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There is growing evidence that projected climate change has the potential to significantly affect public health. In
the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and
chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor
environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect
public health.
We explored a range of health risks in the domestic indoor environment related to climate change, as well as the
potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in
the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in
theUK likely to arise through either direct or indirectmechanismsof climate changeormitigation and adaptation
measures in the built environment.We considered the following categories of effect: (i) indoor temperatures, (ii)
indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination.
Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if
adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air
quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing green-
house gas emissions have the potential for ancillary public health benefits including reductions in health burdens
related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. How-
ever, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by in-
creasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources,
and biological contamination. These effects can largely be ameliorated bymechanical ventilationwith heat recov-
ery (MVHR) and air filtration, where such solution is feasible andwhen the system is properly installed, operated
andmaintained. Groups at high risk of these adverse health effects include the elderly (especially those living on
their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socio-
economically deprived.
A better understanding of how current and emerging building infrastructure design, construction, and materials
may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK
and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate
ventilation, need to be promoted.
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1. Introduction

Growing scientific evidence indicates that climate change is likely to
cause a range of direct and indirect effects on dwellings (Crump, 2011;
IOM, 2011). People in developed countries typically spend over 90% of
their time indoors (Harrison et al., 2002; Vardoulakis, 2009; Lai et al.,
2004). In the UK, a study of activity patterns in Oxford found partici-
pants were spending an average of 95.6% of their time indoors, with
66% of their time spent in their homes (Schweizer et al., 2007). Further-
more, vulnerable individuals in Europe (the elderly, young children, and
peoplewith compromised health)may spend an even larger proportion
(up to 100% of their time) at home (Glorieux et al., 2002; Torfs et al.,
2008). It is therefore important to consider the degree to which climate
change impacts on the indoor environments affect the physical and
mental health and wellbeing of dwelling occupants.

Buildings account for a large proportion of energy consumption and
greenhouse gas (GHG) emissions in high income countries. In the UK,
residential buildings were responsible for around 25% of total GHG
end-user emissions in 2012 (DECC, 2014). The UK Government is com-
mitted to an 80% reduction (from the 1990 baseline) in GHG emissions
by 2050 (DCLG, 2010). Therefore, policies to mitigate and adapt to cli-
mate change in the domestic sector can play a key role in attaining
this goal (Bone et al., 2010).

Although building structures are primarily intended to provide shel-
ter and enhance wellbeing, they are also associated with a range of
health hazards, such as those attributable to indoor air pollution, ex-
treme temperatures, pests and infestations, noise, airborne infectious
diseases, water or mould contamination, domestic injuries and poison-
ing, and mental health effects (Haines et al., 2007; Mcmichael, 2011;
WHO, 2011). The form of the built environment (e.g. urban density)
may also have influence on factors relating to “life-style” diseases,
such as cardiovascular illness. Health inequalities can also be aggravated
or mitigated by housing conditions (BMA, 2003; House of Commons,
2009; Shrubsole et al., 2015).

A number of papers have recently reviewed how climate change and
mitigation and adaptation measures may affect the indoor environ-
ment, including building overheating, indoor air quality and biological
contamination, mainly focusing on high-income countries (IOM, 2011;
Spengler, 2012; Nazaroff, 2013). In the UK context, there has been sub-
stantial research mainly on the impact of climate change on building
overheating, as well as on the relevant adaptation and mitigation
measures (e.g. CIBSE, 2005; Hacker et al., 2005; Capon and Oakley,
2012; DCLG, 2012a; De Wilde and Coley, 2012; NHBC Foundation,
2012). Studies have also focused on the impacts of climate change mit-
igation and adaptation on indoor air quality (Shrubsole et al., 2012), and
highlighted research needs in this area (Crump, 2011). There is a partic-
ular need for an improved understanding of the performance of highly
energy efficient homes under climate change scenarios, the quality of
their ventilation systems, and the impact on health and wellbeing of
their occupants (Dimitroulopoulou, 2012; Wargocki et al., 2002;
Crump et al., 2009).

In this paper we provide an overview of the interaction of climate
change, the domestic indoor environment and health in the UK, focus-
ing on (i) building overheating and thermal comfort, (ii) indoor air qual-
ity, (iii) indoor allergens and infections, and (iv) flood damage and
water contamination. The discussion includes unintended harmful ef-
fects of climate changemitigation and adaptation policies, as well as op-
portunities for health protection and health promotion.

2. Overheating of buildings and thermal comfort

Temperatures on the Earth's surface have risen for each of the last
three decades and are now higher than in any previous decade since
1850 (IPCC, 2013). In the UK, temperatures have increased since pre-
industrial times, and at a rate of around 0.25 °C per decade since the
1960s (Vardoulakis and Heaviside, 2012). Central estimates of climate
projections for the UK (UKCP09;Murphy et al., 2010) indicate increases
in the summertime mean daily maximum temperatures up to 5.4 °C in
southern England, and up to 2.8 °C in northern Britain by 2080, under a
medium GHG emissions scenario. Heatwaves are also likely to become
more frequent and intense in future decades (Jones et al., 2008).

The association between elevated outdoor temperatures and mor-
tality has been extensively reported (e.g. Hajat et al., 2014; Armstrong
et al., 2011; Vardoulakis et al., 2014). The elderly, people with pre-
existing medical conditions (e.g. mental disorders, neurological or car-
diovascular disease) and those who are overweight or have reduced
mobility, are likely to be more vulnerable during prolonged hot periods
and heatwaves (Haines et al., 2007; Hajat et al., 2007).

The European heatwave of August 2003, considered to be the most
intense since 1500 (Luterbacher et al., 2004), has been estimated to
have caused up to 70,000 additional deaths in Europe (Robine et al.,
2008). In the UK, there were over 2000 excess deaths (a 17% excess
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for the heatwave period), with the highest impact in southern England,
especially London, and on the elderly (Johnson et al., 2005). Of these,
400–800 have been attributed to poor outdoor air quality over the
same period (Stedman, 2004). As a result of climate change, heatwaves
are likely to be experienced more frequently in future in Europe, with
suggestions that heatwaves as severe as that of 2003 will be experi-
enced every other year by the 2040s under un-mitigated emissions sce-
narios (Stott et al., 2004).

Although epidemiological studies show that high temperatures re-
sult in excess deaths, such evidence is based on the link between out-
door temperatures and health effects. There is much less evidence on
the mortality relationship with indoor temperatures which can vary
widely from dwelling to dwelling for any given outdoor temperature
(Vadodaria et al., 2014). Consequently, it has not been possible to define
how indoor temperatures relate to an overheating threshold for health
risk, given the very limited and indirect epidemiological evidence
(DCLG, 2012a; Anderson et al., 2013). However, these factors that may
modify heat risks associated with the indoor environment can be
grouped into the following categories: (i) location, (ii) building charac-
teristics, and (iii) occupant behaviour. They are briefly discussed below
for the UK.

2.1. Location

Southern England is likely to face the largest risk of indoor
overheating in the UK, since outdoor temperatures are among the
highest for the UK (DCLG, 2012a, 2012b). It is estimated that naturally
ventilated, super-insulated dwellings in London may not meet comfort
targets in 2010–2040 without mechanical cooling in hot weather
(Peacock et al., 2010).

Around 80% of dwellings in England and Scotland, 65% inWales and
60% in Northern Ireland are located in urban areas (Capon and Oakley,
2012). To varying degrees, these dwellings may be affected by the
urban heat island effect (UHI), which leads to increased ambient tem-
peratures in urban centres comparedwith the surrounding countryside.
The UHI effect is typically higher at night than during the day, and the
temperature increment at the centre of a large city can be as large as
5–10 °C compared with surrounding countryside (Knight, 2010;
Tomlinson et al., 2012). During the heatwave of August 2003, the
urban heat island intensity in London reached a maximum value of 9
°C (Mayor of London, 2006), and was up to around 7 °C in Birmingham
(Heaviside et al., 2015). The UHI effect may be considered as beneficial
in winter, since it reduces the cold weather impacts and heating de-
mand (Mavrogianni et al., 2009). However, in summer, and especially
during heatwaves, the UHI effect may exacerbate building overheating
and related health impacts (Davies et al., 2008), since it prevents build-
ings from cooling down, particularly at night (Watkins et al., 2007).

Monitoring of summertime temperatures in a nationally-
representative sample of English dwellings showed that, on average,
flats were generally the warmest and detached houses the coolest
(Beizaee et al., 2013; Lomas and Kane, 2013). However, overheating
propensity is determined by a multitude of factors, including the floor
level, orientation and shading of the dwelling (Porritt et al., 2011).
Small top-floor flats appear to be considerably more vulnerable due to
the heating of the roof fromwhich there is often poor thermal insulation
(Orme and Palmer, 2003; Orme et al., 2003; CIBSE, 2005). Living in a top
floor flat or right under the roof (e.g. loft conversions) generally in-
creases exposure to high temperatures and related health risks
(Vandentorren et al., 2006). On the other hand, ground floor living
areas may be relatively cool (Capon and Hacker, 2009).

In the UK, high indoor temperatures appear to bemore of an issue in
bedrooms than in living rooms (Firth et al., 2007, Firth and Wright,
2008; Mavrogianni et al., 2010; Beizaee et al., 2013), and often exceed
the Chartered Institution of Building Services Engineers (CIBSE) static
overheating guideline of 26 °C for bedrooms and 28 °C for other living
areas. Data from national monitoring campaigns show that bedroom
temperatures are generally lower during the night and early morning
and gradually increase during daytime, reaching their peak in the eve-
ning (Firth and Wright, 2008; Beizaee et al., 2013).

2.2. Building characteristics

Although location determines variation in indoor temperatures, the
built form and permeability of the building envelope, and ventilation
strategy, can be even more powerful determinants of dwelling-to-
dwelling variation in indoor temperatures (Mavrogianni et al., 2012;
Oikonomou et al., 2012). Traditionally, UK dwellings have high levels
of air permeability, which is a measure of airtightness of the building
fabric, often exceeding building regulations (ADL1A, 2010). Improving
airtightness in dwellings entails reducing air leakage through the un-
controlled flow of air through gaps and cracks in the building fabric.
This prevents heat loss, which in winter reduces energy use and associ-
ated carbon dioxide emissions, and can improve thermal comfort and
reduce cold-related impacts on occupants' health (EST, 2005; EST,
2007). However, by improving airtightness, especially in Passivhaus
(i.e. houseswith high standards of energy efficiency) and super insulted
dwellings, the risk of overheating may increase during hot weather pe-
riods unless other means of ventilation and active cooling systems are
available (Sharples and Lee, 2009; McLeod et al., 2013). The recom-
mended values of air permeability range from 10 m3/h/m2 for conven-
tional houses (ADL1A, 2010) to less than 1 m3/h/m2 for “low carbon”
homes (PassivHaus Standard, IPHA, 2014; ATTMA, 2010).

The building characteristics which increase overheating risk can be
different across different UK climate regions, meaning that it is not al-
ways appropriate to generalise the results of a local study across the en-
tire country (Taylor et al., 2014b). However, newly constructed houses
with high levels of insulation generally have thepotential to be at higher
risk of overheating than older, less well insulated houses (Pathan et al.,
2008; DCLG, 2012a). An analysis of houses built before 1994 in the UK
showed that some of the factors affecting airtightness are the year of
construction, type of wall and floor, season of the year, and the extent
of drying out of the timber structure during the first year of occupancy
(Stephen, 1998). The stock of old dwellings in the UK has a very broad
range of air permeability values, with homes built since about 1980
being more airtight on average than those built over the period 1930–
1980 (Etheridge et al., 1987; Stephen, 1998; Dimitroulopoulou et al.,
2005; Pan, 2010). Dwellings built with precast concrete panels are sig-
nificantly more airtight than those built with timber frame, whilst the
masonry and reinforced concrete frame dwellings are the leakiest
(Pan, 2010).

Heavy construction materials, such as concrete and stone, generally
increase the thermal mass of a building, meaning that internal air tem-
perature responds slowly to external variations. Depending upon the lo-
cation of any insulation, thermal mass may help reduce the risk of
extreme temperatures, but may also trap unwanted internal thermal
gains and potentially increase overheating risk in some climates
(Peacock et al., 2010; Hacker et al., 2005). Thermal mass can reduce
the peak indoor temperature during the day, but also keep the building
warmer during the night, therefore effective temperature control is re-
quired through night-time ventilation in buildings constructed with
these materials.

2.3. Occupant behaviour

Dwelling occupants can usually appreciably alter indoor tempera-
tures during periods of heat by adjusting ventilation (e.g. opening win-
dows) and shading, using cooling systems (where available), and
influence their own thermoregulation by adjusting clothing, location
within the home, and using fans and other measures (Fuller and
Bulkeley, 2013; Mavrogianni et al., 2014). The choice of when to open
windows is typically made spontaneously as a direct response to
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experienced temperatures rather than as a deliberate strategy to opti-
mise cooling.

Occupant behaviour also depends on socio-economic status, occu-
pant age, personal knowledge and preferences (Wei et al., 2014).
Older people, socioeconomically deprived populations, isolated individ-
uals, as well as the very young and people with pre-existing medical
conditions have all been reported to be at higher risk of heat-related
mortality/morbidity. This risk may in part reflect underlying medical
conditions and physiological vulnerability, but in some cases also less
access to control measures (e.g. air conditioning), or poorer knowledge
or ability to control exposure to heat (PHE, 2013).

2.4. Climate change mitigation and adaptation to building overheating

Improved building design and refurbishment are important mea-
sures to help adapt to higher temperatures under climate change
(DCLG, 2012b). However, the rate of replacement of the UK housing
stock is low (about 1% a year (Roberts, 2008a)), and it has been estimat-
ed that around 70% of the current stock will still be available in 2050
(SDC, 2006). Therefore, planned adaptation of existing homes through
retrofit measures (e.g. ventilation and cooling systems) is crucial.

Air conditioning can reduce thermal discomfort and health risks of
overheating dwellings, but it entails considerable energy consumption
(with implications of cost, especially for low income households, and
additional carbon dioxide emissions), it may contribute to the urban
heat island effect and it is dependent on an uninterrupted power supply
during periods of hot weather when demandmay overload the electric-
ity supply infrastructure, increasing the risk of power failure (Kovats
and Hajat, 2008; Ostro et al., 2010). It is therefore recommended to
use passive control measures to minimise the need for air conditioning.

More generally, climate changemitigation and adaptation measures
for dwellings should be considered in a joined up approach that mini-
mises GHG emissions and reduces health risks. Table 1 summarises
the climate adaptation measures that may be used in order to reduce
overheating. The effectiveness of some of these measures has been
ranked based on modelling and associated assumptions and shows
that shading solar radiationwas a highly effective way to reduce annual
overheating; however, the combination of all the adaptation options
was the most effective intervention (Gupta and Gregg, 2012; Porritt
et al., 2012).

Occupant behaviour can also have a significant impact on overheating
(DH, 2008a; Vardoulakis and Heaviside, 2012; Mavrogianni et al., 2014).
Comparison of hard adaptations (structural building adaptation) against
soft adaptation (behavioural change) showed that both can lead to
similar reductions in temperatures and hours of overheating (Coley
et al., 2012). CIBSE has published practical advice on avoiding overheating
in European buildings (CIBSE, 2013).

3. Indoor air quality

Exposure to high concentrations of air pollutants indoors can cause
both acute and chronic health effects. An example of acute effects is
the intoxication and death due to short-term exposure to high concen-
trations of carbon monoxide (CO) (Raub et al., 2000; De Juniac et al.,
2012), while chronic health effects include radon-related lung cancer
(Darby et al., 2005), effects related to second hand tobacco smoke (e.g.
chronic obstructive pulmonary disease (Jordanet al., 2011)), respiratory
infections, cardiovascular disease, and a range of allergic symptoms,
such as atopic dermatitis, rhinitis, conjunctivitis and hay fever
(Chauhan and Johnston, 2003; Blanc et al., 2005). Certain pollutants,
such as tobacco smoke and other combustion products, house dust
mites and pollen may aggravate asthma symptoms (Jones, 1999;
Rushton, 2004). Karakitsios et al. (2014) reviewed studies carried out
during the period 1995–2010 on air pollutant concentrations in EU
dwellings and associated them to potential risks and health impacts.
The indoor levels of air pollutants are affected by both external and
internal factors (WHO, 2011; Sarigiannis, 2013). The external factors in-
clude: i) outdoor air pollution concentrations associatedwith anthropo-
genic and natural sources; ii) radon emitted from soil and building
materials, or contained in groundwater and released indoors from the
use of drinking water, and landfill gases such as methane emitted
from contaminated soil, which may enter into the indoor environment
through cracks and gaps in the building envelope; iii) dispersion charac-
teristics of pollutants around the building influenced by the type, posi-
tion and distance of the source of pollutants from the receptors, the
size, shape, orientation and arrangement of the buildings in question,
the topography of the area and meteorological conditions
(Vardoulakis et al., 2003; Crump et al., 2004; Kukadia and Hall, 2004;
Milner et al., 2004; Hall and Spanton, 2012).

Furthermore, indoor air quality levels are highly variable, depending
on internal factors that include: (i) Thephysical and chemical properties
of pollutants (gaseous or particulate, reactivity, deposition, size for par-
ticulates); (ii) indoor sources of pollutants, such as gas cookers, stoves,
fireplaces, building and furnishing materials; (iii) building characteris-
tics including infiltration and ventilation rates; (iv) occupant activities,
such as opening of windows, cooking, tobacco smoking, and use of con-
sumer products and extractor fans (Milner et al., 2011; Nazaroff, 2013).

In the absence of indoor sources, indoor concentrations of air pollut-
ants such as combustion products and particulatematter are affected by
the ingress of outdoor air into the indoor environment and are usually
lower than outdoor concentrations due to attenuation by the building
envelop (e.g. Dimitroulopoulou et al., 2001; Dimitroulopoulou et al.,
2006; Taylor et al., 2014). However, in the presence of indoor sources,
model simulations and experimental results show that these pollutant
concentrations in homes may well exceed outdoor levels (Aizlewood
and Dimitroulopoulou, 2006; Crump et al., 2005; Delgado-Saborit
et al., 2009; Lai et al., 2004; WHO, 2010; Milner et al., 2011), resulting
in indoor/outdoor (I/O) ratios greater than 1 (see Sections 3.1–3.2).
The ventilation characteristics which determine these concentrations
may be substantially influenced by adaptations to the dwelling de-
signed to improve energy efficiency or reduce other forms of health
risk (primarily temperature-related).

Outdoor air pollutant concentrations related to combustion products
and other anthropogenic sources are generally projected to decrease in
the future in the UK due to emission controlmeasures (e.g. cleaner fuels
and improved vehicles technologies), with the exception of ground-
level ozone which is generated though atmospheric chemistry process-
es influenced by ambient temperature, climate-sensitive biogenic emis-
sions and dry deposition rates (Williams, 2007; Heal et al., 2013). As a
consequence, the impact of indoor sources on air quality in homes
may become more prominent. Furthermore, occupant behaviour and
changes in activities as a result of climate change (e.g. opening of win-
dows in summer),may also affect indoor pollutant levels. Section 3 pre-
sents the emission sources of some key indoor pollutants and their
effects on health.

3.1. Combustion products

Indoor levels of nitrogen dioxide (NO2) and CO are influenced by in-
door sources, ventilation conditions, occupancy (with larger households
generally having higher pollutant levels) and location (with highest
values in towns and lower levels in suburban and rural areas)
(Dimitroulopoulou et al., 2005; Dimitroulopoulou et al., 2001). High
outdoor concentrations in the UK typically originate from local traffic
or other combustion sources. In the indoor environment, these inorgan-
ic pollutants are products of combustion produced by open fires, tobac-
co smoking, fossil fuel and biomass fuelled cooking and heating
appliances.

In the absence of indoor sources, indoor NO2 levels are typically
lower than outdoors, as a result of indoor deposition and infiltration/
ventilation conditions (e.g. Grontoft and Raychaudhuri, 2004). A



Table 1
Adaptation measures to reduce building overheating.

Adaptation measure Impact on built environment Study design Reference

Management of the external microclimate
Plant trees strategically Reduce external temperatures and improves shading Modelling study;

UKCP09, worst-case scenario: (‘extreme’ climate
change for the climate periods 2020s, 2050s and
2080s)
Case study: Oxford
Home typologies: detached, semi-detached;
standard dwelling configurations (BEPAC (Allen
and Pinney, 1990))

Gupta and Gregg
(2012)

Construct cool paving Reduce external temperatures Gupta and Gregg
(2012)

Create green roofs – Reduce the roof temperature by absorbing heat into
their thermal mass and due to evaporation of
moisture, as long as they do not dry out;

– Roof structure may need to be modified to improve
stability and water tightness;

– Plants need to be carefully selected to avoid risks re-
lated to aeroallergens (pollen).

Porritt et al. (2011):
Four dwelling types typical of London and South
East England, (19thC terraced, 1930s semi--
detached, 1960s flats, modern detached)
Methods: data from the English House Condition
Survey (EHCS) and Energy Saving Trust's Homes
Energy Efficiency Database (HEED).
EnergyPlus to set air change rates based on SAP
(2009).
Weather data from the 2003 heatwave

Porrit et al. (2012):
Modelling study (EnergyPlus v6.0, DesignBuilder
(v2.3.5));
Targeted dwellings in Greater London: 19th C
typical end and mid solid-wall terrace houses,
with four orientations, two occupancy profiles
and using weather data from the 2003 heatwave

Porritt et al.
(2011; 2012)

Minimising internal solar gains
Paint external walls a light colour to
increase their reflectivity

Particularly effective for dwellings with solid external
walls and larger external wall areas (e.g. end-terraced
house). Painted walls need to be kept clean.

See above Porritt et al.
(2011; 2012)

Install external shutters – Improve solar shading but potentially problematic in
terms of cleaning and maintenance;

– Increase security;
– More effective than internal blinds or curtains, as solar

radiation, already passed through the windows before
being absorbed by the blinds or curtains, is transmit-
ted to the room as heat.

Roberts (2008b): Review of the effects of climate
change on the built environment.

For the other refs, see above.

Roberts (2008b),
Porritt et al.
(2011; 2012),
Gupta and Gregg
(2012)

Install external awnings for south and west
facing windows

Benefits for rooms that tend to be heavily occupied during
the daytime (e.g. living rooms)

See above Roberts (2008b)

Install double glazing and
double glazing with low-e coatings

Reduce heat gain in summer as well as heat loss in winter See above Roberts (2008b)
Porritt et al.
(2011; 2012)

Install low e-triple glazing
Specialist low SHGC (or g-value) glazing

Control solar energy by reducing visible transmittance,
which would affect daylight levels all year round

See above Porritt et al.
(2011; 2012)

Management of internal heat
Increase thermal mass on floors and/or
walls in combination with adequate
night cooling (purge ventilation,
combined with fans):

Effective but the location of thermal mass (floors and/or
walls) is a highly sensitive issue: If misplaced or misused,
thermal mass has the potential to increase hours of
overheating and/or increase space heating energy.

Coley et al. (2012):
Modelling study for school and large house in
London (Islington), constructed under the as-
sumption of UK 2006 Building Regulations (light
weight)
Weather data: Current climate and projections
for 2050
(UKCP09). 10th, 50th and 90th percentiles used
for a high emissions (A1FI) scenario.

For the other refs, see above.

Coley et al.
(2012), Gupta
and Gregg
(2012)

External wall insulation – Keep homes cool in the summer and increase winter
heating efficiency

– Reduce heat loss through the building fabric at night;
but must ventilate at night

See above Roberts (2008b)

Internal wall insulation Reduce heat loss in summer; may not be recommended for
certain building types

Modelling study:
EnergyPlus dynamic thermal simulations of
(a) 15 dwelling archetypes (including ground-,
mid- and top-floor level flats);
(b) 2 insulation levels (as-built and post-retrofit)
for 4 construction elements (external walls,
windows, ground floor, roof/loft);
(c) 4 orientations of the principal facade; and
(d) 2 external environment morphologies.
Two summer year weather data represent
current and future climate: CIBSE 1984-2004 and
UKCP09 future weather file (50th percentile of

Mavrogianni
et al. (2012)

(continued on next page)
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Table 1 (continued)

Adaptation measure Impact on built environment Study design Reference

external temp for the 2050s, medium emissions
scenario).

Internal roof insulation Very effective for the top floor flat, less effective for houses
with pitched roofs containing loft insulation

See above Porritt et al.
(2011)

Loft insulation Little effect on overheating reduction See above Porritt et al.
(2011)

Replace carpets with wooden floors or tiles
to expose the cooling effect of the ground

Increase heat loss in summer, but colder homes in winter,
particularly with tiles

See above Roberts (2008b),

Reduce lighting and other electrical gains Control internal heat
Reduce energy consumption

See above Coley et al.
(2012)

Ventilation
Increase natural ventilation at night Increase heat loss in summer and provide a cooling benefit

during the daytime
Limitation: security issues

See above Roberts (2008b),
Porritt et al.
(2011), Gupta
and Gregg
(2012)

Install ceiling fans in each room Better circulation of air and reduced indoor temperatures See above Roberts (2008b),
Porritt et al.
(2011), Gupta
and Gregg
(2012)

Open windows During the peak daytime hours:
Effective for end-terraced house with daytime occupancy
(elderly);
Not effective for top floor flat with daytime occupancy.
Safety/security issues as well as noise need to be
considered.
Open windows in the early morning if temperatures are
low, and shut them if the outdoor temperature rises above
indoor temperature during daytime.

See above Porritt et al.
(2011; 2012)

Open windows at a lower set point Control the internal heat See above Coley et al.
(2012)

Air conditioning Provide cooling comfort but increase CO2 emissions
Increase outdoor temperatures in built up areas

See above Gupta and Gregg
(2012),
Papadopoulos
(2001)
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comprehensive study in UK homes (Coward and Raw, 1996) reported
indoor/outdoor (I/O) ratios, over a one-year period, with mean values
of 0.6–0.7 in homes without gas cooking, whereas for homes with gas
cooking this ratio was approximately 1.4 for kitchens and 0.9 for living
rooms. Decreases in indoor NO2 emissions are expected in the future,
if new dwellings use electricity instead of gas for cooking.

Several studies have examined the health effects of exposure to out-
door NO2 COMEAP, 2010a, and for the indoor environment, health ef-
fects are well documented (WHO, 2010). There is significant
association of various respiratory symptoms (e.g. wheeze) or lung func-
tion indiceswith indoor NO2 concentrations or personal exposure in ep-
idemiological studies of asthmatic children; associations for non-
asthmatic children have been reported less consistently. There is also
recent evidence suggesting that children with asthma or infants who
are at risk of developing asthma aremore sensitive to the respiratory ef-
fects of indoor NO2 exposure. Furthermore, although there seems to be a
suggestion of stronger associations of respiratory health with indoor
NO2 in females compared with males, it is not clear whether this is
due to women spending more time indoors or a biological basis
(Breysse et al., 2010).

CO is a relatively unreactive gas and is not deposited on internal sur-
faces. It can cause accidental poisoning in occupants, with varying
health effects from headache and dizziness, nausea and sickness to
coma and death. High but non-lethal exposure can result in long-
lasting neurological effects (Croxford et al., 2008). In the absence of in-
door sources, outdoor concentration is themain parameter affecting in-
door CO concentration, which is generally low in UK houses. Under
these conditions, the I/O ratio is almost 1.0. With gas cooking and
smoking, peak CO concentrations may be increased from background
levels (typically b1 mg/m3) and I/O ratios of 1.4 and 1.2 have been
reported, respectively (Dimitroulopoulou et al., 2006). This indicates
that gas cooking should not be an issue of concern, under normal venti-
lation conditions. However, high peaks (N100 mg/m3) can occur with
malfunctioning or inappropriately used flued and unflued domestic ap-
pliances (boilers, heaters, fires, stoves and ovens), which burn carbon
containing fuels (coal, coke, gas, kerosene and wood) (COMEAP, 2004;
WHO, 2010; Mccann et al., 2013). Increasing airtightness of dwellings
may increase concentrations of CO to levels that could cause poisoning
or lead to chronic exposure with subclinical adverse health effects.

3.2. Particulate matter

Particulate matter (PM) in houses may originate from various out-
door sources (e.g. road transport, industry and construction), indoor
combustion (e.g. wood burning, cooking activities, and tobacco
smoking). PM can also be of biological origin, resuspended dust parti-
cles, and secondary particles generated by indoor air chemistry
(Arvanitis et al., 2010). The use of wood burning stoves may increase
in permitted zones in the UK, as a result of changing affordability of fos-
sil fuels and the trend towards renewable energy sources (Fuller et al.,
2014). Whilst particulate pollution from modern stoves is much lower
than was previously common with open fires, higher emissions can
still occur during start-up, stoking and reloading (Gustafson et al.,
2008). Reviewing the relationship between indoor and outdoor parti-
cles, Chen and Zhao (2011) found that PM2.5 I/O ratios greater than
3.0 occur in the presence of indoor smoking and combustion sources
(e.g. fireplaces). PM can be removed from indoors by deposition, filtra-
tion and ventilation (Géhin et al., 2008).

Long- and short-term exposure to ambient concentrations of fine
particles with aerodynamic diameter generally less than 2.5 μm
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(PM2.5) has been associated with increased cardiovascular and respira-
tory mortality and morbidity (COMEAP, 2010b; Arvanitis et al., 2010).
PM generated from indoor combustion processes has been associated
with increased respiratory illness (wheezing, cough, including asthma)
and COPD (Simoni et al., 2002; Weisel, 2002; Triche et al., 2005;
Orozco-Levi et al., 2006). Exposure to passive smoke has been associat-
ed with higher risk of coronary artery diseases, lung cancer, respiratory
diseases and stroke (US-DHHS, 2006). There are some specific compo-
nents of indoor mineral dust particles (e.g. boron, metals and soil min-
erals) that are classified as human carcinogenic or toxic to
reproduction (IARC, 1997; IARC, 2002). Asbestos is also classified as
human carcinogen (IARC, 2012) and its use is forbidden today by the
building regulations. Indoor air chemistry products, especially those of
ozonolysis of terpenes (limonene and a-pinene) emitted from cleaning
products, include fine and ultrafine particles (UFPs), which may cause
irritation of the eyes and upper airways at high ozone and terpene in-
door concentrations (Clausen et al., 2001; Wilkins et al., 2003). There
is also some limited evidence that the effect of simultaneous exposure
to dust (i.e. total suspended particles) and ozone at relatively high con-
centrations is larger than the effect of these two pollutants individually
in indoor environments (Mølhave et al., 2005).

3.3. Volatile organic compounds

Volatile organic compounds (VOCs) such as formaldehyde, benzene
and other aromatic hydrocarbons are common indoor air pollutants
emitted from building materials, furniture, paints, consumer products,
tobacco smoke and other combustion sources (e.g. Bernstein et al.,
2008; Dimitroulopoulou et al., 2015). At European level, there are signif-
icant differences in sources and emission strengths of indoor chemicals
and risk assessments are difficult to perform due to the limited amount
of indoor air quality data available or the lack of harmonised sampling
protocols (Sarigiannis et al., 2011; Kotzias et al., 2005). Similarly, in
the UK, there are limited indoor air quality data concerning the current
situation and of relevance to energy efficient homes.

The health effects of VOCs include irritation to the eyes or nose,
headaches, dizziness, nausea and allergic reactions (Jones, 1999).
Some VOCs are carcinogenic, e.g. formaldehyde and benzene (Duarte-
Davidson et al., 2001). There is evidence suggesting a link between
VOCs emitted from consumer products and an increased risk of certain
symptoms, such aswheezing, vomiting, diarrhoea and headache among
infants and their mothers (Farrow et al., 2003). Frequent use of domes-
tic consumer products in the prenatal period has been associated with
persistent wheezing in young children (Sherriff et al., 2005). Venn
et al. (2003) concluded that domestic VOCs are not amajor determinant
of risk or severity of childhood wheezing illness, though formaldehyde
may increase symptom severity, and indoor damp increases both the
risk and severity of childhoodwheezing illness. In the context of climate
change and its mitigation policies, increased airtightness in the absence
of adequate mechanical ventilation may increase indoor VOC levels.

3.4. Persistent organic pollutants

Persistent Organic Pollutants (POPs) such as polychlorinated biphe-
nyls (PCBs) and polybrominated diphenyl ethers (PBDEs), are ubiqui-
tous in the indoor environment and have been associated with a wide
range of negative health effects including cancer, immunosuppression,
metabolic, neurobehavioural, endocrine and reproductive disorders
(UNEP, 2011). Although overall levels of POPs will continue to decline
globally as a result of global emission reduction initiatives such as the
Stockholm Convention, there is a risk that human exposure to POPs,
via inhalation of air and ingestion of surface dust in the indoor environ-
ment, may be altered directly and indirectly by climate change. For ex-
ample, higher indoor temperatures will lead to greater volatile
emissions of POPs, as well as VOCs, from household products andmate-
rials leading to higher indoor concentrations, although enhanced
natural ventilation (e.g. opening of windows) may balance higher in-
door volatile emissions during summer (Haghighat and De Bellis,
1998; Hazrati and Harrad, 2006; Lamon et al., 2009). POP concentra-
tions are typically 1–2 orders of magnitude higher in indoor air com-
pared to outdoor air (Bohlin et al., 2008; Harrad et al., 2010).
Furthermore, indoor sources of certain POPs used as brominated flame
retardants, such as PBDEs, and fabric treatment products for stain resis-
tance, such as perfluorooctane sulfonate (PFOS), may becomemore sig-
nificant in future climate-controlled buildings (UNEP, 2011). Increased
use of thermal wall insulation in houses may increase indoor contami-
nation with flame retardants, such as hexabromocyclodecane (HBCD)
used in insulation materials.

3.5. Radon

Radon is a naturally occurring radioactive gas, emitted from rocks
and soils, which can enter buildings and reach high indoor concentra-
tions (WHO, 2009a). Radon is the largest natural source of human expo-
sure to ionising radiation in the UK. Concentrations are distributed log-
normally with geological conditions being the primary source of varia-
tion (Hunter et al., 2009). Most radon enters buildings with soil gas
that is drawn in by the slightly lower air pressure indoors causedmainly
by heating and ventilation. The highest radon levels in theUKhave been
found in southwest Englandbutmany other areas have significant num-
bers of homes with more than ten times the average level (Miles et al.,
2007, 2011).Most radon exposure arises in the home, is broadly propor-
tional to indoor radon concentration and is estimated to be responsible
for more than 1100 lung cancer deaths in the UK per year. Half of these
deaths occur among the quarter of the population who are current
smokers (AGIR, 2009).

Radon has been shown to vary seasonally in the majority of build-
ings (Miles et al., 2012). Ventilation is the most effective mechanism
of radon removal from indoor air as low ventilation rates can cause a
build-up of radon gas in properties (Scivyer, 2001). Climate change ad-
aptation and mitigation measures affecting building ventilation may
therefore have an influence on radon exposure (Hunter et al., 2009;
Milner et al., 2014). Building regulations require the installation ofmea-
sures to prevent radon ingress in new and extended/refurbished dwell-
ings in high radon areas. These mitigation measures can reduce high
radon levels in buildings (PHE, 2014a, 2014b).

3.6. Ozone

Ozone (O3) is an irritant gaseous pollutant whose adverse effects on
health include reduced lung function, exacerbation of chronic respirato-
ry illness, increases in respiratory hospital admissions and all-cause
mortality (WHO, 2000). Exposure to ozone may also increase the risk
of sensitisation to airborne allergens in predisposed individuals (D'
Amato, 2002).

Infiltration from outdoors is the dominant factor affecting indoor
ozone concentrations, in the absence of indoor sources (printers, photo-
copiers, electronic appliances). High outdoor ozone levels have been ob-
served during heatwaves in the UK as sunny and settled weather
conditions favour the build-up of ozone downwind from polluted
areas (Stedman, 2004). In urban areas, outdoor ozone levels are usually
higher near the top of urban canyons compared with street-level con-
centrations (Vardoulakis et al., 2011). Buildings offer protection from
ozone, due to a combination of envelope filtration, deposition on inter-
nal surfaces and reactionwith gas-phase indoor compounds (Weschler,
2004; Coleman et al., 2008; Walker and Sherman, 2013; Nazaroff,
2013).

Changes in building design, construction and operation, in part influ-
enced by climate change responses, may alter indoor ozone levels.
Ozone infiltration may be enhanced by larger increases in ground-
level ozone concentrations predicted in urban areas compared to rural
areas in the UK (Heal et al., 2013). Warmer summer temperatures



Table 2
Adaptation measures to improve indoor air quality.

Adaptation measure Impact on indoor air quality Reference

Remove indoor sources
–Have all appliances, flues and
chimneys correctly installed
and serviced by trained,
reputable, registered and
competent engineers
–Keep rooms well ventilated
while using an appliance and
do not block chimneys, flues
or air vents;
–Fit an audible CO alarm that
meets European Standard EN
50291.

Reduce indoor
concentrations of
combustion products (CO,
NO2)

DH (2008b)

–Use furnishing, DIY,
construction, and consumer
products with low VOC
emissions.

Reduce VOC emissions from
building materials and
consumer products

EU VOC labelling
schemesa

Ventilate right
Optimum location of
ventilation inlets away from
outdoor pollution sources

Minimise the ingress of
outdoor air pollutants into
the indoor environment

Kukadia and Hall
(2004), Zero
Carbon Hub
(2012)

Increased airtightness in
combination with
mechanical ventilation
(Mechanical Ventilation with
Heat Recovery systems
(MVHR)),

– Prevent ingress of out-
door air pollutants;

– Remove indoor air pol-
lutants generated from
indoor sources

(as long as MVHR systems
are properly installed,
operated and maintained)

Wilkinson et al.
(2009)
Shrubsole et al.
(2012)
Taylor et al.
(2013a, 2013b)
Gens et al. (2014)

Air filtering in mechanical
ventilation systems

Remove a fraction of
allergens, particles and
ozone

Weschler (2006)

a European ecolabel (e.g. textile-covered flooring, wooden flooring, mattresses, indoor
and outdoor paints and varnishes: Europe)— http://ec.europa.eu/environment/ecolabel/.
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may result in occupants openingmore often their windows in naturally
ventilated houses during periods of high outdoor ozone levels (Fabi
et al., 2012). Increased indoor concentrations of ozone could result in
higher levels of formaldehyde and UFPs through chemical reactions
(Uhde and Salthammer, 2007), although ozone is removed rapidly in
the indoor environment by deposition on surfaces and by gas-phase re-
actions (Jakobi and Fabian, 1997;Weschler, 2006). Therefore, the over-
all impact of potentially higher ambient concentrations, the increased
airtightness in new built houses, and any changes in ozone-initiated
chemical reactions on indoor ozone levels is uncertain and needs fur-
ther investigation.

3.7. Climate change mitigation and adaptation measures and indoor air
quality

Energy efficiency interventions in dwellings are typically associated
with appreciable change in airtightness. As a result, home ventilation
may be reduced, if the golden rule “build tight, ventilate right” is not
followed. It is a concern that whilst enhanced thermal efficiency in
dwellingsmay be achieved by reducing the permeability of the building
envelope, this could result in the accumulation of indoor air pollutants,
such as PM and environmental tobacco smoke (Gens et al., 2014), if ad-
equate ventilation levels are not maintained.

In terms of natural ventilation, background ventilators (e.g. trickle
ventilators), when open, allow a controlled amount of ventilation to
take place. However, studies in the UK showed that in 75% of the dwell-
ings the trickle ventswere closed since the occupantswere not aware or
their use and impact (Dimitroulopoulou et al., 2005).

Changes in building regulations have led to increased use of me-
chanical ventilation with heat recovery (MVHR) systems. These can
substantially increase ventilation rates, reducing exposure to pollutants
from indoor sources, if properly installed, operated (occupants are often
unaware of their control), and maintained, and from outdoor sources if
air filtration is provided (Wilkinson et al., 2009; Shrubsole et al., 2012).
However, removing indoor pollution sources is a more effective way to
control indoor air quality than diluting pollutant concentrations by ven-
tilation. Therefore, indoor emission sources should be controlled wher-
ever possible (e.g. by use of low emitting materials and products). A
range of adaptation measures that can be implemented to control ven-
tilation, while maintaining acceptable levels of indoor air quality, are
presented in Table 2.

4. Indoor allergens and infections

In indoor environments, dust mites, damp and mould, pets, pests,
and insects are the major sources of allergens. Exposure to allergens
produced in the indoor environment may be exacerbated by air-
tightening of dwellings whichmay reduce the rate of removal of the al-
lergens, or of moisture produced indoors through activities such as
cooking, showering and drying laundry.

Mould and bacteria are ubiquitous microbial contaminants in build-
ings that can growonce sufficientmoisture levels are present. Thesemi-
croorganisms can cause health problems in building occupants through
the aerosolisation of spores, cell fragments (glucans), metabolic by-
products such as Microbial Volatile Organic Compounds (MVOCs), and
toxins such as mycotoxins or endotoxins (Rea et al., 2003; Fisk et al.,
2007). Occupants of damp and mouldy buildings are at increased risk
of allergic and hypersensitivity reactions, exposure to toxins, and
infections.

Hypersensitivity is one of the primary health problems causedby the
poor indoor air quality in damp homes (Mudarri and Fisk, 2007). Sensi-
tisation to fungi (Bush and Prochnau, 2004; Pirhonen et al., 1996), bac-
teria (Pauwels et al., 1980), aerosolised glucans (Douwes, 2005) and
metabolic by-products produced by protozoa (Edwards et al., 1976)
have been observed. Common indoor moulds such as Penicillium spp.
and Aspergillus spp. can cause immediate type hypersensitivity, while
hypersensitivity pneumonitis can occur in buildings with Heating, Ven-
tilation, and Air Conditioning (HVAC) systems contaminated by bacteria
andmould. Finally, allergic bronchopulmonary aspergillosis and allergic
fungal sinusitismay occurwhen fungi grow inside the airway, leading to
allergic reactions. Toxicity is another mechanism in which indoor mi-
croorganisms may lead to health problems for building occupants. Fila-
mentous fungi may produce over 300 different mycotoxins, which may
have carcinogenic, immunotoxic, cytotoxic, neurotoxic, mutagenic, and
teratogenic effects (Gutarowska and Piotrowska, 2007). Endotoxins
have been suggested to cause rheumatic diseases (Lorenz et al., 2006)
and increased risk of respiratory problems (Liu, 2008). Direct infection
of building occupants due to indoor damp-related microorganisms is
rarer, but can occur in severely immunocompromised individuals.

In modern, well-insulated homes, the warm and potentially humid
indoor climate is ideal for dust mites to grow, increasing the risk of ex-
posure to their allergy-causing proteins. Climate change can affect the
ecosystem and population dynamics of pests and insects and lead to
change in the type, pattern and exposure level of allergens and animal
species in houses (IOM, 2011). Outdoors, climate change may result in
an earlier appearance and longer exposure to seasonal aeroallergens
(Kennedy and Smith, 2012), whose infiltration into the indoor environ-
mentwill varywith ventilation rate and penetration factor. Pests and in-
sects can also carry pathogens and affect the risk of infection indoors.

Microbial infestation leading to allergic reactions or infection may
occur for reasons other than damp. Legionella species, nontuberculous
mycobacteria, Pseudomonas aeruginosa, Acinetobacter spp. and Entero-
bacter spp. may grow in water reservoirs such as evaporative cooling
systems and cooling towers (CDC, 2003). Legionella in particular can
more readily amplify in these environments and mains water entering
buildings in awarmer environment (Morey, 2010), and cooling systems
may become more common in a warmer UK climate. The addition of

http://ec.europa.eu/environment/ecolabel/
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features such as green walls and roofs, rainwater harvesting and
greywater recycling systems in buildings can also create a new habitat
for microbial growth and dispersal (EA, 2011; Schenck et al., 2010). If
a pathogenic ecosystem is established, it can provide a continuous mi-
crobial source and pathway to adversely affect public health outcomes
unless adequate mitigation actions are implemented. These urban
water infrastructures can also become a breeding ground for disease
vectors such as mosquitoes. However, a suitable climate is required to
support such an ecosystem. If established, the proximity of this ecosys-
tem to the indoor environment can pose a higher vector-borne disease
transmission risk to the occupants.

The built environment can play a role in the airborne transmission of
infections such as tuberculosis (TB) through poor ventilation and over-
crowding. Some studies also suggest an association between indoor air
pollution and respiratory infections such as TB (Sumpter and
Chandramohan, 2013). There is strong evidence of an association be-
tween ventilation, airflow and the transmission of airborne infectious
diseases in buildings, but insufficient data to quantify the minimum
ventilation requirements in various indoor environments for preventing
transmission (Li, 2007). It is possible that with a growing population in
parts of the UK, space available per person may decrease in residential
buildings, especially in densely populated urban areas (Williams,
2009). Furthermore, the volume of rooms is decreased, since new
homes are often smaller in area and room height, reducing the dilution
aswell as the surface area to act asmoisture sink. To compensate for this
risk factor, ventilation rates in residential buildings may need to be in-
creased tomaintain the same amount of fresh air supply per person. Cli-
mate change mitigation policies focusing on energy efficiency in the
built environment could have an opposite effect on ventilation rates in
future buildings. Reducing ventilation rates can also increase the hu-
midity level indoors and promote mould growth. It should be noted
that temperature and relative humidity affect the survival time of
bioaerosols, while sunlight is a natural disinfectant.

Finally, climate change is likely to increase dust levels in the atmo-
sphere, particularly in the summer due to drier weather conditions,
with dust particles able to carry different kinds of pathogens (Morey,
2010). The ingress of airborne dust and pollen into dwellings needs to
be taken into consideration as part of climate changemitigation and ad-
aptation policies. An increase in dust removal by air filtration and do-
mestic cleaning could become important to lower indoor levels of
dusts containing allergens.

5. Flood damage and water contamination

Flooding is predicted to become more common in the UK in the fu-
ture, due to changes in climate and land use. Rising sea levels caused
bymelting land ice and a rise in sea surface temperatures are predicted
to lead to an increase in tidal flooding, while more frequent heavy pre-
cipitation events, particularly in winter, are predicted to contribute to
increased surface and fluvial flooding (UKCP09). The Climate Change
Risk Assessment for the Floods and Coastal Erosion Sector estimates
that one in six of all UK properties are vulnerable to some degree of
flood risk (Ramsbottom et al., 2012). The continued expansion and de-
velopment of urban areasmay exacerbate the flood risk, due to housing
development on floodplains and the reduction of green space ratio in
the built environment, critical for stormwater runoffmitigation. In addi-
tion to flooding, heavy rainfall and storms can lead to an increase in
health impacts and physical damage to domestic properties, including
damage to the building itself or supporting infrastructure, andmoisture
damage due to leaks in building envelopes (Goldman et al., 2014).

The management of flood defences, surface water run-off, and flood
and storm-proofing of vulnerable dwellings can help mitigate the effect
offloods and storms. However, whenflooded, thequality of the building
structure and hygrothermal properties of the constructionmaterials de-
termine moisture transport into the indoor environment and building
envelope (IOM, 2011). This can lead to a number of consequences,
including physical damage to the building stock and short and long-
term health consequences for building occupants. An increased fre-
quency of heavy precipitation and flooding events will therefore put
pressure on existing buildings and pose a health risk to their occupants
(Vardoulakis and Heaviside, 2012). The health impacts of floods in the
UK, as well as adaptation measures for flooding, are discussed below.

5.1. Health impacts of floods

Health impacts of floods may be considered to be directly or indi-
rectly caused by floodwater. Direct health effects include those that
are caused by the floodwater itself, including drowning, physical trau-
ma, and electrocution, while indirect health consequences can include
faecal-oral disease, vector-borne disease, acute asthma, skin rashes, out-
breaks of gastroenteritis and respiratory infection, poisoning, mental
health issues, and problems associated with displacement and disrup-
tion to people's lives (Jonkman and Kelman, 2005; WHO, 2006). It is
thought that the risk of death following a flood is influenced by the
scale, depth, duration, suddenness, and velocity of the flood (Ahern
et al., 2005). The health impacts from a flood continue to occur after
the immediate event, during the clean-up process, and may persist for
months or years (WHO, 2002; WHO, 2006). Consequences can be se-
vere – for example a 50% increase in all-cause mortality in the flooded
population was reported in the year following the 1968 Bristol floods
(Bennet, 1970).

Physical injuries following flooding can be caused by direct contact
with flood waters (Schnitzler et al., 2007), while people are being evac-
uated from their homes and during the clean-up process (Jakubicka
et al., 2010; WHO, 2006), or due to a collapse of a structurally-
weakened building (Kelman, 2004). CO poisoning is also a serious
health risk associated with flooding, occurring in the aftermath of the
flood when generators or fuel-powered equipment are used indoors
for drying or pumping out flood water (PHE, 2014b). High numbers of
fatalities and near fatal events from CO poisoning have occurred in the
USA in the aftermath of floods caused by hurricanes (CDC, 2005;
Richardson and Eick, 2006) as a result of inappropriate use of fossil
fuelled electricity generating equipment (e.g. electricity generators
used during clean-up operations post flooding, pumps forwater remov-
al, electric heaters for drying out process and power tools). As flooding
risk in winter may increase in the UK due to climate change, the public
need to be made aware of the high risk of CO poisoning associated with
inappropriate generator use.

During flooding and heavy rainfalls, sewage systems can become
overwhelmed and may overflow, releasing human and opportunistic
pathogens into thefloodwater. Infections such as those caused by Lepto-
spirosis, Escherichia coli, or Salmonella that may be caused by flooding
are rare in the UK, as pathogens are thought to become diluted by
flood water (NHS, 2010), however there is a lack of available data on
the association between flooding and infectious diseases in Europe
(WHO, 2002). The persistence of flood-bornemicroorganisms on build-
ing surfaces is dependent on the level of sewage contamination of the
water and the drying rate of the surface (Taylor et al., 2013a, 2013b).
Food andwatermay also become contaminated by bacteria, sewage, ag-
ricultural waste or chemicals during flooding events (CDC, 2008; PHE,
2014b), leading to infection risk. The limited understanding of the
long-term health consequences of flooding is due to the lack of data
on non-drowning or non-immediate deaths following a flood (Few
et al., 2004; Alderman et al., 2012).

In addition to microorganisms carried by floodwater, damp indoor
spaces caused by floodwater or storm leakage can result in the growth
of ubiquitous mould and bacteria that might not otherwise have
sufficient moisture conditions to become established. Mould species,
for example, Cladosporium, Aspergillus, Penicillium, Alternaria, and
Stachybotrys species of fungi have all been observed in flooded dwell-
ings (Solomon et al., 2006; Dumon et al., 2009). Mould species with
higher moisture requirements (e.g. Alternaria and Stachybotrys) are



Table 3
Adaptation measures for flooding in the built environment.

Adaptation measure Impact on built environment Reference

Adaptation of existing building stock
Identify and block all potential
entry points (doors, airbricks,
sinks and toilets, and gaps in
external walls around pipes and
cables)

Avoid water entering the building
(resistance measures for short-
duration floods).
Cannot avoid rise of groundwater
which can occur through the floor.

TRCCG
(2008)

Prevent water entering through
the walls

Avoid structural damage to steel
components and permanent
damage to certain insulation
types. Avoid mould growth within
the walls (resistance measures for
longer duration floods)

Roberts
(2008a)

Fit rising hinges so doors can be
removed

In deep floods, it helps prevent
structural damage by allowing
water entering the building,
avoiding the imbalance between
internal and external water levels

Roberts
(2008a)

Use water-resistant paint for the
lower portions of internal walls

Reduce mould growth Roberts
(2008a)
RIBA
(2011)

Raise electrical points above flood
level with wiring drops from
above

Prevent electrical blackout Roberts
(2008a)
RIBA
(2011)

Relocate meters and the boiler
above flood level

Prevent damage on meters and
boilers

Roberts
(2008a)
RIBA
(2011)

Replace carpets with vinyl and
ceramic tiles and rugs

Reduce time for drying out Roberts
(2008a)
RIBA
(2011)

Adaptation for new buildings
Build the house on high ground or
on stilts, in flooding areas

Prevent houses from flooding Roberts
(2008b)

Build strong wall system and a
roof construction in which
surface material is both glued
and connected with nails, in the
strongest pattern possible

Improve resistant to strong winds
and natural disasters

Roberts
(2008b)

Avoid cavity walls that generally
take longer to dry out

Speed up drying up process Roberts
(2008b)

Raise door thresholds, service
entry points and meters above
predicted flood levels.

Avoid damage Roberts
(2008b)

Avoid the use of plasterboard and
gypsum-based materials.

Avoid mould growth Roberts
(2008b)

Avoid large areas of glass (e.g.
glass patio doors, large
windows and conservatories)

Avoid damage due to hydrostatic
and hydrodynamic forces

Roberts
(2008b)

Choose construction materials
that are expected to be
damaged but are cheap and
easy to replace

Reduce repair costs after flooding Roberts
(2008b)

Add additional weep holes at the
bottom of cavity walls

Allow water to drain out and
speed up the drying process

Roberts
(2008b)

Use recessed window and door
reveals

Provide protection against
wind-driven rain

Roberts
(2008b)
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typically foundmore frequently in flooded properties, while those with
lower moisture requirements (Aspergillus and Penicillium) can be found
more frequently in damp but unflooded properties (Dumon et al.,
2009). Bacteria, mycobacteria, Gram-negative bacteria (Andersson
et al., 1997; Hyvärinen et al., 2002; Torvinen et al., 2006], Streptomyces
species (Lignell, 2008), and protozoa (Yli-Pirilä, 2009) have also been
found on surfaces in damp homes. Damp indoor environments have
been associated with respiratory health problems (WHO, 2009b), and
a number of studies have shown an association between flooded and
water-damaged homes and respiratory problems (e.g. Dales et al.,
1991; Ross et al., 2000).

Mental health effects are one of themost significant issues following
flooding in the UK, and can often last longer and be more pronounced
than physical health problems (Tapsell and Tunstall, 2000; Reacher
et al., 2004; Carroll et al., 2009). A study of the aftermath of the 2007
floods found that the prevalence of all mental health symptoms exam-
ined (psychological distress, probable anxiety, probable depression
and probable post-traumatic stress disorder (PTSD)) were two to five
times higher among individuals who reported flood water in the
home compared to individuals who did not (Paranjothy et al., 2011).
People who are forced to move out of their homes because of flooding
have also been observed to have a two-fold increase in mental health
problems compared to those in unflooded dwellings (Pitt, 2008).

While all populations are at risk of the health impacts associated
with flooding, certain groups are at higher risk of morbidity andmortal-
ity. Limited evidence indicates that the elderly are most at risk of flood
mortality in the UK (Bennet, 1970; Ahern et al., 2005). There is only lim-
ited evidence regarding the impacts of flooding on health by socio-
economic status. However, there is a clear socio-economic gradient in
the populations most at risk of coastal flooding in England, with poorer
communities at higher risk (Walker et al., 2003; Fairburn and Braubach,
2010). Conversely, for river flooding, high flood risk areas tend to in-
clude higher income households (Fielding et al., 2007). The Social
Flood Vulnerability Index (SFVI) has attempted to estimate the vulner-
ability of the UK populations to health problems following flood events
(Tapsell et al., 2002).

5.2. Climate change adaptation and mitigation measures for flooding

The ability offlooded orwater-damaged dwellings to dry following a
floodwill dictate the length of time conditions inside remain suitable for
microbial growth or survival, and therefore the amount of time occu-
pants either live in unhealthy buildings or are displaced from their
homes. The ability of typical dwellings to dry following floods depends
on the ability to ventilate the property, the type of wall and floors in
the buildings, and the actions taken to speed up drying (Taylor et al.,
2013a). Dwellings with limited ventilation potential, such as flats with
single-aspects or more airtight dwellings, will take longer to dry. Mod-
ernwalls, such as glass-fibre, cellulose, and vermiculate insulated cavity
walls and those with Autoclaved Aerated Concrete (AAC)may also take
longer to dry due to the ability of thesematerials to retainwater (Taylor
et al., 2013a). Consequently, modern airtight flats may be most vulner-
able to prolonged damp following a flood event. More extensive use of
“green” construction materials in buildings may be seen as a climate
change mitigation measure to reduce GHG emissions. Environmentally
friendly “green” construction materials, e.g. cellulose and wood prod-
ucts, require less energy formanufacturing compared to traditional con-
structionmaterials such as steel, aluminiumand concrete (UNEP, 2009).
However, organic building materials have nutrients capable of
supporting microbial growth, and treatments used to protect them
can degrade over time or be washed when submerged in water. There-
fore, the use of “green” construction materials in the building sector
needs to be carefully considered in relation to future climatic conditions.

Although the location of buildings currently vulnerable to tidal and
fluvial flooding in the UK can be predicted, consideration should be
given to the effect that climate change may have on the extent and
potential severity of flooding in the future. Flood defence schemes are
expensive, and there has been an increased focus on adaptation rather
than flood prevention (Penning-Rowsell and Wilson, 2006). Buildings
can be built or adapted to be more resilient to flooding by preventing
the ingress of floodwater into a building (‘dry’ flood-proofing) or by
adapting the building to minimise the potential damage of floodwater
(‘wet’ flood-proofing). Measures for short-term dry-flood proofing in-
volve blocking the entrance of the water. However, in deep floods
(N0.9 m), preventing the water entering the building might be discour-
aged in order to avoid the imbalance between external and internal
water levels, which can cause structural damage to the walls. ‘Wet’
flood-proofing measures aim to reduce the time and cost of recovering
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from flooding and can be undertaken during themaintenance or redec-
oration of the dwelling. Typical adaptation measures are presented in
Table 3. Ideally, new developments should be placed away from flood-
risk areas. However, when this is not possible, then homes, surrounding
landscapes, and local infrastructure should be designed and built to be
more resilient to flooding.

6. Conclusions and recommendations

Climate change may have several direct and indirect adverse health
effects in the indoor environment related to building overheating, in-
door air pollution, biological contamination, and flooding and water
damage. Joined-up climate change mitigation and adaptation measures
in the residential building sector involving improved building design
and ventilation, passive cooling, and energy efficiency measures can re-
sult in benefits to health, if well designed and successfully implemented.

Newbuildings should be designed to address the health effects of cli-
mate change in the indoor environment but also tominimise the impact
of the built environment on the climate by reducing fossil fuel use. New
buildings shouldmakemore use of low carbon energy sources. Further-
more, they can incorporate new technologies that help reduce energy
use, including the embodied energy in the materials they contain
(Roberts, 2008b). For adaptation of the existing building stock to cli-
mate change, passive measures (e.g. external shading and shutters)
can help maintain comfortable indoor temperatures and minimise the
need for and environmental cost of air conditioning.

Ventilation is a key aspect that affects indoor air quality (chemical
and microbial), moisture-related allergens (mould and dust mites)
and thermal comfort in dwellings. Behavioural aspects of building occu-
pancy and improved thermal efficiency, aiming to save energy, may
compromise indoor air quality and increase indoor temperatures.
Therefore the ventilation performance of highly energy efficient
homes should be investigated further.

There is a need to further characterise potential health risks and ben-
efits, such as reduced cold-related mortality, associated with current
and future building infrastructure (including constructionmaterials, in-
door products, furnishings and mechanical ventilation systems) under
different climate change scenarios. Practical health impact assessment
methodologies, accounting for the combined direct and indirect effects
(including health equity) of climate change in the indoor environment,
should be developed. These may be based on adjusted epidemiological
exposure-response relationships derived from outdoor data to reflect
indoor environmental conditions and occupancy patterns.

Overall, climate change is likely to act as a riskmodifier in the indoor
environment, potentially amplifying existing health risks associated
with exposure to high indoor temperatures, air pollutants, contaminat-
ed water, allergens and mould, and exacerbating health inequalities.
Well-targeted and cost-effective adaptation and mitigation measures
could minimise these risks and provide ancillary health benefits.
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