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Abstract

Motivation

Estimation of bacterial community composition from high-throughput sequenced 16S rRNA

gene amplicons is a key task in microbial ecology. Since the sequence data from each sam-

ple typically consist of a large number of reads and are adversely impacted by different lev-

els of biological and technical noise, accurate analysis of such large datasets is

challenging.

Results

There has been a recent surge of interest in using compressed sensing inspired and con-

vex-optimization based methods to solve the estimation problem for bacterial community

composition. These methods typically rely on summarizing the sequence data by frequen-

cies of low-order k-mers and matching this information statistically with a taxonomically

structured database. Here we show that the accuracy of the resulting community composi-

tion estimates can be substantially improved by aggregating the reads from a sample with

an unsupervised machine learning approach prior to the estimation phase. The aggregation
of reads is a pre-processing approach where we use a standard K-means clustering algo-

rithm that partitions a large set of reads into subsets with reasonable computational cost to

provide several vectors of first order statistics instead of only single statistical summariza-

tion in terms of k-mer frequencies. The output of the clustering is then processed further to

obtain the final estimate for each sample. The resulting method is called Aggregation of

Reads by K-means (ARK), and it is based on a statistical argument via mixture density for-

mulation. ARK is found to improve the fidelity and robustness of several recently introduced

methods, with only a modest increase in computational complexity.
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Availability

An open source, platform-independent implementation of the method in the Julia program-

ming language is freely available at https://github.com/dkoslicki/ARK. A Matlab implementa-

tion is available at http://www.ee.kth.se/ctsoftware.

Introduction
The advent of high-throughput sequencing technologies has enabled detection of bacterial
community composition at an unprecedented level of detail. A technological approach is to
produce for each sample a large number of reads from amplicons of the 16S rRNA gene, which
enables an identification and comparison of the relative frequencies of different taxonomic
units present across samples. The rapidly increasing number of reads produced per sample
results in the need for fast taxonomic classification of samples. This problem has attracted con-
siderable recent attention [1–5].

Many existing approaches to the bacterial community composition estimation problem use
16S rRNA gene amplicon sequencing where a large amount of moderate length reads (around
250–500 bp) are produced from each sample and then generally either clustered or classified to
obtain a composition estimate of taxonomic units. In the clustering approach, reads are
grouped into taxonomic units by either distance-based or probabilistic methods [6–8], such
that the actual taxonomic labels are assigned to the clusters afterwards by matching their con-
sensus sequences to a reference database. In contrast to the clustering methods, the classifica-
tion approach is based on using a reference database directly to assign reads to meaningful
biological units. Methods for the classification of reads have been based either on homology
using sequence similarity, or on genomic signatures in terms of k-mer composition. Examples
of homology-based methods include MEGAN [9, 10] and phylogenetic analysis [11]. Another
popular approach is to use a Bayesian classifier [1, 12, 13]. One such method, the Ribosomal
Database Project’s (RDP) naïve Bayesian classifier (NBC) [1], assigns a label explicitly to each
read produced for a particular sample. Despite the methodological simplicity of NBC, the RDP
classifier may still require several days to process a large data set in a desktop environment due
to the read-by-read classification approach. Given this challenge, considerably faster estimation
methods based on mixtures of k-mer counts have been developed, for example, Taxy [2],
Quikr [3] and the recently proposed SEK [14]. Taxy is a convex-optimization based method.
SEK and Quikr are sparse signal processing based methods (inspired by compressed sensing
and convex-optimization), and SEK was shown to perform better than Quikr and Taxy in [14].

Taxy, Quikr and SEK all use as their main input a (statistical) mean vector of sample k-mer
counts computed from the reads obtained for a sample. The k-mer counts (also called k-mers)
are feature vectors extracted from raw sequence data. The necessary modeling assumption is
that the sample mean vector of k-mer counts (that means first order statistics) is sufficiently
informative about the sample composition. These three methods do not use the reads in any
additional way once the mean vector of k-mers is computed. We propose here an alternative
basis of information aggregation that remains computationally tractable to allow processing of
large sets of reads. Borrowing ideas from source coding in signal processing [15, 16], clustering
in machine learning and source coding [17], fusion in signal estimation [18] and divide-and-
conquer based shotgun sequence assembly [19], our novel approach first segregates the full set
of reads into subsets (in the k-mers feature space), computes the mean vector for each subset,
employs a standard method (such as Taxy, Quikr or SEK) to estimate composition for each
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subset, and finally fuses these estimates into a composition estimate jointly for all the reads. To
segregate the reads into subsets, we choose to employ the K-means clustering algorithm [20].
Since the K-means clustering algorithm is simple and computationally inexpensive for a rea-
sonable number Q of clusters (subsets), it can be used to partition even fairly large sets of reads
into more (intra) homogeneous subsets. By its very algorithmic nature, K-means clustering
partitions the feature space into Q non-overlapping regions and provides a set of correspond-
ing mean vectors. This is called codebook generation in vector quantization [15], originally
from signal processing, coding and clustering. Our new method is termed as Aggregation of
Reads by K-means (ARK). From the statistical perspective, theoretical justification of ARK
stems from a modeling framework with a mixture of densities.

Methods

Summarizing read sequence data by single mean k-mer counts
In the method description, we denote the non-negative real line by R+ and statistical expecta-
tion operator by E[.]. First, we describe the previously published approach of using single k-

mer summaries for each sample. Let x 2 R
4k

þ and Cm denote random k-mer feature vectors and
mth taxonomic unit, respectively. Given a test set of k-mers (computed from reads), the distri-
bution of the test set is modeled as

pðxÞ ¼
XM
m¼1

pðCmÞ pðxjCmÞ; ð1Þ

where we denote probability for taxonomic unitm (or class weight) by p(Cm), satisfyingPM
m¼1 pðCmÞ ¼ 1. Note that fpðCmÞgM

m¼1 is the composition of taxonomic units in the given test
set (reads). The inference task is to estimate p(Cm) as accurately as possible with a reasonable
computational resource. Let us derive the mean vector

E½x� ¼
Z

x pðxÞ dx ¼
Z

x
XM
m¼1

pðCmÞ pðxjCmÞ dx ¼
XM
m¼1

pðCmÞ
Z

x pðxjCmÞ dx: ð2Þ

The mean E[x] contains information about p(Cm) in this probabilistic formulation. In practice,
the information summary is obtained by computing the sample mean from the complete set of
reads available for a sample. Let us denote the sample mean of k-mers feature vectors of reads

by μ 2 R
4k

þ with the assumption that μ� E[x]. Several methods, such as Taxy [2], Quikr [3],
and SEK [14] use the sample mean μ directly as the main input to compute the composition p
(Cm).

Aggregation of reads by K-means (ARK)
For the above-described principle of information aggregation from the reads by the mean vec-
tor of k-mer counts, computation of the sample mean vector is straightforward. This conse-
quently enables handling of a very large amount of reads with low computational cost.
However, we hypothesize that the sample mean vector computed from the full set of reads is
not sufficient in terms of information content to facilitate accurate estimation of p(Cm). Indeed,
since typically the number of training taxonomic unitsM is much larger than the number of k-

mers (for example k = 6), the set of k-mer vectors for fCmgM
m¼1 is not linearly independent, and

so we risk reconstructing a mixture of taxonomic units as a single taxonomic unit. Hence, we
segregate the reads into several subsets and compute a sample mean vector separately for each
subset, assuming that a set of sample mean vectors is more informative than a single mean
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vector. Note that in the case where the resulting read subsets were not in practice distinct from
each other in terms of their k-mer counts, the subsequent composition estimate would effec-
tively be identical to the estimate obtained with a single data summary described in Eqs (1) and
(2).

Let us partition the k-mers feature space R4k

þ into Q non-overlapping regionsRq such that

[Q
q¼1Rq ¼ R

4k

þ and 8q, r, q 6¼ r,Rq \Rr = ;. Such partitions can be formed by a standard K-

means algorithm that typically uses a nearest neighbor classification rule based on square
Euclidean distance measure. The non-overlapping regionsRq are called Voronoi regions. We

define Pq ≜ Pr(x 2Rq) satisfying
PQ

q¼1 Pq ¼ 1. In practice, Pq is computed as

Pq ¼
number of feature vectors in Rq

total number of feature vectors
: ð3Þ

It is reminded that the feature vectors are k-mers. The distribution of the full test set and sub-
sets can be written as

pðxÞ ¼ PQ
q¼1 Pq pðxjx 2 RqÞ;

pðxjx 2 RqÞ ¼
PM

m¼1 pðCmjx 2 RqÞ pðxjCm;x 2 RqÞ;
ð4Þ

where the first equation follows a standard mixture density framework. Now, if we can estimate
p(Cmjx 2Rq), then the final quantity of interest p(Cm) can be estimated as

pðCmÞ ¼
XQ

q¼1

Pq pðCmjx 2 RqÞ: ð5Þ

The estimation of p(Cm) in Eq (5) is a judicious fusion of p(Cmjx 2Rq) through a linear combi-
nation. Let us now derive the mean vector forRq, which is a conditional mean vector

E½xjx 2 Rq�
¼ R

x pðxjx 2 RqÞ dx
¼ PM

m¼1 pðCmjx 2 RqÞ
R
x pðxjCm;x 2 RqÞ dx:

ð6Þ

The mean E[xjx 2Rq] contains information about p(Cmjx 2Rq). In practice we use the sam-
ple mean denoted by μq with the assumption that μq � E[xjx 2Rq]. Comparing Eqs (2) and
(6), for the qth Voronoi regionRq we can estimate composition p(Cmjx 2Rq) by using an
appropriate composition estimation method, such as Taxy, Quikr or SEK.

Algorithms
The ARK algorithm can be implemented by following steps.

1. Divide the full test dataset of k-mers into Q subsets. The regionRq corresponds to the qth
subset.

2. For the qth subset, compute Pq and the sample mean μq.

3. For the qth subset, apply a composition estimation method that uses the input μq; estimate p
(Cmjx 2Rq).

4. Estimate p(Cm) by pðCmÞ ¼
PQ

q¼1 Pq pðCm j x 2 RqÞ.
The ARK method is described using a flow-chart in Fig 1. The flow-chart shows the main

components of the overall system and the associated off-line and on-line computations. The
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crucial computational/statistical challenges related to the ARK algorithm outlined above are as
follows:

1. What is an appropriate number of subsets Q?

2. How should one form the subsetsRq?

The above points are inherent to any subset forming algorithm, and more generally to any
clustering algorithm. Furthermore, finding optimal regions (or clusters) requires alternative
optimization techniques. Given a pre-defined Q, typically a K-means algorithm performs two

Fig 1. A flow-chart of the ARKmethod.

doi:10.1371/journal.pone.0140644.g001
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alternating optimization steps. These are: (1) given a set of representation vectors fμqgQq¼1
(also

called code vectors) form new clusters fRqgQ

q¼1
by a nearest neighbor rule (or form new subsets

from the full dataset), (2) find the set of cluster representation vectors given the assignment of
data into clusters. The optimal representation vector is the mean vector if squared Euclidean
distance is used for the nearest neighbor rule. The K-means algorithm initializes with a set of
representative vectors and runs alternating optimization until convergence in the sense that
the average squared Euclidean distance is no longer reduced. In the present paper we perform
the clustering using a popular vector quantization method called the Linde-Buzo-Gray (LBG)
algorithm [15] (or source coding literature). There are several variants of the LBG available. In
one variant, the algorithm starts with Q = 1 and then slowly splits the dense and high probabil-
ity clusters to end up with a high Q, such that it does not deviate significantly from an exponen-
tially decaying bit rate versus coding distortion (rate-distortion) curve.

In ARK, we use the following two strategies to solve the two challenges listed above.

1. Optimal/deterministic strategy: Start with Q = 1, which corresponds to the previous
approach with a single mean vector as the data summary. Then set Q = 2 for LBG algorithm
that uses square Euclidean distance as the distortion measure; the LBG algorithm minimizes
mean of square Euclidean distance (also called mean square error). Initialization is done by

a standard split approach where the mean vector is perturbed. Using Q = 2, fRqg2q¼1 is

formed and we estimate p(Cm). Subsequently, Q is increased by one until a convergence cri-
terion is met. For Q� 3, we always split the highest ranking cluster into two subclusters and
use the LBG algorithm to find the optimal clusters. The number of clusters Q is no longer
increased if the estimated values of p(Cm) differ negligibly for Q and (Q − 1). In practice, the
stopping condition we use is that the variational distance between p(Cm)jQ and p(Cm)j(Q−1)
is less than a predetermined threshold. This condition can be written asPM

m¼1 abs pðCmÞjQ � pðCmÞjðQ�1Þ
� �

< Z, with a user defined choice of the threshold η. Note

that η 2 (0,1] provides an allowable limit as a scaled variational distance (VD) between two
probability mass functions; a typical choice of η can be 0.01. This strategy is typically found
to provide consistent performance improvement in the sense of estimating p(Cm) with the
increase in Q by the step of one, but without absolute guarantee as the target optimization
strategy minimizes mean square error. Furthermore, we allow an increment in the number
of clusters up to a pre-defined maximum limit Qmax. Typically Qmax is preferably chosen as
an integer power of two. A typical choice of Qmax can be between 16 to 256.

2. Non-optimal/random strategy: For very large test sets, we use a pre-determined Q and a
random choice of the Q representation vectors. Then the full test set is divided into Q sub-
sets by a nearest neighbor rule and we compute the set of Qmean vectors {μq}, and cluster
probabilities {Pq}. Even though this non-optimal strategy does not use an alternating opti-
mization (such as LBG algorithm) to form optimal clusters, it divides the full test set into
sub-sets, resulting in a set of Q localized mean vectors across the full test set.

Finally we mention that the use of K-means is fully motivated by its simplicity and compu-
tational ease. Use of statistical K-means in the form of expectation-maximization based mix-
ture modeling (for example, Gaussian mixture model) could have been investigated, but
requires more computation to handle a large dataset of reads.

Synthetic data generation for method evaluation
To evaluate the performance of the ARK method, we conducted experiments for simulated
data as described below. For these, and all computations reported in the remainder of the
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paper, we used Matlab version R2013b (with some instances of C code), on a desktop worksta-
tion with an Intel Core i7 4930K processor and 64Gb of RAM.

Test datasets (Reads). We simulated 180 16S rRNA gene 454-like datasets using the RDP
training set 7 and the Grinder read simulator [21] targeting the V1–V2 and V3–V5 variable
regions with read lengths fixed at 250 bp or normally distributed with a mean of 450 bp and
variance 50 bp. Read depths were chosen to be either 10K, 100K or 250K, while three different
read distributions were used: power law, uniform, and linear. Diversity was set at either 50,
100, or 500 taxa and chimera percentages were set to 5% or 35%. The Balzer model [22] was
chosen for homopolymer errors, and copy bias was included while length bias was excluded.

Training dataset (Reference). In our ARK experiments we used Quikr [3] and SEK [14]
to estimate p(Cmjx 2Rq). The RDP training set 7 was used as the base reference database for
both Quikr and SEK. Note that this is the same as database Dsmall utilized in [3]. While in the
main manuscript we use the same data for both training and testing the base methods (Quikr
and SEK), in S1 File we include results obtained when the test datasets have taxa absent from
the training database (that is, sister taxa have been excluded from the training database). As
expected, all methods experience a loss in reconstruction accuracy when sister taxa are absent,
but ARK Quikr and ARK SEK are still more accurate than RDP’s NBC.

Real biological data
To further evaluate ARK, we also utilized 28 Illumina MiSeq 16S rRNA gene human body-site
associated samples, plus one negative control sample. The real data consist of a total of over 5.7
M reads distributed over three variable regions (V1–V2, V3–V4, and V3–V5) as well as two
body sites (vagina and feces).

For each of these samples DNA was extracted using the FastDNA SPIN Kit for Soil with a
FastPrep machine (MP Biomedicals) following the manufacturer’s protocol. 16S rRNA gene
amplicons were generated from the DNA extractions using the primer combinations listed in
Section 5 of S1 File. The Q5 High-fidelity polymerase kit (New England Biolabs) was used to
amplify the 16S rRNA genes, and PCR conditions were as follows: 98°C for 2 minutes, followed
by 20 cycles of 98°C for 30 seconds, 50°C for 30 seconds and 72°C for 1 minute 30 seconds, fol-
lowed by a final extension step at 72°C for 5 minutes. Following PCR, the amplicons were then
purified using the Wizard SV Gel and PCR Clean-Up kit (Promega, UK). Sequencing of 16S
rRNA gene amplicons was carried out by Illumina Inc. (Little Chesterford, UK) using a MiSeq
instrument run for 2 x 250 (V1–V2), 300 + 200 (V3–V4) and 400 + 200 (V3–V5) cycles. These
data have been submitted to the European Nucleotide Archive using the accession number
PRJEB9828.

After trimming 20 bp of primer off each read, the sequences were trimmed from the right
until all bases had a quality score greater than 27. This reduced the total number of reads to
approximately 4M, and reduced the mean read length from 315 bp to 257 bp. We then utilized
all resulting unpaired reads (both forward and reverse) including any duplicate sequences. We
include in S1 File results for an alternative error-correction protocol, as well as results for
assembling paired-end reads (Figs E and F in S1 File).

Ethics Statement
For human body-site associated samples, the faecal samples used were not part of a clinical
study so there is no corresponding ethical approval or written consent. There were no clinical
records. The samples are anonymised and de-identified. Further, vaginal samples were col-
lected as part of an observational microbicide feasibility study. The study was approved by the
Ethics Committees of the National Institute for Medical Research in Tanzania and London
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School of Hygiene and Tropical Medicine, and all participants gave written informed consent.
All records were anonymized and de-identified prior to this retrospective analysis.

Results

Performance measure and relevant methods
As a quantitative performance measure, we use variational distance (VD) to compare between
known proportions of taxonomic units p = [p(C1), p(C2), . . ., p(CM)]

t and the estimated propor-

tions p̂ ¼ ½p̂ðC1Þ; p̂ðC2Þ; . . . ; p̂ðCMÞ�t . The VD is defined as

VD ¼ 0:5� k p� p̂k1 2 ½0; 1�:
A low VD indicates more satisfactory performance.

For ARK, we used both SEK and Quikr as the underlying estimation methods applied to
each cluster. These recent methods were chosen as appropriate representatives of fast and accu-
rate sparse signal processing approaches. A k-mer size of k = 6 was used for both Quikr and
SEK.

As part of the SEK pipeline, sequences in a given database are split into subsequences. We
selected from the 10,046 sequences in the RDP training set 7 all sequences longer than 700 bp
in length, and then split the sequences into subsequences of length 400 bp with 100 bp of over-
lap. This corresponds to setting Lw = 400 and Lp = 100 as specified in [14]. We used the SEK

algorithmOMPþ;1
sek with parameters as in [14].

Results for Simulated Data
Effect of increasing number of clusters. We first investigate how an increase in the num-

ber of clusters Q affects the composition reconstruction fidelity and algorithm execution time
for the simulated data. Only the non-optimal/random strategy of K-means clustering was uti-
lized as we found that the performance improvement for optimal/deterministic strategy was
insignificant given the resulting increase in execution time (results not shown). Averaging the
VD error at the genus level over all 180 simulated experiments, it was found that combining
ARK with both SEK and Quikr resulted in a power law kind of decay of VD error as a function
of the number of clusters (Fig 2). ARK causes a substantial increase in reconstruction fidelity
which can be seen since using ARK SEK or ARK Quikr with one cluster is equivalent to run-
ning SEK or Quikr with no modification.

Since the underlying algorithm (SEK or Quikr) must be executed on each cluster formed by
the K-means clustering, we expect the total algorithm execution time to increase by a factor
equal to the number of chosen clusters. As seen in Fig 3, both algorithms experience an
increase in execution time roughly proportional to the number of clusters.

Fixed number of clusters. As seen above, given the decrease in VD as a function of the
number of clusters, we also fixed the number of clusters Q to 75 to compare the performance
of the underlying algorithms with and without ARK. There was a significant decrease in the
VD error (as seen in Fig 4) at the cost of an increase in execution time (as seen in Fig 5). How-
ever, given the speed of both Quikr and SEK, we expect the addition of ARK will not result in
prohibitively long execution times. Indeed, as seen above, on real biological data both ARK
Quikr and ARK SEK are still several hours faster than the Ribosomal Database Project’s Naïve
Bayesian Classifier (RDP’s NBC) [1], even when using 75 clusters.
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Fig 2. Results for the randomK-means clustering on the simulated data.Mean VD error at the genus
level as a function of the number of clusters. Note the improvement that ARK contributes to each method.

doi:10.1371/journal.pone.0140644.g002

Fig 3. Results for the randomK-means clustering on the simulated data.Mean execution time increase
(factor given in comparison to running SEK or Quikr in the absence of ARK) as a function of number of
clusters. The dashed line represents a line with slope 1.

doi:10.1371/journal.pone.0140644.g003
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Fig 4. Comparison of the underlying algorithms with and without ARK.Results are for the random K-
means clustering on the simulated data when fixing the number of clusters to 75. Mean VD error at the genus
level. Included for comparison are results for RDP’s NBC (compare to Fig 2(b) of [3]).

doi:10.1371/journal.pone.0140644.g004

Fig 5. Comparison of the underlying algorithms with and without ARK.Results are for the random K-
means clustering on the simulated data when fixing the number of clusters to 75. Boxplot of the individual
simulated sample execution times. Mean execution times for Quikr and ARK Quikr were 1.75 seconds and
4.71 minutes, while for SEK and ARK SEK they were 21.26 seconds and 19.21 minutes respectively. Mean
execution time for RDP’s NBC was 38.19 minutes.

doi:10.1371/journal.pone.0140644.g005
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Real Biological Data
We used ARK combined with SEK and Quikr to analyze the real biological data and compared
these results to those obtained from the RDP’s NBC. All methods used RDP’s training set 7 as
the underlying training database. The random K-means clustering was used for the ARK
method, and the number of clusters Q was set to 75. Fig 6 demonstrates the total execution
time of each method. While ARK does increase the execution time of Quikr and SEK, the total
execution time is still significantly less than that of RDP’s NBC. Note that all datasets here are
not de-duplicated. Execution time of RDP’s NBC can be accelerated by de-duplicating the data
before classifying. However, this requires additional computational time to find duplicate
sequences, and since we are directly comparing classification methods here (not computational
shortcuts) we use the same non-de-duplicated data for all methods.

To compare the results of each method, we compared PCoA (also known as classical multi-
dimensional scaling) plots by employing the Jensen-Shannon divergence on each of the recon-
structions. The points represent individual samples, and the color/shape denote the associated
metadata. Each of the methods produced similar PCoA plots. Fig 7 compares the results when
using RDP’s NBC and Fig 8 for ARK SEK when the sample body site is labeled. Note the simi-
lar clusterings.

Fig 6. Total execution time for eachmethod on the 28 samples of real biological data.

doi:10.1371/journal.pone.0140644.g006
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As shown in Figs 9 and 10, while ARK Quikr gave a somewhat similar PCoA plot with
regard to body site (Fig 9), clustering by variable region (Fig 10) was also observed. This is
most likely due to the fact that different variable regions have different k-mer distributions and
different taxa will be preferentially amplified by the varying PCR primers [23]. ARK Quikr can
detect this as it analyzes each sample in its entirety, as opposed to the read-by-read nature of
RDP’s NBC. This is corroborated by the fact that when using the Jenson-Shannon divergence
directly on the 6-mer counts, similar grouping was observed by variable region (results not
shown).

Discussion and Conclusion
The addition of a data processing step based on clustering the read information prior to com-
munity composition estimation is akin to the generic divide-and-conquer principle used judi-
ciously in the machine learning field. In terms of information content of the read data, the
individual means of the k-mer frequencies can collectively provide a better summary than the
single mean vector used in the previous approaches, when sufficient heterogeneity is present
among the sequences. Our experiments demonstrate this effect by a substantial increase in the
accuracy of the resulting estimates. Moreover, the clustering employed by ARK is found to be

Fig 7. PCoA plots using the Jensen-Shannon divergence for RDP’s NBC.

doi:10.1371/journal.pone.0140644.g007
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robust in the sense that it does not lead to lower accuracies, even if a suboptimal number of
clusters and clustering strategy were used. We found that the improvement in reconstruction
accuracy was obtained at the cost of a moderate increase in execution time for the studied
methods.

We note that under the clustering algorithm employed by ARK, no quantitative claims can
be made concerning the global optimality of the resulting clusters or on consistent improve-
ment in performance. Also, there is no absolute guarantee that the estimation of p(Cm) is
bound to improve monotonically with an increase in Q. Thus, in an individual experiment, it is
possible to encounter occasional degradation in performance. However, our results suggest
that a larger number of clusters Q will tend to perform reasonably better than a much smaller
value of Q, provided that the resulting cluster sizes are not too small to yield very noisy esti-
mates of the mean vector.

While this study has focused on 16S rRNA gene sequencing based data, there is no theoreti-
cal limitation in applying this technique also to whole-genome shotgun (WGS) metagenomics.
Indeed, ARK can readily be combined with existing WGS k-mer feature vector metagenomics

Fig 8. PCoA plots using the Jensen-Shannon divergence for ARK SEK.

doi:10.1371/journal.pone.0140644.g008
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Fig 9. ARKQuikr PCoA plots (using the Jensen-Shannon divergence) on the real biological data. In this case, we have labeling by body site. Note the
clustering.

doi:10.1371/journal.pone.0140644.g009

Fig 10. ARK Quikr PCoA plots (using the Jensen-Shannon divergence) on the real biological data. In this case, we have labeling by variable region.
Note the clustering.

doi:10.1371/journal.pone.0140644.g010

PLOSONE | DOI:10.1371/journal.pone.0140644 October 23, 2015 14 / 16



reconstruction techniques (such as WGSQuikr [24]). Thus, we aim at investigating the versatil-
ity of this approach as complementary to other WGS metagenomics analysis methods in the
future.

Supporting Information
S1 File. Supplementary Information for “ARK: Aggregation of Reads by K-means for Esti-
mation of Bacterial Community Composition”. This supporting information is available
online. This supplementary material is included to address eight major points:

1. To compare ARK with the best performing bacterial community composition method to
date, called BEBaC [8]. BEBaC employs a Bayesian estimation clustering framework along-
with a stochastic search and sequence alignment.

2. To investigate the important question of finding the number of regions Q in ARK.

3. To independently verify ARK in two different geographic regions ((1) Sweden and Finland,
and (2) USA) and also using different datasets.

4. To detail genera-level reconstructions of ARK SEK, ARK Quikr, and RDP’s NBC.

5. To detail the primers used to obtain the data in the main text.

6. To demonstrate the results are qualitatively independent of the error correction method
chosen.

7. To detail the effect of changing the k-mer size.

8. To investigate the behavior of each method when sister taxa are excluded from the training
database.
(PDF)
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