
1 

 

Additional file 1.  

Modeling methods  

We constructed a stochastic transmission model of Chlamydia trachomatis infection over time. 

The model contains two components: (1) change in the number of infected individuals over time 

due to transmission, recovery and mass antibiotic treatment with the reported coverage levels, 

and (2) the observed TF, TI and PCR-positive based on the number of infected individuals (as 

shown in Figure 1). For community 𝑗 (𝑗 =1, …, 24), we assumed a population of size 𝑁𝑗 at the 

time of treatment 𝑘 (𝑘 = 1, 2, 3 corresponding to baseline, 12 and 24 months). We used an SIS 

(susceptible-infectious-susceptible) model structure, assuming that the force of infection is 

proportional to the prevalence of infection in the population with proportionality constant 𝛽, and 

a constant per-capita recovery rate 𝛾 [1]. Between periods of treatment, we assumed that the 

probability 𝑝𝑖,𝑗
(𝑘)

(𝑡) that there are 𝑖 infections in community 𝑗 at time 𝑡 after treatment time point 𝑘 

obeys the following equations [2, 3]: 
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To model treatment, we assumed that each child aged 0-5 years in community 𝑗 has probability 

𝑐𝑗
(𝑘)

of receiving treatment with the antibiotic efficacy 𝑒𝑘 for treatment period 𝑘. We modeled each 

treatment according to 𝑝𝑖,𝑗
(𝑘)(𝑡 = 0) = ∑ 𝑝
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, where 𝑖′ is the 

number of infected children aged 0-5 years eligible for treatment, 𝑝
𝑖′,𝑗

(𝑘,𝑝𝑟𝑒)
 is the probability of 𝑖′ 

infected children aged 0-5 years before treatment time point 𝑘, and 𝑖 is the number of infected 

children aged 0-5 years after treatment. Let 𝑆𝑗,𝑇𝐹
(𝑙)

 , 𝑆𝑗,𝑇𝐼
(𝑙)

 and 𝑆𝑗,𝑃𝐶𝑅
(𝑙)

 be the observed TF, TI and 

PCR-positive at each observation time point 𝑙 (𝑙 = 0, 1, 2, 3, 4 and 5 corresponding to baseline, 

6, 12, 18, 24 and 30 months, respectively) for community 𝑗. From community 𝑗 with population 

size 𝑁𝑗 of which the number of infections 𝑌𝑗  equals 𝑖, the probabilities that 𝑠 of TF, TI or PCR-

positive are observed from 𝑖 infections are given by using the observation component of the 

Kalman filter assuming that the posterior density of the observation given the number of 

infections is Gaussian [4]:  
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𝑃(𝑆𝑗,𝑇𝐹 = 𝑠|𝑌𝑗 = 𝑖) = 𝒩 (𝑠; 𝜆𝑇𝐹𝑆𝑗,𝑇𝐹′ + (1 − 𝜆𝑇𝐹)𝑖𝜇𝑇𝐹 , ((1 − 𝜆𝑇𝐹)𝜎𝑇𝐹)
2

) 

𝑃(𝑆𝑗,𝑇𝐼 = 𝑠|𝑌𝑗 = 𝑖) = 𝒩(𝑠; 𝑖𝜇𝑇𝐼 , 𝜎𝑇𝐼
2 )        (2) 

𝑃(𝑆𝑗,𝑃𝐶𝑅 = 𝑠|𝑌𝑗 = 𝑖) = 𝒩(𝑠; 𝑖𝜇𝑃𝐶𝑅 , 𝜎𝑃𝐶𝑅
2 ) 

where 𝒩(𝑥; 𝜃1, 𝜃2) is a Gaussian density with argument 𝑥, mean 𝜃1, and covariance 𝜃2; 𝜆𝑇𝐹 is 

the autocorrelation between the observed TF at the previous and current time points (delay in 

TF recovery); 𝑆𝑗,𝑇𝐹′ is the observed TF at the previous time point;  𝜇𝑇𝐹, 𝜇𝑇𝐼 and 𝜇𝑃𝐶𝑅 are 

correlations between the number of infections in community 𝑗 and its observed TF, TI and PCR-

positive; 𝜎𝑇𝐹
2 , 𝜎𝑇𝐼

2  and 𝜎𝑃𝐶𝑅
2  are correlations between the number of infections in community 𝑗 and 

its observed TF, TI and PCR-positive. We assumed a standard beta-binomial prior 𝑃(𝑌𝑗 = 𝑖) =

(
𝑁𝑗

𝑖
)

Β(𝑖+𝛼,𝑁𝑗−𝑖+𝜌)

Β(𝛼,𝜌)
 (where the shape parameters 𝛼 and 𝜌 for each treatment were computed from 

the observed distribution of infection of 24 communities at baseline, 12 and 24 months, Β(𝑧1, 𝑧2) 

is the beta function [5]) as the distribution of pre-treatment prevalence 𝑝𝑖,𝑗
(𝑘,𝑝𝑟𝑒)

. Given 𝑖 infections 

in community 𝑗, we computed the probability of the observed TF-positives of treatment 𝑘 in 

community 𝑗 according to 𝑃 (𝑆𝑗,𝑇𝐹 = 𝑆𝑗,𝑇𝐹
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denotes the observed TF-positive at one of the observation time points in the period 𝑘; 𝜏 (6 or 

12 months) is the interval between treatment and observation time points;  𝑙 (𝑙 = 2𝑘 − 1 for 𝜏 =

6, and 𝑙 = 2𝑘 for 𝜏 = 6) is the observation time point). Similarly, the probabilities of the observed 

TI and PCR-positive of treatment 𝑘 in community 𝑗 were computed according to 
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, respectively. We assumed independent communities, so 

that the total loglikelihood of the observed TF, TI and PCR-positive at 𝜏 months after each 

treatment 𝑘 may be computed by summing over all 24 communities: 
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For simplicity, we assumed a constant population (children aged 0-5 years) size for all 

communities (𝑁𝑗=100). The parameters in the model were optimized by using the Metropolis 

algorithm with the total likelihood of three treatment periods to fit the model to the observed TF, 

TI and PCR-positive in each community at 6, 12, 18, 24 and 30 months [6]. In optimization, the 

likelihood based on Equation 2 was obtained by using a zero-inflated truncated normal 
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distribution (zero-inflation #1, which is similar to a truncated normal between 0% and 100%, but 

the density at 0% was assumed to be the integral from negative infinity to 0 from the normal 

distribution), that is, the posterior was assumed be the zero-inflated truncated normal with 101 

discrete units between 0 and 1. Given the observed TF, TI and PCR-positive in each community 

at 6, 12, 18, 24 and 30 months, the distribution of the observed TF-positive (101 discrete units 

corresponding to 0%, 1%, …, 100% of prevalence) in a community at 36 months was forecasted 

by using a Hidden Markov model (specifically, a Markov-switching AR(1) model [7] with the 

delay in TF recovery, because the observed TF at the previous and current time points are not 

conditionally independent) according to the equation of forecast distributions [7] and the 

observation component of the Kalman filter in Equation 2.  
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Figure 1. Model Structure 

The process model (the true hidden prevalence, TP, at six observation time points (l = 0, 1, 2, 3, 

4 and 5)) is shown by red circles and arrows. The observation models (the observed TF, TI and 

PCR at observation time points) are shown by blue (TF) and green (TI and PCR) circles, which 

are based on the true hidden prevalence (indicated by black arrows). The delay in TF recovery 

in the TF observation model is shown by blue arrows.  

 


