Letter to the Editor

Jamie Toombs*, Ross W. Paterson, Jennifer M. Nicholas, Axel Petzold, Jonathan M. Schott and Henrik Zetterberg

The impact of Tween 20 on repeatability of amyloid β and tau measurements in cerebrospinal fluid

DOI 10.1515/cclm-2015-0414

Received April 30, 2015; accepted May 27, 2015; previously published online June 23, 2015

Keywords: amyloid β ; analytical variation; cerebrospinal fluid; tau; Tween 20.

To the Editor,

Cerebrospinal fluid (CSF) concentrations of amyloid β peptides 38, 40 and 42 (A β 38, A β 40, A β 42), total tau (T-tau) and phosphorylated tau₁₈₁ (P-tau) are increasingly used as biomarkers to support a clinical diagnosis of Alzheimer's disease (AD), and to track disease progression in observational research studies and clinical trials [1]. It is therefore of great importance to understand the analytical repeatability (i.e. the variability of repeated measures of the same sample assayed by the same operator) of currently available enzyme-linked immunosorbent assays (ELISAs). In the interest of improving diagnostic reliability within and between sites there is a need to identify strategies to reduce analytical variance. Presently

the U.S. Food and Drugs Administration (FDA) criteria for bioanalytical assay precision demands an average percent coefficient of variation (%CV) of <15% between measurements for a quantitative immunoassay to be regarded as having acceptable quality for clinical use [2]. Better analytical precision will be required to reliably monitor the in vivo biomarker responses to disease modifying drugs, and detect clinically relevant biomarker changes in patients over time, based on reports from longitudinal studies (e.g. P-tau 2.20 pg/mL decrease per year, A β 42 decrease 11.9 pg/mL per year in AD-AD patients) [3].

The aim of this study was first to measure the analytical repeatability of ELISA-based assays for amyloid peptides and tau; and second to test the hypothesis that adding 0.05% Tween 20, a non-ionic surfactant that has previously been found to mitigate variation introduced by protein-tube surface interactions in CSF A β 42 measurements [4, 5], would also decrease the variability between measurements.

Six de-identified CSF samples, each of 11 mLs, were used in this study: three were from individual subjects, and three pooled samples formed by mixing 2.2 mL CSF from five individual subject samples (Figure 1A and B). All samples were collected according to the standard operating procedure of the Sahlgrenska Academy at the University of Gothenburg (supplementary table in [6]), and with ethical approvals from the London Queen Square Ethics Committee (individual samples) and University of Gothenburg (pooled samples). Each of the six 11 mL CSF samples was split into two 5.5 mL samples (Figure 1C) and 2.75 µL (0.05%) Tween 20 was added to one of these (Figure 1D), following which both 5.5 mL samples were aliquoted at 500 µL volume, into 2 mL, polypropylene, DNase/RNase free tubes (Sarstedt, Nümbrecht, Germany, cat. 72.694.406) (Figure 1E). These aliquots were then stored at -80 °C. A β 38, 40 and 42 were measured simultaneously in the same assay plate (MSD Aβ Peptide Panel 1 V-plex, 6E10 antibody). T-tau was measured separately using MSD T-tau V-plex assay. Both

^{*}Corresponding author: Jamie Toombs, Institute of Neurology, Department of Molecular Neuroscience, University College London, London, UK, Phone: + 44 20 34483553, E-mail: j.toombs@ucl.ac.uk Ross W. Paterson and Jonathan M. Schott: Institute of Neurology, Department of Neurodegeneration, Dementia Research Centre, London, UK

Jennifer M. Nicholas: Department of Medical Statistics, London; and School of Hygiene and Tropical Medicine, London, UK. http://orcid.org/0000-0001-6023-0391

Axel Petzold: Institute of Neurology, Department of Molecular Neuroscience, University College London, London, UK Henrik Zetterberg: Institute of Neurology, Department of Molecular Neuroscience, University College London, London, UK; Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden

Figure 1: Experiment procedure. Detailed are the various steps of the experiment.

of these assays were run on a Meso Scale Discovery 6000 platform. P-tau was measured separately by INNOTEST Phospho-tau (181P) ELISA and run using a BMG Labtech FLUOstar Omega multi-mode microplate reader (Figure 1F). In terms of sample layout within plate, each of the (three) biomarker assays were treated the same. Each sample was added to the plate in three pairs (i.e. six wells total – 1,2 | 3,4| 5,6), in order to collect intra-assay variation data for each sample (Figure 1F). It is common laboratory practice to use two wells for each sample (known as running a sample 'in duplicate'), and distributing samples in this way was intended to simulate this multiple times. Additionally, the

identity of each sample tube was masked, and renamed in a different order by a colleague, thus the experiment was conducted under double-blind conditions. The experiment was repeated four times (i.e. four plates were run for A β , T-tau and P-tau) (Figure 1G), in order to collect data on interassay variation. Each repeat took place on a different day, and was conducted by the same operator.

To analyse measurement variance, %CVs were calculated according to ISO standards [7], and the results from aliquots with Tween added ('Tween') and those without ('No Tween') were compared using paired t-tests in R [8]. To investigate the contribution of covariates, linear

T-test analysis										
Sample		Αβ38		Aβ40		Aβ42		T-tau		P-tau
	Intra (%CV)	Inter (%CV)	Intra (%CV)	Inter (%CV)	Intra (%CV)	Inter (%CV)	Intra (%CV)	Inter (%CV)	Intra (%CV)	Inter (%CV)
733	2.00	7.30	3.50	4.70	2.20	6.20	6.40	8.80	4.40	9.70
733T	2.50	5.70	3.70	5.40	2.10	2.70	4.00	7.80	1.90	7.70
724	3.00	5.40	3.50	3.50	1.90	3.50	5.40	8.20	1.70	5.50
724T	2.40	5.60	3.80	4.30	2.40	2.90	5.10	7.90	2.60	7.90
806	2.00	5.90	2.80	5.80	2.50	8.20	6.10	6.80	2.00	5.40
806T	2.70	5.30	3.50	3.80	2.50	3.50	2.50	9.20	1.40	4.00
Pool1	3.60	5.60	3.60	4.30	2.90	4.40	3.10	6.30	1.20	6.40
Pool1T	2.00	5.30	4.10	4.60	2.20	3.80	2.70	5.30	2.20	5.40
Pool2	3.20	5.50	2.10	4.70	2.10	6.40	3.90	8.90	2.40	5.10
Pool2T	2.60	4.90	3.70	4.80	2.50	3.30	12.70	12.70	2.20	5.50
Pool3	1.90	5.30	2.80	3.90	2.00	4.70	2.90	6.50	1.60	4.30
Pool3T	1.90	6.40	2.40	4.60	1.70	4.60	4.00	8.40	1.80	5.00
Average %CV Tween	2.35	5.53	3.53	4.58	2.23	3.47	5.17	8.55	2.02	5.92
Average %CV No Tween	2.62	5.83	3.05	4.48	2.27	5.57	4.63	7.58	2.22	6.07
Two-tailed t-test (df=5) p=	0.476	0.453	0.134	0.827	0.862	0.043	0.778	0.293	0.719	0.830
Mixed model analysis										
CSF Subject type	Individual	Pool	Individual	Pool	Individual	Pool	Individual	Pool	Individual	Pool
Tween residual variance relative to No Tween	-7%	+4%	+0.3%	+19%	-45%	-15%	+14%	+11%	-6%	-10%
b=	0.698	0.820	0.986	0.318	0.001	0.364	0.461	0.591	0.700	0.558
T-test: The t-test analysis shows the mean intra- T-test: The t-test analysis shows the mean intra- within each plate) across all plates ($n=4$). A two difference dependent on Tween status ($p=0.04$, ment variation relative to samples without Twee the natural logarithm (In). Addition of Tween 20 values of statistical significance, and serves no	 and inter-ass. and inter-ass. tailed, paired with Tween sa with Tween sa on the individual to samples ter other purpose 	ay %CV by sam t-test compare mples having thor pooled sul nded to lower t	iple for each bi ed Tween and N lower %CVs. M bject CSF for ee he residual va	iomarker. This Vo Tween samp Aixed model: R ach biomarker. riance of Aβ42.	mean was calc le versions for ssults of a line Results were However, this	ulated from 12 each biomarke ar mixed mode calculated usin was only signi	%CVs derived er. Inter-plate r l analysis shov g a linear mixe ficant in indivi	from each sam measurements wing the effect ed effects mode dual subject C	nple duplicate of A342 showe of Tween 20 or el on data trans SF. Bold format	aair (n=3 ed significant 1 measure- sformed by ting marks

Table 1: T-test and mixed model analysis.

Brought to you by | UCL - University College London Authenticated Download Date | 6/29/16 12:56 PM mixed model analyses were conducted using the nlme [9] package in R. To allow for increasing variance as concentration increased, the dependent variance in all analyses was concentration on a log scale (pg/mL). The interaction between Tween status and intra-assay sample repeat were the independent variables. A random intercept for sample was included, as was a random effect of Tween to allow for variability in the effect of Tween between samples.

The degree of variability between measurements for all samples and for all biomarkers, whether intra- or inter-assay, was <10% (Table 1), meaning that concentration measurements can be considered highly repeatable regardless of Tween 20 status. For measurements of Aβ42 in the same sample across different assays, %CVs of 'Tween' samples were significantly lower than in 'No Tween' samples (p=0.04) (Table 1 t-test). Further exploration with the use of linear mixed model analysis revealed that this result was driven by individual subject samples, whilst variance in pooled samples also decreased but did not reach significance (Table 1 Mixed model). No significant differences were found in any of the other biomarkers. Finally, concentration of A^β peptides increased significantly with Tween (A β 38=42% increase, p \leq 0.0001; A β 40=43% increase, p \leq 0.0001; A β 42=69% increase, $p \le 0.0001$). No significant change was observed in the detectable concentration of P-tau (p=0.9), with a trend towards an increase in T-tau (p=0.9).

These results are consistent with data previously reported [4, 5], and showed that measurement variation was very low in all biomarkers throughout this study. Furthermore, results showed that repeat measurement variation of Aβ42 in individual subject CSF was improved by the addition of 0.05% Tween 20. If this finding generalises to datasets with greater levels of analytical variance, e.g. multi-site initiatives, it could be of clinical relevance. Following recent setbacks in AD drug development [10], it is now widely considered that a longitudinal and collaborative approach to research and clinical trial work in neurodegenerative disease is required if meaningful therapeutic progress is to be achieved. Reliable measurements are essential to such a strategy, and the potential to improve this for A β 42 by adding 0.05% Tween 20 is worth further consideration. Despite the number of repeats, a limitation of this study was the small number of samples tested. Results should be treated as preliminary, and provide a reference effect size to inform future work.

This study shows that ELISA based measurement of neurodegenerative biomarkers in CSF treated with and without 0.05% Tween 20 can be highly repeatable for individual and pooled patient samples given strict standardisation of procedure. **Acknowledgments:** This work was supported by the Wolfson Foundation and the NIHR Queen Square Dementia BRU. The Dementia Research Centre in an Alzheimer's Research UK Coordinating Centre. Gratitude is due to the laboratory staff at the Sahlgrenska University Hospital for providing the CSF used in this study.

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Financial support: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

Competing interests: The funding organisation(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

References

- 1. Moulder KL, Snider BJ, Mills SL, Buckles VD, Santacruz AM, Bateman RJ, et al. Dominantly Inherited Alzheimer Network: facilitating research and clinical trials. Alzheimers Res Ther 2013;5:48.
- U.S. Food and Drugs Administration. Guidance for industry bioanalytical method validation. Available from: http://www.fda.gov/downloads/drugs/ guidancecomplianceregulatoryinformation/guidances/ ucm368107.pdf. Accessed 27 October, 2014.
- Seppälä TT, Koivisto AM, Hartikainen P, Helisalmi S, Soininen H, Herukka SK. Longitudinal changes of CSF biomarkers in Alzheimer's disease. J Alzheimers Dis 2011;25:583–94.
- Toombs J, Paterson RW, Lunn MP, Nicholas JM, Fox NC, Chapman MD, et al. Identification of an important potential confound in CSF AD studies: aliquot volume. Clin Chem Lab Med 2013;51:2311–7.
- Toombs J, Paterson RW, Schott JM, Zetterberg H. Amyloid-beta 42 adsorption following serial tube transfer. Alzheimers Res Ther 2014;6:5.
- Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010;6:131–44.
- ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method. 1994.
- R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2012. Available from: http://www.R-project.org/
- 9. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-108. 2013.
- Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease. N Engl J Med 2014;370:322–33.