uncertainty associated 

with the framing assumptions or the conceptualisation of the model. Future 

research should attempt to broaden the way uncertainty is taken into account in 

environmental health impact assessments. 

 

Keywords: Uncertainty; Environmental health models; Quantitative health impact 

assessment; Models; Environmental exposures 
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Introduction 

Uncertainty is present in all environment health impact assessments (EHIA). It arises 

mostly from our lack of understanding of the associations between environmental 

exposures and health, but can also arise from random variations in the associations 

between environmental exposures and health outcomes. Uncertainty is often 

classified in terms of its nature and its location. 
2-4

 The nature of uncertainty is 

concerned with identifying the underlying causes of uncertainty. 
2
 It can be grouped 

in two broad types: “lack of knowledge” and “natural variability”. 
3
 Lack of 

knowledge is the type of uncertainty which can be reduced with further research. 

Natural variability, on the other hand, describes a type of irreducible uncertainty, 

which is inherent in the stochastic nature of most environmental variables and health 

outcomes. The location of uncertainty is concerned with where the uncertainty 

occurs in the model, such as in the input data, parameterisation or model 

formulation. 
2-4

 According to Briggs and colleagues, 
4
 uncertainty can take place at 

different stages in the assessment, in terms of its location, such as in: the 

“conceptualisation” and the “analysis”. The authors used the term “conceptual 

uncertainty” to refer to sources of uncertainty that arise at the stage of the framing of 

the environmental health problem, in other words, when defining the context of the 

assessment in the EHIA model during model formulation. They used the term 

“analytical uncertainty” to refer to the statistical uncertainty in the parameters and 

input data of the model.  Another stage in which uncertainty can take place is 

“decision stage”. According to Walker and colleagues, 
3
 the decision stage is 

concerned with how to value the outcome of the assessment model from a decision-

making perspective, particular when there is uncertainty in the research evidence. 

Walker and colleagues synthetised numerous contributions from other fields in order 
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to provide an interdisciplinary framework for dealing with uncertainty. As the 

authors attempted to synthetise and characterise all different types of uncertainty 

found in the literature, they discovered the fact that many “uncertainty experts” from 

other disciplines agreed on one aspect: in distinguishing between the modeller’s 

view of uncertainty and the policy /or decision-maker’s view of uncertainty. 

 

In general, EHIA models suffer from large uncertainty due to complex associations 

between environmental exposures and health. Quantifying the impact of uncertainty 

on the EHIA results is particularly important if the models are used to support health 

policy decisions. Quantitative information linking exposures to health outcomes 

might be of poor quality or not even existent. Some analysts might be reluctant to 

quantify the impact of uncertainty on their model results particularly when their 

model is based on sparse data, as this can lead to large uncertainties surrounding the 

central estimates of the models. The larger the uncertainty in the EHIA model 

outputs, the more it can undermine the credibility of the EHIA model and the 

comparability of results with other models. Therefore, it is necessary to review and 

critically appraise the methods used to quantify the uncertainty in EHIA models. 

 

Uncertainty quantification methods  

Uncertainty quantification (UQ) methods are employed to assess the impact of 

uncertainty on the EHIA model estimates or projections. Quantifying model 

uncertainty often involves “uncertainty analysis” and “uncertainty propagation”. 

Uncertainty analysis evaluates the extent to which the uncertainty can influence the 

output of the assessment model. 
22

 The evaluation of uncertainty is conducted 

according to “its location” such as the input parameters or model structure. 
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Uncertainty analysis methods can also be used as a form of global sensitivity 

analysis which aims to identify the input parameters that most influence the output. 

Uncertainty analysis should not only deal with the uncertainty in the input 

parameters and their influence on the output (as sensitivity analysis) but also with the 

uncertainty associated with the formulation of the model. The term “uncertainty 

propagation”, on the other hand, describes methods which can communicate 

(propagate) the uncertainty from its various locations to define the uncertainty of the 

overall output of the model. 
23

 The way the uncertainty is propagated depends on “its 

nature”, whether it is due to unavoidable random variations, lack of knowledge, or 

both. In general, methods used to quantify uncertainty can be commonly placed 

within the broad categories of random sampling methods and non-probabilistic 

methods. In the following section, we review UQ methods used in EHIA. 

 

Systematic review 

UQ approaches for handling uncertainty in EHIA were reviewed. A literature search 

was conducted using: Ovid MEDLINE, EMBASE, ISI Web of Science and the 

Wiley online library databases. Free-text terms, combined using Boolean operators, 

were used in the search. Free-text was used rather than MeSH terms in order to 

identify non-indexed and incorrectly indexed records which would have been missed 

if MeSH terms had been used instead. The search was conducted using keywords: 

“uncertainty”, “health impact assessment”, “quantitative”, “quantification”, “model”, 

“models”, “modelling”, “modeling”, “modelled” , “modeled”, “prediction”, 

“simulation”, “projection” and “software”. Details of the search strategy are 

presented in Supplementary file 1. Results of the search are shown in Figure 3 
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Figure 3 :Results of the literature search for methods to deal with uncertainty in 

environmental health impact assessment

Ovid EMBASE & 

MEDLINE: 18 hits

ISI Web of Science: 243 

hits

Ovid EMBASE & 

MEDLINE: 10  articles 

abstract reviewed

ISI Web of Science : 29 

articles abstract 

reviewed

Wiley online library: 49 

hits

Wiley online library: 12 

articles abstract 

reviewed

51 total articles full -text 

reviewed

19 Total articles included  

in the review 

1

2

3

4

1. Titles are initially screened.

2. Full abstracts are reviewed and articles are included where abstract met inclusion 

criteria.

3. Full texts are reviewed and articles are included where the full text met inclusion 

criteria.

4. Articles are selected to be included in the review.

 

Full-texts of studies were retrieved if they seemed to be of potential interest 

following a screen review of their titles and abstracts. These full-texts were then 

screened using the inclusion and exclusion criteria described in Table 1. Limits were 

placed on the search so that it was confined to English language articles and dates of 

publication from January 2000 up to January 2011 - with the exception of the ISIS 

Web of Science database - where the search was confined over the last five years of 

publication (January 2005 to January 2011). This later strategy was used to keep the 

search in a manageable number of references, due to resource constraints. We 

selected articles in peer-reviewed academic journals focusing on quantitative 

modelling in relation to environmental and human-health related impact assessment 

studies using uncertainty quantification methods. We excluded articles in other 



36 

 

sources of literatures (e.g. non-peer reviewed reports, chapters in books, editorials) 

and also excluded those focusing on qualitative studies and non-human health related 

modelling studies, and environmental health studies without explicit uncertainty 

quantification methods. 

 

Table1: Search inclusion and exclusion criteria for uncertainty quantification 

methods in environmental health impact assessment. 

 Inclusion criteria  Exclusion criteria  

Sources Peer-reviewed journal article. Non Academic Articles. 

Article 

type 

Original comparative research. 

Review article. 

Reports, chapters, news 

article. 

Editorial. 

Study 

type 

Environmental human health related 

study within health impact assessment 

and quantitative risk assessment or 

related assessments as part of an 

integrated health impact assessment 

(quantitative or modelling-based study). 

Quantitative characterisation of 

uncertainty. 

Environmental non-human 

health related. 

Other non-quantitative 

assessment (qualitative based 

study).  

 

Qualitative uncertainty 

characterisation. 

Language English. Other languages. 

 

Results from systematic review 

Of the 51 articles identified by the search strategy outlined above, 19 met the 

inclusion criteria. 
24-42

 Most were excluded since they did not have an explicit 

quantitative uncertainty characterisation component. Other articles were excluded 

due to duplication of the same published studies or for not having a direct 

environmental health application.  All papers dealt with the uncertainty in the 

parameters of the models (as shown in Table 2), while only 5 dealt also with the 

uncertainty in the model structure. 
27, 35, 37, 40, 42

 Individual studies identified in the 
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literature which share a common methodological ground were combined and 

summarised into the following categories: random sampling methods, second-order 

probability methods, Bayesian methods, fuzzy sets and deterministic sensitivity 

analysis methods.  

 

Random sampling methods 

Random sampling methods involve assigning distributions to parameters and 

repeatedly taking random samples from the assumed distributions of uncertain input 

parameters. In these methods, an EHIA model is run many times, using the sampled 

values and a distribution of the outputs is constructed. In general, random sampling 

methods, such as Monte Carlo (MC) techniques, 
43

 are used for uncertainty analysis 

and uncertainty propagation. Standard MC methods perform a large number of 

simulations using different sets of input parameters at each iteration step to generate 

the model outputs at those sample points. 
43

 The results can also be used to analyse 

the contribution of uncertainty in an input parameter to the uncertainty in the total 

output of the model. 
38
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Table 2: Studies identified and included in the review 

Title and First author  Type (s) and location (s) of uncertainty Methods to characterise the uncertainty 

A model for probabilistic health impact assessment of 

exposure to food chemicals 24 

Describes the uncertainty with regards to a full range of 

input parameters values to investigate the total uncertainty 

in the model outputs. It distinguishes between variability 

and uncertainty.  

Random sampling-based methods by assuming distributions 

in the input parameters using an algorithm that provides and 

combines MC distributions. Probabilistic estimates in the 

parameters where considered in the conclusion of the model. 

   

Health impact assessment of particulate pollution in 

Tallinn using fine spatial resolution and modeling 

techniques 25 

Uncertainty about the correctness of the model in 

exposure assessment and does not distinguish between the 

types of uncertainty.  

Deterministic sensitivity analysis was performed in some 

input parameters. Model validation was performed with the 

PM2.5 and PM10 air pollution modelled levels and 

compared with air quality monitoring data. Uncertainty in 

the health impact estimates were considered in the 

conclusion of the model. 

   

Decision support system for the evaluation of urban air 

pollution control options: Application for particulate 

pollution in Thessaloniki, Greece 26 

Uncertainty in the input data and parameters. Mainly 

incorporating both variability and uncertainty in a non-

probabilistic approach. 

Deterministic sensitivity analysis method through linear 

programming formulation (optimization) to perform 

sensitivity analysis. Result of parametric sensitivity analysis 

was not particular important for the conclusion of the model. 

    

Parameter and model uncertainty in a life-table model for 

fine particles (PM2.5): a statistical modeling study 27 

Explores the uncertainty in all the input parameters and 

their effects on total model output. Assumes distributions 

and treats variability and uncertainty in all input 

parameters without making an explicit methodological 

distinction. 

Both parameter and model uncertainty were propagated 

using MC simulation, and uncertainty analysis was 

conducted between all inputs and model results. The results 

of parametric uncertainty and the potential plausibility of the 

model were considered in the conclusion. 

   

Menu Labeling as a Potential Strategy for Combating the 

Obesity Epidemic: A Health Impact Assessment 28 

Describes the uncertainty in the variability of the input 

parameter data used in a simulation model. 

Sensitivity analysis was conducted in some parameters used 

in the simulation model. The result of the sensitivity analysis 

was not particular important for the conclusion of the model. 
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Towards health impact assessment of drinking-water 

privatization —the example of waterborne carcinogens in 

North Rhine-Westphalia (Germany) 29 

Input parameters are modelled as variability in the 

exposure assessment. In the dose-response assessment, 

the uncertainty was treated as lack of knowledge rather 

than variability. 

Random sampling methods were used using probabilistic 

estimates to assume distributions in the exposure 

modelling. For dose response assessment, assumptions 

were made using potency factors with no threshold and 

with no uncertainty quantification method used. 

Probabilistic estimates in the parameters were considered 

in the conclusion of the model. 

   

Quantitative health impact assessment of transport policies  – 

two simulations related to speed limit reduction and traffic 

re-allocation in the Netherlands 30 

Variability in the input parameters in exposure levels and 

uncertainty in the outcome. Other sources of uncertainty 

were described but not analysed, such as the uncertainty 

in the exposure-effects relationships. 

MC uncertainty analysis in the input parameters. The 

assumptions of the model and the results of the MC 

uncertainty analysis were particular important in the 

conclusion of the model. 

   

Quantitative risk assessment of CO2 transport by pipelines—

A review of uncertainties and their impacts 31 

Uncertainty in the input parameters in the exposure-

assessment simulation model. 

MC sensitivity analysis is conducted on parameters of 

simulation models: release, dispersion and impact 

models. The results of parametric sensitivity analysis 

was particular important in the conclusion of the model. 

   

Analysis of coupled model uncertainties in source-to-dose 

modeling of human exposures to ambient air pollution: A 

PM2.5 case study 32 

Uncertainty in parameters and structure in the model.  

Separates uncertainty and variability in exposure-

assessment and dose-response modelling. 

Evaluates parameters uncertainty using random sampling 

methods by assigning probability distributions and 

structural model uncertainty is evaluated by comparing 

different models with measurement air quality 

monitoring data. Overall uncertainties in both parameters 

and model structure were important in the conclusion.  
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Second-Order Modeling of Variability and Uncertainty in 

Microbial Hazard Characterization 33 

Uncertainty in the parameters by separating variability 

and uncertainty in the inputs of the model. 

Second order probability methods using MC 

simulation to separate variability and uncertainty in the 

parameters. Bootstrap simulation was used to estimate 

sampling errors due to uncertainty in the limited 

amount of input data. Parametric uncertainty was 

particular important in the conclusion of the model. 

 

 

   

Impact and uncertainty of a traffic management intervention: 

population exposure to polycyclic aromatic hydrocarbons 34 

Explores the uncertainty in the parameters of the 

exposure assessment model. 

Random sampling method based on MC analysis to 

characterise the uncertainty, including uncertainty 

propagation in the output estimates. The result of 

probabilistic exposure estimates were important in the 

conclusion of the model 

   

 

 

A Bayesian hierarchical model for urban air quality 

prediction under uncertainty 35 

 

 

Describes the uncertainty in the input data, parameters, 

and model structure and model outputs. Deals with both 

variability and uncertainty though a complete Bayesian 

Hierarchical model and using multivariate statistical 

methods to obtain priors. 

 

 

Bayesian methods were conducted for uncertainty 

characterisation.  In particular MCMC sampling 

method was conducted for uncertainty propagation to 

obtain posterior probability distributions. Both 

parametric and structural uncertainties were considered 

but not particular important in the conclusion of  the 

model 

 

 

An integrated fuzzy-stochastic modeling approach for 

assessing health-impact risk  from air pollution 36 

Evaluates uncertainty in the parameters and model output 

using an integrated approach distinguishing variability as 

parameters that can be expressed as probability 

distributions and uncertainty as non-probabilistic. 

Fuzzy set theory to model the uncertainty that could 

not be expressed as probability distributions and MC 

uncertainty propagation techniques for probabilistic 

parameters. The result of the uncertainty in the input 

parameters was important in the conclusion of the 

model. 
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Model and input uncertainty in multi-media fate modeling: 

Benzo[a]pyrene concentrations in Europe 37 

Uncertainty in the input parameters and uncertainty in the 

structure of the model. 

Probabilistic modelling assuming distributions for the 

uncertainty in the input parameters and model 

uncertainty is dealt through a validation procedure 

comparison across models. Both sources of uncertainty 

were important in the conclusion of the model. 

   

Uncertainty in health risks due to anthropogenic primary fine 

particulate matter from different source types in Finland 38 

Evaluates parameters uncertainty reflected on the overall 

model result. 

MC simulation for the propagation of uncertainty in 

parameters and sensitivity analysis conducted between 

input parameters and model result.  Probabilistic 

estimates in parametric dose-response relationships 

were important in the conclusion of the model. 

 

   

Separation of uncertainty and interindividual variability in  

human exposure modeling 39 

Distinguishes between variability and uncertainty in the 

exposure assessment model. Uncertainty is evaluated in 

the parameters and model result. 

 Second-order MC uncertainty propagation and 

uncertainty analysis to assess the output parameter 

distribution by ranking between 100 simulated 

populations. 

   

An integrated fuzzy-stochastic modeling approach for risk 

assessment of groundwater contamination 40 

Explores parameters uncertainty in the input parameter 

and structural model uncertainty. It distinguishes between 

variability and uncertainty. 

Variability in the input parameters is modelled using 

MC simulation and uncertainty in the inputs is 

modelled using fuzzy-set theoretic approaches. Results 

of the uncertainty in input parameters were important 

in the conclusion of the model. 

   

Probabilistic Framework for the Estimation of the Adult and 

Child Toxicokinetic Intraspecies Uncertainty Factors 41 

Describes parameters uncertainty accounting for 

variability and uncertainty in the input parameters. 

MC sampling for variability in the input parameters 

and toxicokinetics uncertainty factors (index measure) 

it is used for uncertainty in the parameters. 

Probabilistic estimates in the input parameters were 

considered in the conclusion of the model. 

   

Bootstrap-after-Bootstrap Model Averaging for Reducing 

Model Uncertainty in Model Selection for Air Pollution 

Mortality Studies 42 

Describes the uncertainty in the correctness and choice of 

models. Does not distinguish between uncertainty and 

variability. 

 BMA is conducted initially to yield a set of plausible 

weighted models, and then bootstrapping resampling is 

applied to weight each of the original plausible models. 

Results of both parametric and structural uncertainty 

were considered in the conclusion of the models. 

      

MC, Monte Carlo; BMA, Bayesian model averaging; MCMC, Markov chain Monte Carlo; UQ, uncertainty quantification 
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One limitation of the standard MC technique is that it assumes that the distributions 

of the input parameters are known. In reality, the specific distributions of the input 

parameters are hardly known and the output distributions are sensitive to the selected 

input (prior) distributions. 
44

Examples of MC methods applied to environmental 

health exposure and impact assessments include: modelling air pollution for fine 

particles, 
27

 transport intervention studies 
30, 34

 and exposure to food chemicals. 
24

 

 

Second-order probability 

Second-order probability methods are facilitated by MC techniques (called second-

order Monte Carlo methods). Second-order probability methods 
45

 attempt to 

distinguish between two types of uncertainty in the model parameters: “lack of 

knowledge” and “variability”. For ease of illustration and without loss of generality, 

consider an EHIA model with one parameter only. In these methods, both types of 

uncertainty in the model parameter are propagated. This is done computationally 

using two loops: the outer loop propagates the “lack of knowledge” and the inner 

loop propagates “variability”. “Lack of knowledge” defines the uncertainty in the 

parameters of the distribution of the model parameter (such as its mean or variance 

in the case of a normal distribution). The uncertainty in each of the parameters of the 

distribution can be expressed as a bounded interval. The inner loop propagates the 

“variability” in the model parameter, conditional on the distribution defined in the 

outer loop. Second-order MC simulation starts by selecting values of the parameters 

of the distribution uniformly between the lower and upper bounds in the outer loop 

and then fixes the distribution for the inner loop calculations. The variation in the 

inner loop sampling distribution represents the “variability”, and the variation in the 

outer loop sampling distribution represents the “lack of knowledge”. One limitation 
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of the second-order MC method is interpreting what constitutes “lack of knowledge” 

or “variability” in the input parameters of the model. Before the simulation is 

performed, the interpretation is subject to the judgement of the modeller. Potential 

difficulties can arise for the modeller in characterising the “lack of knowledge and 

“variability” in the model parameters. Examples of the application of second-order 

probability methods in environmental health include microbial hazard 

characterisation 
33

 and human exposure modelling of contaminants through different 

environmental media (air, food, soil and water). 
39

 

 

Bayesian methods 

Bayesian model averaging (BMA) techniques 
46

 are used to handle model 

uncertainty by formulating alternative competing models supported by some 

statistical model averaging techniques. The predictions of multiple model results are 

combined and weighted using “information criteria”. BMA applies a mixture of 

Bayesian computation, statistical model averaging approaches and likelihood 

measures. It typically involves using some information criterion-based techniques 

such as Bayesian Information Criterion (BIC) 
47

 and Akaike Information Criterion 

(AIC). 
48

 Posterior weights are assigned to the competing models reflecting their 

plausibility given the data, and model selection is used to reduce the uncertainty in 

the different model structures. BMA have been used in conjunction with 

bootstrapping methods. In bootstrapping methods, a single sample is taken from the 

parameter values of the model and used as the reference distribution from where to 

subsequently resample to estimate the original sampling distribution. BMA was 

applied to aid in the model selection in an air pollution mortality modelling study. 
42
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The implementations of some Bayesian methods in the propagation and computation 

of uncertainty are usually supported by Markov Chain Monte Carlo (MCMC) 

techniques using algorithms for computing high dimensional joint distributions. 
49

 

MCMC sampling constructs a Markov chain (discrete stochastic process) of 

correlated random samples with the main objective of finding the Bayesian posterior 

distribution of the input parameters. The rate of convergence of the MCMC 

algorithm is calculated using probability theory. MCMC techniques can handle the 

uncertainty in a large number of parameters. 
21

 The MCMC method has been applied 

in air quality modelling. 
35

 One potential limitation of applying Bayesian methods is 

the tendency to use subjectively assigned probabilities based on prior beliefs. 

Posterior distributions are dependent on prior beliefs of experts on the choice of prior 

distributions. 

 

Fuzzy set theoretic methods 

Fuzzy-based methods express the uncertainty in a non-probabilistic way via a fuzzy 

set. 
20

 A fuzzy set is defined by its elements and a membership function. A 

membership function measures the degree (between zero and unity) to which an 

element belongs to a set. In fuzzy set methods, membership functions are used to 

characterise the uncertainty in the input parameters of a model, particularly when 

there is insufficient information to estimate probability distributions or insufficient 

knowledge to define clear individual states or events. Fuzzy membership functions 

differ from probability distributions in one fundamental aspect. A probability 

function measures the “probability that an event takes place” by using a numerical 

probability distribution. On the other hand, a fuzzy membership function measures 

the “degree to which an event occurs”, in other words, it measures the imprecise 
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nature of the definition of the event, not the probability that the event occurs. The 

uncertainty in a parameter that cannot be modelled using a probability distribution 

can be characterised instead as a “vague” parameter, representing some imprecise 

qualitative information on the parameter that cannot be expressed accurately. The 

use of fuzzy set methods can be limited (and should not replace probabilistic 

approaches) in circumstances when there is sufficient information and data 

availability to derive probability density functions. 
18, 50

 Examples of applications 

using fuzzy methods in EHIA include the human health risk assessment of 

groundwater contamination 
40

 and air pollution modelling. 
36

 In both examples, 

membership functions were constructed to map qualitative data (collected from 

questionnaires or guidelines) on the level of pollutant concentrations into fuzzy sets 

(e.g. “strict”, “medium” and “loose”).  

 

Deterministic sensitivity analysis 

Deterministic sensitivity analysis can be thought as a subset of uncertainty analysis. 

Deterministic sensitivity analysis consists in varying the values of model parameters 

systematically in order to explore the sensitivity of model result to changes in the 

parameters. In general, sensitivity analysis can be categorised into local sensitivity 

and global sensitivity. 
51

 Local sensitivity analysis evaluates the uncertainty on the 

model result in the vicinity of a fixed set of values of the parameters. Global 

sensitivity analysis evaluates the overall uncertainty with respect to the full range of 

values of model parameters. The use of sensitivity analysis is hampered when 

dealing with large number of input parameters because it would be difficult to 

summarise the results of the analysis in an informative manner. Deterministic 

sensitivity analysis does not allow modellers to evaluate the sensitivity of the model 
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parameters by taking into account their statistical likelihood. Compared to 

probabilistic-based methods, 
52

deterministic sensitivity analysis can therefore be less 

favourable when dealing with large number of parameters. Examples of 

deterministic sensitivity analysis in EHIA include the health impact of air pollution, 

25
 risk management control strategies on air quality and health 

26
 and the health 

impacts of menu labelling on obesity. 
28

 The uncertainty was explored by varying the 

input model parameters and investigating their effect on health impacts. 

 

Discussion 

A couple of reviews have been conducted previously on health impact assessment 

modelling, 
53, 54

 but these reviews did not address uncertainty quantification (UQ) 

methods explicitly in the models. In this paper, we presented a systematic review of 

quantitative methods used to handle uncertainty in EHIA models.  

 

Limitation and guidance on current methods 

Appropriate methods for handling uncertainty from other disciplines may not have 

been identified since these were beyond the scope of this review.  The emphasis of 

this review is on the relatively new established field of health impact assessment 

(HIA) focussing on its applications in environmental health. We limited our review 

to the academic literature and potential studies in the “grey” literature may have not 

been identified. Evidence from the methods identified in this review can be 

interpreted as illustrative of the existing methods used to deal with the uncertainty in 

EHIA. 
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Most random sampling methods, currently used in EHIA, use probability 

distributions (e.g. triangular, normal, lognormal distributions) to characterise the 

uncertainty in input parameters. Most sampling-based MC techniques are relatively 

simple in terms of formulating the computational steps and in handling of “high-

dimensional” problems (i.e. models with many parameters). This is in contrast with 

other analytically-based methods used in engineering applications, such as 

differential analysis 
55

 which can be computationally demanding and difficult to 

implement when handling large numbers of input parameters. The differential 

analysis method requires calculating partial derivatives to estimate the uncertainty in 

the model outputs that results from the assigned input distributions in the model. 

Determining the partial derivatives can be difficult to implement. This could explain 

why MC techniques are more widely implemented over other analytically-based 

method (such as differential analysis) in EHIA models. 

 

Most sampling-based MC techniques assume that there is sufficient data to help in 

defining the shapes of the distribution. Bayesian methods can address the issue of 

lack of data availability through the choice of prior, specified as non informative or 

uniform prior. The prior distributions can be elicited from experts. 
56, 57

 Most 

probabilistic techniques, with the exception of second-order MC methods, cannot 

fully distinguish between the two natures of uncertainty: the uncertainty due to lack 

of knowledge, and the uncertainty due to random variation (variability). 

 

Probability theory is often regarded as insufficient to model the uncertainty 

associated with lack of knowledge. One argument against the axiomatic nature of 

probability is that probability theory uses some form of “equitable” probability as a 
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model for general uncertainty that cannot fully distinguish between a random 

process, imprecision or lack of knowledge. 
58

 In the context of health impacts or risk 

assessment, additional care should be taken in the treatment of ignorance as natural 

variability. For instance, when the modeller is not sure about the initial “shape of the 

distribution”, that uncertainty should be simply regarded as “lack of knowledge” and 

therefore should not be treated implicitly as natural variability or a random process.  

58
 In circumstances characterised by lack of knowledge, non-probabilistic approaches 

such as fuzzy sets can be useful alternatives in handling the uncertainty. Fuzzy set 

methods can help quantify the uncertainty associated with lack of knowledge, 

particularly in linguistic variables that cannot be expressed precisely using classical 

sets or numbers. 

 

Moreover, UQ methods currently in use are less amenable to handling the 

uncertainty at a more conceptual level, such as the uncertainty associated with the 

formulation and definition of the boundaries of the system of the model. A broader 

concept of uncertainty, in terms of “its location”, is needed in the assessment 

associated with the formulation of the model, particularly when the sources of 

uncertainty extend far beyond the issues of parameters, input data and model 

structure.  

 

The appraisal of uncertainty often excludes the selection of the framing assumptions 

made in many assessments. 
6
 In addition, when many outcomes and complex 

interactions are reduced or simplified into a single framing assumption, many factors 

are typically ignored, resulting in an oversimplified assessment. An interesting 

example is found in the argument for bio-fuels in EHIA. 
59

 Initially, the assessment 
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for bio-fuels presented an ideal opportunity for sustainability and providing a 

solution for elevated fossil fuel-cost. However, the assessment failed to consider 

wider potential impacts beyond the narrow focus of the intervention, such as in the 

area of food security.  

 

Recommendations for future directions and further research 

It is important that we continue to investigate new methods to handle uncertainty in 

EHIA and that we compare the impact of different methods on EHIA results. A 

broader perspective of uncertainty is required to understand the wider context of the 

issues surrounding EHIA. This is necessary to define the boundary of the system and 

to quantify a structure of the context of the assessment. By quantifying a causal 

structure in the specified context, all sources of uncertainty can be traced backward 

and forward, from the conceptual sources to the analytical ones. A decision-maker 

might not only be interested in the analytical sources of uncertainties but more 

fundamentally in the conceptual ones. Framing assumptions can be inevitable when 

attempting to quantify health effects of interventions. Decision-makers might prefer 

a single estimate rather than an uncertainty range or distribution, and this might 

dissuade the analyst from quantifying sources of uncertainty. The diversity of the 

modelling approaches in quantifying uncertainty is also great. Some of the above 

mentioned reasons could partially explain why there is no unified approach in the 

EHIA literature to quantify the sources of uncertainty at a more conceptual level. 

There are current approaches which deal with the conceptual sources of uncertainty 

but they rely on qualitative assessment and expert judgment. One example is the 

RIVM/MNP guidance for uncertainty. 
7, 60

 The RIVM/MNP guidance, developed by 

the Netherland Institute for Public Health and the Environment, provides a 

systematic approach to documenting and communicating the uncertainty at different 
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stages in the assessment. They identify sources of uncertainty, including that 

associated with problem framing, by means of using checklists. However, the 

limitation of this and similar approaches is that they rely heavily on qualitative 

assessment and expert judgement to deal with conceptual sources of uncertainty. 

 

Further research and debate are needed to standardise the way uncertainty is taken 

into account in EHIA modelling practice. Qualitative and quantitative approaches 

would be best integrated into a single framework. A systematic, integrated and 

comprehensive framework should be provided to represent the different sources of 

uncertainty. Researchers conducting quantitative EHIA can benefit from an 

integrated framework to handle uncertainty that extends beyond the standard 

methods of dealing with uncertainties by incorporating different sources of 

uncertainties in an explicit and systematic way. 
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Research paper 1:- APPENDIX A - Details of literature search strategy 

 
 

Search 1 – online search of Ovid MEDLINE & EMBASE 
 

http://ovidsp.tx.ovid.com/ 
 

(18 hits – 10 initially retrieved). 
 

Using the “Keyword” search field and Boolean search string: 
 

uncertainty AND health impact assessment AND (quantitative OR quantification 

OR model OR models  OR modeling OR modelling OR modeled OR 

modelled OR prediction OR simulation OR projection OR software) 

Database: Ovid MEDLINE & EMBASE: 
 

1.  (uncertainty and health impact assessment and (quantitative or 

quantification or model or models or modeling or modelling or 

modeled or modelled or prediction or simulation or projection or 

software)).mp. [mp=ti, ab, sh, hw, tn, ot, dm, mf, ps, rs, nm, an, ui] 

 

 

Search 2 – online search of ISI Web of Science 

http://apps.isiknowledge.com/UA_GeneralSearch_input.do?product=UA&search_

mode=Gen eralSearch&SID=2DJpHfL@n@HPfhlpoPo&preferencesSaved= 

(243 hits, 29 initially retrieved). 
 

Using the “topic” search field and Boolean search string: 
 

uncertainty AND health impact assessment AND (quantitative OR quantification 

OR model OR models OR modeling OR modelling OR modeled OR modelled 

OR prediction OR simulation OR projection OR software) 

“Limits” advanced search field included: latest 5 years and English language. 

Lematization: “off” 

 

Search 3 – online search Wiley 

online library 

http://onlinelibrary.wiley.com/adva

nced/search (49 hits, 12 initially 

retrieved). 

Using the “abstract” search field and using Boolean search string: 
 

uncertainty AND health impact assessment AND (quantitative OR quantification 

OR model OR models OR modeling OR modelling OR modeled OR modelled 

OR prediction OR simulation OR projection OR software) 

  

http://ovidsp.tx.ovid.com/
http://apps.isiknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=2DJpHfL@n@HPfhlpoPo&preferencesSaved
http://apps.isiknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=2DJpHfL@n@HPfhlpoPo&preferencesSaved
http://apps.isiknowledge.com/UA_GeneralSearch_input.do?product=UA&search_mode=GeneralSearch&SID=2DJpHfL@n@HPfhlpoPo&preferencesSaved
http://onlinelibrary.wiley.com/advanced/search
http://onlinelibrary.wiley.com/advanced/search
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3.3. Supplementary material to chapter 3 - Scope of the methods and 

their relation to uncertainty 

To clarify the extent to which the methods proposed in this thesis deal with 

uncertainty, it is important to revisit some of the concepts highlighted in the earlier 

chapters. The thesis classifies uncertainty in two dimensions: the nature and the 

location. As shown in the earlier chapters, the nature of uncertainty relates to the 

underlying causes of uncertainty: lack of knowledge or random variatibility, and the 

location  of uncertainty relates to where the uncertainty occurs in the assessment. 

The location of uncertainty is dealt with using two perspectives (conceptual and 

analytical), and the nature of uncertainty is only dealt with using lack of knowledge 

via a deterministic domain.  These two above aspects of uncertainty define the scope 

of how the central issues identified in the thesis are formulated in the methods. 

 

The nature of uncertainty 

There are many interpretations of what constitute lack of knowledge or random 

variability. Lack of knowledge is simply defined as a type of reducible uncertainty 

that can be reduced with further research. On the other hand, random variability is 

defined as a type of irreducible uncertainty that cannot be reduced with further 

research. It is worth noting that as more research is conducted, uncertainty relating to 

lack of knowledge could be found to be of random (or stochastic) nature. However, 

care should be taken not to treat lack of knowledge as random variability initially in 

the assessment. Some probabilistic approaches such as the Bayesian method can deal 

with both random variability and lack of knowledge. However, it is important to 

distinguish explicitly between the two types when conducting probabilistic 

uncertainty propagation.  Random variability can be interpreted as a type of 
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"objective probability" and lack of knowledge can be defined as "subjective 

probability". When a modeller is not sure about the shape of the distribution initially 

in the assessment, such uncertainty constitutes “lack of knowledge” and should not 

be treated implicitly as “random variability” (or as a stochastic phenomenon) in 

some instances. For example, assume a modeller dealing with parametric uncertainty 

has observed data with only two values for a variable representing “age” of 

individuals (e.g. age 12 and age 45). If the modeller assumes a uniform distribution 

for age, the assertion is made that “age” is a random variable , and given the 

distributional choice, each value for age is “equally likely to occur”.  In this case, the 

modeller is implicitly treating” lack of knowledge” as random variability (since the 

modeller is not sure about the shape of the distribution and has limited data: only two 

observed values for “age”).  If the objective of the assessment is to propagate the 

uncertainty when dealing with limited information or incomplete data in an explicit 

way, treating lack of knowledge as random variability might not be the most sensible 

thing to do. The key assumption in the thesis for dealing with the nature of 

uncertainty (particularly with “lack of knowledge”) is explained  in the following 

statement.   

 

The way the uncertainty is propagated in the assessment depends on how the 

uncertainty is defined in terms of its nature, that is whether the uncertainty is due to 

unavoidable random variations or lack of knowledge. 

 

The thesis  makes this distiction  explicit, in the way the uncertainty is defined in the 

assessment, so that the use of methods are clear when propagating uncertainty and 

identifying its underlying causes. One alternative to the prior example is to define 
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lack of knowledge in the variable “age”, and treat the uncertainty as bounds or 

interval in the propagation of uncertainty (research paper 3 and supplementary 

material chapter 5). 

 

The location of uncertainty 

As shown in the earlier sections, the location of uncertainty is broadly classified in 

the thesis by two types (i.e. analytical and conceptual). Much work has been done on 

analytical uncertainty and less work has been done on conceptual uncertainty in 

various quantitative EHIA (shown in research paper 1). The objective of addressing 

conceptual uncertainty in the thesis is to focus on a wider concept of assessment of 

impacts. The proposed method in the thesis only addresses the framing assumptions 

or mapping of the causal pathways to population health, the second aspect of 

conceptual uncertainty. This can be an important limitation as there are other aspects 

of conceptual uncertainty identified in the thesis that are not explicitly addressed in 

the proposed method. These include aspects relating to the “context” of the 

assessment which concern issues of time and space, such as defining the place and 

time where people are considered exposed to environmental stressors, defining the 

specific target population or specifying more specific health outcomes in the 

assessment.  

 

Whilst contextual issues of time and space are an integral part of every EHIA, a 

more systems-based approach to uncertainty with the emphasis on a wider concept of 

assessment of impacts is proposed in the method. The rationale is to encourange 

researchers to think as broadly as possible about the potential range of impacts 

before the implementation of any EHIA. As highlighted in the literature review, a 
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narrow focus of assessment of impacts is exemplified in the case for biodiesel, where 

due to its narrow focus and definition of the assessment of impacts, other wider 

potential health implications in the area of food security were easily overlooked. 

Another example of a narrow focus and definition of the assessment of impacts is 

found in the study of sun exposure and skin cancer. Sun exposure is associated with 

a reduced risk of some types of cancer.
61

 Consequently, any potential intervention 

that effectively reduce sun exposures may overlook the risk of increasing other types 

of cancers. These two examples show how a narrow definition of the assessment of 

impacts can lead to potential health implications to be overlooked. In this thesis, 

therefore, the key assumption for dealing with conceptual uncertainty is explained in 

the following statement. 

 

A more systems-based (higher-level) approach to conceptual uncertainty is 

necessary to shift the focus away from a narrow definition of uncertainty in the 

assessment of impacts.   

 

It is important to refocus the handling of uncertainty from a narrow definition of 

assessment of impacts in an EHIA. The emphasis of the proposed methods is on the 

framing assumptions as they can help identify potential health implications. It is 

worth noting that “framing assumption” describes a set of concepts relating to how 

causal interpretations are assumed in the assessment. The term “framing” refers to 

the construction and interpretation of causal assumptions in a HIA model. The term 

is used in the thesis to define the mapping of the causal pathways as they relate to 

human health. A potential causal interpretation, as defined in chapter 4 of the thesis 

does not represent “causality” in the sense of Bradford Hill criteria for causation 
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commonly used in epidemiology. The term “causal” is used to describe a potential 

interpretation of causality in any HIA model.  It does not represent a real causality in 

epidemiology. In the formulation of an HIA, such representation of causality is 

necessary as all models require some form of simplification of how reality “works”. 

The objective of a system-based (high-level) approach and wider focus on 

conceptual uncertainty is to be explicit about the potential causal assumptions that 

are made in the mapping of the causal pathways when formulating a HIA model. 

(research paper 2 and supplementary material chapter 4). 
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4. Conceptual perspective - the mapping of the causal 

pathways as part of conceptual uncertainty 

4.1. Preamble to research paper 2 – HIA specific question to 

Conceptual uncertainty 

Research paper 2 proposes a method to deal with one aspect of conceptual 

uncertainty associated with framing assumptions. The potential pathways linking the 

effect of a potential intervention to health outcomes are defined in the case study of 

the paper. The paper attempts to quantify the sensitivity of the HIA based on how the 

framing assumptions are defined. It argues that prior to conducting a detailed 

quantitative HIA of an environmental intervention  it is necessary to assess the 

sensitivity of the assessment to the framing assumptions. In the following paper, a 

plausible formulation of assessment of impacts is explored as part of a more system-

based approach to conceptual uncertainty. The method is applied to a case study of 

housing insulation where a wider concept of assessment of impacts is explored.   

 

Housing has been chosen as an example to explore a wider concept of assessment of 

impact, given that housing conditions can have a significant effect on population 

health.
62

 The objective of the case study is to assess as broadly as possible the 

uncertainty about the potential pathways in which a potential housing intervention 

can affect health and to identify the sensitivity of the HIA to those pathways 

(framing assumptions).  The case study in the paper rather defines the HIA question 

more broadly.  
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The case study addresses the following HIA question. 

 

 What would be the public health impacts of improving housing insulation (energy 

efficiency)in England?  

 

Based on the proposed intervention, the above question relates to the potential 

consequences the variable “housing insulation” can have on the outcome 

“population health”. The HIA seeks to identify all potential pathways and their 

associated uncertainty relating to the effects of the intervention on the outcome.  

Research paper 2 focus explicitly on some aspects of conceptual uncertainty in the 

mapping of the causal pathways whilts ignoring other parametric aspect of 

uncertainty (analytical uncertainty).  Research paper 2 derives effect sizes from a 

literature search. The actual values of the effect sizes are normalised and assessed in 

relative terms. Input and output variables of the model are assumed to be discrete 

numbers in the range -1 to +1. Such normalisation can be a source of analytical 

uncertainty as aspects of statistical significance are not fully addressed in the 

selection of the effect sizes (this can be a limitation of the proposed method).    

 

The difficulty in quantifying the uncertainty of the health impacts of housing 

insulation broadly arises due to the complex mechanisms between the different 

pathways of exposures and population health. This broader aspect of uncertainty is 

prioritised in the case-study example.  For example, housing insulation can improve 

energy efficiency but it also can decrease home ventilation. A decrease in home 

ventilation can increase in the growth of mould. Mould in the household can increase 

indoor air pollutants and play a part in the increase of cardio-respiratory conditions 
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such as asthma. If sources of natural ventilation are assumed (e.g. window opening, 

building air permeability) rather than mechanically driven, ventilation in the home 

can decrease energy efficiency and indoor air quality. Additionally, indoor air 

quality can be affected by outdoor sources of air pollution assuming natural sources 

of ventilation (e.g. window opening).  Due the complexity of these mechanisms 

between the different pathways of exposures, the housing intervention is modelled as 

a complex system (this is illustrated in the method section of the paper).  Moreover, 

in terms of the nature of uncertainty, the intervention is modelled in a non-

probabilistic space assuming no random variables or degree of randomness in the 

input variables.  
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4.2. Research paper 2 
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Abstract 

Health impact assessment (HIA) is often used to determine ex ante the health impact 

of an environmental policy or an environmental intervention. Underpinning any HIA 

are the framing assumptions, which define the causal pathways mapping 

environmental exposures to health outcomes. The sensitivity of the HIA to the 

framing assumptions is often ignored. A novel method based on fuzzy cognitive map 

(FCM) is developed to quantify the framing assumptions in the assessment stage of a 

HIA, and is then applied to a housing intervention (tightening insulation) as a case-

study. Framing assumptions of the case-study were identified through a literature 

search of Ovid Medline (1948-2011). The FCM approach was used to identify the 

key variables that have the most influence in a HIA. Changes in air-tightness, 

ventilation, indoor air quality and mould/humidity have been identified as having the 

most influence on health. The FCM approach is widely applicable and can be used to 

inform the formulation of the framing assumptions in any quantitative HIA of 

environmental interventions. We argue that it is necessary to explore and quantify 

framing assumptions prior to conducting a detailed quantitative HIA during the 

assessment stage. 

 

Keywords: Environmental Health, Risk Assessment, Modelling, Health Impact 

Assessment, Housing 
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Introduction 

The extent to which an environmental policy intervention causes health-related 

changes is a key question in research. Health Impact Assessment (HIA) identifies 

possible health consequences of new policy interventions. 
63-65

 HIA is an area of 

increasing interest to policymakers in environmental health, 
66-68

 and there is 

considerable scope for innovation in the application of quantitative methodologies. 

69, 70
  Underpinning any HIA are the framing assumptions, which define the causal 

pathways mapping environmental exposures to health outcomes. However, the 

sensitivity of the HIA to the framing assumptions is often ignored in many 

assessments. Framing assumptions are inevitable when quantifying the health effect 

of an environmental intervention.  

 

Housing interventions such as improving housing insulation to reduce heat loss are 

examples of environmental policy interventions. Improving housing insulation, as an 

energy efficiency measure, is encouraged as part of the UK housing regulations to 

reduce carbon emission and energy cost. 
71

 Insulating homes is not only justified on 

energy efficiency grounds alone, but can also be justified on health grounds. Energy 

efficiency measures can benefit health through increasing indoor temperature in 

winter. 
72, 73

 However, changes in the indoor environment as a result of reducing 

permeability can also affect health adversely. If improving insulation is not 

accompanied by adequate ventilation, there is the risk of increasing indoor pollutant 

concentrations. 
74

  

 

Housing interventions are examples of complex (environmental) 

interventions.
75

There is no unique definition of a complex intervention. In general, a 
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complex intervention has multiple direct and indirect pathways in which it can affect 

health. 
76

 The pathways associating a complex environmental intervention with 

health can also be ill-defined and there are often multiple health outcomes. 

 

HIA has been used to determine the health impacts of housing policy and 

interventions. 
77

  However, large uncertainties can arise in HIA models from the lack 

of understanding of the complex mechanisms between the indoor environment and 

health. Sources of uncertainty can include the framing assumptions associated with 

the formulation of the HIA, in addition to the more known sources of analytical 

uncertainty associated with the parameters and the structure of the models. 
78

 

 

Framing assumptions arise at the “conceptualisation” of the HIA model formulation, 

4
 and define the causal assumptions underpinning the assessment. The framing 

assumptions are typically ignored when appraising the uncertainty in many 

assessments by discarding factors that one considers unimportant. 
4, 6

 Since the 

outcome of a HIA can be highly sensitive to the choice of the framing assumptions 

made initially in the assessment stage, it is important to characterise and quantify 

these framing assumptions. 

 

Mathematical methods can be used to quantify the framing assumptions when 

defining the context of the assessment in evaluating the health impact of 

environmental interventions, ex ante. The use of complex system mathematical 

models has been proposed in public health. 
79-81

 This paper demonstrates the use of 

another type of complex system modelling approach, known as fuzzy cognitive 

mapping (FCM). In this study, we use FCM to quantify the framing assumptions in 
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the assessment stage of a HIA model of housing insulation, as a case-study example. 

The approach however is widely applicable to others examples of complex 

environmental interventions. 

 

Overview of FCM method 

A cognitive map is a conceptual graphical model used to represent causal 

assumptions. 
82, 83

 Cognitive maps have been used for conceptual modelling in many 

areas in the social sciences, such as in assessing the social implications of 

nanotechnologies and in describing social knowledge in the political sciences. 
84, 85

 

Cognitive maps can be extended to incorporate imprecise qualitative knowledge into 

quantitative variables, known as fuzzy cognitive maps. Fuzzy cognitive maps (FCM) 

have been used as a modelling tool to represent conventional and Aboriginal 

perspectives on the determinants of diabetes. 
86

 

 

In this study, FCM is used to model framing assumptions quantitatively. Framing 

assumptions can be first explored with the use of causal diagrams. A causal FCM 

diagram shows the connections between variables in the “system of interest” and can 

be used to define the context of the assessment in which the environmental 

intervention is applied. The main emphasis of using causal FCM diagrams is on 

identifying causal pathways as they relate to health outcomes. 

 

In general, FCM diagrams are directed graphs, which indicate directional links in the 

causal pathways. Fuzzy cognitive maps diagrams are described by a set of nodes and 

their causal links. In the context of this study, each node represents a key indoor 

factor, a health or a non-health outcome. The relationships between the nodes are 
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described through directional links or connections. Positive (+) and negative (–) 

signs imply positive and negative causality, respectively. A positive causal link 

between a pair of nodes means that when the amplitude (level) of one node 

increases, the amplitude of the other increases. A negative causal link, on the other 

hand, means that when the amplitude of one node increases, the amplitude of the 

other node decreases. A value zero (0) between a pair of nodes implies there is no 

causal link between the nodes.  

 

A FCM was developed here to model the framing assumptions in the assessment 

stage of a HIA model of housing insulation. Fuzzy cognitive maps were then used to 

investigate the causal meachnisms and explain semi-quantitatively how intervention-

related changes in the indoor environmental exposures can potentially affect health. 

Our methodological approach developed in this study is described in five main steps 

below. 

 

Five steps in assessing framing assumptions 

The five main steps in assessing framing assumptions are: (1) synthesising the 

evidence on causal pathways from the literature; (2) constructing the causal diagrams 

from individual studies identified from the literature; (3) representing 

mathematically the combined causal diagram as a system matrix; (4) measuring the 

structural properties of the system matrix; and (5) perturbing the system to identify 

causal processes. Details of the steps are described below. Refer to Appendix A for 

detailed mathematical description of the steps and Appendix B for a walk-through 

example. 
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Synthesising the evidence on causal pathways from the literature 

Health-relevant factors and outcomes were identified in the literature to construct 

causal diagrams that define nodes and their links. A literature search of Ovid 

Medline (1948-2011) was conducted using the search terms: “housing” combined 

with “insulation” and “health” to identify studies investigating factors and outcomes 

(nodes) influencing the links between housing insulation and health. Causal 

pathways linking housing insulation and health were identified qualitatively. An 

additional hand search of the literature was conducted in Ovid Medline using the 

identified key factors and outcomes as search terms to determine quantitative 

information on the links between the nodes. 

 

Constructing the causal diagrams from individual studies identified from the 

literature 

 

Based on each published study retrieved from the literature - nodes were identified.  

An individual casual diagram was constructed and positive or negative associations 

between the nodes of the diagram were determined. Measures of effects, such as 

odds ratio, were subsequently used to quantify the strength of the causal links 

between the nodes. The measures of effects (“causal weights”) were noted with each 

connection between a pair of nodes to represent the strength of the effects, using 

either the natural logarithm of an odds ratio for a health outcome, or the percentage 

change in indoor factors or outcomes obtained from retrieved studies in the literature 

(Appendix A.1).   

 

Representing mathematically the combined causal diagram into a system matrix 

Each causal diagram was then mathematically translated into a “connection matrix.” 

The elements of each connection matrix correspond to the measure of effects 
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between each pair of nodes (causal weights). Each element is an algebraic number, 

which can be positive or negative. The value zero (0) means that there is no causal 

link between the nodes. The matrices from each published study were combined 

through summation and their values were then normalised (by dividing each element 

by the absolute maximum across all elements) to create a “system matrix” in which 

each element was in the range -1 to +1 (Appendix A.2). 

 

Measuring the structural properties of the system matrix  

The structural properties of the system matrix represent the causal structure mapping 

the causal pathways in the diagram. Indices are numerical measures, calculated using 

graph theory, 
87

 which characterise quantitatively the structural properties of the 

system. A “centrality index” shows how well connected a node (indoor factor or an 

outcome) is in relation to other nodes, i.e. how many links join with this specific 

node.  The centrality index measures the centrality of the framing assumptions 

defined in the assessment. A high centrality index indicates high importance, 

whereas a low centrality index means less relevance in the system. Nodes are 

classified according to their input and output values (which are signed causal weights 

entering or leaving a node, respectively). Those nodes with only input values (i.e. 

arrows directed to them) can be viewed as the “outcomes” while nodes with only 

outputs values (i.e. arrows directed from them) may be viewed as the “drivers” or 

“stressors”. Nodes with both input and output values can be viewed as “mediating 

factors” playing both roles. The centrality index is calculated by summing the 

magnitude of the total input and output values in the system (Appendix A.3). 
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Perturbing the system to identify causal processes  

This step is concerned with assessing the sensitivity of the assessment to the framing 

assumptions. It explores how the intervention “works” based on the framing 

assumptions made initially in the assessment. Causal processes are evaluated in the 

system matrix by means of a deterministic perturbation between the nodes in the 

diagram.   A “causal process” describes the mechanisms of the causal pathways in 

the nodes.  Each node can have a “causal activity level” which measures how each 

node ranks in relation to each other in the causal pathway. This causal activity is 

represented by values between 0 and 1 in the nodes. A node with value 0 denotes the 

node is fully “inactive” while a node showing a value 1 means that the node is fully 

“active” in terms in the causal pathway. The nodes are propagated through the causal 

pathways in a deterministic perturbation analysis until the system reaches 

equilibrium. The state of the system at equilibrium depicts the key causal processes 

(or sources of variations) in the nodes (Appendix A.4).  

 

Summary of procedures 

For easy of illustration, Figure 4 shows the methodological approach and procedures 

in diagrammatic form and in mathematical matrix representation. The data are 

hypothetical. The initial phase of the FCM development consisted of developing 

individual causal diagrams for each study based on causal links derived from the 

literature review (Fig 4.A). The natural logs of risk ratios (or percentage changes) 

were calculated to define the causal weights in each of the causal diagrams. Each 

causal diagram was then deterministically represented in a matrix (Fig 4.B). Matrices 

were combined into one augmented matrix (Fig4.C).  
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The elements of the augmented matrix were then normalised between -1 and 1 to 

give the system matrix (Fig 4.E).The combined causal system is represented 

graphically (Fig 4.D) and in matrix form (Fig 4.E).  
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Figure 4: Summary of Procedures 
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Results 

The literature search generated 40 articles from which 12 articles had sufficient 

qualitative information to establish the links between indoor environmental factors 

and health outcomes. 
73, 88-98

 Indoor factors linked to housing insulation that have 

been shown to have an effect on health, were grouped into two broad themes: indoor 

environmental exposures and built indoor environment.  

 

Based on the retrieved literature, Table 3 gives a list of potential health-relevant 

factors linked to the housing insulation for inclusion in the causal diagrams. Factors 

identified in connection with the indoor environmental exposures were indoor 

temperature (cold), air-tightness, indoor particles, dampness and mould. Factors 

identified in relation to the physical aspects of the built indoor environment were 

insulation fabric material, and mechanical ventilation systems. Among the health 

outcomes identified were winter mortality, mental health, depression, and respiratory 

conditions such as asthma and wheezing. 

 

In general, the identified studies had different epidemiological designs and each 

study focused on various associations between different indoor factors and health. 

This required the assignment of a more generic classification of the indoor factors 

and health outcomes in the causal diagram. For example, health outcomes such as 

wheezing, throat irritation, bronchopneumonia, winter mortality and asthma were 

broadly classified as: Cardio-respiratory morbidity/mortality.   
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Table 3: List of potential health-relevant factors and outcomes associated with 

housing insulation 

Theme Factors 

Indoor Environmental 

Exposures 

Indoor air quality 

Relative humidity 

Dampness, mould 

Particles generated from indoor sources (PM2.5 or 

PM10)  

Environmental tobacco smoke (ETS) 

Combustion (carbon monoxide, nitrogen oxides) 

Particles (PM2.5 or PM10) generated from outdoor 

sources  

Radon 

Volatile organic compounds (VOCs)  

Indoor temperature 

  

Built Indoor 

Environment 

Thermal insulation/ fabric material 

Mechanical ventilation systems 

Housing design and construction factors 

Air-permeability (air-tightness) 

Ventilation 

 

Indoor factors representing several pollutants affecting indoor air quality such as 

PM2.5, nitrogen dioxide, carbon monoxide, volatile organic compounds (VOCs), 

radon and environmental tobacco smoke (ETS) were classified as: Indoor air quality. 

In addition, two indoor factors corresponding to the built indoor environment were 

considered: Thermal insulation and mechanical ventilation because they are 

important energy efficiency measures. 
77

 

Outcomes 

Mortality 

Carbon dioxide/ energy savings 

Eye, nose, throat irritation 

Bronchopneumonia and pulmonary oedema 

Cough 

Asthma 

Wheezing 

Cardio-respiratory conditions 

Depression/ mental health 

Thermal comfort/ psychosocial wellbeing   

Fuel poverty 
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A total of 9 studies were identified to have quantitative information that could be 

used to assign measures of effects for the causal links between indoor factors and 

outcomes. 
77, 91, 95, 99-104

 Table 4 gives the key health-relevant factors and their 

reported quantitative associations. Studies judged to represent the same (or 

equivalent) link between an indoor factor and an outcome, were combined by 

summing the measures of effects. For example, effect sizes from factors that 

represented different types of pollutants such as: carbon monoxide, formaldehyde 

(VOCs), radon and environmental tobacco smoke (ETS) where combined by 

summing their effect sizes and the total effect assigned to the node Indoor air 

quality. This level of resolution was deemed appropriate to test the plausibility of the 

causal structure (framing assumptions) and its mechanism. The overall measures of 

effects were determined as described in the procedure above and inputs were 

assumed to deterministic (Appendix A.2). 
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Table 4: Key indoor factors and their reported associations as part of insulation improvements 

Factors Affects 

Factors 

Affected by 

Factors 

Reported Association and health impacts Strength of 

evidence 

1. Thermal Insulation 2,3,6,8 

 

 

none Howden Chapman et al., ( 2007): Energy use OR 0.81(0.72 to 0.91)▼, Indoor temperature during winter increase of 

0.5o C (0.03 to 0.95) in bedrooms, ▲, decreased relative humidity 2.3%▼; Wilkinson et al., (2009): air permeability 

(air tightness) average stock improvement from 13 (m3 /m2 /h ) to 6 (m3 /m2 /h)▲ ~ % 53 improvement in air 

tightness through insulation 

++ 

 

+ 

2. Energy Consumption none 1 Howden Chapman et al.( 2007): Energy use OR 0.81(0.72 to 0.91) ▼ ++ 

3. Air Tightness 4 1 Hirsh et al., ( 2000): ventilation decreased from geometric mean 0.73 to 0.52 per hour ~ percentage change 29%▼ 

 

+ 

 

4. Ventilation 7 

 

3,5 Fisk et al., ( 2009): If ventilation rate decreases from 10 to 5 l/s-person indoor air quality reduces 23% approximately ++ 

5. Mechanical 

Ventilation Systems 

4 none Engvall et al., ( 2003): through an improvement of ventilation OR 0.57 (0.29 to 0.85) ▲, mechanical ventilation 

system decreased ocular and nasal symptoms 

+ 

6. Indoor Temperature 

(Cold) 

8,O 1 Wilkinson et al., (2009): Warm Front study indicated a 2% increase in risk of Cardio-vascular disease winter death 

for 1o C decrease in standardized indoor temperature (SIT)*; Braubach., (2007): Depression and Mental Health OR 

1.404 ▼ through improving insulation; Howden Chapman et al., (2007): a decrease in self perceived cold, through 

insulation, improves social wellbeing = percentage change +6.2% ▲ ,emotional wellbeing + 10.9% percentage 

change ▲; Self-reported symptoms of cold or flu OR 0.54 (0.43 to 0.66)▼; wheezing in last 3 months OR 0.57 (0.47 

to 0.70)▼ , mould OR 0.24▼ 

+ 

+ 

 

++ 

7. Indoor Air Quality O 4 Mendell (2007): formaldehyde concentration OR 1.4▲ 0.34 per 20 ug.m-3 ; 0.0167 ~ 2 % excess risk of 

allergy/asthma per ug.m-3; Wilkinson et al., (2009): Radon %0.15 excess risk in lung cancer▲, ETS increased RR 

1.30 heart disease and RR1.25 for cardio-vascular disease▲; Smith et al., (2011): Carbon Monoxide indoor pollution 

on pneumonia RR 0.82 (0.70-0.98) ▲ 

+ 

+ 

 

8.Mould / Humidity O 3 Fisk et al., (2007): mould/dampness associated with an increase in asthma, cough, wheeze and upper respiratory 

symptoms OR 1.545 (1.34-1.75) ▲ 

+++ 

. O = health outcomes (cardio-respiratory morbidity/mortality and Impaired mental health/psychosocial wellbeing); direction of association: ▼ = reduction; ▲ = increase; + evidence from one 

uncontrolled study; ++ evidence from at least one prospective controlled study; +++= evidence from some prospective controlled studies 
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Representation of the causal system 

The review of the literature identified 10 key indoor factors or outcomes and 12 

associations. Figure 5 shows the causal system displaying the causal pathways 

linking housing insulation and health, based on the evidence available from the 

literature review conducted. Table 5 gives a representation of the system matrix used 

to calculate the centrality index and to simulate causal processes. 
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Figure 5: Framing assumptions in the system: modelling the process of change among indoor factors and outcomes 

Mechanical Ventilation

Systems

Cardio-respiratory

Morbidity/Mortality

+0.39

Thermal Insulation

Indoor Cold
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Mould/ Humidity

+1

Energy Consumption
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+0.31 Impaired Mental Wellbeing

+0.36

Indoor Air Quality

+0.84

Ventilation

-0.20

+0.71

Air tightness

+0.16

+0.37

-0.01

Positive (+) or negative (-) signs describe a positive causality or a negative causality respectively. A positive causality or a causal increase   indicates when node i increases, node j 

increases. A negative causality or a causal decrease indicates when node i increases, node j decreases.  

Negative causality

Positive causality
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Table 5: System matrix linked with “Causal system” 
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Thermal Insulation 0 -0.15 0.37 0 0 -0.03 0 -0.01 0 0 

Energy Consumption 0 0 0 0 0 0 0 0 0 0 

Air tightness 0 0 0 0 -0.20 0 0 0 0 0 

Mechanical Ventilation System 0 0 0 0 0.39 0 0 0 0 0 

Ventilation 0 0 0 0 0 0 0.16 0 0 0 

Indoor Cold 0 0 0 0 0 0 0 1.00 0.84 0.36 

Indoor Air Quality 0 0 0 0 0 0 0 0 0.71 0 

Mould / Humidity 0 0 0 0 0 0 0 0 0.31 0 

Cardio-Respiratory Morbidity /Mortality 0 0 0 0 0 0 0 0 0 0 

Impaired Mental Wellbeing 0 0 0 0 0 0 0 0 0 0 
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Structural assumptions  

The main indoor factors and health outcomes as identified by the centrality index 

were indoor cold, cardio-respiratory morbidity / mortality and mould / humidity, as 

shown in Table 6. High centrality values reflect high connectivity of the nodes in the 

system. A high centrality index can be interpreted as key structural assumptions 

made in the assessment. Centrality overall was low among most nodes, with 7 nodes 

having centrality index less than unity 1.0. Figure 6 shows graphically the centrality 

values. 

Table 6: Indoor factors and outcomes included in the system diagram ranked by 

their centrality indices 

 

  

Factors Centrality Type 

Indoor Cold 2.23 M 

Cardio-respiratory Morbidity / Mortality 1.86 O 

Mould / Humidity 1.32 M 

Indoor Air Quality 0.87 M 

Ventilation 0.75 M 

Air Tightness 0.57 M 

Thermal Insulation 0.56 D 

Mechanical Ventilation System 0.39 D 

Impaired Mental Wellbeing 0.36 O 

Energy Consumption 0.15 O 

D = drivers, O = outcomes, M = mediating factors 
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Main causal processes and sources of variations 

As described above, the purpose of the perturbation analysis is to determine the 

steady-state (equilibrium) level of the causal activity of the nodes (indoor factors and 

outcomes). The level of causal activity of the nodes denotes the sensitivity of the 

assessment to the framing assumptions. Main causal processes and sources of 

variations can be identified via the level of causal activity in the nodes at 

equilibrium. Based on the causal diagram shown in Figure 5, a perturbation analysis 

was carried out (Appendix A.4). Figure 7 shows the level of causal activity at 

equilibrium for each node. 
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Figure 6: Distribution of centrality values in causal system 
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Figure 7: Causal processes after perturbation based on the structural framing assumptions of the system 
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Discussion 

In this study, we presented a novel methodology to quantify the framing assumptions 

in a HIA conceptual model example of housing insulation. Framing assumptions 

represent a set of causal interpretations made about the system based on the evidence 

available in the literature. This study focused on the causal pathways linking housing 

insulation and health. 

 

Indoor cold, mould, humidity and cardio-respiratory morbidity/mortality were found 

to be central to the framing assumptions. In addition by taking a threshold value of 

0.5 (midpoint between the lowest and highest value of “causal activity”), the 

simulation recorded “high level of causal activity” (i.e. higher than 0.5) in the 

following nodes: cardio-respiratory morbidity / mortality, impaired mental 

wellbeing, mould / humidity, indoor air quality, ventilation and air-tightness.  The 

threshold value of 0.5 was considered appropriate to test the sensitivity of the 

framing assumptions on the basis of how each factor ranked in relation to each other. 

Changes in the health outcome nodes (e.g. respiratory morbidity / mortality, 

impaired mental wellbeing) are naturally expected to be high because most pathways 

lead to them. What is more relevant, however, is the finding of the high level of 

causal activity in the nodes air-tightness, ventilation, indoor air quality, and 

mould/humidity. Given their high level of causal activity, these indoor factors were 

identified as being highly sensitive to the framing assumptions. This means that 

changes in these factors are particularly important because they influence health 

outcomes and, therefore, can cause health-related changes in relation to the 

intervention. 
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Any framing assumptions are likely to be incomplete because they are based on 

factors or outcomes obtained from a relatively restricted search of the published 

literature. In the case study example, social factors such as housing composition, 

socio-economic status, the behaviour of residents were not considered due to lack of 

quantitative information to assume causal relationships. A more comprehensive 

representation of the framing assumptions would require a broader range of studies 

to incorporate housing and social factors, health outcomes and their links. In 

addition, we assumed that the included studies provided the same level of evidence 

and where comparable in terms of population intervention, study type and study 

quality since our emphasis was at the system level. 
79, 105

 For an extensive analysis 

on housing insulation and health, a systematic literature review will be required with 

quality assessment criteria prior to selecting the studies to be included in the FCM. 

Weights can be assigned based on the strength of evidence obtained from a 

systematic review. Causal weights can be specified in the FCM without affecting the 

mechanics of the method. Once quality criteria of each study are assessed, and 

weights are assigned, the result of a FCM can be used to inform the selection of the 

framing assumptions prior to conduction a comprehensive quantitative HIA. 

 

It is worth noting that most HIAs seek to assess the health impacts of an intervention 

before a particular policy proposal is implemented.  HIA comprises various stages 

such as: “screening”, “scoping” , “impact assessment” “policy modification and 

evaluation”. 
106

 Of particular interest is the “impact assessment” stage, where the 

health impacts of a proposal are identified, and causal pathways are constructed. 

Assessing the sensitivity of the framing assumptions in this stage of the assessment 
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is important. The FCM approach can be applied to supplement this stage of the 

assessment.  

 

We argue that it is necessary to quantify framing assumptions prior to conducting a 

comprehensive HIA. This study has highlighted the use of appropriate methods using 

FCM to with the framing assumptions. Decision makers should be aware that 

framing assumptions can have a significant impact in the outcome of the assessment. 

Our methodology depicts an objective method for quantifying causal assumptions at 

the system level. We believe that this method can handle many more complex causal 

pathways than that shown here.  

 

Conclusion 

This paper proposed a new method to quantify the framing assumptions in the initial 

stage of a health impact assessment of an environmental intervention. The method 

was illustrated using a housing intervention (insulation), as a case-study. The 

substantive findings of the approach hold promise in terms of applying it to other 

examples of environmental interventions. We argue that it is necessary to deal 

explicitly with the framing assumptions prior to conducting a full assessment of the 

health impacts of an environmental intervention.  

Appendix  

 

.
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APPENDIX A 

 

Constructing the causal diagrams from individual studies identified from the 

literature 

 

A causal diagram is constructed based on each published study (𝑘) identified in the 

literature search. For each identified study 𝑘, causal weights ( 𝑎𝑖𝑗
(𝑘)
) are derived from 

the reported measures of effects to describe the “strength of the causal link” between 

the variables (nodes). The causal weight is defined as the natural logarithm of the 

odds ratio (OR), if it is reported in a study between a pair of nodes i.e.  

 

𝑎𝑖𝑗
(𝑘) = 𝑙𝑛 (𝑂𝑅𝑖𝑗

(𝑘))                                                              [1] 

 

 𝑎𝑖𝑗
(𝑘)
  represents the measure of effect (or causal weight) between two nodes  𝑖 and 𝑗. 

Effect sizes expressed in other measures of effect, such as correlation coefficient or 

standardized mean difference, can be converted into odds ratio (𝑂𝑅𝑖𝑗
(𝑘)

) 
107

 to obtain 

the corresponding causal weight (𝑎𝑖𝑗
(𝑘)). If a measure of effect is reported as a 

percentage changes it is turned into a causal weights by expressing it in a decimal 

form (𝑒. 𝑔.  50% =  0.50). If the measure of effects are not provided in a study, the 

causal weights are set to 0 for that pair of variables and for that study.  
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Representing mathematically the combined causal diagram into a system matrix 

 

Each study  𝑘 can be used to construct a causal diagram. A causal diagram can be 

represented mathematically by a 𝑁 ×  𝑁  “connection matrix” (𝐴) with 𝑁 nodes 

such that the elements of the matrix A are given by  

 

𝑎𝑖𝑗
(𝑘)
= {± 𝑙𝑜𝑔 (𝑂𝑅𝑖𝑗

(𝑘)
)

0
}                                                                                        [2] 

 

Each (𝑖 𝑗)𝑡ℎ element of the connection matrix 𝐴𝑘 = {𝑎𝑖𝑗
(𝑘)
, 𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁} 

represents the measure of effect (or causal weight) between two nodes  𝑖 and 𝑗. The 

causal weights are algebraic numbers which can be positive or negative. If  𝑎𝑖𝑗
(𝑘)
= 0, 

it means that the nodes 𝑖 and 𝑗 are not connected. The connection matrices from all 

the identified studies are combined into a single matrix, known as the “system 

matrix” (𝑆) representing all the matrices {𝐴(𝑘), 𝑘 = 1. . 𝑚} . Each element of the 

system matrix 𝑆 ( 𝑠𝑖𝑗 ) is defined as 

 

𝑆 =  {𝑠𝑖𝑗 =∑  𝑎𝑖𝑗
(𝑘)  ;  𝑖 = 1. . 𝑁, 𝑗 = 1…𝑁

𝑚

𝑘=1

}                                                       [3] 
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where 𝑚 is the total number of identified studies. Each element of the matrix 𝑆 is 

normalised between −1 𝑡𝑜 1 by dividing each element by the absolute maximum 

across all elements 
86

 

 

𝑆′ = 𝑠𝑖𝑗
′   

=  
𝑠𝑖𝑗

𝑚𝑎𝑥(|𝑠𝑖𝑗|)
                                                                                                           [4] 

 

where |𝑠𝑖𝑗| denotes the absolute value of 𝑠𝑖𝑗 .  𝑠𝑖𝑗
′   gives the relative “weight of 

evidence” for the links between any nodes 𝑖 and 𝑗. For simplicity, we well refer to 

𝑆′as also the system matrix. 

 

Measuring the structural properties of the system matrix  

The structural properties of the system matrix ( 𝑆′) can be analysed quantitatively. 

Indices are calculated using graph theory. A centrality index shows how “well 

connected” a node 𝑖 is in relation to other nodes. The centrality index ( 𝑐𝑖𝑗) is simply 

calculated by the sum of the total input connection values ( 𝐾𝑖
(𝑖𝑛)
) to node 𝑗 and the 

total output connection values ( 𝐾𝑗
(𝑜𝑢𝑡)

 ) from node 𝑖 

 

𝑐𝑖𝑗 = 𝐾𝑗
(𝑜𝑢𝑡)

+ 𝐾𝑖
(𝑖𝑛)
                                                                                                               [5] 

where   𝐾𝑖
(𝑖𝑛)

  and  𝐾𝑗
(𝑜𝑢𝑡)

are given respectively by 

  𝐾𝑖
(𝑖𝑛)

  = ∑|  𝑠𝑗𝑖
′  |                                                                                                                [6]

𝑁

𝑗=1
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 𝐾𝑗
(𝑜𝑢𝑡)

  = ∑|𝑠′𝑖𝑗|                                                                                                                [7]

𝑁

𝑖=1

 

Pertubing the system to identify causal processes  

To explore causal processes and mechanisms (including feedbacks), a  deterministic 

perturbation analysis is conducted as follows. Denote by (𝑉(𝑡) ) the 𝑛-dimensional 

state vector of the system at iteration 𝑡. Each 𝑛𝑡ℎ element of the state vector 

represents the state of “causal activity” of the 𝑛𝑡ℎ node. An input state vector (unit 

vector as initial condition) (𝑉(𝑡) ) at iteration 𝑡 is multiplied by the system matrix  𝑆′ 

(𝑠𝑖𝑗
′ ) to generate a new vector (𝑉(𝑡+1)) at iteration 𝑡 + 1. The resulting vector 

(𝑉𝑗
(𝑡+1)) is repetitively multiplied by matrix 𝑆′ until the state vector reaches a stable 

equilibrium level 
14, 86

:  

 

𝑉𝑗
(𝑡+1)

= 𝑓    〈 ∑  𝑉𝑗
(𝑡) × (𝑠𝑖𝑗

′

𝑁

𝑖=1,𝑗≠1

) 〉                                                                            [8]     

 

At each iteration each element (𝑢)of the vector 𝑉𝑗
(𝑡+1) is normalised to be within the 

interval of [0, 1] by applying pointwise a threshold function 𝑓(𝑢)  (i.e. to each of its 

elements) 
14, 108

. The threshold function is a logistic continuous function which 

determines the degree of activation level of the nodes after every iteration until 

equilibrium is reached: 

 

𝑓(𝑢) =
1

1 + 𝑒−𝑢 
                                                                                                                 [9]
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The equilibrium state describes the steady-state stable causal configuration of the 

system. Each  𝑛𝑡ℎ value of the state vector represents the level of activation (“causal 

activity”) in the 𝑛𝑡ℎ node. The level of activation reflects how each node influences 

each other over a number of iterations. The level of activation is a value between 0 to 

1, where 1 is the highest level of causal activity and 0 is the lowest level  of causal 

activity. The purpose of the perturbation analysis is to measure the steady-state 

activity in each node in terms of feedbacks and causal mechanism. 
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APPENDIX B 

 

The appendix provides a walk-through hypothetical example to guide the reader 

through the various steps of the approach described in the paper. The hypothetical 

example concerns the pathways between indoor temperature (cold), cardio-

respiratory and psychosocial (wellbeing) conditions. The example is demonstrated in 

five pseudo-algorithmic steps. 

 

Step #1  (Figure B.1): Combine separate casual diagrams into one system diagram. 

The figure shows schematically two separate studies (out of 𝑘 studies) concerned 

with the connection of three variables (nodes), 𝑁1 to 𝑁3. A diagram is constructed 

based on each study to show the causal links between the nodes. A connection 

matrix is formed for each diagram and then a system matrix is constructed by 

combining the matrices as shown schematically below (refer also to the section 

“Representing mathematically the combined causal diagram into a system matrix” in 

Appendix A, for the mathematical details).    
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Figure B.1: Individual causal diagrams and system diagram 
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Causal diagrams are constructed based on each study identified in the literature review. All 

causal diagrams are combined to form a “system diagram

 

 

 

Step # 2 (Figure B.2): Parameterise the system diagram. The figure shows the 

system diagram obtained by combining all the studies from the literature review 

reporting associations between the system variables. Causal weights between the 

nodes of a diagram in each study are obtained from reported measures of effects (e.g. 

odds ratio, percentage change, etc.). The causal weights in the system diagram 

represent the combined “strengths” or “relative weights” of evidence across all 

reported links (see also section  ”Representing mathematically the combined causal 

diagram into a system matrix” and equation [4] in Appendix A).  
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Figure B.2: The system diagram  

Positive  causality Negative causality

Strong = 1 Strong = -1

Medium = 0.5 Medium= -0.5

Poor = 0.2 Poor= -0.2

N1

N3

N2
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N1= e.g.  indoor

Temperature

(cold)

N2= e.g. psychosocial 

wellbeing

N3= e.g. cardio-respiratory 

conditions

Causal weight in the system diagram = s’ij (e.g. s’1,2 = -1) derived and combined from all 

reported associations obtained in the literature review

The System diagram represents the combination of all studies reporting associations from the literature review. 

Causal weights, assigned to each link in the system diagram represent the “strength” or “relative weight” of 

evidence. Causal weights can also be described qualitatively (as shown in the table).

 

 

It is important to note that the causal weights are algebraic quantities. A positive 

causal link (between nodes 𝑖 and 𝑗) means when node 𝑖 increases, node 𝑗 increases. 

A negative causal link (between the same nodes 𝑖 and 𝑗) on the other hand means 

that when node 𝑖 increases, node 𝑗 decreases. The amplitudes of the causal weights in 

a system diagram can be interpreted qualitatively as indicating the qualitative 

strength of the links e.g. “Strong” if the amplitude of the causal weight ≥ 0.90; 

“Medium” if it is ≥ 0.50, and “Poor” if it is ≤ 0.50. 
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Step # 3 (Figure B.3): Construct the system matrix from the system diagram .A 

system diagram (showing the causal links between nodes) can be represented by a 

matrix. For a system diagram with three nodes (𝑁1 to 𝑁3), we construct a 3 × 3 

system matrix (𝑆′) as follows. If there is a causal link between node 𝑁1 and 𝑁3, 

place the causal weight value as an entry in row 𝑁1 and column 𝑁3 in the matrix 𝑆′ 

e.g. 𝑠′1,3 = 0.2. If a causal link is not directed between a pair of nodes, set the causal 

weight to 0 e.g. 𝑠′2,3 = 0 (refer to section “Constructing the causal diagrams from 

individual studies identified from the literature” in Appendix A for the mathematical 

details). 

 

Figure B.3: Mathematical matrix representation 
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The graphical structure of the system diagram can be represented mathematically in the form of matrix.

Each causal weight value (positive or negative) is placed as an entry in the appropriate row and column in the matrix.
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Step # 4 (Figure B.4): Determine the structural properties of the system using a 

quantitative measure called the centrality index.  The centrality index is obtained by 

summing the total “inputs” and the total “outputs” connection values (causal 

weights) of the matrix (See equations [5], [6] and [7] in Appendix A). Input 

connection values are the values of the causal weights corresponding to the columns 

of the system matrix; output connection values are the values of the causal weights 

corresponding to the rows of the system matrix. The values of the centrality indices 

of the nodes and the outputs from the nodes and inputs to the nodes are shown in the 

table and figure below. 

 

Figure B.4: Centrality index 
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Structural properties of the system can be analyzed once the system matrix is obtained using the centrality index. 

The centrality index is calculated by the total sum of the absolute values of column and row entries in the system 

matrix

 



96 

 

Table B.4: Summary of centrality index, inputs and outputs 

Nodes inputs outputs Centrality 

N1= Indoor 

Temperature (cold) 

0.00 1.20 1.20 

N2= Cardio-

Respiratory Conditions 

1.50 0.00 1.50 

N3= Psychosocial 

wellbeing 

0.20 0.50 0.70 

 

 

Step # 5 (Figure B.5): Pertub the system to identify causal processes. The 

perturbation analysis of the causal processes is guided through a deterministic 

iterative calculation procedure. The overall result of the perturbation analysis is 

presented in a graph and in a table as shown below.  

 

The deterministic perturbation process is conducted in two iterative sub-steps which 

consist of: (1) matrix multiplications and (2) application of a threshold function. The 

two iterative sub-steps are explained as follows. An initial state vector (unit vector) 

is multiplied by a matrix S′(s′ij, 𝑖 = 1. . 𝑁, 𝑗 = 1. . ) and then each element (𝑢) of the 

resulting vector is normalised using a threshold function 𝑓(𝑢) to create a new 

normalized state vector (𝑉𝑗
(𝑡+1)). In subsequent iterations, the state vector (𝑉𝑗

(𝑡+1)) 

is repeatedly multiplied by the matrix S′ until all state vector values reach an 

equilibrium (refer to the section “perturbing the system to identify causal processes” 

and equations [8] and [9] in Appendix A, for the mathematical details). 
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Figure B.5: Complex causal process in the perturbation analysis 
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Ex: No. of Iteration

Simulating causal processes consist in two iterative steps: (1) matrix multiplication by a state vector and (2) 

application of a threshold function.

The steps below give the details of the perturbation analysis calculations for the 

hypothetical example.  

 

Matrix multiplication by a state vector: 

𝑉𝑗
(𝑡+1) = 𝑓    〈 ∑  𝑉𝑗

(𝑡) × (𝑠𝑖𝑗
′

𝑁

𝑖=1,𝑗≠1

) 〉   

where  𝑉 = 1 ×  𝑛  is a state vector that contains the values of the nodes. 

𝑆′ = {𝑠′𝑖𝑗;    𝑖 = 1. .3, 𝑗 = 1. .3}    =  [
0 −1 0.2
0 0 0
0 −0.5 0

] 

Initial state vector (unit vector)  𝑉 = [1,1,1] represents weakly perturbed inputs 

assigned to each node. 
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Resulting vector = 𝑉 × 𝑠′𝑖𝑗 = [1,1,1] × [
0 −1 0.2
0 0 0
0 −0.5 0

] = [0,−1.5, 0.2] =

[𝑢1, 𝑢2, 𝑢3]  

 

Application of threshold function: 

𝑓(𝑢) =
1

1 + 𝑒−𝑢
 

𝑁1 =  𝑓(𝑢1) =  
1

1 + 𝑒−1×0
= 0.5 

𝑁2 = 𝑓(𝑢2) =  
1

1 + 𝑒−1×−1.5
= 0.1824 

𝑁3 = 𝑓(𝑢3) =  
1

1 + 𝑒−1×0.2
= 0.5498 

 

𝑁𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 V(1) = [0.5, 0.1824, 0.5498] = Iteration No. 1 

𝑁𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑉(2) = [0.5, 0.556034, 0.524979] = Iteration No. 2 

𝑁𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝑉(3) = [0.5, 0.559100, 0.524979] = Iteration No. 3 

 

............Until stable pattern conditions (equilibrium) are reached …… 

Table B.5 Summary of iterations  

No. of iterations 

until stable 

conditions 

(equilibrium): 

1 3 2 

 

Node 1 Node 2 Node 3 

 
1.000000 1.000000 1.000000 

Iteration No.1 0.500000 0.182426 0.549834 

Iteration No. 2 0.500000 0.315416 0.524979 

Iteration No. 3 0.500000 0.318106 0.524979 

Steady state 0.500000 0.318106 0.524979 
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Figure B.6: Causal processes between the nodes after perturbing the system 

 

 

Figure B.6 shows the stable pattern reached at equilibrium. The figure describes the 

steady-state system behaviour taking into account the feedback processes and the 

pattern of causal mechanisms between the three variables: indoor temperature (cold), 
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individual node (variable). The level of activation measures how each node influence 

one another over a number of iterations. The result of the perturbation analysis 

describes how the system functions based on its structural properties. To understand 
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dynamic causal behaviour.  
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4.3. Supplementary material to chapter 4 – Further analysis based 

on research paper 2 

The HIA model applied to the case-study example addresses conceptual uncertainty 

in the mapping of the causal pathways to health outcomes based on a literature 

search. The emphasis of the proposed method is on the characteristics of the 

assessment at a system-level. In particular, the emphasis is on “how” the system 

works rather than “what” works. The method does not address detailed parametric 

observations and sources of  heterogeneity (i.e. “what” works). Sources of 

heterogeneity that relate to seasonality or time where occupants are exposed, age, 

place of exposures (i.e. home, apartments, semi-detached homes), specific outcome 

measure (including seriousness of a disease) were not fully addressed in the method. 

This is a potential limitation of research paper 2.   

 

There are many uncertainties to consider when modelling the impact of a housing 

intervention. The uncertainty in defining the causal pathways of exposure to 

population health outcomes was prioritised in the case study. The assumed casual 

pathways were explored through a perturbation analysis performed deterministically, 

rather than stochastically to capture some underlying mechanism. This is in contrast 

to a stochastic simulation where a random element is introduced in the input 

variables to demonstrate  empirical association between the variables. 

 

The emphasis of paper 2 was on the higher level conceptual sources of uncertainty 

which included: (i) mapping specific pathways of exposures to health outcomes, (ii) 

defining the direction of causality (positive or negative and potential magnitude) in 
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addition to (iii)  determining “how” the system works, in other words how the 

system respond to changes based on the assumed causal pathways. The key steps to 

explore these uncertainties can be depicted in Figure 8, and they will be revisited in 

this section.  

 Figure 8 Key processes in exploring conceptual uncertainty in the assessment 

  

 

 

 

 

 

 

 

The objective of revising these steps is to illustrate how the mathematical 

formulations relates to the case-study and how alternative formulations can be 

potentially better.  These steps can be followed in an iterative manner or repeatedly 

(as depicted in Figure 8) . They can be described in various logical steps as follows. 

 

Mapping the pathways between exposure to health outcomes 

The review of the literature in research paper 2 identified the pathway of exposures 

linking housing insulation and health. Alternative pathway of exposures and 

determinants can be identified and formulated (in addition to research paper 2 

definition of the assumed causal structure).  This section defines a variety of 
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potential exposures in the indoor environment of relevance to public health and the 

potential effects on health.  Most common environmental hazards affecting indoor 

environmental conditions and air quality can be indoor temperature, relative 

humidity, air particles, allergens, mould and radon. 
93, 109, 110

 The quality of the 

external physical environment can also play an important indirect role such as safety 

from crime, proximity to congested areas, transportation and places. 
111

  

 

In terms of the potential effect of a housing  intervention, evidence seems to show 

association with physical and mental health improvement from insulating hourses.  

73, 91, 112-115
 Housing conditions and exposures associated with poor indoor air quality 

have been shown to have an effect on various health outcomes such as cardio-

respiratory conditions, psychosocial well-being and general quality of life. 
101, 109, 116, 

117
  In this section, the outcome measure is also defined broadly. Outcomes such as 

wheezing, throat irritation, bronchopneumonia, winter mortality and asthma are 

broadly classified as: cardio-respiratory morbidity/mortality ,and for mental health, 

psychosocial well-being is defined as an outcome. This level of resolution is deemed 

appropriate to test the plausibility of the causal structure given that the emphasis of 

the intervention is at the system-level. 

 

Capturing the information in a mathematical form 

The system is represented mathematically by a matrix for the purpose of preserving 

and analysing its casual structure. In the case-study example of paper 2 each input in 

the matrix was re-scaled into the interval of -1 to 1 by dividing each elements of the 

matrix by the maximum absolute value as followed:
86
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𝑎′𝑖𝑗 = 
𝑎𝑖𝑗

max(|𝑎𝑖𝑗|)
 

 

Figure 9A below illustrates an example of an assumed causal system on the basis of 

qualitative description taken from the literature.
118

  

 

Figure 9A: “System A” defining and structuring the system (based on qualitative 

description from Bone et al 2010)
118
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A second representation of a causal system can be equally plausible by adding 

concepts such as “fuel poverty,” “fuel cost” and “thermal comfort.” (Figure 9B) 
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Figure 9B: “System B” defining and structuring the system 
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Table 7A:Matrix from “System A” 
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UK energy efficiency 
policies 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

safety from crime 0 0 0 0 0 0. 0 0 0 0 0 0 1 0 0 

Local Climate: 
Winter 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Occupants behaviour 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Urban outdoor air-
including particles 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 

Thermal insulation 0 0 0 0 0 0 -1 0 1 0 0 0 0. 0 1 

Cold 0 0 0 0 0 0 0 1 0 0 0 0 -1 1 0 

Relative humidity 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Air tightness 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 

Ventilation 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 

Indoor air quality 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

Damp and mould 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Psychosocial 
wellbeing 0 0 0 0 0 0 0 0 0 0 0 0 0 0. 0 

Cardio-respiratory 
morbidity/mortality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Carbon dioxide 
savings 0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 7B:  Matrix from “System B” 
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UK energy efficiency 
policies 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Mechanical Heat and 
ventilation systems 0 0 0 0 0 -1 -1 0 0 0 0 0 0 0 0 

Thermal insulation 0 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 1 

Urban outdoor air-
including particles 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Fuel Poverty 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Cold 0 0 0 0 0 0 0 0 1 0 -1 -1 -1 1 0 

Increased fuel cost 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 

Ventilation 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0 

Humidity, damp and 
mould 0 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 

Indoor air quality 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 

Use of space, social 
interaction 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 

Psychosocial wellbeing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thermal comfort 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cardio-respiratory 
morbidity/mortality 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Carbon dioxide savings 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Calculating indices using graph theory 

Whilst the basis of the presumed causal structure for "system A" and "system B" are 

based on qualitative descriptions, the structural properties of each casual system can 

be compared quantitatively. Comparison between different systems can be made 

using graph theoretic indices. For example, a centrality index shows how well 

connected a variable (node) is in relation to other variables. A summary of the 

centrality index derived from “system A” are displayed in Figure 10A.  Each bar in 

the figure at x-axis represents each variable with their corresponding value of the 

centrality index at the y-axis. 

 

Figure 10A: Summary of most central variables for “System A*” 

 

* Y axis normalised (divided by the total number of connection in each graph) 
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Centrality index  in Figure 10B shows cold, thermal insulation, relative humidity, 

ventilation and indoor air quality as the most important variables in the system, 

given the assumed causal interpretations. 

 

Figure 10B: Summary of most central variables for “System B”* 

 

* Y axis normalised (divided by the total number of connection in each graph) 

For “system B”,  the most important variables based on the assumed causal structure 

are cold, thermal insulation,  humidity,damp and mould, increased fuel cost and 

cardio-respiratory morbidity/mortality. 

 

Graph theoretic indices can help “include” rather than “exclude” the framing 

assumptions quantitatively or semi-quantitatively in the appraisal of uncertainty. The 

indices can provide a quantitative measure for comparison between different 
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systems. However, these comparisons so far are based on the static structural 

properties of the causal systems. Such comparisons are only made on the basis of 

their structural characteristics and not on their function. To provide guidance on 

which structure to use it is important to analyse how the system respond to changes.  

 

Exploring ‘how the system respond to changes 

This part is concerned with how the casual pathways are propagated , in other words, 

‘how the system works” based on the structural assumptions.  The term “ structural 

assumptions” is used to define the pathways of exposures and causal interpretations. 

To explore “how the system works” or more accurately how the system responds to 

changes in a set of inputs, small simultaneous changes (perturbation) are given to 

each node. Each node is allowed to reach its maximum relative value of 1 

(activation) so that once their feedbacks or underlying mechanisms are taken into 

consideration, the nodes can reach a stable pattern. To explore the feedbacks and 

underlying mechanism, a perturbation analysis is conducted as follows (it is also  

described in Appendix A): an input state vector (𝑉1) is multiplied by the connection 

matrix (𝐴𝑖,𝑗) to generate a new vector (𝑉𝑡+1). The resulting vector (𝑉𝑗
𝑡)  is 

repetitively multiplied by (𝐴𝑖,𝑗) until the values of each vector are stable.
14, 86

   

 

𝑉𝑗
(𝑡+1) = 𝑓    〈 ∑  𝑉𝑗

(𝑡) × (𝑠𝑖𝑗
′

𝑁

𝑖=1,𝑗≠1

) 〉 

 

Each result value (𝑥) of the vector is kept within the interval of [0, 1] by a applying 

a threshold function 𝑓(𝑢)14, 108
 after every iteration as follows: 
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𝑓(𝑢) =
1

1 + 𝑒−𝑢
 

 

The stable condition describes the system feedback and causal mechanism under 

baseline scenario.  Each resulting value of a vector represents the level of activation 

(causal activity) in the individual nodes.  The causal activity reflects how each node 

influence one another over a number of iterations.  It is important to emphasise that 

the causal activity measures how the system function or behaves based on its 

characteristics, in other words, based on its assumed centrality (i.e. the centrality 

index). The centrality index measures the static properties of the system and the 

causal activity measures its function based on its static properties.  The centrality 

index and the causal activity are considered two distint measures.   

 

The following results indicate how the structural assumptions affect how the system 

operates. Figure 11A-B  shows the causal activity (level of activation) of each node 

in “system A” and “system B” once their feedbacks are taken into account.  

 

 

 

 

 



111 

 

Figure 11A: Feedbacks mechanism under baseline scenario “System A” 
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Figure 11B: Feedbacks mechanism under baseline scenario “System B” 
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response relative to other variables such as cardio respiratory conditions and 

ventilation. The result of the perturbation analysis from each structural assumption 

can provide guidance on which structure to use depending on the policy question to 

be adopted. The result from “system A” demonstrates both a higher feedback 

response in ‘cardio respiratory conditions’ and ‘carbon-dioxide savings’ relative to 

other nodes in the system.  A high level of activity in both nodes can be explained by 

the causal assumptions made in “system A” measured by the centrality index.  Both 

nodes (cardio respiratory conditions and carbon dioxide savings) are assumed to be 

outcomes variables in the system. Outcome variables are expected to have a high 

level of causal activity given the direction of the causal associations pointing towards 

them.  On the basis of the feedback mechanisms, “system A” is chosen for further 

for exploration in this example given its higher feedback on the outcome of interest.   

 

Furthermore, the resulting vector of activation obtained under baseline conditions 

“system A” (𝑉𝑗
𝑏𝑎𝑠𝑒) can be used to make comparison between scenarios. Policy 

induced changes can be hypothesised based on how the system will respond to future 

changes. UK energy efficiency policies are expected to become more and more 

stringent in the future to meet carbon reduction targets. Supposing, the UK 

government decides to insulate all existing homes to achieve zero net carbon 

emission. An ‘insulating all existing homes’ scenario can represent the maximum 

value the node ‘UK energy efficiency policies’ can obtain in “system A”. 

Mathematically, this is denoted by keeping the node during the entire iteration 

process of the perturbation analysis to a constant numerical value of 1 (maximum 

value). The resulting vector obtained {UK energy policies” (𝑉𝑗
𝑈𝐾)} is compared 
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against the {baseline scenario"(𝑉𝑗
𝑏𝑎𝑠𝑒)} as follows.  A relative change (∆) is used to 

compare both scenarios: 

 

∆= 
(𝑉𝑗

𝑈𝐾 − 𝑉𝑗
𝑏𝑎𝑠𝑒)

𝑉𝑗
𝑏𝑎𝑠𝑒  

The extent to which the UK energy efficiency scenario influences the system is 

measured by noting the value of relative change (∆) from baseline scenario. The 

relative change (∆) in this example shows how the system responds to changes in 

UK energy efficiency policies scenario compared to the baseline scenario (no 

change) as shown in Figure 12 below. 

 

Figure12: UK energy policies change scenario 
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Figure 12 shows the relative change in the nodes (change above/below average in 

relation to each other), with an increase in thermal insulation, carbon dioxide 

savings, air-tightness, and a decrease in cold. Additionally, a decrease in cold, 

relative humidity and ventilation are shown as a result of the change-model scenario 

(UK energy efficiency policies). Results of such causal changes can be qualitatively 

validated for consistency and tested whether these changes are expected if the UK 

government insulate all existing homes. Such results should be interpreted in relative 

terms and qualitatively. These values represent qualitatively the theoretical value of 

what the node could measure in reality (e.g. thermal insulation = change in W/K.m 

in all dwellings from baseline,  air tightness =  change in m3/(m2·h) @50 Pa from 

baseline, carbon dioxide savings = change in CO2 ppm from baseline and 

psychosocial well-being = change in Ryff Scales from baseline).  However, the FCM 

is not a tool suitable for parameter estimation but rather a conceptual modelling tool. 

The perturbation analysis can test the plausibility of the structural assumptions 

(measured by the centrality index) based on how the system operates. Each causal 

structure represents a framing assumption and a perception “how the system works”. 

Through the perturbation analysis, the causal activity (behaviour) of a system can 

only be observed. It is important to observe the causal activity of a system to test its 

structural assumption. According to Pearl et al. (2000),
119

 a system’s true causal 

structure can only be explicitly recognised by fully changing the state (perturbation) 

of each node and observing the consequence. This can be explored by initially 

assigning that maximum value to each node in a unit vector. In reality, the maximum 

value represents an extreme theoretical value of what the node could measure (e.g. 

indoor cold 1= lowest °C; ventilation 1= highest ACH). Each causal structure can be 
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compared and tested for qualitative consistency based on the result of the 

perturbation analysis.   

 

It is worth noting that the process of perturbation analysis might not always converge 

in some causal systems, particularly when modeling a casual system involving many 

feedback links. However, more important than knowing whether a system reaches a 

steady state condition, it is the guaranteed that the modeling process does not change 

the stability of the system being model.  In other words, that the modeling process is 

consistent in capturing the essence of the qualitative system without oversimplifying 

its complexity.  In addition, the pattern of the causal mechanism in the perturbation 

analysis can provide the basis for the selection of variables. The level of activation in 

each node highlights how each variable ranks in relation to each other once we allow 

each node in the system reach their maximum value. The perturbation analysis in 

practice can be used for model reduction, where the most important variables are 

retained based on: (i) their level of causal activity in their feedbacks and (ii) the 

result of the centrality index. For example, from “system A” results, 9 variables can 

be retained  (out 15 variables) such as insulation, airtightness, damp and mould, 

relative humidity, ventilation, cold, indoor air quality, carbon dioxide savings and 

cardio-respiratory morbidity/mortality. 
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5. Analytical perspective – propagating lack of knowledge or 

limited information as part of analytical uncertainty 

5.1.  Preamble to research paper 3 – HIA specific question to 

Analytical uncertainty 

Research paper 2 dealt with one aspect of conceptual uncertainty associated with the 

framing assumptions in a HIA of housing insulation. Changes in ventilation rates 

(among other factors) were identified in research paper 2 as being sensitive to the 

framing assumptions in the causal pathways. Another aspect of uncertainty identified 

in the framework of the thesis is the “analytical uncertainty” associated with the 

input parameters and outputs of a HIA model.  

 

Research paper 3 focuses on analytical uncertainty and estimates the uncertainty in 

two input parameters: the population exposure scenarios and the exposure-response 

function of a HIA model.  Lack of understanding or information is assumed to be the 

primary source of analytical uncertainty. The HIA model assumes lack of 

information in relation to: the definition of exposure scenarios, the distribution of the 

population to the exposure scenarios, the extrapolation of the exposure-response 

function to different subpopulation, geographical location and the assumption of a 

linear threshold above and below a particular value. The uncertainty is characterised 

via fuzzy sets defined based on evidence from a literature search and propagated 

using interval analysis calculations. Research paper 3 provides an analytical 

framework for quantifying health impacts and handling analytical uncertainty. The 

analytical framework is applied to a case-study example of indoor housing 
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ventilation exposure scenarios in England. The case study addresses the following 

HIA question. 

 

What would be the population health burden  if the population of England were 

exposed to different housing ventilation scenarios? 

 

The above question is defined broadly to include the entire population of England.  

To a limited extent the complex set of issues of parametric uncertainty in the case-

study example are only addressed in research paper 3. Ventilation rates is modelled 

as the only causal variable in the case-study, and other casual factors such as sources 

of indoor air pollution in homes, time spent indoors, geographical locations with 

sources of outdoor air pollution in rural or urban areas are not accounted in the HIA 

model. Most HIA tend to be qualitative and quantifying the health outcomes and 

their associated uncertainty in a HIA is still limited in practice. 
120

  Research paper 3 

attempts to reduce the gap in current HIA by providing an initial framework to 

quantify the health impacts and associated uncertainty. 
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5.2. Research Paper 3 
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Abstract 

Quantitative health impact assessment (HIA) is increasingly being used to assess the 

health impacts attributable to an environmental policy or intervention; and/or the 

burden due to present conditions. As a consequence, there is a need to assess 

uncertainties in the assessments because of the uncertainty in the HIA models. In this 

paper, a framework is developed to quantify the uncertainty in the health impacts of 

environmental interventions or exposures scenarios and is applied to evaluate the 

impacts of poor housing ventilation. The paper describes the development of the 

framework through three steps: (i) selecting the exposure metrics and quantifying the 

evidence of potential health effects of the exposure; (ii) estimating the size of the 

population affected by the exposure and selecting the outcome measure; (iii) 

quantifying the health impact and its uncertainty. The framework introduces a novel 

application for the propagation of uncertainty, based on fuzzy set theory. Fuzzy sets 

are used to propagate parameter uncertainty in a non- probabilistic space and are 

then used to calculate the uncertainty in the morbidity burdens associated with three 

indoor ventilation exposure scenarios: poor, fair and adequate. The case-study 

example demonstrates how the framework can be used in practice, to quantify the 

uncertainty in health impact assessment where there is insufficient information to 

carry out a probabilistic uncertainty propagation.  

 

Keywords: Environmental Health, Risk Assessment, Modeling, Health Impact 

Assessment, Housing.
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Introduction Health Impact Assessment (HIA) evaluates prospectively the health 

impacts attributable to an environmental policy or intervention and or the burden of 

disease due to present conditions. HIA requires sources of evidence and a number of 

analytical tools are available for the estimation of health impacts that range from 

qualitative to quantitative methods. To date, most HIA methods have been 

qualitative rather than quantitative. Although some quantitative HIAs have been 

conducted in the past, 
30, 54, 68, 69

 their take-up has been slow. The quantification of 

health impacts in a HIA has desirable features for decision support. It provides a 

measure of the magnitude of health consequences of an environmental policy or 

intervention. Also, it can help decision-makers evaluate the significance of the 

potential health impacts based on the assessment before a policy or an intervention is 

implemented.  

 

Although quantifying the health impacts is desirable in HIA, such quantification can 

be met with limitations in practice. 
121

 Quantifying the health impacts requires the 

knowledge of various measures such as exposure-response functions (or relative 

risks), location and size of the population affected, and the distribution of exposure 

over the affected population. Limitations on conducting a quantitative HIA can occur 

due to lack of information on the above measures or lack of evidence on the causal 

pathways linking changes in exposure with health outcomes. Such limitations, 

commonly characterised by “lack or imprecision in knowledge”, can be an important 

source of uncertainty in the quantification of health impacts. 
3
 

 

Uncertainty is inherent in most environmental HIA, partly due to lack of 

understanding of the associations between environmental exposures and health 
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outcomes, or due to random variations in these associations. 
4
 Most approaches for  

quantifying uncertainty in environmental HIA models cannot deal with uncertainty 

due to lack of knowledge. 
78

 It is important to note that lack of knowledge yields to 

imprecision in parameters. Most probabilistic approaches assume that the uncertainty 

in model parameters is due to random variations and they characterise the 

uncertainty in model parameters using probability distributions. However, random 

variation in model parameters is only one type of uncertainty in environmental HIA. 

Uncertainty in model parameters might also arise from limitations in knowledge (or 

incomplete data), and it is important to incorporate methods that can deal with the 

uncertainty due to this limitation.  As such, this paper provides an alternative non- 

probabilistic approach to incorporate parameter uncertainty due to imprecision in 

knowledge using an application of fuzzy set theory, which is novel in health impact 

assessment. Fuzzy set theory provides a method for characterising uncertainty in a 

non-probabilistic space. Fuzzy set theory is a method that does not require 

knowledge of statistical properties of parameters such as its mean, variance or 

correlations to propagate its  uncertainty, which makes it an ideal method to handle 

uncertainty that might arise due to imprecision in knowledge or incomplete data. 
20

  

 

We believe that a more comprehensive examination of HIA for handling the 

uncertainty in the quantification of health impacts is required. As methods for the 

quantification of health impacts are beginning to take-up, 
53, 122, 123 

 this paper adds to 

this literature by developing and applying a new HIA modelling framework to 

quantify the health impacts and its uncertainty.  In this paper, we will focus on 

parametric uncertainty.  Other issues associated with uncertainty such as the 

formulation of a model or framing assumptions are addressed elsewhere. 
124

 Our 
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approach involves the development of a case-study example and the application of 

the HIA framework in three sequential steps: (i) selecting the exposure metric and 

quantifying the evidence of potential health effects of the exposure, (ii) estimating 

the size of the population affected by the exposure and selecting the outcome 

measure, and (iii) quantifying the health impacts and associated uncertainty. The 

framework is demonstrated through a HIA case study which examines the health 

impact of housing ventilation in England.  

 

Housing ventilation case-study  

Housing energy efficiency measures, and changes in building designs are currently 

implemented as part of the UK government’s effort to reduce carbon greenhouse 

emissions and energy cost from domestic sources. UK government initiatives require 

improvements in insulation retrofits to avoid heat loss and encourage energy savings.  

71, 125
 However, there are concerns regarding changes in building designs retrofits 

and energy efficiency measures because they can potentially reduce indoor 

ventilation rates due to an increase of air-tightness. 
126, 127

 It is worth noting that 

ventilation needs are not always considered when assessing the performance of 

energy-efficiency interventions, and some studies suggest that a majority of newer 

airtight energy efficiency homes are under-ventilated. 
128

 It is important therefore to 

ensure an adequate ventilation level in dwellings for better health and well-being. In 

the next section, we explore how indoor ventilation can affect health through the 

development of a quantitative framework. 
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Methods 

Quantitative framework for HIA 

In general, the key steps for quantifying health impacts in a HIA include: (1) 

selecting the exposure metric and quantifying the evidence of the potential health 

effects of the exposure; (2) estimating the size of the population affected by exposure 

and selecting an outcome measure; (3) quantifying the health impacts and associated 

uncertainty. The steps are applied to the case-study of housing ventilation as follows. 

 

Step 1: Selecting the exposure metric and quantifying the evidence of potential 

health effects of the exposure 

Adequate ventilation is required to remove indoor pollutants, with several studies 

having associated poor indoor ventilation with negative health outcomes. 
95, 129-131

 

Common negative health outcomes reported due to poor ventilation exposure include 

allergies, rhinitis, asthma, wheezing, among others. Several qualitative reviews have 

concluded that a minimum ventilation rate of 0.5 air changes per hour (ACH) is 

required for health reasons. 
132-136

  However, these reviews have not produced 

quantitative summary estimates associating poor indoor ventilation and health.  

 

Currently most quantitative studies rely on different experimental intervention 

studies, to provide estimates of an association between ventilation rate and health. 

Some experimental intervention studies have provided inconclusive results due to 

limitations in the size of the population, measurement methods of ventilation, and 

the diversity of geographical locations and climate. 
137-140

 No previous study has 

provided quantitative summary estimates based on epidemiological study design. It 

is important to review the evidence based on epidemiological studies, with studies 



125 

 

that have adjusted for key confounders, to assess limitations and provide a 

quantitative summary estimate. We conducted a systematic review and a meta-

analysis, as an initial step towards quantifying the evidence and determining the 

strength of the association between poor ventilation rates and health outcomes. 

 

Systematic search and meta-analysis 

A systematic search was conducted in the Ovid Medline academic database from 

inception (-1948)  through to August 2012, using the following free-text search 

string: “Ventilation” OR “Ventilation Rate” OR “Air flow*” OR “Air exchange*” 

AND “Health” OR “Sick Building*” OR “Allergy*” OR “illness*” OR “Asthma” 

AND “Housing” OR “Home” OR “Apartment” OR “Dwelling” OR “Building” OR 

“Residence” in the title and the abstract. Details of the search strategy are shown in 

Appendix A. Papers were screened according to the following inclusion criteria: (i) 

studies published in peer-reviewed articles in English; (ii) original studies that used 

primary data (e.g. not reviews, commentaries, etc.); (iii) studies that provided a 

measure of effects (e.g. odd ratios or relative risks, hazard ratios); (iv) only studies of 

cohort, cross-sectional or case-control study design were included; (v) studies which 

defined health outcomes and measurement of ventilation. Studies meeting the 

inclusion criteria were carefully examined, and their main characteristics were 

recorded. The following information was extracted from included studies: authors, 

year of publication, study design, geographical location, study population, building 

setting (offices, residences, schools), sample size, health outcomes assessed, 

ventilation exposure measurement, degree of adjustment and effect estimates for a 

given ventilation exposure category. Ventilation exposures were defined and 

classified into two categories: “low ventilation” for ventilation rates below 0.5 air 
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changes per hour (ACH), and “reference ventilation” for ventilation rates above or 

equal to 0.5 ACH.  

 

Studies presented different effect estimates (e.g. relative risks, odds ratio, and hazard 

ratio) alongside several types of risk comparison groups for measures of ventilation 

exposures. We standardised the effect estimates and the different types of risk 

comparison into a log scale assuming a log-linear relationship of health symptoms 

with ventilation category. Risk comparisons were defined into two categories: 

ventilation rate greater than 0.5 ACH (“reference group”) versus lower ventilation 

rate less than 0.5 ACH (“exposure group”). The natural log of the effect estimates 

and standard errors were calculated from the published studies estimates and 

confidence intervals (CIs). Odds ratio (ORs), using random-effects models, and 95 % 

CI were used to represent the final quantitative summary estimate and associated 

uncertainty. In addition, quality scoring or weighting of studies was not performed 

because quality scoring can introduce some bias. 
141

 We instead assessed 

heterogeneity using subgroup analysis to examine the sensitivity of different aspects 

of the studies had on final study results (Appendix A).  

 

Step 2: Estimating the size of population affected by exposure and selecting 

outcome measure 

For the population affected by the exposure, we identified the total population of 

England up to mid-2011 projections from the UK Office of National Statistics 

(ONS) data. In terms of outcome measures, common symptoms in relation to poor 

ventilation exposures were identified through the systematic review and meta-

analysis from Step 1. In this case-study, we defined the outcome measure as 
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respiratory-related morbidity to describe the range of symptoms associated with 

poor ventilation exposure. Based on this outcome definition, we identified data from 

the Health Survey for England (HSE) - 2010 report on respiratory health to obtain 

estimates of the total annual number of existing respiratory-related morbidity cases 

in England. 
142

 

 

Step 3: Quantifying the health impacts and associated uncertainty 

We calculated the health impacts of poor ventilation and associated uncertainty as 

part of the case-study. This step involved quantifying the percentage increase in 

morbidity risk (i.e. excess morbidity risk) due to poor ventilation exposure and 

estimating the excess annual number of cases by comparing the disease burden from 

three theoretical population exposure scenarios. The methods are briefly described 

below. 

 

Firstly, the excess morbidity risk due to poor ventilation exposure per ACH below 

threshold (0.5 ACH) was quantified by calculating the natural logarithm of the odds 

ratio and its 95 % CI, obtained from the result of the meta-analysis in the previous 

step. Secondly, the health impacts of housing ventilation were estimated by 

comparing the disease burden (i.e. annual respiratory-related morbidity cases) 

attributable to the exposure under three ventilation exposure scenarios: (i) poor 

ventilation with ventilation rates less than 0.48 ACH, (ii) fair ventilation with 

ventilation rates between 0.19 ACH and 0.77 ACH, and (iii) adequate ventilation 

with ventilation rates of at least 0.48 ACH and above. These exposure scenarios 

were classified according to ventilation standards for indoor air quality. 
143
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Fuzzy set approach to uncertainty 

In the absence of sufficient information to quantify probabilistically the uncertainty 

in a parameter, fuzzy set theory can be used for this purpose.  In general, fuzzy set 

theory has been used to quantify parameter uncertainty in a non-probabilistic space. 

19, 20, 144
 Fuzzy sets are defined by a membership function that measures the “degree” 

(between zero and unity) to which a parameter value belongs to a set. 
144, 145

 Fuzzy 

sets can also be defined by their lower/upper 𝛼-cut bounds, which defines the 

interval of a fuzzy set.  In this case-study, fuzzy sets were used to characterise the 

imprecise nature of the definition of each ventilation exposure scenario and the 

uncertainty in the log odds ratio obtained from the meta-analysis in the previous step. 

In order to perform common arithmetic operations with fuzzy sets such as 

multiplication, division, subtractions and other operations, interval arithmetic was 

used. Interval arithmetic using fuzzy sets performs arithmetic operations with 

interval values by specifying a lower and upper 𝛼-cut bound to determine the 

minimum, and maximum values of the interval. We present the mathematical 

definitions of a fuzzy set, the membership function and the lower/upper α-cut 

bounds, followed by their illustration. 

 

Definitions 

A fuzzy set is described mathematically as: 
144

 

𝐴(𝑥) =  {𝑥, 𝜇𝐴(𝑥)| 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝜇𝐴 ∈ [0,1]},                                                                   [1]  

 

where 𝑥 is an element of the set 𝑋; 𝐴(𝑥) is a fuzzy set of 𝑋; 𝜇𝐴(𝑥) is the 

membership function.  The membership function of fuzzy set 𝐴(𝑥) can be given by:  
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𝜇𝐴(𝑥) =

{
 
 
 

 
 
 

0,        𝑖𝑓 𝑥 < 𝑎1

|
𝑥 − 𝑎1
𝑎2 − 𝑎1

|    𝑖𝑓    𝑎1 ≤ 𝑥 ≤ 𝑎2    

 |
𝑎3 − 𝑥

𝑎3 − 𝑎2
|   𝑖𝑓    𝑎2 ≤ 𝑥 ≤ 𝑎3      

0,       𝑖𝑓   𝑥 >  𝑎3

                                                 [2] 

 

where 𝑎1,𝑎2,𝑎3, are real numbers. The values of  𝜇𝐴(𝑥)  range from 0 to 1, where “1” 

denotes full membership of the set and “0” denotes no membership.  By membership 

we refer to the degree in which a value belongs to a set. For example, “the closer 

𝜇𝐴(𝑥) is to 1, the more likely is that an element of 𝑥 belong to 𝐴, and the closer  

𝜇𝐴(𝑥) is to 0, the less likely is that an element of 𝑥 belong to 𝐴”  

 

Additionally, a fuzzy set is defined by specifying its lower and upper 𝛼-cut bounds 

as follows, for 𝛼 ∈ (0,1) and 𝑎1 ≤ 𝑎2 ≤ 𝑎3 , we obtain: 

  

𝐴𝛼: = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)]                                                                                             [3] 

             = [(𝑎2 − 𝑎1) × 𝛼 + 𝑎1 ,    − (𝑎3 − 𝑎2) × 𝛼 +  𝑎3 ],                             [4]   

 

where 𝐴𝛼 is the 𝛼-cut bounds of  A, which describes an interval of confidence at 

level 𝛼  whose membership values are greater than the value at 𝛼. The lower bound 

of the interval is defined as 𝐴𝐿(𝛼) = 𝑖𝑛𝑓{𝑥 ∈  ℝ:  𝐴(𝑥)  ≥  𝛼 };  and the upper bound 

of the interval is defined as 𝐴𝑈(𝛼) = 𝑠𝑢𝑝{𝑥 ∈  ℝ:  𝐴(𝑥)  ≥  𝛼 } where the terms 𝑖𝑛𝑓 

and sup mean respectively the greatest lower bound and the lowest upper bound.  

See below the description of the Figure 13B for more detail. 
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Interval arithmetic operations with fuzzy sets are approximated using the 𝛼-cut 

bounds for each 𝛼 ∈ (0,1). Arithmetic operations are given in a general form as: 

 

(𝐴⊗ 𝐵)𝛼 = 𝐴𝛼⊗𝐵𝛼,                                                                                         [5]  

 

where ⊗ = +,−,∗ 𝑜𝑟 / are basic arithmetic operations and 𝐴, 𝐵 are arbitrary fuzzy 

sets.   

 

For example, addition operations using fuzzy sets are given in a general form by 

(𝐴 + 𝐵)𝛼 =  𝐴𝛼 + 𝐵𝛼 = [𝐴𝐿(𝛼) + 𝐵𝐿(𝛼), 𝐴𝑈(𝛼) + 𝐵𝑈(𝛼)]              [6]            

 

Details of interval arithmetic operations using fuzzy sets are shown in Appendix B. 

 

For ease of understanding, we present Figure 13 to explain the mathematical 

definitions and operations of the fuzzy set approach.  Figure 13A illustrates the 

concept of a fuzzy set, and its membership function. The 𝑥-axis displays the 

ventilation rate (air changes per hour - ACH) and the 𝑦-axis displays the degree of 

membership.  𝑋 is the set of all feasible ventilation rates, and 𝑥 is a single ventilation 

rate which belongs to this set. Three subsets of 𝑋 are shown in this figure: “poor 

“ventilation, “fair” ventilation and “adequate” ventilation. The dotted, dashed and 

continuous lines define respectively the membership functions of poor, fair and 

adequate ventilation sets. To explain the concept of a membership function, consider 

the poor ventilation fuzzy set.  The poor ventilation set is defined mathematically 

with equation [2]. In this set, ventilation rates 0.19 ACH belong unequivocally to 

this set. As the ventilation rate increases above 0.19 ACH, the degree of membership 
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of the poor ventilation set decreases linearly until it reaches zero at 𝑥 = 0.48 ACH.  

Conversely, as the ventilation rate decreases below 0.19 ACH, the degree of 

membership of the same set decreases linearly until it reaches zero at 𝑥 = 0.01 

ACH.  Figure 13B illustrates the concept of a fuzzy set and its interval arithmetic 

operations using the 𝛼-cut bounds. The 𝑥-axis in the figure displays poor ventilation 

set  𝐴 and  fair ventilation set 𝐵 and their summation set (𝐴 + 𝐵). The 𝑦-axis 

displays the 𝛼 -cut of the fuzzy sets.  To explain interval arithmetic using the α-cut 

bounds, consider the fuzzy set 𝐴. The lower and upper α-cut bound of fuzzy set 𝐴 is 

defined analytically with equation [4] to preserve the interval form of the fuzzy set 

during arithmetic operations. The lower bound  𝐴𝐿(𝛼) describes the interval values 

(e.g. 0.01 to 0.48) of the fuzzy set when 𝛼 = 0 and the upper bound  𝐴𝑈(𝛼) 

represents the centre value (e.g. 0.19) of the fuzzy set when 𝛼 = 1. Fuzzy set 𝐴 is 

added with Fuzzy set 𝐵 using equation [6]. The 𝛼 -cut bounds of the resulting fuzzy 

set (𝐴 + 𝐵) are obtained by substituting the values "1" and "0" for 𝛼 in the equation. 

Further details of interval arithmetic operations using fuzzy sets are shown in 

appendix B. 
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Figure 13A: Example graphical representation of fuzzy sets with ventilation exposure scenarios.  
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Figure 13B: Interval arithmetic operation with fuzzy sets using the lower/upper 𝛼-cut bounds.
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Calculating the burden of ventilation exposures using fuzzy sets 

We estimated the annual morbidity burdens attributable to the three ventilation 

exposure scenarios. The process consisted of various steps. We first calculated risk 

ratios associated with all ventilation exposure scenarios. The risk ratios were 

calculated assuming a log-linear function based on the level of ventilation exposure, 

the odds ratio and the unit threshold associated with the odds ratio. 
146

 In the risk 

ratio, two input parameters were defined as fuzzy sets:  the ventilation exposure 

scenario (i.e. poor, fair and adequate), and the excess risk in morbidity due to 

ventilation below 0.5 ACH threshold. The excess risk in morbidity was obtained by 

taking the natural logarithm of the odds ratio with its 95 % CI, and mapping the 

bounds of the 95 % CI to the bounds of the fuzzy set as shown in Appendix B. The 

risk ratio for each scenario is given by 

 

𝑅𝑅𝑖 = 𝑒𝑥𝑝[𝐸 × (0.5 − 𝑋𝑖)]                                                      [7] 

 

where 𝑅𝑅𝑖 is a fuzzy set which describes the risk ratio adjusted to the exposure in 

ventilation scenario 𝑖,  𝐸 is a fuzzy set describing the excess risk in morbidity due to 

ventilation below a threshold unit in ACH.   “0.5" is the ventilation threshold unit 

from which a health effect is observed per degree below ACH, and  𝑋𝑖  is a fuzzy set 

describing the exposure parameter for each ventilation scenario 𝑖.  

 

Changes in morbidity burdens attributable to the three ventilation exposure scenarios 

were calculated using the population attributable fraction (PAF). The PAF is an 
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epidemiological method that calculates the health effect due to changes in exposure 

for the whole population (exposed and unexposed). 
147-149

 The PAF is given by: 

 

𝑃𝐴𝐹𝑖 =
𝑝(𝑅𝑅𝑖 − 1)

𝑝(𝑅𝑅𝑖 − 1) + 1 
                                                                  [8] 

 

where 𝑝 is the proportion of the population exposed ( a value “1” for 𝑝 represents 

that everyone in the population is exposed), and  𝑅𝑅𝑖  is the risk ratio associated with 

the exposure  for each ventilation  scenario. 

 

In addition, we calculated the total number of annual respiratory-related morbidity 

cases attributable to changes in indoor ventilation as the final outcome of the 

assessment. The annual morbidity burden  (AMB) attributable to the three 

ventilation exposure scenarios is given by: 
149

 

 

𝐴𝑀𝐵 = 𝑃𝐴𝐹𝑖  ×  𝐵                                                         [9] 

 

where 𝐵 is the total annual number of existing respiratory-related morbidity cases in 

England and 𝑃𝐴𝐹𝑖 is the population attributable fraction corresponding to ventilation 

exposure scenario 𝑖.   

 

Results 

Selecting the exposure metric and quantifying the evidence of potential health 

effects 

As part of the systematic search, the literature yielded a total of 621 peer reviewed 
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articles, of which 586 articles were deemed to be irrelevant or duplicates after 

reviewing titles and abstracts, leaving 35 articles to be retrieved for further 

evaluation. Of the 35 studies assessed, 8 articles met the inclusion criteria 
150-157

 and 

were included in the meta-analysis (9,826 participants). Studies included in the meta-

analysis controlled for a number of confounders, including age, sex, crowding, 

building age, history of eczema, asthma, allergic rhinitis and outdoor temperature. 

Table 8 shows the characteristics of included studies in the meta-analysis. The result 

of the meta-analysis yielded an overall estimate of 1.34 OR (95 % CI 1.15 to 1.57) 

as shown in Figure 14, which gives a quantitative summary measure, with 

uncertainty in the 95 % CI, of the association between poor ventilation exposure 

(less than 0.5 ACH) and health. There was no evidence to suggest that the pooled 

estimate of OR and its 95% CI were affected significantly by heterogeneity 

(Appendix A)
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Table 8: General characteristics of included studies 

Author, year Design 
Geographical 

location 

Study population 
Health outcomes 

assessed 

Stenberg et al., 

1994  
Survey questionnaires, case-control 

study, 3 months, 1989 
Sweden 

464 office workers stratified for geographical 

areas with 83 % of women in each group of the 

sample 

Sick building Symptoms 

(SBS)   

Jaakkola et al., 

1995  
Questionnaires, cross sectional study, 

12 months, 1991-1992 
Finland 

399 office workers selected randomly from 14 

mechanical ventilated office buildings 
Ocular, nasal symptoms 

and allergic reactions  

Walinder et al., 

1998 
Self-administered questionnaires, cross 

sectional study, 24 months, 1993-1995 
Sweden 

234 school personnel working in the main 

buildings of 12 randomly selected primary 

schools 
Nasal symptoms 

Oie et al., 1999  
Survey questionnaires, case-control 

study, 24 months, 1992-1993 
Norway 172 children in residence homes Bronchial obstruction  

Milton et al, 2000  
Questionnaires, cross sectional study, 

12 months, 1994-1995 
US 

3,720 employees of a large manufacturer in 40 

buildings  
Monthly short-term 

sick-leave 

Emenius et al., 

2004   
Cohort study, 24 months, 1994-1996 Sweden 4089 children in residence homes Wheezing 

Hagerhed-

Engman et al., 

2009  

 Survey questionnaires, case-control 

study, 6 months, 2001-2002 
Sweden 400 children in residence homes 

Asthma, rhinitis, 

eczema 

Sun et al., 2011  
Survey questionnaires, case–control 

study, 12 months,  2006–2007 
China 

348 college students in college dorms at 

Tianjin University 
Wheezing, rhinitis, dry 

cough 
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Figure 14: Result of meta-analysis: odds ratio (95% CI) for respiratory-related morbidity in high ventilation > 0.5 ACH (reference group) 

compared to low ventilation < 0.5 ACH (exposure group.

NOTE: Weights are from random effects analysis

Overall  (I-squared = 44.5%, p = 0.082)

Hagerhed-Engman et al, 2009

Stenberg et al, 1994

Miltron et al, 2000

Oie et al, 1999

Jaakkola et al, 1995

Emenios et al, 2004

Sun et al, 2011

Author & Year

Walinder et al, 1998

+++++

+

+++

+++

++

++++

++++

Degree of

adjustment

+

1.34 (1.15, 1.57)

1.42 (0.76, 2.65)

1.27 (0.77, 2.10)

1.53 (1.22, 1.92)

1.19 (0.65, 2.13)

1.15 (1.09, 1.21)

1.20 (0.80, 1.80)

1.69 (1.17, 2.43)

Odds

ratio (95% CI)

2.00 (1.00, 3.70)

1.34 (1.15, 1.57)

1.42 (0.76, 2.65)

1.27 (0.77, 2.10)

1.53 (1.22, 1.92)

1.19 (0.65, 2.13)

1.15 (1.09, 1.21)

1.20 (0.80, 1.80)

1.69 (1.17, 2.43)

Odds

ratio (95% CI)

2.00 (1.00, 3.70)

Lower risk  Higher risk 

1.27 1 3.7

+ adjustment for sex and age only; ++ for these plus history of atopy (e.g. history of eczema, asthma, allergic rhinitis and others);

+++ for these plus crowding and building age ; ++++ for these plus smoking); +++++ for these plus outdoor temperature.  
Cochran Q= 12.61 (df= 7) P= 0.082, Tau squared = 0.0175.
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Estimating population affected by exposure and selecting outcome measure 

Based on the UK Office of National Statistics, the population in England is projected 

to be 53 million (53,107,000 people) up to mid-2011 projections. 
158

 In terms of 

outcome measures, common symptoms in relation to poor ventilation exposures 

were identified as: allergies, rhinitis, asthma, wheezing and others (Table 8). Some 

authors have grouped these conditions under the terms “building-related symptoms” 

or “sick building syndrome” to describe a range of outcomes associated with indoor 

environmental exposures. 
159, 160

 According to the HSE report of annual respiratory-

related cases in England, a total of approximately 8% including children and adults 

had reported in the last 12 months symptoms of wheezing, asthma and whistling in 

the chest. 
142

 In the HSE report, this was estimated to be a total of 4.2 million 

(4,178,720) of the current annual respiratory-related morbidity cases in England.  

 

Quantifying the health impacts and uncertainty 

The input parameters defined as fuzzy sets in the HIA model are shown in Table 9.  

Table 10 shows the morbidity burdens and corresponding uncertainty under the three 

ventilation scenarios. The negative values refer to health gains. In relation to annual 

respiratory-related morbidity cases, an excess of 371,097 cases were estimated under 

the poor ventilation scenario. Under the fair ventilation scenario, 24,997 total annual 

respiratory-related morbidity cases were attributable to the exposure.  In the adequate 

ventilation scenario, a reduction of approximately 352,562 cases in annual morbidity 

cases were estimated in England.  The uncertainty bounds under the poor ventilation 

scenario ranged between 99,398 – 1,028,008 cases attributable to the exposure.  

Under the fair ventilation scenario, a reduction of 539,846 cases and an increase of 

706,364 cases were estimated attributable to the exposure. Under the adequate 
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ventilation scenario, a reduction of between 1,197,605 and 48,605 cases were 

estimated approximately.  The fuzzy sets describing the adjusted risk ratios used in 

the calculation for each scenario is given in Figure 15. Each fuzzy set gives the 

interval values which describe the propagation of uncertainty in the parameters with 

an interval bounds and the centre value of the interval. Additionally, the fuzzy sets 

describing the total annual morbidity burden are given in Figure 16.   
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Table 9: Input parameters and corresponding fuzzy intervals 

Definition 
Explanation Intervals 

   

Ventilation rate (𝑿): 

 

  Poor Poor ventilation rates in air changes per hour (ACH) for “low” indoor 

air quality (0.01 ACH ≤ 𝑿 < 0.48 𝐴𝐶𝐻) 
Fair  Fair ventilation rates in air changes per hour (ACH) for “medium/fair” 

indoor air quality  (0.19 𝐴𝐶𝐻 ≤ 𝑿 ≤ 0.77 𝐴𝐶𝐻) 
Adequate Adequate ventilation rates in air changes per hour (ACH) for “high”            

indoor air quality (0.48 𝐴𝐶𝐻 ≤ 𝑿 < 1.06 𝐴𝐶𝐻) 

   Increase in risk (𝑬): 

 

  Excess risk in morbidity Excess percentage (%) increase in respiratory-related morbidity risk 

derived from meta-analysis (0.14 ≤ 𝑬 ≤ 0.45   ) 
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Table 10: Annual respiratory-related morbidity burdens attributable to each 

ventilation exposure scenario 

 
  *source: ONS, 2012 

 

 

Mid-year 2011 

England 

population * 

Excess respiratory-related 

morbidity cases (n) attributable to  

each exposure scenario 

Ventilation 

scenarios 𝟓𝟑, 𝟏𝟎𝟕, 𝟎𝟎𝟎 
 

Poor 

ventilation - (99,398     𝟑𝟕𝟏, 𝟎𝟗𝟕   1,028,008), 

Fair 

ventilation - (−539,846   𝟐𝟒, 𝟗𝟗𝟕  706,364) 

Adequate 

ventilation - (−1,197,605  − 𝟑𝟓𝟐, 𝟓𝟔𝟐  − 48,605) 
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Figure 15: Fuzzy sets describing uncertainty propagation of adjusted risk ratios in model parameters.  

 

 

 

 

𝑅𝑅𝑝𝑜𝑜𝑟 = (1.003        1.097           1.247) 

 
  
 

𝑅𝑅𝑓𝑎𝑖𝑟  = (0.886        1.006           1.150) 
𝑅𝑅𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒  = (0.777        0.922           1.009) 

b) Fair ventilation scenario c) Adequate ventilation scenario a) Poor ventilation scenario 

Fuzzy risk ratio Fuzzy risk ratio Fuzzy risk ratio 
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Figure 16: Annual respiratory-related morbidity burdens attributable to changes in indoor ventilation scenarios and corresponding uncertainty 

described in fuzzy sets 

 

       a) Poor ventilation scenario 

  

𝐴𝑀𝐵𝑝𝑜𝑜𝑟 = (99,398      371,097       1,028,008) 

 
  
 

b) Fair ventilation scenario c) Adequate ventilation scenario 

𝐴𝑀𝐵𝑓𝑎𝑖𝑟  = (-539,846      24,997       706,364) 

  
 

𝐴𝑀𝐵𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒  = (-1,197,605      -352,562      -48,605) 

 
  
 

Morbidity burden  Morbidity burden  Morbidity burden  
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Discussion 

In this study, we provided a framework that can be used as part of the assessment 

stage of a HIA.  We applied the framework to a case-study example of indoor 

housing ventilation in England. In the case-study, we used meta-analysis to get an 

estimate of the odds ratio of the association between indoor ventilation and health, 

and a health impact model to calculate respiratory-related morbidity burdens 

attributable to changes in indoor ventilation exposures.  

 

Findings from the case-study 

The literature search in the case-study identified a total of 8 studies with 9,826 

participants that were included in the meta-analysis from which an exposure 

response relationship was derived: 1.34 OR (95% CI: 1.15 to 1.57), for ventilation 

rates below 0.5 ACH. We believe that the finding from the meta-analysis contributes 

to the body of the evidence linking poor ventilation rates and health. To the best of 

our knowledge, this is the first meta-analysis providing summary estimates of the 

associations between indoor ventilation rates and health using only epidemiological 

study designs. Results from the meta-analysis seem consistent with other research 

that summarised the evidence on ventilation rates and health using other study 

designs, where the authors concluded that a decrease in ventilation rates (from 

approximately 0.5 to 0.2 ACH) increases the prevalence of respiratory-related 

symptoms between 12 % - 32 %. 
100

 In addition, based on the ventilation exposure 

scenarios from the case-study result, we found using a health impact model that 

respiratory-related morbidity due to “poor” ventilation scenario can potentially be a 

significant contributor to the total annual respiratory-related morbidity cases in 

England. We also found that imprecision in the definition of each exposure scenario 
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was of major significance in the outcome of the model.  In this paper, the uncertainty 

in the outcome of the model can be described into three groups. The first consisted of 

morbidity burdens ranging from 99,398 to 1,028,008 cases, which is characterised by 

poor ventilation exposures (between 0.01 ACH to 0.48 ACH). The second group is 

in the range of -539,846 to 706,364 cases, which represents a compromise between a 

reduction and an increase of morbidity cases, and it is characterised by fair 

ventilation exposures (between 0.19ACH to 0.77ACH). The third group ranges from 

-1,197,605 to -48,605, as a reduction of cases, which is characterised by adequate 

ventilation exposures (between 0.48ACH to 1.06 ACH).  Thus, the lowest level of 

ACH of ventilation exposure resulted with the greater impacts on health.  

 

Our finding emphasises the need to ensure adequate ventilation levels to minimise 

the potential health effects from poor ventilation exposure as buildings become more 

airtight in England. There is evidence in the wider literature to suggest that low 

ventilation rates increases air-borne pollutants concentration. 
153

 For instance, one 

extensive review has suggested that ventilation rates lower than 0.5 ACH in cold 

climates can increase the risk of negative health outcomes. 
133

 Ventilation rates 

between 0.5 and 1.5 ACH in the UK are considered sufficient to stop condensation 

and to control indoor pollutants. 
161

 In addition, this research finding adds to this 

evidence-based suggesting that 0.5 ACH can be considered an actual threshold from 

which a population health effect based on the exposure can be observed.   

 

Strengths and limitations 

As part of the framework, we applied a method based on fuzzy set theory to deal 

with the uncertainty in the parameters of a model. Given the lack of probabilistic 
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information in some input parameters (e.g. statistical information regarding 

ventilation exposure for the English housing stock), the application of fuzzy set 

theory was considered appropriate for the quantification of uncertainty, as an 

alternative way of handling uncertainty to the probabilistic approach. The 

uncertainty in each exposure scenario was represented using fuzzy sets, and their 

spread was determined based on plausible information on ventilation rates’ 

guidelines for indoor air quality. We also characterised the uncertainty in the 95 % 

CI of the odds ratio as a fuzzy set, which was used as an input parameter for the 

health impact model.  Fuzzy sets were defined in this study with a triangular 

membership function with one interval and a centre value of the interval, which 

represents the lower and upper bounds of the fuzzy set respectively. It is important to 

note that there are many choices for membership functions of fuzzy sets such as 

trapezoids and Gaussian membership functions, which are described elsewhere. 
20

  

 

This study was only able to quantify the health impacts of housing ventilation in 

England based on limited information found in the literature.  The meta-analysis 

presents some limitations. The diversity of the study populations, geographical 

locations from individual studies in the analysis can make the overall estimate sub- 

optimal for the English context. Another limitation is that the smaller number of 

eligible studies (8 studies) might have influenced the power of the meta-analysis, 

although such bias and limitation regarding the small number of studies can be 

reduced as more studies become available in the literature. We also defined each 

exposure ventilation scenario with specific ventilation rate categories. Other 

ventilation rates categories were not considered in this analysis. For example, there 

are very high ventilation categories which exceed ventilation rates greater than 1.06 
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ACH, which were not considered.  We also incorporated the uncertainty in the 95 % 

CI of the odds ratio using fuzzy sets without probabilistic guarantees or 

distributional assumptions. A potential limitation of the fuzzy set approach is that the 

fuzzy set does not incorporate knowledge regarding correlation and other statistical 

information in parameters, and this can be a limitation in circumstances when there 

is sufficient information to incorporate statistical information such as mean, 

correlations and other. 

 

A different point of view of uncertainty 

When comparing the proposed method with other probabilistic approaches is 

important to note that both approaches deal with different aspects of uncertainty. 

Uncertainty can arise in the assessment from two underlying causes. Uncertainty can 

arise due to imprecision in knowledge because of limited information, or due to 

random variability found in the stochastic nature of most real-world variables. It 

could be argued that the fuzzy-set method provides a better measure for the 

characterisation of the uncertainty in circumstances characterised with limited 

information about statistical parameters or imprecision in knowledge. On the other 

hand, probabilistic approaches can provide a better characterisation of uncertainty if 

suitable assumptions can be made on the statistics of the variability in the input 

parameters.  Monte Carlo (MC) methods rely on random sampling and simulations, 

to obtain probability distributions from which statistical parameters can be estimated 

to characterise the uncertainty. These methods assume model parameters to be 

random variables, using statistical inference with sampling techniques to obtain 

parameter distributions of the random variable.  However, such probabilistic 

approaches to uncertainty propagation can be less suitable to deal with the 
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uncertainty associated with lack or imprecision in knowledge than the fuzzy set 

approach.  Assuming random variability in model parameters when there is limited 

statistical information can lead estimates in epidemiological models to very different 

conclusions if suitable assumptions on the statistics of the variability cannot be made 

162
. We instead propagated the uncertainty using interval arithmetic with the fuzzy 

set approach, and provided some interval estimates for the characterisation of 

uncertainty without assuming random variability in model parameters, but rather 

assuming the information in parameters to be imprecise by nature.  

 

Conclusion 

We have proposed a non-probabilistic framework using fuzzy set theory to quantify 

the uncertainty in HIA and applied it to housing ventilation as an example. The 

framework could also enable the quantification of the health impacts by following 

three steps: (i) selecting the exposure metric and quantifying the evidence of 

potential health effects of the exposure, (ii) estimating the size of the population 

affected by the exposure and selecting the outcome measure, and (iii) quantifying the 

health impacts and associated uncertainty. The framework is demonstrated through a 

HIA case study which examines the health impact of housing ventilation in England.  

We have argued that this framework can be applicable to other examples of 

quantitative HIA where there is insufficient information for a probabilistic analysis. 

This includes situations where the uncertainty in model parameters cannot be 

described by probability density functions, because of either of lack of statistical 

information or the input parameters are not precisely defined. 

 

Supplementary Material: Appendix A and B  
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APPENDIX A  

 

Selecting the exposure and quantifying the evidence of potential health effects 

 

Details of search strategy in Ovid Medline database 

 

#1 search (ventilation or ventilation rate or air flow or air exchange).ti,ab 

#2 search (health or sick building* or allergy* or illness or asthma).ti,ab  

#3 search (housing or home or apartment or dwelling or building or residence).ti,ab  

#4 search #1 or #2  

#5 search #3 and #4  

#6 limit #5 to English language  

#7 remove duplicates from #6  

 

Ovid Database fields:  

 ab: Abstract  

 ti: Title  
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Figure A.1.  Flow diagram of included studies  

 

 

Articles identified through Ovid Medline database searching 

(n=621)

Irrelevant articles and duplicates excluded 

(n =586)

Eligible Abstracts 

(n = 35)

Inadequate study design (n=7)

Non health outcome (n= 8)

Unable to extract ventilation exposure data (n=8)

Unable to retrieve article (n= 3)

Duplicated population for an included study) 

(n=1)

Articles used in the analysis 

(n = 8)
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Table A.1: Subgroup analysis with summary Odds Ratios of the association between 

respiratory-related symptoms and poor ventilation 

Subgroup No. of 

Studies 

Total 

populatio

n studied 
        OR (95 % CI) 

Test for 

heterogeneity 

τ
2 P 

Study design 
     

Case-control 4 1,384 1.45 ( 1.14-1.85) 0.0000 0.7120 

Cross-sectional  3 4,353        1.38 (1.04-1.82) 0.0401 0.0150 

Cohort 1 4,089 1.20 (0.80- 1.80) N/A N/A 

Building setting 
     Office 3 4,583 1.28 (1.03-1.60) 0.0228 0.0530 

School 2 582 1.76 (1.28-2.42) 0.0000 0.6600 
Residence 3 4,661 1.24 (0.93-1.67) 0.0000 0.8940 

Study size 
     

<1000 6 2,017 1.31 (1.09-1.57) 0.0164 0.1960 
>1000 2 7,809 1.34 (1.15-1.57) 0.0014 0.3050 

Geographical 

location 
     

Sweden 4 5,485 1.36 (1.05-1.76) 0.0000 0.6170 
Finland 1 399 1.15 (1.09-1.21) N/A N/A 
Norway 1 172 1.19 (0.65-2.13) N/A N/A 

US 1 3,720 1.53 (1.22-1.92) N/A N/A 
China 1 348 1.69 (1.17-2.43) N/A N/A 

      

Study 

population 

 

 

 

   

 

 

 
Children 3 4,661 1.24 (0.93-1.67) 0.0000 0.8940 

Adults 5 5,165 1.41 (1.13-1.75) 0.0344 0.0150 

 

Sub-group analysis stratified by different aspects of the studies is shown in Table 

A.1. Heterogeneity was examined using the Cochran’s Q test which is a classical 

measure that tests the statistical significant (p < 0.1) variation among study outcomes 

and it is used to estimate P values for heterogeneity. The tau-squared 𝜏2 statistics 

was also used to assess the degree of variation among study outcomes due to true 
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substantial heterogeneity (𝜏2 > 1) rather than variations due to random chance 
163

.  In 

the analysis stratified by building settings, three studies in school buildings showed 

an association between poor ventilation and respiratory-related morbidity of 1.76 OR 

(95 % CI: 1.28 to 2.42). One study, stratified by geographical location in China 

provided an estimate of 1.69 OR (95 % CI: 1.17 to 2.43). Additionally, studies 

stratified in the adult population showed a higher summary estimate of 1.41 OR (95 

% CI: 1.13 to 1.75) compared to those studies conducted only in children 1.24 (95 % 

CI: 0.93 to 1.67). The difference in results, for example, between children and adults, 

might be explained by some sources of heterogeneity. In the adult population, the 

Cochran’s Q test P value for heterogeneity was 0.0150, which indicates some 

heterogeneity among study outcomes. Heterogeneity is expected in the result, given 

the diversity of studies included and the small number of studies included. However, 

there is no evidence to suggest that substantial sources of heterogeneity (𝜏2> 1) can 

extensively affect the conclusion of the meta-analysis and its 95 % CI.  The limited 

evidence available due to the small number of studies, however, does not make it 

possible to evaluate and adjust for more covariates to explore other sources of 

heterogeneity. In Appendix B we quantify the uncertainty in the overall result of the 

meta-analysis (in the 95 % CI of the OR) using fuzzy sets to incorporate this limited 

information.
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APPENDIX B  

Quantification of health impacts and their uncertainty 

To aid explanation, the method used to calculate the health impacts, and their 

uncertainty is described chronologically in the steps below. Fuzzy sets are used to 

quantify the uncertainty in the input parameters and the outputs of the health impact 

assessment model.  In this section, we use the fuzzy sets to: (a) quantify the 

percentage increase in morbidity risk; (b) characterise the uncertainty in ventilation 

exposure; (c) describe interval arithmetic operations using fuzzy sets. 

 

a) Quantify the percentage increase in morbidity risk  

The meta-analysis carried out in Appendix A gave the mean value of the odds ratio 

(OR) of the association of respiratory symptoms with poor ventilation as 1.34, and 

its 95% confidence interval as [1.15 to 1.57]. These values can be transformed into 

percentages by taking the natural logarithm of the odds ratio (OR): 

 

𝐸 = ln(𝑂𝑅)                                                                                                                  [B. 1] 

 

where 𝐸 is the percentage excess risk in respiratory-related morbidity due to 

ventilation rates below 0.5 air changes per hour (ACH). 

 

Using equation [B.1], we obtain the central estimate to be 30% and the lower- and 

the upper bounds of the 95% confidence interval as 14% and 45%. 
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For example, if we define 𝐸(𝑥) as a fuzzy set on 𝑥  (See also Figure B.1) and we 

apply equation [1] from the main manuscript, the membership function for all 

parameters can be defined as:  

 

𝜇�̃�(𝑥) =

{
 
 
 

 
 
 

0,         𝑥 < 0.14 

|
𝑥 − 0.14 

0.30 − 0.14
|   0.14 ≤  𝑥 ≤ 0.30

|
0.45 − 𝑥

0.45 − 0.30
|   0.30 ≤  𝑥 ≤ 0.45

0,          𝑥 > 0.45

                                                    [𝐵. 2] 

 

where 0.14, 0.45 and 0.30 are the lower, upper and centre values describing the 

excess in respiratory-related morbidity due to ventilation rates below 0.5ACH. 

 

Figure B.1. Fuzzy set 𝐸(𝑥)  with membership function describing the excess risk in 

respiratory-related morbidity below 0.5 ACH. 
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b) Characterise ventilation exposure 

Information on ventilation rates were obtained from a study by the Building 

Research Establishment (BRE) which estimated ventilation rates in a sample of 33 

UK dwellings (built after 1995). 
164

 Ventilation rates were found in the range of 

0.19-1.06 air changes per hour (ACH) during the winter and summer months. 
132, 164

 

Three possible ventilation exposures scenarios are defined based on the above 

information and classified according to ventilation rates standards for indoor air 

quality: 
143

 (i) adequate ventilation rates for “high” indoor air quality; (ii) fair 

ventilation rates for “medium” indoor air quality; and (iii) poor ventilation rates for 

“low” indoor air quality. If we apply equation [2] from the main manuscript section, 

the ventilation exposure values from each category are defined as follows, where the 

unit of ventilation rate is ACH: 

 

𝜇𝑝𝑜𝑜𝑟(𝑥) =

{
 
 
 

 
 
 

0,             𝑖𝑓  𝑥 < 0.01

|
𝑥 − 0.01

0.19 − 0.01
|     𝑖𝑓   0.01 ≤ 𝑥 ≤ 0.19    

 |
0.48 − 𝑥

0.48 − 0.19
|     𝑖𝑓  0.19 ≤ 𝑥 ≤ 0.48      

0,                𝑖𝑓   𝑥 >  0.48

                     [𝐵. 3] 

 

𝜇𝑓𝑎𝑖𝑟(𝑥) =

{
 
 
 

 
 
 

0,             𝑖𝑓  𝑥 < 0.19

|
𝑥 − 0.19

0.48 − 0.19
|     𝑖𝑓   0.19 ≤ 𝑥 ≤ 0.48    

 |
0.77 − 𝑥

0.77 − 0.48
|     𝑖𝑓  0.48 ≤ 𝑥 ≤ 0.77     

          0,              𝑖𝑓    𝑥 >  0.77   

                       [𝐵. 4]  
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𝜇𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒(𝑥) =

{
 
 
 

 
 
 

0,                      𝑖𝑓  𝑥 < 0.48

|
𝑥 − 0.48

0.77 − 0.48
|       𝑖𝑓   0.48 ≤ 𝑥 ≤ 0.77      

 |
1.06 − 𝑥

1.06 − 0.77
|     𝑖𝑓  0.77 ≤ 𝑥 ≤ 1.06            

0,                      𝑖𝑓    𝑥 >  1.06

        [𝐵. 5] 

 

where 𝜇𝑋 is the membership function of the fuzzy set 𝑋𝑖 for each exposure scenario 

𝑖, where 𝑖 is either “poor”, “fair” or adequate. The three ventilation exposure 

scenarios are specified in the following intervals: Poor ventilation (0.01 𝐴𝐶𝐻 ≤

𝑥 < 0.48 𝐴𝐶𝐻); Fair ventilation (0.19 ≤ 𝑥 < 0.77 𝐴𝐶𝐻); and Adequate ventilation 

(0.48 ≤ 𝑥 < 1.06 𝐴𝐶𝐻). 

 

c) Describe interval arithmetic operation using fuzzy sets 

Fuzzy interval arithmetic operations are approximated by finding the lower and 

upper 𝛼-cut bounds of a fuzzy set. See example 1 below.  

 

Example 1 

Assume one fuzzy set 𝐴 with three parameter values 𝐴 = (2,4, 8). If we apply 

equation [2-4] from the main manuscript section, we obtain the fuzzy sets and its 

corresponding 𝛼-cut bounds as follows.  

 

𝜇𝐴(𝑥) =

{
 
 
 

 
 
 

0,         𝑖𝑓    𝑥 < 2

|
𝑥 − 2

4 − 2
|   𝑖𝑓    2 ≤ 𝑥 ≤ 4   

 |
8 − 𝑥

8 − 4
|   𝑖𝑓    4 ≤ 𝑥 ≤ 8      

0,         𝑖𝑓      𝑥 >  8

                                                       [𝐵. 6]  
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The lower/upper 𝛼-cut bounds of 𝐴𝛼 (where  ∈ [0,1] ) are: 

𝐴𝛼: = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)] 

        = [(4 − 2)𝛼 + 2,    − (8 −  4)𝛼 +  8 ] 

        = [2𝛼 + 2 ,   8 − 4𝛼]                                                                                                   [𝐵. 7]  

 

Common interval arithmetic operations such as addition, subtraction, multiplication 

and others are approximated using equation [B.8-B.12] (as shown below).
165-167

   

 

(Addition ) 

(𝐴 + 𝐵)𝛼  ≔  𝐴𝛼 + 𝐵𝛼

=    [𝑎1 + 𝑏1 + (𝑎2 − 𝑎1 + 𝑏2 − 𝑏1)𝛼,  𝑎3 + 𝑏3

− ( 𝑎3 − 𝑎2 + 𝑏3

− 𝑏2)𝛼]                                                                                                 [𝐵. 8]  

 

(Subtraction) 

(𝐴 − 𝐵)𝛼  ≔  𝐴𝛼 − 𝐵𝛼

=     [(𝑎1 − 𝑏3) + (𝑎2 − 𝑎1 + 𝑏3 − 𝑏2)𝛼,  (𝑎3 − 𝑏1)

− ( 𝑎3 − 𝑎2 + 𝑏2 − 𝑏1)𝛼]                                                               [𝐵. 9]  

 

(Multiplication) 

𝐴𝛼 × 𝐵𝛼 =   [((𝑎2 − 𝑎1)𝛼 +  𝑎1) ×  ((𝑏2 − 𝑏1)𝛼 + 𝑏1),

(  𝑎3 − ( 𝑎3 − 𝑎2)𝛼)

× ( 𝑏3 − (𝑏3 − 𝑏2)𝛼 ]                                                                       [𝐵. 10]  

 

Substituting the lower/upper 𝛼-cut bounds  



159 

 

During interval arithmetic calculations, the interval values of a fuzzy set (i.e. lower, 

upper and a centre value of the interval) are found by substituting 1 and 0 for 𝛼 in a 

given equation, as shown in the examples below. 

 

Example 2 

Assuming the following values e. g. ,   𝐴 = (2, 4, 8), 𝐵 = (3,6, 9), the 𝛼-cut of fuzzy 

set 𝐴  and 𝐵 can be described as follows by using equation [2-4] from main section 

of the manuscript as follows:. 

 

𝐴𝛼 = [(4 − 2)𝛼 + 2, −(8 − 4)𝛼 + 8] 

       = [2𝛼 + 2,−4𝛼 + 8] 

𝐵𝛼 = [(6 − 3)𝛼 + 3,−(9 − 6)𝛼 + 9] 

       = [3𝛼 + 3,−3𝛼 + 9] 

 

For all 𝛼 ∈ [0,1], multiply 𝐴𝛼  and 𝐵𝛼 as two regular intervals using equation [B.10] 

 

𝐴𝛼  ×  𝐵𝛼 = [2𝛼 + 2,−4𝛼 + 8] × [3𝛼 + 3,−3𝛼 + 9] 

                  = [(2𝛼 + 2) × ( 3𝛼 + 3), (−4𝛼 + 8) × (−3𝛼 + 9)] 

We obtain: 

                  = [6𝛼2 + 12𝛼 + 6 , 12𝛼2 − 60𝛼 + 72] 

 

Substituting 𝛼 = 0: 

𝐴0  ×  𝐵0 = [6, 72] 

 

Substituting 𝛼 = 1: 
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𝐴1  ×  𝐵1 = [6 + 12 + 6, 12 − 60 + 72] = [24 ,24] = 24 

 

Therefore a fuzzy set is obtained, which is an approximation of 𝐴 × 𝐵: 

𝐴 × 𝐵 ≅ (6 , 24 ,        72) 

 

(Division) 

 𝐴𝛼   ÷  𝐵𝛼 = [( 𝑎2 − 𝑎1 )𝛼 + 𝑎1  ]/([𝑏3, −(𝑏3 − 𝑏2)𝛼] ), [ 𝑎3 − ( 𝑎3 −

𝑎2 )𝛼]/([(𝑏2 − 𝑏1 )𝛼 + 𝑏1])                                                                                     [B.11] 

 

Example 3 

Similarly, approximated values of 𝐴 ÷ 𝐵 can be expressed as fuzzy sets by dividing 

the interval 𝐴𝛼  ÷ 𝐵𝛼  for all 𝛼 ∈ [0,1],  using equation [B.11]: 

 

𝐴𝛼  ÷  𝐵𝛼 = [(2𝛼 + 2)/(−3𝛼 + 9 )], [(−4𝛼 + 8)/(3𝛼 + 3)] 

 

When 𝛼 = 0: 

𝐴0  ÷ 𝐵0 = [2/9  , 8/3] 

             = [0.2, 2.6] 

 

When 𝛼 = 1: 

𝐴0  ÷ 𝐵0 = [4/6, 4/6] 

                 = 0.6 

 

Therefore, the approximation of fuzzy sets A and B is: 

𝐴 ÷ 𝐵 ≅ (0.2, 0.6,       2.6) 
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 (Exponential) 

Exponential operations with values restricted by a fuzzy set can be performed and 

approximated using the 𝛼-cut also (as shown in Example 2 and 3).
19, 168

  If we 

consider a fuzzy set e.g. 𝐴𝛼 = (𝑎1, 𝑎2, 𝑎3), the exponential of a fuzzy set 𝐴 is: 

𝐴𝛼 =

[𝑒𝑥𝑝(𝑎2 − 𝑎1)𝛼 + 𝑎1),   𝑒𝑥𝑝 ( 𝑎3 − ( 𝑎3 −  𝑎3)𝛼  )]                                          [𝐵. 12]  

 

(Logarithm) 

Logarithmic operations with fuzzy sets can be performed using equation [B.13], 

given by: 

𝐴𝛼 =

[ 𝑙𝑛(𝑎2 − 𝑎1)𝛼 + 𝑎1),   𝑙𝑛( 𝑎3 − ( 𝑎3 −  𝑎3)𝛼 ) ]                                               [𝐵. 13]     
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5.3. Supplementary material to chapter 5 – Further analysis based 

on research paper 3 

The main emphasis of research paper 3 was on characterising the uncertainty in two 

input parameters of a HIA model of ventilation exposures in England. Research 

paper 3 attempted to quantify the impact on parametric sources of uncertainty, in 

particular the definition of exposure scenarios and the exposure response function 

(excess risk).  This section provides further explanation of the process of quantifying 

the uncertainty in the two parameters and it explores how the use of fuzzy shapes 

other than triangular fuzzy sets in the propagation of uncertainty might affect the 

conclusion. 

 

Uncertainty in the definition of exposure scenarios 

A key aspect in defining the exposure scenarios is the choice of interval around the 

fuzzy sets used to characterise the uncertainty in the three ventilation exposure 

scenarios. According to a literature search, evidence on ventilation exposures by the  

Building Research Establishment  (BRE) was found in the range of 0.19-1.06 

ACH.
132, 161

 At the time of the PhD study, the above range is the only evidence found 

on ventilation exposure involving energy efficient homes in the UK. The initial 

source of uncertainty in this example can be described by lack of information or 

understanding about the potential exposures in England, and not on some random 

variations at this stage. Therefore, the uncertainty in the range is characterised in a 

bounded interval using fuzzy sets without assuming random or stochastic variation.  

It is worth noting that fuzzy sets are not mutually exclusive, in other words, a fuzzy 

value can belong to two or more sets. This is in contrast to probability where all 

positive values in probability can only represent an unique value of a variable.  A 
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fuzzy membership function can measures the degree to which a value can belong to 

two or more sets, and it should not be interpreted as the probability of a value 

belonging to a set. For example, consider the degree of membership of a ventilation 

value from the three ventilation exposure scenarios defined in paper 3 (Table 11 

below). 

 

Table 11: Fuzzy membership (Example of  ventilation rate values ACH) 

Ventilation 

rates ACH 

Degree of 

membership to 

poor µ(x) 

Degree of 

membership to 

fair µ(x) 

Degree of 

membership to 

adequate µ(x) 

0.3 0.62 0.38 0 

0.75 0 0.07 0.93 

0.44 0.14 0.86 0 

0.65 0 0.41 0.59 

 
The above example illustrates that each potential ventilation rates ACH value could 

belong to one or more fuzzy sets defined by their corresponding membership 

function (i.e. the degree to which a value belong to a set).  
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In paper 3, an universal space of 0.01-1.06 ACH is divided using the three fuzzy set 

categories defined (Table 11)  to include the empirical evidence on ventilation 

exposures found by the BRE (i.e. 0.19 to 1.06 ACH). The central values in each 

fuzzy sets are based on expert opinion from the BRE depicting the relationship 

between ventilation level needed to maintain air quality and energy efficiency:  

~0.19 ACH poor, ~0.48 ACH fair and ~ 0.77 ACH adequate ventilation.  Such 

categorisation is rather arbitrary given the lack of evidence or consensus; hence the 

importance of defining fuzzy sets to account for imprecision in knowledge and 

allowing the possibility of the true value to belong to one or more ventilation 

scenarios (i.e. fuzzy sets). A very low ventilation value of 0.01 ACH is assumed in 

the interval to allow values less than 0.19 ACH to be included in the fuzzy set 

relating to poor ventilation.  However, the smaller the value, the less likely the value 

is assumed to belong to poor ventilation. In reality ventilation values less than 0.19 

ACH would belong to an extremely poor ventilation category. Whole-house 

ventilation  less than 0.19 ACH are highly unlikely, and this is the reason for such 

initial categorisation in the fuzzy set. Moreover, ventilation values less than 0.01 

ACH are not defined in the space and are not assumed in the exposure scenarios as 

they would not considered a plasusible representation (i.e. ventilation rates less than 

0.01 ACH do not exist in reality).  

 

An upper range of 1.06 ACH is given to the fuzzy set corresponding to adequate 

ventilation, as values more than 1.06 ACH would not be considerered adequate from 

an energy efficient standpoint. In general , ventilation strategies from an energy-

efficient standpoint, should achieve a total (uncontrolled plus controlled) whole 
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house ventilation rate of around 0.5ACH - 1 ACH to maintain indoor air quality and 

energy efficiency based on the evidence from the literature.
143

  

 

Uncertainty in the exposure-response function  

There are multiple sources of uncertainty that arises in the definition of the exposure-

response function.  The exposure of interest is ventilation rate and its potential 

impact on population health in England. One source of uncertainty is found in the 

specifications of the health outcome measure. There are not specific outcomes 

associated with some conditions where building occupants experience negative 

health outcomes. These conditions are linked to the occupants housing or building 

exposure. The set of conditions are known as “sick building symptoms” or “sick 

building syndrome” in the literature.  

 

No previous evidence based on epidemiological studies was found to provide a 

quantitative summary measure of the effect of ventilation exposures on a specific 

health outcome measure at the time of this study.  In research paper 3, a systematic 

review is conducted to identify potential negative outcomes which included allergies, 

asthma, wheezing, bronchial obstruction and less specific outcomes known as sick 

building symptoms which were suggested to be caused by inadequate ventilation.
151

  

In the pooling of individual studies in research paper 3, some co-morbidities changed 

from confounder to mediator (e.g. asthma, allergic rhinitis) depending on the specific 

outcome studied (e.g. sick building syndrome) (Figure 14, research paper 3).  

 

A more general outcome measure is defined as respiratory-related morbidity to 

describe the population health effects. Such level of resolution was considered 
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appropriate in the case study (the objective of which is to deal with the uncertainty 

when there is a lack of information). In this case, the source of uncertainty arises due 

to insufficient evidence to quantify with a degree of accuracy the effect of the 

exposure on a specific outcome measure.   

 

Ventilation rates are measured as air changes per hour (ACH) in some studies whilst 

other studies measure ventilation rates is measured in litre per second (l/s).  The 

relationship between ventilation rate in ACH and ventilation rate in l/s is described 

in the following equation: 𝐴𝐶𝐻 = [ 𝑣𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑙 𝑠⁄ )  × 300 (𝑠 ℎ𝑟⁄ )  × 0.001 (𝑚3 𝑠⁄ )/

[𝑟𝑜𝑜𝑚 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚3)].  The volume parameter was generally taken from each study 

reporting ventilation rates in l/s.  An additional source of uncertainty arises in the 

assumption of an exposure-response function below or above the threshold of 0.5 

ACH.  In the meta-analysis, risk comparisons are defined into two categories: 

ventilation rate greater than 0.5 ACH (“reference group”) versus lower ventilation 

rate less than 0.5 ACH (“exposure group”). The effect sizes from each study that 

reported different types of risk comparison were standardized into a log scale by 

assuming a log-linear relationship of health symptoms with ventilation category in 

ACH.  

 

Another potential source of uncertainty arises in the specification  of the population 

considered exposed. There are significant variations in the definition of  the target 

population considered to be exposed. The target population can be further refined by 

who, when, where and for how long people are considered exposed. However, due to 

lack of information about the distribution of the population of England exposed to 
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specific ventilation scenarios, the target population is defined as the total population 

of England without taking into account sub-populations.  

 

Given the above sources of uncertainty, the exposure-response is characterised as a 

fuzzy set (described in Appendix B from research paper 3) to allow imprecision in 

knowledge. In addition, a subgroup analysis is conducted  (described in Appendix A 

from research paper 3) to assess whether potential sources of heterogeneity could 

affect the result of the pooling of studies in research paper 3. Based on the result 

from the subgroup analysis, no significant sources of heterogeneity is assumed in the 

95% CI  contained within the OR of the meta-analysis. There are, however, other 

potential sources of uncertainty as the underlying studies in the meta-analysis did not 

include other sub-populations such as older people. The values from the meta-

analysis are transformed into percentages via a log transformation. The central 

estimate in the fuzzy set is assumed to be 30% and the lower- and upper-bounds 14% 

and 45% respectively for the exposure response function. Figure 17 below illustrate 

the fuzzy set characterising the log-transformed exposure-response function assumed 

in the analysis (also shown in Appendix B). 
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Figure 17. Fuzzy set 𝐸(𝑥)  with membership function describing the exposure-

response function (or excess risk)  in respiratory-related morbidity below 0.5 ACH. 

  

 

Other shapes other than triangular fuzzy sets in the propagation of uncertainty  

The underlying assumptions in the three ventilation exposure scenarios described in 

research paper 3 warrants further investigation in exploring shapes other than 

triangular fuzzy sets. The central values assumed in the triangular fuzzy sets were 

based on expert opinion from the BRE. A universal space of 0.01-1.06 ACH of 

ventilation rate was also assumed and categorised in various fuzzy intervals for each 

ventilation scenario. Alternative assumptions were made as follows. Additional 

assumptions are made regarding where the input values are assumed to lie within the 

fuzzy intervals in the three fuzzy sets.  Instead of assuming a a single value to lie 

within the intervals (as a central value), a range of values are assumed to lie within 

each fuzzy intervals: ~0.01 to 0.20 ACH poor, ~0.48 to 0.58 ACH fair and ~ 0.80 to 

1.06 ACH for adequate ventilation. The three ventilation exposure scenarios are 

specified using a trapezoidal fuzzy set as follows: Poor ventilation (0.01 𝐴𝐶𝐻 ≤

𝑥 < 0.48 𝐴𝐶𝐻)  with assumed central values between (0.01 𝐴𝐶𝐻 𝑡𝑜 0.20𝐴𝐶𝐻) ; 
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Fair ventilation (0.20 𝐴𝐶𝐻 ≤ 𝑥 < 0.77𝐴𝐶𝐻)  with assumed central values between 

(0.48 𝐴𝐶𝐻 𝑡𝑜 0.58 𝐴𝐶𝐻); Adequate ventilation (0.58𝐴𝐶𝐻 ≤ 𝑥 < 1.06 𝐴𝐶𝐻) with 

assumed central values between (0.80𝐴𝐶𝐻 𝑡𝑜 1.06 𝐴𝐶𝐻).  Figure 18 below depict 

the three ventilation scenarios represented by trapezoidal fuzzy sets, in contrast to 

research paper 3 where triangular fuzzy sets were used originally.   

 

 

Figure 18:  Trapezoidal fuzzy set with three ventilation scenario  

𝜇(𝑥)𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 = 

{
  
 

  
 

0                 𝑖𝑓          𝑥  < 𝑎1 ,

|
𝑥−𝑎1 

𝑎2 −𝑎1 
|     𝑖𝑓          𝑎1 ≤ 𝑥 < 𝑎2,

                1              𝑖𝑓          𝑎2  ≤  𝑥 ≤  𝑎3,     

|
𝑥−𝑎3

𝑎4−𝑎3
|      𝑖𝑓          𝑎3 < 𝑥 ≤   𝑎4,

  0               𝑖𝑓             𝑎4 < 𝑥,   

 

 

where 𝑎1 ≤ 𝑎2  ≤  𝑎3  ≤  𝑎4  ∈   ℝ   are all real numbers depicting potential 

ventilation rates ACH; and where 𝜇(𝑥) is the membership function for each 

ventilation scenario.    
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The interval of trapezoid fuzzy set is defined by specifying its lower𝐴𝐿(𝛼) and upper 

𝐴𝑈(𝛼)𝛼-cut bounds as follows, for 𝛼 ∈ (0,1) and 𝑎1 ≤ 𝑎2 ≤ 𝑎3 ≤  𝑎4: 

 

𝐴𝛼 ≔ [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)]   

        = [(𝑎2 − 𝑎1) × 𝛼 + 𝑎1 ,    − (𝑎4 − 𝑎2) × 𝛼 + 𝑎3 ],      

 

Interval arithmetic operations are given in the general form as described in research 

paper 3. 

(𝐴⊗ 𝐵)𝛼 = 𝐴𝛼⊗𝐵𝛼, 

 

where ⊗ = +,−,∗ 𝑜𝑟 / are basic arithmetic operations and 𝐴, 𝐵 are arbitrary fuzzy 

sets. 

 

The uncertainty contained within the interval in the fuzzy set is propagated using 

formulae [7-9] from research paper 3. 

 

The result from the uncertainty propagation are given in the following two figures 

(Figure 19 and Figure 20). The two figures provides the resulting intervals for the 

trapezoidal fuzzy sets describing the uncertainty propagation of the adjusted risk 

ratios, and the total annual respiratory-related morbidity burdens attributable to three 

scenarios. 
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Figure 19: Trapezoidal fuzzy sets describing uncertainty propagation of the adjusted 

risk ratios  

 

 

The resulting intervals of the adjusted risk ratio are given in Table 12 below 

 

Table  12: Resulting fuzzy interval from adjusted risk ratio uncertainty propagation 

 

 

 

 

 

 

 

 

 

  

Ventilation 

scenarios 
Fuzzy risk ratio (intervals) 

Poor 

ventilation (1.002     𝟏. 𝟎𝟗𝟒   𝟏. 𝟏𝟓𝟖   1.246) 

Fair 

ventilation (0.885     𝟎. 𝟗𝟕𝟔   𝟏. 𝟎𝟎𝟔   1.144) 

Adequate 

ventilation (0.777     𝟎. 𝟖𝟒𝟓   𝟎. 𝟗𝟏𝟑  0.988 ) 
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The interval size of the fuzzy sets is preserved through the propagation of 

uncertainty. Different sizes of intervals are noticed for each resulting fuzzy sets in 

Figure 19.  Due to a narrow characterisation of the central values initially in the set 

Fair ( ~0.48 to 0.58 ACH), the resulting interval is narrower compared to other 

fuzzy sets.  

 

The resulting lower-and-upper bound of the risk ratio do not meaningfully change in 

the poor, and fair ventilation scenario (Table 12) compared to other triangular fuzzy 

sets described in research paper 3 (Figure 15). For the adequate ventilation scenario, 

a meaningful change is noticed in the risk ratio. The resulting risk ratio does not 

contain 1; this result is due to the initial re-categorisation of the lower bound in the 

adequate fuzzy set (i.e. 0.58 ACH minimum bound) which is reflected in the output 

of the upper bound of the interval.  

 

The fuzzy sets describing the total annual respiratory-related morbidity burden are 

given below in Figure 20. 
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Figure 20: Trapezoidal fuzzy sets of the total annual respiratory-related morbidity 

burdens attributable to the three ventilation scenarios. 

 

In addition, the  resulting intervals of the total annual morbidity burdens are given in 

Table 13 below 

 

Table 13: Resulting fuzzy interval from total annual respiratory-related morbidity 

burdens uncertainty propagation 

 

 

 

 

 

 

 

 

 

The corresponding (+) or (–) signs correspond to an excess of morbity cases or a 

reduction of morbidity cases respectively (Table 13).    

Ventilation 

scenarios 

Total annual respiratory-related 

morbidity cases (n) attributable to  

each exposure scenario 

Poor 

ventilation (99,398     𝟑𝟑𝟗, 𝟕𝟑𝟎   𝟔𝟎𝟒, 𝟕𝟔𝟑   1,028,008) 

Fair 

ventilation (−539,846   − 𝟏𝟎𝟏, 𝟓𝟎𝟐   𝟐𝟓, 𝟕𝟓𝟖   682,006) 

Adequate 

ventilation (−1,197,605    − 𝟕𝟔𝟒, 𝟒𝟒𝟎  − 𝟑𝟗𝟑, 𝟓𝟐𝟕 − 87,064)  ) 
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Comparing the results using different shapes 

Compared to results obtained in research paper 3, the resulting morbidity cases 

attributable to poor ventilation scenario do not change in the lower-and-upper bound 

of the interval. Under poor ventilation scenario, the uncertainty ranged from 99,398 

to 1,028,008 morbidity cases, provided the population of England as whole is 

exposed to that scenario. The central values (bold) reflects the assumption made 

regarding where the initial range of values (ventilation rate exposures) are assumed 

to lie within the interval in the fuzzy sets. Provided the assumption is correct about 

the initial set of ventilation exposures (0.01 ACH to 0.20ACH), the total number of 

cases would be between 339,730 to 604,763. Under  fair ventilation scenario, the 

resulting lower-and-upper bound of the interval also do not significantly change 

compared to results obtained in research paper 3 (i.e. the uncertainty ranged between 

539,846 cases prevented to 682,006 extra cases in both results). Given how the 

central values are assumed (and provided the assumption is correct), the results 

would range from a reduction of -101,502 cases and an excess of 25,758 cases. 

Under an adequate ventilation scenario, the uncertainty ranged between -1,197,605 

to -87,064 morbidity cases prevented. The upper bound of the interval changed from 

-48,605 cases prevented (research paper 3) to -87,064 cases prevented. This 

difference reflects the initial re-categorisation of the lower-bound in the adequate 

fuzzy set (i.e. 0.58 ACH minimum bound). Provided the assumption is correct about 

the initial set of ventilation exposures (0.01 ACH to 0.20ACH), the total number of 

cases prevented would be between -393,527 to -764,440.  
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Discussion 

The role of the membership function plays an important role in interpreting the 

results obtained from the fuzzy set. Given that the membership function of the fuzzy 

set in the central values is μ(x)  >  0.90, the morbidity cases can be interpreted 

qualitatively as “highly probable” of being associated with the corresponding fuzzy 

set scenario. An important caveat is the assumption that the initial input values are 

correct (i.e. central values of ventilation rates in ACH are assumed to lie within the 

fuzzy intervals). If the membership function of the fuzzy set corresponding to 

morbidity cases is μ(x)  > 0.80, such values of morbidity cases can be interpreted 

qualitatively as “probable”. In summary, the degree to which a value could belong to 

a set can be interpreted qualitatively based on its membership function. Results can 

be communicated qualitatively as follows: [“very highly probable”  μ(x)> 0.90], [ 

“highly probable”  μ(x)  > 0.80],  [“highly” μ(x)  > 0.65] , [ “probable” μ(x)  > 0.50].  

Such interpretation deviates( based on this particular perspective) from traditional 

approaches to classical statistical inference, where the interval could have varying 

associated probabilities of 95% or 90 %. The fuzzy set approach does not take into 

account random variations due to “chance”, and therefore, analogies with confidence 

level and significance in statistics should be avoided in the interpretation of the fuzzy 

set output. 
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6. Discussion 

 

6.1. Introduction 

 

Environmental health impact assessment is an area of increasing interest to public 

health practitioners; 
66-68

 there is considerable scope for innovation, particularly in 

the application of quantitative methodologies. 
69, 70

 Models are often used to quantify 

ex ante the health effects attributable to an environmental exposure or intervention. 

30, 169-172
 However, these models suffer from great uncertainty due to the complex 

associations between environmental exposures and health outcomes. 
1, 173

 

 

Current quantitative approaches are less amenable to handling the conceptual 

uncertainty associated with the framing assumptions. 
78

 This thesis attempts to 

address this difficulty by broadening the way uncertainty is taken into account in 

environmental health impact assessments, and by including framing assumptions as 

part of an analytical framework. 

 

The overall aim of this study was to determine how best to quantify uncertainty in a 

more explicit and systematic way than in the context of environmental health impact 

assessment by focusing on five specific objectives which were to: 

 

1. Describe the complexity of how uncertainty arises in environmental health 

impact assessment and classify the uncertainty to be amenable for 

quantitative modelling 
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2. Critically appraise the strengths and limitations of current methods used to 

handle the uncertainty in environmental health impact assessment. 

3. Develop a novel quantitative framework for quantifying the uncertainty in 

environmental health impact assessment 

4. Formulate two detailed case-study examples on health impact assessment of 

indoor housing interventions.  

5. Apply the framework to the two case-studies 

 

The next section discusses and summarises the overall findings from the thesis. 

Section 6.3 addresses the contributions of thesis to the literature. Section 6.4 

discusses its limitations. Section 6.5 identifies areas of further research and Section 

6.6 discusses the implications for applied modelling researchers and policy making. 

The last section provides the conclusion. 

 

6.2. Overall finding of the thesis 

The conceptual review identified different sets of concepts and tools. It adapted 

existing theoretical frameworks to define a quantitative framework that included a 

different “perspective” of uncertainty. Novel quantitative tools were applied in the 

field of environmental health impact assessment, building on previous approaches 

from other fields. This conceptual review, additionally, provided a rationale for the 

quantitative tools chosen in the framework. The proposed quantitative tools 

addressed some aspects of uncertainty that were identified in the framework. These 

aspects of uncertainty identified in the framework were prioritised in the application 

of the case study examples.  
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As a general summary of the findings,  this study highlights the theoretical 

underpinnings of current uncertainty quantification methods used to deal with 

uncertainty in environmental health impact assessment (research paper 1). It also 

identifies the strengths, methods and limitations. Research paper 1 highlights the 

need for alternative approaches for characterising uncertainty. Because there is often 

limited quantitative information to use in environmental health impact assessments, 

1, 174
 novel approaches were identified as alternatives to probabilistic methods when 

dealing with limited data or information. The review in paper 1 demonstrates the 

need for a broader definition and perspective of uncertainty. Framing assumptions 

are considered to be an important part of that broader definition of uncertainty in the 

thesis. In addition, the review promotes better practices to incorporate sources of 

uncertainty associated with the framing assumptions beyond standard methods used 

for dealing with uncertainty. The purpose of raising issues associated with framing 

assumptions is to stimulate better reflections or debates about the potential intended 

or unintended consequences an environmental intervention can have on population 

health than usually recognised in environmental health impact assessment (EHIA). 

One example was provided in the case of biofuels in the area of EHIA. Due to the 

narrow definition of the assessment of impacts, other wider impacts in the area of 

land use, food security and consequent impacts on public health were not considered. 

Another example associated with issues of framing assumptions is in the study of 

sun exposure and skin cancer with interventions to limit sun exposures to avoid skin 

cancer.  Sun exposure has been associated with a decrease of certain cancer and, 

therefore, any intervention that effectively reduce sun exposure might inadvertently 

cause harms. 
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Research paper 2 is the first analysis of the thesis. It develops a methodology to deal 

with “conceptual uncertainty” associated with the framing assumptions. This method 

quantifies the sensitivity of an HIA to the framing assumptions and determines the 

key pathways, which have most influence on health, by analysing the causal map 

linking housing insulation to health outcomes in the case study example. The case 

study demonstrates the potential of the method and its wider applicability. It 

concludes by arguing the necessity for exploring and quantifying framing 

assumptions prior to conducting a detailed quantitative HIA during the assessment 

stage. The analytical framework in research paper 2 alongside the specific 

quantitative tool provides an initial step forward for thinking about potential harms 

and the wider impacts of environmental interventions on health.  

 

Research paper 3 provides a methodological framework for quantifying exposures 

scenarios and handling analytical uncertainty. A novel approach is presented to 

handle analytical uncertainty associated with imprecise input parameters and the 

outcome of a model in the context of environmental health impact assessment. 

This study has highlighted the key processes in the quantification of health impacts 

during the assessment stage of an HIA. Application of the method is illustrated by a 

health impact study of ventilation exposures scenarios in England. The case study 

showed that poor ventilation rates can be a significant contributor to the total annual 

number of respiratory-related morbidity cases in England. To some extent some 

aspects of analytical uncertainty are only addressed in research paper 3, in relation to 

sources of heterogeneity, variability and other aspects of parametric uncertainty 

identified in the case-study example.  
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6.3. Main contribution of the thesis 

 

6.3.3. Approaches to quantify uncertainty in environmental health impact 

assessments 

This study investigated quantitative approaches for dealing with uncertainty in 

environmental health impact assessment. It identified weaknesses in current methods 

and highlighted gaps in the research literature. Current methods were found to be 

less amenable for handling uncertainty at a more conceptual level (conceptual 

uncertainty), particularly when the sources of uncertainty extend beyond issues of 

parameters or input data. Most random sampling methods such as Monte Carlo 

simulations assume that there is sufficient data to make suitable assumptions on the 

statistics of the variability of input parameters. Bayesian methods can address issues 

regarding limited information on input paramters by the choice of priors which can 

be also elicited via expert opinions. Other probabilistic techniques can distinguish 

between uncertainty due random variations or uncertainty due to lack of information 

on input parameters such as Second Order MC simulation. However, most methods 

applied in environmental health impact assessment are less tractable to dealing with 

conceptual sources of uncertainty. The review has highlighted scope for innovation, 

particularly in the application of quantitative methods to deal with conceptual 

sources of uncertainty associated with the framing assumptions or conceptualisation 

of a model. The review concluded that new methods should be continue to be 

investigated to handle the uncertainty associated with framing assumptions.  
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6.3.4. Dealing with conceptual uncertainty associated with the framing 

assumptions 

No previous work has addressed quantitatively or semi-quantitatively conceptual 

uncertainty associated with framing assumptions in the applied field of 

environmental health impact assessment. 
175

 This research study attempt to address 

this gap in the knowledge by assessing the sensitivity of the assessment to the 

framing assumptions.  It then applies this approach to a case study of housing 

insulation (research paper 2). A key contribution of the study is in the use of 

complex system modelling approaches to evaluate an intervention. Despite calls 

among public health researchers in the literature, 
79, 176-178

 there has been no 

consistent attempt to apply complex systems modelling approaches in the assessment 

of environmental health interventions. In this study, a complex system modelling 

approach was applied using fuzzy cognitive mapping.  

 

In addition, a perturbation analysis was conducted to identify assumed causal factors 

that are highly sensitive to the framing assumptions in the fuzzy cognitive map (e.g. 

ventilation, air-tightness, indoor quality etc.). Broader conceptual issues relating to 

the framing assumptions( rather than parameter estimation issues) are addressed in 

the construction of the fuzzy cognitive map. The fuzzy cognitive map (FCM) 

provided the basis for the assumed causal structure in the case study example. In 

addition, qualitative relations were constructed with the FCM in the supplementary 

material of chapter 4.  One advantage of the approach is that FCM can helps 

researchers to think more broadly about the likely impacts of interventions by 

identifying issues relating to framing assumptions. Using FCM seems more natural 

over other statistically-based approaches as the process consist of providing a list of 
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potential relevant causal pathways and their assumed relationship. In the absence of 

more empirical (or statistically-based) data on the potential adverse effects of 

environmental interventions, the FCM can provide the basis for discussion of what 

adverse effect can take place. This was demonstrated in chapter 4 with the 

construction of two causal diagrams based on qualitative assumptions.  

 

6.3.5. Dealing with analytical uncertainty in the inputs and outputs of a model 

The analytical framework for quantifying exposure and handling analytical 

uncertainty was developed through the various steps: (i) selecting the exposure 

metric and quantifying the evidence of potential health effects of the exposure; (ii) 

estimating the population affected by the exposure and selecting the outcome 

measure; (iii) quantifying the health impacts and its uncertainty. The framework used 

an established method for the characterisation of uncertainty into attributable risk 

calculations. The study used a fuzzy set method, for the first time in the context of 

environmental health impact assessment, as an alternative to probabilistic 

approaches. Limited information to make suitable assumptions on the statistics of the 

input parameters was assumed in the case study example. The analytical uncertainty 

was quantified and propagated using fuzzy interval arithmetic. Attributable 

morbidity burdens were propagated corresponding to different ventilation exposure 

scenarios in the HIA. The study provided a general framework to help with the 

quantification of health impacts during the assessment stage of an HIA. Despite the 

existence of other approaches for the quantification of health impacts within an HIA, 

54, 170, 179
 it is worth noting that such quantification is still limited in practice. 

180
 

Previous quantitative approaches have not explicitly incorporated uncertainty. 
69

 This 

study has attempted to address this limitation by providing an analytical framework 
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for quantifying exposures and handling uncertainty using a non-probabilistic 

approach.  

 

 In addition, from the specific of the case study, an exposure-response response 

relationship was derived from a systematic review and a meta-analysis in research 

paper 3. In the case-study example, limited information was found to assume 

information on the statistics of the variability of parameters in the propagation of 

uncertainty. In particular, limited information in the definition of the outcome 

measure to allow the effect to be quantified with a degree of precision on the 

outcome. The uncertainty from the effect sizes in the meta-analysis was propagated 

through a log transformation and fuzzy interval calculation assuming limited or 

imprecise information in the input parameter instead of random variations. An 

advantage of the fuzzy approach, in contrast to probability (where all positive values 

in probability can only represent an unique value of a variable),  a fuzzy membership 

function can measures the degree to which a value can belong to two or more sets. 

This flexibility for fuzzy assumptions makes the fuzzy method more amenable for 

handling incomplete information (or imprecise parameters) in the propagation of 

uncertainty, particular when the evidence comes as a range from different sources 

that do not completely agree.  

 

6.4. Limitations 

While the study has proposed novel approaches to deal with uncertainty in the 

context of environmental health impact assessment, it has some limitations. The 

thesis has attempted to clarify and prioritise underlying issues of uncertainty in a 

framework. The complex set of issues of uncertainty identified in the thesis has been 
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addressed to a limited extent. The proposed methods only addressed some aspects of 

uncertainty identified in the thesis. Many issues and complexity arise in the study of 

uncertainty, and whether a single method could reflect accurately all the complexity 

of uncertainty in environmental health impact assessment is questionable. The issues 

of uncertainty in environmental health impact assessment would continue to be a 

long standing methodological problem for many years in environmental health 

research. The thesis's framework forms the basis on which some aspects of 

uncertainty are prioritised in the case studies. However, there are limitations in the 

methodology that should be recognised. In general, there are limitations in terms of 

how the new methodology for conceptual uncertainty and for analytical uncertainty 

can be integrated into a single analytical framework. The scope of the application of 

the method can vary substantially according to the specific context of application of 

the case studies in which they arise. This section acknowledges the limitation of the 

study in relation to each research paper. 

 

6.4.6. Approaches to quantify uncertainty in environmental health impact 

assessments 

This study reviewed uncertainty quantification methods in environmental health 

impact assessment based on specific search strategies. As with general systematic 

reviews, studies in the “grey” literature may have not been identified. The emphasis 

of the review was on the relatively newly established field of HIA, focusing on its 

applications in environmental health. Therefore, methods applied in the wider 

literature, and in other areas of environmental health, could have not been identified.  

 



185 

 

This study also addressed specific issues that could arise in the quantification of 

health impacts in relation to the framing assumptions. Conceptual uncertainty was 

only addressed as part of the framing assumptions. Based on this definition, framing 

assumptions were used to map the causal chains linking an intervention with health 

outcomes. However, framing assumptions are only a part of conceptual uncertainty. 

Other aspects of conceptual uncertainty were not fully developed such as (i) the 

uncertainty in defining the context of the assessment or the boundaries of the system, 

identified in the framework.  In addition, framing assumptions can be considered and 

interpreted in terms of other concepts (i.e. agenda-setting, etc.) that are not 

necessarily related to uncertainty.  

 

6.4.7. Conceptual uncertainty associated with the framing assumptions 

Research paper 2 applied a novel method based on fuzzy cognitive mapping (FCM).  

FCM was used to quantify the framing assumptions in the mapping of the causal 

pathways of an HIA model of housing insulation. On the specific of what the method 

was intended to address, the method did not cover all possible framing assumptions 

that could potentially arise in an HIA study of housing insulation. Framing 

assumptions were identified through a restricted search of the literature in Ovid 

Medline. Social factors such as housing tenure or composition and socio-economic 

status were not considered in this study. In practice, a comprehensive systematic 

review will be necessary for the selection of factors that make up the FCM causal 

diagram. The studies included in the causal diagram were assumed to be comparable 

in terms of population intervention, study type and study quality. 
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In addition,  sources of  heterogeneity such as place where people are considered 

exposed alongside occupants’ age, specific outcomes and/or seriousness of disease 

were not fully addressed in the method.  The method did not allow specific sources 

of heterogeneity or sources of statistical significance to be assigned in each node in 

the construction of the FCM, and this is an important limitation. The FCM allows to 

emphasise  a study “at the system-level” in the mapping of the causal pathways. 
79, 

105
   

 

For representing uncertainty in the mapping of the causal pathways, the FCM 

approach can be compared with more statistically-based approaches such as 

Bayesian Networks (BN) , also known as Bayesian Belief Networks.
181

 BN as a 

graphical causal model, can represent causal assumptions. BN can addresss more 

appropriately issues of parameter estimation in each node. Each probabilistic values 

in the nodes can represent the relationship between the factors in the causal 

pathways. Similar to a BN, the FCM is also a graphical model, however, instead of 

assuming probabilistic values in the nodes, fuzzy or deterministic values are assumed 

in the FCM which do not incorporate aspects of statistical significance or parameter 

estimation in the nodes. Therefore, the interpretation of results in the FCM is semi-

quantitatively, as each node in the diagram is ranked in relation to each other . 

 

6.4.8. Analytical uncertainty associated with the parameters of the 

environmental health impact model 

 

In this study fuzzy set theory was used to characterise uncertainty in the parameters 

of a health impact model using a case study of housing ventilation exposure 
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scenarios. While fuzzy sets were used to describe uncertainty due to” lack of 

knowledge”, assumptions in the fuzzy sets were made to define each exposure 

scenario (e.g. poor, fair or high ventilation rates). These assumptions were based on 

ventilation guidelines and the Building Research Establishment study and expert 

opion. 
132, 143, 164

 As fuzzy sets do not require any assumption about the probability 

distribution or correlation of the parameters, 
20

 this could be a potential limitation of 

the fuzzy set methods, particularly when there is probabilistic information available 

to make assumptions about the distribution or correlation of the parameters in the 

propagation of uncertainty.  

 

To a limited extent the complex set of issues of parametric uncertainty from the case 

study in research paper 3 were only addressed in the fuzzy set method. Lack of 

understanding or information was assumed to be the primary source of uncertainty in 

relation to the definition of exposure scenarios, the distribution of the population to 

the exposure scenarios and the extrapolation of the exposure-response function to 

different subpopulation, alongside the assumption of a linear threshold above and 

below a particular value. In case study of research paper 3, expert opinions from the 

BRE were used to assume the location within the interval in the fuzzy set where the 

true values were assumed to lie in selecting the fuzzy set membership function for 

the exposure scenarios. In contrast, some probabilistic approaches can deal with both 

random variability and imprecise parameters as in the case of second order Monte 

Carlo simulation or a Bayesian approach (it is important to distinguish the 

uncertainty initially in both probabilistic approaches).  In terms of the computational 

aspects, both probabilistic approaches and fuzzy approaches in the operation of joint 
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distributions or operations with membership functions can be challenging when 

dealing with large number of input parameters. 

 

6.5. Areas of further research 

This study has identified some areas of further research in relation to quantifying 

uncertainty in environmental health impact assessment. The main premise of the 

framework proposed in this thesis is that it is difficult to simultaneously examine 

uncertainty from different perspectives. As stakeholders and analysts often have 

different viewpoints with regard to uncertainty, two main perspective of uncertainty 

(conceptual and analytical) were chosen as a way of narrowing the examination of 

uncertainty.  

 

However, it is important to note that the above two perspectives covered are not 

sufficient to address all the types of uncertainties that may arise at different stages in 

the assessment. There is indeed an additional stage in which uncertainty can take 

place in an environmental health impact assessment. This can be defined as the 

“decision stage” and can potentially be included in the proposed uncertainty 

framework as a component of a different uncertainty perspective. The decision stage 

is concerned with how to process uncertainty in the outcome of the assessment 

model for decision-making purposes. Uncertainty could be a normal condition of the 

policy process for decision makers.  Methods from a decision stage in any 

assessment can be described using the terms “risk management” and “optimisation”. 

Risk management evaluates decision options from a decision-maker point of view. 

Optimisation can be viewed as a methodology for risk management - where the best 

options are searched and evaluated when working within a set of constraints. 
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Optimisation methods could potentially be used to extend this framework to cater for 

the decision uncertainty perspective. Mathematical programming (MP) methods can 

be used to maximise or minimise a desired utility,
182-184

 often in search of the “best 

option”. In mathematical terms, a desired utility is often called an objective function. 

In the context of environmental health impact assessment, the objective function can 

be defined to maximise health gain or minimise health burdens. Optimisation 

problems, additionally, can be formulated to include constraints such as reducing 

health inequalities or achieving a “trade-off”  between health and other 

characteristics of the environment.
185

 Therefore, potential scope for improvement 

can exist in the application of uncertainty quantification methods with optimisation 

techniques as part of an environmental health impact assessment. For example, in the 

case study illustration of housing ventilation exposure scenarios, optimisation 

techniques could be used to model the uncertainty of not achieving a safe minimum 

level of ventilation in homes subject to constraints. Constraints could be defined in 

terms of housing parameters (e.g. ventilation rates, air tightness, temperature, indoor 

air quality). These constraints could subsequently be expressed in terms of 

mathematical inequalities to express relationships between each different indoor 

factors (physical building parameters). The uncertainty in the model parameter could 

be incorporated using uncertainty sets for the optimisation. In general, optimisation 

techniques have been applied in environmental engineering and energy planning for 

decision-making under uncertainty. 
186

 Future application of these techniques can be 

explored in the applied field of environmental health impact assessment. 

 

Another area of research work is dealing with structural uncertainty in environmental 

health impact assessment models. Structural uncertainty can be explored as part of 
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the analytical perspective of the framework.  Structural uncertainty relates to the 

configurations chosen in the model, particularly, how parameters and functional 

equations are specified in the model structure. For example, structural uncertainty 

can arise in deciding whether an additive or linear term is chosen in the equations of 

a health impact assessment model. Structural uncertainty can be dealt explicitly 

using model averaging techniques, where different model specifications or 

alternative competing models can be explored based on their parameters 

performance or predictive abilities. Techniques for dealing with structural 

uncertainty has been explored in other applied field in decision-analytical models.
187

 

 

6.5.9. Scope for further research in the method proposed  

Fundamentally, future research work should investigate how best to integrate 

uncertainty across the two perspectives identified in this thesis (conceptual, 

analytical). As part of conceptual uncertainty, there is future scope for development 

when sufficient data is collected for parameter estimation. A fuzzy cognitive map 

(FCM) approach can be integrated with more statistically-based approaches such as 

Bayesian Networks (BN).
181

  Generating conditional probabilities in a Bayesian 

Network can prove to be difficult. Therefore, an initial FCM can be constructed to 

provide the basis of the causal structure of a BN as the process is more direct in the 

FCM than estimating conditional probabilities. For example, an initial FCM can be 

constructed when there is insufficient data and then the causal structure can be 

converted into a BN once sufficient data on parameters are estimated. Broader 

conceptual issues can be addressed by the FCM as a first step, and conditional 

probabilities can be addressed by a BN as a second step provided sufficient data is 

available (or suitable assumptions on the statistics of parameters can be made by 
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parameter estimations or Bayesian expert elicitation). To assess whether an improper 

method for propagating the uncertainty might introduce additional uncertainties in 

the assessments, the propagation of uncertainty can be calculated using fuzzy 

intervals as a first step without assuming random variations. As a second step, other 

probabilistic approaches can be conducted as part of analytical uncertainty. For 

example, in the estimation of an exposure-response relationship if there are 

insufficient data observations to assume distributions, the fuzzy method can be 

explored via expert elicitation. Once sufficient data becomes available via expert 

consensus, a Bayesian approach can be conducted, or if empirical data is available, 

the exposure-response function can be modelled using generalized additive models 

with cubic regression splines or other statistically-based approaches.  Final outcomes 

of the model can be given in summary measures of population health such as 

disability-adjusted life years (DALYs) or others summary measures to allow 

comparison between policies or exposure scenarios, and comparison with the overall 

uncertainty between methods. 

 

Futurer research work should also explore how sources of analytical uncertainty and 

conceptual can be integrated. Techniques such as “global sensitivity analysis” can be 

used to investigate the effect of changing assumptions or definitions adopted at each 

perspective.
51

 This will help explore how the sources of uncertainty from the 

problem formulation (conceptual perspective) can impact the uncertainty from the 

model result (analytical perspective). The idea is to generate different policy 

alternatives that would have not been considered otherwise. Different alternatives 

can be explored by using information obtained from the two perspectives. Although 

it is often difficult to manage “all issues” from all “perspectives” simultaneously, the 
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integration of uncertainty can be conducted by focusing only on the issues that are 

shared across each perspective. In this way, we can simplify the integration down to 

the key cross-cutting issues identified.  

 

6.6. Implications for researchers and policy makers 

 

An important question to researchers and policy makers is to what extent an 

environmental intervention or exposure can produce health-related changes. 

Environmental health impact assessment identifies possible health consequences of 

new environmental policies, intervention or potential scenarios and it is an area of 

increasing interest to policy makers. It is important to note that most environmental 

health impact assessments seek to assess the health impacts of an intervention or 

exposure scenarios ex ante. As a result, quantifying the health impacts of an 

environmental intervention or potential exposure scenarios is particularly important 

for decision support.  

 

In some assessments, the quantification of health impacts it is still limited in 

practice, even though it is preferred by policy makers.
180

 This limitation is partly due 

to lack of quantitative information and large uncertainty arising during the 

assessment stage. Current models are grounded on probabilistic approaches for 

characterising the uncertainty. These approaches are frequently based on statistical 

techniques which include Monte Carlo and Bayesian analyses in general.
188-191

 Most 

health risk and impact assessment exercises exclude the selection of the framing 

assumptions when appraising the uncertainty.
6
 Decision makers should be aware that 

framing assumptions can have a significant impact in the outcome of the assessment.  
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This study encourages the use of analytical framework to deal with uncertainty when 

presented with limited information. One important consideration for applied 

researchers is that lack of probabilistic information should not prevent them from 

quantifying sources of uncertainty in relation to “lack or limitations in knowledge”.  

For example, the analysis summarised in Figure 15 (chapter 5) depicts the adjusted 

risk ratio based on fuzzy interval calculations for each ventilation exposure scenario. 

The risk ratio associated with each ventilation exposure scenarios describes 

imprecision  (or vagueness) in the definition of risk of poor ventilation rates on 

health outcomes based on its handling of incomplete information in the input 

parameters.  Although there are sources of parametric uncertainty and imprecision in 

knowlegde, results are consistent with the view that there is a continuous exposure-

response relationship both above and below 0.5 air changes per hour. In addition, 

results from chapter 5 provide an indication of the potential public health benefits 

that would be realised in England provided adequate ventilation is achieved. The 

extent to which results could likely represent a “real effect” with potential caveats 

about the uncertainty of the initial conditions can be communicated to the policy 

maker. As such, chapter 5 results can be interpreted as an approximation of the risk 

and benefits (impacts on respiratory-related conditions) associated with the three 

ventilation exposure scenarios. 

 

Chapter 4 characterises the framing assumptions that are ultimately captured by a 

"centrality index" and then determines the sensitivity of the framing assumptions 

captured by the "causal activity level". The process consists of first characterising 

the structure (centrality index) and then exploring how the structure affects its 

function (causal activity level). Chapter 4 results can reveal how potential caveats 
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about the causal interpretation (causal structure) can potentially affect the analysis. It 

provides a warning on which indoor factor to consider as they could have the largest 

impacts on the outcome.   

 

7. Conclusion 

The overall aim of this study was to determine how best to deal with quantitative 

measures of uncertainty in the context of environmental health impact assessment. A 

primary objective of the thesis was to develop a quantitative framework to deal with 

uncertainty.  The thesis prioritised issues of uncertainty identified in a framework 

that has given less attention in environmental health impact assessment.  Two 

dimensions of uncertainty were identified in the thesis: “nature” and “location”.  The 

“nature” of uncertainty is dealt with using lack of knowledge and propagated in a 

non-probabilistic domain. The “location” of uncertainty is dealt with using two 

perspectives: “conceptual” and “analytical”.  The key assumptions for dealing with 

the “nature” of uncertainty  depend on how the uncertainty is defined in terms of its 

underlying causes in the propagation of uncertainty. The key assumption for dealing 

with the “location” of uncertainty  depends on how the uncertainty is focused in 

terms of “where” the uncertainty manifests in the assessment. The review of current 

uncertainty quantification methods highlighted the need for a broader definition of 

uncertainty to include conceptual sources of uncertainty associated with the framing 

assumptions in an environmental health impact assessment. Under the proposed 

framework, this thesis has identified potential analytical tools as a first step for 

dealing with analytical and conceptual uncertainty in a non-probabilistic domain. 

The added value of this research was in the attempt to include, rather than exclude 

the framing assumptions quantitatively or semi-quantitatively in the appraisal of 
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uncertainty. This study challenges researchers to think as broadly as possible in the 

assessment of impacts in environmental health impact assessment. As part of a 

lesson learned throughout the thesis, four practical recommendations to researchers 

are given when confronted with large uncertainty in environmental health impact 

assessment. To conclude this thesis, the four recommendations are given as follows:  

(i) “Think as broadly as possible in the assessment of impacts.” 

(ii) “Do not always focus on parametric sources of uncertainty.” 

(iii) “Do not always assume random variability when confronted with lack of 

understanding or limited information.” 

(iv) “After considering the above three suggestions, continue to model as usual.” 

 

Thank you! 

Marco Mesa-Frias 
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