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ABSTRACT 

 

The genus Alphavirus is one of two within the family Togaviridae and comprises 

approximately 30 species, including several pathogens of humans and other animals 

that are of medical, veterinary and economic importance. Most alphaviruses are 

maintained in nature by a biological transmission cycle between susceptible vertebrate 

hosts and blood-feeding arthropods such as mosquitoes. In common with many Old 

World alphavirus pathogens Chikungunya virus (CHIKV) is the aetiological agent of 

a syndrome characterized by fever, skin rash and acute or chronic poly-arthralgia or 

arthritis. Whereas previously CHIKV outbreaks were sporadic and self-limiting, in 

2004 it re-emerged in coastal Kenya and there followed a series of outbreaks that have 

continued until the present day, resulting in many millions of cases. 

 

Inroads into understanding the pathogenesis of CHIKV disease were until recently 

hampered through the lack of a convenient small animal model capable of exhibiting 

symptoms similar to those observed in humans in response to viral challenge. By 

contrast, studies with other alphaviruses, most notably Sindbis and Semliki Forest 

viruses (SINV and SFV), have provided insights into many aspects of the infectious 

process including several key determinants of virulence. 
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In the present study a reverse genetics system was developed to investigate the 

pathogenesis of CHIKV disease, the virus replication cycle and its interactions with 

susceptible hosts. This tool was used to investigate the hypothesis that a CHIKV 

encoded virulence factor is located within the cleavage domain of the non-structural 

polyprotein precursor of the viral replicase. Results from this study indicate that a 

unique amino acid within this conserved site is instrumental in contributing the 

inhibition of the type 1 IFN response in infected hosts. It was also shown that the type 

1 IFN response was induced at an earlier stage in mice challenged with virus 

containing an engineered mutation at this site and that joint-swelling was less severe 

than with wild-type virus. 
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CHAPTER 1  

General Introduction 

 

1.1 Alphaviruses 

1.1.1 Overview 

The genus Alphavirus is one of two within the family Togaviridae and currently 

includes approximately 30 members (table 1.1). The other genus, Rubivirus contains a 

single species, Rubella virus (RUBV). Alphaviruses can infect a wide range of host 

organisms ranging from arthropods to vertebrates and are geographically widespread, 

being found in each of the world’s continents. Most known Alphavirus species 

circulate in relatively restricted geographic locations and can be considered in terms 

of sub-groups based on whether they are endemic in the New World (North and South 

America) or the Old World (Europe, Africa, Australasia and Asia). Recently 

alphaviruses have been isolated in fish in the North Atlantic Ocean and in marine 

mammals in the southwest Pacific Ocean, although the distribution of these are 

currently unknown. The Old World alphaviruses include Chikungunya virus 

(CHIKV), O’Nyong nyong virus (ONNV), Ross River virus (RRV), Semliki Forest 

virus (SFV) and Sindbis virus (SINV). New World alphaviruses include Eastern, 

Western and Venezuelan equine encephalitis viruses (EEEV, WEEV and VEEV). 

Although some infected hosts show no clinical signs of disease, the genus includes 

several pathogens of humans and other animals that are of medical, veterinary and 

economic importance (Griffin 2013, Queyriaux 2008).  
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Table 1.1: Alphavirus antigenic complexes: table showing the Alphavirus species 

listed in the ninth report of the International Committee on Taxonomy of Viruses 

(ICTV) (King et al 2011) the antigenic complex to which they have been assigned 

(where this has been determined) and their Old/New World origins. Eilat virus 

(EILV) is not included as it had not been described at the time of this publication 

(Nasar et al 2012). An asterix denotes a species believed to be descended from an 

ancestral alphavirus resulting from a recombination event between a SINV-like virus 

and an EEEV-like virus Hahn et al 1988).  

 

 

 

Alphavirus Species Abbreviation Antigenic Complex Distribution 
Barmah Forest virus BFV Barmah Forest virus  Australia 

Eastern equine 

encephalitis  

EEE EEE (4 subtypes)  North, Central, South 

America  

Middelberg virus MIDV Middelburg  South Africa, Zimbabwe 

Ndumu virus NDUV Ndumu virus South Africa 

Semliki Forest virus SFV SFV Central, Eastern, South 

Africa 

Bebaru virus BEBV SFV Malaysia 

Chikungunya virus CHIKV SFV  Africa, Asia 

Mayaro virus MAYV SFV South America, Trinidad 

Una virus UNAV SFV South America, Panama 

O’nyong Nyong virus ONNV SFV Africa 

Getah virus GETV SFV Asia, Oceania 

Ross River virus RRV SFV Australia 

Venezuelan equine 

encephalitis virus  

VEEV VEE (6 subtypes) South, Central, North 

America 

Cabassou virus CABV VEE French Guiana 

Everglades virus EVEV VEE Florida, North America 

Mosso das Pedras virus MDPV VEE South America 

Mucambo virus MUCV VEE South America 

Pixuna virus PIXV VEE South America 

Rio Negro virus RNV VEE South America 

Tonate virus TONV VEE French Guiana 

Western equine 

encephalitis virus* 

WEE WEE North, South America 

Aura virus AURAV WEE Brazil, Argentina 

Sindbis virus (Ockelbo, 

Pogosta and Karelian 

fever) 

SINV WEE Africa, Australia, Central 

Asia, Northern Europe  

Whataro virus WHAV WEE New Zealand 

Fort Morgan virus* FMV WEE Western North America 

Highlands J virus* HJV WEE Eastern North America 

Trocara virus TROV TROV Brazil 

Salmon pancreas disease 

virus 

SPDV - Northern Europe, North 

America 

Southern elephant seal 

virus 

SESV - Macquarie Island, 

Australia 
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1.1.2 Classification of Alphaviruses 

Togaviruses belong to group IV of the Baltimore classification system (Baltimore 

1971) by virtue of their genomic makeup (single-stranded positive-sense RNA 

genome). Historically, members of the genus had been classified on the basis of 

serological cross-reactions, as group A arboviruses within the family Togaviridae. A 

second group of viruses including dengue, yellow fever, West Nile and tick-borne 

encephalitis viruses were also included in the family on the basis of shared physical 

properties, morphology and mode of transmission, and termed group B arboviruses. 

The term arbovirus was used to refer to the predominant mode of transmission 

between vertebrates. Most are maintained in nature in arthropod reservoirs and passed 

to a secondary host when the arthropod obtains a blood meal, hence: arthropod-borne 

viruses.  

 

However advances in molecular techniques in the late 20
th

 century showed that the 

two groups are also distinct in terms of phylogenetic grouping, genomic organization 

and replication strategies (table 1.2). Alphaviruses are now placed in one of two 

genera within the family Togaviridae (Calisher et al 1980, Weaver et al 2005, King et 

al 2011). RUBV, the single member of the other genus (Rubivirus) has similarities in 

terms of morphology and genome organisation to alphaviruses (Weaver et al 2005), 

but shows little genome sequence homology and no detectable antigenic homology, 

thus any evolutionary relationship that exists between the two genera appears to be 

distant (Forrester et al 2012, King et al 2011). The former group B arboviruses have 

been re-classified to form the Flavivirus genus, one of three belonging to the family 

Flaviviridae.  
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Table 1.2 A summary of the major differences between virus species formerly known 

as group A and B arboviruses (King et al 2011). They were later consigned to the 

genera Alphavirus within the family Togaviridae and Flavivirus in the family 

Flaviviridae respectively (Calisher et al 1989). 

 

Early studies led to the classification of alphaviruses into seven antigenic complexes 

based on the serological relationship between the envelope glycoproteins E1 and E2, 

determined by haemagglutination inhibition and complement fixation assays (Calisher 

et al 1980). More recent studies in which partial or complete genomic RNA and 

amino acid sequences have been determined have led to phylogenetic trees being 

compiled, which shed light on their probable evolutionary history. These have 

resulted in broadly similar grouping patterns to those based on serology. 

 

Within each antigenic complex distinct virus species typically show a minimum of 

21% nucleotide and 8% amino acid divergence, whereas those in different complexes 

diverge by 38% and 40% respectively (King et al 2011). A further (eighth) complex 

Alphavirus Genus Flavivirus Genus 

Family Togaviridae Family Flaviviridae 

Genome length 11.6-11.9 kb Genome length 10-11kb 

Two open reading frames One open reading frame 

Separate structural and non-structural 

polyproteins 

 Single polyprotein 

5 structural and 4 non-structural proteins 3 structural and 7 non-structural proteins 

Non-structural genes at 5’end, structural 

genes at 3’end of genome 

Structural genes at 5’end, non-structural genes at 

3’ end of genome 

3’ poly-A tail on genomic and sub-genomic 

RNA 

3’ stem-loop structure on genomic RNA 

                                    No significant genome homology between genera 

                                    No detectable serological cross-reactivity between genera 
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based on both antigenic and genetic characteristics was proposed following the 

discovery of Trocara virus (TROV) in Aedes serratus (Ae. serratus) mosquitoes in 

Brazil (Travassos da Rosa et al 2001) (table 1.1).  

 

However some anomalies have surfaced with the availability of genomic data, such as 

the placement of Middelburg virus (MIDV) as the only member of the Middelburg 

virus complex, on serological grounds, whilst it groups with members of the SFV 

complex on the basis of whole genome nucleic acid sequence criteria (Luers et al 

2005). It has been suggested that phylogenetic analyses of the structural protein amino 

acid sequences indicate that this discrepancy is due to recombination events within the 

E1 gene that occurred between two ancestral members of the SFV complex (Attoui et 

al 2007). In addition, there are conflicting views on the most appropriate classification 

of several of the more recently discovered alphaviruses such as Southern elephant seal 

virus (SESV), Salmon pancreas disease virus (SPDV) and Sleeping disease virus 

(SDV) and Eilat virus (EILV) (Weston et al Luers et al 2005, Nasar et al 2012, 

Forrester et al 2012) . 

 

The division of alphaviruses on the basis of Old or New World distribution is largely 

supported by genomic nucleotide and amino acid sequence alignments, although there 

are exceptions to this general pattern among SFV complex members, with Myaro and 

Una viruses being present in the New World (Lavergne et al 2006, Powers et al 

2006). These viruses cluster in the Old World SFV group according to phylogenetic 

and serological criteria but are mainly distributed in Brazil, Venezuela and 
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neighbouring countries of South America (Weaver et al 1992, Powers et al 2001), 

possibly as a result of introduction through human activity or bird migration.   

 

Until recently phylogenetic trees that included all alphaviruses were only possible if 

based on alignments of incomplete genomic fragments as the complete sequences of 

several species were not known. However Forrester et al (2012) determined the 

sequences of the remaining genomes enabling alignments of the full length sequences 

of all known alphaviruses. Phylogenetic trees were developed with this new data 

which led to placement of the marine alphaviruses SDV, SPDV and SESV in basal 

positions in relation to terrestrial species (figure 1.1). The authors suggest that this 

finding indicates that terrestrial alphaviruses may have evolved from a common 

aquatic ancestor which subsequently diverged into the Old and New World species. 
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Figure 1.1 A Bayesian phylogenetic tree of alphavirus genomes based on alignment 

of the structural ORF adapted from Nasar et al (2012). Alphavirus antigenic 

complexes are denoted using a purple font. MIDV is classified as the only member of 

the Middelburg virus complex but groups with members of the SFV complex on the 

basis of genomic nucleic acid sequence criteria. 

 

1.1.3 Recombinant species 

Amongst the New World viruses, several species including WEE, Highlands J and 

Whataroa viruses, are believed to have evolved from a common ancestor that resulted 

from recombination between ancient Old and New world-type viruses (Hahn et al 

1988, Weaver et al 1992, Weaver et al 1993, Weaver et al 1997). The ancestral virus 

is thought to have obtained the non-structural and capsid genes from an EEEV- like 

virus and envelope glycoproteins from a SIN-like virus. Hence SINV, a species 

geographically restricted to the Old World is placed in a group consisting otherwise of 

New World viruses (Hahn et al 1988, Weaver et al 1997). 
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1.1.4 Arthropod vectors of alphaviruses  

In the majority of cases alphaviruses are maintained in nature through an enzootic 

cycle between a haematophagous arthropod vector and any of a wide range of 

vertebrate hosts from which they feed. It is the distribution of these species that 

determines the geographic range in which such alphaviruses can be isolated. In 

contrast to the lifelong chronic infection that occurs in the arthropod host, infection of 

vertebrates is usually of short duration and any symptoms are acute. Most 

alphaviruses have evolved to utilize specific vectors through which efficient 

transmission occurs, the most common of these being various mosquito species, 

although in the case of SESV, the louse Lepidophthirus macrorhini is believed to 

fulfil this function (La Linn et al 2001). No arthropod vector has yet been identified 

for the fish viruses SPDV and SDV (Weston et al 1999, Villoing et al 2000). 

Conversely, the recently described alphavirus, Eilat virus (EILV) was isolated from 

mosquitoes (Anopheles coustani) and appears to be unable to replicate in vertebrate 

cell lines, only infecting insect cell lines (Nasar et al 2012). 
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1.1.5 Physical, biochemical and genomic properties of Alphaviruses 

Alphaviruses are spherical particles (figure 1.2) with a diameter of approximately 60-

70nm and a mass of 52 MDa. The genome is composed of a single 49S molecule of 

single-stranded, positive sense RNA with a 7-methylguanosine cap at its 5’ terminal 

and a polyadenylate (poly-A) tail at its 3’ terminal. The genomic RNA is linear and 

has a length of approximately 11.8kb (figure 1.3). Within it are two open reading 

frames (ORFs), each preceded and followed by untranslated regions (UTRs).The 

largest ORF comprises approximately two thirds of the 5’end of the genome and 

encodes a polyprotein precursor of the viral replicase. The second occupies most of 

the final third of the genome and encodes a polyprotein that is subsequently processed 

to produce the structural proteins (Strauss and Strauss, 1994, Griffin, 2013). 

Untranslated regions (UTRs) are present immediately preceding the 5’ORF, between 

the two ORFs and between the 3’ORF and the poly-A tail. (figure 1.3). 

 

1.1.6 Conserved sequence elements 

Four regions in the RNA sequence of alphavirus genomes that appear to have been 

conserved throughout their evolution, are of particular interest.  These conserved 

sequence elements (CSEs) are predicted to form stem loop structures and are believed 

to have important roles in the regulation of transcription either of the genomic RNA 

or of the negative-sense replication intermediate that serves as a template for progeny 

genomic RNA and sub-genomic RNA.  

 



26 
 

In the 5’ UTR region there is a CSE consisting of approximately the first 44 

nucleotides. Experiments in which deletion mutants were generated from an 

infectious SINV clone, indicated that the analogous region, present in the negative-

strand RNA intermediate product, acts as a promoter for the production of genomic 

RNA (Niesters and Strauss 1990). A second CSE located approximately 150 

nucleotides from the 5’ terminus of the genome has been described in both Old and 

New World alphaviruses (Ou et al 1983). This conserved 51 nucleotide sequence is 

located within the nsP1coding region and is believed to carry out roles in initiation of 

both genomic and negative-strand RNA (Strauss and Strauss 1994, Frolov et al 2001). 

 

  The CSEs in the 3’UTR in different alphaviruses vary considerably in length, 

ranging from 77 nucleotides in Pixuna virus to 609 nucleotides in Bebaru virus 

(Pfeffer et al 1998). Within each are repeated sequence elements composed of units 

varying in nucleotide sequence and length, the function of which is yet to be defined. 

However the final 19 nucleotides immediately preceding the poly-A tail are highly 

conserved in all members of the genus. It has been shown in SINV that this region 

plays a key role as a co-promoter of negative-strand RNA synthesis and that the 

introduction of substitutions or deletions significantly inhibits virus replication (Hill et 

al 1997, Kuhn et al 1990, Hardy and Rice 2005). Thus the early stages of replication 

appear to require interaction between the two termini (Strauss and Strauss 1994, 

Hardy 2006, Kuhn 2007).  

 

The junction region is located between the two open reading frames and consists of a 

minimum stretch of 24 nucleotides of which 19 are upstream of the 3’ORF and 5 are 
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downstream (Strauss and Strauss 2002). The complement of this region in the 

negative-strand intermediate, acts as a promoter for transcription of the 26S sub-

genomic RNA (Strauss and Strauss 1994). 

 

Finally, conserved regions in alphavirus genomes function as packaging signals, 

enabling the rapid assembly of nucleocapsids soon after the detachment of the capsid 

protein from the structural polyprotein. Weiss et al (1994) identified a 132 nucleotide 

fragment within the nsP1-coding region of the SINV genome as a packaging signal 

that interacts with amino acids 81-112 in the capsid protein. It is thought that a variety 

of such signals are located at several sites within alphavirus genomes, although since 

only genomic RNA is encapsidated they are likely to be contained within the 5’two-

thirds (Strauss and Strauss 1994, Frolova et al 1997). However an exception to this 

trend may occur with Aura virus in which a significant proportion of capsids have 

been reported to contain sub-genomic RNA when grown in cell cultures (Rümenapf et 

al 1994). The authors suggested that this species contains a packaging signal in the 

26S RNA, although an altenative interpretation is that amongst the packaging signals 

present in the genome, those in the 5’two-thirds are weak and therefore the 

recognition element in the capsid protein is unable to distinguish between the two 

RNA species (Frolova et al 1997). Newly synthesized genomic 49S RNA and 

nucleocapsid protein self-assemble in the cytoplasm into icosahedral nucleocapsids 

which subsequently migrate to the plasma membrane where they form clusters. 

 

The alphavirus nucleocapsid is approximately 40nm in diameter and consists of the 

genome enclosed by 240 copies of the capsid protein (C) to form an icosahedral 
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structure with T=4 symmetry (Kuhn 2013) (figure 1.2). The viral envelope is 

composed of a lipid bilayer derived from the host plasma membrane and is traversed 

by 240 heterodimers made up of E1 and E2 glycoproteins arranged as trimers to form 

80 spike structures. These protrude from the outer surface where they form an 

icosahedral shell and are stabilised on the inner surface by interactions between the 

E2 endodomains and hydrophobic clefts on the capsid proteins. Small amounts of a 

hydrophobic 6kDa protein (6K) and the recently discovered 8kDa trans-frame (TF) 

protein are reported to be incorporated into the envelope, although their exact location 

and orientation has yet to be established (Liljeström and Garoff 1991, Jose et al 2009, 

Firth et al 2008, Snyder et al 2013). A further small cysteine-rich glycoprotein, E3 is 

a component of some alphavirus envelopes such as SFV (Parades 1998, Garoff and 

Simons 1974) but absent in others including SINV, CHIKV and WEEV (Simzu et al 

1984).  
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Figure 1.2 Alphavirus structural components: the alphavirus virion consists of a 

spherical/icosahedral particle with a diameter of 70nm. A single positive-sense RNA 

molecule with a 5’ 7-methylguanosine cap and a 3’poly-A tail is encased by a shell of 

240 copies of capsid protein and an envelope derived from the host cell plasma 

membrane. Protruding from the envelope are 80 glycoprotein spikes each composed 

of heterodimers of the glycoproteins E1 and E2 arranged as trimers. In addition, small 

amounts of the 6K protein and in some cases E3 are incorporated into the envelope. 
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Figure 1.3 Schematic illustration of the alphavirus genome. The single-stranded 

positive-sense RNA contains two open reading frames (ORF) bordered by un-

translated regions. The 5’ ORF occupies approximately two thirds of the genome and 

codes for a single polyprotein which is processed to generate the non-structural 

proteins, forming the viral replicase. A structural polyprotein is encoded by the 3’ one 

third of the genome. At the 5’ terminal is a 7 methylguanosine cap and at the 3’ 

terminal a poly-A tail. The opal termination codon is found in some isolates, but is 

replaced in others by an arginine codon. 

 

1.2 Alphavirus replication cycle 

Many of the details of the alphavirus replication cycle have been determined through 

studies on SINV, the prototype specific species and SFV, largely because they have 

been most extensively studied. This is due to the ease with which they can be grown 

in the laboratory and to their low pathogenicity in humans. Both are currently 

classified as human hazard group 2 agents on the approved list of biological agents 

published by the Health and Safety Executive (HSE). However the various stages are 

thought to be similar in all members of the genus (Kuhn 2007).  
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1.2.1 Attachment 

Infection of a susceptible host cell begins with the attachment of the viral E2 envelope 

glycoprotein to the host cell receptor which is followed by endocytosis. Alphaviruses 

infect a range of host cells in both vertebrates and arthropods, however it is not known 

whether the glycoprotein is able to target multiple cell surface receptor molecules in 

different types of host cell or a single ubiquitous receptor that has been conserved 

between animal species (Wang et al 1991, Strauss et al 1994). To date, the identities 

of putative receptors for several alphaviruses have been identified using anti-idiotype 

antibodies as probes (Wang et al 1991), however none of these appears to be used 

exclusively and thus attachment may occur through interactions between E2 and more 

than one receptor / coreceptor (Griffin 2013).  

 

Studies with SINV have shown that attachment can be initiated with several different 

cell surface proteins. Laminin, a relatively conserved component of the basement 

membrane of most animal cells, acts as a receptor in BHK 21 (baby hamster kidney) 

cell cultures and in C6/36 (Aedes albopictus) cell cultures for both SINV and VEEV 

(Wang et al 1992, Ludwig et al 1996). However it does not appear to carry out this 

function in chicken embryo fibroblasts, where a 63kDa protein is reported to act as a 

receptor (Wang et al 1991). Two proteins of unknown identity of 110kDa and 74kDa 

have been identified in mouse neuroblastoma cells as possible SINV receptors (Ubol 

and Griffin (1991).  
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SINV that has been propagated in BHK 21 cell cultures for a number of passages has 

been reported to employ heparin sulphate molecules as attachment receptors, 

following the accumulation of adaptive mutations (Klimstra et al 1998). These linear 

polysaccharides are components of proteoglycans located near the plasma membrane 

of most animal cells where they bind to protein ligands and mediate signal 

transduction. It is not clear whether the viruses use this or an alternative receptor for 

the initial attachment when the cells are infected. However, acquisition of these 

mutations was reported to correlate with reduced pathogenicity in neonatal mice. A 

similar phenomenon has been shown in VEEV and RRV, in the case of the latter this 

has been shown to result from a single amino acid substitution (N218R) in the E2 

glycoprotein (Bernard et al 2000, Heil et al 2001). The diversity of cell surface 

receptors described for SINV and  those identified for  other alphaviruses indicates 

that alphaviruses can both utilize ubiquitous conserved molecules and readily adapt to 

alternative ones (Helenius et al 1978, Ludwig et al 1996, La Linn et al 2005, 

Wintachhai et al 2012).   

 

1.2.2 Internalisation of virus 

Following attachment, alphaviruses are internalised by endocytosis which is thought 

in most cases to be mediated by the formation of clathrin-coated pits; this has been 

shown to occur with SFV and SINV (Helenius et al 1980, DeTulleo and Kirchhausen 

1998, Kielian et al 2010). However a study with SFV showed that at high 

concentrations this process becomes saturated, indicating that the virus does not itself 

induce the formation of clathrin-coated vesicles (Marsh and Helenius 1980). Instead it 
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is thought that virus enters the host cell through a pre-existing mechanism similar to 

that used for the uptake of physiological macromolecules.  

 

 Studies with cell cultures pre-treated with agents designed to eliminate clathrin and 

other endocytosis-associated proteins, have provided evidence of the use of clathrin- 

independent pathways by some alphaviruses. The use of anti-clathrin antibodies was 

reported to only partially reduce SFV infection, indicating that this virus may be able 

to utilise an alternative pathway (Doxey et al 1987). Furthermore an investigation 

employing a variety of inhibitors concluded that CHIKV is able to enter cells using a 

clathrin-indepenent, Eps 15-dependent endocytosis (Bernard et al 2010).  

 

1.2.3 Fusion of viral envelope with endosomal membrane 

Viruses are subjected to a progressively lower pH as their environment develops from 

that of an early to late endosome (Schmid et al 1989). Fusion of the alphavirus 

envelope with that of the endosome depends on the vacuolar pH reaching a threshold 

value that varies with different species. Once this has occurred conformational 

changes are triggered in the glycoprotein heterodimers resulting in their dissociation. 

A consequence of this is the exposure of the fusion peptide in the distal tip of E1, 

which penetrates the endosomal membrane through a hydrophobic interaction with 

the lipid bilayer (Lescar et al 2001, Kiellian et al 2010). In a process requiring the 

presence of cholesterol and sphingolipids, fusion between the viral envelope and the 

endosomal membrane occurs creating a pore through which the nucleocapsid core is 

released into the host cell cytoplasm.   
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1.2.4 Capsid uncoating 

Viral genomic RNA is released into the cytoplasm following uncoating of the 

nucleocapsid at the ribosomes. Two theories have been put forward to explain how 

this occurs. In the first it is proposed that capsid proteins are detached from the 

incoming virion by a mechanism triggered by their binding to the host 60S ribosomal 

sub-unit in the host cell. Later in the replication cycle, newly synthesised capsid 

protein is produced in quantities that saturate the ribosome binding sites, thus progeny 

virions are able to assemble (Wengler et al 1992, Singh and Helenius 1992). The 

alternative theory suggests that capsid proteins are exposed to acidic conditions in the 

endosomes by means of ion channels formed by the E1 and 6K membrane proteins 

and that this primes the capsid for uncoating (Wengler et al 2003). Once it has gained 

entry to the host cytoplasm, whether through natural infection or through in vitro 

techniques in the laboratory, the 49S RNA is capable of initiating the process of 

producing progeny virus.  

 

1.2.5 Translation of 5’ORF 

The first open reading frame (ORF) following the 5’UTR comprises approximately 

two thirds of the genome and serves as messenger RNA (mRNA) for the non-

structural polyprotein, P1234 (figure 1.4). In some alphaviruses species, or strains 

within a species, an opal termination codon (UGA) occurs near the 3’ end of the nsP3 

gene. This is invariably followed by a codon beginning with the nucleotide cytidine, 

the effect of which is to render the stop codon “leaky”, enabling read-through to occur 

with low frequency (10-20%). In consequence, the quantity of the P123 polyprotein 

greatly exceeds that of P1234 (Strauss et al 1983). In viruses lacking the opal 
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termination codon it is replaced by an arginine codon (CGA) with the result that only 

P1234 is produced. It is not clear whether any essential function is facilitated by either 

of the two genotypes at any stage of viral relication. It has been reported that ONNV 

clones containing the nsP3 opal codon are more efficient at establishing persistent 

infections in mosquitoes than those containing arginine (Myles et al 2006). 

Furthermore an avirulent strain of SFV has been shown to become neurovirulent in 

BALB/c mice when the wild-type opal codon was replace by the CGA arginine codon 

(Tuittila and Hinkkanen 2003). To date no molecular basis has come to light for either 

of these observations and neither phenomenon has been shown to be applicable to 

other alphavirus species. 

 

1.2.6 Cleavage 

Following translation the non-structural polyprotein is cleaved by the virus-encoded 

papain-like protease located in carboxy-terminal half of the non-structural protein 2 

(nsP2). Cleavage occurs at three conserved sites, thereby liberating each of the 

component proteins (figure 1.4). This occurs in a strictly regulated order in which the 

intermediate products as well as the individual proteins regulate cytoplasmic RNA 

synthesis within infected cells (Hardy and Strauss 1989, De Groot et al 1990, Strauss 

and Strauss 1994, Shirako and Strauss 1994, Merits et al 2001, Kim et al 2004).  

 

For cleavage at the nsP1/nsP2 and nsP2/nsP3 junctions, the nsP2-associated protease 

functions in trans, thus negative-strand (genome-complementary) RNA production 

predominates until levels of P123 reach a sufficiently high concentration. Next, nsP1 
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is released and a second transient complex consisting of nsP1, nsP23 and nsP4 is 

formed which mainly synthesises genome-length positive RNA, although low yields 

of negative-strand RNA may also be produced. Cleavage at the nsP2/nsP3 junction 

results in a more stable replication complex composed of mature forms of the four 

component proteins which no longer synthesises negative-strand RNA. Instead, 

negative-strand RNA is utilised as a template for the production of sub-genomic (26S) 

and genomic (49S) positive-strand RNA. In the case of SINV, it has been reported 

that the sub-genomic product is synthesised at threefold greater quantities than the 

genome length product (Strauss and Strauss 1994). In common with other positive-

strand RNA viruses, the replicase complex of alphaviruses associates with the 

cytosolic surface of cytoplasmic membranes within host cells prior to the start of 

RNA synthesis (Salonen et al 2004). 
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Figure 1.4 The cleavage products of the Alphavirus non-structural polyprotein and 

the predominant RNA species synthesised at each stage. The non-structutal 

polyprotein is translated from the 5’ two thirds of the genomic RNA. The nsP4 is 

liberated by cis-proteolytic activity of nsP2. Through this catalytic region further 

cleavages are made in trans to separate the individual proteins from other 

polyproteins. The final replicase consists of an association of all four nsPs. At each 

stage of the processing of the polyprotein different RNA products are synthesised (as 

indicated). 

 

Figure 1.4 The cleavage products of the Alphavirus non-structural polyprotein (nsP) 

and the predominant RNA species synthesised at each stage. The non-structural 

polyprotein is translated from the 5’ two thirds of the genomic RNA. The nsP4 is 

liberated by cis-proteolytic activity of nsP2. Through this catalytic region further 

cleavage is made in trans to separate the individual proteins from other polyproteins. 

The final replicase consists of an association of all four nsPs. At each stage of the 

processing of the polyprotein different RNA products are synthesised (as indicated). 
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1.2.7 Processing of structural proteins 

The order in which the structural genes are arranged in the 26S mRNA is: C-E3-E2-

6K-E1 (see figure 1.3). Like the non-structural proteins, the structural protein genes 

are translated into a single polyprotein which is subsequently processed to produce 

mature products destined for progeny virions (figure 1.5).  

 

The capsid (C) protein is released into the cytosol through autoproteolysis activity 

soon after translation by the action of a chymotrypsin-like serine protease (Choi et al 

1999). Cleavage occurs between two conserved residues: a C-terminal tryptophan in 

the C protein and a serine at the new N-terminal of the remaining polyprotein. The 

catalytic domain is present in the C-terminal half of the capsid protein and is 

composed of a β-barrel motif containing a triad of three crucial amino acids, histidine, 

aspartic acid and serine. Co-translational folding precedes cleavage so as to position 

these residues in the correct orientation (Nicola et al 1999). The tertiary structure of 

the protein places the C-terminal tryptophan residue (W267 in SFV) in the catalytic 

site, blocking and rendering it inactive after cleavage has taken place (Thomas et al 

2010). Liberated capsid protein next associates with newly synthesised positive-sense 

RNA in response to the packaging signals mentioned above.  
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Figure 1.5 Processing of Alphavirus structural proteins: the viral replicase, consisting 

of the proteins nsP1, nsP2, nsP3 and nsP4 associates with the sub-genomic promoter 

on the negative-strand RNA and synthesises the 5’- capped, 3’ polyA-tailed 26S 

RNA. This is translated at the cellular ribosomes into a single polyprotein. The N-

terminal capsid protein separates through autoproteolysis, whilst the remaining 

polyprotein is processed in the endoplasmic reticulum and the Golgi complex. 

 

At the N-terminal of the capsid protein is a region of about 100 amino acids that are 

not highly conserved, however a high proportion are arginine or lysine residues, 

which results in a net positive charge. It is thought that this results in an electrostatic 

attraction with negatively charged genomic RNA and contributes to the process of 

nucleocapsid packaging (Strauss and Strauss 1994). Although this is generally an 
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efficient process, in at least one species (Aura virus), virions containing sub-genomic 

26S RNA may also be assembled (Rümenapf et al 1994). 

 

A region near the C-terminal of the capsid protein protrudes from the outer surface 

and enables association of similar domains on adjacent proteins to produce 

capsomeres and ultimately new nucleocapsids (Cheng et al 1995). Studies of the 

crystal structure of Aura virus capsid have identified a hydrophobic pocket present in 

the C-terminal region that interacts with a cytosolic region of the E2 glycoprotein and 

is thought to have a role in initiation of budding (Metsikkö and Garoff 1990, 

Aggarwal et al 2012). A short conserved region that follows immediately to the C-

terminal side of the protein is reported to enable capsids to bind to ribosomes prior to 

disassembly (Singh and Helenius 1992). 

 

In the capsid protein of New World alphaviruses a conserved domain has been 

identified near the N-terminal region that plays a critical role in inducing host cell 

transcriptional shutoff (Garmashova et al 2007a, Garmashova et al 2007b). This 

function represents one of the means by which alphaviruses are able to supress the 

synthesis of effectors of the innate immune response. In Old World alphaviruses 

transcriptional shutoff is mediated by a domain present in nsP2 (Frolova et al 2002, 

Garmashova et al 2006, Akhrymuk et al 2012). 
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1.2.8 Envelope glycoproteins 

Each spike consists of three heterodimers which in turn are composed of one copy 

each of the glycoproteins, E1 and E2 (439 and 417 amino acids long respectively in 

the CHIKV S27 strain). Following the detachment of the capsid protein a signal 

sequence at the N-terminal of the remaining polyprotein is exposed and this 

translocates the remaining structural polyprotein (E3-E2-6K-E1) across the 

endoplasmic reticulum (ER) membrane. Within the lumen of the ER this product is 

processed by the host cell enzyme signalase to yield pE2 (a precursor of E3 and E2), 

6K and E1 (Garoff et al 1994, Strauss and Strauss 1994). Further signal sequences at 

the C-terminals of pE2 and 6K promote translocation of the 6K and E1 proteins into 

the ER. Subsequently pE2 and E1 form into heterodimers in a process that has been 

shown in SFV to involve almost exclusively, components originating from the same 

polyprotein (Barth et al 1995). The E3 portion of pE2 provides a disulphide isomerase 

function which facilitates the formation of several disulphide bonds essential for the 

correct folding of E2 during spike formation (Parrott et al 2009). 

  

The spikes are translocated to the plasma membrane within the Golgi complex which 

provides a similar acidic environment to that which triggers viral-host membrane 

fusion following receptor-mediated endocytosis in the initial stages of the infectious 

process. However, as a component of pE2, E3 prevents activation of E2 by stabilising 

an acid sensitive region which would otherwise interact with the fusion loop domain 

(Lobigs and Garoff 1990, Sjöberg et al 2011). Furthermore, when in the trans Golgi 

complex, pE2 is cleaved by the action of the host enzyme furin to form E2 and E3, the 

two proteins remain closely associated whilst the environment remains acidic, thus 



42 
 

maintaining this shielding effect. The E1 and pE2 proteins are glycosylated in stages 

as they move from the endoplasmic reticulum through the Golgi complex to regions 

of the plasma membrane where E1 and E2 form stable heterodimers. Here, 

interactions between the nucleocapsid core and the carboxy-terminal cytoplasmic 

domain of E2 promote virion assembly and budding (Jose et al 2012). 

 

1.2.9 6K / TF protein 

The 6K protein is so named because it has long been thought to be a single 6KDa 

polypeptide, however, as mentioned below this may not be the case. This protein has 

been reported to have a role in various stages of the replication cycle, including 

uncoating, membrane fusion, budding and virus release (Wengler et al 2003, 

McInerney et al 2004, Loewy et al 1995, Liljestrom et al 1991, Gaedigk-Nitschko et 

al 1990). Although translated in equimolar amounts relative to the other structural 

proteins, significantly smaller amounts of the 6K protein are incorporated into the 

viral envelope (Lusa et al 1991). 

  

Recent studies have revealed a novel ribosomal -1frame-shifting mechanism that 

occurs at a conserved motif within the 6K coding region of the structural polyprotein 

ORF. This results in translation into two predicted protein products: the 6K protein 

and an additional product termed TF (Trans Frame protein) of approximately 8kDa 

(Firth et al 2008, Chung et al 2010). These authors report that it is predominately the 

latter which is incorporated into the viral envelope.  
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1.3 Non-Structural Proteins 

 Non-structural polyproteins (nsPs) in different alphaviruses range in size from 

approximately 2470 to 2500 amino acid residues (Strauss and Strauss 1994). Many 

functions of the replicase complex have been mapped to specific domains within the 

polyprotein and mature nsPs, as summarized below. 

 

1.3.1 nsP1 

The nsP1 in alphaviruses comprises approximately 532 to 540 amino acid residues (in 

the S27 strain of CHIKV it is 535 amino acids). The N-terminal region contains 

catalytic regions which enable it to cap the 5’ end of newly synthesised genomic and 

sub-genomic RNA by a process distinct from that by which host cells cap mRNA 

(Cross 1983, Mi and Stollar 1991, Laakkonen et al 1994). GTP is methylated at its N7 

position by guanyl-7-methytransferase to produce 
me7

GTP which is next covalently 

attached to nsP1 as 
me7

GMP-nsP1 (Ahola and Kaariainen 1995). The critical amino 

acids in the catalytic site of nsP1 for methylation have been identified and shown by 

sequence alignment to be conserved amongst several virus families (Rosanov et al 

1992). However details of the process by which the cap is transferred to the target 

RNA and the domain catalyzing this step have yet to be established. 

The attachment of the viral replicase to cytoplasmic vacuoles has been shown in both 

SFV and SINV to be due to the action of an amphipathic alpha helix sited in the 

central region of the nsP1(Salonen et al 2003, Spuul et al 2007). Hydrophobic amino 

acids present in this structure are thought to interact with acyl groups within the 

membrane to anchor it in place. An additional feature that contributes to this affinity 
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for host cell membranes is the presence of one or more palmitoylated cysteine 

residues located towards the 3’ end of nsP1 (three amino acids from the N-terminal in 

CHIKV S27 [residues 416 to 419]). A further role attributed to nsP1 is its proposed 

interaction with nsP4 leading to the initiation of negative-strand RNA synthesis 

(Wang et al 1991, Shirako et al 2000, Fata et al 2002). 

 

1.3.2 nsP2 

The nsP2 is the largest of the replicase sub-units varying amongst different alphavirus 

species and ranges from 794-807 amino acids in length (Kääriäinen and Ahola 2002). 

Near the N-terminal is a helicase domain which is involved in unwinding dsRNA, an 

intermediate transcription product in the synthesis of negative-sense and genomic 

RNA (Gomez de Cedron et al 1999). Also present is a domain with nucleotide 

triphosphatase activity which is thought to be essential for the function of RNA 

helicase (Karpe et al 2011).  

 

Although RNA replication and polyprotein processing take place in the host cell 

cytoplasm, a proportion of the nsP2 in alphavirus infected cell cultures has been 

reported to be present in the host cell nucleus. Nuclear localization signals (NLS) 

responsible for this phenomenon have been mapped to the central region of nsP2 

(Rikkonen et al 1992, Rikkonen et al 1994, Montgomery and Johnston 2007).  

 

Also towards the N-terminal is a domain exhibiting RNA triphosphatase activity. This 

contributes to the process of RNA capping by cleaving the phosphoanhydride bond at 

the 5’ end of positive-sense RNA, releasing the gamma phosphate and thus enabling 
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the capping function of nsP1 to proceed (Vasiljeva et al 2000).  Near the C-terminal 

of nsP2 is a papain-like cysteine protease essential for cleaving the non-structural 

polyprotein at specific sites to yield both intermediate and mature replicase 

components (Strauss and Strauss 1994, De Groot et al 1990). The catalytic site is able 

to cleave the nsP3/nsP4 junction in cis whilst the nsP1/2 and nsP2/3 are processed in 

trans. 

 

In addition to the active methyl transferase catalytic site in nsP1, a highly conserved 

but non-functional methyl transferase-like domain has been identified in the C-

terminal half of nsP2.This has been reported to have roles in the regulation of 

negative-sense RNA synthesis and in the induction of cellular cytopathic effects 

(Mayuri et al 2008). 

 

In addition to its roles in viral replication, nsP2 has been shown to function through 

two mechanisms that result in inhibition of the innate immune response. In the Old 

World alphaviruses SINV, SFV and CHIKV, a determinant located close to the 

helicase domain, promotes the rapid degradation of the host cell RNA polymerase II 

component, Rpb1 (Frolova et al 2002, Akhrymuk et al 2012). In a process thought to 

involve ubiquitination of the target protein and its subsequent degradation through 

host cell pathways, cellular gene activation is inhibited (Wilkinson 2005). One of the 

consequences of the resulting down-regulation of host protein synthesis is the 

reduction in synthesis of host IFN signalling components and IFN stimulated gene 

products. In addition, the nsP2 in CHIKV has been shown to contain a C-terminal 
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motif that blocks the phosphorylation of the Signal Transducer and Activator of 

Transcription (STAT) thus inactivating the IFN signalling pathway (Fros et al 2010). 

 

1.3.3 nsP3 

The nsP3 ranges in size amongst alphaviruses from approximately 514 to 570 amino 

acid residues (Strauss and Strauss 1994). Although three distinct domains are 

recognised in nsP3, the precise contribution each makes to the infectious process is 

less clear than those made by nsPs 1, 2 or 4. A 160 amino acid region at the N-

terminal is conserved in alphaviruses and categorised as a member of the macro 

domain family. Domains with a high degree of homology are also found in a diverse 

range of life forms including distantly related viruses, certain bacterial species, archae 

and many eukaryotes, including mammals (Pehrson and Fuji 1998). Macro domains 

are reported to carry out ADP ribosylation, an important modification of proteins 

associated with functions such as cell signalling, DNA repair and apoptosis (Karras et 

al 2005). A study of the crystal structures of both CHIKV and VEEV showed 

evidence of ADP ribose 1-phosphate phosphatase activity and of RNA binding (Malet 

et al 2009).  Lulla et al (2012) have provided evidence that elements contained within 

the macro domain in SFV bring about the precise positioning of the nsP2/3 precursor 

to allow the nsP2 encoded protease access to the previously unexposed cleavage site. 

 

Towards the central region in nsP3 is a zinc-binding domain, which has been 

suggested to have a role (along with the C-terminal part of nsP2 and the macro 

domain) in binding to RNA, resulting in the preferential production of the negative-
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sense form (Shin et al 2012). After the cleavage of nsP2/3 the changes in substrate 

affinity of the mature replicase lead to production of genome and subgenomic RNA 

only. 

 

The C-terminal region of nsP3 shows great variation in terms of sequence and length, 

accounting for much of the difference in overall sizes between alphavirus species. 

However one common characteristic is that of extensive phosphorylation, particularly 

on serine and threonine residues. The significance of this feature has not been fully 

explained and studies with SFV have shown no kinase activity. SFV mutants, totally 

defective in nsP3 phosphorylation remain viable, but are reported to exhibit a 

decreased rate of RNA synthesis and reduced pathogenicty in mice (Vihinen et al 

2001). A study in which genetically engineered clones of virulent and avirulent strains 

of SFV were characterized have shown that the major determinant for neurovirulence 

in BALB/c mice is carried in nsP3 (Tuittila and Hinkkanan 2003). The authors also 

demonstrated that in this model the replacement of an opal termination codon for an 

arginine codon conferred virulence on an otherwise non-virulent strain. 

 

Finally, recent studies with CHIKV and ONNV have shown that elements present in 

nsP3 determine the vector specificity (Saxton-Shaw et al 2013). The majority of 

mosquito-transmitted alphaviruses rely on haemophagous Aedes species for 

transmission to vertebrate hosts, however ONNV is exclusively transmitted by 

anopeline species (A. gambiae and A. funestus). The authors constructed a series of 

chimeric clones of the two viruses and evaluated their ability to infect A. gambiae. 
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CHIKV clones were only able to establish an infection at a level comparable to wild-

type ONNV when their nsP3 was replaced by the equivalent gene from ONNV.  

 

1.3.4 nsP4 

The overall size of nsP4 in alphaviruses is approximately 607 to 614 amino acid 

residues (Strauss and Strauss 1994). It includes a large C-terminal domain comprising 

the catalytic region of the RNA-dependent RNA polymerase (RdRp) containing the 

GDD motif common to polymerases in other RNA viruses (Rubak et al 2009). This is 

activated to use genomic RNA as a template to produce negative-sense RNA, by the 

action of the nsP2-encoded protease. In addition nsP4 functions as a terminal adenyl 

transferase, thus facilitating the generation and maintenance of the poly-A tail in 

genomic and sub-genomic RNA (Tomar et al 2006). 

 

1.4 Clinical features of alphaviruses 

Overt disease symptoms in hosts involved in the natural transmission cycles of 

alphaviruses are often absent. However, when transmission to alternative, often 

“dead-end” host species occurs such as domestic animals or humans, severe disease 

may result. When symptoms do occur in humans these are generally manifested in 

one of two distinctive syndromes which are generally (although not exclusively) 

associated with the geographic location in which the virus is endemic. Most of the 

Old World viruses cause a fever and skin rash that lasts for 1-2 weeks followed by 

polyarthralgia polyarthritis of varying duration (Tesh 1982, Griffin 2013, Queyriaux 

2008, Lakshmi et al 2008) as seen typically in members of the Semliki Forest virus 
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antigenic group such as SFV, RRV or CHIKV (see table 1.3). The clinical features 

seen in CHIK patients are dealt with in more detail in section 1.6.2. The predominant 

clinical features of most New World alphavirus infections consist of fever, followed 

by severe and frequently fatal encephalitis and neurological symptoms (see examples 

in table 1.4).  

 

1.4.1 Alphavirus infection of domestic and wild animals 

Most alphaviruses are maintained in nature through natural cycles in which arthropod 

vectors infect and acquire virus from vertebrate hosts (Strauss and Strauss 1994). In 

many cases the vertebrate host suffers only mild symptoms or is asymptomatic, 

however in others morbidity of varying severity does occur. SFV is able to cause 

lethal encephalitis in rodents, but is rarely pathogenic in humans. The New World 

viruses, WEE, VEE and EEE cause severe encephalitis in horses, EEE is also 

associated with encephalitis in pheasants and emus. Highlands J virus (HJV) is a 

pathogen of domestic birds such as chickens, turkeys, pheasants, partridges and ducks 

and causes decreased yields in egg production or mortality (Eleazer and Hill 1994, 

Griffin 2013). Getah virus (GETV) causes febrile illnesses in horses, pigs and calves 

(Powers et al 2001). Diseases of Atlantic salmon and rainbow trout caused by 

salmonid alphavirus or salmon pancreas disease virus (SPDV) have had a significant 

impact on the commercial production of these species in the North Atlantic region 

since the mid-1980s. Infected fish develop lesions at various sites, particularly in the 

pancreas and in skeletal and heart muscle. Widely varying mortality rates have been 

reported in outbreaks, ranging from 0.7-26.9% (Jansen et al 2010). 
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* Single outbreak of 217 cases in the Emilia-Romagna region of northern Italy in 

2007 (Rezza et al 2007) 

** Two indigenous cases in south-eastern France (Grandadam et al, 2010) 

 

Table 1.3 Alphaviruses associated with rash and polyarthritis 

 

 

 

 

Table 1.4 Alphaviruses causing encephalitis in humans and other mammals 

 

 

 

Virus Geographic range 

 

Chikungunya 

 

O’nyong-nyong 

Igbo Ora 

Ross River 

Barmah Forest 

Ndumu 

Mayaro 

Sindbis 

 

Semliki Forest 

 

 

 Eastern, central and western Africa, India Sri Southeast  

 Asia, Indian Ocean islands, Italy*, France** 

 East Africa 

 Nigeria, Central African Republic 

 Australia 

 Australia 

  Southern Africa 

 Central and South America 

  Many regions in Africa, NW Europe (Ockelbo, Pogosta and       

  Karelian fevers), India, Malaysia Southern and Eastern Africa 

  Central, Eastern and Southern Africa, former USSR, India,  

Virus Geographic range 

Eastern Equine Encephalitis 

Venezuelan Equine Encephalitis 

Western Equine Encephalitis 

Highlands J 

North and South America 

South and Central America 

North and South America 

               Eastern USA 
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1.5 Diagnosis of alphaviruses 

Virus isolation by intra-cerebral inoculation of suckling mice was for many years the 

method of choice for diagnosis of alphaviruses (Precious et al 1974), however in 

recent years this has been replaced by cell culture-based methods. This may involve 

the use of vertebrate cell lines such as Vero or BHK-21 cells or mosquito cell lines. 

Virus identification is subsequently carried out by immunofluorescence (IF), 

haemagglutination inhibition (HI), complement fixation (Litzba et al 2008, Clarke and 

Casals 1958, Calisher et al 1980) or by enzyme immunoassays on infected cell 

supernatant (Yap et al 2010). 

 

Routine diagnosis during alphavirus epidemics is commonly carried out by IgM 

capture enzyme immunosorbent assay (ELISA). The IgM response to alphaviruses in 

an individual is relatively specific for members of each antigenic complex and can be 

detected from 4-7 days after the onset of symptoms and persist for a further 2-3 weeks 

(Pialoux et al 2007). Molecular techniques such as reverse transcription-polymerase 

chain reaction (RT-PCR) and Loop-mediated isothermal amplification (LAMP) 

assays are rapid and specific alternatives but must be used on specimens taken early in 

the course of infection (Hasbe et al 2002, Edwards et al 2007, Lakshmi et al 2008). 

 

1.6 Chikungunya virus 

CHIKV is an Old World alphavirus that is transmitted by Aedes mosquitoes and is the 

aetiological agent of chikungunya fever, a condition first described following an 

outbreak between 1952 and 1953 in the Makonde plateau, located near the south-
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eastern border between Tanganyika (now Tanzania) and Mozambique (Robinson 

1955, Ross 1956). The name of the virus is derived from a word used by the Makonde 

tribe who were one of the main groups of people to be affected and describes the 

characteristic stooped posture seen in many of those suffering from the condition as a 

result of the severe arthritic condition it causes: it translates as, “that which bends up”. 

From these earliest recognized cases in 1952 until 2003, localised periodic re-

emergences were documented in several countries between West Africa and Southeast 

Asia.  

 

However in 2004, CHIKV re-emerged in coastal Kenya (Njenga et al 2008, 

Schuffenecker et al 2006, Sergon et al 2008) and spread rapidly to islands in the 

Indian Ocean. At an early stage in the epidemic that followed, CHIKV isolates 

obtained from patients had acquired a mutation that facilitated their efficient 

replication in the Asian tiger mosquito, Ae. albopictus. There followed a major 

epidemic resulting in several million human cases with autochthonous outbreaks 

reported in a wider geographic range than had previously been recorded. 

 

Several of the early clinical signs seen in CHIK patients such as high fever, skin rash, 

myalgia and arthralgia are also indicative of other Old World alphaviruses and dengue 

fever. Both types of virus co-circulate in many tropical and sub-tropical parts of 

Africa and Asia with a range of arthropod-borne pathogens causing diseases such as 

malaria, leptospirosis, West Nile disease and Japanese encephalitis. Since these 

conditions also include an acute non-specific febrile phase, the potential for mis-

diagnosis is significant in settings where reliable diagnostic procedures are not 



53 
 

available. CHIKV was first isolated during an outbreak initially thought to be dengue 

fever in 1953 and only identified as an alphavirus after subsequent serological 

characterisation (Robinson 1955). Retrospective case reviews have provided evidence 

that several earlier outbreaks attributed to dengue fever may have actually been CHIK 

fever and not recognised as distinct conditions (Carey 1971). 

 

1.6.1 Clinical features of Chikungunya 

The main clinical manifestations caused by CHIKV infection are summarized in 

figure 1.6. The incubation period for CHIKV infections of humans is typically 2-5 

days. A small proportion of those known to have been infected on the basis of 

serological evidence (3-25%) show no symptoms (Queyriaux et al 2008). In common 

with most of the other Old World alphaviruses, human cases of chikungunya are 

characterised by an illness consisting of an acute phase with a high fever (often with a 

temperature in excess of 39°C), a petechial or maculopapular skin rash and joint 

pains. The febrile phase is usually accompanied by the skin rash, both of which 

develop abruptly and coincide with a viraemia. The viraemic phase typically lasts for 

5-12 days beyond the onset of symptoms and is often extreme with virus titres 

reaching 10
10 

to 10
12 

genome copies per ml of blood (Rezza et al 2007, Pialoux et al 

2007, Hoarau et al 2010). The range of symptoms experienced by an individual 

varies, but frequently also includes myalgia, headache, fatigue, conjunctivitis and 

gastrointestinal symptoms (Queyriaux et al 2008, Borgherini et al 2008, Cavrini et al 

2009). 
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The most significant symptoms seen in a high proportion of patients consist of 

arthralgia or arthritis. The pain suffered by patients varies, but is often extreme and 

incapacitating presenting in a fluctuating manner. Although most infections resolve in 

2-3 weeks, in chronic cases joint pain persists for many months or even years 

(Queyriaux et al 2008, Borgherini et al 2008, Cavrini et al 2009). Most commonly, 

fingers, wrists, elbows, knees, ankles and toes are affected and joints that have 

previously been injured are particularly susceptible (Tesh 1982). It has been observed 

that the majority of patients presenting with chronic arthralgia are over 60 years of 

age and have significantly higher viral loads during the preceding acute viraemic 

phase than those with less severe symptoms (Hoarau et al 2009). This age-related 

pattern has also been reported in a Rhesus macaque model (Messaoudi et al 2013). In 

this study, increased CHIKV titres were detected in older animals when compared to 

young adults and this correlated with both weaker innate and adaptive immune 

responses.  
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Figure 1.6 Schematic representation of the typical course of CHIKV disease in 

humans, showing symptoms, biomarkers and approximate times. Asymptomatic 

infections are also seen in 3-25% of cases and additional symptoms may occur in 

others (see section 1.6.2). 

Infection 

 2-7 days 

 

Onset of 

symptoms 

~1 Week  Weeks or months Years 

    Myalgia~7-10 days 

 Fever~ 1 week Fever~ 1 week 

 Rash~1 week 

  Polyarthralgia / polyarthritis: weeks .... ..months............ years 

Incubation 

period 

Viraemia   

 

IgM production (days 3-8) – persist for 1-3 months 

 

IgG production (days 4-10) – persist for years 

Type 1 IFN 

response 

http://en.wikipedia.org/wiki/File:Aedes_Albopictus.jpg
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Other less common but serious complications associated with CHIKV include 

myocarditis, meningoencephalitis and Guillan-Barré Syndrome. In addition, recent 

cases involving strains with the E1 A226V mutation have been linked with previously 

unreported symptoms including flaccid paralysis, brain stem encephalitis, seizures, 

retinitis and haemorrhagic manifestations (Sarkar et al 1965, Lewthwaite et al 2008, 

Singh et al 2008, Staples et al 2009, Gauri et al 2012). A study of the 2005-2006 

CHIKV outbreak on La Réunion Island in the Indian Ocean provided evidence linking 

CHIKV to patient deaths. However although it was shown that a significant excess in 

mortality coincided with the epidemic incidence peak, it was not determined to what 

extent other underlying medical conditions contributed to death (Renault et al 2008). 

 

1.6.2 Diagnosis of Chikungunya 

Laboratory confirmation of CHIKV infection may be requested when a patient has a 

recent history of having visited or lived in an area where the virus is known to be 

endemic and presents with symptoms such as fever and severe arthralgia or arthritis. 

The likely effectiveness of diagnostic techniques depends upon the stage in the 

disease at which patient samples (usually blood serum) have been obtained. The 

viraemic phase typically persists for approximately one week after onset of 

symptoms, thus limiting the period during which methods relying on virus culture or 

detection of viral RNA can be reliable (figure 1.6).  
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 A variety of RT-PCR assays using both SYBR® green and probe-based technologies 

and LAMP assays have been described as means for rapid confirmation of a CHIKV 

diagnosis. To use these methods however, it is essential that specimens are obtained 

early in the course of infection (Hasbe et al 2002, Edwards et al 2007, Lakshmi et al 

2008). 

 

 The production of IgM antibodies typically begins between 3 and 8 days after onset 

of symptoms and is closely followed by that of IgG antibodies. These can, in most 

cases be detected for several months or years after disease onset respectively, so 

CHIKV antibody detection methods are of particular use when the acute phase sample 

tests negative. Routine diagnosis during alphavirus epidemics is commonly carried 

out by immunofluorescence (IF) and enzyme immunosorbent assays (ELISAs) which 

can be used to detect both IgM and IgG anti-CHIKV antibodies from acute or 

convalescent-phase sera using whole antigen or recombinant capsid or envelope 

antigens, (Litzba et al 2008, Yap et al 2010, Pialoux et al 2007, Panning et al 2008, 

Burt et al 2012).  

 

1.6.3 CHIKV transmission cycles 

Two distinct patterns of CHIKV transmission are recognised which vary with 

environmental conditions. In rural West and Central Africa, a reservoir of infection is 

maintained through a sylvatic cycle in which forest-dwelling non-human primates are 

infected through contact with Aedes (Ae) mosquitoes (Powers and Logue 2007). The 

species involved varies with the geographical location, but is believed to include Ae. 
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taylori, Ae. luteocephalus, Ae. furcifer, Ae. africanus and Ae. neoafricanus. Spread to 

human populations through these vectors tends to involve small communities and 

therefore occurs on a small scale. 

 

In urban settings, Ae. aegyptii and  since 2005, Ae. albopictus are the principal vectors 

in a mosquito-human-mosquito transmission cycle. Zoonotic cycles involving animal 

reservoirs have not been shown to exist in endemic regions of Asia, where 

transmission from person to person through mosquito bites appears to be the 

prominent route. Serological evidence of CHIKV infection in long tailed macaques 

has been reported in Malaysia (Apandi et al 2009) but it is not clear whether this 

represents a major source of human outbreaks.  Evidence of an alternative route of 

infection was obtained by a study conducted during the La Réunion Island outbreak in 

2005 where it was found that mother to child transmission occurred in 19 out of 39 

cases where the mother had been infected between 7 and 3 days prior to delivery 

(Gérardin 2008, Fritel et al 2010). 

 

Of particular concern from a public health perspective is the rapid increase in 

geographic distribution of Ae. albopictus in recent decades (Benedict et al 2006, 

Delatte et al 2008). This species is is more widespread than Ae. aegyptii and from 

being largely confined to Southeast Asia until the mid-1970s it has become 

established in many other countries in Africa, North and South America and Europe 

(Urbanelli et al 1999, Gratz 2004) (table 1.5). It is thought that international trade in 

goods that may harbour stagnant water such as tyres and timber, has facilitated the 

introduction of mosquito larvae to new territories and this has been compounded by 
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the increase in insecticide resistance. To date there are at least 45 countries or 

territories in which CHIKV is known to have been transmitted to humans (table 1.6), 

however as mosquitoes capable of transmitting the pathogen are present in many 

more, further populations are also at risk.  

 

Table 1.5 Countries in which Aedes albopictus became established between 1979 and 

2012 (adapted from Benedict et al 2007) 

 

 

Year first 

 recorded 

Country References 

1979 Albania Adhami and Reiter 1998 

1983 Trinidad Le Maitre and Chade 1983 

1985 USA Sprenger and Wuithiranyagool 1986 

1986 Brazil Forattini 1986 

1990 Italy Sabatini et al 1990 

1991 Nigeria Savage et al 1992 

South Africa Cornel and Hunt 1991 

1993 Barbados Reiter 1998 

Dominican Republic Peña 1993 

1995 Cuba Broche and Borja 1999 

 Guatemala Ogata and Samayoa 1996 

Honduras 

1997 Cayman Islands Lounibos et al 2003 

1998 Argentina Rossi et al 1999 

Colombia Velez et al 1998 

1999 France Schaffner and Karch 2000 

2000 Cameroon Fontenille and Toto 2001 

2001 Equatorial Guinea Toto et al 2003 

 2002 Panama 

2003 Nicaragua Lugo et al 2005 

Switzerland Flacio et al 2004 

Israel Pener et al 2003 

2004 Belgium Schaffner et al 2004 

Spain Nart 2004 

2005 Netherlands Sholte et al 2007 

Greece Samanidou-Voyadjoglou et al 2005 

Australia Scott et al 2009 

2006 Croatia Klobučar et al 2006 

Gabon Krueger and Hagen 2007 

2007 Germany Pluskota et al 2008 

Lebanon Haddad et al 2007 

 Syria 

2011 Tonga Guillaumot et al 2012 
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1.6.4 Emergence of CHIKV strains transmitted by Ae. albopictus 

Until the 2004 re-emergence of CHIKV its principal vector was found to be Ae 

aegyptii, however in the 2005-2006 outbreak on La Réunion Island several factors 

indicated that this was not the case in this instance. In view of the explosive nature of 

the outbreak, vectors would be expected to be present in significant numbers, however 

Ae. aegyptii were relatively scarce in this region but Ae. albopictus, a species known 

to be susceptible to CHIKV infection were abundant. 

 

CHIKV isolated from patients during the early months contained alanine at position 

226 in the E1 glycoprotein whereas those isolated later contained valine. Experiments 

in which the sensitivity of Ae.albopictus mosquitoes to infection with the two CHIKV 

phenotypes were compared, showed that those containing the A226V mutation 

replicated and disseminated to the host salivary glands most efficiently (Vazeille et al 

2007). Studies using CHIKV clones containing either of the two variants to infect 

mosquitoes in the laboratory, confirmed that this mutation provides a selective 

advantage to the virus in utilizing this species (Tsetsarkin et al 2007). Further 

evidence that Ae. albopictus was the primary vector was provided by the detection of 

CHIKV genomic RNA by qRT-PCR from mosquitoes collected in the area.  

 

In the majority of the subsequent CHIKV outbreaks (until December 2013), Ae. 

albopictus is believed to have acted as the principal vector (Tsetsarkin et al 2011). 

The results of phylogenetic studies indicate that the E1 A226V mutation has occurred 

on at least two other separate occasions in strains from the ESCA lineage, thus 
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representing an example of evolutionary convergence (De Lamballerie et al 2008, 

Arankalle et al 2007, Gould and Higgs 2009). 

 

Evidence suggested that in earlier outbreaks in Asia documented over a period of 

approximately 60 years, despite the presence of Ae. albopictus, CHIKV strains 

belonging to the Asian lineage have predominately been transmitted by Ae. aegyptii 

(Power and Logue 2008). It has recently been demonstrated that these strains are 

restricted in their ability to adapt to Ae. albopictus through acquisition of the E1 

glycoprotein A226V mutation because of the presence of a threonine residue at 

position 98 (Tsetsarkin et al 2011). In experiments using infectious clones derived 

from representatives of these two lineages, it has been shown that the adaption 

depends on a crucial epistatic interaction between an alanine residue at position 98 

and the valine residue at position 226. In further experiments using chimeric clones, 

amino acid residues in the E2 glycoprotein at positions 60 and 211 also play important 

roles in adaption (Tsetsarkin et al 2009). 

 

1.6.5 Epidemiology of Chikungunya 

Three distinct clades of CHIKV are currently recognized on the basis of phylogenetic 

criteria (Powers et al 2000), these being termed according to the geographic region 

from which members were originally isolated: West African, East / South / Central/ 

African (ESCA) and Asian. Outbreaks that occurred between 1952 and 2003 followed 

a general pattern of relatively localized self-limiting outbreaks followed by intervals, 

ranging from years to decades before re-emergence was seen. The most recent of 
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these in Africa occurred in the Democratic Republic of Congo in 1999-2000 

(Pastorino et al 2004) and in Asia, in an outbreak in Java from 2001-2003 (Laras et al 

2005).  

 

However in 2004 a new pattern emerged in the form of a major epidemic infecting 

several million people with viruses belonging to the ESCA clade. The epidemic is 

believed to have emerged on the Kenyan island of Lamu (Sergon et al 2008, Njenga 

2008) and in the following months and years spread both to other African countries 

and in an easterly direction to countries and territories from the Indian Ocean islands 

to India and Southeast Asia, resulting in the largest recorded epidemic (table 1.6 and 

figure 1.7). On the island of La Rèunion in the Indian Ocean 266,000 cases were 

reported in 2005, representing 38% of the population and an estimated 1.4 million 

cases occured in India in 2006-2007 (Powers 2008, Schwartz and Albert 2010).  

 

The epidemic spread with respect to evolution, vector specificity and clinical 

characteristics has been monitored in detail throughout up to the present day. From 

Kenya it spread into other African countries and in an easterly direction to 

Madagascar, the Indian Ocean islands, India, Sri Lanka and Southeast Asia, reaching 

the Philippines in 2011. In addition to the many countries in which outbreaks have 

occurred, imported cases involving travellers returning from endemic regions have 

been recorded in at least 18 countries (Powers 2008). In 2007 the first recorded 

outbreak in Europe was reported in the North-eastern region of Emilia Romagna in 

Italy. Genomic evidence identified a patient who had recently returned from a trip to 

India, as the index case in an outbreak that led to a further 207 cases (Rezza et al 
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2007, Cavrini et al 2009). Two further European cases were reported in 2010 in the 

town of Fréjus, South-eastern France (Grandadam et al 2010). 

 

Although CHIKV outbreaks in the period between 2011 and 2014 have been of a 

lower magnitude, the pre-2004 pattern has not resumed and regular notifications of 

further cases continue to be reported to the present day (http://www.promedmail.org).  

In parts of Oceania, two other Old World alphaviruses that cause similar diseases, 

namely Ross River and Barmah Forest viruses, are endemic. However in 2011 and 

2012, CHIKV outbreaks were reported for the first time on the islands of Papua New 

Guinea and New Caledonia (Horwood et al 2013, Dupont-Rouzeyrol et al 2012). 

Furthermore, in late 2013 and early 2014 the first documented cases of CHIKV were 

reported on several Carribean islands and on the mainland of South America 

(Cassadou et al 2014, Van Bortel et al 2014).  
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Table 1.6 Countries and territories in which autochthonous cases of chikungunya 

disease have been recorded as of March 31
st
 2014. Countries in which cases were 

recorded after the 2004 re-emergence, but had a history of earlier outbreaks are 

indicated with bold lettering. 

Countries and territories where chikungunya outbreaks have been recorded: 

Africa Asia Elswhere 

Tanzania Thailand  

Uganda Cambodia  

Democratic Republic of 

Congo 

India  

Zimbabwe Vietnam  

Senigal Malaysia  

Nigeria Myanmar (Burma)  

South Africa Indonesia  

Kenya Pakistan  

Burundi Philippines  

Gabon Timor  

Malawi   

Guinea   

Central African Republic   

Countries in which the first recorded chikungunya outbreak occurred after its 

re-emergence in 2004: 

Africa Asia Elswhere 

Benin Bangladesh 1. Americas 

Cameroon Bhutan Anguilla 

Comoros China Aruba 

Equatorial Guinea Laos British Virgin Islands 

Madagascar Maldives Dominica 

Mauritius Singapore French Guiana 

Mayotte Sri Lanka Guadeloupe 

Republic of Congo Taiwan Martinique 

Rèunion Yemen St Barthelemy 

Seychelles  St Kitts and Nevis 

Sierra Leone  St Martin 

Sudan  St Maarten 

  2. Europe 

  Italy 

  France 

  3. Oceania/Pacific islands 

  Federal states of 

Micronesia 

  New Caledonia 

  Papau New Guinea 
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Figure 1.7 Map showing the approximate geographic locations (indicated by red 

stars) in which chikungunya outbreaks have been reported as of March 31
st
 2014. 

Areas with a history of CHIKV outbreaks prior to the 2004 re-emergence are enclosed 

by blue dotted lines.  
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1.7 CHIKV Pathogenesis 

1.7.1 Overview 

Until recently, research into the pathogenic processes caused by CHIKV infection was 

limited due to the lack of a suitable animal model replicating human disease. However 

following the first report of the use of young and inbred mice in 2008, others have 

followed in which adult wild-type (w/t) mice and non-human primates have been used 

(Couderc et al 2008, Gardner et al 2010, Ziegler et al 2008, Morrison et al 2011, 

Labadie et al 2010).   

 

A recent report suggests that the differences in susceptibility seen between humans 

and w/t mice to CHIKV infection may be related to differences in the process of 

autophagy (Judith et al 2013). When human cell lines were infected with CHIKV, 

capsid protein was degraded following ubiquitination and binding of the autophagy 

receptor p62, whereas interaction of the autophagy receptor NPD52 with nsP2 was 

found to promote viral replication. By contrast, both orthologues carried out antiviral 

roles in infected mouse cells in vitro and in vivo. 

 

CHIKV can be grown in a wide range of cell lines derived from both human and non-

human sources (Sourisseau et al 2007, Hahon and Zimmerman 1970, Thon-Hon et al 

2012, Puiprom et al 2013). Infection of susceptible mammalian cell cultures with 

alphaviruses usually results in a cytopathic effect (CPE) which in many cases is due to 

apoptosis (Jan and Griffin 1999, Glasgow et al 1997, Sourisseau et al 2007, 

Dhanwani et al 2012). This appears to be induced through more than one mechanism; 
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in SINV apoptosis is dependent on virus entry and does not require replication, 

whereas in SFV it occurs following RNA synthesis.   

 

1.7.2 Cellular tropism of CHIKV 

In a study to determine the celluar tropism of CHIKV in human cell cultures 

Sourisseau et al (2007) found that primary fibroblasts, epithelial and endothelial cells 

were particularly susceptible to infection and monocyte-derived macrophages were 

susceptible to a lesser extent. In contrast, virus replication was not seen in primary 

lymphocytes, monocytes, or monocyte-derived dendritic cells. CHIKV has also been 

shown to grow in muscle satellite cells although not in muscle fibres (Ozden et al 

2007). 

 

1.7.3 Disease progression  

The sequence of events following intradermal inoculation of a mouse model lacking 

the IFN type 1 receptor (IFNAR
-/-

) with CHIKV, was investigated by Couderc et al 

(2008).  This study revealed that virus replication initially occurs in skin fibroblasts 

near the site of injection and then disseminates in the blood to the liver, muscle, joints, 

lymphoid tissue and brain. In studies using a non-human primate model the detection 

of CHIKV RNA was reported from similar sites during the acute phase of the disease 

and in addition, a transient acute lymphopenia and neutropenia were reported 

(Labadie et al 2010). In contrast to in vitro studies by this group and that of 

Sourisseau et al (2007), evidence of dendritic cell infection was obtained. A proposed 

explanation for this phenomenon is that CHIKV is able to utilize the process of 

apoptosis as a means of assisting virus dissemination within the infected host. 
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Macrophages and dendritic cells may become infected by taking up progeny virus 

contained in apoptotic blebs from susceptible cells such as fibroblasts and transport it 

to other sites (Schwartz and Albert 2010, Krejbich-Trotot et al 2011). 

 

1.7.4 Innate immune responses to CHIKV infection 

The early host response to CHIKV infections is largely mediated by the innate 

immune system through the induction of type 1 interferons (IFN-α and IFN-β) which 

are detected at high levels during the acute phase and return to normal at the end of 

the viraemic phase (Schwartz and Albert 2010, Schilte et al 2010). The crucial role 

played by type 1 IFN in the acute phase of CHIKV infections has been illustrated in 

several studies.  In one of these, mice were intradermally infected with CHIKV and 

disease severity compared between adult wild type (w/t) C57BL/6, neonatal w/t and 

two groups of transgenic mice, one partially (IFN-α/βR
-/+

) and the other totally 

deficient (IFN-α/βR
-/-

) in type 1 IFN receptor genes (Couderc et al 2008). It was 

demonstrated that adult w/t mice and those aged over 12 days remained healthy 

whereas neonates developed disease of decreasing severity with advanced age. Whilst 

mild disease symptoms were observed in the IFN-α/βR
-/+

 mice the CHIKV infection 

was lethal in the IFN-α/βR
-/- 

group. Furthermore, Gardner et al (2012) reported a 

greatly increased severity of w/t CHIKV induced joint inflammation in mice deficient 

in STAT-dependent IFN responses when compared to w/t mice, an observation not 

seen with the vaccine candidate strain 181/25 (Levitt et al 1986). 
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1.7.5 Interferons 

IFNs are a group of cytokines that are produced and secreted by most cells in 

vertebrate organisms and are grouped into three classes on the basis of their amino 

acid sequences: types I, II and III (Randall and Goodbourn 2008, Janeway et al 2005). 

After binding to specific cell surface receptors, IFNs act both as autocrine and 

paracrine stimulators of a range of antiviral genes and have been shown to be crucial 

effectors of the innate immune response to alphaviruses (figure1.8). Following their 

release from infected cells, IFN-α and IFN-β (type I IFNs) interact with the IFNAR 

receptor on the plasma membrane leading to the activation of tyrosine and Janus 

kinases (TYK2 and JAK1). These phosphorylate the signal transducers and activators 

of transcription (STAT1 and STAT2) which then form complexes consisting of 

STAT1/2 heterodimers and IFN regulatory factor 9 (IRF-9). This product, known as 

IFN-stimulated gene factor 3 (ISGF-3), migrates from the cytosol to the nucleus 

where it binds to a cis-acting DNA element, termed ISRE (IFN-stimulated response 

element) and activates the transcription of IFN-α/β-stimulated genes (ISGs).  

Signalling in response to IFN-γ (type II IFN) follows its interaction with a receptor 

composed of two major sub-units, IFNGR1 and IFNGR2 (figure 1.8). The 

cytoplasmic regions of these two components are associated with the tyrosine kinases 

JAK1 and JAK2 respectively. The binding of IFN-γ to its receptor subunits stimulates 

their dimerization and is followed by the activation of JAK1 and JAK2. These, in turn 

phosphorylate a tyrosine residue in two STAT1 molecules resulting in the formation 

of a STAT1-STAT1 homodimer.  Finally the homodimer translocates to the nucleus 

where it binds to the gamma-activation sequence (GAS) where it stimulates the 

transcription of ISGs. 
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IFN-γ is a pleiotrophic cytokine secreted by Th0-cells, activated Th1-cells (CD4+), 

cytotoxic T cells (CD8+) and by natural killer (NK) cells in response to viral 

infections (Janeway et al 2005). Its roles include the activation and differentiation of 

macrophages, NK cells, T cells, B cells and the induction of class II major 

histocompatibility complex (MHC) molecules.  
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Figure 1.8 Types 1 and 2 IFN receptor signalling: α and β IFNs engage the receptors 

consisting of IFNAR 1 and IFNAR 2 sub-units which leads to the activation of the 

kinases TYK2 and JAK1. These phosphorylate the STAT proteins resulting in the 

formation of heterodimers. These products (consisting of STAT1 and STAT2) 

migrate to the nucleus where they recruit IRF9 to form the complex ISGF3 which 

binds to the ISRE region present in the promoters of ISGs leading to their synthesis. 

The binding of IFN-γ to its receptor results in the activation of JAK2 and JAK1 which 

in turn phosphorylate a tyrosine residue in two STAT1 molecules resulting in the 

formation of a STAT1-STAT1 homodimer. This translocates to the nucleus where it 

binds to the gamma-activation sequence (GAS) and stimulates the transcription of 

ISGs. 
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Products encoded by ISGs inhibit invading viruses in a variety of ways. Amongst 

those that have been identified are the following: protein kinase-R (PKR), 2’-5’-

oligoadenylate synthetase, RNase-L and the Mx GTPases, MxA and MxB (Haller et 

al 2005). The overall effect of many of these proteins is to degrade RNA, inhibit 

protein synthesis and to promote apoptosis.   

 

In addition to their key roles in the innate immune response, type I IFNs have 

immunomodulatory properties on the adaptive immune response. Most nucleated cells 

are capable of processing antigenic peptides derived from the degradation of pathogen 

proteins and forming compexes with major histocompatibility complex (MHC) class I 

molecules. These are presented at the cell surface in a form that is recognised by 

antigen-specific CD8
+
 cytotoxic T lymphocytes which are able to destroy the infected 

cell. Type I IFN signalling upregulates the expression of MHC class I expression and 

the activities of CD8
+
 T cells, thus increasing the likelihood of this occurring (Randall 

and Goodbourn 2008). 

 

The innate immune response is initiated by the detection of products resulting from 

the viral infection process, such as single and double-stranded RNA (ssRNA and 

dsRNA). It is triggered by pattern recognition receptors (PRRs) present in both the 

cytoplasm and in membranous structures of the host cell that are stimulated by 

molecular motifs known as pathogen-associated molecular patterns (PAMPS). The 

toll-like receptors (TLRs) are PRRs present in the endosomal and plasma membranes, 

each of which is activated by a particular PAMP (Blasius and Beutler 2010). As 

discussed in section 1.2, CHIKV has a single-stranded RNA genome which is 
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replicated in two transcriptional stages; first a complementary (negative-sense) 

version is made and later this product is used as a template to generate progeny RNA. 

It is thought that a transient dsRNA form exists during this process.  TLR7 and TLR8 

are activated by ssRNA and signal via the myeloid differentiation primary response 

gene 88 (MYD88), whereas TLR3 is activated by dsRNA and utilizes the TIR 

domain-containing adaptor-inducing interferon-β (TRIF). Thus these PRRs are of 

particular importance in the innate immune response to CHIKV. Further PRRs present 

in the cytoplasm include retinoic acid inducible gene-1 (RIG-1) and melanoma 

differentiation-associated gene 5 (MDA-5), which detect RNA with 

5’triphosphorylated ends and dsRNA (Meylan et al 2005, Hornung et al 2006). These 

receptors interact with the adaptor protein mitochondrial antiviral signalling protein 

(MAVS, also known as VISA, IPS-1 and CARDIF) triggering a signalling cascade 

that leads to the activation of interferon regulatory factors 3 and 7 (IRF3 and IRF7) 

resulting in their migration into the nucleus (Sun et al 2006). Here they bind to the 

IFN-stimulated response elements (ISREs) and trigger the production of early type 1 

interferons.   

 

Although CHIKV does not directly activate PRRs in peripheral blood monocytes or 

dendritic cells, MAVS-regulated induction of interferon-β occurs in infected 

fibroblasts (Schilte et al 2010). In addition it has been proposed that endosomal TLRs 

may be activated as a result of the phagocytosis of infected cells containing CHIKV-

specific PAMPS and apoptotic bodies by haemopoietic cells. 
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The activation of inflammasomes may also lead to the induction of a type 1 interferon 

response following CHIKV infection. Inflammasomes are cytoplasmic multi-protein 

complexes that perform an essential role in apoptosis, inflammation and necrosis and 

include a member of the Nod-like receptor (NLR) family of PRRs and one of a family 

of cysteine-aspartic acid proteases, known as caspases.  The caspase component 

catalyses the proteolytic processing of immature forms of the pro-inflammatory 

cytokines IL-18 and IL-1β rendering them bioactive. Amongst the functions of IL-1β 

is its interaction with MYD88 on the surface of non-infected cells, which sets in 

motion a cascade that leads to activation of NFκB and the induction of type 1 

interferons.  

 

The importance of type I IFNs as mediators of the early immune response may be 

reflected by the apparent evolutionary trend for alphaviruses to evolve with the means 

to suppress their action.  Key factors that promote successful infection of CHIKV in 

humans and the associated pathological effects are its ability to inhibit type 1 IFN 

induction or the function of IFN-stimulated genes. Mechanisms that achieve this both 

by interfering with host protein synthesis (but allowing that of virus) and inhibiting 

specific type I IFN activity have been identified. In one study it was demonstrated that 

the avirulent V42 SFV strain showed no cytopathic effect compared to the virulent 

L10 strain when grown in type 1 IFN-treated Vero cells and that the yield was 100-

fold greater in the former (Deuber and Pavlovic 2007). It was concluded that the 

ability of the L10 strain to overcome the IFN-induced antiviral state in host cells was 

a significant contributing factor in its increased virulence. The nsP2 from VEE and 

EEE viruses, have been shown to cause shutdown of cellular protein synthesis 

(Akhrymuk et al 2012), whilst a similar action is mediated by a region near the N-
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terminal of the capsid protein of VEE and EEE viruses (Garmashora et al 2007). A 

separate contribution made by nsP2 in both CHIKV and SFV involves the inhibition 

of type I IFN-induced JAK-STAT signalling pathways (Fros et al 2010, Breakwell et 

al 2007). 

 

1.7.6 Adaptive immune response to CHIKV 

Although evidence of an adaptive immune response to CHIKV infection is not seen 

until 5-7 days after infection, it appears to have an important role in the chronic phase. 

Couderc et al (2009) demonstrated that adult mice deficient in IFN-α/β receptors and 

w/t neonates were protected from otherwise lethal doses of CHIKV when inoculated 

with polyclonal immunoglobulins prepared from human convalescent sera. Fric et al 

(2013) showed that the survival times for CHIKV-infected mice, deficient in receptors 

for IFN types 1 and 2 (AGR129) were significantly extended by passive immunisation 

using virus-specific human monoclonal antibodies. The importance of antibodies in 

controlling infection was indicated in a study that showed the persistence of viraemia 

for over a year in B-lymphocyte deficient mice challenged with CHIKV (Lum et al 

2013). In contrast, both w/t and CD4 deficient mice produced sufficient antibody 

levels to control infection.  

 

In another study, CHIKV-specific RNA could be detected in w/t mice for at least 16 

weeks after infection, in joint tissues near the site of infection (the rear left footpad). 

However higher virus titres in a variety of tissues were consistently seen in Rag
-/-

 

mice (lacking mature B and T lymphocytes) than in w/t mice, together with 
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histological findings indicative of synovitis, arthritis and tendonitis (Hawman et al 

2013). Furthermore prophylactic administration of CHIKV-specific monoclonal 

antibodies prevented the establishment of this persistent infection. These findings 

provide evidence that persistent CHIKV infection is a cause of chronic 

musculoskeletal tissue pathology and that it can be controlled by adaptive immune 

responses. 

1.8 Prevention and Treatment 

Treatment of CHIKV infection is currently aimed at alleviating the symptoms and 

generally consists of supportive care and pain management through the use of non-

steroidal anti-inflammatory drugs and non-salicylate analgesics (Pialoux et al 2007). 

Preventative measures are focused on protecting those at risk from mosquito bites and 

on controlling local mosquito populations (Lloyd, 1994). These precautions include 

the wearing of garments that completely cover the limbs and the use of mosquito nets 

for those who require rest during the day such as babies, the elderly and the sick. A 

study aimed at controlling Ae. albopictus populations in Spain recommended a 

multiple intervention study to achieve this aim. These were: the education of 

householders in affected areas about measures to prevent mosquito-borne disease, the 

treatment of public sources of vegetation with larvicides and the removal of potential 

mosquito breeding sites such as uncontrolled rubbish dumps (Abramides et al 2011). 

 

1.8.1 Antivirals 

 Although several potential antiviral agents have been tested for anti-CHIKV activity 

in vitro, none are currently licensed for the treatment of CHIKV infections in humans. 
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However several substances such as ribavirin and harringtonine that have been 

approved for the treatment of other medical conditions have been reported to inhibit 

CHIKV in vitro (Kaur and Jang Hann Chu 2013). As such compounds have 

undergone the necessary testing for use in patients, they show particular promise as 

therapeutic agents. 

 

Ribavirin, a synthetic purine analog, shows antiviral activity against several RNA 

viruses including SFV and CHIKV in vitro and has been licensed by the USA Federal 

Drug Agency (FDA) for the treatment of hepatitis C virus infections (Briolant et al 

2004, Smee et al 1988, Pedicone 2009). The results of a small scale trial in India 

where CHIK patients were treated with ribavirin provided further evidence that it may 

represent an effective treatment (Ravichandran and Manian 2008). In six out of ten 

subjects who had experienced arthritis and lower limb pain for over two weeks 

following the end of the febrile phase, a rapid reduction in soft tissue swelling was 

reported after ribavirin treatment accompanied by a significant  reduction in pain. 

 

Harringtonine and its derivative homoharringtonine, are alkaloids derived from the 

Japanese plum yew, Cephalotaxus harringtonia, that have been shown to exert 

inhibitory effects on CHIKV replication in vitro (Kaur et al 2013). Although in vivo 

studies have not been reported, this agent has been approved by the FDA for the 

treatment of chronic myeloid leukemia. 
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An investigation to determine the inflammatory gene expression profiles in a mouse 

model exhibiting CHIKV-induced arthritis found a high level of similarity with those 

derived from rheumatoid arthritis (RA) patients (Nakaya 2012). The authors of this 

study proposed that despite the apparent differences in pathogenesis in the two 

conditions, a variety of drugs currently used to treat RA may be effective in treating 

patients suffering from chronic CHIKV arthritis. 

 

1.8.2 CHIKV candidate vaccines 

Passive transfer of human immunoglobulin purified from convalescent patients has 

been shown to be effective in protecting a IFN-αβ
-/-

 mouse model (Couderc et al 

2008) from a lethal dose of CHIKV. It is thought that his approach may be applicable 

to humans known to have been exposed to CHIKV and in whom the disease is likely 

to be particularly severe, such as immunocompromised patients and neonates borne to 

viraemic mothers (Couderc et al 2009).  

 

Both live-attenuated (Levitt et al 1986) and inactivated (Harrison et al 1967), virus 

vaccines have been developed in the past, although neither was made commercially 

available. The former (known as 181/25) resulted from 18 serial passages of a w/t 

strain in cell cultures and was shown to be highly immunogenic, however adverse 

side-effects (transient arthralgia) were seen in 8% of human volunteers in phase II 

trials (Edleman et al 2000). Inactivated vaccines prepared by treatment with formalin, 

(Harrison et al 1967) and Tween-80/ether (Eckels et al 1970) were only moderately 

immunogenic. However since the 2004 CHIKV emergence it has become clear that 
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CHIKV has the potential to be distributed over an even wider geographical area, 

particularly in view of the adaption of recently emerged strains to use Ae. albopictus 

as a vector. This has stimulated a resurgence of interest in CHIKV vaccines and 

resulted in several innovative approaches to what is perceived as both a public health 

threat and a potential bioterrorism agent.  

 

Recently the application of reverse genetic techniques to produce a live attenuated 

vaccine candidate has been reported (Plante et al 2011). This consists of live virus 

produced by transfecting Vero cell cultures with RNA generated from an infectious 

clone derived from a patient in La Réunion Island in 2005. In the vaccine strain, the 

sub-genomic promoter was replaced with the internal ribosome entry site (IRES) from 

encephalomyocarditis virus conferring on it the advantage of being incapable of 

replication in mosquitoes. The authors of this study have shown the vaccine to be 

highly immunogenic in an adult C57BL/6 mouse model. It has been shown that 

antibodies isolated from immunized animals were effective in conferring passive 

immunity to further mice challenged with the same virus strain, however, adoptive 

transfer of CD4
+
 or CD8

+
 T cells did not confer protection.  

 

Two research groups have demonstrated protective immune responses in laboratory 

animals vaccinated with engineered virus-like particles coated with CHIKV 

glycoproteins E1 and E2 (Akahata et al 2010, Metz et al 2013). Other candidate 

vaccines recently developed include: a recombinant adenovirus that expresses CHIKV 

structural proteins (Wang et al 2011) and a DNA vaccine (Mallilankaraman et al 

2011).   
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1.9 Project Aims 

Arthrogenic alphaviruses cause significant morbidity and are a public health concern 

in a wide range of geographic locations. Prominent amongst these is CHIKV, which 

has emerged in the form of a series of devastating outbreaks during the past decade. 

However, in contrast to the relatively localised distribution of alphaviruses such as 

RRV, ONNV, and MAYV, that of CHIKV has markedly expanded during recent 

years. Many aspects of the pathogenesis of CHIKV-induced disease, the resulting host 

immune response and the means by which the virus subverts these, remain to be 

elucidated. A clearer understanding of these is desirable in order to develop vaccines 

and therapeutic agents in order to minimise the impact of CHIKV. 

 

 The actions of IFN represent a powerful means by which animals are able to control 

many viral infections even in the absence of an adaptive immune response. However 

viruses have evolved several strategies that enable them to evade or suppress the host 

IFN response. Several alphaviruses have been shown to achieve this is by inhibiting 

host cellular transcription by mechanisms mediated by the capsid protein in New 

World viruses and nsP2 in Old World viruses (Garmashova et al 2007a, Garmashova 

et al 2007b, Akhrymuk et al 2012, Frolova et al 2002). Reduced type 1 IFN 

susceptibility was shown to be a key determinant in the virulence of the L10 SFV 

strain in mice (Deuber and Pavolic 2007). In contrast to this non-specific effect, the 

nsP2 in CHIKV has been shown to target key components involved in the IFN-

induced JAK-STAT signaling process (Fros et al 2010).  
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The absence until recently of an animal model for CHIKV in which clinical 

symptoms comparable to those seen in human patients could be recreated, represented 

a barrier to investigations into disease induced by this virus. However, progress into 

the understanding of pathogenesis of other alphaviruses has been made through 

studies using members of the genus for whom such models are well established. A 

large proportion of these have utilised SINV and SFV, agents capable of causing 

disease in laboratory animals, but which are classified as ACDP Hazard Group 2 

pathogens and therefore can be studied using relatively inexpensive laboratory 

facilities. Although such investigations have provided valuable insights into virulence 

determinants and their role in pathogenesis, the relevance of many to CHIKV induced 

disease and interactions with the host immune system, remain to be established. 

 

Studies on the SINV strain S.A.AR86 have identified a crucial determinant of 

virulence in mice within the nsP1/nsP2 cleavage domain, namely a threonine (T)  at 

position P3.This contrasts with non-virulent strains in which the amino acid at this 

position is isoleucine (I). Substitution of this single amino acid (by isoleucine) was 

sufficient to greatly reduce virulence in mice (Heise et al 2000). Subsequent 

investigations demonstrated that virulent strains containing T at this site resulted in 

slower non-structural protein processing and delayed 26S RNA synthesis (Heise et al 

2003). The authors speculated that this modulating effect might be crucial in the 

induction of neurovirulence in adult mice and its absence, to attenuation. 

 

Since the cleavage domains in non-structural polyproteins are highly conserved within 

each alphavirus species (Strauss and Strauss 1994), the possibility exists that similar 
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virulence determinants exist in the nsP1/nsP2 junction in other members of the genus. 

The work described in this thesis was conducted to test the hypothesis that disruption 

of the analogous polyprotein region in other alphaviruses may also reduce virulence. 

More specifically the study was directed at investigating whether the proposed 

determinant is present in CHIKV and if its function is related to type 1 IFN induction. 

The specific aims were as follows:  

 To characterise a CHIKV isolate from a human case of CHIK. 

 To construct an infectious clone of the virus to serve as a tool for investigating 

CHIKV pathogenesis. 

 To construct a mutant clone containing an amino acid substitution in the P3 

region of the nsP1-coding region of the CHIKV genome (position 533) in 

order to disrupt the proposed virulence factor in this conserved region.  

 To investigate the phenotypical differences of the two cloned viruses in terms 

of growth dynamics in vitro. 

  To evaluate the relative ability of each clone to induce arthritic disease in a 

mouse model and to investigate whether any differences observed are related 

to induction of type 1 IFN in host cells.  
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CHAPTER 2 

 

Construction of CHIKV clones for use in reverse genetics 

studies 

 

Several members of the Alphavirus genus have been shown to be sensitive to type I 

IFN and to exhibit increased pathogenicity in mammalian hosts unable to mount an 

effective type I IFN response (Jordan 1973, Couderc et al 2010, Gardner et al 2012, 

Xu et al 2010, Deuber, and Pavlovic, 2007). Successful infection of 

immunocompetent hosts relies to a large extent upon virus properties that have 

evolved to mediate a general shutdown of host protein synthesis or to inhibit specific 

components of the IFN pathways, thus enabling them to evade the expression or 

effects of IFNs.  

 

Many studies have employed reverse genetics techniques to investigate the genomic 

location of determinants of these activities (Garmashova et al 2007a, Garmashova et 

al 2007b, Akhrymuk et al 2012, Frolova et al 2002, Breakwell et al 2007, Simmons et 

al 2010).  Reverse genetics techniques are designed to investigate the phenotypical 

traits that are determined by a defined genomic sequence and the outcomes that result 

from the experimental introduction of variations in it. This approach contrasts with 

that of classical genetics which involves the identification of a genetic basis for 

observed phenotypes. The application of reverse genetics has proved invaluable in the 

study of alphaviruses, enabling the design of experiments in which an exact copy of 

the genome can be manipulated to investigate key questions related to the virus life 

cycle and pathogenesis (Cruz et al 2010, Davis et al 1989, Liljeström et al 1991, 

http://vir.sgmjournals.org/search?author1=Stefan+A.+Deuber&sortspec=date&submit=Submit
http://vir.sgmjournals.org/search?author1=Jovan+Pavlovic&sortspec=date&submit=Submit
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Kuhn et al 1992, Tsetsarkin et al 2006, Saxton-Shaw et al 2013). In addition, 

alphavirus cDNA clones have been engineered to produce potential vaccines by the 

introduction of attenuating mutations and as vehicles for the delivery of heterologous 

proteins (Rayner et al 2002, Schultz-Cherry et al 2000, Moriette et al 2006, Plante et 

al 2011, Quetglas et al 2010). 

 

In order to study an RNA virus by reverse genetics, its complete genome must be 

transcribed into a complementary DNA (cDNA) version from which an infectious 

transcript can be synthesized in vitro. In its simplest form, this can be achieved by 

using a DNA primer that hybridizes specifically to the 3’ end of the genome and 

which is extended to produce a RNA-DNA heterodimer by the action of reverse 

transcriptase. Following the elimination of the RNA template, a second primer 

corresponding to nucleotides at the 5’ end of the genomic RNA is used to initiate the 

production of double-stranded DNA and its amplification, using the polymerase chain 

reaction (PCR). However there is often a limit to the length of cDNA that can be 

synthesized from an RNA template because of the presence of secondary structures 

that interfere with the progress of reverse transcriptase as it moves between the 3’ and 

5’ ends. Thus it is often necessary to construct a full-length cDNA by combining a 

series of fragments derived from different regions of the genome. Many commercially 

available plasmid vectors provide the means for achieving this. These often contain a 

multiple cloning site which has been engineered downstream from an RNA 

polymerase promoter, so facilitating features that facilitate the insertion and in vitro 

transcription of DNA sequences under investigation. In addition, such vectors contain 

an origin of replication and an antibiotic resistance gene that acts as selectable marker 

to inhibit growth of bacteria lacking the plasmid in the presence of the antibiotic.  
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As the genome in positive-sense viruses such as alphaviruses is directly utilized as 

messenger RNA (mRNA) in permissive host cells, its delivery into the host cytoplasm 

facilitates the production and replication of infectious virus. A range of techniques 

have been developed to induce the uptake of nucleic acids in a process known as 

transfection. Amongst these are methods using chemical reagents such as DEAE-

dextran or calcium phosphate and physical methods such as electroporation or the 

formation of complexes with cationic lipids (Kim and Eberwine 2010). A reverse 

genetics system allows not only the rescue of a cloned version of the original wild-

type (w/t) virus, but that of  further sub-clones with altered genomes derived through 

the introduction of defined mutations. Thus questions regarding functions of virus-

specific proteins can be addressed by comparing w/t with mutated virus clones.   

 

Several important determinants of virulence within the Alphavirus genome have been 

mapped using reverse genetics. In some cases their disruption through the 

introduction of mutations results in attenuated viruses (White et al 2001, Suthar et al 

2005, Fros et al 2010 Simmons et al 2010). Examples of domains in viral proteins 

that are instrumental in inhibiting the host immune response have been identified in 

both the structural and non-structural proteins (nsP) of various alphaviruses and are 

discussed in chapter 1 (sections, 1.2.5, 1.2.7 and 1.3.2). 

 

Suthar et al (2005) identified four major determinants of adult mouse neuroviulence 

that were present in the S.A.AR86 SINV strain by challenging adult mice with virus 

from a series of chimeric cDNA clones derived from AR86 and the avirulent 
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Girdwood S.A. strain. These determinants were threonine at position 538 in nsP1, 

cysteine at position 386 in nsP3, serine at position 243 in E2 and 18 amino acid 

fragment deletion in nsP3 and and an a8 amino acid deletionin nsP3.  

 

The nsP1 determinant is located in the conserved domain at which nsP1is cleaved 

from the nsP2 component of the polyprotein precursor, at position P3 (table 2.1). 

Further investigations in which infectious virus from cDNA clones of wild type strain 

S.A.AR86 and a second clone containing isoleucine at this site (the amino acid 

present in avirulent strains), were used to challenge adult mice and showed that 

threonine is absolutely critical for neurovirulence  (Heise et al 2000). More recently, 

Cruz et al (2010) reported that although SINV containing the T538I mutation virus 

showed similar growth characteristics in cell cultures and was able to infect similar 

regions of the brains of laboratory mice to the wild type (w/t) virus, clinical signs 

were greatly reduced. In addition it was found that higher levels of type 1 IFN were 

induced in animals receiving the I538 genotype than w/t virus, indicating that the 

presence of threonine at this position is important in the process by which SINV is 

able to reduce the effects of the host innate immune response. The T538 genotype was 

subsequently reported to inhibit the tyrosine phosphorylation of STAT1 and STAT2 

thus down-regulating the response to IFN types I and II (Simmons et al 2010). 
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*In the neuro-adapted strain S.A.AR86 (GENBANK accession number U38305), 

isoleucine is replaced by threonine. 

 

Table 2.1 Alphavirus nsP1/nsP2 polypeptide cleavage domains. The four mature non-

structural proteins (nsPs) encoded by Alphavirus genomes are derived from a single 

polyprotein by cleavage at sites within conserved domains. The domains present 

between nsP1 and nsP2 in the polyproteins of CHIKV (highlighted in red) is aligned 

with those of a further 15 alphaviruses as shown, cleavage is mediated by a virus-

encoded protease between the amino acids at P1 and P1
1
. Amino acid positions are 

numbered from the polyprotein N-teminal based on the genome of the CHIKV S27 

African prototype strain (Khan et al 2002). 

 

 

This phenomenon does not appear to be restricted to SINV as it has also been 

demonstrated that the amino acid at the P3 position in the nsP1/nsP2 cleavage domain 

of RRV plays a similar role (Cruz et al 2010). In this case the w/t virus contains 

alanine at the P3 site (nsP1 532), which when replaced by isoleucine resulted in a 

Virus GENBANK 

Accession 

number 

Antigenic 

complex 

                          nsP1/2 cleavage domain 

P4 

532 

P3 

533 

P2 

534 

P1 

535 

P1
1 

536 

P2
1 

537 

P3
1 

538 

P4
1 

539 

CHIK NC004162 SF R A G A G I I E 

ONN NC001512 SF R A G A G I V E 

RR GQ433359 SF R A G A G V V E 

MID EF536323 SF R A G A G V V N 

MAY KJ013266 SF R A G A G V V T 

SF AY112987 SF H A G A G V V E 

UNA HM147992 SF R A G A G V V E 

BF NC001786 BF R A G E G V V E 

NDU JX644171 NDU R A G A G V E E 

WHA NC016961 WEE D I G A A L V E 

AUR NC003900 WEE D A G A A L V E 

WEE KJ554991 WEE E A G A G S V E 

SIN NC001547 WEE D I* G A A L V E 

TROC HM147991 TROC D I G A A L V D 

VEE L01442 VEE E A G A G S V E 

EEE AY722102 EEE E A G A G S V E 
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virus that grew poorly in cell cultures, however virus obtained from a clone 

containing an alanine to valine substitution (A232V) had similar growth 

characteristics to the w/t clone but induced a relatively strong IFN response. 

 

The presence of virulence factors in similar positions in two alphaviruses from 

different antigenic complexes and phylogenetic branches indicates that it may be 

active in other members of the genus. In the present study it was decided to develop a 

cDNA clone as a tool to investigate whether a substitution at this site would bring 

about a similar effect in CHIKV. A comparison of the nsP1/nsP2 cleavage domains of 

alphaviruses belonging to particular antigenic complexes shows a high degree of 

similarity (table 2.1). Most notably, the first four amino acids at the N-terminal end of 

the cleavage site of those belonging to the SFV antigenic complex, are identical 

(RAGA). In view of this degree of conservation, it seems likely that the phenotype 

reported for RRV (Cruz et al 2010) resulting from an alanine to valine substitution 

may be replicated in other members of the complex. For this reason it was decided to 

test the effect of introducing a mutation (A533V) at this site in a recently circulating 

CHIKV strain and to establish whether this would lead to the induction of increased 

amounts of type1 IFN and the development of an attenuated strain. 
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MATERIALS AND METHODS 

2.1 Safety considerations 

CHIKV has been classified by the Advisory Committee on Dangerous Pathogens 

(ACDP) as a class 3 pathogen (www.hse.gov.uk), therefore all procedures in which 

viable virus was handled (those prior to the addition of AVL buffer) were carried out 

in a class 2 cabinet in a CL3 laboratory. All subsequent steps took place in CL2 

laboratories. 

 

2.2 Cell culture  

The cell lines used in this study, BHK-21 (baby hamster kidney fibroblasts), Vero 

(adult African Green monkey epithelial cells) and L929 mouse fibroblasts, were 

obtained from the European Collection of Cell cultures (ECCAC), Porton Down, 

Salisbury, UK (ECACC catalogue numbers 85011433, 84113001 and 85011425 

respectively).  

 

BHK-21 cells were grown and maintained in Glasgow Minimum Essential Medium 

(GMEM) and Vero and L929 cells were grown and maintained in Dulbecco's 

Minimal Essential Media (DMEM) (Sigma-Aldrich products G6148 and D6046 

respectively). All media were supplemented with fetal bovine serum (FBS) at 

concentrations of 2% for propagation of virus stocks and 10% for cell line 

maintenance. In addition, Anti-Anti antibiotic-antimycotic solution (Gibco®) was 

used resulting in final concentrations of 100 units/mL of penicillin, 100 µg/mL of 

streptomycin, and 0.25 µg/mL of amphotericin B. Washing steps were carried out 

using Dulbecco's phosphate-buffered saline (DPBS). The incubation conditions in all 
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cases were 37°C in an atmosphere of 5% CO2 at 6% humidity. Cell concentration was 

determined by staining trypsinized cells in an equal volume of 0.4% trypan blue dye 

and counting in a haemocytometer. 

2.3 Cell passage 

When cultured cells had reached 80-100% confluence the supernatant was removed, 

rinsed twice and replaced with a minimal volume of trypsin-EDTA (0.25 % w/v 

trypsin, 1mM EDTA in PBS). Following incubation at 37°C for 2min the detached 

cells were resuspended in an appropriate volume of culture medium and transferred to 

a fresh flask. 

 

2.4 Virus isolate history  

The virus isolate used in this study (SL-R233) was isolated from one of a panel of 

blood serum specimens taken from febrile patients between 2006 and 2007 and was 

supplied in a cell supernatant by Dr Mark Bailey (HPA, Porton, Salisbury, Wiltshire 

SP4 0JG). The collaborative study was carried out in Sri Lanka and at HPA Porton. 

Its aims were to identify the causes of febrile illnesses over the course of a year, in 

patients at the Columbo North Teaching Hospital in Western Sri Lanka. The patient 

from whom the specimen was obtained was a 58 year old male living in the 

Thimbirigasayaya region of Colombo and it was isolated by the Special Pathogen 

Reference Unit (SPRU) at CEPR. The sample was shown to be positive for CHIKV 

by qRT-PCR with a high titre. It also was tested and found to be negative for dengue 

virus, leptospirosis and Coxiella burnettii; furthermore no growth was seen on blood 

agar cultures, thus a co-infection appeared to be unlikely. 
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2.5 Virus propagation in vitro  

Virus was grown from infected supernatant as follows. Cell monolayers 

(approximately 75-90% confluent) were washed once and drained. Virus diluted in 

serum-free medium to the minimum volume judged to cover the monolayer was 

added (for T25 and T75 flasks this was 1ml and 5ml respectively).  

 

The flasks were incubated for 1hr to allow adsorption of virus after which the excess 

liquid was removed and replaced with growth medium (10ml for T25 flasks and 20ml 

for T75 flasks). Flasks were returned to the incubator and inspected periodically for 

the appearance of cytopathic effects (CPE) in order to gauge the most appropriate 

time to harvest virus.  

 

2.6 Virus harvesting  

CHIKV was harvested as follows. The infected cell-supernantant suspensions from 

T25 flasks (approximately 10ml) and T75 flasks (approximately 20ml) were 

transferred to 15ml or 50ml polypropylene centrifuge tubes (Falcon) respectively. 

These were centrifuged at 3,000rpm for 10min at 4°C, and 1ml aliquots of supernatant 

were distributed into 2ml cryogenic vials (Nunc™Thermo Scientific™) prior to being 

stored at -80°C.  

 

2.7 Transfection by electroporation  

 

BHK-21 monolayers from three T75 flasks grown to 80-90% confluence were washed 

twice, then treated with trypsin-EDTA. The wash steps were carried out using DPBS 
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without calcium and magnesium. After loss of adherence, the cells from each flask 

were pooled in 10ml DMEM medium containing 2% FBS and aspirated to break up 

cell clumps. The suspension was centrifuged at 1500 rpm for 15min and after 

decanting the supernatant, the pellet was resuspended in 20ml chilled wash buffer. 

The centrifugation step was repeated and the pellet resuspended in 1ml chilled wash 

buffer. The cell suspension was distributed in 200μl aliquots in 2mm electrocuvettes 

and placed on ice. Electroporation was carried out with two alternative volumes of 

transcribed RNA, 10 and 20μl. In each case cells were subjected to a single pulse of 

140kV using a BioRad Genepulser Xcell™ at 25F capacitance. Cells were allowed to 

recover for 10min at room temperature, then mixed with 20ml pre-warmed medium 

supplemented with 10% FBS in T75 culture flasks. The flasks were immediately 

transferred to an incubator in a CL3 laboratory and incubated under standard 

conditions (section 2.3). The cells were inspected twice daily for signs of cytopathic 

effects (CPE) and when these were observed, the virus was harvested. 

 

2.8 Nucleic acid purification 

Water used in all protocols involving the manipulation of nucleic acids was certified 

to be nuclease-free (Promega UK). This was used for elution of nucleic acids in all 

cases except for medium scale plasmid DNA purification, so as to minimize the 

presence of substances capable of inhibiting enzyme activity in downstream 

manipulations. Medium-scale plasmid preparations were carried out in order to 

provide stock reagents for long term storage and here 10mM Tris, 1mM EDTA pH8.0 

(TE buffer), was used for elution in order to minimize the activity of any 

contaminating nucleases. 
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At various stages of this study it was necessary to purify nucleic acids (viral RNA, 

amplified dsDNA from PCR, cDNA and plasmid DNA) from serum, mammalian 

tissue samples and enzyme catalyzed reaction mixtures. This was carried out using 

techniques based on the principle that nucleic acids bind to silica particles in a buffer 

of high ionic strength and at a defined pH range. Samples containing mixtures of 

biomolecules are applied to silica-containing microcolumns by centrifugation under 

conditions that favour the capture of nucleic acids. Subsequent washes with buffers 

containing a chaotrophic agent such as guanidinium thiocyanate, followed by one 

with a high salt concentration and ethanol remove undesired components such as 

proteins and phospholipids. Finally the pure nucleic acid is eluted with a low-salt 

buffer or with water. A range of commercially produced kits for the purification of 

RNA or DNA from various samples are available. A list of those used in this study is 

shown in table 2.2 and relevant protocols are provided in Appendix A. 
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Table 2.2 Silica-based products used for nucleic acid purification 

 

2.9 Design of PCR and sequencing primers 

The complete nucleic acid sequences of a number of CHIKV genomes associated with 

several outbreaks are available on the National Center for Biotechnology Information 

(NCBI) website (http://www.ncbi.nlm.nih.gov/). This facility was used to obtain a 

selection of genome sequences of isolates from the Indian Ocean outbreak (post-

2005). Alignments were conducted using the MegAlign component of the DNASTAR 

software package, to identify conserved regions. Primers previously used to determine 

the genome sequence of a CHIKV isolate (D570) isolated from a traveller returning to 

the UK from Mauritius in 2006 (GenBank accession number EF012359) were 

available in this laboratory. In the initial steps, primers from this source that were 

predicted to anneal to conserved genomic regions were used in amplification by RT-

PCR and sequencing of the SL-R233 genome (table 2.3). Once sequencing data had 

Product Manufacturer Catalogue 

number 

Purpose 

QIAquick® PCR purification 

kit 

Qiagen 28106 Amplicon DNA purification 

QIAquick® Gel Extraction kit Qiagen 28706 Purification of linear DNA 

fragments from agarose gels 

QeneElute® Plasmid miniprep 

kit 

Sigma-Aldrich PLN350 Small-scale plasmid DNA 

purification 

Megaclear™ kit Ambion (Life 

Technologies) 

AM1908 RNA from in vitro 

procedures 

QIAfilter Plasmid Midi kit Qiagen 12245 Preparation of stock 

plasmids 

QIAamp® Viral RNA Mini Kit  Qiagen 52906 Purification of viral RNA 

from serum or cell culture 

supernatant 

Minielute gel extraction kit Qiagen 28606 Purification of linear DNA 

from agarose gels for 

elution at maximum 

concentration 

RNeasy Mini Kit Qiagen 74106 Extraction of RNA from 

mouse tissues 

http://www.ncbi.nlm.nih.gov/


95 
 

been generated by this means, further CHIK SL-R233-specific primers were designed 

and purchased (Sigma, UK). 

 

Where possible primers were designed to be 19-25 nucleotides in length, with a 

guanine/cytidine content of 40-50% and with a Tm value of 60-65°C and otherwise in 

accordance with the generally accepted rules summarized by Dieffenbach et al 

(1993). Each was checked for predicted secondary structure and primer dimer 

formation using the online Sigma primer design tool (sigmaaldrich.com). Additional 

primers were designed for use in Rapid Amplification of cDNA Ends (RACE) and for 

site-directed mutagenesis; these will be discussed further below. A full list of RT-

PCR primers can be seen in table 2.3. 
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Table 2.3 Primers used to amplify the entire genome of CHIKV strain SL-R233 in a 

series of sub-genomic RT-PCRs. The use of italics in the table indicates primers 

designed to anneal to conserved regions of recently circulating CHIKV strains, 

whereas the remainder were based on data obtained from the isolate under study. The 

resulting cDNA was subsequently used as a template in sequencing reactions. In the 

column showing amplicon length, the figure given indicates the anticipated product 

size in base-pairs based on the forward and reverse primer positions in the CHIKV 

prototype strain S27. An asterix indicates that no band or one below the expected size 

was seen in samples analysed by agarose gel electrophoresis. 

Amplicon Primer 

name 

Primer sequence 5’ to 3’ Primer position 

from 5’ end 

Length 

(bp) 

158.1 CH11F 

CH1329R 

GACACACACGTAGCATACCAGT 

CAGCAGGTCAGTGTTCTTTCT 

11-32 

1309-1329 

1318 

158.2 CH7870F 

CH9155R 

CAGAGAGAGGGATGTGCATG 

CCACCGCAATTACACTTGTAC 

7870-7887 

9135-9155 

1285 

159.1 CH741F 

CH2912R 

GAGGCAAGTTGTCTATTATGAGAG 

TGACGTGCTCTGACGTTGATG 

741-764 

2892-2912 

2171 

159.2 CH2246F 

CH5332R 

GGATCTGGCAAGTCAGCTAT 

CCTTCTCTCTCGTCACATGTC 

2246-2265 

5311-5331 

3085 

159.3 CH5580F 

CH7654R 

CAGGAGAAGTGGATGACTTG 

GCCTGATGATTTGGATAGTAG 

5580-5599 

7634-7654 

2074 

165.1 CH4658F 

CH6977R 

GGCGCACTGTACTCATATCTAGA 

GAACAGAGTTAGGAACATACC 

4659-4680 

6956-6976 

2317 

165.2 CH6035F 

CH8229R 

GCATGCAATGAGTTCTTAGCTA 

CTTGTTGTCGAAGATCGGTCT 

6035-6056 

8209-8229 

2194 

165.3 CH7920F 

CH9218R 

GCACGAAGGTAAGGTAACAGG 

TGACATTGATCAACCTTGCAG 

7920-7940 

9198-9218 

1298 

165.4 CH8984F 

CH11770R 

GTAAAGAGCTACCTTGCAGCA 

GTTCGGAGAATCGTGGAAGAG 

8984-9004 

11750-11770 

2786* 

167.1 CH8984F 

CH10239R 

GTAAAGAGCTACCTTGCAGCA 

GGTGAAGACCTTACAGCTGTAG 

8984-9004 

10218-10239 

1255 

167.2 CH999F 

CH1789R 

ACGCAGACGGATTCCTGATGTG 

CTGGCTACGTAGTACGGTCTG 

999-1020 

1769-1789 

770* 

167.3 CH741F 

CH2523R 

GAGGCAAGTTGTCTATTATGAGAG 

GGGTCACCACAAAGTACAACT 

741-764 

2503-2523 

1782 

167.4 CH2534F 

CH4224R 

GGCTTCTTCAATATGATGCAGA 

GTTGCACTGTTCTTAAAGGACTC 

2534-2555 

4202-4224 

1690 

167.5 CH3909F 

CH4992R 

CGCAAGTTTAGATCATCTAGAG 

GAGCATTTGACTTTTTGCACTC 

3909-3930 

4971-4992 

1083 

167.6 CH4915F 

CH5771R 

CGTCACAAGCATAATTGTGTG 

AACACTTCTCCTCGTGGACTTC 

4915-4935 

5750-5771 

856 

169.1 CH10033F 

CH11501R 

CGTATAAGACTCTAGTCAATAGAC 

CACCTACATACAATGTGTCTC 

10033-10057 

11481-11501 

1468 

169.2 CH10033F 

CH11770R 

CGTATAAGACTCTAGTCAATAGAC 

GTTCGGAGAATCGTGGAAGAG 

10033-10057 

11750-11770 

1737 

169.3 CH10033F 

CH11700R 

CGTATAAGACTCTAGTCAATAGAC 

AGCTTAAGTACCTACATCTC 

10033-10057 

11700-11681 

1648 

171.1 CH1411F 

CH2241R 

CGAGTTTGACAGCTTTGTGGT 

ACTCCGAAGACTCCTATGACTG 

1411-1431 

2220-2241 

830 

171.2 CH8809F 

CH10210R 

CCGTGTACGATTACTGGAACA 

GGTTTTTGTCCTTGCACTCTG 

8809-8829 

10190-10210 

1401 

199.1 CH11266F 

Poly-dT 

primer 

GCACTGATTCTAATCGTGGTG 

GGATCCTTTTTTTTTTTTTTTTT 

11267-11286 

Poly-A tail 

n/a 

229.1 CH548R 

poly-dG 

primer 

CGTGTACAGCATAGACGTCTTG 

AAGCTTACGGGIIGGGIIGGGIIG 

527-548 

Non-genomic 

n/a 

229.2 CH498R 

poly-dG 

primer 

CATGAGACGTCTGTGTGTAAGC 

AAGCTTACGGGIIGGGIIGGGIIG 

477-498 

Non-genomic 

n/a 
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2.10 Standard RT-PCR conditions 

The RT-PCR conditions described below represent the general protocol used. 

Adjustments in the cycling conditions were introduced where necessary to 

accommodate variations in the Tm values of primers and the anticipated length of the 

amplicon. 

 

Template RNA was amplified with Superscript III One-step RT-PCR Platinum® Taq 

HiFi kit (Life Technologies™, UK). All reactions were in a total volume of 50µl and 

consisted of 25µl 2 x reaction buffer, 20µl water, 0.2µM forward and reverse primers, 

1µl enzyme mixture and 2µl template RNA.   

The thermocycling conditions were as follows: 50° C for 30min, 94°C for 2min, 40 

cycles of (94°C for 15sec, 58-62°C for 30sec, 68° C for 1min per kb (based on the 

expected length of the amplicon). Finally a single step of 68°C for 5min was included. 

All genomic fragments were amplified using one-step RT-PCR on a GeneAmp 2700 

thermal cycler (Life Technologies™, UK).  

          

2.11 Amplification of the 5’ and 3’ ends 

In order to determine the genome sequence of the UTR at the 5’ end of the genome a 

short amplicon was produced using the RACE technique (Rapid Amplification of 

cDNA Ends), the main steps of which were as follows. A cDNA copy of the 5’ 

genomic RNA was generated by reverse transcription using Superscript III reverse 

transcriptase (Life Technologies, UK). 2µl template RNA was combined with a 

reaction mixture consisting of 2µM primer CH548R, 200u (1μl) reverse transcriptase, 

5mM DTT, 50mM Tris-HCl pH8.3, 75mM KCl and 3mMNaCl, in a total volume of 
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20µl. The template and primer components were pre-heated to 70°C for 5min, and 

placed on ice for 2min prior to mixing with the remaining components by gently 

tapping the tube. The reaction was incubated at 50°C for 20min and the enzyme 

inactivated by heating to 70°C for 15min. Template RNA was removed by the 

addition of 2u of E. coli RNase-H followed by incubation at 37°C for 20min. 

 

The cDNA was purified using a PCR purification kit and eluted in 50µl of water (see 

table 2.2 for details and Appendix 1 for protocol). A 5’ poly-dCTP tail was generated 

to this product using the Terminal Deoxynucleotidyl Transferase (TdT) kit (Life 

Technologies, UK) in a 40µl volume reaction containing 27µl cDNA, 8µl of 5 X TdT 

buffer, (15u) enzyme and 0.2mM dCTP. The reaction was incubated at 37°C for 

30min. The reaction was treated with the PCR purification kit and the product eluted 

with 50µl of water. 

 

Amplification of the 5’end was carried out in a 50µl volume reaction using 20mM 

Tris-HCl (pH 8.4), 50mM KCl, 1.5mM MgCl2, 1mM each dATP, dCTP, dGTP and 

dTTP, 0.4µl each of poly-dG and reverse primers and 0.25u Taq polymerase (Life 

Technologies, UK). The primer sequences used for RACE reactions are shown in 

table 2.3. Reactions were carried out with the poly-dG primer in combination with 

each of the reverse primers: CH548R and CH498R (table 2.3). The thermocycling 

conditions were: 40 cycles of 94°C for 15sec, 55°C for 30sec and 72°C for 35 sec, 

followed by a single step of 72°C for 5min. The 3’-terminal end of the genome was 

amplified using a reverse transcriptase primer designed to anneal to the poly-A tail 

(Poly-dT primer) and an internal forward primer, CH11266F (table 2.3).  



99 
 

2.12 Analysis of DNA samples by agarose gel electrophoresis 

DNA was separated by agarose gel electrophoresis using the mini-SUB®CELL GT 

apparatus (BioRad, UK). Gels were prepared by mixing 0.8-1.5% w/v agarose powder 

(Sigma, UK) in Tris-borate buffer (TBE, 89mM Tris, 89mM boric acid, 20mM 

EDTA, pH 8.0), containing 0.5µg/ml ethidium bromide. This was dissolved by 

boiling, cooling to approximately 60°C and mixing. Gels were poured at 

approximately 45-55°C and left to set at room temperature for 20min. Gels were 

placed in the electrophoresis tank containing TBE buffer and after loading the 

samples, subjected to a constant voltage of 100V for 20-40min. Samples were mixed 

with 1µl of 10X Bluejuice gel loading buffer (Life Technologies™, UK ) prior to 

loading. DNA bands were visualized with ultraviolet light (302nm) and sizes were 

assessed by comparison with those of a 1kb plus molecular weight ladder (Life 

Technologies™, UK).  

 

2.13 Gel extraction of DNA  

When the banding pattern of DNA samples seen on analytical gels appeared 

satisfactory in terms of size and yield, the remainder of the reaction mixtures was gel 

extracted. This process entailed agarose gel electrophoresis, followed by visualization 

using high wavelength UV light (365nm) so as to minimize damage to the sample. 

Bands corresponding to the desired products were visualized from behind a Perspex® 

screen, excised using a scalpel and purified using one of the extraction kits detailed in 

table 2.2 (for protocols see appendix 1).  
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2.14 Template-fusion PCR (TF-PCR) 

Template-fusion PCR was used to in order to generate large amplicons (greater than 

3.1kb) from DNA fragments previously cloned into a plasmid vector. The 5’ and 

3’template fragments were designed to have overlaps of a minimum of 100 base 

nucleotides. The plasmids were linearized by digestion using a restriction enzyme 

present only in the vector, samples were then denatured to separate the 

complementary DNA strands, by heating to 95°C. Next a combined annealing and 

extension step was carried out in which the samples were cooled to 68°C. At this 

temperature hydrogen bonding between complementary strands leads to the formation 

of two products, (1) dsDNA similar to that in the original sample and (2) positive-

sense strands from one product paired with negative-sense strands from the other, 

annealed at the overlap region. The strands are extended in a 5’ to 3’ direction by the 

action of a suitable thermostable DNA polymerase in a process in which the double-

stranded region acts in the same way as a PCR primer (figure 2.1). 
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Figure 2.1 The use of template-fusion PCR to combine overlapping DNA fragments 

in order to synthesise a single product comprising a dsDNA version of the original 

template. The fragments A to G and F to L represent overlapping regions of the 

genome of interest present in two recombinant plasmids (upper and lower case letters 

indicate complementary DNA strands). The template DNA is first denatured by 

heating to 94°C, then cooled to 68°C to enable hydrogen bonds to form between the 

complementary strands of the two DNA species and for their Taq DNA polymerase-

catalysed 3’ to 5’ extension. After 10 cycles of these two temperatures, primers 

complementary to the ends of each of the two products are added and thermocycling 

is continued to amplify the full-sized product. 
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Reaction mixtures were prepared as follows. Two plasmids, containing DNA inserts 

of adjacent CHIKV fragments, were linearized by digestion with a suitable restriction 

enzyme (ApaI) and template was prepared by adding 0.5µl of each to 14µl water. This 

mixture was heated to 94°C for 2min, then cooled on ice for 2min. Amplification was 

carried out using the Elongase® enzyme kit (Life Technologies, UK) and included 

two thermal-cycling stages. For the first amplification step the template was amplified 

in a 50µl reaction mixture consisting of 60mM Tris-SO4 (pH 9.1), 18mM (NH4)2SO4, 

2mM MgSO4, 0.2mM each of dATP, dCTP, dGTP and dTTP, 19µl water and 1µl 

Elongase polymerase. The first thermocycling step comprised 10 cycles of: 94°C for 

15sec and 68°C for 3min.  

 

The second amplification step followed the addition of forward and reverse primers to 

a final concentration of 0.4µM and consisted of 35 cycles of a two-step thermo-

cycling process. Samples were denatured at 94°C for 15sec followed by a combined 

annealing-extension step at 68°C for a period determined by the anticipated amplicon 

size (1min per kb of amplicon). Finally, a single step at 68°C/ 8min was included. 

 

2.15 DNA Sequencing 

Purified DNA (PCR fragments or plasmid) was sequenced by dideoxy chain 

termination using an Applied Biosystems BigDye™ Terminator v3.1 cycle 

sequencing kit (catalogue No. 4336917). In brief, 1-11μl DNA was mixed with 2μl 

BigDye™ Terminator, 4μl 5x buffer and 1μl 10mM primer. The volume was made up 

to 20μl with nuclease-free water. The reaction mixture was subjected to 25 cycles of 

96°C for 10sec, 50°C for 5sec, 60°C for 4min. Unincorporated dye terminator was 
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removed by gel filtration using a Qiagen® DyeEx™ 2.0 spin kit (Qiagen®, UK) and 

2μl of eluted DNA was diluted in 13μl Hi Di Formamide (Life Technologies, UK). 

Sequencing data was obtained by running samples on an ABI PRISM™ 3130 Genetic 

analyzer. Overlapping sequence reads (contigs) were assembled into continuous 

consensus data using the SeqMan component of the DNASTAR sequence analysis 

software (Lasergene®, UK). The entire CHIKV genome was sequenced in both 

directions using primers that covered the entire genome (tables 2.3, 2.4 and 2.5). The 

genome was analyzed using MegAlign and SeqEdit software (DNASTAR, 

Lasergene®, UK). 
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Table 2.4 Forward primers used for sequencing CHIKV isolate SL-R233. In addition 

the primers shown in italics were used as RT-PCR primers for the production of the 

cDNA clone as discussed in section 2.21. 

 

Sequencing Primer Primer Sequence 5’ to 3’ Primer position 

(from 5’end) 

CH1F ATGGCTGCGTGAGACACAC 1-19 

CH269F GGCAGTGCGCCAGCAAGGAGG 269-289 

CH525F ACCAAGACGTCTATGCTGTACAC 525-547 

CH742F AGGCAAGTTGTCTATTATGAGAGG 742-765 

CH1008F GATTCCTGATGTGCAAGACTAC 10081020 

CH1387F CCAGTCAATTCAGAAGGTTCAG 1387-1408 

CH1561F AGAAGCAGAGGAAGAACGAGAAG 1561-1583 

CH1620F CAGCACAGGAAGATGTTCAGG 1620-1640 

CH2079F TCTACGACGTGGATCAGAGAAG 2079-2100 

CH2487F TGAGACCAAGGCAGAAAGTTG 2487-2507 

CH2886F TCTATGCATCAACGTCAGAGC 2886-2909 

CH2971F GTGGATAAAGACGCTGCAGAAC 2971-2992 

CH3416F TGGAACATCAACAAGCAGATCTG 3416-3438 

CH3559F GCTGGTTAACAAGATAAACGG 3559-3579 

CH3726F TGGTCATAAACATCCACACACC 3726-3747 

CH4037F AATGCAGCCTTTGTAGGACAG 40347-4057 

CH4211F AAGAACAGTGCAACACCAGTG 4211-4231 

CH4338F CCTATCGAGAAGTCGCAAAG 4338-4349 

CH4402F CTCTCCACAGGTGTATACTCAGG 4400-4422 

CH4556F CAAGTAGAGCTGCTGGATGAG 4556-4577 

CH4730F ATGTGGCCAAAGCAAACAGAG 4730-4750 

CH5306F ACTGTGACATGTGACGAGAGAG 5306-5327 

CH5295F GGAGAAACCTGACTGTGACAT 5295-5215 

CH5412F ACACAGCAATGTCTCTTCAGG 5412-5432 

CH5997F TCAACGTTCGATTGTCCAATC 5997-6017 

CH5751F AAGTCCACGAGGAGAAGTGTTAC 5751-5773 

CH6099F ATGATGCATATCTAGACATGGTGG 6099-6122 

CH6319F GGACTCAGCAGTATTCAACGTG 6319-6340 

CH6642F TTCACAGAGAGCTGGTTAGGAG 6642-6663 

CH7109F AGATGTGCCACTTGGATGAACATGGAAG 7109-7136 

CH7278F CAGGTGACGAACAAGATGAAG 7278-7298 

CH7533F CCGACAGCAAGTATCTAAACAC 7533-7554 

CH7633F CTACTATCCAAATCATCAGGC 7633-7654 

CH7924F GAAGGTAAGGTAACAGGTTACG 7924-7945 

CH8486F GGTACTATCAGCTGCTACAAGC 8486-8507 

CH8804F CAGCACCGTGTACGATTACTG 8804-8824 

CH8812F CCGTGTACGATTACTGGAACA 8812-8829 

CH9201F CAAGGTTGATCAATGTCATGC 9201-9221 

CH9385F CAAGTCATCATGCTACTGTATCC 9385-9409 

CH9441F GGAGAAGAACCAAACTATCAAGAAG 9441-9466 

CH9723F CAGATGCATCACACCGTATG 9723-9742 

CH9842F GAACGAGCAGCAACCTTTGT 9842-9861 

CH9995F ACGAACACGTAACAGTGATCC 9995-10015 

CH10340F CAGAATTTGCATCAGCATACAGG 10340-10362 

CH10609F CGCACACCTGAGAGTAAAGAC 10609-10629 

CH11042F CTCAGCTGCAAATCTCTTTCTC 11042-11063 

CH11344F GCGACTGATACCTGCTTCTGTT 11344-11355 

CH11481F GAGACACATTGTATGTAGGTGATAAG 11481-11506 
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Table 2.5 Reverse primers used for sequencing CHIKV isolate SL-R233. In addition 

the primers shown in italics were used as RT-PCR primers for the production of the 

cDNA clone as discussed in section 2.21. 

 

 

Reverse Primers Sequence 5’ to 3’ Primer position 

(from 5’end) 

CH425R CGATCTTTCCAGAGATGTTTCTG 403-425 

CH699R TTAGCCTTCAGTACCTGCTCATC 677-699 

CH923R CACACGAAACCACTGTATCAC 903-923 

CH1097R GGTCATTTGATCACAAATGGTC 1084-1105 

CH1836R GTGCACGTCTTCACTTGCTC 1817-1836 

CH1814R CCAAAGCGTGAATCAGACTG 1696-1814 

CH2289R TGCCTGGTAACTAGGTTCTTG 2269-2289 

CH2413R TCTGTTGCATCCATTCAAGAG 2393-2413 

CH2657R ATGCAACGATGACACAATGG 2637-2657 

CH3055R CATTATTGATGCATGCTCCAC 3035-3055 

CH3090R GTATCGAAGGTCATTTGGTGA 3071-3090 

CH3623R TAGGCAGTGCAAGGTTATAGC 3603-3623 

CH4003R CTTCTGCCATTGTCAAAGTTG 3982-4003 

CH4056R TGTCCTACGAAGGCTGCATTC 4036-4056 

CH4101R CGATGTCCATGCGTTTTACC 4090-4109 

CH4129R GCACTCTTCATCGTTCTTCG 4110-4129 

CH4493R CAGTAGATGACCACGTGTGC 4473-4493 

CH4649R TGCTGTATCCTTTTCTGCCTG 4629-4649 

CH4984R GAGCATTTGACTTTTTGCACTC 4971-4992 

CH5330R CTTCTCTCTCGTCACATGTCAC 5309-5330 

CH5432R CCTGAAGAGACATTGCTGTGT 5410-5432 

CH5533R CTTTCGATTTCTCCTTCGTTG 5521-5533 

CH5771R AACACTTCTCCTCGTGGACTTC 5750-5771 

CH5864R GCGACTGATACCTGCTTCTGTT 5843-5864 

CH6122R CCACCATGTCTAGATATGCATC 6101-6122 

CH6434R CATAGGTTGCTAAATTCTCAGTTG 6411-6434 

CH6769R TCCGTTTCCAAAACAGTGTCTC 6756-6777 

CH7214R AGCTGTTCCTGTCACAGTATCG 7201-7222 

CH7311R GCTCGTCTTCTATCTTCATCTTG 7289-7311 

CH7449R TTCTCGAAATTGGATCTGGAG 7438-7459 

CH7944R GTAACCTGTTACCTTACCTTCGTG 7921-7944 

CH8225R TTGTCGAAGATCGGTCTGC 8208-8225 

CH8273R GCTCCTTCATTAGCTCCTCCTAA 8251-8273 

CH8654R CTGATGCGTTCTAGTGCTACG 8634-8654 

CH9123R GCCATTGACTGTGATCTTTACG 9102-9123 

CH9485R CGACTTCCTTCTTATGCATCAC 9472-9493 

CH9585R GGCTGTACCGTTTGTAGATAACT 9563-9585 

CH9942R TTACAGCAGCATGGTAAGAGTC 9920-9942 

CH10230R CGGTGAAGACCTTACAGCTGTAG 10218-10240 

CH10533R GTACACCACAATTTTGTTGTCG 10512-10533 

CH10595R CCAAATTGTCCTGGTCTTCCTG 10574-10595 

CH10708R CAGATGGTGCCTGAGAGTATG 10687-10708 

CH11164R GGTAGTTGACTATGTGGTCCTTC 11142-11164 

CH11360R GCTATGTACAGTGTGTCTCTTTGG 11346-11369 

CH11811R(3'Term) GAAATATTAAAAACAAAATAACATCTCCTA 11783-11811 
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2.16 Plasmid digestion 

DNA (15-25μg) was digested with 5-10u of restriction enzyme in the appropriate 

buffer in a final volume of 20μl. Details of the enzymes and buffers used are provided 

in table 2.6. Reaction mixtures were incubated at 37°C for 1hr and digestion 

confirmed by agarose gel electrophoresis (section 2.12). 

 

Restriction enzyme Supplier  (10x Buffer) Buffer components and 

concentrations under 

reaction conditions (1X) 

AgeI Promega K 10mM Tris-HCl, 10mM 

MgCl2, 150mM KCl, pH7.4 

ApaI Promega A 6mM Tris-HCl, 6mM MgCl2, 

6mM NaCl, 1mM DTT, pH 

7.5 

HindIII Promega E 6mM Tris-HCl, 6mM MgCl2, 

100mM NaCl, 1mM DTT, 

pH7.5 

PfIMI NE buffer 3 100mM NaCl, 50mM Tris-

HCL, 10mM MgCl2,  1mM 

DTT, pH7.9 

ScaI Promega K 10mM Tris-HCl, 10mM 

MgCl2, 150mM KCl, pH7.4 

SgrAI NE buffer 4 50mM K-acetate, 20mM 

Tris-acetate, 10mM Mg 

acetate, 1mM DTT, pH7.9 

SpeI Promega B 6mM Tris-HCl, 6mM MgCl2, 

50mM NaCl, 1mM DTT, 

pH7.5 

SacI Promega J 10mM Tris-HCl, 7mM 

MgCl2, 50mM KCl, 1mM 

DTT, pH7.5 

XhoI Promega D 6mM Tris-HCl, 6mM MgCl2, 

150mM NaCl, 1mM DTT 

pH7.9 

NotI Promega D 6mM Tris-HCl, 6mM MgCl2, 

150mM NaCl, 1mM DTT 

pH7.9 

 

Table 2.6 Details of restriction enzymes and buffers used. Reaction mixtures with a 

final volume of 10-20μl consisted of 15-25 μg DNA and 5-10u of the appropriate 

enzymes in buffer as recommended by the manufacturer. 
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2.17 Transformation of chemically competent E.coli. 

In order to produce stocks of recombinant plasmid DNA, chemically competent One 

Shot® TOP10 or One Shot® Mach 1 E.coli were transformed by heat shock 

according to the manufacturer’s instructions. Briefly, 1-2μl DNA was mixed with a 

50μl aliquot of E.coli in a 1.5ml microcentrifuge tube and incubated for 30min on ice. 

The cells were heated to 42°C for 30sec before being returned to the ice for a further 

2min. Finally 250μl SOC medium (Life Technologies product No 15544-03) was 

added and the tube was incubated at 37°C with agitation at 300rpm, for 1hr in an 

orbital incubator. 

 

2.18 Purification of plasmid stocks 

Subsequent growth of plasmid-transformed E. coli K12 strains was carried out in 

Lennox LB broth or on LB agar plates (Sigma-Aldrich UK). LB broth consists of 5g 

/L NaCl, 10 g/L tryptone and 5 g/L yeast extract, pH7.2. In addition to these 

ingredients LB agar contains 10g/L agar. Plasmid-transformed E. coli were spread 

onto the surface of LB agar supplemented with the appropriate antibiotic (100µg/ml 

ampicillin or 50µg/ml kanamycin) and incubated overnight at 37°C.  

Individual colonies resulting from the agar cultures were used to inoculate 3ml 

Lennox LB broth containing antibiotic. These cultures were grown overnight with 

agitation at 37°C on an orbital incubator at 250rpm. Recombinant plasmid DNA was 

purified using the QeneElute® Plasmid miniprep kit (table 2.2) and analysed first by 

gel electrophoresis of restriction digest fragments and finally by DNA sequencing. 
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Medium-scale plasmid purifications were carried out using the QIAfilter Plasmid 

Midi kit (table 2.2). 

 

2.19 Nucleic acid quantification 

The quantity and purity of stocks of both DNA and RNA were determined by analysis 

of 1-2µl samples using the NanoDrop® ND-1000 spectrophotometer according to the 

manufacturer’s instructions. 

 

2.20 Ligation of PCR-generated fragments into plasmids 

DNA fragments were digested with restriction enzymes (section 2.16) at the sites 

present in the overlapping regions and ligated into the MCS or to unique sites in the 

insert. This was accomplished using T4 DNA ligase (Life Technologies™) in 

accordance with the manufacturer’s protocol. The approximate DNA concentrations 

were assessed by their relative band intensities under UV light on ethidium bromide-

stained agarose gels (section 2.12). Typically, the concentration ratio of insert to 

vector in a ligation reaction mixture was 3:1. For DNA fragments with 5’ or 3’ 

recessed ends, the remainder of the reaction mixture consisted of 1u T4 DNA ligase, 1 

x reaction buffer (supplied with the kit) and water, to make a final volume of 20μl. 

Incubation was at 22°C for 10min. Blunt-ended ligation reactions differed in the 

enzyme concentration used (5u T4 DNA ligase) and the incubation conditions (14°C 

for 1hr). 
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2.21 Cloning strategy 

The cloning strategy for the cDNA clone derived from CHIKV SL-R233 is illustrated 

in figure 2.2. A series of restriction sites that were rare or absent in the cDNA 

sequence of isolate SL-R233 were determined using the DNASTAR SeqBuilder 

software (Lasergene®). Using this information, oligonucleotide primers were selected 

to enable the entire genome to be amplified by RT-PCR in the form of five contiguous 

amplicons. These were arranged in such a way that the 3’and 5’ ends of adjacent 

amplicons contained overlapping regions in which selected restriction sites were 

present.  

The amplicons detailed in table 2.7 were initially cloned using TOPO 2.1, DNA 

pCR® and Zero Blunt® TOPO® PCR Cloning kits (Life Technologies, UK) in 

accordance with the manufacturer’s instructions. These plasmid vectors facilitate the 

rapid cloning of amplicons with 3’dA overhangs or blunt ends produced by Taq 

polymerase or proof-reading polymerases respectively. The key features provided by 

vectors in these kits are the presence of multi-cloning sites (MCSs) and antibiotic 

resistance markers that enable the subsequent selection of host bacterial cells 

containing the desired clones. Recombinant products cloned from the amplicons 

172.1, 172.2, 172.3, 172.4 and 172.5 were named p172.1, p172.2, p172.3, p172.4 and 

p172.5 respectively. 
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Table 2.7 Primers used to amplify CHIKV genome fragments used to construct the 

cDNA clone. 

 

The cloned sub-genomic CHIKV fragments were recombined in stages through a 

further series of plasmid vectors each propagated using One-Shot® Mach 1™ E. coli 

(Life Technologies). Fragments 1-3090 and 2971-5864, contained in p172.1 and 

p172.2 were combined by TF-PCR and cloned into the Zero Blunt® TOPO® PCR 

vector to produce p236.7 (containing the 5’ 5864 nucleotide fragment). In a similar 

manner, fragments 7924-9585 and 9441-11811 were combined by TF-PCR and 

cloned into the Zero Blunt® II TOPO® PCR vector to produce p197.1 containing the 

3’ 3887 nucleotide fragment). 

 

The 5307-8273 CHIKV fragment was excised from p172.3 by restriction enzyme 

digestion at the vector BamHI and XhoI sites, and ligated into plasmid pGEM 7Z(+) 

(Promega, UK)  also digested with BamHI and XhoI. The ScaI site present in the β-

lactamase coding region present in this vector was eliminated by creating a silent 

mutation by site-directed mutagenesis [clone p238.1(S-)]. The G1872A substitution in 

the vector converted a GAA codon to a GAG codon, both coding for glutamic acid. 

The purpose of this step was to enable the use of the single remaining ScaI site 

present between nucleotides 8150 and 8155 in the CHIKV genome to attach the next 

fragment to the 3’ end whilst the ampicillin resistance marker remained active. 

Amplicon Primers Amplicon size 

(base-pairs) 

Gene 

172.1 CHIK1F  / CH3090R 3090 5’UTR/nsP1/nsP2 

172.2 CH2971F / CH5864R 2893 nsP2/nsP3/nsP4 

172.3 CH5306F / CH8273R 2966 nsP3/nsP4/C 

172.4 CH7924F / CH9585R 1665 C/E3/E2 

172.5 CH9441F / 11811R 2327 E2/6k/E1/3’UTR 
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Plasmid p238.1(S-) was linearized by digesting with ScaI and Bam HI p197.1 was 

also digested with ScaI and Bam HI and the CHIKV fragment extending from 8153, 

through the 3’ end (11811) to the vector MCS was ligated to these sites, resulting in 

plasmid p25.6. The CHIKV fragment 5308-11811 flanked by parts of the vector MCS 

was cut from p25.6 by digestion with NotI and SpeI and ligated into pGEM 5Z(+) 

(Promega, UK) to produce plasmid p31.2. Finally the 5’ 5864 nucleotide fragment 

was cut from p236.7 by digestion with AgeI (CHIK-specific) and SacI (vector 

specific). The resulting plasmid (p31.10) contained a cDNA copy of the CHIKV 

genome from nucleotides 1-11811.  
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Figure 2.2 Strategy for cloning cDNA clone from RT-PCR products. A series of five overlapping 

amplicons were cloned into the TOPO 2.1, DNA pCR®.vector. The  
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Figure 2.2 Strategy for cloning a cDNA clone from RT-PCR products of CHIKV 

isolate SL-R233. A series of five overlapping amplicons was cloned into the TOPO 

2.1 DNApCR® vector. The CHIKV-specific inserts of 172.1, 172.2 and 172.4, 172.5 

were combined by TF-PCR.and cloned into Zero Blunt® TOPO® PCR. Clones 

containing cDNA coding for nucleotides 1-5864, 5307-8273 and 7924-11811 were, 

next used to assemble the entire CHIKV genome in pGEM5Z(+) by cleaving the 

inserts and vectors at the restriction sites indicated and combining by the action of T4-

DNA ligase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

2.22 Site-directed mutagenesis 

Genetic modification was carried out on cDNA clones by site-directed mutagenesis 

using a Stratagene QuikChange®II Site-Directed Mutagenesis kit according to the 

manufacturer’s instructions (Appendix A9), using the primers listed in table 2.8.  

Following the introduction of five point mutations to the CHIKV-derived 11,811kb 

insert in plasmid p35.10, a corrected version [pCHIK-SL (-)] was produced. This 

clone contained an identical genome to the original isolate up to the end of the 3’UTR 

apart from the presence of 3 silent mutations.  

 

 

Table 2.8 Oligonucleotide primers used to carry out site-directed mutagenesis 

 

Clone pCHIK-SL(A-) was subsequently modified by the addition of a  3’ poly-A tail 

as detailed below (section 2.23) to produce clone pCHIK-SL(wt). A further variant 

clone was produced from this product resulting in a phenotype with an A533V 

substitution in the P3 position in the nsP1-nsP2 cleavage domain of the ns-polyprotein 

Primer Mutation                Sequence 
CH11238F A11263G 

 

TGTGCACCGCCTGGAGATACTTTTGTGGTACACTTG 

CH11272R GATTAGAATCAGTGCGGCAACAGCAACAACCAGTC 

CH4609F -4636A 

 

ACAGCAGCTTGGCAGGCAGAAAAGGATACAGCAGCAC 

CH4654R TGGTGCTGTATCCTTTTCTGCCTCCCAAGCTGCTG 

CH3500F T3527C 

 

ACACTCATTAGTGGCCGAACACCGCCCAGTAAAAGG 

CH3535R CCTTTTACTGGGCGGTGTTCGGCCACTAATGAGTG 

CH2584F C2609T 

 

TGTACCACAAAAGTATCTCCAGGCGGTGCACACTG 

CH2617R TGTGCACCGCCTGGAGATACTTTTGTGGTACACTTG 

CH9016F G9042A 

 

CGCAACTACCGAGGAGATAGAGGTACACATGCCCC 

CH9050R GGGGCATGTGTACCTCTATCTCCTCGGTAGTTGCG 

CH1655F  C1674T 

 

GAACAGCTTGAGGACAGAGTGGGCGCAGGAATAATAGA

GAC 

CH1696R AGTCTCTATTATTCCTGCGCCCACTCTGTCCTCAAGCTGTT

C 

Amp Sca(-) 

For 

β-lactamase 

ScaI  site (-) 

TGCTTTTCTGTGGACTGGTGAGTATTCAACCAAGTCATTC

TGAG 

Amp Sca(-) 

Rev 

TCTCAGAATGACTTGGTTGAATACTCACCAGTCACAGAA

AAGC 
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clone pCHIK-SL(A533V). The nucleotide substitution (C1674T) was carried out in 

the subgenomic clone p172.1 (section 2.21). A chimera was constructed in which a 

fragment bordered by the SpeI site (present in the pGEM5Z(+) MCS) and PfIMI 

(1735-1745 from the 5’end of the CHIKV genome) was excised from p172.1 and used 

to replace the analogous region in pCHIK-SL(wt). 

 

2.23 Addition of a poly-dA tail to the cDNA clone 

A 3’ tail consisting of 40 adenosine monophosphate residues was added to the 

CHIKV genome cDNA in clone pCHIK-SL(wt) in two stages (figure 2.3). This 

involved incremental extensions of the 3’ UTR by PCR. 2µl of a 1:20 dilution in 

water of the sub-clone, p197.1 was used as template to amplify a region 

corresponding to nucleotides 9384-11811 (the end of the 3’UTR). In a standard 50µl 

PCR, primers CH9385F (table 2.4) and a reverse primer, CHIK(A)15-term, were used 

the latter contained 15 thymidine molecules at its 5’ end followed by a sequence 

complementary to the final 28 nucleotides of the 3’UTR (table 2.9). The amplicon 

produced by this reaction was cloned into the pCR Blunt II TOPO® vector. In a 

second PCR 2µl of a 1:20 dilution (in water) of the cloned product of the first PCR 

was used as template. This reaction differed from the first by the replacement of the 

reverse primer CHIK(A)15-term by CHIK(A)40 ApaI. (table 2.9). This primer 

consisted of three sections: a stretch of 40 copies of the nucleotide, thymidine the 

ApaI recognition sequence (GGGCCC), and finally the nucleotides, guanosine and 

adenosine, these being complementary to the final two nucleotides of the 3’UTR. The 

latter two were intended to have the effect of ensuring that annealing to the 15 

adenosine template occurred in the correct orientation. The pCR Blunt II TOPO® 

cloning procedure was repeated with the resulting amplicon. 
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After confirming the correct sequence of this construct, the modified 3’ end was 

added to the CHIKV clone lacking a 3’poly-A tail (pCHIK-SL(A-) by constructing a 

chimera. A unique restriction site (SgrAI),  identified 10236–10243 nucleotides from 

the 5’ end of the CHIV genome was used in tandem with ApaI to cleave the 3’ 

regions form the two constructs. Finally the 3’-tailed SgrAI-ApaI fragment was 

ligated into pCHIK-SL(A-) to produce the clone (pCHIK-SL(wt).  

 

 

Table 2.9 PCR primers used to construct a 3’ (A)40 tail on the cDNA CHIKV clone. 

These were used as described in section 2.23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer Sequence 

CHIK(A15)term TTTTTTTTTTTTTTTGAAATATTAAAAACAAAATAACATCTCC 

CHIK(a)A40 

ApaI 

GGGCCCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGA 

CH9384F CCAAGTCATCATGCTACTGTATCC 
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Figure 2.3 The amplification steps used to generate a 3’ poly-dA tail by PCR. The 3’ 

region contained in the plasmid construct p197.1 (section 2.26) was amplified in two 

stages: in the first of these the reverse primer, CHIK(A15)term was used with the 

forward internal primer CH9384F and the resulting amplicon cloned into the pCR 

Blunt II TOPO® vector. The CHIKV-specific region of this product was amplified 

using the same forward primer with a second reverse primer, CHIK(A)40 ApaI and the 

amplicon cloned in the same way. A chimeric clone was constructed using a CHIKV-

specific fragment present between the restriction sites, SgrAI and the added ApaI site 

in this clone and the pGEM5Z(+) based CHIKV clone, pCHIK-SL(A-). 

Amp

p35.10

14858 bp
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2.24 Measurement of CHIKV 3’poly-A tail 

The 3’ poly-A tail of SL-R233 RNA and that of the S27 African CHIKV prototype 

(supplied by Dr CH Logue, PHE, Porton, UK), were determined using the USB® 

Poly(A) Tail-Length Assay Kit (Affymetrix, Inc. USA) to tail and amplify the 3’ ends 

(Appendix protocol A11). Amplicons were subsequently sequenced, and reads from 

multiple PCRs compared. 

 

2.25 In vitro transcription 

Genome RNA was generated from clones, pCHIK-SL(wt) and pCHIK-SL(A533V),  

by in vitro transcription. The cDNA clones were linearized by digesting 25μl of each 

stock plasmid (4.05 and 6.7μg respectively) at the unique ApaI site immediately 

downstream from the 3’ poly-A tail in the inserts, in a final volume of 30μl. Linear 

DNA was ethanol precipitated by adding one tenth of the volume of 3M sodium 

acetate and two volumes of 100% ethanol, mixing after each addition. The mixture 

was incubated at -20°C for 1hr, centrifuged at 16,060 x g for 15min at 20°C and the 

pellet dried. Finally the pellet was resuspended in 20μl water. 

 

Capped viral RNA was generated from linearized  cDNA by utilizing the SP6 

polymerase promoter situated upstream from the CHIKV insert on the pGEM5Z(+) 

vector, using a  mMESSAGE mMACHINE® kit (Ambion Life Technologies™, UK). 

The protocol provided by the manufacturer was followed exactly and is reproduced in 

appendix A10. Remaining DNA was removed by the addition of 2μl TURBO DNase 

(supplied with the kit) and incubation at 37°C for 15min.Transcribed RNA was 
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purified using a MEGAclear™ kit (Ambion, Life Technologies product No AM1908). 

After a final ethanol precipitation step the RNA was resuspended in 20μl water. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

RESULTS 

 

2.26 Amplification of CHIKV genome fragments by RT-PCR 

In order to develop a reverse genetics system for the CHIKV isolate SL-R233 it was 

first necessary to determine its genome sequence so that an effective cloning strategy 

could be devised. To this end a series of 20 RT-PCRs were conducted (including 

those later used to construct clones) resulting in the coverage of the entire genome, 

and at least two amplicons for each region throughout its length (tables 2.3 and 2.7). 

In this way it was likely that errors in transcription would be detected when contigs 

were built from the sequencing reads (figure 2.4). Although it was recognized that the 

length of an RNA template that can be amplified in a single RT-PCR is often limited 

to 3-3.5kb, it was originally planned to construct the cDNA clone from the minimum 

number of sub-clones. It was intended to combine the virus-specific inserts from 

these, by utilizing restriction sites present in overlapping regions and then using the 

action of T4 DNA ligase to attach adjacent regions of the genome when assembling 

the final clone. However in cases where unique restriction sites were not present in 

the required region it was necessary to combine of cDNA fragments by an alternative 

means; in these cases TF-PCR was used. 
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Figure 2.4 Ethidium bromide-stained agarose gels containing separated CHIKV SL-

R233 amplicons. A series of fragments covering the entire genome was amplified by 

RT-PCR from which the sequence was determined (A to F). A second series of 

amplicons comprising the entire genome containing overlapping regions was used to 

construct sub-clones and to confirm the genomic sequence (G). The cloned fragment 

1-3090 was combined with that of 2971-5864 by TF-PCR as were fragments 7920-

9585 and 9441-11811 to produce fragments of 5864 and 3887 nucleotides 

respectively (H and I).  

 



122 
 

2.27 Sequence analysis of CHIKV isolate SL-R233 

The complete genomic nucleotide sequence of the Sri Lankan CHIKV strain, SL-

R233 was determined from cDNA obtained by RT-PCR and is shown in appendix C1. 

The linear genome was found to be 11811 nucleotides in length (excluding the 3’-

terminal poly-A tail).  

 

The genome organization was found to be typical of members of the alphavirus genus, 

consisting of two open reading frames (ORFs) flanked on either side by an 

untranslated region (UTR). Following a 5’ UTR of 76 nucleotides was the non-

structural ORF beginning with a methionine codon (ATG) between positions 69-71 

and terminating with the codon TAG at positions 7491-7493. The second UTR 

(known as the junction region) separating the two ORFs, was found to extend for a 

further 65 nucleotides. The ORF coding for the structural polyprotein started with 

codon ATG (nucleotides 7559-7561) and ended with the codon TAA (nucleotides 

11311-11313). The 3’UTR was 501 nucleotides long.  

 

The base composition was analysed using the EditSeq component of the DNASTAR 

software package and shown to be: A = 29.62%, C = 24.94%, G = 25.16% and T = 

20.27%. This software was used to determine the location of the two ORFs and to 

translate them to obtain the amino acid sequences of the two polyproteins. By 

comparing this data with the sequences and cleavage domains from other known Old 

World alphaviruses, the polyprotein cleavage sites (in the amino acid sequences) were 

located and the sizes of the resulting translation products determined (figure 2.5). 
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In the course of determining the genome sequence of SL-R233, a total of seven 

amplicons containing the region coding for the nsP3/nsP4 cleavage domain were 

produced and sequenced. In each case the CGA codon (arginine) was seen at position 

5634-7 (figure 2.6), however inspection of the chromatogram traces revealed that in 

each case, beneath the dominant cytidine peak was a smaller one indicating the 

presence of thymidine (uridine in the original RNA). The E1 – A226V mutation seen 

in the latter half of the outbreak in the Indian Ocean outbreak (Schuffenecker et al 

2006, Tsetsarkin et al 2007, Powers and Logue 2007), was absent.  

 

An alignment (Clustal W) showing the relationship of isolate SL-R233 to strains of 

other members of the ESCA clade and to those of the Indian and West African clades, 

was used to construct a phylogenetic tree (figure 2.7). This demonstrated a close 

relationship between SL-R233 and other Southern Asian isolates (Sri Lanka, 

Singapore, Thailand and India) obtained at about the same time (2005-2008). 
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Figure 2.5 Schematic representation of the SL-R233 genomic features and 

translational protein products. The sizes of individual proteins are shown, following 

proteolytic processing of the non-structural and structural polyproteins. In common 

with isolates from the Indian sub-continent prior to mid-2007, when strains of the 

ESCA clade with the A226V mutation were first reported, alanine was present at this 

site. 
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Figure 2.6 Alignment of the cDNA sequence traces from seven RT-PCR products 

covering the junction between the nsP3 and nsP4 genes on the 5’ ORF. The amino 

acid sequence of the cleavage domain is marked in blue and the site of the arginine 

codon (CGA) is marked in red. Close examination of the sequence traces for each 

amplicon indicates that the first nucleotide in the codon is cytidine, however in each 

case a smaller peak (corresponding to thymidine) immediately below provides 

evidence that a second product with an opal (TGA) termination codon is also present.  
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Figure 2.7 Phylogenetic tree (Clustal W) showing the genome of isolate SL-R233 to 

be closely related to those of other recent isolates of the Indian Ocean sub-lineage 

(IOL). Although forming a distinct group, these isolates from Sri Lanka, Singapore, 

India and Mauritius (D570-06) group significantly closer to the prototype 

Eastern/Southern/Central (ESCA) African strain, S27 than to strains in either the West 

African or Asian genotypes. 
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2.28 Construction of CHIKV sub-clones 

Although the TOPO 2.1 pCR® and Zero Blunt® II TOPO pCR® vectors are 

convenient for cloning PCR products they are not recommended for inserts greater 

than 3-4kb. As CHIKV genomes are approximately 11.8kb, it was necessary to base 

the construct containing the complete viral genome on an additional more suitable 

vector. The plasmid, pGEM5Z(+) (Promega, UK) was initially selected to form the 

backbone of the final construct. This product contains a suitable MCS which is 

flanked by T7 and SP6 RNA polymerase promoters which facilitate in vitro 

transcription of inserts in either direction. The TOPO 2.1 pCR® vector contains a 3’-

thymidine overhang at the cloning site to facilitate the cloning of amplicons generated 

by Taq-polymerase which have a terminal 3’-adenosine (dA) overhang. As 

amplifications were carried out using a high fidelity DNA polymerase, the resulting 

amplicons were blunt ended and thus required an additional step to add the dA 

overhang. It became apparent at this stage that a better approach would be to use the 

pCR
®
BluntII TOPO vector as this has similar range of restriction sites in the MCS, 

and is designed for blunt ended amplicons.  

 

In order to utilize the ScaI restriction site at position 8150-8155 in the CHIKV 

genome a silent mutation was introduced into the sub-clone containing this region 

(p238.1)  to remove the ScaI site present in the β-lactamase gene in the pGEM7Z(+) 

vector (position G1872A). Thus the gene remained functional and conferred 

ampicillin resistance to host E.coli whilst the CHIKV ScaI site became unique in the 

resulting product (p238.1(S-). 
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2.29 Sequence analysis of CHIKV cDNA clone 35.10 

A genomic alignment of SL-R233 and the virus-derived insert in p35.10, revealed 

seven point mutations comprising six nucleotide substitutions and one deletion (figure 

2.8). Three of the former (T3946C, A6811G and T7024C) were silent, but the 

remainder were missense mutations and would have translated into altered 

polyproteins (figure 2.8). Searches in the NCBI GENBANK website revealed that 

each of the silent mutations occurred in several other naturally occurring isolates. This 

being the case, it was decided that additional steps to correct them in order to produce 

a clone with an identical nucleotide sequence to the wild type (w/t) isolate was not 

necessary. To construct a clone containing the (w/t) coding sequences, a series of five 

intermediate clones derived from p35.10 were produced, in which the missense errors 

were sequentially corrected through site-directed mutagenesis.  
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Figure 2.8 Alignment of CHIKV isolate SL-R233 with cDNA clone p35.10 using 

MegAlign software (Lasergene®, DNASTAR). The cDNA clone was a pGEM5Z(+) 

based construct containing the full-length genome assembled from PCR products 

(Clustal W). Point mutations are highlighted in blue on a red background. 
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2.30 Modification of CHIKV cDNA clone pCHIK-SL(A-)  

 

The inclusion of a 3’ poly-A tail had not been included in the strategy to produce the 

initial CHIK clone [pCHIK-SL(A-)] as it was reasoned that successful transfection of 

RNA transcribed from this construct would require the 5’ two thirds of the genome to 

be translated to produce a functioning replicase. This being the case, all the functions 

necessary to synthesise progeny RNA and proteins, including a tailing function would 

be carried out by a domain in nsP4. Early attempts at transfection of mammalian cells 

(BHK21 cells), indicated that this was a correct assumption, in that viable w/t SL-

R233 CHIKV was rescued from resulting cell culture supernatants. However, when 

this process was repeated under identical electroporation conditions virus rescue was 

not efficient. 

 

 In order to determine the poly-A tail length required, all CHIKV strains available in 

the GENBANK database were analysed. However this resource provided only limited 

guidance, as only eight entries reported this feature (table 2.10). It was therefore 

decided to measure the poly-(A) tails in CHIKV RNA available in this laboratory to 

provide information which to base a strategy. 
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Table 2.10 CHIKV genomes accessed from GENBANK with reported 3’ poly-(A) 

tail lengths (only those greater than two nucleotides included). 

 

Agarose gel analysis of amplification products obtained using the Affymetrix© 

Poly(A) Tail-Length Assay Kit failed to provide a clear answer as to the length of tail 

in virus rescued from cell cultures transfected with RNA transcribed from pCHIK-

SL(A-) or CHIK S27. Furthermore, sequencing of the 3’ region of PCR products 

showed no clear boundary between the end of the poly-(A) tail and the beginning of 

the poly-(G) section added during the assay (Appendix 1.11). This finding was 

interpreted as indicating the presence of a mixed population of genomes with varying 

tail lengths. 

 

In order to obtain a more precise result, PCR products obtained from the assay of 

CHIKV clone pCHIK-SL(A-) and from S27 were cloned into the pCR2.1 TOPO 

vector and a selection of ten transformed E.coli colonies were used to prepare purified 

plasmid; in each case nine provided suitable DNA for sequencing. The sequencing 

results indicated that virus both from an un-tailed clone and w/t strain S27 generated 

viruses containing a mixed population with regard to genomic poly-(A) tails with 

length ranging from 23 to 78 nucleotides (figure 2.9).  

CHIKV Strain Accession 

Number 

Poly-(A) tail length 

(nucleotides) 

SL15649 GU189061 28 

IND-06-Guj JF274082 31 

LR2006 OPY1 DQ443544 29 

Lamu33 HQ456255 25 

KPA15 HQ456254 25 

SL10571 AB455494 19 

MY/08/068 FN295487 7 

BNI-CHIIKV899 FJ959103 20 
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Figure 2.9 Alignment of CHIKV-specific PCR products covering the 3’UTR and 

poly-(A) tail region. The Affymetrix© Poly(A) Tail-Length Assay Kit was used to 

amplify the 3’terminal region of CHIKV genomic RNA from strain S27 and from 

rescued SL-R233 obtained from cDNA clone pCHIK-SL(A-).Nine aliquots of each 

amplicon were cloned into the Zero Blunt® II TOPO® PCR vector, sequenced and 

the adenine residues in the tail region counted. 

 

In light of these results, clone pCHIK-SL(A-) was further modified to include a 3’ 

(dA) tail consisting of 40 adenosine monophosphate molecules (approximately 

midlength in the range observed above). In addition to the CHIKV genome 

components present in pCHIK-SL(A-)  a section of DNA derived from the MCS of 

earlier sub-clones, was removed and the poly-(A) tail was followed immediately by 

an ApaI recognition sequence (GGGCCC), used to linearize the plasmid prior to in 

vitro transcription, thus reducing the distance between the end of the cloned virus 

genome and this site. The new clone was called pCHIK-SL(wt). 
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2.31 Rescue of progeny virus 

The earliest signs of cytopathic effect (CPE) was observed 5 days following the 

transfection of BHK-21 cells with in vitro transcribed RNA generated from plasmids 

pCHIK-SL(wt) and pCHIK-SL(A533V). This was characterized by cells first 

adopting a rounded appearance, then becoming detached from the culture vessel 

surface. Supernatant was harvested and stored in 1ml aliquots at -80°C. In order to 

confirm that the CPE was due to an infectious agent 0.5ml of each supernatant was 

used to infect confluent BHK-21 monolayers in T75 flasks. The appearance of CPE 

after incubating these for a further 72hr indicated that this was the case. The presence 

of CHIKV was confirmed by extracting RNA from 140µl of each supernatant and 

amplifying a 1.3kb fragment covering the genome region in which the mutation 

discussed in section 2.22 had been introduced (nucleotides 1008-2405), by RT-PCR. 

The amplicons were sequenced using the PCR primers and analysed using the 

MegAlign software to ensure their correct identities. 

This confirmed that two genotypically distinct viruses had been recovered from BHK-

21 cells transfected with plasmids pCHIK-SL(wt) and pCHIK-SL(A533V). It is these 

viruses, hereafter termed CHIK-SL(r-wt) and CHIK-SL(r-mut) respectively, that were 

the subjects of the remainder of this study.  
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DISCUSSION 

Since the onset of a series of epidemics first seen in Eastern Africa and the Indian 

Ocean islands in 2004, several changes have been reported both in the epidemiology 

and phylogeny of CHIKV. Whereas formerly CHIK outbreaks tended to be relatively 

limited in size, sporadic and self-contained, waves of the disease have now spread 

across India to the Far East, into Southern Europe and to numerous African countries. 

Moreover, during the time that has elapsed since this was recognized, a range of 

atypical clinical conditions have been attributed to the strains that have emerged. 

Genomic analysis of recent strains has demonstrated significant evolution from the 

strains isolated from the early outbreaks when compared to those currently 

circulating. Prior to the period 2004-2005, the predominant invertebrate vector 

implicated in transmitting CHIKV to urban populations was the mosquito species, Ae. 

aegyptii and thus the geographic distribution of this species reflected that of the virus. 

However, more recently several key mutations are believed to have enabled CHIKV 

to more efficiently colonize and be disseminated by an alternative vector, Ae. 

albopictus. Although once thought to limited in its distribution to sub-tropical regions 

in the Far East, Ae. albopictus has been introduced to many new territories in the past 

20-30 years (table 1.5, chapter 1). Thus, the potential exists for the exposure of large 

immunologically naïve populations to CHIKV.  

 

Several pathological aspects of CHIK disease have yet to be explained. One reason 

for this until recently, was the lack of a suitable animal model, susceptible to CHIKV 

and in which symptoms similar to those seen in humans could be reproduced. 

However, since 2010 both mouse and primate models have been reported, (as 

discussed in section 1.7, chapter 1). These advances have paved the way for the use of 
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reverse genetics techniques to investigate viral genes, their products, functions and 

potential as virulence factors.    

 

Three full length cDNA clones of the virus genome have been produced and used to 

transcribe infectious RNA. In the first version of the w/t clone the genome was 

inserted into the pGEM5Z(+) vector between the SacI and SpeI restriction sites in the 

orientation that would allow transcription by SP6 RNA polymerase. The viral insert 

terminated at the end of the 3’UTR and did not include a poly-A tail. In order to carry 

out efficient in vitro transcription it was necessary to linearize the recombinant 

plasmid downstream from the insert, ideally close to the 3’end. A single ApaI site 

present at the 3’ end of the vector MCS (with respect to the orientation of the CHIKV 

insert) remained after completion of the construct. This site which is absent in the 

genome of SL-R233, resulted in the addition of 78 nucleotides between the end of the 

3’ UTR and the cleavage site.  

 

Early attempts at transfecting mammalian cells by electroporation were successful, 

resulting in w/t virus with a genome that differed from the original isolate only by the 

presence of 3 silent mutations. The translation products would thus be predicted to be 

identical in amino acid sequence. However, several attempts were made to repeat this 

procedure using identical conditions, without success. It was clear that for this reverse 

genetics system to be of use it would be necessary to routinely recover infectious 

virus from cells. It also became clear that clone pCHIK-SL(A-) differed from other 

published alphavirus clones in that it lacked a 3’ poly-A tail.  
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Interestingly, it was possible to detect large stretches of virus-specific RNA (>1kb) in 

the supernatant taken from BHK21 cell cultures that had been electroporated with 

virus RNA but failed to produce progeny virus after 8 days. This was interpreted as 

indicating that the function of the poly-(A) tail was not to impart stability to virus 

RNA in the host cell environment. 

 

Although several descriptions of infectious clones of CHIKV and other alphaviruses 

have been published in the scientific literature (Vanlandingham et al 2005, Mareilke 

Kümmerer et al 2012, Akhrymuk et al 2012, Frolova et al 2002, Breakwell et al 

2007, Simmons et al 2010), details of poly(A) tail length are sparse. A search was 

conducted in the GENBANK database for CHIKV genome submissions and revealed 

that this feature is rarely included. Assays were performed with cloned RNA extracted 

from virus recovered from cloned CHIKV SL-R233 and from the African prototype 

strain S27. A comparison of nine clones made from single amplified reaction mixtures 

showed the presence in both samples of a range of tail lengths, between 21 and 78 

adenosine repeats. It was concluded from these results that infectious CHIKV may 

have tails of a range of lengths and from the small sample analyzed here, a minimum 

of 23. 

 

A second version of the w/t CHIKV clone was produced with a 3’ tail consisting of 40 

adenine residues, immediately followed by the unique ApaI restriction site. In 

addition a small DNA region of 78 nucleotides carried over from the MCS of earlier 

sub-clones, (between the virus 3’UTR and the ApaI site) were eliminated. RNA 

transcribed from this second version of the w/t CHIKV (CHIK-SL(r-wt)) showed 
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increased efficiency for transfecting BHK21 cell cultures, indicating that although not 

essential, the inclusion of a 3’ poly-A tail has a positive effect on this process. 

 

The w/t CHIKV clone constructed in this study is a single genome representative of 

the ESCA lineage of viruses present in Southeastern Asia in 2006. It has been 

demonstrated that w/t virus, genotypically identical to the parent isolate can be 

rescued when transcribed RNA is used to transfect cell cultures. This product will 

facilitate reverse genetics studies to elucidate the contribution of specific genomic 

structures and amino acids in the viral life cycle and in interactions with host factors. 

 

It was next decided to develop a third clone with which to investigate whether the 

virulence determinant reported by Heise et al (2000) in the nsP1/nsP2 cleavage 

domain of SINV is also present in CHIKV. This construct, pCHIK-SL(A533V) 

contained a CHIKV-specific insert that differed from the w/t clone by the presence of 

a A533V mutation at the P3 position in the nsP1/nsP2 cleavage domain in the 

polypeptide precursor. Although this region is highly conserved, the mutation had no 

effect on virus viability. Progeny virus derived from each clone was sequenced to 

verify its genotype. In the remainder of this investigation it is planned to compare the 

phenotypes of w/t and A533V mutated virus, CHIK-SL(r-wt) and CHIK-SL(r-mut) 

both in vivo and in vitro with particular regard to the induction of type I interferon. 
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CHAPTER 3  

Study of the phenotypes of wild type and A533V mutant 

CHIK viruses by in vitro studies 

 

As discussed in the earlier chapters, the overall aim of this study was to develop a 

reverse genetics system with which to investigate potential factors involved in 

CHIKV pathogenesis. In chapter two the construction of cDNA clones pCHIK-

SL(wt) and pCHIK-SL(A533V) and their use as templates for transcribing  infectious 

RNA virus was described. Whereas pCHIK-SL(wt) encodes the consensus sequence 

of the virus isolate, SL-R233, pCHIK-SL(A533V) contains a mutation in the 5’ ORF 

resulting in its translation into a non-structural polyprotein  that contains an alanine to 

valine substitution at the p3 position in the nsP1/nsP2 cleavage domain. Having 

constructed the infectious clones, it was necessary to generate virus stocks and 

characterize each in terms of their plaque morphology, growth kinetics and their 

effect on host cell gene expression.  

 

Two cell lines were used in this study, L929 and Vero cells. The L929 cell line is a 

murine fibroblast cell line that is susceptible to alphavirus infection and capable of 

mounting an IFN response (Sourisseau et al 2007, Cruz et al 2010). This cell line was 

chosen as a host cell line with which to assess the ability of the two viruses CHIK-

SL(r-wt) and CHIK-SL(r-mut) to induce type 1 IFN. The Vero cell line is derived 

from kidney epithelial cells from a vervet (African green monkey) and one in which 

CHIKV can be grown to high titres (Sam et al 2012 Sourisseau et al 2007). For this 

reason it was chosen for plaque purification and propagation of stock virus for further 



139 
 

studies. In contrast to the majority of mammalian cell types Vero cells are incapable 

of producing type 1 IFN, although they possess the appropriate receptors and respond 

to IFN when it is provided exogenously (Emeny and Morgan 1978, Desmyter et al 

1968, Rhim et al 1969). 
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METHODS 

3.1 Virus titration by plaque assay 

 

Assays were conducted in triplicate using Vero cell monolayers at 90-100% 

confluence in the wells of 6-well (35mm) cell culture dishes. For growth curve 

experiments, these were infected in duplicate with 10-fold dilutions of virus in DPBS 

essentially as described in section 2.5 except that the total volume added to each well 

was 0.25ml. For titration of stock virus, the cells in four wells were infected with each 

dilution. During the 1hr incubation period for virus attachment, the added virus 

suspension was gently rocked every 15min to allow an even distribution. Next the 

cells were aspirated and covered with 3ml of molten overlay consisting of 50% 

DMEM supplemented with 5% FBS and 1% agarose.  

 

 This was allowed to solidify at room temperature, after which the culture dishes were 

transferred to an incubator where they remained under standard incubation conditions 

for 65-72 hr. A delay between addition of the virus and commencement of incubation 

was inevitable as a result of the surface decontamination procedure required when 

removing potentially contaminated items from a class 3 safety cabinet. For the 

incubation time stated above, timing commenced only when the culture trays were 

placed in the incubator. 

 

The cells were fixed by adding 3ml of 10% formalin v/v in water to each well and 

incubating at room temperature for a minimum of 1hr. The agar was removed using a 

spatula under a running tap and the adherent cells stained by the addition of 2ml 0.2% 
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crystal violet (Sigma, UK) in 50% v/v methanol. Staining was allowed to proceed for 

a minimum of 15min, after which time the cells were rinsed under a running tap. The 

dishes were dried by inverting over tissue paper at room temperature and plaques 

counted against a light background. Plaques were counted in those wells containing a 

minimum of 10 and a maximum of 80 plaques, in order to minimize errors selected 

for estimation of the virus titre (expressed in terms of plaque-forming units (pfu) per 

ml). 

 

3.2 Plaque size estimation 

In order to determine differences in plaque size, assays were conducted under 

identical conditions and images produced by digital photography. These were 

magnified by a factor of 3 and were used to measure the diameter of fifty plaques of 

w/t and fifty plaques of A533V mutant viruses using proportional dividers. The 

average plaque diameter for each type was determined after adjusting for the 

magnification factor. 

 

3.3 Virus plaque purification 

Plaque assays were conducted as described in section 3.1. Prior to fixing the cell 

monolayer, plaques were picked from beneath the overlay in the assay well, using the 

tip of a sterile 10ml pipette. After mixing each agarose plug obtained in this way by 

briefly vortexing in 1ml serum-free DMEM, they were transferred to a -80°C freezer 

and stored overnight. Vero cell monolayers grown to 90-100% confluence in T25 

culture flasks were infected with 0.5ml of each plaque harvest and incubated until 
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CPE was visible. The cell-supernatant suspension was harvested and stored at -80°C 

until required. 

 

3.4 Virus stock preparation 

Two Vero cell monolayers grown in T75 flasks to 90-100% confluence were infected 

with 0.5ml supernatant from a plaque purification harvest diluted in serum-free 

medium. Virus was harvested from the supernatant after the appearance of CPE and 

stored in 1ml aliquots in cryogenic vials at -80°C. RNA was extracted from both 

CHIK-SL(r-wt) and CHIK-SL(r-mut) stocks and fully sequenced. 

 

3.5 Virus growth kinetics 

Vero and L929 cells were grown in T25 culture flasks to 90-100% confluence then 

infected with virus with a multiplicity of infection (MOI) of 0.01 pfu per cell. At 

various times post-infection flasks were transferred from the incubator to a -80°C 

freezer where they were stored for a minimum of 2hr. The process of freezing and 

subsequent thawing to room temperature was conducted to ensure lysis of host cells. 

Virus was harvested from the thawed supernatants prior to plaque assay titration. 

 

3.6 Preparation of virus for electron microscopy of virus samples 

Two Vero cell monolayers grown to 90-100% confluence in T75 flasks were infected 

with 1 x10
6
 pfu of stock virus; in a third flask DPBS was used in place of virus 

(negative control). The two virus infected flasks were incubated for periods intended 
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to provide the maximum yield of cell-associated virus; one was incubated for 20hr 

and the other (and the negative control), for 24hr. These times were judged to be 

sufficient to enable maximum virus growth prior to the appearance of CPE. 

Following incubation, the supernatant was decanted and primary fixation conducted. 

Sufficient 2.5% glutaraldehyde was added to submerge the cells (approximately 

10ml) which were next incubated at room temperature for 2hr. The monolayer was 

scraped off and the cell-glutaraldehyde suspensions transferred to 15ml Falcon 

polypropylene centrifuge tubes. The samples were centrifuged at 3,000 rpm for 10min 

and the pellets resuspended in 1ml Sorrensen’s phosphate buffer (0.133 M Na2HPO4, 

0.133 M KH2PO4 pH 7.4). Further processing and production of transmission electron 

microscope (TEM) images were carried out by Mr H Tolley, Microbial Imaging 

Laboratory, PHE, Porton Down. The main steps of this were as follows: the cells were 

centrifuged and the resulting pellet resuspended in osmium tetroxide solution at 2-8⁰C 

and incubated for 2-4hr. Following a further centrifugation step the pellet was mixed 

with molten agar. After cooling, the agar cubes were dehydrated through a graded 

ethanol series (from 30% to 100%) at room temperature and then embedded in 

Araldite® resin. Finally after a 72hr polymerisation step, ultrathin sections were cut, 

stained and visualised by TEM. 

 

3.7 RNA extraction 

RNA was extracted from w/t and A533V mutant virus-infected cell cultures. T25 

flasks containing a monolayer of 1 x 10
6 

L929 cells were infected at an MOI of 0.01 

and harvested at various times after inoculation by transferring to a freezer at -80°C 

and thawing to room temperature. After removing from the freezer the pellet was 
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resuspended in 600µl of RLT buffer containing 10µl per ml β-mercaptoethanol taken 

from an RNeasy mini kit (Qiagen®, UK). Samples were then homogenized by 

centrifuging at 16000 x g for 2min in a QIAshredder RNA immediately prior to 

purification which was performed by following the protocol supplied by the 

manufacturer (Appendix A7). This process included the optional on-column DNase 

digestion step.  

 

3.8 QRT-PCR assays 

For analysis of Mx1, IFNa2 and IFNb1 expression TaqMan gene expression assays on 

demand™ (Life Technologies) were used. These proprietary reagents consist of 

premixed primer-probe sets, designed to amplify an amplicon across at least one exon 

junction of the gene of interest in a two-step reaction. Each probe incorporates a 

sequence-specific probe with a 5-FAM (5-carboxyfluorescein) label at its 3’ end and a 

minor groove binding (MGB) protein.  

 

Prior to PCR-amplification, cDNA was prepared from 50µl of eluted RNA after 

adding an equal volume of RT master-mix, consisting of 10 x random primer solution, 

10 x RT buffer, 25 x dNTP solution and Multiscribe™ Reverse Transcriptase taken 

from a High-Capacity cDNA Reverse Transcriptase kit (Applied Biosystems, UK). 

This reaction mixture was incubated in an ABI® 2720 Thermal Cycler (Applied 

Biosystems, UK) at 25°C for 10 min, 37°C for 2hr, 85°C for 10min and was finally 

cooled to 4°C.  

 

For each gene of interest 16µl per sample of pre-mix was prepared and distributed 

into the appropriate wells of a MicroAmp® Fast Optical 96-well reaction plate 
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(Applied Biosystems, UK). The pre-mix consisted of 10µl 2x TaqMan® Universal 

Master Mix II (Applied Biosystems, UK), 1µl 20x TaqMan® Gene Expression Assay 

and 5µl water. To each well 4µl cDNA (test samples) or nuclease-free water (negative 

controls) was added. Thermocycling was carried out using an Applied Biosystems 

7500 Fast Real-Time PCR System, conditions were as follows: 50°C for 2min, 95°C 

for 10min and 40 cycles of 95°C for 15sec and 60°C for 1min. Samples were run in 

triplicate and the mean average cycle threshold (Ct) values calculated. 

 

3.9 HPRT assays 

A NanoDrop 1000 spectrophotometer was used to determine the total RNA 

concentration present in un-infected and CHIKV-infected cell supernatants harvested 

at various times post-infection. Each assay was conducted in triplicate using a 

wavelength of 260nm. Samples containing approximately 30ng RNA were used as 

template in an Rn_Hprt1_QF_1 QuantiFast® Probe qRT-PCR one step assay 

according to the manufacturer’s protocol (Appendix A12). 

 

3.10 Normalisation of gene expression assays 

To calculate the relative quantity of samples assayed by qRT-PCR the Ct value of the 

gene of interest was normalized against that of the endogenous reference gene 

(HPRT). The ∆Ct value for each sample was determined by calculating the difference 

between the two (Ct sample – Ct HPRT gene). Similarly, an appropriate sample was 

selected as a calibrator for which all other samples were to be compared (Ct calibrator – 

Ct HPRT gene). The ∆∆Ct value for all other samples was calculated from the formula 
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(∆∆Ct = ∆Ct sample – ∆Ct calibrator). To calculate the quantity relative to the calibrator 

sample, RQ (relative quantity) values were calculated as being equal to 2
-∆∆Ct

. 

RESULTS 

3.11 Preparation of cloned virus stocks 

The supernatants resulting from the transfection of BHK-21 cell cultures with 

plasmids pCHIK-SL(wt) and pCHIK-SL(A533V), were used to plaque-purify virus. 

Virus-containing supernatant from each plaque infected monolayer was used to seed 

secondary flasks for the production of stocks for future work. The storage of 

harvested virus in small (1ml) aliquots made it possible to recover convenient 

volumes when needed for multiple experiments without the risk of reducing the titre 

through repeated thawing and re-freezing. RNA from both cloned viruses [CHIK-

SL(r-wt) and CHIK-SL(r-mut)] were fully sequenced and found to be identical to the 

parent plasmids except that they both contained an additional silent point mutation, an 

A133G substitution (figure 3.1). 

 

 

 

 

 

Figure 3.1 Alignment of the genome sequence of plaque-purified CHIK-SL(r-w/t) 

with that of the parent virus strain SL-R233 revealed that it differed by the presence 

of a single point mutation (A133G) near to the 5’ end of the nsP1 gene. This silent 

mutation was also present in CHIK-SL(r-mut), 
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3.12 Virus titration 

In order to ensure that subsequent experiments with the w/t and A533V mutant 

viruses could be conducted at a known MOI it was necessary to obtain accurate virus 

titres. To achieve this three plaque assays were carried out on virus taken from 

separate aliquots of each virus. The mean average titres obtained for the two cloned 

CHIKV working stocks are shown in tables 3.1 and 3.2. These are 2.49x10
7
pfu/ml 

CHIK-SL(r-w/t) and 3.7x10
6
pfu/ml CHIK-SL(r-mut). 

  

 

 

 

Table 3.1 Plaque assay results. Assays were conducted in triplicate, the plaque 

numbers refer to the total in each well of 6-well assay plates from 250µl of diluted 

virus and are (a) CHIK-SL(r-w/t) and (b) CHIK-SL(r-mut). 

 

Table 3.2 Mann-Whitney statistical analysis indicates that the titres obtained for each 

virus type are not significantly different at the level of P<0.05. 

 

 

 

Assay Total plaques 

(10
-5

 dilution) 

Virus titre x 

pfu/ml 

Mean average 

titre 

w/t 1 252 2.52 x 10
7
  

2.49x10
7 w/t 2 259 2.59 x 10

7
 

w/t 3 236 2.36 x 10
7
 

A533V 41 4.1 x 10
6
  

3.7x 10
6 A533V 38 3.8 x 10

6
 

A533V 32 3.2 x 10
6
 

Assay Dilution Plaque  count (pfu) Mann-Whitney statistical 

p-value 

Well 1 Well 2 Well 3 Well4 Assays 

1v2 

Assays 

1 v 3 

Assays 

2 v 3 

w/t 1 10
-5

 73 54 61 64  

0.7728 

 

0.5637 

 

1.0000 w/t 2 10
-5

 59 81 58 61 

w/t 3 10
-5

 53 62 48 73 

Mut 1 10
-5

 12 14 8 7  

1.000 

 

0.3865 

 

0.5637 Mut 2 10
-5

 11 6 13 8 

Mut 3 10
-5

 6 9 7 10 
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3.13 Plaque morphology 

The appearance of plaques derived from w/t and mutant viruses differed in all assays 

(figure 3.2). Those produced by w/t virus were larger and had a less regular border 

than those observed from the mutated virus. When plaque assays with the two virus 

types were conducted under identical conditions, the average plaque diameter 

produced by CHIK-SL(r-wt) was 3.34 mm (n=50, SD= 0.348993, whereas that 

produced by CHIK-SL(r-mut) was 1.64mm, (n=50 SD= 0.161271). 

 

3.14 Morphology of w/t virus by electron microscopy 

To observe the physical presence of virus from SL-R233(r-wt)-infected cell cultures, 

supernatants were analysed by electron microscopy (figure 3.3). The resulting images 

revealed the presence of large numbers of particles with a similar appearance to wild-

type Alphavirus virions in terms of size and morphology, with diameters of 

approximately 65-75nm (Kuhn 2013, Strauss and Strauss 1994). 

 

3.15 Growth kinetics of CHIKV 

In order to determine whether the A533V mutation would result in a defect in 

replication compared to the w/t virus, the growth kinetics of plasmid-derived viruses 

CHIK-SL(r-wt) and CHIK-SL(r-mut) were investigated in Vero cells and L929 cells. 

Both cell lines were infected at a MOI of 0.01 pfu. In Vero cells the growth curves for 

both w/t and mutated virus (figure 3.4, table 3.3) were similar, reaching a peak titre of 

2.6-2.8 x 10
8
pfu/ml after 20-24hr. When each virus was used to infect L929 cells at 

the same MOI, the peak titres observed were three orders of magnitude lower than 

those obtained with Vero cells (figure 3.5). Virus containing the A533V mutation 
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reached a peak titre at an earlier stage than CHIK-SL(r-wt) and were shown to 

significantly differ in growth kinetics (Mann-Whitney statistical test <0.05) (table 

3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Plaque morphology (A) CHIK-SL(r-wt) and (B) CHIK-SL(r-mut). 

Supernatant from Vero cells infected with each virus was used to infect a confluent 

Vero cell monolayer in 35mm diameter dishes. Two days after infection, cells were 

fixed and crystal violet staining was performed. 
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Figure 3.3 Electron micrographs showing Vero cell sections: un-infected (panel 1) 

and infected with chikungunya virus (panels 2, 3 and 4). Infection was carried out 

with CHIK-SL(r-wt), rescued from the cDNA clone pCHIK-SL(wt) and cells 

harvested 24hr post-infection. Nucleocapsids are seen as dark circular structures 

within the cell cytoplasm (A), in various stages of development at the plasma 

membrane (B) and in association with intracellular vesicles (C).  
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Figure 3.4 Growth curves of wild type (wt) and A533V mutant (mut) viruses (blue 

and red respectively). Vero cells were infected at a multiplicity of infection (MOI) of 

0.01pfu with CHIK-SL(r-wt) and CHIK-SL(r-mut). Cell culture supernatants were 

harvested at the indicated times and viral progeny titres determined by plaque assays 

in triplicate. Each data point represents the mean average of the virus titre and the 

error bars denote standard deviation. 

 

 

 

 

 

 

 

 

 

Table 3.3 Mann-Whitney statistical analysis comparing CHIKV titres determined by 

plaque assay, of CHIK-SL(r-wt) and CHIK-SL(r-mut) over the study period. Yellow 

shading indicates significant values where P<0.05. 

 
Time post-infection (hr) 

Mann-Whitney statistical 
 p-value 

Vero cells 
1 0.0129 
2 0.0510 

4 0.1093 

7 0.0108 
9 0.0400 

20 0.0150 
24 0.9362 

48 0.4433 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1 2 4 7 9 20 24 48
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Figure 3.5 Growth curves of wild type (wt) and A533V mutant (mut) viruses (blue 

and red lines respectively). L929 cells were infected at a multiplicity of infection 

(MOI) of 0.01pfu with CHIK-SL(r-wt) and CHIK-SL(r-mut). Cell culture 

supernatants were harvested at the indicated times and viral progeny titres determined 

by plaque assays in triplicate. Each data point represents the mean average of the titre 

error bars denote standard deviation. 

 

 

 

 

 

 

 

 

 

 

Table 3.4 Mann-Whitney statistical analysis comparing CHIKV titres determined by 

plaque assay, of the two virus populations over the study period. Yellow shading 

indicates significant values where P <0.05. 

 

 
Time post-infection (hr) 

Mann-Whitney statistical 
 p-value 

L929 cells 

1 0.0122 

3 0.2482 
6 0.3123 

8 0.0304 
20 0.0150 

26 0.0021 

50 0.0051 

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 3 6 8 20 26 50
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3.16 Host cell expression of type 1 IFN and Mx1 

Expression of the IFNa2, IFNb1 and Mx1 genes were detected from 26, 20 and 20hr 

post inoculation respectively in cells infected with w/t virus (figure 3.6). Cells 

infected with A533V mutated virus showed expression of Mx1 and IFNa2 at an 

earlier time post-infection than w/t virus. Although IFNb1 expression was detected in 

cells infected with both virus types at 20hr post infection, the lower threshold cycle 

observed with mutated virus indicates a higher level of expression. 
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Figure 3.6 Total RNA extracted from L929 cell cultures harvested at various periods 

post-infection with either CHIK-SL(r-wt) or CHIK-SL(r-mut), was assayed in 

triplicate by two-step TaqMan qRT-PCR to determine expression of Mx1(a), IFNa2 

(b) and IFNb1 (c) genes. The mean C(t) values were normalised with HTRP. The 

error bars denote the standard deviation of samples. 
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DISCUSSION 

It has been confirmed that infectious CHIKV can be generated from RNA transcribed 

from the plasmids pCHIK-SL(wt) and pCHIK-SL(A533V) as described in chapter 2. 

In addition to the three silent mutations known to be present in the precursor of these 

constructs (figure 2.8), a further mutation, A133G was detected when the genomes 

from rescued viruses were sequenced. This additional mutation, resulted in a CAA 

codon being substituted for a CAG codon; both of these encode glutamine. The ORF 

encoded by the R233-SL(r-wt) genome was predicted to encode identical amino acid 

sequences to the parental isolate, SL-R233 and R233-SL(r-mut) to differ only by the 

presence of the engineered A533V mutation,  

 

Particles with features typical of alphaviruses in various stages of their life cycle, 

were observed in Vero cell cultures infected with w/t virus with an electron 

microscope. The growth curves produced when both w/t and mutant viruses were 

grown in Vero cells reached a peak titre of 2-4.3 x 10
8
pfu/ml at approximately 20-

24hr post-infection, however at the earlier time-points the w/t virus exhibited higher 

yields, indicating that the introduction of the nsP1 A533V mutation may confer a 

slight replication defect. This contrasts with the titres estimated for each of the stock 

virus preparations which were CHIK-SL(r-wt) = 2.49 x 10
7
 and CHIK-SL(r-mut) = 

2.97 x 10
6
. A possible reason for the reduced titres found in the stock viruses is that 

they were propagated by seeding cell cultures at unknown MOIs. Supernatants that 

resulted from infecting Vero cell cultures with single plaques were used directly to 

prepare virus stocks as described in section 3.2 and these were not titrated. The 

growth kinetics studies were conducted using a low MOI (0.01pfu) which is 
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conducive to producing a high virus titre, whereas a high MOI may have unknowingly 

been used for the stock virus cultures.  

 

The A533V mutant virus displayed a smaller plaque phenotype in Vero cells, a 

finding also reported by Cruz et al (2010) who introduced a similar mutation into the 

RRV genome. In the growth kinetics experiment using L929 cells, the peak titres of 

both viruses was significantly lower than those observed with Vero cells. 

 

The graph shown in figure 3.5  showing virus titres in samples obtained at various 

time points after infection of L929 cell cultures indicates that the A533V  mutant 

reached a peak titre earlier that of the w/t clone. The titres obtained from w/t virus 

declined at a slower rate than those of the A533V mutant virus thereafter; the 

significance of these observations are supported at <P 0.05 using the Mann-Whitney 

statistical test.  

 

The relative quantity of transcripts of the IFNa2 and IFNb1 genes and that of the gene 

encoding the IFN-induced GTP-binding protein, Mx1 were found to be higher at an 

earlier interval post-infection with the A533V mutated virus. This is consistent with 

the subsequent studies of other alphaviruses indicating that the introduction of this 

mutation induces the type 1 IFN response in host cells more efficiently (Cruz et al 

2010). 
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Taken together, these results show that the introduction of the A533V mutation to an 

otherwise w/t clone results in progeny with altered growth characteristics from the 

parental virus, produces smaller plaques and induces type 1 IFN at an earlier stage in 

the infectious process. This is consistent with the hypothesis outlined in chapter 1 

proposing the presence of a virulence determinant at the site of interest and is 

supported by subsequent studies showing that analogous mutations modulated the 

ability of SINV and RRV to inhibit host cell type 1 IFN responses (Cruz et al 2010, 

Simmons et al 2010). To investigate in more detail the different CHIKV phenotypes 

and their influences on disease pathogenesis, it was decided to conduct in vivo studies 

in a mouse model. 
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CHAPTER 4 

Study of the phenotypes of wild type and A533V mutant 

CHIK viruses in a mouse model 

 

The aim of this part of the study was to evaluate the relative ability of each clone to 

induce arthritic disease in a mouse model and to investigate whether any differences 

observed are related to induction of type 1 IFN in host cells. Thus it was necessary to 

examine the phenotypes of the two cloned viruses described in chapters 2 and 3, in an 

informative animal model. 

 

Although a macaque model has been developed and shown to reproduce the 

pathological features seen in humans including viral persistence (Labadie et al 2010), 

the high maintenance costs of multiple experiments for statistically sound results and 

ethical issues associated with experiments using non-human primates precluded it 

from consideration. A small animal model that would be suitable for conducting 

multiple experiments and conform to the available laboratory facilities and financial 

constraints, was required.  

In recent years several mouse models have been developed that mimic clinical 

symptoms observed in humans and shed light on the pathogenesis of CHIKV disease 

(table 4.1). Two of these utilised neonatal or adult interferon-deficient mice (Couderc 

et al 2008, Zeigler et al 2008). These exhibited overt CHIK disease symptoms, 

provided information on tissue tropism and highlighted the importance of innate 

immunological pathways in recovery. However the reliance of this model on an 

immature or defective immune system limited its relevance to disease in humans. It 
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was later reported by two separate groups that a localized arthritic condition similar to 

the disease observed in human cases, could be induced in adult wild type C57BL/6 

mice following CHIKV injection in the ventral side of the footpad.  

In the first of these studies, mice that were a minimum of 6 weeks of age were used 

(Gardner et al 2010) whereas in the second, 14 day old mice were used, (Morrison et 

al 2010). In both cases a viraemic phase of 4-5 days was observed followed by 

inflammation of musculoskeletal tissues. As the present study is focussed on 

immunological responses to infection with CHIKV containing the A533V mutation, 

the mouse models possessing defective immune systems would not be suitable. Thus 

the mouse model described by Gardener et al (2010) was adopted for the present 

study as it has been reported to exhibit pathological features consistent with CHIKV 

disease in humans and does not entail prohibitively high purchasing, housing and 

maintenance costs.  
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Table 4.1 A summary of the CHIKV disease animal models available at the time of 

this study. 

 

It was first decided to evaluate the suitability of the C57BL/6 model for the study by 

confirming its potential to produce measurable foot-swelling when infected with the 

w/t CHIKV clone and to determine the optimum infectious dose required.  

 

With this information available, a follow-up experiment was planned to compare a 

range of clinical parameters in tissues obtained in mock-infected mice with those 

infected from w/t and A533V mutant viruses. The results obtained from in vitro 

studies of the two CHIKV genotypes (in chapter 3) indicated that the A533V mutant 

virus grew to a lower titre than the w/t virus in cells capable of producing type 1 IFN 

and that IFN induction occurred earlier in the course of infection. It was next decided 

Animal Reference Details 
Mouse (129s/v) IFN-α/βR

-/- 
and 

IFN-α/βR
-/-

 

Couderc et al (2008) Intradermal administration. Identified 

fibroblasts as prominent target cell, disease 

severity dependent on age and type 1 IFN 

response.  

Mouse  ICR and CD-1 strains 

outbred Newborn and 14 days old 

Ziegler et al (2008) Showed age-dependent pathology, however not 

reported to develop arthritis, so limited 

relevance to human cases. Young mice more 

costly. 

C57BL/6J and NIH Swiss mice 

5 and 10 week old mice 

Wang et al (2008) Intranasal and intra-peritoneal administration. 

Symptoms seen in younger group only. 

Mouse C57BL/6 strain adult ♀ (≥6 

weeks old) 

Gardner et al (2010) Administration in footpads, established a local 

persistent infection with disease symptoms 

similar to human infection. 

Mouse C57BL/6J strain wild –type 

14 days old 

Morrison et al (2010) Established a local persistent infection when 

virus injected in footpads with disease 

symptoms similar to human infection. Younger 

mice than Gardner et al therefore more 

expensive. 

Cynomolgus macaques captive-

bred 3-5 years old  

immunocompetent 

Labadie et al (2010) Intradermal administration. Similar disease 

symptoms to those seen in humans. High costs 

for purchase and maintenance of primates 

compared to mouse models. 
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to investigate whether this effect would be reproduced in vivo and if so, whether the 

presence of the mutation would result in an attenuated phenotype, thus testing the 

hypothesis. Mice infected with the two virus clones would be evaluated from two 

perspectives. Levels of IFN-α and IFN-β present in samples would be monitored 

throughout the challenge to determine whether their induction was significantly 

affected by the presence of the A533V mutation. For evidence of this it was planned 

to monitor fluctuations in the expression of IFN-α and IFN-β and of the IFN-induced 

Mx1 gene by qRT-PCR and also to measure the translated products through 

serological assays. 

 

 In order to obtain a more comprehensive picture of the disease profile, the levels of 

other markers indicative of an innate immune response were also to be measured, 

namely IFN-γ, haptoglobin (Hp), serum amyloid A (SAA) and serum amyloid P 

(SAP). The anticipated inflammatory response to the CHIKV challenge is a well 

characterized phenomenon observed following infections or other trauma in 

mammals. It consists of a coordinated release of a diverse range of inflammatory 

mediators which induce fever, changes in vascular permeability, vasodilation and 

changes in the metabolism and catabolism of many organs, both locally and at more 

distant sites. As the protein mediators of this process have specific roles in controlling 

inflammation they serve as useful markers of disease pathology.  

  

Hp is a haemoglobin-binding protein, mainly produced in the liver and is known as an 

acute phase reactant (Dobryszycka 1997). It is present in serum in increasing amounts 

during acute conditions such as infection, injury, tissue destruction and some cancers. 
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Its purpose is to remove damaged cells and debris and to prevent loss of iron through 

the kidneys. Acute phase SAA proteins are also synthesised principally in the liver in 

response to pro-inflammatory cytokines released by activated monocytes and 

macrophages (Uhlar and Whitehead 1999). Also synthesised in liver cells, SAP is a 

member of the pentraxin family of molecules, thought to play a role in innate 

immunity and reported to be an acute phase reactant in mice (Pepys et al 1979).  
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METHODS 

4.1 Animals 

Experimental procedures involving live animals, measurements, dissections and 

husbandry were carried out by the Biological Investigation Group (BIG), an expert 

team of animal procedure license holders who have mandatory control over all 

experimental work with animals at PHE, Porton, Salisbury, UK.  C57BL/6 mice aged 

at least 6 weeks old were purchased from Harlan Laboratories, UK. Animals were 

housed in flexible film isolators under climate controlled CL3 conditions and were 

allowed free access to food and sterile water throughout the study. All animals were 

treated in strict accordance with the UK Animals (Scientific Procedures) Act 1986. 

 

Prior to the study period, a microchip implant (idENTICHIP with Bio-Thermo™, 

Animalcore Ltd, UK) facilitating identification and body temperature monitoring, was 

inserted into the subcutaneous tissue of the neck region of each mouse according to 

the manufacturer’s instructions.  

 

4.2 Animal assessments 

The distance between the tarsometatarsal joint and the phalanges and width of the 

perimetatarsal area of the hind feet (figure 4.1), were measured daily using digital 

calipers.  The temperatures and weights were also measured daily. Visual clinical 

assessments were conducted twice daily in order to identify symptoms such as 

postural changes, lethargy or ruffled fur that might indicate the onset of disease. 

Statistical analysis was conducted using the Minitab 16 statistics software package 

(Minitab Ltd, UK) 
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Figure 4.1 Distal view of the spatial relationship of the bones of the mouse hind leg. 

Red arrows show the approximate areas measured for width and height in order to 

assess the degree of swelling observed in the C57BL/6mouse model following 

inoculation with CHIKV. 
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An initial pilot experiment was conducted to confirm replication of CHIK disease in 

C57BL/6 mice in our hands and in accordance with Gardner et al (2010). Additionally 

this enabled the optimum infectious dose to be determined. Animals were assigned to 

seven groups each of which was injected subcutaneously with either w/t or A533V 

mutant virus at a range of titres as detailed in table 4.2, or with DPBS that constituted 

a negative control group. As the R233-SL(r-mut) stock was prepared at a lower titre 

than R233-SL(r-wt), it was possible to challenge mice over a wider titre range with 

the latter than the former. Mice were inoculated subcutaneously into the ventral side 

of the left hind foot as detailed in table 4.2 and euthanized 14 days after inoculation. 

Blood samples were collected from each mouse from which sera were separated and 

stored at -80°C until required.  

 

 

 

 

 

 

 

 

 

 

Table 4.2 Details of the inoculum administered subcutaneously to the left hind foot in 

seven groups of five C57BL/6 mice, to determine the optimum dose required to 

induce measurable foot swelling (first challenge experiment). 

 

 

Group Virus / DPBS Virus inoculum (pfu/40µl 

    1 CHIK-SL(r-wt) 1.00E+06 

    2 CHIK-SL(r-wt) 1.00E+05 

    3 CHIK-SL(r-wt) 1.00E+04 

    4 CHIK-SL(r-mut) 2.00E+04 

    5 CHIK-SL(r-mut) 1.00E+04 

    6 CHIK-SL(r-mut) 8.00E+03 

    7 DPBS Negative control 
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Following the pilot study, the main series of challenge experiments in this work were 

set out. Animals were assigned to four groups, each defined by their subsequent 

treatment. Members of group 1 received 1 x 10
4 

pfu of cloned w/t virus suspension, 

group 2, received 1 x 10
4 
pfu A533V mutant virus and group 3 received diluent only 

(serum-free DMEM). As with the first challenge experiment, inoculum volumes were 

40µl. Groups 1 to 3 comprised 18 mice each. A further 3 animals, group 4, did not 

receive an inoculation.  

 

4.3 Tissue sampling 

Three mice from groups 1-3 were culled at pre-defined time periods following 

challenge (1, 3, 6, 9, 12 and 15 days), by the administration of anaesthetic overdose. 

The group 4 mice were culled on day 9. The following samples were collected for 

molecular studies: the right hind leg, the right axillary lymph node, the right inguinal 

lymph node, a spleen sample and a liver sample. These were placed in reinforced 2ml 

homogenization tubes compatible with the Precellys® tissue homogenizer (Precellys, 

UK) and immediately transferred to a -80°C freezer until required. Blood was 

collected in BD Microtainer® serum separator tubes (Fisher Scientific UK Ltd), 

allowed to clot at room temperature for 30-40min and stored on ice prior to further 

processing. After separation from the clotted material by centrifuging at 9500 x g for 

3min, serum samples were recovered. A 140µl aliquot of each was added to 560µl 

AVL buffer taken from a Qiagen QIAamp® Viral RNA Mini Kit (Appendix A5) and 

this was subsequently used to purify RNA. The remaining serum was transferred to 

cryogenic screw-capped tubes and stored at -80°C until required for immunoassays. 

The remaining (left) hind leg from each animal was placed in neutral buffered 10% 

formalin (approximately 4% formaldehyde w/v) and sent for histological examination. 
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4.4 Histopathology investigation 

Tissue specimens were processed for histological analysis by the Histology 

Department at PHE, Porton, Salisbury, UK. Leg samples from the stifle and tarsal 

regions were processed to paraffin wax and 5-6µm sections cut and stained with 

hematoxylin and eosin (H&E). Slides were examined “blind” by light microscopy and 

advice on interpretation was provided by pathologists Prof Em.GR. Pearson and Dr 

EL. Rayner.   

 

4.5 Tissue processing 

The weight of each mouse tissue sample was estimated by subtracting the mean 

average weight of 50 prefilled bead homogenization tubes from that of each sample-

containing tube. Samples were suspended in 1ml chilled DPBS and subjected to 3 

cycles x 6200rpm for 5 seconds separated by 30 second pauses, using a Precellys® 24 

tissue homogenizer (Bertin Technologies UK). A 140µl aliquot of each tissue 

suspension was mixed with 560µl RLT buffer containing 10µl per ml β-

mercaptoethanol taken from an RNeasy mini extraction kit (Appendix A7). The 

remainder was stored at -80°C until required. 

 

4.6 Serological assays    

Serological assays were conducted using a range of commercially available ELISA 

kits. For mouse haptoglobin, SAA and SAP assays, kits purchased from Life 

Diagnostics Ltd, UK were used (catalogue numbers 2410-1, 3400-1 and 3410-1 

respectively). IFN-αand IFN-β were assayed with Verikine™ mouse interferon 

ELISA kits (catalogue numbers BPL-42410 PBL-42120), IFN-γ was assayed with a 

Nova® mouse IFN-γ kit (Life Technologies, UK catalogue number KMC4022). Each 
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assay was performed in accordance with the relevant protocol provided by the 

manufacturers (Appendices A15-19). 

 

4.7 Assessment of viraemic phase by block RT-PCR 

RT-PCR assays were used to detect the presence of virus in 5µl of RNA samples 

purified from mouse serum infected with w/t virus, in a total volume of 50µl (chapter 

2, section 2.10). RNA purification was carried out on 35µl of serum mixed with 140µl 

AVL buffer taken from a Qiagen QIAamp® Viral RNA Mini Kit (Appendix A5). 

This four-fold reduction in the volumes from those recommended by the manufacturer 

was undertaken to conserve the limited volumes of serum available; for the remainder 

of the process the manufacturer’s protocol was adhered to.  The primers CHIK1F and 

CH425F (tables 2.4 and 2.5) were used to amplify and analyse the 5’-terminal 425 

nucleotides of the CHIKV genome using the methods detailed in chapter 2 (sections 

2.10 to 2.12) and thermocycling at 50°C for 15min, 94° for 2min, 40 cycles of 94°C 

for 15sec, 55°C for 30sec, 68°C for 30sec and finally 68°C for 5min. Agarose gel 

electrophoresis and imaging was conducted on 10 µl samples as described in chapter 

2, section 2.12. 

 

 4.8 Analysis by qRT-PCR assay 

All qRT-PCRs were conducted using the MiniOpticon™ system (BioRad, UK) or the 

Applied Biosystems® 7500 Fast Real-time PCR system (Life Technologies). Assays 

to detect relative expression of IFNA2 and IFNB1 and Mx1 genes were performed as 

described in section 3.8 of Chapter 3.  
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Assays to detect and quantify CHIKV-specific amplicons were conducted using a 

one-step RT-PCR method developed in this laboratory (Edwards et al 2007).The 

sensitivity of this method was determined using in vitro transcribed RNA, generated 

from a cloned cDNA copy of the amplicon (pCH127) as template. The 127bp cDNA 

amplicon was cloned downstream from a T7 promoter sequence in the pMK plasmid 

vector by GeneArt (Life Technologies, UK). An XbaI site was engineered 

immediately downstream from the 3’ end of the insert to enable linearization prior to 

in vitro transcription. Lyophilized plasmid DNA supplied by the manufacturer was 

resuspended in 50µl water prior to use as a template for in vitro transcription.  

 

Linearization was carried out by adding 10µl pCH127 DNA to a reaction mixture 

consisting of 10u XbaI and 300mg bovine serum albumin in 1 x Promega restriction 

buffer D (table 2.6, chapter 2) in a total volume of 30µl. The reaction was incubated 

for 3hr at 37°C. In vitro transcription was initiated at the T7 polymerase promoter and 

ended at the XbaI digestion site immediately following the CHIKV insert. Three 

transcription reactions were conducted using 8µl of linearized plasmid as template 

with the reagents from a MEGAshortscript™ kit, according to the manufacturer’s 

instructions (Appendix A13). The resulting RNA was pooled and purified using a 

Qiagen RNeasy Mini-Elute kit, eluting with 30µl water. The sample absorbance was 

measured at the ultraviolet wavelength of 260nm using a NanoDrop 2000® 

spectrophotometer. It was then possible to calculate the RNA concentration on the 

basis that an absorbance of 1.0 unit at 260nm corresponds to 40µg per ml (Sambrook 

et al 1989) and thus to produce a standard curve to determine and compare genome 

copy numbers. The molecular weight the of ribonucleotide monophosphates AMP, 

CMP, GMP and UMP are 347.2, 323.2, 363.2 and 324.2 Daltons (Da) respectively. 
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The 5’ end of the RNA transcript from the linearized clone begins immediately after 

the final uridine molecule in the T7 promoter and ends after the first thymidine 

molecule in the XbaI site. The molecular weight was estimated to be 62220, by 

multiplying the total number of nucleotides in this region (183 nucleotides), by 340 

(the approximate mean average of the individual nucleotides shown above). The 

transcribed RNA copy number was calculated using the Avogadro constant in the 

equation: 

n =   6.0221 x 10
23

 molcules/mole 

              62220 x 1 x 10
9
 ng  

 

The standard value series was made by making a series of ten-fold dilutions of the in 

vitro transcribed RNA prepared in water containing 1 x 10
7
 to 1 x 10

1
 copies and used 

as template in qRT-PCRs. The average C(t) from three assays was used to prepare a 

standard curve through which the relationship between C(t) and template copy 

number could be extrapolated. The standard curve was subsequently used to estimate 

amplicon copy numbers in tissue samples assayed by qRT-PCR and this was taken as 

an approximate measure of genome copy number as has been done in other studies 

(Gentilomi et al 2008, Huang et al 2009, Dhanwani et al 2014). 

 

 

 

 

 

 

 

 

 



171 
 

RESULTS 

 

4.9 Clinical assessment of mice 

The purpose of the first (pilot) mouse challenge was to determine the optimum dose 

required to induce measurable foot swelling. As this exercise was limited to 

determining whether the chosen mouse model was suitable for evaluating the CHIKV 

clones under study and in order to minimize discomfort in the mice, injection of virus 

was restricted to a single (left) hind limb. No indication of inhibited mobility or other 

overt signs of ill health were observed in any animal, consequently, the local ethics 

committee considered it acceptable to infect both hind legs in the main challenge, 

thereby providing additional material for analysis. 

 

For the pilot experiment, an analysis of the measurements made on the hind legs 

demonstrated significant swelling from days 9-13 post-challenge in the feet injected 

with virus (left feet), when compared with the DPBS control group. The 

corresponding right feet of the virus-challenged animals also showed swelling, 

although this was less extensive than those observed in the injected feet (figures 4.1-

4.6). The Mann-Whitney Statistical test was used for the analysis of all treatment 

groups compared with negative controls. Swelling did not significantly vary in 

severity between animals challenged with w/t virus and the A533V mutant even when 

the viral dose was identical (groups 4 and 5). No increase in swelling was observed 

between animals receiving the lowest w/t viral dose (10
4 

pfu) and those receiving 

higher titres (10
5
 and 10

6 
pfu). Consequently it was decided to conduct the subsequent 

challenge with this lower dose (10
4
 pfu). 
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Figure 4.2 Changes in foot size as an indication of inflammation, observed over a 15 

day period following the injection of w/t CHIKV (10
6 

pfu in 40µl) to the left hind feet 

of C57BL/6 mice. The width and height (from the heel joint to the end of the foot) 

were multiplied together to estimate the approximate area (mm
2
). Results show mean 

values from five mice with error bars denoting the standard deviation.  

 

 

Table 4.3 The Mann-Whitney statistical test was used to determine differences 

between the injected foot (left hind) and both the right hind foot of the same animal 

and the DPBS control group: P< 0.05. Yellow shading indicates that Mann-Whitney 

statistical test is significant. 

Time post-
challenge (days) 

            Group 1           Mann-Whitney statistical p-value 

Left foot  v diluents Right foot v diluents 

1 0.2703 0.2721 

2 0.7133 0.9025 

3 0.5403 0.7133 

4 0.2703 0.3913 

5 0.5403 0.1113 

6 0.7133 0.1779 

7 0.1779 0.1779 

8 0.3913 0.1779 

9 0.7133 0.1113 

10 0.0200 0.0662 

11 0.0200 0.0200 

12 0.0200 0.2703 

13 0.0200 0.6242 

14 0.4624 0.5303 

15 0.1113 0.9025 
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Figure 4.3 Changes in foot size as an indication of inflammation, observed over a 15 

day period following the injection of w/t CHIKV (10
5 

pfu in 40µl) to the left hind feet 

of C57BL/6 mice. The width and height (from the heel joint to the end of the foot) 

were multiplied together to estimate the approximate area (mm
2
). Results show mean 

values from five mice with error bars denoting the standard deviation.  

 

Table 4.4 The Mann-Whitney statistical test was used to determine differences 

between the injected foot (left hind) and both the right hind foot of the same animal 

and the DPBS control group: P< 0.05. Yellow shading indicates that Mann-Whitney 

statistical test is significant. 

Time post-challenge 
(days) 

            Group 2         Mann-Whitney statistical p-value 

Left foot  v diluents Right foot V diluents 

1 0.2101 0.2101 

2 0.2963 0.2963 

3 0.5309 0.5309 

4 0.6761 0.6761 

5 0.4034 0.4034 

6 0.2101 0.2101 

7 0.1437 0.1437 

8 0.0947 0.0947 

9 0.6761 0.6761 

10 0.0122 0.0122 

11 0.0122 0.0122 

12 0.0122 0.0122 

13 0.0601 0.2101 

14 0.6761 0.6761 

15 0.0601 0.0601 



174 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Changes in foot size as an indication of inflammation, observed over a 15 

day period following the injection of w/t CHIKV (1 x 10
4 

pfu in 40µl) to the left hind 

feet of C57BL/6 mice. The width and height (from the heel joint to the end of the 

foot) were multiplied together to estimate the approximate area (mm
2
). Results show 

mean values from five mice with error bars denoting the standard deviation. 

 

 

Table 4.5 The Mann-Whitney statistical test was used to determine differences 

between the injected foot (left hind) and both the right hind foot of the same animal 

and the DPBS control group: P< 0.05. Yellow shading indicates that Mann-Whitney 

statistical test is significant. 

Time post-challenge 
(days) 

            Group 3           Mann-Whitney statistical p-value 

Left foot  v diluents Right foot V diluents 

1 0.2963 0.2963 

2 0.6761 0.6761 

3 1.0000 0.4034 

4 0.8345 1.0000 

5 0.2963 0.4034 

6 0.2101 0.4034 

7 0.0122 0.2101 

8 0.2963 1.0000 

9 0.0367 0.8345 

10 0.0051 0.0122 

11 0.0344 0.0367 

12 0.0122 0.0601 

13 0.0122 0.0122 

14 0.1437 0.8345 

15 0.0601 0.5309 
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Figure 4.5 Changes in foot size as an indication of inflammation, observed over a 15 

day period following the injection of A533V mutated CHIKV (2 x 10
4 

pfu in 40µl) to 

the left hind feet of C57BL/6 mice. The width and height (from the heel joint to the 

end of the foot) were multiplied together to estimate the approximate area (mm
2
). 

Results show mean values from five mice with error bars denoting the standard 

deviation. 

 

Table 4.6 The Mann-Whitney statistical test was used to determine differences 

between the injected foot (left hind) and both the right hind foot of the same animal 

and the DPBS control group: P< 0.05. Yellow shading indicates that Mann-Whitney 

statistical test is significant. 

Time post-challenge 
(days) 

            Group 4    Mann-Whitney statistical p-value 

Left foot  v diluents Right foot  v diluents 

1 0.7133 0.7133 

2 0.1779 1.0000 

3 0.5403 0.5403 

4 0.0662 0.1113 

5 0.1779 0.1779 

6 0.2703 0.1779 

7 0.1779 0.1113 

8 0.1113 0.2207 

9 0.9025 0.5403 

10 0.0367 0.1779 

11 0.0200 0.1779 

12 0.0200 0.2207 

13 0.0200 0.0200 

14 0.0122 0.1779 

15 0.1113 0.4624 
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Figure 4.6 Changes in foot size as an indication of inflammation, observed over a 15 

day period following the injection of A533V mutated CHIKV (1 x 10
4 

pfu in 40µl) to 

the left hind feet of C57BL/6 mice. The width and height (from the heel joint to the 

end of the foot) were multiplied together to estimate the approximate area (mm
2
). 

Results show mean values from five mice with error bars denoting the standard 

deviation. 

 

Table 4.7 The Mann-Whitney statistical test was used to determine differences 

between the injected foot (left hind) and both the right hind foot of the same animal 

and the DPBS control group: P< 0.05. Yellow shading indicates that Mann-Whitney 

statistical test is significant. 

Time post-challenge 
(days) 

            Group 5          Mann-Whitney statistical p-value 

Left foot  v diluents Right foot  v diluents 

1 0.4034 0.4034 

2 0.8345 0.5309 

3 0.2963 0.2963 

4 0.4647 0.5309 

5 1.0000 0.1437 

6 0.2101 0.4034 

7 0.0601 1.0000 

8 0.0947 0.1437 

9 0.8345 0.1437 

10 0.0122 0.0367 

11 0.0122 0.8345 

12 0.0122 0.0367 

13 0.0601 0.6761 

14 0.0367 0.0947 

15 0.2963 0.5309 
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Figure 4.7 Changes in foot size as an indication of inflammation, observed over a 1 

day period following the injection of A533V mutated CHIKV (8 x 10
3 

pfu in 40µl) to 

the left hind feet of C57BL/6 mice. The width and height (from the heel joint to the 

end of the foot) were multiplied together to estimate the approximate area (mm
2
). 

Results show mean values from five mice with error bars denoting the standard 

deviation. 

 

 

 

 

 

 

 

 

 

 

 

Table 4.8 The Mann-Whitney statistical test was used to determine differences 

between the injected foot (left hind) and both the right hind foot of the same animal 

and the DPBS control group: P< 0.05. Yellow shading indicates that Mann-Whitney 

statistical test is significant. 

Time post-challenge 
(days) 

            Group 6      Mann-Whitney statistical p-value 

Left foot  v diluents Right foot v diluents 

1 0.5309 0.0521 

2 0.0601 1.0000 

3 0.6761 0.8345 

4 0.6761 0.8345 

5 0.4034 0.8345 

6 0.4034 0.2101 

7 0.2101 0.4034 

8 0.0367 0.0947 

9 0.6015 0.5309 

10 0.0947 0.0122 

11 0.0122 0.2963 

12 0.0367 0.0601 

13 0.0122 0.5309 

14 0.0367 0.0601 

15 0.5309 0.8345 
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Several modifications to the main experimental procedure were made in light of the 

results from the pilot study. In contrast to the first mouse challenge, a group injected 

with DPBS was not included as a negative control since this was not considered 

necessary.  This was replaced by a diluent control group consisting of mice 

challenged with the cell culture medium in which the virus stocks had been prepared 

(DMEM supplemented with 5% FBS). This was to prevent changes caused by 

components of the growth medium being mistaken for those caused by virus. Finally a 

negative control group was included, consisting of three mice that received no 

treatment and were euthanized on the ninth day post-challenge. Figure 4.1 confirms 

the area measured on the mice to determine swelling; Figure 4.8 and table 4.9 show 

results from the inflammation assessment. 

 

Throughout the study no significant differences in body temperature or fluctuations in 

weight gain were observed between the four groups (figure 4.9). Data from the 

different groups was compared using the Mann-Whitney statistical analysis test 

P<0.05) (tables 4.10 and 4.11). 
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Figure 4.8 Changes in foot size as an indication of inflammation observed over a 12 

day period in three groups of C57BL/6 mice. Groups 1 and 2 were challenged with 1 

x 10
4 

pfu w/t or A533V mutated CHIK-SL viruses respectively diluted in DMEM 

medium supplemented with 5% FBS in a total volume of 40µl. Group 3 received a 

similar volume of diluent in the absence of virus. In each case the site of injection was 

the ventral sides of the hind feet. The width and height were multiplied together to 

estimate the approximate area. Results show mean values from five mice with error 

bars denoting the standard deviation. 

 

Table 4.9 The Mann-Whitney statistical test was used to determine differences in foot 

swelling in mice infected with w/t (group 1) and A533V mutant (group 2) CHIK-SL 

viruses with the diluent control (group 3): P< 0.05. Yellow shading indicates that 

Mann-Whitney statistical test is significant. 

Time post-challenge 
(days) 

 

Mann-Whitney Test 

w/t v diluent control A533V mutant v diluent 
control 

1 0.3785 0.4034 

2 1.0000 0.6761 

3 1.0000 0.5309 

4 0.8345 0.9168 

5 0.2963 1.0000 

6 0.2101 0.2101 

7 0.0122 0.0601 

8 0.1437 0.0947 

9 0.0367 0.8345 

10 0.0122 0.0122 

11 0.0122 0.0122 

12 0.0122 0.0122 

13 0.0122 0.0601 

14 0.1437 0.0367 

15 0.0601 0.2963 
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Figure 4.9 Clinical data from four groups of adult C57BL/6 mice. Groups 1 and 2 

(G1 blue and G2 red) were challenged with 1 x 10
4
 pfu of w/t and A533V mutant 

CHIK-SL viruses respectively diluted in a total of 40µl DMEM medium containing 

5% FBS, group 3 (G3 green)were challenged with a similar volume of diluent and 

group 4 (G4 purple) received no treatment. The data represents the mean of six mice 

each from groups 1-3 and three from group 4 with error bars denoting standard 

deviation: (a) temperature differences between groups: (b) changes in body weight. 
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Table 4.10 The Mann-Whitney statistical test was used to determine significant 

differences between the body temperatures of adult C57BL/6 mice challenged with 

w/t and A533V mutant CHIK-SL viruses  with the diluent control group (n=6). The 

same test was applied to compare the diluent control group with an untreated group 

which was euthanized on day 9 (n=3) P< 0.05. 

 

 

Table 4.11 The Mann-Whitney statistical test was used to determine significant 

differences between the weight changes in adult C57BL/6 mice challenged with w/t 

and A533V mutant CHIK-SL viruses with a diluent the control group (n=6). The 

same test was applied to compare the diluent control group with an untreated group 

which was euthanized on day 9 (n=3) P< 0.05. 

 

Temperatures Mann-Whitney statistical p-value 

Time post-challenge 

(days) 

w/t v diluent control A533V mutant v 

diluent control 

Diluent control v 

Un-infected control 

0 0.0453 0.0656 0.1213 

1 0.4233 0.0927 0.2453 

2 0.3785 0.4223 0.0933 

3 0.3367 0.4712 0.6985 

4 0.3367 0.7488 0.7963 

5 0.3367 0.2623 0.1556 

6 0.7488 0.9362 0.7963 

7 0.0250 0.5218 0.5186 

8 0.3785 0.9362 0.4386 

9 0.3785 0.2623 0.1213 

10 0.1282 0.2980 - 

11 0.8102 0.9362 - 

12 0.6625 0.2980 - 

Weights Mann-Whitney statistical p-value 

Time post-challenge 
(days) 

w/t v diluent control A533V mutant v 
diluent control 

Diluent control v Un-
infected control 

0 0.1093 0.5752 0.3662 

1 0.0453 0.5752 0.7963 

2 0.1735 0.2298 0.5186 

3 0.1282 0.4712 0.6056 

4 0.1282 0.2298 1.0000 

5 0.0782 0.0782 0.8973 

6 0.1735 0.5218 0.6056 

7 0.0306 0.3785 0.7963 

8 0.2002 0.3785 1.0000 

9 0.1735 0.3785 0.5186 

10 0.1495 0.1735 - 

11 0.6889 0.4712 - 

12 0.4712 0.5752 - 
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4.10 Assessment of viraemic phase 

CHIKV RNA was detected by block RT-PCR in the sera of animals receiving w/t 

CHIKV from between days 1 and 6 post-challenge but not on days 9 and 12 (figure 

4.10). This corresponds to the period immediately prior to the development of foot 

swelling (see figure 4.8) and is of similar duration to that reported for other CHIKV 

isolates with the same mouse model (Gardner et al 2010). 

 

 

 

 

 

 

 

 

 

Figure 4.10 RT-PCR was used to amplify a 424bp CHIKV-specific amplicon. 

Products were visualised by separating 10µl out of 25µl total reaction mixtures by 

agarose gel electrophoresis and illuminating the ethidium bromide-stained gels with 

UV light (302nm).  

 

4.11 Determination of virus titres by qRT-PCR 

A standard curve was produced from the C(t) values obtained by performing the 

CHIKV qRT-PCR method of Edwards et al (2007) on RNA containing the predicted 

amplicon in a series of dilutions of known copy number (figure 4.11 and table 4.11). 

This enabled the approximate amplicon copy number to be estimated from C(t) values 
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obtained by assaying RNA from a variety of tissue samples. The assay was conducted 

on RNA extracted from pre-weighed tissue, derived from the right axial lymph node, 

the right inguinal lymph node, the right hind leg and sections from the spleen and 

liver in culled mice (figure 4.12, table 4.13). Although the use of block RT-PCR 

(figure 4.10) does not provide a quantitative measure of viraemia, the fluorescence 

intensity was greatest for the samples taken one day post-challenge, suggesting that it 

reached a peak at this time. In contrast the qRT-PCR profile shown in figure 4.12 

indicates that the viral load remained high in the leg tissues for the first six days post-

challenge for the w/t virus but only three days for the A533V mutant. For the 

remainder of the study period a rapid depletion of viral RNA in samples was 

observed. Interestingly this decline was more rapid in animals receiving the A533V 

mutant.  

 

Viral loads in the spleen and inguinal lymph nodes were highest between 3 and 6 days 

post-challenge before progressively declining until day 15; levels in the axial lymph 

nodes remained high until day 9. Although there appeared to be no difference in the 

ability of virus to disseminate to these tissues, detectable mutant virus RNA declined 

more rapidly than w/t virus. In all cases viral loads were higher in tissues obtained 

from animals infected with w/t virus than those infected with the A533V mutant 

(table 4.13). 
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Figure 4.11 Graph showing the relationship between the calculated mean copy 

number of a 127bp cDNA CHIKV-specific amplicon and the threshold cycle (Ct 

value) obtained by qRT-PCR (Edwards et al 2007). Error bars show the standard 

deviation over three assays for each dilution..  

 

 

 

 

 

 

 

 

 

Table 4.12 The relationship between the average threshold cycle (Ct value) and 

genome copy numbers obtained by qRT-PCR (Edwards et al 2007).  

Genome 

copy 

numbers 

C(t)1 C(t)2 C(t)3 Mean 

Average 

Standard 

deviation 

1.00E+07 18.32 16.84 17.2 17.45333 0.771838 

1.00E+06 20.11 19.92 20.51 20.18 0.301164 

1.00E+05 23.65 24.56 24.52 24.24333 0.514231 

1.00E+04 27.3 27.61 27.55 27.48667 0.164418 

1.00E+03 29.31 30.38 30.1 29.93 0.554887 

1.00E+02 34.46 34.19 34.19 34.28 0.155885 

1.00E+01 37.54 38.46 36.65 37.55 0.905041 

y = 3.3635x + 13.85 
R² = 0.9969 
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Figure 4.12 Mouse tissues from animals infected subcutaneously with 1 x 10
4
 pfu 

CHIK-SL(r-wt) or 1 x 10
4
 pfu CHIK-SL(r-mut) were assayed for the presence of 

CHIKV RNA by qRT-PCR from the indicated tissues. Assays were performed in 

triplicate using the qRT-PCR method (Edwards et al 2007) C(t) values were 

converted into the approximate RNA copy number using the standard curve shown in 

figure 4.11 and the mean average values shown with error bars denoting standard 

deviation. The coloured bars (blue, red and green) represent individual mice 

euthanized on the days indicated from which tissues were obtained. 

 

 

 

Mann-Whitney statistical p-value:  w/t v A533 mutant 

Time post-
challenge 
(days) 

Leg tissue Axial lymph 
nodes 

Inguinal 
lymph nodes 

Liver Spleen 

1 0.1451 * 0.4799 * * 

3 0.0004 0.9296 0.7239 0.3313 0.0027 

6 0. 0122 0.2697 0.0004 0.0004 0.2164 

9 0. 0240 0.0521 0.7911 * 0.0004 

12 0. 0004 1.0000 0.2164 * 0.1120 

15 0. 0004 0.0031 0.0020 * 0.0004 

 

 

Table 4.13 The Mann-Whitney statistical test was used to determine significant 

differences in genome copy number determined by qRT-PCR in the indicated tissues 

from mice infected subcutaneously with 1 x 10
4
 pfu CHIK-SL(r-wt) or 1 x 10

4
 pfu 

CHIK-SL(r-mut). Significance (yellow shading) confirmed if P<0.05, asterix 

indicates insufficient data to perform the test.  
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4.12 Detection of innate immunity mediators by serology 

To minimize deterioration of blood sample quality, samples were placed on ice 

immediately after collection and processed to obtain serum within approximately 1hr. 

However significant haemolysis was observed in the majority of samples. Storage 

prior to conducting serological assays was at -80°C. 

 

No type I IFN, haptoglobin, SAA or SAP was detected in the mouse sera samples. 

However in each case satisfactory standard curves were produced, indicating that the 

quality of the assay reagents was unlikely to be a factor. Possible explanations are that 

the assays were adversely affected by poor sample quality or that the sera dilutions 

used were incorrect.  

 

IFN-γ was detected between days 9 and 15 post-challenge in sera from w/t virus-

infected animals and between 9 and 12 days post-challenge in those receiving A533V 

mutant virus (figure 4.13). 

 

4.13 Detection of type 1 IFN gene expression in mouse tissues by qRT-PCR 

In view of the limited data on innate immune responses from the serological assays, 

qRT-PCRs were used to measure the relative quantity of transcripts for type 1 IFNs 

and for the IFN-stimulated GTP-binding protein Mx1 (IFNa2, IFNb1 and MX1 

genes). Template RNA was extracted from homogenized leg tissue and assays were 

conducted as described in section 3.7, chapter 3. The results show transient expression 

of IFNa2, IFNb1 and MX1genes in mice infected with the A533V mutant virus on 
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day 1 which declined 3 days post-challenge, (figure 4.14). Expression was detected at 

a later stage in mice challenged with w/t virus approximately 20-26hr post-challenge. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13 Graphs showing IFNγ standard curve and serum IFNγ detected in mice 

infected subcutaneously with 1 x 10
4
 pfu CHIK-SL(r-wt) (blue) or 1 x 10

4
 pfu CHIK-

SL(r-mut) (red) as determined by ELISA. The values shown are the mean average 

from three assays (where this was possible) and the error bars denote standard 

deviation. 
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Figure 4.14 Graphs showing the levels of expression of IFNa2, IFNb1 and Mx1 

genes in RNA extracted from homogenized tissue extracted from the hind leg of adult 

C57BL/6 mice. Mice were challenged with 1 x 10
4
 pfu w/t (blue) or A533V mutant 

(red) CHIKV and groups of three were euthanized at the times indicated. Assays were 

performed in triplicate and the mean average result normalised to HPRT. Error bars 

denote standard deviations. 
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4.14 .1 Histolopathological changes in mouse leg tissue 

Examination of H&E stained tissue specimens by light microscopy revealed 

histological changes indicative of inflammation in the tarsus region but not the stifle 

of the hind legs of animals challenged with virus. The three uninoculated mice culled 

on day 9 showed no morphological abnormalities, however minimal changes were 

noted in 2 of the 18 members of the diluent control group (1 mouse culled at day 1 

and one at day 15). Similar tissues from the stifle region of all animals at each time 

point showed no signs of disease. Changes indicative of disease pathology were 

evaluated as normal, minimum, mild, moderate or marked and are summarised in 

tables 4.14-4.17.  

 

4.14.2 Histolopathological changes in fibrovascular connective tissue 

In tarsus tissue samples from each of the challenged groups, disease pathology was 

observed as indicated by the presence of varying levels of polymorphonuclear 

leukocyte (PMNL) cell infiltrate (table 4.14). This was minimal on day 1 post 

challenge in all animals (figure 4.15 panels a, c and e) and remained at a similar level 

or was normal throughout the 15 day study in individuals from the diluent control 

group (panel f). However in samples from animals culled on days 3, 6 and 9 a clear 

contrast between groups infected with w/t and A533V mutant virus was noted, with 

the most severe disease occurring in the former (figure 4.15 panels d and f). The 

extent of cellular infiltrate increased in group 1 mice from day 1 to day 6, remained at 

this high level on day 9, then decreased on days 12 and 15. A steady increase in the 

degree of tissue change was observed in group 2 mice from day 1 until day 9 and 

thereafter it declined. 
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4.14.3 Histopathological changes in skin 

Minimal levels of inflammatory cell infiltrates were observed in skin from two 

animals from group 2 (1 from day 3 and 1 from 12) and none was observed in the 

diluent control group (table 4.15). However in group 1 histopathological changes 

were observed in individuals from each sampling day; these were minimal in 1 animal 

on days 1, 6 and 15 and in 2 animals on days 3, 9 and 12 (figure 4.16). Changes in the 

remaining mice were mild in 1 animal and moderate in one animal on day 6.    

 

4.14.4 Histopathological changes in synovium 

Synovium was not present in all samples analysed and no changes were observed in 

animals in groups 2 or 3 (table 4.14), however changes such as cellular infiltrates, 

necrosis and disruption of synovial membranes were observed in a total of four 

animals. These were assessed as mild to moderate,  in one animal on day 6 and 1 

animal on day 9  and they were minimal in 2 animals on day 15 (figure 4.17). 

 

4.14.5 Histopathological changes in skeletal muscle  

Differences in the appearance of skeletal muscle in mice from different treatment 

groups were particularly marked (figure 4.18). In animals receiving w/t virus, 

myocyte degeneration and necrosis was observed from days 1 to 15 in all animals at 

each time point apart from a single animal which remained normal (on day 3). On 

days 1 and 3 post-challenge all changes indicating inflammation were assessed as 

minimal or mild, but from days 6 to 15, samples from nine out of 12 mice had 

moderate or marked necrosis (figure 4.18 panels a and b respectively).  Samples from 
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group 2 mice were assessed as normal or minimal on days 1 and 3 and minimal or 

mild on days 6, 12 and 15. The most severe changes amongst group 2 mice (2 

moderate and 1 mild) were observed on day 9 (figure 4.18).  Minimal myocyte 

degeneration was observed in 10 of 18 animals comprising group 3. A cellular 

infiltrate consisting mainly of mononuclear inflammatory cells was observed in 16 out 

of 18 mice from group 1, 5 from group 2 and a single animal from group 3 (table 

4.17). 
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Figure 4.15 Haematoxylin and eosin stained sections of subcutaneous connective 

tissue obtained from the tarsus region of C57BL/6 mice challenged with 40µl of cell 

culture medium containing 1 x 10
4
 pfu CHIK-SL(r-wt), 1 x 10

4
 pfu CHIK-SL(r-mut), 

or diluent control. Sections were visualised by light microscopy and show samples 

obtained 1 (a, c, and e) and 9 (b, d and f) days post challenge. Day 9 images of virus-

infected tissue show an accumulation of inflammatory cells, predominately 

neutrophils in the subcutaneous tissue (marked by arrows) which are minimal or 

absent in day 1 samples and diluent control samples. 
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Table 4.14 Histopathological changes in fibrovascular connective tissues were 

assessed in haematoxylin and eosin stained tissue sections from the tarsus region of 

C57BL/6 mice challenged with 40µl of cell culture medium containing 1 x 10
4
 pfu 

CHIK-SL(r-wt) (group 1), 1 x 10
4
 pfu CHIK-SL(r-mut) (group 2), or diluent control 

(group 3). Three mice from each group were euthanized on the days indicated and 

samples visualised by light microscopy. Samples were assessed and allotted to one of 

the five categories shown to indicate the extent of histological change observed. 

 

Day Group                   Histological changes - severity 

 Normal Minimal Mild Moderate Marked 

 

1 

1 1 2 - - - 

2 2 1 - - - 

3 2 1 - - - 

 

3 

1 - - 2 - 1 

2 3 - - - - 

3 2 1 - - - 

 

6 

1 - - - - 3 

2  1 2 - - 

3 3 - - - - 

 

9 

1 - - - - - 

2 - 1 1 1 - 

3 3 - - - - 

 

12 

1 - - 1 2 - 

2 1 1 1 - - 

3 3 - - - - 

 

15 

1 - - 2 1 - 

2 2 1 - - - 

3 2 1 - - - 
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Figure 4.16 Haematoxylin and eosin stained section showing minimal inflammatory 

cell infiltrate, mainly consisting of neutrophils in the dermis in a C57BL/6 mouse 

challenged with 40µl of cell culture medium containing 1 x 10
4
 pfu CHIK-SL(r-wt). 
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Table 4.15 Histopathological changes in skin specimens were assessed in 

haematoxylin and eosin stained tissue sections from the tarsus region of C57BL/6 

mice challenged with 40µl of cell culture medium containing 1 x 10
4
 pfu CHIK-SL(r-

wt) (group 1), 1 x 10
4
 pfu CHIK-SL(r-mut) (group 2) or diluent control (group 3). 

Three mice from each group were euthanized on the days indicated and samples 

visualised by light microscopy. Samples were assessed and allotted to one of the five 

categories shown to indicate the extent of observed histological change in terms of 

inflammatory infiltrate. 

 

 

 

Day Group Histological changes - severity 

 Normal Minimal Mild Moderate Marked 

 

1 

1 2 1 - - - 

2 3 - - - - 

3 3 - - - - 

 

3 

1 1 2 - - - 

2 2 1 - - - 

3 3 - - - - 

 

6 

1 - 1 1 1 - 

2 3 - - - - 

3 3 - - - - 

 

9 

1 - 2 - 1 - 

2 3 - - - - 

3 3 - - - - 

 

12 

1 1 2 - - - 

2 2 1 - - - 

3 3 - - - - 

 

15 

1 2 1 - - - 

2 3 - - - - 

3 3 - - - - 
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Figure 4.17 Haematoxylin and eosin stained section of tissue obtained from the tarsus 

region of C57BL/6 mouse challenged with 40µl of cell culture medium containing 1 x 

10
4
 pfu CHIK-SL(r-wt). Regions of moderate inflammation of the synovium are 

indicated by arrows. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.16  Histopathological changes in synovium specimens were assessed in 

haematoxylin and eosin stained tissue sections from the tarsus region of C57BL/6 

mice challenged with 40µl of cell culture medium containing 1 x 10
4
 pfu CHIK-SL(r-

wt) (group 1), 1 x 10
4
 pfu CHIKSL(r-mut) (group 2), or diluent control (group 3) 

recieived no treatment. Three mice from each group were euthanized on the days 

indicated and samples visualised by light microscopy. Samples were assessed and 

allotted to one of the five categories shown to indicate the extent of histological 

change in terms of necrosis and inflammatory infiltrate, observed. 

Day Group Histological changes - severity 

 Normal Minimal Mild Moderate Marked 

 

1 

1 3 - - - - 

2 3 - - - - 

3 3 - - - - 

 

3 

1 3 - - - - 

2 3 - - - - 

3 3 - - - - 

 

6 

1 2 - - 1 - 

2 3 - - - - 

3 3 - - - - 

 

9 

1 2 - 1 - - 

2 3 - - - - 

3 3 - - - - 

 

12 

1 3 - - - - 

2 3 - - - - 

3 3 - - - - 

 

15 

1 1 2 - - - 

2 3 - - - - 

3 3 - - - - 
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Figure 4.18 Haematoxylin and eosin stained sections of skeletal muscle tissue 

obtained from the tarsus region of C57BL/6 mice.  Mice were challenged with either 

1 x 10
4
 pfu CHIK-SL(r-wt), 1 x 10

4
 pfu CHIK-SL(r-mut), diluent control or received 

no treatment. Sections were visualised by light microscopy and show samples 

obtained 1 (a and c) and 9 (b, d, e and f) days post-challenge. Areas of myocyte 

degeneration and infiltration of mononuclear inflammatory cells (violet-staining 

regions) are indicated by arrows.  
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Table 4.17 Skeletal muscle pathology: monocyte degeneration (inflammatory 

infiltrate) Histopathological changes in skeletal muscle specimens were assessed in 

haematoxylin and eosin stained tissue sections from the tarsus region of C57BL/6 

mice challenged with 40µl of cell culture medium containing 1 x 10
4
 pfu CHIK-SL(r-

wt) (group 1), 1 x 10
4
 pfu CHIK-SL(r-mut) (group 2), or diluent control (group 3). 

Three mice from each group were euthanized on the days indicated and samples 

visualised by light microscopy. Samples were assessed and allotted to one of the five 

categories shown to indicate the extent of histological change in terms of myocyte 

degeneration and inflammatory cell infiltrate (shown in brackets), observed. 

 

Day Group Histological changes - severity 

 Normal Minimal Mild Moderate Marked 

 

1 

1 - 3 - - - 

2 2 1 - - - 

3 1 2 - - - 

 

3 

1 1 1 (1) 1 - - 

2 1 2 - - - 

3 1 2 - - - 

 

6 

1 - 1 (1) - 2 (2) - 

2 - 1 2 - - 

3 1 1 1 (1) - - 

 

9 

1 - - - 1 2 (3) 

2 - - 1 2 (1) - 

3 1 2 - - - 

 

12 

1 - - (1) 2 (1) 1 (1) - 

2 - 2 1 - (1) - 

3 1 2 - - - 

 

15 

1 - - - (3) 1 2 

2 - 2 1 - - 

3 2 1 - - - 
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DISCUSSION 

Experiments with the C57BL/6 adult mouse model showed that arthritic symptoms 

could be induced with both w/t and A533V mutant viruses derived from the CHIKV 

SL-R233 isolate. Swelling lasting for 4-5 days was observed in the injected legs of 

mice challenged with both virus types, reaching a peak at 10-11 days post exposure. 

In contrast to the report by Gardner et al (2010) swelling was also observed in the 

non-injected limb.  

 

Viraemia in mice infected with w/t CHIKV was detected from 1-6 days post-

challenge by block-based RT-PCR.  High levels of virus RNA detected in 

homogenized leg tissue from animals challenged with w/t virus were also highest 

during this period. Viral RNA levels produced in leg tissue from animals receiving 

A533V mutant virus were lower at day 1 and had declined significantly after day 3 

post-challenge. Viral RNA was detected in liver homogenates from day 3 post-

challenge in mice challenged with both virus types, declining to undetectable levels 

by day 12 for w/t virus and day 9 for A533V mutant virus. In contrast, evidence of 

virus persistence in the axial and inguinal lymph nodes and in the spleen until the end 

of the study. These findings contrast with those of Gardner et al (2010), who reported 

the detection of virus in spleen, inguinal lymph nodes and liver for shorter periods 

post-challenge (until day 5 in lymph nodes and spleen and day 3 in liver tissue). This 

can be explained by the different methods used for virus detection; the qRT-PCR 

assay used in the present study detects genome RNA copy numbers whereas the 

endpoint dilution assay used by the authors of the former study, detects viable virus 

particles. 
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Inflammation of the virus-injected foot was observed in the tarsal region in mice 

treated intradermally with 10
4
 pfu ofeither w/t or A533V virus types. The effective 

viral dose was determined by measuring changes in the area estimated by multiplying 

the width at the widest point of the phalanges by the distance from the end of the 

phalanges to the tarsometatarsal joint. The longest period of significant swelling for 

animals challenged with both virus types was observed with 10
4
pfu and extended 

from days 9-13 post-challenge with w/t virus and days 10 -14 with the A533V mutant 

virus.  

 

 The timing of the foot swelling correlates with histological changes observed in leg 

tissue. These were most marked in the skeletal muscle and connective tissues and 

increased in severity from the first until the ninth day after infection, declining 

thereafter. Similar tissues to those studied in the tarsus were normal in samples from 

members of each treatment group at all time points. The contrasting histological 

findings from virus infected tissues with the diluent control and the absence of 

swelling in the legs of the latter indicate that these changes were brought about as a 

result of the viral challenge, however minimal changes in tissues from 4 (of a total of 

18) animals in the diluent control group occurred. Ideally immunostaining would have 

been done to confirm virus involvement by demonstrating the presence of CHIKV-

specific antigens at sites of pathogenic lesions. 

 

The earliest time point at which IFN-γ was detected (day 9 post-challenge) coincided 

in both virus-infected groups with the period in which the virus RNA copy number 

peaked in leg tissues and the most severe histopathological changes were observed. In 
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samples obtained on days 12 and 15, a reduction in viral RNA and evidence of tissue 

regeneration were observed in subcutaneous connective tissue and skeletal muscle.  

 

qRT-PCR analysis of RNA extracted from leg tissue indicated that earlier type I IFN 

induction occurred in animals challenged with the A533V mutant virus than those 

receiving w/t virus. This finding correlates with the in vitro studies discussed in 

chapter 3.   
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CHAPTER 5 

General Discussion 

 

Since the re-emergence of CHIKV in coastal Kenya in 2004, unprecedented epidemic 

activity over an expanding geographical range has been documented. Furthermore 

associations have been described with several clinical conditions hitherto rarely or 

never previously reported. Prior to this event CHIKV emerged sporadically in 

outbreaks that were usually self-limited and separated in time by years or decades. 

However, whilst the strains affecting Africa, the Indian Ocean islands, south-eastern 

Asia and southern Europe from 2004 until 2012 were predominately sub-lineages of 

the ESCA genotype (Hapuarachchi et al 2010, Powers 2008), a more recent 

emergence of chikungunya in the Phillipines, Indonesia, the Caribbean islands, 

Central and South America (Cassadou et al 2014, Van Bortel et al 2014) is due to the 

Asian genotype. This recent emergence may pose serious public health concerns, as 

Ae. aegyptii is prevalent throughout many tropical and sub-tropical regions in the 

Americas and, much of the population are likely to be at risk of infection. As a 

consequence of the devastating series of CHIKV outbreaks since 2004, there has been 

much interest in the biology and pathogenesis of this and other alphaviruses.  

 

Until recently the lack of a suitable animal model for CHIKV and its classification as 

a hazard group 3 pathogen, have hampered progress in the study of CHIKV 

pathogenesis. In contrast other members of the Alphavirus genus have been more 

amenable to laboratory study. For example the hazard group 2 pathogens SFV and 

SINV have been extensively characterised, and details of their transmission cycles 
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and likely mode of pathogenesis established by numerous studies including reverse 

genetics. Such research has identified several virulence factors and molecular 

structures that enable these (now well studied) viruses to inhibit the host innate 

immune response or to evade its effects. Building on this body of knowledge, the 

work contained in this thesis has been conducted to investigate a hypothesis that 

CHIKV contains a sequence specific virulence determinant in the boundary between 

the non-structural proteins nsP1 and nsP2.  

 

RNA replication in alphaviruses is a highly regulated process in which different 

phases predominate at different stages of the infection cycle. Following translation of 

the nsP ORF, either one of two versions of this nsP polyprotein (nsP123 or nsP1234) 

is synthesised, as an immature (polyprotein) form of the viral replicase. This 

polyprotein is cleaved by a protease action in nsP2 to produce the mature replicase 

complex, which consists of four closely associated nsPs. The co-translation cleavage 

events occur at three conserved sites: nsP1/2, nsP2/3 and nsP3/4. This proteolytic 

processing occurs in a strict order, so that different combinations of the polyprotein 

components predominate before the mature replicase complex is formed (i.e. nsP123 

+ nsP4, followed by nsP1+ nsP23 + nsP4 and finally nsP1+nsP2 +nsP3 +nsP4). The 

catalytic activity of each of these cleavage intermediates favours the synthesis of 

different RNA products. First, the predominant product is a negative-sense copy of 

the viral genomic RNA, next, this product is used as template to synthesise nascent 

genomic (positive-sense) RNA and finally, sub-genomic (26S) RNA which functions 

as mRNA to direct the synthesis of the structural polyprotein.  
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It seems likely that a mutation in the cleavage domain, such as the one engineered in 

this study, would disrupt this process and alter the ratio of RNA species present in 

CHIKV-infected cells. This has been shown to be the case with the nsP2/nsP3 

cleavage site of SINV in a study where p23-cleavage defective clones continued 

synthesising negative-sense RNA in addition to positive genomic and sub-genomic 

forms throughout the infectious process instead of ceasing after the cleavage at the 

nsP1/nsP2 site (Mai et al 2009).  

 

In this thesis an infectious cDNA clone of CHIKV has been created, so that genomic 

RNA can be precisely manipulated using recombinant technology. Since alphavirus 

RNA is infectious, this system enables phenotypic changes introduced through 

specific mutation to be investigated. Based on work which has focused on the low 

level alphavirus pathogen SINV, a specific mutation has been engineered into the 

nsP1/ nsP2 cleavage site of the CHIKV genome. The phenotypic consequences of this 

modification have been examined using classic virological techniques. 

 

5.1 Characterization of circulating CHIKV and choice of infectious clone 

The first step in this investigation was to select and characterise a recently circulating 

CHIKV isolate from a clinical case, rather than a laboratory strain. The virus selected 

(SL-R233) was isolated from the serum of a patient who presented with acute fever at 

a local hospital in Colombo, Sri Lanka in November 2006; through simple passage 

using Vero cells in culture. Essential parameters of this isolate such as effective 

growth in a variety of cell lines, the ability to develop plaques and consistent 
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behaviour following resuscitation from liquid nitrogen were established and the 

nucleotide sequence was then determined. As anticipated, phylogenetic analysis of 

SL-R233  genomic RNA showed that it grouped closely with other ESCA isolates 

from the Indian Ocean (IO) sub-lineage dating from 2006-2008. 

 

 5.2 ESCA and E1-A226V 

The majority of CHIKV outbreaks that have been reported since 2004 have involved 

strains belonging to the ESCA lineage and the Indian sub-lineage. Many are 

characterized by a mutation in the E1 envelope glycoprotein (an A226V substitution). 

This mutation is has been shown to enhance the efficiency of dissemination and 

transmission of the virus by Ae albopictus, so fuelling the epidemic (Tsetsarkin et al 

2007, Vazeille et al 2007). Phylogenetic evidence suggests that the substitution has 

arisen on at least four separate occasions in strains belonging to the ESCA genotype, 

in the Indian Ocean Islands, Cameroon or Gabon, India and Sri Lanka (De 

Lamballerie et al 2008, Kumar et al, 2008). During the outbreak from which isolate 

SL-R233 was obtained, the first evidence of this genotype appeared in early 2007 

(Santosh et al 2008, Kumar et al 2008, Hapuarachchi et al 2010), thus the finding 

presented here of E1-226A was to be expected. 

 

5.3 Sequence context of non-structural proteins 

The presence of an in-frame opal termination codon (TGA) upstream from the 

nsP3/nsP4 cleavage domain has been reported in some alphavirus species including 

strains within species, whilst being replaced by an arginine codon (CGA) in others 
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(Strauss and Strauss 1994, Kim et al 2004). The role of this opal codon in the 

infectious cycle of alphaviruses has not been established, although several have been 

proposed. It has been reported to act as a virulence factor in SFV, as a component that 

enhances the efficiency of SINV growth in cell cultures and, in ONNV as a factor 

required for adaption to infectivity in arthropod cells, (as discussed in chapter 1 

section 1.3.3) (Tuittila and Hinkkanen 2003, Li and Rice 1989, Myles et al 2006).   

Sequence analysis of the nsP3/nsP4 cleavage domain of SL-R233 virus indicated that 

a heterogeneous population was present with respect to this locus. Specifically the 

analysis of sequence traces from multiple RT-PCR products revealed that whilst there 

was a dominant signal for cytidine in the first nucleotide position of the codon, a 

weaker signal for thymidine was also present. 

 

5.4 Construction of the infectious clone 

The first version of the cDNA CHIKV clone constructed in this work, consisted of the 

entire 11.8kb sequence from the start of the 5’UTR to the junction of the 3’UTR with 

a short poly-A tail, determined directly from sequencing. It was named pCHIK-SL(A) 

to indicate that no poly-A tail had been added. It was reasoned that if infectious RNA 

obtained from in vitro transcription could be successfully introduced into susceptible 

host cells (by transfection), the 5’ ORF encoding the replicase component proteins 

would be translated and initiate the virus replication cycle. Initially this approach was 

successful, as w/t virus was immediately rescued from BHK21 cells that were 

electroporated with this RNA product. However, subsequent attempts at rescuing 

infectious virus using the same conditions were inconsistent and generally less 

successful. Comparisons with other alphavirus cDNA clones indicated that the major 
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difference between these and pCHIK-SL(A-) was the shortness in length of a poly-A 

tail in the latter. Further investigations determined the presence of CHIKV-specific 

amplicons in excess of 1kb, in cell monolayers 8 days after electroporation, indicating 

that the poly-A tail in the virus genome was more likely to have a role in aiding 

efficient translation than in maintaining RNA stability. A poly-A tail with a minimum 

length of 11 residues has been reported to combine with the terminal 19 nucleotides of 

the UTR to function as the core promoter for negative-strand RNA synthesis in SINV 

(Hardy and Rice 2005). Attoui et al (2007) estimated that the poly-A tail length 

present in MIDV was between 200 and 250 adenine residues. 

 

Thus an investigation was undertaken to determine the poly-A tail length present in 

w/t CHIKV RNA with a view to modifying pCHIK-SL(A-) accordingly. It was 

demonstrated in a series of amplicons derived from both pCHIK-SL(A-)-transcribed 

RNA and from the African prototype CHIKV strain S27 (Khan et al 2002), that tail 

lengths ranged from between 22 and 78 adenine residues. A strategy adding a tail in 

approximately the middle of this range (40 residues) were devised to modify clone 

pCHIK-SL(A-), creating the clone pCHIK-SL(wt). Repeated transfections using RNA 

transcribed from this new clone was shown to efficiently produce infectious virus, 

indicating that whilst not being essential, this component performs an important 

function. pCHIK-SL(wt) was subsequently used as the basis  of  the clone, pCHIK-

SL(A533V) containing the A533V mutation. 
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5.5 In vitro studies 

Experiments comparing in vitro growth kinetics of w/t and A533V mutant viruses 

discussed in chapter 3 showed that in the absence of a type I IFN response (in Vero 

cell cultures), they reached similar titres for the final two time-points (24 and 48hr 

post-infection). However, significantly lower viral yields for the A533V mutant were 

observed at the earlier time-points. Interestingly, the plaque sizes produced by the 

A533V mutant virus on the same host cells were significantly smaller than those of 

w/t virus, these observations indicating that the latter possesses a growth advantage. 

When the growth kinetics of the two virus types were compared in L929 cell cultures 

(a cell line capable of mounting a type 1 IFN response) a different profile was 

observed. In this case the A533V mutant grew to higher titres than w/t virus until a 

peak was reached at approximately 20hr post-infection, before markedly declining. 

This drop in titres was not observed with w/t virus between the peak reached at 26hr 

(post-infection) and the last time-point assayed (50hr post infection). A possible 

explanation for this observation is that the A533V mutant is more efficient than the 

w/t virus in inducing type 1 IFN in the host cells resulting in earlier viral clearance.  

 

5.6 Virus induction of type 1 IFN 

The data obtained from qRT-PCR assays to measure up-regulation of the genes 

encoding IFN-α, IFN-β and Mx1 in L929 cells indicates that the w/t virus is less 

efficient at inducing these genes than the A533V mutant. Induction of these genes 

first occurred in cells infected with the A533V mutant virus at 8-20hr post infection 

which coincides with the time that peak titres were obtained. The gene expression 

reached a maximum at 26hr post-infection, at which time virus titres had begun to 
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decline. In contrast, type 1 IFN induction in L929 cells infected with w/t virus was 

delayed and occurred at lower levels than the mutant-infected cells until 43hr post-

infection. The hypothesis that the mutation engineered into the A533V clone is more 

effective at inducing a type 1 IFN response is thus supported by this work.  

5.7 In vivo work 

The course of infection and pathology induced in the mouse model was consistent and 

measurable, however it did differ slightly from that reported by Gardner et al (2010). 

These authors recorded maximum foot swelling on days 7 post-challenge whereas this 

was observed on days 11 (w/t) and 13 (A533V), in the present study. It is not known 

whether this was due to natural variation amongst C57BL/6J mice or a significant 

discrepancy. If significant, a possible explanation is that the CHIK-SL(r-wt) and 

CHIK-SL(r-mut) stocks used in mouse challenges were propagated in Vero cell 

cultures whereas the former authors passaged virus isolates in C6/36  (Ae. albopictus) 

cells. Although the Vero cell line is incapable of producing type 1 IFN, it is possible 

that other components of the innate immune system, perhaps initiated by host 

detection of pattern-associated molecular patterns (PAMPS), inhibited the ability of 

the virus to infect other mammal (mouse) cells. In contrast, the C57BL/6J model of 

Morrison et al (2011) produced foot swelling in younger (14 day old) mice which 

reached a peak at 7-10 days using virus prepared in Vero cells. Alternatively the 

selected mouse model is not equally susceptible to different CHIKV strains and may 

have produced rheumatic disease more efficiently if the SL-R233-based clones had 

been adapted to the mouse. Gardner et al (2010) reported that whereas a Réunion 

Island isolate, LR 2006-OPY1 produced consistent levels of viraemia, an Asian 

isolate required nine passages in order to adapt. 
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The animal-based studies show a similar pattern with regard to type 1 IFN induction 

as in L929 cell cultures. In each case transient expression of IFN-α and IFN-β and 

Mx1 in A533V mutant-infected mice was relatively higher 1 day post-challenge than 

for those infected with w/t virus though it was much reduced after day 3.  In vivo w/t 

virus genome copy numbers (directly correlating to viral load) in tissue samples were 

higher at each time point than with the A533V mutant. In both cases high viral loads 

were detected in leg tissue at day 1 post-challenge, but whereas by day 6 the A533V 

mutant had declined to an undetectable level, a significant reduction in w/t virus was 

not seen until day 9, with low viral load still being detected until the end of the 

experiment.  There was thus a period between the disappearance of virus in the leg 

tissue and the earliest indication of swelling in the legs (day 9). These observations 

are in contrast with virus assays conducted on the lymphoid tissues. Virus was 

detected in w/t mice in both the axial and inguinal lymph nodes in all mice infected 

with w/t virus from days 3 to 15 and in the spleen from days 1 to15. A533V mutated 

virus was detected in the inguinal lymph nodes and spleen in all mice from days 3 to 

12 and in the axial lymph nodes and from days 3 to 9. In individual cases virus 

genomes were detected to the end of the experiment. These findings may be indicative 

of viable virus persisting at these sites as has been reported in a non-human primate 

model (Labadie et al 2010).  

 

The continued presence of viral material may be linked to the activation of T cells in 

the lymphoid organs and to the appearance of IFN-γ on day 9. This coincides with the 

timing of the onset of leg swelling. CHIK-specific CD4+ T cells producing IFN-γ 
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were reported by Teo et al (2012) to be present in inflamed joints and to have a role in 

pathology in CHIKV-infected mice, however Messaoudi et al (2013) reported that an 

increased persistence of arthritic disease in older CHIKV-infected primates was 

associated with a reduced virus-specific T cell response, suggesting that they play a 

protective role. T cell production of IFN-γ has shown to play an important role in the 

clearance of other alphaviruses (Binder and Griffin 2001, Sun et al 2011).  

5.8 Histopathological changes 

The histology findings indicate that C57BL/6J mice challenged with w/t and A533V 

viruses at similar titres both developed significant changes indicative of an acute 

inflammatory condition, increasing in severity from day 1 to day 9 post-challenge 

followed by a progressive decrease in cell damage observed on days 12 and 15. 

However the overall severity for each time point (summarized in tables 4.14-4.17) 

was consistently greater in the w/t group, indicating that the introduction of the 

A533V mutation, at least partially attenuated the virus. Changes were most severe in 

the supporting connective tissue and the skeletal muscle of infected leg tissue, both 

being associated with a prolific infiltrate of mononuclear leukocytes. Changes 

indicative of inflammation in the synovium were only seen in a minority of animals 

and confined to those infected with w/t virus. In this respect the results differ from 

those reported in the C57BL/6 mouse model by Gardner et al (2010) and the primate 

model of Labadie et al (2010). 
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5.9 Conclusions 

Taken together the results generated in this study indicate the presence of a virulence 

factor in the CHIKV nsP1/nsP2 cleavage site and thus support the hypothesis under 

investigation. Alphaviruses are distributed in all continents of the world and infect a 

diverse range of animal species. As discussed in chapter 1, many members of the 

genus encode proteins that function to antagonise the host IFN response, both by 

mediating shutoff of host protein synthesis and by interacting with specific effector 

molecules with roles in cell signalling pathways (Breakwell et al 2007, Garmashova 

et al 2006), Garmashova et al 2007b, Aguilar et al 2007, Fros et al 2010). Whilst the 

A533V mutation may partially attenuate the virus it is still capable of infecting a 

susceptible host. Thus the proposed virulence factor in the nsP1/nsP2 cleavage site 

may be one of several mechanisms that work in concert to overcome the mammalian 

host innate immunity.  

 

5.10 Possible rationale for A533V-induced phenotype 

Given that a major role of nsP1 is in effecting 5' capping of RNA transcripts, it is 

possible that the engineered amino acid substitution at the P3 position may adversely 

affect this process, thereby exposing an increased volume of un-capped RNA to host 

cell pattern recognition receptors. This would result in the induction of increased 

levels of IFN through the pathways triggered by RIG-1 or PKR. Alternatively the 

failure of efficient cleavage at the nsP1/nsP2 junction may inhibit the translocation of 

nsP2 to the host cell nucleus, a process believed to be instrumental in inhibiting the 

induction of IFNs through shut-off of host protein synthesis (Montgomery and 

Johnson 2007).  
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5.11 Future work 

The infectious clone developed in this study has been shown to be a useful tool to 

investigate the infectious cycle and pathogenesis of CHIKV. The principles used in its 

construction might also be adapted for the development of similar constructs based on 

other alphaviruses. In recent years the re-emergence of several of other Old World 

alphaviruses including ONNV and MAYV (Lanciotti et al 1998, Gomes et al 2012), 

with close evolutionary relationships to CHIKV, have been documented. In view of 

the impact on vector specificity and pathogenic consequences, attributed to the 

acquisition of the E2 A226V mutation in CHIKV, the potential for other species to 

emerge in a similar way may be significant. 

 

Several questions arising from the findings in this study in the context of a powerful 

research tool, will form the basis of interesting future work. The SL-R233 isolate on 

which the clones in this work were based was shown to consist of a heterogeneous 

population with respect to the presence of the alternative codons CGA or TGA 

(arginine or the opal termination codon) near to the 3’ end of nsP3. The arginine-

containing version was incorporated into the clones pCHIK-SL(wt) and pCHIK-

SL(A533V) as this appeared to be the dominant species present. However the 

construction of a w/t clone containing the alternative loci would be of use in 

investigating whether either version is more pathogenic in the mouse model, also to 

monitor the acquisition of mutations when both are passaged in insect and mammalian 

cells. 
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Although evidence of arthritic disease was observed in the mouse model selected for 

the study the outcomes differed in some respects from those reported by Gardner et al 

(2010). In addition to the timing of the leg swelling previously mentioned,  in the 

original study more extensive histopathologic changes were observed in the synovium 

and subcutaneous regions, which were largely absent in the present study. It is 

possible that adaption of the SL-R233-based virus by conducting serial passages in 

C57BL/6 mice would have resulted in symptoms that more closely mirror those seen 

in human patients. Were this process to be conducted, it would be possible to monitor 

changes in the genomic sequence and determine loci that were important for adaption 

to the mammalian host. 

 

In summary this thesis describes the successful development of a reverse genetics 

system for the study of CHIKV and demonstates the utility of this tool by 

investigating the hypothesis that a virulence determinant is present within the 

nsP1/nsP2 cleavage domain. Finally evidence is presented of its role in the 

suppression of the type 1 IFN response in the mammalian host. 
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APPENDICES  

 

 

Appendix A: Proprietary Protocols 
 

 

 

A1 Qiagen®QIAquick® PCR purification kit  
 

QIAquick PCR Purification Kit Protocol 
using a microcentrifuge 
 
This protocol is designed to purify single- or double-stranded DNA fragments 
from PCR and other enzymatic reactions. For cleanup of other enzymatic 
reactions, follow the protocol as described for PCR samples or use the new 
MinElute Reaction Cleanup Kit. Fragments ranging from 100 bp to 10 kb are 
purified from primers, nucleotides, polymerases, and salts using QIAquick 
spin columns in a microcentrifuge. 
 
Notes: • Add ethanol (96–100%) to Buffer PE before use (see bottle label for 
volume). 

• All centrifuge steps are at 10,000 x g (~13,000 rpm) in a conventional 
tabletop microcentrifuge. 
 
1. Add 5 volumes of Buffer PB to 1 volume of the PCR sample and mix. It 
is not necessary to remove mineral oil or kerosene. 
For example, add 500 μl of Buffer PB to 100 μl PCR sample (not including 
oil). 
2. Place a QIAquick spin column in a provided 2 ml collection tube. 
3. To bind DNA, apply the sample to the QIAquick column and centrifuge 
for 30–60 s. 
4. Discard flow-through. Place the QIAquick column back into the same 
tube. 
Collection tubes are re-used to reduce plastic waste. 
5. To wash, add 0.75 ml Buffer PE to the QIAquick column and 
centrifuge for 30–60 s. 
6. Discard flow-through and place the QIAquick column back in the 
same tube. 
Centrifuge the column for an additional 1 min at maximum speed. 
IMPORTANT: Residual ethanol from Buffer PE will not be completely 
removed unless the flow-through is discarded before this additional 
centrifugation. 
7. Place QIAquick column in a clean 1.5 ml microcentrifuge tube. 
8. To elute DNA, add 50 μl Buffer EB (10 mM Tris·Cl, pH 8.5) or H2O to 
the center of the QIAquick membrane and centrifuge the column for 1 
min. Alternatively, for increased DNA concentration, add 30 μl elution 
buffer to the center of the QIAquick membrane, let the column stand for 
1 min, and then centrifuge. 
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IMPORTANT: Ensure that the elution buffer is dispensed directly onto the 
QIAquick membrane for complete elution of bound DNA. The average eluate 
volume is 48 μl from 50 μl elution buffer volume, and 28 μl from 30 μl elution 
buffer. Elution efficiency is dependent on pH. The maximum elution efficiency 
is achieved between pH 7.0 and 8.5. When using water, make sure that the 
pH value is within this range, and store DNA at –20°C as DNA may degrade 
in the absence of a buffering agent. The purified DNA can also be eluted in 
TE (10 mM Tris·Cl, 1 mM EDTA, pH 8.0), but the EDTA may inhibit 
subsequent enzymatic reactions. 
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A2 Gel extraction - Qiagen®QIAquick® Gel Extraction kit 

 
 

QIAquick Gel Extraction Kit Protocol using a microcentrifuge 
This protocol is designed to extract and purify DNA of 70 bp to 10 kb from 
standard or low-melt agarose gels in TAE or TBE buffer. Up to 400 mg 
agarose can be processed per spin column. This kit can also be used for DNA 
cleanup from enzymatic reactions  
For DNA cleanup from enzymatic reactions using this protocol, add 3 volumes 
of Buffer QG and 1 volume of isopropanol to the reaction, mix, and proceed 
with step 6 of the protocol. Alternatively, use the new MinElute Reaction 
Cleanup Kit. 

Notes: • The yellow color of Buffer QG indicates a pH 7.5. 
• Add ethanol (96–100%) to Buffer PE before use (see bottle label for 
volume). 
• Isopropanol (100%) and a heating block or water bath at 50°C are required. 

• All centrifugation steps are carried out at 10,000 x g (~13,000 rpm) in a 
conventional table-top microcentrifuge. 
• 3 M sodium acetate, pH 5.0, may be necessary. 
1. Excise the DNA fragment from the agarose gel with a clean, sharp 
scalpel. 
Minimize the size of the gel slice by removing extra agarose. 
2. Weigh the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 
1 volume of gel (100 mg ~ 100 μl). 
For example, add 300 μl of Buffer QG to each 100 mg of gel. For >2% 
agarose gels, add 6 volumes of Buffer QG. The maximum amount of gel slice 
per QIAquick column is 400 mg; for gel slices >400 mg use more than one 
QIAquick column. 
3. Incubate at 50°C for 10 min (or until the gel slice has completely 
dissolved). To help dissolve gel, mix by vortexing the tube every 2–3 
min during the incubation. 
IMPORTANT: Solubilize agarose completely. For >2% gels, increase 
incubation time. 
4. After the gel slice has dissolved completely, check that the color of 
the mixture is yellow (similar to Buffer QG without dissolved agarose). 
If the color of the mixture is orange or violet, add 10 μl of 3 M sodium acetate, 
pH 5.0, and mix. The color of the mixture will turn to yellow. The adsorption of 

DNA to the QIAquick membrane is efficient only at pH 7.5. Buffer QG 

contains a pH indicator which is yellow at pH 7.5 and orange or violet at 
higher pH, allowing easy determination of the optimal pH for DNA binding. 
5. Add 1 gel volume of isopropanol to the sample and mix. 
For example, if the agarose gel slice is 100 mg, add 100 μl isopropanol. This 
step increases the yield of DNA fragments <500 bp and >4 kb. For DNA 
fragments between 500 bp and 4 kb, addition of isopropanol has no effect on 
yield. 
6. Place a QIAquick spin column in a provided 2 ml collection tube. 
7. To bind DNA, apply the sample to the QIAquick column, and 
centrifuge for 1 min. 
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The maximum volume of the column reservoir is 800 μl. For sample volumes 
of more than 800 μl, simply load and spin again. 
8. Discard flow-through and place QIAquick column back in the same 
collection tube. 
Collection tubes are re-used to reduce plastic waste. 
9. (Optional): Add 0.5 ml of Buffer QG to QIAquick column and 
centrifuge for 1 min. 
This step will remove all traces of agarose. It is only required when the DNA 
will subsequently be used for direct sequencing, in vitro transcription or 
microinjection. 
10. To wash, add 0.75 ml of Buffer PE to QIAquick column and 
centrifuge for 1 min. 
Note: If the DNA will be used for salt sensitive applications, such as blunt-end 
ligation and direct sequencing, let the column stand 2–5 min after addition of 
Buffer PE, before centrifuging. 
11. Discard the flow-through and centrifuge the QIAquick column for an 

additional 1 min at 10,000 x g (~13,000 rpm). 
IMPORTANT: Residual ethanol from Buffer PE will not be completely 
removed unless the flow-through is discarded before this additional 
centrifugation. 
12. Place QIAquick column into a clean 1.5 ml microcentrifuge tube. 
13. To elute DNA, add 50 μl of Buffer EB (10 mM Tris·Cl, pH 8.5) or H2O 
to the center of the QIAquick membrane and centrifuge the column for 1 
min at maximum speed. Alternatively, for increased DNA concentration, 
add 30 μl elution buffer to the center of the QIAquick membrane, let the 
column stand for 1 min, and then centrifuge for 1 min. 
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A3 GeneElute™ Plasmid miniprep kit  
 
Preparation Instructions 

1. Thoroughly mix reagents Examine reagents for precipitation. If any reagent 
forms a precipitate, warm at 55–65 °C until the precipitate dissolves and allow 
to cool to room temperature before use. 
2. Resuspension Solution Spin the tube of the RNase A Solution (Catalog No. 
R6148) briefly to collect the solution in the bottom of the tube. Add 13 μl (for 
10 prep package), 78 μl (for 70 prep package) or 500 μl (for 350 prep 
package) of the RNase A Solution to the Resuspension Solution prior to initial 
use. Store at 4 °C. 
3. Wash Solution Dilute the Wash Solution Concentrate with 10 ml (10 prep 
package), 100 ml (70 prep package), or 300 ml (350 prep package) of 95–
100% ethanol prior to initial use. After each use, tightly cap the diluted wash 
solution to prevent the evaporation of ethanol. 
 
Procedure 

Note: All centrifugation speeds are given in units of g. Please refer to Table 1 
for information on converting g-force to rpm. If centrifuges/rotors for the 
required g-forces are not available, use the maximum g-force possible and 
increase the spin time proportionally. Spin until all liquid passes through the 
column. 
All steps are carried out at room temperature. Harvest cells Pellet 1–5 ml of 
an overnight recombinant E. coli culture by centrifugation. The optimal volume 
of culture to use depends upon the plasmid and culture density. For best 
yields, follow the instructions in the note below. Transfer the appropriate 
volume of the recombinant E. coli culture to a microcentrifuge tube and pellet 
cells at ;12,000 3 g for 1 minute. Discard the supernatant. 
Note: For best results with recombinant E. coli grown in LB (Luria Broth), use 
1–3 ml of culture for high copy plasmids or 1–5 ml of culture for low copy 
plasmids. With recombinant E. coli grown in rich media such as TB (Terrific 
Broth) or 2X YT, use only 1 ml of culture. Higher volumes can cause a 
reduction in yield. 
1. Resuspend cells Important Reminder: Verify that appropriate volume 
RNase A Solution was added to the Resuspension Solution. 
Completely resuspend the bacterial pellet with 200 μl of the Resuspension 
Solution. Vortex or pipette up and down to thoroughly resuspend the cells until 
homogeneous. Incomplete resuspension will result in poor recovery. Another 
rapid way to resuspend the cell pellets is to scrape the bottoms of the 
microcentrifuge tubes back and forth 5 times across the surface of a 
polypropylene microcentrifuge tube storage rack. 
2. Lyse cells Lyse the resuspended cells by adding 200 μl of the 
Lysis Solution. Immediately mix the contents by gentle inversion (6–8 times) 
until the mixture becomes clear and viscous. Do not vortex. Harsh mixing will 
shear genomic DNA, resulting in chromosomal DNA contamination 
in the final recovered plasmid DNA. Do not allow the lysis reaction to exceed 
5 minutes. Prolonged alkaline lysis may permanently denature supercoiled 
plasmid DNA that may render it unsuitable for most downstream 
applications. 
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3. Neutralize Precipitate the cell debris by adding 350 μl of the 
Neutralization/Binding Solution. Gently invert the tube 4–6 times. Pellet the 
cell debris by centrifuging at ;12,000 3 g or maximum speed for 10 minutes. 
Cell debris, proteins, lipids, SDS, and chromosomal DNA should fall out of 
solution as a cloudy, viscous precipitate. If the supernatant contains a large 
amount of floating particulates after centrifugation, recentrifuge the 
supernatant before proceeding to step 6. 
4. Prepare Column Insert a GenElute Miniprep Binding Column into a 
provided microcentrifuge tube, if not already assembled. 
Add 500 μl of the Column Preparation Solution to each miniprep column and 
centrifuge at 12,000 3 g for 30 seconds to 1 minute. Discard the flow-through 
liquid. Note: The Column Preparation Solution maximizes binding of DNA to 
the membrane resulting in more consistent yields. 
5. Load cleared lysate Transfer the cleared lysate from step 3 to the column 
prepared in step 4 and centrifuge at ;12,000 3 g for 30 seconds to 1 minute. 
Discard the flow-through liquid. 
6. Optional wash (use only with EndA+ strains) Add 500 μl of the Optional 
Wash Solution to the column. Centrifuge at ;12,000 3 g for 30 seconds to 1 
minute. Discard the flow-through liquid. Note: When working with bacterial 
strains containing the wild-type EndA+ gene, such as HB101, JM101, and the 
NM and PR series, the Optional Wash step is necessary to avoid nuclease 
contamination of the final plasmid DNA product. 
7. Wash column Important Reminder: Verify that ethanol has been added to 
the bottle of Wash Solution 2. Add 750 μl of the diluted Wash Solution to the 
column. Centrifuge at ;12,000 3 g for 30 seconds to 1 minute. The column 
wash step removes residual salt and other contaminants introduced during 
the column load. Discard the flow-through liquid and centrifuge again at 
maximum speed for 1 to 2 minutes without any additional Wash Solution to 
remove excess ethanol. 
8. Elute DNA Transfer the column to a fresh collection tube. Add 100 μl of 
Elution Solution or molecular biology reagent water to the column. For DNA 
sequencing and other enzymatic applications, use water or 5 mM Tris-HCl, pH 
8.0, as an eluant. Centrifuge at ;12,000 3 g for 1 minute. The DNA is now 
present in the eluate and is ready for immediate use or storage at –20 °C. 
Note: If a more concentrated plasmid DNA preparation is required, the elution 
volume may be reduced to a minimum of 50 μl. However, this may result in a 
reduction in the total plasmid DNA yield. 
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A4 Qiagen® QIAfilter Plasmid Midi kit 
 

Procedure 
1. Pick a single colony from a freshly streaked selective plate and 
inoculate a starter culture of 2–5 ml LB medium containing the 
appropriate selective antibiotic. Incubate for approx. 8 h at 37°C with 
vigorous shaking (approx. 300 rpm). 
Use a tube or flask with a volume of at least 4 times the volume of the culture. 
2. Dilute the starter culture 1/500 to 1/1000 into selective LB medium. For 

high-copy plasmids, inoculate ▲25 ml or ● 100 ml medium with ▲25–

50 μl or ● 100–200 μl of starter culture. For low-copy plasmids, 

inoculate ▲ 50–100 ml or ● 250 ml medium with ▲ 100–200 μl or ● 
250–500 μl of starter culture. Grow at 37°C for 12–16 h with vigorous 
shaking (approx. 300 rpm). 
Use a flask or vessel with a volume of at least 4 times the volume of the 
culture. The culture should reach a cell density of approximately 3–4 x 109 
cells per milliliter, which typically corresponds to a pellet wet weight of 
approximately 3 g/liter medium. 
3. Harvest the bacterial cells by centrifugation at 6000 x g for 15 min at 
4°C. 
ƒ If you wish to stop the protocol and continue later, freeze the cell pellets at –
20°C. 

4. Resuspend the bacterial pellet in ▲ 4 ml or ● 10 ml Buffer P1. 

For efficient lysis it is important to use a vessel that is large enough to allow 
complete mixing of the lysis buffers. Ensure that RNase A has been added to 
Buffer P1. 
If LyseBlue reagent has been added to Buffer P1, vigorously shake the buffer 
bottle before use to ensure LyseBlue particles are completely resuspended. 
The bacteria should be resuspended completely by vortexing or pipetting up 
and down until no cell clumps remain. 

5. Add ▲4 ml or ● 10 ml Buffer P2, mix thoroughly by vigorously 

inverting the sealed tube 4–6 times, and incubate at room temperature 
(15–25°C) for 5 min. 
Do not vortex, as this will result in shearing of genomic DNA. The lysate 
should appear viscous. Do not allow the lysis reaction to proceed for more 
than 5 min. After use, the bottle containing Buffer P2 should be closed 
immediately to avoid acidification from CO2 in the air. If LyseBlue has been 
added to Buffer P1 the cell suspension will turn blue after addition of Buffer 
P2. Mixing should result in a homogeneously colored suspension. If the 
suspension contains localized colorless regions or if brownish cell clumps are 
still visible, continue mixing the solution until a homogeneously colored 
suspension is achieved. 
During the incubation prepare the QIAfilter Cartridge: 
Screw the cap onto the outlet nozzle of the QIAfilter Midi or QIAfilter 
Maxi Cartridge. Place the QIAfilter Cartridge in a convenient tube. 

6. Add ▲ 4 ml or ● 10 ml chilled Buffer P3 to the lysate, and mix 

immediately and thoroughly by vigorously inverting 4–6 times. Proceed 
directly to step 7. Do not incubate the lysate on ice. 



258 
 

Precipitation is enhanced by using chilled Buffer P3. After addition of Buffer 
P3, a fluffy white material forms and the lysate becomes less viscous. The 
precipitated material contains genomic DNA, proteins, cell debris, and KDS. 
The lysate should be mixed thoroughly to ensure even potassium dodecyl 
sulfate precipitation. If the mixture still appears viscous, more mixing is 
required to completely neutralize the solution. It is important to transfer the 
lysate into the QIAfilter Cartridge immediately in order to prevent later 
disruption of the precipitate layer. If LyseBlue reagent has been used, the 
suspension should be mixed until all trace of blue has gone and the 
suspension is colorless. A homogeneous colorless suspension indicates that 
the SDS has been effectively precipitated. 
7. Pour the lysate into the barrel of the QIAfilter Cartridge. Incubate at 
room temperature (15–25°C) for 10 min. Do not insert the plunger! 
Important: This 10 min incubation at room temperature is essential for 
optimal performance of the QIAfilter Midi or QIAfilter Maxi Cartridge. Do not 
agitate the QIAfilter Cartridge during this time. A precipitate containing 
proteins, genomic DNA, and detergent will float and form a layer on top of the 
solution. This ensures convenient filtration without clogging. If, after the 10 
min incubation, the precipitate has not floated to the top of the solution, 
carefully run a sterile pipet tip around the walls of the cartridge to dislodge it. 
8. Equilibrate a QIAGEN-tip 100 or QIAGEN-tip 500 by applying 4ml or 
10 ml Buffer QBT, and allow the column to empty by gravity flow. 
Flow of buffer will begin automatically by reduction in surface tension due to 
the presence of detergent in the equilibration buffer. Allow the QIAGEN-tip to 
drain completely. QIAGEN-tips can be left unattended, since the flow of buffer 
will stop when the meniscus reaches the upper frit in the column. 
9. Remove the cap from the QIAfilter Cartridge outlet nozzle. Gently 
insert the plunger into the QIAfilter Midi or QIAfilter Maxi Cartridge and 
filter the cell lysate into the previously equilibrated QIAGEN-tip. 
Filter until all of the lysate has passed through the QIAfilter Cartridge, but do 
not apply extreme force. Approximately 10 ml and 25 ml of the lysate are 
generally recovered after filtration. 

☞ Remove a 40 μl or 120 μl sample of the filtered lysate and save for an 

analytical gel (sample 1) in order to determine whether growth and lysis 
conditions were optimal. 
10. Allow the cleared lysate to enter the resin by gravity flow. 

☞ Remove a ▲ 240 μl or ● 120 μl sample from the flow-through and save 

for an analytical gel (sample 2) in order to determine the efficiency of DNA 
binding to the QIAGEN Resin. 

11. Wash the QIAGEN-tip with ▲ 2 x 10 ml or ● 2 x 30 ml Buffer QC. 

Allow Buffer QC to move through the QIAGEN-tip by gravity flow. The first 
wash is sufficient to remove all contaminants in the majority of plasmid DNA 
preparations. The second wash is especially necessary when large culture 
volumes or bacterial strains producing large amounts of carbohydrates are 
used. 

☞ Remove a ▲ 400 μl or ● 240 μl sample from the combined wash 

fractions and save for an analytical gel (sample 3). 

12. Elute DNA with ▲ 5 ml or ● 15 ml Buffer QF. 
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Collect the eluate in a 15 ml or 50 ml tube (not supplied). Use of 
polycarbonate centrifuge tubes is not recommended as polycarbonate is not 
resistant to the alcohol used in subsequent steps. Midi 
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A5 QIAamp® Viral RNA Mini Kit 
 

QIAamp Viral RNA Mini Spin Protocol 
• Equilibrate samples to room temperature (15–25°C). 
• Equilibrate Buffer AVE to room temperature for elution in step 10. 
• Check that Buffer AW1, Buffer AW2, and Carrier RNA have been prepared  
• Redissolve precipitate in Buffer AVL/Carrier RNA by heating, if necessary, and cool 
to room temperature before use. 
• All centrifugation steps are carried out at room temperature. 
1. Pipet 560 μl of prepared Buffer AVL containing Carrier RNA into a 1.5-ml 
microcentrifuge tube. 
If the sample volume is larger than 140 μl, increase the amount of Buffer AVL/Carrier 
RNA proportionally (e.g., a 280-μl sample will require 1120 μl Buffer AVL/Carrier 
RNA). 
2. Add 140 μl plasma, serum, urine, cell-culture supernatant, or cell-free body 
fluid to the Buffer AVL/Carrier RNA in the microcentrifuge tube. Mix by pulse-
vortexing for 
15 sec. 
To ensure efficient lysis, it is essential that the sample is mixed thoroughly with Buffer 
AVL to yield a homogeneous solution. Frozen samples that have only been thawed 
once can also be used. 
3. Incubate at room temperature (15–25°C) for 10 min. 
Viral particle lysis is complete after lysis for 10 min at room temperature. Longer 
incubation times have no effect on the yield or quality of the purified RNA. Potentially 
infectious agents and RNases are inactivated in Buffer AVL. 
4. Briefly centrifuge the 1.5-ml microcentrifuge tube to remove drops from the 
inside of the lid. 
5. Add 560 μl of ethanol (96–100%) to the sample, and mix by pulse-vortexing 
for 15 sec. 
After mixing, briefly centrifuge the 1.5-ml microcentrifuge tube to remove 
drops from inside the lid. 
Only ethanol should be used since other alcohols may result in reduced RNA yield 
and purity. If the sample volume is greater than 140 μl, increase the amount of 
ethanol proportionally (e.g., a 280-μl sample will require 1120 μl of ethanol). In 
order to ensure efficient binding, it is essential that the sample is mixed thoroughly 
with the ethanol to yield a homogeneous solution. 
6. Carefully apply 630 μl of the solution from step 5 to the QIAamp spin column 
(in a 2-ml collection tube) without wetting the rim. Close the cap, and 

centrifuge at 6000 x g 
(8000 rpm) for 1 min. Place the QIAamp spin column into a clean 2-ml 
collection tube, and discard the tube containing the filtrate. 
Close each spin column in order to avoid cross-contamination during centrifugation. 

Centrifugation is performed at 6000 x g (8000 rpm) in order to limit microcentrifuge 
noise. Centrifugation at full speed will not affect the yield or purity of the viral RNA. 
If the solution has not completely passed through the membrane, centrifuge again at 
a higher speed until all of the solution has passed through. 
7. Carefully open the QIAamp spin column, and repeat step 6. 
If the sample volume was greater than 140 μl, repeat this step until all of the lysate 
has been loaded onto the spin column. 
8. Carefully open the QIAamp spin column, and add 500 μl of Buffer AW1. 

Close the cap, and centrifuge at 6000 x g (8000 rpm) for 1 min. Place the 
QIAamp spin column in a clean 2-ml collection tube (provided), and discard the 
tube containing the filtrate. 
It is not necessary to increase the volume of Buffer AW1 even if the original sample 
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volume was larger than 140 μl. 
9. Carefully open the QIAamp spin column, and add 500 μl of Buffer AW2. 

Close the cap and centrifuge at full speed (20,000 x g; 14,000 rpm) for 3 min. 
Continue directly with step 10, or to eliminate any chance of possible Buffer 
AW2 carryover, perform step 9a, and then continue with step 10. 
Note: Residual Buffer AW2 in the eluate may cause problems in downstream 
applications. Some centrifuge rotors may vibrate upon deceleration, resulting in 
flow-through, containing Buffer AW2, contacting the QIAamp spin column. Removing 
the QIAamp spin column and collection tube from the rotor may also cause 
flowthrough to come into contact with the QIAamp spin column. In these cases, the 
optional step 9a should be peformed. 
9a. (Optional): Place the QIAamp spin column in a new 2-ml collection tube (not 
provided), and discard the old collection tube with the filtrate. Centrifuge at full 
speed for 1 min. 
10. Place the QIAamp spin column in a clean 1.5-ml microcentrifuge tube (not 
provided). 
Discard the old collection tube containing the filtrate. Carefully open the 
QIAamp spin column and add 60 μl of Buffer AVE equilibrated to room 
temperature. Close the cap, and incubate at room temperature for 1 min. 

Centrifuge at 6000 x g (8000 rpm) for 1 min. 
A single elution with 60 μl of Buffer AVE is sufficient to elute at least 90% of the viral 
RNA from the QIAamp spin column. Performing a double elution using 2 x 40 μl of 
Buffer AVE will increase yield by up to 10%. Elution with volumes of less than 30 μl 
will lead to reduced yields and will not increase the final concentration of RNA in 
the eluate. 
Viral RNA is stable for up to one year when stored at –20°C or –70°C. 
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A6  Qiagen® Minielute gel extraction kit 

 
MinElute Gel Extraction Kit Protocol 
using a microcentrifuge 

This protocol is designed to extract and purify DNA of 70 bp to 4 kb from 
standard or low-melt agarose gels in TAE or TBE buffer resulting in high end-
concentrations of DNA. 
Up to 400 mg agarose can be processed per MinElute column. 
Important points before starting 

■ The yellow color of Buffer QG indicates a pH 7.5. 

■ Add ethanol (96–100%) to Buffer PE before use (see bottle label for 

volume). 

■ All centrifugation steps are carried out at 10,000 x g in a conventional 

table-top microcentrifuge at room temperature. 
Procedure 
1. Excise the DNA fragment from the agarose gel with a clean, sharp 
scalpel. 
Minimize the size of the gel slice by removing extra agarose. 
2. Weigh the gel slice in a colorless tube. Add 3 volumes of Buffer QG to 
1 volume of gel (100 mg or approximately 100 μl). 
For example, add 300 μl of Buffer QG to each 100 mg of gel. For >2% 
agarose gels, add 6 volumes of Buffer QG. The maximum amount of gel slice 
per spin column is 400 mg; for gel slices >400 mg use more than one 
MinElute column. 
3. Incubate at 50°C for 10 min (or until the gel slice has completely 
dissolved). To help 
dissolve gel, mix by vortexing the tube every 2–3 min during the 
incubation. 
IMPORTANT: Solubilize agarose completely. For >2% gels, increase 
incubation time. 
4. After the gel slice has dissolved completely, check that the color of 
the mixture is yellow (similar to Buffer QG without dissolved agarose). 
Note: If the color of the mixture is orange or violet, add 10 μl of 3 M sodium 
acetate, pH 5.0, and mix. The color of the mixture will turn to yellow. 

The adsorption of DNA to the membrane is efficient only at pH 7.5. Buffer 

QG contains a pH indicator which is yellow at pH 7.5 and orange or violet at 
higher pH, allowing easy determination of the optimal pH for DNA binding. 
5. Add 1 gel volume of isopropanol to the sample and mix by inverting 
the tube several times. 
For example, if the agarose gel slice is 100 mg, add 100 μl isopropanol. Do 
not centrifuge the sample at this stage. 
6. Place a MinElute column in a provided 2 ml collection tube in a 
suitable rack. 
7. To bind DNA, apply the sample to the MinElute column, and centrifuge 
for 1 min. 
For maximum recovery, transfer all traces of sample to the column. The 
maximum volume of the column reservoir is 800 μl. For sample volumes of 
more than 800 μl, simply load and spin again. 
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8. Discard the flow-through and place the MinElute column back in the 
same collection tube. 
9. Add 500 μl of Buffer QG to the spin column and centrifuge for 1 min. 
10. Discard the flow-through and place the MinElute column back in the 
same collection tube. 
11. To wash, add 750 μl of Buffer PE to the MinElute column and 
centrifuge for 1 min. 
Note: If the DNA will be used for salt-sensitive applications, such as blunt-end 
ligation and direct sequencing, let the column stand 2–5 min after addition of 
Buffer PE, before centrifuging. 
12. Discard the flow-through and centrifuge the MinElute column for an 
additional 

1 min at 10,000 x g. 
IMPORTANT: Residual ethanol from Buffer PE will not be completely 
removed unless the flow-through is discarded before this additional 
centrifugation. 
13. Place the MinElute column into a clean 1.5 ml microcentrifuge tube. 
14. To elute DNA, add 10 μl of Buffer EB (10 mM Tris·Cl, pH 8.5) or water 
to the center 
of the membrane, let the column stand for 1 min, and then centrifuge for 
1 min. 
IMPORTANT: Ensure that the elution buffer is dispensed directly onto the 
center of the membrane for complete elution of bound DNA. The average 
eluate volume is 9 μl from 10 μl elution buffer volume. 
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A7 Qiagen® RNeasy Mini Kit 
 

Procedure 
1. Harvest cells according to step 1a or 1b. 
1a. Cells grown in suspension (do not use more than 1 x 107 cells): 
Determine the number of cells. Pellet the appropriate number of cells by 
centrifuging for 5 min at 300 x g in a centrifuge tube (not supplied). 
Carefully remove all supernatant by aspiration, and proceed to step 2. 
Note: Incomplete removal of cell-culture medium will inhibit lysis and dilute 
the lysate, affecting the conditions for binding of RNA to the RNeasy 
membrane. Both effects may reduce RNA yield. 
1b. Cells grown in a monolayer (do not use more than 1 x 107 cells): 
Cells can be either lysed directly in the cell-culture vessel (up to 10 cm 
diameter) or trypsinized and collected as a cell pellet prior to lysis. Cells 
grown in cell-culture flasks should always be trypsinized. 
To lyse cells directly: 
Determine the number of cells. Completely aspirate the cell-culture 
medium, and proceed immediately to step 2. 
Note: Incomplete removal of cell-culture medium will inhibit lysis and dilute 
the lysate, affecting the conditions for binding of RNA to the RNeasy 
membrane. Both effects may reduce RNA yield. 
To trypsinize and collect cells: 
Determine the number of cells. Aspirate the medium, and wash the cells 
with PBS. 
Aspirate the PBS, and add 0.1–0.25% trypsin in PBS. After the cells 
detach from the dish or flask, add medium (containing serum to 
inactivate the trypsin), transfer the cells to an RNase-free glass or 
polypropylene centrifuge tube (not supplied) and centrifuge at 300 x g 
for 5 min. Completely aspirate the supernatant, and proceed to step 2. 
Note: Incomplete removal of cell-culture medium will inhibit lysis and dilute 
the lysate, affecting the conditions for binding of RNA to the RNeasy 
membrane. Both effects may reduce RNA yield. 
2. Disrupt the cells by adding Buffer RLT. 
For pelleted cells, loosen the cell pellet thoroughly by flicking the tube. 
Add the appropriate volume of Buffer RLT. Vortex or pipet to mix, and 
proceed to step 3. 
Note: Incomplete loosening of the cell pellet may lead to inefficient lysis and 
reduced RNA yields. 
For direct lysis of cells grown in a monolayer, add the appropriate 
volume of Buffer RLT (see Table 6) to the cell-culture dish. Collect the 
lysate with a rubber policeman. 
Pipet the lysate into a microcentrifuge tube (not supplied). Vortex or 
pipet to mix, and ensure that no cell clumps are visible before  
* Regardless of the cell number, use the buffer volumes indicated to 
completely cover the surface of the dish. 
3. Homogenize the lysate according to step 3a, 3b, or 3c. 

If processing 1 x 105 cells, homogenize by vortexing for 1 min. After 
homogenization, proceed to step 4. 
Note: Incomplete homogenization leads to significantly reduced RNA yields 
and can cause clogging of the RNeasy spin column. Homogenization with a 
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rotor–stator or QIAshredder homogenizer generally results in higher RNA 
yields than with a syringe and needle. 
3a. Pipet the lysate directly into a QIAshredder spin column placed in a 2 
ml collection tube, and centrifuge for 2 min at full speed. Proceed to 
step 4. 
3b. Homogenize the lysate for 30 s using a rotor–stator homogenizer. 
Proceed to step 4. 
3c. Pass the lysate at least 5 times through a blunt 20-gauge needle (0.9 
mm diameter) fitted to an RNase-free syringe. Proceed to step 4. 
4. Add 1 volume of 70% ethanol to the homogenized lysate, and mix well 
by pipetting. Do not centrifuge. 
Note: The volume of lysate may be less than 350 μl or 600 μl due to loss 
during homogenization. 
Note: When purifying RNA from certain cell lines, precipitates may be visible 
after addition of ethanol. This does not affect the procedure. 
5. Transfer up to 700 μl of the sample, including any precipitate that may 
have formed, to an RNeasy spin column placed in a 2 ml collection tube 

(supplied). Close the lid gently, and centrifuge for 15 s at 8000 x g 

(10,000 rpm). Discard the flow-through.* 
Reuse the collection tube in step 6. 
If the sample volume exceeds 700 μl, centrifuge successive aliquots in the 
same RNeasy spin column. Discard the flow-through after each 
centrifugation.* 
Optional: If performing optional on-column DNase digestion 
, follow steps D1–D4 after performing this step. 
* Flow-through contains Buffer RLT or Buffer RW1 and is therefore not 
compatible with bleach.  
for safety information. 
Add 700 μl Buffer RW1 to the RNeasy spin column. Close the lid gently, 

and centrifuge for 15 s at 8000 x g (10,000 rpm) to wash the spin 
column membrane. Discard the flow-through.* 
Reuse the collection tube in step 7. 
Note: After centrifugation, carefully remove the RNeasy spin column from the 
collection tube so that the column does not contact the flow-through. Be sure 
to empty the collection tube completely. 
Skip this step if performing optional on-column DNase digestion. 
7. Add 500 μl Buffer RPE to the RNeasy spin column. Close the lid 

gently, and centrifuge for 15 s at 8000 x g (10,000 rpm) towash the spin 
columnmembrane. Discard the flow-through. 
Reuse the collection tube in step 8. 
Note: Buffer RPE is supplied as a concentrate. Ensure that ethanol is added 
to 
Buffer RPE before use (see “Things to do before starting”). 
8. Add 500 μl Buffer RPE to the RNeasy spin column. Close the lid 

gently, and centrifuge for 2min at 8000 x g (10,000 rpm) to wash the 
spin columnmembrane. 
The long centrifugation dries the spin column membrane, ensuring that no 
ethanol is carried over during RNA elution. Residual ethanol may interfere 
with downstream reactions. 
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9. Optional: Place the RNeasy spin column in a new 2 ml collection tube 
(supplied), and discard the old collection tube with the flow-through. 
Close the lid gently, and centrifuge at full speed for 1 min. 
Perform this step to eliminate any possible carryover of Buffer RPE, or if 
residual flow-through remains on the outside of the RNeasy spin column after 
step 8. 
10. Place the RNeasy spin column in a new 1.5 ml collection tube 
(supplied). Add 30–50 μl RNase-free water directly to the spin column 

membrane. Close the lid gently, and centrifuge for 1 min at 8000 x g 

(10,000 rpm) to elute the RNA. 
11. If the expected RNA yield is >30 μg, repeat step 10 using another 30–
50 μl RNasefree water, or using the eluate from step 10 (if high RNA 
concentration is required). Reuse the collection tube from step 10. 
If using the eluate from step 10, the RNA yield will be 15–30% less than that 
obtained using a second volume of RNase-free water, but the final RNA 
concentration will be higher. 
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A8  Megaclear™ kit - Ambion 
 

E. MEGAclear™ Kit Procedure 

CAUTION 
Filter Cartridges should not be subjected to RCFs over 16,000 x g because 

it could cause mechanical damage and/or may deposit glass filter fiber in 

the final sample. 

1. Bring the RNA sample to 100 μL with Elution Solution. Mix 

gently but thoroughly. 

2. Add 350 μL of Binding Solution Concentrate to the sample. 

Mix gently by pipetting. 

3. Add 250 μL of 100% ethanol to the sample. Mix gently by 

pipetting. 

4. Apply the sample to the filter. 

Centrifuge users: 

a. Insert a Filter Cartridge into 1 of the Collection and Elution 

Tubes supplied. 

b. Pipet the RNA mixture onto the Filter Cartridge. 

c. Centrifuge for ~15 sec to 1 min, or until the mixture has 

passed through the filter. Centrifuge at RCF 

10,000–15,000 x g (typically 10,000–14,000 rpm). 

Spinning harder than this may damage the filters. 

d. Discard the flow-through and reuse the Collection and 

Elution Tube for the washing steps. 

Vacuum manifold users: 

a. Put 5 mL syringe barrels on the vacuum manifold, load 

them with Filter Cartridges, and apply the vacuum. 

b. Pipet the RNA mixture onto the Filter Cartridge. The 

vacuum will draw it through the filter. Do not be concerned 

if the RNA mixture is pulled through very quickly, the RNA 

will bind instantly. 

E. MEGAclear™ Kit Procedure 5 
5. Wash with 2 x 500 μL Wash Solution 

Make sure that the ethanol has been added to the Wash Solution 

Concentrate before using it. 

a. Apply 500 μL Wash Solution. Draw the Wash Solution 

through the filter as in the previous step. 

b. Repeat with a second 500 μL aliquot of Wash Solution. 

c. After discarding the Wash Solution, continue centrifugation 

or leave the Filter Cartridge on the vacuum manifold for 

10–30 sec to remove the last traces of Wash Solution. 

6. Elute RNA with 50 μL Elution Solution 

Elute the RNA from the filter using either one of the methods 

described below; they are equivalent in terms of RNA recovery. 

RNA elution option 1 

a. Place the Filter Cartridge into a new Collection/Elution Tube. 

b. Apply 50 μL of Elution Solution to the center of the Filter 

Cartridge. Close the cap of the tube and incubate in a heat 

block set to 65–70°C for 5–10 min. 

c. Recover eluted RNA by centrifuging for 1 min at RT (RCF 
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10,000–15,000 x g). 

d. To maximize RNA recovery, repeat this elution procedure 

with a second 50 μL aliquot of Elution Solution. Collect the 

eluate into the same tube. 

RNA elution option 2 

a. Pre-heat 110 μL of Elution Solution per sample to 95°C. 

b. Apply 50 μL of the pre-heated Elution Solution to the center 

of the Filter Cartridge, close the cap of the tube and 

centrifuge for 1 min at room temperature (RCF 

10,000–15,000 x g) to elute the RNA. 

c. To maximize RNA recovery, repeat this elution procedure 

with a second pre-heated 50 μL aliquot of Elution Solution. 

Collect the eluate into the same Collection/Elution Tube 
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A9 Stratagene QuikChange® II Site-Directed Mutagenesis Kit 

 
PROTOCOL 
Mutant Strand Synthesis Reaction (Thermal Cycling) 
. 

1. Synthesize two complimentary oligonucleotides containing the desired 

mutation, flanked by unmodified nucleotide sequence. Purify these 

oligonucleotide primers prior to use in the following steps (see 

Mutagenic Primer Design). 

2. Prepare the control reaction as indicated below: 

5 μl of 10× reaction buffer 

2 μl (10 ng) of pWhitescript 4.5-kb control plasmid (5 ng/μl) 

1.25 μl (125 ng) of oligonucleotide control primer #1 

[34-mer (100 ng/μl)] 

1.25 μl (125 ng) of oligonucleotide control primer #2 

[34-mer (100 ng/μl)] 

1 μl of dNTP mix 

38.5 μl ddH2O (to bring the final reaction volume to 50 μl) 

Then add 

1 μl of PfuUltra HF DNA polymerase (2.5 U/μl) 

3. Prepare the sample reaction(s) as indicated below: 

Note Stratagene recommends setting up a series of sample 

reactions using various amounts of dsDNA template ranging 

from 5 to 50 ng (e.g., 5, 10, 20, and 50 ng of dsDNA 

template) while keeping the primer concentration constant. 

5 μl of 10× reaction buffer 

X μl (5–50 ng) of dsDNA template 

X μl (125 ng) of oligonucleotide primer #1 

X μl (125 ng) of oligonucleotide primer #2 

1 μl of dNTP mix 

ddH2O to a final volume of 50 μl 

Then add 

1 μl of PfuUltra HF DNA polymerase (2.5 U/μl) 

4. If the thermal cycler to be used does not have a hot-top assembly, 

overlay each reaction with ~30 μl of mineral oil. 

TABLE I 
Cycling Parameters for the QuikChange II Site-Directed 
Mutagenesis Method 
Segment Cycles Temperature Time 
1 1x 95°C 30 seconds 
95°C 30 seconds 
55°C 1 minute 
2 12–18x 68°C 1 minute/kb of plasmid length* 
* For example, a 5-kb plasmid requires 5 minutes at 68°C per cycle. 
5. Cycle each reaction using the cycling parameters outlined in Table I. 

(For the control reaction, use a 5-minute extension time and run the 

reaction for 12 cycles.) 



270 
 

6. Adjust segment 2 of the cycling parameters according to the type of 

mutation desired (see the following table): 

Type of mutation desired Number of cycles 
Point mutations 12 
Single amino acid changes 16 
Multiple amino acid deletions or insertions 18 
7. Following temperature cycling, place the reaction on ice for 2 minutes 

to cool the reaction to ≤37°C. 

Note If desired, amplification may be checked by electrophoresis of 

10 μl of the product on a 1% agarose gel. A band may or may not 

be visualized at this stage. In either case proceed with Dpn I 

digestion and transformation. 

QuikChange® II Site-Directed Mutagenesis Kit 9 
Dpn I Digestion of the Amplification Products 
Note It is important to insert the pipet tip below the mineral oil overlay 

when adding the Dpn I restriction enzyme to the reaction tubes 

during the digestion step or when transferring the 1 μl of Dpn Itreated 

DNA to the transformation reaction. Stratagene suggests 

using specialized aerosol-resistant pipet tips, which are small and 

pointed, to facilitate this process. 

1. Add 1 μl of the Dpn I restriction enzyme (10 U/μl) directly to each 

amplification reaction below the mineral oil overlay using a small, 

pointed pipet tip. 

2. Gently and thoroughly mix each reaction mixture by pipetting the 

solution up and down several times. Spin down the reaction mixtures in 

a microcentrifuge for 1 minute and immediately incubate each reaction 

at 37°C for 1 hour to digest the parental (i.e., the nonmutated) 

supercoiled dsDNA. 

Transformation of XL1-Blue Supercompetent Cells 
Notes Please read the Transformation Guidelines before proceeding with 

the transformation protocol. 

XL1-Blue cells are resistant to tetracycline. If the mutagenized 

plasmid contains only the tetR resistance marker, an alternative 

tetracycline-sensitive strain of competent cells must be used. 

1. Gently thaw the XL1-Blue supercompetent cells on ice. For each 

control and sample reaction to be transformed, aliquot 50 μl of the 

supercompetent cells to a prechilled Falcon® 2059 polypropylene tube. 

2. Transfer 1 μl of the Dpn I-treated DNA from each control and sample 

reaction to separate aliquots of the supercompetent cells. 

Note Carefully remove any residual mineral oil from the pipet tip 

before transferring the Dpn I-treated DNA to the 

transformation reaction. 

As an optional control, verify the transformation efficiency of the 

XL1-Blue supercompetent cells by adding 1 μl of the pUC18 control 

plasmid (0.1 ng/μl) to a 50-μl aliquot of the supercompetent cells. 

Swirl the transformation reactions gently to mix and incubate the 

reactions on ice for 30 minutes. 

3. Heat pulse the transformation reactions for 45 seconds at 42°C and then 

place the reactions on ice for 2 minutes. 
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4. Add 0.5 ml of NZY+ broth preheated to 42°C and incubate the 

transformation reactions at 37°C for 1 hour with shaking at 

225–250 rpm. 

5. Plate the appropriate volume of each transformation reaction, as 

indicated in the table below, on agar plates containing the appropriate 

antibiotic for the plasmid vector. 

For the mutagenesis and transformation controls, spread cells on 

LB–ampicillin agar plates containing 80 μg/ml X-gal and 20 mM IPTG 

(see Preparing the Agar Plates for Color Screening). 

Transformation reaction plating volumes 
Reaction Type Volume to Plate 

pWhitescript mutagenesis control 250 μl 

pUC18 transformation control 5 μl (in 200 μl of NZY+ broth)* 

Sample mutagenesis 250 μl on each of two plates 

(entire transformation reaction) 

* Place a 200-μl pool of NZY+ broth on the agar plate, pipet the 5 μl of the 

transformation reaction into the pool, then spread the mixture. 
6. Incubate the transformation plates at 37°C for >16 hours. 
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A10 mMESSAGE mMACHINE® Kit mMESSAGE mMACHINE® 

Kit Procedure 
 
Capped transcription reaction assembly 
1. Thaw the frozen reagents 

Place the RNA Polymerase Enzyme Mix on ice, it is stored in glycerol and will not 

be frozen at –20°C. 

Vortex the 10X Reaction Buffer and the 2X NTP/CAP until they are completely in 

solution. Once thawed, store the ribonucleotides (2X NTP/CAP) on ice, but keep 

the 10X Reaction Buffer at room temperature while assembling the reaction. 

All reagents should be microfuged briefly before opening to prevent loss and/or 

contamination of material that may be present around the rim of the tube. 

2. Assemble transcription reaction at room temperature. 

The spermidine in the 10X Reaction Buffer can coprecipitate the template DNA if 

the reaction is assembled on ice. 

Add the 10X Reaction Buffer after the water and the ribonucleotides are already 

in the tube. 

The following amounts are for a single 20 μL reaction. Reactions may be scaled up 

or down if desired. 
Amount  Component 
to 20 μL  Nuclease-free Water 
10 μL   2X NTP/CAP 
2 μL   10X Reaction Buffer 

(1 μL) (optional)  [-32P]UTP as a tracer 
0.1–1 μg  linear template DNA† 
2 μ   Enzyme Mix 
† Use 0.1–0.2 μg PCR-product template or ~1 μg linearized plasmid template. 
 

IMPORTANT! The following reaction setup is recommended when the RNA 

produced will be 300 bases to 5 kb in length. For transcripts longer or shorter than 

this,  

3. Mix thoroughly 

Gently flick the tube or pipette the mixture up and down gently, and then 

microfuge tube briefly to collect the reaction mixture at the bottom of the tube. 

4. Incubate at 37°C, 1 hr 

Typically, 80% yield is achieved after a 1 hr incubation. For maximum yield, we 

recommend a 2 hr incubation. Since SP6 reactions are somewhat slower than T3 and 

T7 reactions, they especially may benefit from the second hour of incubation. 

A second hour of incubation is recommended for synthesis of <300 base 

transcripts and for inefficiently transcribed templates.  

 

If the reaction is trace-labeled: 

After the incubation (before or after TURBO DNase treatment), remove an aliquot 

of trace-radiolabeled reactions to assess yield by TCA precipitation  

5. (optional) Add 1 μL TURBO DNase, mix well and incubate 15 min at 37°C 

This DNase treatment removes the template DNA. For many applications it may 

not be necessary because the template DNA will be present at a very low 

concentration relative to the RNA. 

a. Add 1 μL TURBO DNase, and mix well. 

b. Incubate at 37°C for 15 min. 
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A11 USB® Poly(A) Tail-LengthAssay Kit 

 

Protocol 
Step 1: G/I tailing 

Use the following protocol to add poly(G/I) tails to a total RNA sample. For the 

positive control, substitute the provided HeLa total RNA for an experimental 

sample. 

This standard protocol applies to a single 20 μl G/I tailing reaction. 

1. Thaw frozen reagents on ice and mix thoroughly by vortexing enzyme mixes 

should be gently flicked to mix. Centrifuge briefly. 

2. Add the following reagents in Table 1 to a nuclease-free tube. Mix gently by 

pipetting up and down and then centrifuge the tube briefly to collect the contents. 

Keep samples on ice. 

 
 G/I tailing mix 
Reagent Per reaction 

Total RNA sample, 1 μg (0.1 – 2 μg) up to 14 μl 

5X Tail Buffer Mix 4 μl 

10X Tail Enzyme Mix 2 μl 

Water, Nuclease-Free to 20 μl 

3. Incubate at 37°C for 60 minutes 

4. Add 2 μl 10X Tail Stop Solution and mix well. 

5. Proceed to Step 2: Reverse transcription. Alternatively, tailed RNA samples can be 

stored at -20°C until ready to proceed to Step 2. 

 
Step 2: Reverse transcription 

Use the following protocol to reverse transcribe the poly(G/I) tailed RNA. This 

standard protocol applies to a single 20 μl reverse transcription reaction. Master 

mixes for multiple reactions can be made by increasing the volumes of reaction 

components proportionally. 

1. Thaw frozen reagents on ice and mix thoroughly by vortexing. Enzyme mixes should 

be gently flicked to mix. Centrifuge briefly. 

2. Add the following reagents in Table 2 to a nuclease-free tube. Mix gently and 

briefly spin down the tube contents. Keep on ice. 
 RT mix: 
Reagent RT + RT - (control) 

G/I Tailed RNA Sample 5 μl 5 μl 

5X RT Buffer Mix 4 μl 4 μl 

10X RT Enzyme Mix 2 μl - 

Water, Nuclease-Free 9 μl 11 μl 

Note: Each kit supports 20 x 20 μl reactions. 

3. Incubate at 44°C for 60 minutes; 92°C for 10 minutes; and at 4°C hold. 

4. Proceed to Step 3: PCR amplification. Alternatively, cDNA samples can be stored 

at -20°C until ready to proceed to Step 3. 
 
Step 3: PCR amplification 

Use the following protocol to PCR amplify the poly(G/I) tailed cDNA. This standard 

protocol applies to a single 25 μl PCR reaction. Master mixes for multiple 

reactions 

can be made by increasing the volumes of reaction components proportionally. 

1. Dilute each RT sample by adding 20 μl Nuclease-Free Water (40 μl final 

volume). 

2. Thaw frozen reagents on ice and mix thoroughly by vortexing. Mix HotStart-ITR 

Taq DNA Polymerase by gently flicking. Centrifuge briefly. 
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3. Add the following reagents in Table 3 to a nuclease-free tube. Mix gently and 

briefly spin down the tube contents. Keep on ice. 
 
Step 4: Detection 

The size of PCR products can be assessed by running an aliquot of the reaction on 

an agarose or polyacrylamide gel. To start, we recommend loading one half of each 

PCR reaction (12.5 μl) per lane on a 2.5% agarose TAE gel. For increased 

resolution, 

load one half of each PCR reaction (12.5 μl) per lane on a 5% non-denaturing 

polyacrylamide 

TBE gel. Stain gels with ethidium bromide or SYBRR Gold and visualize 

with a standard ultraviolet transilluminator or fluorescence image scanner. 

See the Supplementary information section for guidelines on gel electrophoresis and 

data analysis. 
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A12 QuantiFast® Probe RT-PCR Plus Kit 

 
 
1. Thaw 2x QuantiFast Mix 1, 2x QuantiFast Mix 2 (Probe), template RNA, 
primer and probe solutions, RNase-free water, and High-ROX Dye Solution or 
ROX Dye Solution. Mix the individual solutions. QuantiFast RT Mix should be 
taken from –20°C immediately before use, and returned to storage at –20°C 
immediately after use.  

2. Prepare a reaction mix for removal of genomic DNA according to Table 1.  
 
3. Mix the reaction mix thoroughly, and dispense appropriate volumes into 
PCR tubes, PCR capillaries, or the wells of a PCR plate.  
Note: Do not keep the PCR vessels or plates on ice.  
4. Add template RNA (≤100 ng) to the individual PCR tubes, PCR capillaries, 
or wells and incubate for 5 min at room temperature (15–25°C).  
 
Note: The incubation step can be prolonged up to 15 min.  
5. Prepare a QuantiFast Reaction mix.  

6. Mix the QuantiFast reaction mix thoroughly and dispense appropriate 
volumes into PCR vessels or plates containing the genomic DNA removal 
reaction.  
 
7. Program the real-time cycler according to Table 3.  
Note: Check the real-time cycler’s user manual for correct instrument setup for 

multiplex analysis. Be sure to activate the detector for each reporter dye used. 

Depending on your instrument, it may be also necessary to perform a calibration 

procedure for each of the reporter dyes before they are used for the first time. 

 

8. Perform data analysis. Before performing data analysis, select the analysis 
settings for each probe (i.e., baseline settings and threshold values). Optimal 
analysis settings are a prerequisite for accurate quantification data.  
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A13 MEGAshortscript™ Kit 

 
 III.B. Transcription Reaction Assembly and Incubation 
NOTE 
B. Transcription Reaction Assembly and Incubation 

Thaw the T7 10X Reaction Buffer, four ribonucleotide solutions, and 

Water at room temperature. Briefly vortex the T7 10X Reaction Buffer and 

ribonucleotide solutions. Microfuge all reagents briefly before opening to prevent loss 

and/or contamination of material that may be present around the rim of the tube. Keep 

the T7 Enzyme Mix on ice during assembly of the reaction. 

1. Assemble the reaction mix 

Assemble the reaction in an RNase-free microfuge tube at room temperature in the 

order shown. For convenience, all four nucleotides can be premixed; add 8 μL of the 

mixture to a standard 20 μL reaction instead of adding the ribonucleotides separately. 
The following amounts are for a single 20 μL reaction. Reactions may be scaled as 

needed. 

 

2 μL T7 10X Reaction Buffer 

2 μL T7 ATP Solution (75 mM) 

2 μL T7 CTP Solution (75 mM) 

2 μL T7 GTP Solution (75 mM) 

2 μL T7 UTP Solution (75 mM) 

~1 μL (optional) Labeled ribonucleotide 

<8 μL Template DNA 

2 μL T7 Enzyme Mix 

Water (Nuclease-free) to 20 μL final volume. 

 

Components in the transcription 

buffer can lead to precipitation of the 

template DNA if the reaction is 

assembled on ice. 

2. Mix the reaction gently Mix contents thoroughly by gently flicking the tube, then 

microfuge the tube briefly to collect the reaction mixture at the bottom of the tube. 

3. Incubate the reaction at 

37°C for 2 hr 

Incubate the reaction at 37°C for at least 2 hr. For most applications 2–4 hr incubation 

is sufficient; however, the optimal incubation time will be template-dependent. To 

determine the optimum incubation time for maximum yield with a given template, a 

time-course experiment should be done. 

4. (optional) Add 1 μL of 

TURBO DNase and incubate at 37°C for 15 min 

To remove the DNA template, add 1 μL of TURBO DNase to the reaction, mix well, 

and continue the incubation at 37°C for 15 min. If very large mass amounts of DNA 

template were used, more TURBO DNase may be required. 
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A14 Invitrogen Mouse Interferon-Gamma (Ms IFN-γ) ELISA (product 

KMC4022) 

 
Assay Procedure 

Allow all reagents to reach room temperature before use. Gently mix all liquid 
reagents prior to use. 
Note: A standard curve must be run with each assay. 
1. Determine the number of 8-well strips needed for the assay. Insert these in 
the frame(s) for current use. (Re-bag extra strips and frame. Store these in 
the refrigerator for future use.) 
2. Dilute serum, plasma and tissue culture samples 1:4 with Standard Diluent 
Buffer (See Preparation of Reagents). Alternatively, samples may be 
diluted directly in the microtiter well by adding 75 μL of the Standard Diluent 
Buffer to each well, followed by 25 μL of serum, plasma or tissue culture 
sample. 
3. Add 100 μL of the Standard Diluent Buffer to the zero standard wells. 
Well(s) reserved for chromogen blank should be left empty. 
4. Add 100 μL of standards, controls or samples (serum, plasma and TCS 
prediluted) to the appropriate microtiter wells. 
5. Cover plate with plate cover and incubate for 2 hour at room temperature. 
6. Thoroughly aspirate or decant solution from wells and discard the liquid. 
Wash wells 4 times. See Directions for Washing. 
7. Add 100 μL of biotinylated anti-Ms IFN-γ solution into each well except the 
chromogen blank(s). 
8. Cover plate with the plate cover and incubate for 1 hour at room 
temperature. 
9. Thoroughly aspirate or decant solution from wells and discard the liquid. 
Wash wells 4 times. See Directions for Washing. 
10. Add 100 μL Streptavidin-HRP Working Solution to each well except the 
chromogen blank(s). See Preparation of Reagents. 
11. Cover plate with the plate cover and incubate for 30 minutes at room 
temperature. 
12. Thoroughly aspirate or decant solution from wells and discard the liquid. 
Wash wells 4 times. See Directions for Washing. 
13. Add 100 μL of Stabilized Chromogen to each well. The liquid in the wells 
will begin to turn blue. 
14. Incubate for 30 minutes at room temperature and in the dark. Note: Do 
not cover the plate with aluminum foil or metalized mylar. The incubation 
time for chromogen substrate is often determined by the microtiter plate 
reader used. Many plate readers have the capacity to record a maximum 
optical density (O.D.) of 2.0. The O.D. values should be monitored and the 
substrate reaction stopped before the O.D. of the positive wells exceed the 
limits of the instrument. The O.D. values at 450 nm can only be read after the 
Stop Solution has been added to each well. If using a reader that records 
only to 2.0 O.D., stopping the assay after 20 to 25 minutes is suggested. 
15. Add 100 μL of Stop Solution to each well. Tap side of plate gently to mix. 
The solution in the wells should change from blue to yellow. 
16. Read the absorbance of each well at 450 nm having blanked the plate 
reader against a chromogen blank composed of 100 μL each of Stabilized 
Chromogen and Stop Solution. Read the plate within 2 hours after adding the 
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Stop Solution. 
17. Use a curve-fitting software to generate the standard curve. A four 
parameter algorithm provides the best standard curve fit. 
18. Read the Ms IFN-γ concentrations for unknown samples and controls from 
the standard curve. Multiply value(s) obtained for sample(s) by 4 to correct 
for the 1:4 dilution in Step 2. (Samples producing signals greater than that of 
the highest standard (300 pg/mL) should be diluted in Standard Diluent 
Buffer and reanalyzed, multiplying the concentration found by the appropriate 
dilution factor). 
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A 15 VeriKine-HS
TM 

Mouse IFN Beta Serum ELISA Kit 

Catalog No. 42410 Assay Range: 0.94 – 60 pg/ml Store all components at 2 - 8
o

C 

 

 
PREPARATION OF REAGENTS 

Before starting the assay, the plate(s), Wash Solution  

Concentrate, Serum Buffer, TMB Substrate and Stop Solution should be equilibrated to room 

temperature (RT), 22-25ºC. Supplied Mouse IFN-β Standard, Antibody Concentrate, HRP Conjugate  

Concentrate, Sample Diluent, Antibody Diluent and HRP Diluent should be kept on ice (4ºC) throughout 

the assay. 

Wash Solution: The Wash Solution Concentrate may  

contain crystals. Place the bottle in a warm water bath and  

gently mix until completely dissolved. Prepare a 1:10 working wash  

solution (e.g. Add 50 ml of Wash Solution Concentrate to 450 ml of distilled or deionized water and mix 

thoroughly). Diluted Wash Solution can be stored at RT (22-25ºC) when not in use.  

Mouse Interferon Beta Solution: Using the Mouse IFN-β  

Standard, construct a standard curve (0.94-60 pg/ml), as shown in figure 1, in Sample Diluent.  

Standard Curve Preparation: 

a) Prepare a 1:16.7 working stock of mouse IFN-β Standard by pipetting 60 μl of IFN Standard into 940 

μl of Sample Diluent. Mix thoroughly by gently pipetting up and down 10 times. 

b) Label seven polypropylene tubes (S1-S7). 

c) Fill tubes with Sample Diluent as indicated in Figure 1. 

d) Add 100 μl of the working stock of Mouse IFN-β Standard to S7 and mix thoroughly to recover all 

material adhered to the inside of the pipette tip. 

e) Using a pipette set at 500 μl, mix S7 thoroughly by pipetting up and down. Transfer 500 μl of S7 to S6 

and mix thoroughly by pipetting up and down. Repeat to complete series to S1.  

f) Set aside on ice (4ºC) until use in step 1 of the Assay  

Procedure. 
 

 
ASSAY PROCEDURE 
All incubations should be performed at room temperature (RT), 22-25oC, keeping the plate away from 
drafts and other temperature fluctuations. Use plate sealers to cover the plates as directed. During all 
wash steps, remove contents of plate by inverting and shaking over a sink and blotting the plate on lint-
free absorbent paper; tap the plate. Wash each well with a minimum of 250 μl of diluted Wash Solution 
at each wash step. Refer to Preparation of Reagents for dilution of concentrated solutions. 

 
1a. For testing serum or plasma samples: 

- Add 50 μl of Serum Buffer to each well 

- Overlay 50 μl of diluted Standard, Test Sample or Blank 

1b. For testing tissue culture samples: 

- Add 50 μl of Sample Diluent to each well 

- Overlay 50 μl of diluted Standard, Test Sample or Blank 

Cover with plate sealer and shake plate at 650 rpm at RT (22-25oC) for 1 hour. 

After 1 hour, empty the contents of the plate and wash the wells four times with at least 250 μl of 

working Wash Solution (refer to Preparation of Reagents).  

2. Antibody Solution: Add 50 μl of diluted Antibody Solution (refer to Preparation of Reagents) to each 

well. Cover with plate sealer and shake plate at 650 rpm at RT (22-25oC) for 30 minutes.  

After 30 minutes, empty the contents of the plate and wash the wells four times with at least 250 μl of 

working Wash Solution.  

3. HRP: Add 50 μl of diluted HRP Solution (refer to Preparation of Reagents) to each well. Cover with 

plate sealer and shake plate at 650 rpm at RT (22-25oC) for 10 minutes. 

After 10 minutes, empty the contents of the plate and wash the wells four times with at least 250 μl of 

working Wash Solution.  

4. TMB Substrate: Add 100 μl of the TMB Substrate Solution to each well. Incubate, in the dark, at RT 

(22-25°C), for 10 minutes. Do not use a plate sealer and do not shake during the incubation. 
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5. Stop Solution: After the 10 minute incubation of TMB, DO NOT EMPTY THE WELLS AND DO NOT 

WASH. Add 100 μl of Stop Solution to each well.  
6. Read: Using a microplate reader, determine the absorbance at 450 nm within 5 minutes after the 

addition of the Stop Solution. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



282 
 

A16 VeriKine™ Mouse Interferon Alpha ELISA kit PBL-42120 

 
 
ASSAY PROCEDURE—DAY 1  
All incubations should be performed in a closed chamber at RT (22-25ºC) keeping the plate away from 
drafts and other temperature fluctuations. Set plate shaker speed to 450 rpm where indicated. Use plate 
sealers to cover the plates as directed. During all wash steps, remove contents of plate by inverting and 
shaking over a sink and blotting the plate on lint-free absorbent paper; tap the plate. Wash each well 
with a minimum of 300 μl of diluted Wash Solution for each wash step. See Preparation of Reagents for 
details on dilution of concentrated solutions.  
1. Standards, Test Samples and Diluted Antibody Solution: Determine the number of microplate 

strips required to test the desired number of samples plus the appropriate number of wells needed to 
run blanks and standards. We recommend running both the IFN-α standard, blanks and samples in 
duplicate. Remove extra microtiter strips from the frame, seal in the foil bag provided and store at 2-8ºC. 
Unused strips can be used in later assays  
Step A: Adding Standards, Test Samples and Blanks Add 100 μl of Standard (refer to Preparation of 

Reagents), Test Samples or Blanks per well.  
Step B: Adding diluted Antibody Solution Add 50 μl of diluted Antibody Solution (refer to Preparation 

of Reagents) to each well (Total volume = 150 μl/well). Change pipette tips between each addition.  
. Cover with a Plate Sealer and incubate for 1 hour at RT (22-25°C) with shaking at 450 rpm.  
After 1 hour, transfer the plate to 4°C and incubate 20-24 hours without shaking.  

ASSAY PROCEDURE—DAY 2  
After 20-24 hours, empty the contents of the plate and wash the wells four times with diluted Wash 
Solution (refer to Preparation of Reagents).  
2. HRP: Add 100 μl of diluted HRP Solution (refer to Preparation of Reagents) to each well. Cover with 

Plate Sealer and incubate for 2 hours at RT (22-25°C) with shaking at 450 rpm.  
After 2 hours, empty the contents of the plate and wash the wells four times with diluted Wash Solution.  
3. TMB Substrate: Add 100 μl of the TMB Substrate Solution to each well. Incubate, in the dark, at RT 

(22-25ºC), for 15minutes. Do not use a plate sealer during the incubation. DO NOT SHAKE. 
4. Stop Solution: After the 15 minute incubation of TMB, DO NOT EMPTY THE WELLS AND DO NOT 
WASH. Add 100 μl of Stop Solution to each well. 
5. Read: Using a microplate reader, determine the absorbance at 450 nm within 5 minutes after the 
addition of the Stop Solution. 
CALCULATION OF RESULTS 

By plotting the optical densities (OD) using a 4-parameter fit for the standard curve, the interferon titer in 
the samples can be determined. Blank ODs should be subtracted from the standards and sample ODs 
to eliminate background. A typical standard curve for this assay is shown in the enclosed pages. This 
example is for the purpose of illustration only, and should not be used to calculate unknowns. 
A shift in optical densities is typical between users and kit lots. The back fit concentration extrapolated 
from the standard curve is a more accurate determination of the sample titer and performance of the kit. 
Variations from the typical curve provided can be a result of operator technique, altered incubation time, 
fluctuations in temperature and kit age. 
Because the interferon samples are titrated against the international standard, the values from the 
curves can be determined in units/ml as well as pg/ml. The conversion factor of about 10-20 pg/unit is 
applicable for mouse interferon alpha.3 Nevertheless, this conversion factor is only a
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A17  MOUSE HAPTOGLOBIN ELISA Life Diagnostics, Inc., 

Catalog Number: 2410-1 

 
 INTRODUCTION 
Haptoglobin is an acute phase protein that 
is elevated in mouse 
serum as a result of injury, infection or 
disease. Studies at Life 
Diagnostics, Inc. and by others1-3 indicate 
that haptoglobin levels 
may increase 10-fold or more. Haptoglobin 
therefore provides a 
useful acute phase biomarker in mice. 

PRINCIPLE OF THE ASSAY 
The mouse haptoglobin test kit is based 
on a solid phase enzymelinked 
immunosorbent assay (ELISA). The assay 
uses affinity-purified anti-mouse 
haptoglobin antibodies for solid phase 
(microtiter wells) immobilization and 
horseradish peroxidase (HRP) 
conjugated anti-mouse haptoglobin 
antibodies for detection. The 
test sample is diluted and incubated in the 
microtiter wells for 45 
minutes. The microtiter wells are 
subsequently washed and HRP 
conjugate is added and incubated for 30 
minutes. This results in 
haptoglobin molecules being sandwiched 
between the 
immobilization and detection antibodies. 
The wells are then 
washed to remove unbound HRP-labeled 
antibodies and TMB 
Reagent is added and incubated for 20 
minutes at room 
temperature. This results in the 
development of a blue color. Color 
development is stopped by the addition of 
Stop Solution, changing 
the color to yellow, and optical density is 
measured 
spectrophotometrically at 450 nm. The 
concentration of 
haptoglobin is proportional to the optical 
density of the test sample. 

MATERIALS AND COMPONENTS 
Materials provided with the kit: 

· Anti-mouse haptoglobin antibody coated 

microtiter plate with 
96 wells (provided as 12 detachable strips 
of 8) 

· Enzyme Conjugate Reagent, 11 ml 

· Reference standard (lyophilized), 

containing 2 mg/ml mouse 

haptoglobin 

· 10x Wash Buffer, 60 ml 

· 10x Diluent, 25 ml 

· TMB Reagent (One-Step), 11 ml 

· Stop Solution (1N HCl), 11 ml 

Materials required but not provided: 

· Precision pipettes and tips 

· Distilled or deionized water 

· Polypropylene or glass tubes 

· Vortex mixer 

· Absorbent paper or paper towels 

· Micro-Plate incubator/shaker with an 

approximate mixing 
speed of 150 rpm 

· A microtiter plate reader at 450 nm 

wavelength, with a 
bandwidth of 10 nm or less and an optical 
density range of 0-4 

· Graph paper (PC graphing software is 

optional). 

STORAGE 
The unopened kit should be stored at 2-8

°C and the microtiter 

plate should be kept in a sealed bag with 
desiccant to minimize 
exposure to damp air. Test kits will remain 
stable for six months 
from the date of purchase provided that 
the components are stored 
as described above. 

GENERAL INSTRUCTIONS 
1. All reagents should be allowed to reach 
room temperature (18- 
25oC) before use. 
2. Serum or plasma samples should be 
diluted ~25,000 fold with 
1x diluent in order to obtain values within 
the standard range. 

DILUENT PREPARATION 
The diluent is provided as a 10x stock. 
Prior to use estimate the 
final volume of diluent required for your 
assay and dilute one (1) 
volume of the 10x stock with nine (9) 
volumes of distilled or 
deionized water. 
WASH SOLUTION PREPARATION 

The wash solution is provided as a 10x 
stock. Prior to use dilute the 
contents of the bottle (60 ml) with 540 ml 
of distilled or deionized 
water. 

STANDARD PREPARATION 
1. The standard is provided as a 
lyophilized stock. Add the 
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volume of distilled or deionized water 
indicated on the vial 
label and mix gently until dissolved to 

obtain a 2 mg/ml rat 

CRP stock (the reconstituted standard 
should be aliquoted 
and frozen at -20oC after reconstitution 
if future use is 
intended). 
2. Label 8 polypropylene microcentrifuge 
tubes as 125, 62.5, 
31.3, 15.6, 7.8, 3.9, 1.95, and 0 ng/ml. 

3. Dispense 468.8 ml of diluent into the 

tube labeled 125 ng/ml 

and 250 ml of diluent into the remaining 

tubes. 

4. Pipette 31.25 ml of the 2 mg/ml 

haptoglobin standard into the 
tube labeled 125 ng/ml and mix. This 
provides the working 
125 ng/ml haptoglobin standard. 
5. Prepare a 62.5 ng/ml standard by 

diluting and mixing 250 ml of 

the 125 ng/ml standard with 250 ml of 

diluent in the tube 
labeled 62.5 ng/ml. Similarly prepare the 
31.2, 15.6, 7.8, 3.9, 
and 1.95 ng/ml standards by serial 
dilution. 

SAMPLE PREPARATION 
General Note: Haptoglobin is generally 
present in mouse serum at 
concentrations ranging from 0.1 – 2 
mg/ml. In order to obtain 
values within the range of the standard 
curve we suggest that 
samples be diluted 25,000 fold. The 
following procedure may be 
used for each sample to be tested: 

1. Dispense 497.5 ml and 248 ml of 1x 

diluent into separate 
polypropylene tubes. 

2. Pipette and mix 2.5 ml of the 

serum/plasma sample into the 

tube containing 497.5 ml of diluent. This 

provides a 200 fold 
diluted sample. 

3. Mix 2.0 ml of the 200 fold diluted sample 

with the 248 ml of 

diluent in the second tube. This provides a 
25,000 fold dilution 
of the sample. 
4. Repeat this procedure for each sample 
to be tested. 

 
ASSAY PROCEDURE 
1. Secure the desired number of coated 
wells in the holder. 

2. Dispense 100 ml of standards and 

samples into the wells (we 
recommend that samples be tested in 
duplicate). 
3. Incubate on an orbital micro-plate 
shaker at 100-150 rpm at 

room temperature (18-25°C) for 45 

minutes. 
4. Remove the incubation mixture by 
flicking plate contents into 
an appropriate Bio-waste container or 
using a plate washer. 
5. Wash and empty the microtiter wells 4-5 
times with 1x wash 
solution. This may be performed using 
either a plate washer 

(350 ml/well) or a squirt bottle. The entire 

wash procedure 
should be performed as quickly as 
possible. 
6. Strike the wells sharply onto absorbent 
paper or paper towels 
to remove all residual water droplets. 

7. Add 100 ml of enzyme conjugate 

reagent into each well. 
8. Incubate on an orbital micro-plate 
shaker at 100-150 rpm at 

room temperature (18-25°C) for 30 

minutes. 
9. Wash as detailed in 4 to 5 above. 
10. Strike the wells sharply onto absorbent 
paper or paper towels 
to remove residual water droplets. 

11. Dispense 100 ml of TMB Reagent into 

each well. 
12. Gently mix on an orbital micro-plate 
shaker at 100-150 rpm at 

room temperature (18-25°C) for 20 

minutes. 

13. Stop the reaction by adding 100 ml of 

Stop Solution to each 
well. 
14. Gently mix. It is important to make 
sure that all the blue color 
changes to yellow. 
15. Read the optical density at 450 nm 
with a microtiter plate 
reader within 15 minutes. 

CALCULATION OF RESULTS 
1. Calculate the average absorbance 
values (A450) for each set of 
reference standards and samples. 
2. Construct a standard curve by plotting 
the mean absorbance 
obtained from each reference standard 
against its 
concentration in ng/ml on linear graph 
paper, with absorbance 



285 
 

values on the vertical or Y-axis and 
concentrations on the 
horizontal or X-axis. 
3. Using the mean absorbance value for 
each sample, determine 
the corresponding concentration of 
haptoglobin in ng/ml from 
the standard curve. 
4. Multiply the derived concentration by 
the dilution factor to 
determine the actual concentration of 
haptoglobin in the 
serum/plasma sample. 
5. PC graphing software may be used for 
the above steps. 
6. If the OD450 values of samples fall 
outside the standard curve 
when tested at a 25,000 fold dilution, 
samples should be 
diluted appropriately and re-tested. 

REPRESENTATIVE STANDARD 
CURVE 

A typical standard curve with optical 
density readings at 450nm on 
the Y-axis against haptoglobin 
concentrations on the X-axis is 
shown below. This curve is for the purpose 
of illustration only, and 
should not be used to calculate unknowns. 
Each user should obtain 
his or her data and standard curve in each 
experiment. 

LIMITATIONS OF THE PROCEDURE 
1. Reliable and reproducible results will be 
obtained when the 
assay procedure is carried out with a 
complete understanding 
of and in accordance with the instructions 
detailed above. 
2. The wash procedure is critical. 
Insufficient washing will result 
in poor precision and falsely elevated 
absorbance readings. 
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A 18 MOUSE SERUM AMYLOID A (SAA) ELISA TEST KIT Life 

Diagnostics, Inc., Catalog Number: 3400-1 Mouse SAA ELISA 
 
INTRODUCTION 
SAA is an acute phase serum protein that is 
elevated in mice 
approximately 50-fold following 
lipopolysaccharide injection.1 

In mice, two major forms of SAA are induced 
during the 
acute phase response, SAA1 and SAA2. 
Studies have shown 
that the two forms are similarly increased in 
response to 
different inflammatory stimuli.2 This ELISA kit 
uses 
antibodies that preferentially detect SAA2.A 

Measurement of 
SAA provides a useful biomarker of 
inflammation and disease. 

PRINCIPLE OF THE TEST 
The mouse SAA test kit is based on a solid 
phase enzymelinked 
immunosorbent assay (ELISA). The assay 
uses 
affinity purified peptide-specific polyclonal anti-
mouse SAA2 
antibodies for solid phase (microtiter wells) 
immobilization 
and horseradish peroxidase (HRP) conjugated 
polyclonal 
peptide-specific anti-mouse SAA1/2 antibodies 
for detection. 
The test sample is diluted and incubated in the 
microtiter 
wells together with the HRP conjugate for one 
hour. This 
results in SAA2 molecules being sandwiched 
between the 
immobilization and detection antibodies. The 
wells are then 
washed to remove unbound HRP-labeled 
antibodies, and 
TMB Reagent is added and incubated for 20 
minutes at room 
temperature. This results in the development of 
a blue color. 
Color development is stopped by the addition 
of Stop 
Solution, changing the color to yellow, and 
optical density is 
measured spectrophotometrically at 450 nm. 
The 
concentration of SAA2 is proportional to the 
optical density 
of the test sample. 

MATERIALS AND COMPONENTS 
Materials provided with the kit: 

· Anti-mouse SAA2 antibody coated microtiter 

plate with 
96 wells (provided as 12 detachable strips of 8) 

· HRP Conjugate Reagent, 11 ml 

· Reference standard (0.20 ml, lyophilized), 

containing 

mouse SAA (concentration and dilution 
instructions are 
detailed on the vial label) 

· 20x Wash Buffer, 50 ml 

· Diluent, 30 ml 

· TMB Reagent (One-Step), 11 ml 

· Stop Solution (1N HCl), 11 ml 

Materials required but not provided: 

· Precision pipettes and tips 

· Distilled or deionized water 

· Polypropylene tubes 

· Vortex mixer 

· Absorbent paper or paper towels 

· Micro-Plate incubator/shaker with an 

approximate mixing speed of 150 rpm 

· Plate reader capable of measuring OD at 

450 nm 

· Graph paper (PC graphing software is 

optional) 
A Studies at Life Diagnostics, Inc. indicate that 
this kit has less than 5% 
cross reactivity with mouse SAA1 polypeptide 
compared to mouse SAA2 
polypeptide. 

STORAGE OF TEST KIT 

The lyophilized reference standard 
should be stored at or 
below -20oC for optimum stability (it can 
be safely shipped at 2- 
8oC). The remainder of the kit should be 
stored at 2-8oC and the 
microtiter plate should be kept in a sealed 
bag with desiccant to 
minimize exposure to damp air. Test kits 
will remain stable for six 
months from the date of purchase 
provided that the components 
are stored as described above. 
GENERAL INSTRUCTIONS 
1. All reagents should be allowed to reach 
room 
temperature (18- 25oC) before use. 
2. Serum or plasma samples should generally 
be diluted 
~100 fold or more with diluent in order to obtain 
values 
within the standard range. 

WASH SOLUTION PREPARATION 
The wash solution is provided as a 20x stock. 
Prior to use, 
dilute the contents of the bottle (50 ml) with 950 
ml of 
distilled or deionized water. 

STANDARD PREPARATION 
The mouse SAA standard is comprised of 
lyophilized 
mouse serum of known SAA concentration. 
The SAA 
content was determined by reference to a 
synthetic 
mouse SAA2 polypeptide. 
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1. Reconstitute the lyophilized mouse SAA 

reference standard by addition of 200 ml of 

deionized or distilled 
water. Mix gently several times over a period of 
5-10 minutes. The concentration of SAA in the 
reconstituted stock is indicated on the vial 
label. 
2. Label 7 polypropylene tubes as 500, 250, 
125, 62.5, 
31.25, 15.6, and 7.8 ng/ml. 
3. Into the tube labeled 500 ng/ml, pipette the 
volume of 
diluent detailed on the SAA reference standard 
vial label. 
Then add the indicated volume of reference 
SAA 
standard and mix gently. This provides the 
working 500 
ng/ml standard. 

4. Dispense 250 ml of diluent into the tubes 

labeled 250, 
125, 62.5, 31.25, 15.6, and 7.8 ng/ml. 

5. Pipette 250 ml of the 500 ng/ml SAA standard 

into the 
tube labeled 250 ng/ml and mix. This provides 
the 
working 250 ng/ml SAA standard. 
6. Prepare a 125 ng/ml standard by diluting and 
mixing 

250 ml of the 250 ng/ml standard with 250 ml of 

diluent in 
the tube labeled 125 ng/ml. Similarly prepare 
the 125, 
62.5, 31.25, 15.6 and 7.8 ng/ml standards by 
serial 
dilution. 
Please Note: The reconstituted reference 
standard 
should be aliquoted and stored frozen at or 
below -20oC 
(within 1 hour of reconstitution) if future use 
is intended. 

SAMPLE PREPARATION 
General Note: Because SAA levels can 
increase as 
much as 50 fold or more during 
inflammation, optimal 
dilutions should be determined empirically. 
However, as 
a good starting point, samples may be 
tested at a 100 
fold dilution using the following procedure 
for each 
sample to be tested: 

1. Dispense 297 ml of diluent into a 

polypropylene tube. 
1. Secure the desired number of coated wells 
in the holder. 

2. Dispense 100 ml of standards and diluted 

samples into 
the wells (we recommend that standards and 
samples 
be tested in duplicate). 

3. Add 100 ml of HRP conjugate reagent into 

each well. 
4. Incubate on an orbital micro-plate shaker at 

150 rpm at room temperature (18-25°C) for 

one hour. 
5. Wash and empty the microtiter wells 6 times 
with 1x wash solution. This may be performed 
using either a 

plate washer (400 ml/well) or a squirt bottle. The 

entire 
wash procedure should be performed as 
quickly as 
possible. 
6. Strike the wells sharply onto absorbent 
paper or paper 
towels to remove all residual wash solution. 

7. Dispense 100 ml of TMB Reagent into each 

well. 
8. Gently mix on an orbital micro-plate shaker 
at 150 rpm 

at room temperature (18-25°C) for 20 

minutes. 

9. Stop the reaction by adding 100 ml of Stop 

Solution to 
each well. 
10. Gently mix. It is important to make sure that 
all the blue 
color changes to yellow. 
11. Read the optical density at 450 nm with a 
microtiter 
plate reader within 5 minutes. 

CALCULATION OF RESULTS 
1. Calculate the average absorbance values 
(A450) for each 
set of reference standards and samples. 
2. Construct a standard curve by plotting the 
mean 
absorbance obtained from each reference 
standard 
against its concentration in ng/ml on linear 
graph paper, 
with absorbance values on the vertical or Y-
axis and 
concentrations on the horizontal or X-axis. 
3. Using the mean absorbance value for each 
sample, 
determine the corresponding concentration of 
SAA in 
ng/ml from the standard curve. 
4. Multiply the derived concentration by the 
dilution factor 
to determine the actual concentration of SAA in 
the 
serum sample. 
5. If available, PC graphing software should be 
used for the 
above steps. We find that good a good fit of the 
data is 
obtained to a two site binding equation. 
6. If the OD450 values of samples fall outside 
the standard 
curve when tested at a dilution of 100, samples 
should 
be diluted appropriately and re-tested. 
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A 19 MOUSE SERUM AMYLOID P (SAP) ELISA TEST KIT 

Life Diagnostics, Inc., Catalog Number: 3410-1 

Mouse SAP ELISA 

 

 

 
INTRODUCTION 
SAP is a member of the pentraxin family of 
acute phase 
proteins that includes C-reactive protein. It 
circulates in blood 
as a decamer of a single polypeptide chain of 
mwt 25 kDa. It 
is a positive acute phase protein in all strains of 
mice. Levels 
may increase 50-100 fold during the acute 
phase response 
but basal levels vary with strain (refs. 1-3). SAP 
is an 
excellent acute phase biomarker in mice. 

PRINCIPLE OF THE TEST 
The mouse SAP ELISA uses two peptide-
specific antibodies 
developed at Life Diagnostics, Inc. that 
recognize different 
epitopes on mouse SAP. One is used for solid 
phase 
immobilization and the other, conjugated to 
horseradish 
peroxidase (HRP), is used for detection. 
Diluted serum 

samples (100 ml) are incubated in the antibody-

coated 
microtiter wells together with HRP conjugate 

(100 ml) for one 

hour. As a result, SAP molecules are 
sandwiched between 
the immobilization and detection antibodies. 
The wells are 
then washed to remove unbound HRP-
conjugate and TMB 
Reagent is added and incubated for 20 
minutes. This results 
in the development of a blue color. Color 
development is 
stopped by the addition of Stop Solution, 
changing the color 
to yellow, and optical density is measured at 
450 nm. The 
concentration of SAP is proportional to the 
optical density of 
the test sample and is derived from a standard 
curve. 

MATERIALS AND COMPONENTS 
Materials provided with the kit: 

· Anti-mouse SAP coated 96-well microtiter 

(12x8 wells) 

· HRP Conjugate, 11 ml 

· SAP stock, 1 vial (lyophilized)1 

· 20x Wash Buffer, 50 ml 

· Diluent, 50 ml 

· TMB Reagent (One-Step), 11 ml 

· Stop Solution (1N HCl), 11 ml 

Materials required but not provided: 

· Precision pipettes and tips 

· Distilled or deionized water 

· Polypropylene tubes 

· Vortex mixer 

· Absorbent paper or paper towels 

· Plate incubator/shaker with an approximate 

mixing 
speed of 150 rpm 

· 96-well plate reader capable of measuring 

absorbance 
at 450 nm 

· PC graphing software or graph paper 

STORAGE 
Upon receiving the kit, please store the SAP 
standard in a 
freezer at or below -20oC. The remaining 
components of the 

kit should be stored in a refrigerator at 2-8°C. 

It is important 
that the microtiter plate be kept in a sealed bag 
with 
desiccant to minimize exposure to damp air. 
Test kits will 
1 The SAP standard was calibrated using 
recombinant mouse SAP from 
an independent laboratory. 

remain stable for six months from the date of 
purchase, 
provided that the components are stored as 
described above. 

GENERAL INSTRUCTIONS 
1. All reagents should be allowed to reach 
room 
temperature (25oC) before use. 
2. Please take the time to completely read and 
understand 
this kit insert before starting your assay. Don’t 
hesitate 
to contact Life Diagnostics by telephone or 
email should 
you require technical assistance or clarification. 

WASH SOLUTION PREPARATION 
The wash solution is provided as a 20x stock. 
Prior to use, 
dilute the contents of the bottle (50 ml) with 950 
ml of 
distilled or deionized water. 

SAMPLE PREPARATION 
Samples should be diluted at least 40-fold in 
diluent. 
Optimum dilutions should be determined 
empirically. 

STANDARD PREPARATION 
1. Reconstitute the SAP stock as described on 
the vial 
label. Mix gently several times before use. 
2. Label 8 polypropylene tubes as 500, 250, 
125, 62.5, 
31.25, 15.63, 7.81 and 0 ng/ml. 
3. Into the tube labeled 500 ng/ml, pipette the 
volume of 
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diluent detailed on the SAP stock vial label. 
Then add 
the indicated volume of SAP stock (also shown 
on the 
vial label) and mix gently. This provides the 
working 500 
ng/ml standard. 

4. Dispense 250 ml of diluent into the tubes 

labeled 250, 
125, 62.5, 31.25, 15.63, 7.81 and 0 ng/ml. 

5. Pipette 250 ml of the 500 ng/ml SAP standard 

into the 
tube labeled 250 ng/ml and mix. This provides 
the 
working 250 ng/ml SAP standard. 
6. Similarly prepare the 125, 62.5, 31.25, 
15.63, and 7.81 
ng/ml standards by serial dilution. 
Please Note: Unused reconstituted 
reference standard 
stock should be stored frozen at or below -
20oC if future 
use is intended. Sufficient standard stock is 
provided for 
two standard curves to be run in duplicate 
or 4 standard 
curves run as singlets. 

 
ASSAY PROCEDURE 
1. Secure the desired number of coated wells 
in the holder. 

2. Dispense 100 ml of standards and diluted 

samples into 
the wells (we recommend that standards and 
samples 
be tested in duplicate). 

3. Add 100 ml of HRP conjugate reagent into 

each well. 
4. Incubate on an orbital micro-plate shaker at 
150 rpm at 

room temperature (25°C)2 for one hour. 

5. Wash and empty the microtiter wells 6 times 
with 1x 
wash solution using a plate washer (400 

ml/well). The 

entire wash procedure should be performed as 
quickly 
as possible. 
6. Strike the wells sharply onto absorbent 
paper or paper 
towels to remove all residual wash solution. 
2 The ELISA was validated using a shaking incubator 
at 25oC and 150 
rpm. Lower temperatures and/or mixing speeds will 
give lower 
absorbance values. 

7. Dispense 100 ml of TMB Reagent into each 

well. 

8. Gently mix on an orbital micro-plate shaker 
at 150 rpm 

at room temperature (25°C) for 20 minutes. 

9. Stop the reaction by adding 100 ml of Stop 

Solution to 
each well. 
10. Gently mix. It is important to make sure that 
all the blue 
color changes to yellow. 
11. Read the optical density at 450 nm with a 
microtiter 
plate reader within 5 minutes. 

 
CALCULATION OF RESULTS 
1. Calculate the average absorbance values 
(A450) for each 
set of reference standards and samples. 
2. Construct a standard curve by plotting the 
mean 
absorbance obtained from each reference 
standard 
against its concentration in ng/ml on linear 
graph paper, 
with absorbance values on the vertical or Y-
axis and 
concentrations on the horizontal or X-axis. 
3. Using the mean absorbance value for each 
sample, 
determine the corresponding concentration of 
SAP in 
ng/ml from the standard curve. 
4. Multiply the derived concentration by the 
dilution factor 
to determine the actual concentration of SAP in 
the 
serum sample. 
5. If available, PC graphing software should be 
used for the 
above steps. We find that good a good fit of the 
data is 
obtained to either a two site binding equation or 
a 
second order polynomial equation. 
6. If the A450 values of samples fall outside the 
standard 
curve samples should be diluted appropriately 
and retested. 

TYPICAL STANDARD CURVE 
A representative standard curve with optical 
density readings 
at 450 nm on the Y-axis against SAP 
concentrations on the 
X-axis is shown below. This curve is for the 
purpose of 
illustration only and should not be used to 
calculate 
unknowns. Each user should obtain his or her 
data and 
standard curve in each experiment. 
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Appendix B: Plasmid Maps 
 

 

 

B1 TOPO 2.1, DNA pCR®  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B2 Zero Blunt® TOPO® PCR  
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B2 pCR™ -Blunt II-TOPO® 
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B3 Promega  pGEM7Zf(+) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B4 pGEM5Z(+) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B4 pGEM 5Zf(+) 
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B4  Promega  pGEM5Zf(+) 
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B5  pMK-T –based CHIKV qRT-PCR amplicon clone 
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B6 CHIKV cDNA clone pCHIK-SL(wt)  
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Appendix C: Supplementary data 
 

C1: The cDNA sequence of CHIKV SL-R233 (excluding the poly-A tail).  
Italics are used to indicate untranslated regions, open reading frames are shown in bold 

lettering and stop codons are underlined. 

 

 

1 

51 

101 

151 

201 

251 

301 

351 

401 

451 

501 

551 

601 

651 

701 

751 

801 

851 

901 

951 

1001 

1051 

1101 

1151 

1201 

1251 

1301 

1351 

1401 

1451 

1501 

1551 

1601 

1651 

1701 

1751 

1801 

1851 

1901 

1951 

2001 

2051 

2101 

2151 

2201 

2251 

2301 

2351 

2401 

2451 

2501 

2551 

 

atggctgcgt gagacacacg tagcctacca gtttcttact gctctactct 

gcaaagcaag agattaataa cccatcatgg atcctgtgta cgtggacata 

gacgctgaca gcgccttttt gaaggccctg caacgtgcgt accccatgtt 

tgaggtggaa ccaaggcagg tcacaccgaa tgaccatgct aatgctagag 

cgttctcgca tctagctata aaactaatag agcaggaaat tgaccccgac 

tcaaccatcc tggatatcgg cagtgcgcca gcaaggagga tgatgtcgga 

caggaagtac cactgcgtct gcccgatgcg cagtgcggaa gatcccgaga 

gactcgctaa ttatgcgaga aagctagcat ctgccgcagg aaaagtcctg 

gacagaaaca tctctggaaa gatcggggac ttacaagcag taatggccgt 

gccagacaag gagacgccaa cattctgctt acacacagac gtctcatgta 

gacagagagc agacgtcgct atataccaag acgtctatgc tgtacacgca 

cccacgtcgc tataccacca ggcgattaaa ggggtccaag tggcgtactg 

ggttgggttc gacacaaccc cgttcatgta caatgccatg gcgggtgcct 

acccctcata ctcgacaaac tgggcagatg agcaggtact gaaggctaag 

aacataggat tatgttcaac agacctgacg gaaggtagac gaggcaagtt 

gtctattatg agagggaaaa agctaaaacc gtgcgaccgt gtgctgttct 

cagtagggtc aacgctctac ccggaaagcc gcaagctact taagagctgg 

cacctgccat cggtgttcca tttaaagggc aaactcagct tcacatgccg 

ctgtgataca gtggtttcgt gtgagggcta cgtcgttaag agaataacga 

tgagcccagg cctttatgga aaaaccacag ggtatgcggt aacccaccac 

gcagacggat tcctgatgtg caagactacc gacacggttg acggcgaaag 

agtgtcattc tcggtgtgca catacgtgcc ggcgaccatt tgtgatcaaa 

tgaccggcat ccttgctaca gaagtcacgc cggaggatgc acagaagctg 

ttggtggggc tgaaccagag aatagtggtt aacggcagaa cgcaacggaa 

tatgaacacc atgaaaaatt atctgcttcc cgtggtcgcc caagccttca 

gtaagtgggc aaaggagtgc cggaaagaca tggaagatga aaaactcctg 

ggggtcagag aaagaacact gacctgctgc tgtctatggg cattcaagaa 

gcagaaaaca cacacggtct acaagaggcc ggatacccag tcaattcaga 

aggttcaggc cgagtttgac agctttgtgg taccgagtct gtggtcgtcc 

gggttgtcaa tccctttgag gactagaatc aaatggttgt taagcaaggt 

gccaaaaacc gacctgatcc catacagcgg agacgcccga gaagcccggg 

acgcagaaaa agaagcagag gaagaacgag aagcagaact gactcgcgaa 

gccctaccac ctctacaggc agcacaggaa gatgttcagg tcgaaatcga 

cgtggaacag cttgaggaca gagcgggcgc aggaataata gagactccga 

gaggagctat caaagttact gcccaaccaa cagaccacgt cgtgggagag 

tacctggtac tctccccgca gaccgtacta cgtagccaga agctcagtct 

gattcacgct ttggcggagc aagtgaagac gtgcacgcac aacggacgag 

cagggaggta tgcggtcgaa gcgtacgacg gccgagtcct agtgccctca 

ggctatgcaa tctcgcctga agacttccag agtctaagcg aaagcgcaac 

gatggtgtat aacgaaagag agttcgtaaa cagaaagcta caccatattg 

cgatgcacgg accagccctg aacaccgacg aagagtcgta tgagctggtg 

agggcagaga ggacagaaca cgagtacgtc tacgacgtgg atcagagaag 

atgctgtaag aaggaagaag ccgcaggact ggtactggtg ggcgacttga 

ctaatccgcc ctaccacgaa ttcgcatatg aagggctaaa aatccgccct 

gcctgcccat acaaaattgc agtcatagga gtcttcggag taccgggatc 

tggcaagtca gctattatca agaacctagt taccaggcag gacctggtga 

ctagcggaaa gaaagaaaac tgccaagaaa tcaccaccga cgtgatgaga 

cagagaggtc tagagatatc tgcacgtacg gttgactcgc tgctcttgaa 

tggatgcaac agaccagtcg acgtgttgta cgtagacgag gcgtttgcgt 

gccactctgg aacgctactt gctttgatcg ccttggtgag accaaggcag 

aaagttgtac tttgtggtga cccgaagcag tgcggcttct tcaatatgat 

gcagatgaaa gtcaactata atcacaacat ctgcacccaa gtgtaccaca 
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2601 

2651 

2701 

2751 

2801 

2851 

2901 

2951 

3001 

3051 

3101 

3151 

3201 

3251 

3301 

3351 

3401 

3451 

3501 

3551 

3601 

3651 

3701 

3751 

3801 

3851 

3901 

3951 

4001 

4051 

4101 

4151 

4201 

4251 

4301 

4351 

4401 

4451 

4501 

4551 

4601 

4651 

4701 

4751 

4801 

4851 

4901 

4951 

5001 

5051 

5101 

5151 

5201 

5251 

5301 

5351 

5401 

5451 

5501 

5551 

5601 

aaagtatctc caggcggtgc acactgcctg tgaccgccat tgtgtcatcg 

ttgcattacg aaggcaaaat gcgcactacg aatgagtaca acaagccgat 

tgtagtggac actacaggct caacaaaacc tgaccctgga gacctcgtgt 

taacgtgctt cagagggtgg gttaaacaac tgcaaattga ctatcgtgga 

tacgaggtca tgacagcagc cgcatcccaa gggttaacca gaaaaggagt 

ttacgcagtt agacaaaaag ttaatgaaaa cccgctctat gcatcaacgt 

cagagcacgt caacgtactc ctaacgcgta cggaaggtaa actggtatgg 

aagacacttt ccggcgaccc gtggataaag acgctgcaga acccaccgaa 

aggaaacttc aaagcaacta ttaaggagtg ggaggtggag catgcatcaa 

taatggcggg catctgcagt caccaaatga ccgtcgatac attccaaaat 

aaagccaacg tttgttgggc taagagcttg gtccctatcc tcgaaacagc 

ggggataaaa ctaaatgata ggcagtggtc tcagataatt caagccttca 

aagaagacaa agcatactca cctgaagtag ccctgaatga aatatgtacg 

cgcatgtatg gggtggatct agacagcggg ctattttcta aaccgttggt 

gtctgtgtat tacgcggata accactggga taataggcct ggagggaaaa 

tgttcggatt taaccccgag gcagcatcca ttctagaaag aaagtaccca 

ttcacaaaag ggaagtggaa catcaacaag cagatctgcg tgactaccag 

gaggatagaa gactttaacc ctaccaccaa catcataccg gccaacagga 

gactaccaca ctcattagtg gccgaacacc gcccagtaaa aggggaaaga 

atggaatggc tggttaacaa gataaacggc caccacgtgc tcctggtcag 

tggctataac cttgcactgc ctactaagag agtcacttgg gtagcgccgt 

taggtgtccg cggagcggac tacacataca acctagagtt gggtctgcca 

gcaacgcttg gtaggtatga ccttgtggtc ataaacatcc acacaccttt 

tcgcatacac cattaccaac agtgcgtcga ccacgcaatg aaactgcaaa 

tgctcggggg tgactcattg agactgctca aaccgggcgg ctctctattg 

atcagagcat atggttacgc agatagaacc agtgaacgag tcatctgcgt 

attgggacgc aagtttagat cgtctagagc gttgaaacca ccatgtgtca 

ccagcaacac tgagatgttt ttcctattca gcaactttga caatggcaga 

aggaatttca caactcatgt catgaacaat caactgaatg cagccttcgt 

aggacaggtc acccgagcag gatgtgcacc gtcgtaccgg gtaaaacgca 

tggacatcgc gaagaacgat gaagagtgcg tagtcaacgc cgctaaccct 

cgcgggttac cgggtgacgg tgtttgcaag gcagtataca aaaaatggcc 

ggagtccttt aagaacagtg caacaccagt gggaaccgca aaaacagtta 

tgtgcggtac gtatccagta atccacgctg ttggaccaaa cttctctaat 

tattcggagt ctgaagggga ccgggaattg gcagctgcct atcgagaagt 

cgcaaaggaa gtaactaggc tgggagtaaa tagtgtagct atacctctcc 

tctccacagg tgtatactca ggagggaaag acaggctgac ccagtcactg 

aaccacctct ttacagccat ggactcgacg gatgcagacg tggtcatcta 

ctgccgcgac aaagaatggg agaagaaaat atctgaggcc atacagatgc 

ggacccaagt agagctgctg gatgagcaca tctccataga ctgcgatatt 

gttcgcgtgc accctgacag cagcttggca ggcagaaaag gatacagcac 

cacggaaggc gcactgtact catatctaga agggacccgt tttcatcaga 

cggctgtgga tatggcggag atacatacta tgtggccaaa gcaaacagag 

gccaatgagc aagtctgcct atatgccctg ggggaaagta ttgaatcgat 

caggcagaaa tgcccggtgg atgatgcaga cgcatcatct ccccccaaaa 

ctgtcccgtg cctttgccgt tacgctatga ctccagaacg cgtcacccgg 

cttcgcatga accacgtcac aagcataatt gtgtgttctt cgtttcccct 

cccaaagtac aaaatagaag gagtgcaaaa agtcaaatgc tctaaggtaa 

tgctatttga ccacaacgtg ccatcgcgcg taagtccaag ggaatataga 

tcttcccagg agtctgcaca ggaggcgagt acaatcacgt cactgacgca 

tagtcaattc gacctaagcg ttgatggcga gatactgccc gtcccgtcag 

acctggatgc tgacgcccca gccctagaac cagcactaga cgacggggcg 

acacacacgc tgccatccac aaccggaaac cttgcggccg tgtctgactg 

ggtaataagc accgtacctg tcgcgccgcc cagaagaagg cgagggagaa 

acctgactgt gacatgtgac gagagagaag ggaatataac acccatggct 

agcgtccgat tctttagggc agagctgtgt ccggtcgtac aagaaacagc 

ggagacgcgt gacacagcaa tgtctcttca ggcaccaccg agtaccgcca 

cggaaccgaa tcatccgccg atctccttcg gagcatcaag cgagacgttc 

cccattacat ttggggactt caacgaagga gaaatcgaaa gcttgtcttc 

tgagctacta actttcggag acttcttacc aggagaagtg gatgacttga 

cagacagcga ctggtccacg tgctcagaca cggacgacga gttacgacta 
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5651 

5701 

5751 

5801 

5851 

5901 

5951 

6001 

6051 

6101 

6151 

6201 

6251 

6301 

6351 

6401 

6451 

6501 

6551 

6601 

6651 

6701 

6751 

6801 

6851 

6901 

6951 

7001 

7051 

7101 

7151 

7201 

7251 

7301 

7351 

7401 

7451 

7501 

7551 

7601 

7651 

7701 

7751 

7801 

7851 

7901 

7951 

8001 

8051 

8101 

8151 

8201 

8251 

8301 

8351 

8401 

8451 

8501 

8551 

8601 

8651 

gacagggcag gtgggtatat attctcgtcg gacaccggtc caggtcattt 

acaacagaag tcagtacgcc agtcagtgct gccggtgaac accctggagg 

aagtccacga ggagaagtgt tacccaccta agctggatga agcaaaggag 

caactattac ttaagaaact ccaggagagt gcatccatgg ccaacagaag 

caggtatcag tcgcgcaaag tagaaaacat gaaagcagca atcatccaga 

gactaaagag aggctgtaga ctatacttaa tgtcagagac cccaaaagtc 

cctacttacc ggactacata tccggcgcct gtgtactcgc ctccgatcaa 

cgttcgattg tccaatcccg agtccgcagt ggcagcatgc aatgagttct 

tagctagaaa ctatccaact gtctcatcat accaaattac cgacgagtat 

gatgcatatc tagacatggt ggacgggtcg gagagttgcc tggaccgagc 

gacattcaat ccgtcaaaac tcaggagcta cccgaaacag cacgcttacc 

acacgccctc catcagaagc gctgtaccgt ccccattcca gaacacacta 

cagaatgtac tggcagcagc cacgaaaaga aactgcaacg tcacacagat 

gagggaatta cccactttgg actcagcagt attcaacgtg gagtgtttca 

aaaaattcgc atgcaaccaa gaatactggg aagaatttgc tgccagccct 

attaggataa caactgagaa tttagcaacc tatgttacta aactaaaagg 

gccaaaagca gcagcgctat tcgcaaaaac ccataatcta ctgccactac 

aggaagtacc aatggatagg ttcacagtag atatgaaaag ggacgtgaag 

gtgactcctg gtacaaagca tacagaggaa agacctaagg tgcaggttat 

acaggcggct gaacccttgg cgacagcata cctatgtggg attcacagag 

agctggttag gaggctgaac gccgtcctcc tacccaatgt acatacacta 

tttgacatgt ctgccgagga tttcgatgcc atcatagccg cacactttaa 

gccaggagac actgttttgg aaacggacat agcctccttt gataagagcc 

aagatgattc acttgcgctt actgctttga tgctgttaga ggatttaggg 

gtggatcact ccctgctgga cttgatagag gctgctttcg gagagatttc 

cagctgtcac ctaccgacag gtacgcgctt caagttcggc gccatgatga 

aatcaggtat gttcctaact ctgttcgtca acacattgtt aaacatcacc 

atcgccagcc gagtgctgga agatcgtctg acaaaatccg cgtgcgcggc 

cttcatcggc gacgacaaca taatacatgg agtcgtctcc gatgaattga 

tggcagccag atgtgccact tggatgaaca tggaagtgaa gatcatagat 

gcagttgtat ccttgaaagc cccttacttt tgtggagggt ttatactgca 

cgatactgtg acaggaacag cttgcagagt ggcagacccg ctaaaaaggc 

tttttaaact gggcaaaccg ctagcggcag gtgacgaaca agatgaagat 

agaagacgag cgctggctga cgaagtgatc agatggcaac gaacagggct 

aattgatgag ctggagaaag cggtatactc taggtacgaa gtgcagggta 

tatcagttgt ggtaatgtcc atggccacct ttgcaagctc cagatccaat 

ttcgagaagc tcagaggacc cgtcataact ttgtacggcg gtcctaaata 

ggtacgcact acagctacct attttgcaga agccgacagc aagtatctaa 

acactaatca gctacaatgg agttcatccc aacccaaact ttttacaata 

ggaggtacca gcctcgaccc tggactccgc gctctactat ccaaatcatc 

aggcccagac cgcgccctca gaggcaagct gggcaacttg cccagctgat 

ctcagcagtt aataaactga caatgcgcgc ggtaccccaa cagaagccac 

gcaggaatcg gaagaataag aagcaaaagc aaaaacaaca ggcgccacaa 

aacaacacaa atcaaaagaa gcagccacct aaaaagaaac cggctcaaaa 

gaaaaagaag ccgggccgca gagagaggat gtgcatgaaa atcgaaaatg 

attgtatttt cgaagtcaag cacgaaggta aggtaacagg ttacgcgtgc 

ctggtggggg acaaagtaat gaaaccagca cacgtaaagg ggaccatcga 

taacgcggac ctggccaaac tggcctttaa gcggtcatct aagtatgacc 

ttgaatgcgc gcagataccc gtgcacatga agtccgacgc ttcgaagttc 

acccatgaga aaccggaggg gtactacaac tggcaccacg gagcagtaca 

gtactcagga ggccggttca ccatccctac aggtgctggc aaaccagggg 

acagcggcag accgatcttc gacaacaagg gacgcgtggt ggccatagtc 

ttaggaggag ctaatgaagg agcccgtaca gccctctcgg tggtgacctg 

gaataaagac attgtcacta aaatcacccc cgagggggcc gaagagtgga 

gtcttgccat cccagttatg tgcctgttgg caaacaccac gttcccctgc 

tcccagcccc cttgcacgcc ctgctgctac gaaaaggaac cggaggaaac 

cctacgcatg cttgaggaca acgtcatgag acctgggtac tatcagctgc 

tacaagcatc cttaacatgt tctccccacc gccagcgacg cagcaccaag 

gacaacttca atgtctataa agccacaaga ccatacttag ctcactgtcc 

cgactgtgga gaagggcact cgtgccatag tcccgtagca ctagaacgca 

tcagaaatga agcgacagac gggacgctga aaatccaggt ctccttgcaa 
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8701 

8751 

8801 

8851 

8901 

8951 

9001 

9051 

9101 

9151 

9201 

9251 

9301 

9351 

9401 

9451 

9501 

9551 

9601 

9651 

9701 

9751 

9801 

9851 

9901 

9951 

10001 

10051 

10101 

10151 

10201 

10251 

10301 

10351 

10401 

10451 

10501 

10551 

10601 

10651 

10701 

10751 

10801 

10851 

10901 

10951 

11001 

11051 

11101 

11151 

11201 

11251 

11301 

11351 

11401 

11451 

11501 

11551 

11601 

11651 

11701 

atcggaataa agacggatga cagccacgat tggaccaagc tgcgttatat 

ggacaaccac atgccagcag acgcagagag ggcggggcta tttgtaagaa 

catcagcacc gtgtacgatt actggaacaa tgggacactt catcctggcc 

cgatgtccaa aaggggaaac tctgacggtg ggattcactg acagtaggaa 

gattagtcat tcatgtacgc acccatttca ccacgaccct cctgtgatag 

gtcgggaaaa attccattcc cgaccgcagc acggtaaaga gctaccttgc 

agcacgtacg tgcagagcac cgccgcaact accgaggaga tagaggtaca 

catgccccca gacacccctg atcgcacatt aatgtcacaa cagtccggca 

acgtaaagat cacagtcaat ggccagacgg tgcggtacaa gtgtaattgc 

ggtggctcaa atgaaggatt aacaactaca gacaaagtga ttaataactg 

caaggttgat caatgtcatg ccgcggtcac caatcacaaa aagtggcagt 

ataactcccc tctggtcccg cgtaatgctg aacttgggga ccgaaaagga 

aaaattcaca tcccgtttcc gctggcaaat gtaacatgca gggtgcctaa 

agcaaggaac cccaccgtga cgtacgggaa aaaccaagtc atcatgctac 

tgtatcctga ccacccaaca ctcctgtcct accggaatat gggagaagaa 

ccaaactatc aagaagagtg ggtgatgcat aagaaggaag tcgtgctaac 

cgtgccgact gaagggctcg aggtcacgtg gggcaacaac gagccgtata 

agtattggcc gcagttatct acaaacggta cagcccatgg ccacccgcat 

gagataattc tgtattatta tgagctgtac cctactatga ctgtagtagt 

tgtgtcagtg gccacgttca tactcctgtc gatggtgggt atggcagcgg 

ggatgtgcat gtgtgcacga cgcagatgca tcacaccgta tgaactgaca 

ccaggagcta ccgtcccttt cctgcttagc ctaatatgct gcatcagaac 

agctaaagcg gccacatacc aagaggctgc gatatacctg tggaacgagc 

agcaaccttt gttttggcta caagccctta ttccgctggc agccctgatt 

gttctatgca actgtctgag actcttacca tgctgctgta aaacgttggc 

ttttttagcc gtaatgagcg tcggtgccca cactgtgagc gcgtacgaac 

acgtaacagt gatcccgaac acggtgggag taccgtataa gactctagtc 

aatagacctg gctacagccc catggtattg gagatggaac tactgtcagt 

cactttggag ccaacactat cgcttgatta catcacgtgc gagtacaaaa 

ccgtcatccc gtctccgtac gtgaagtgct gcggtacagc agagtgcaag 

gacaaaaacc tacctgacta cagctgtaag gtcttcaccg gcgtctaccc 

atttatgtgg ggcggcgcct actgcttctg cgacgctgaa aacacgcagt 

tgagcgaagc acatgtggag aagtccgaat catgcaaaac agaatttgca 

tcagcataca gggctcatac cgcatctgca tcagctaagc tccgcgtcct 

ttaccaagga aataacatca ctgtaactgc ctatgcaaac ggcgaccatg 

ccgtcacagt taaggacgcc aaattcattg tggggccaat gtcttcagcc 

tggacacctt tcgacaacaa aattgtggtg tacaaaggtg acgtctataa 

catggactac ccgccctttg gcgcaggaag accaggacaa tttggcgata 

tccaaagtcg cacacctgag agtaaagacg tctatgctaa tacacaactg 

gtactgcaga gaccggctgc gggtacggta cacgtgccat actctcaggc 

accatctggc tttaagtatt ggctaaaaga acgcggggcg tcactgcagc 

acacagcacc atttggctgc caaatagcaa caaacccggt aagagcggtg 

aactgcgccg tagggaacat gcccatctcc atcgacatac cggaagcggc 

cttcactagg gtcgtcgacg cgccctcttt aacggacatg tcgtgcgagg 

taccagcctg cacccattcc tcagactttg ggggcgtcgc cattattaaa 

tatgcagcca gcaagaaagg caagtgtgcg gtgcattcga tgactaacgc 

cgtcactatt cgggaagctg agatagaagt tgaagggaat tctcagctgc 

aaatctcttt ctcgacggcc ttagccagcg ccgaattccg cgtacaagtc 

tgttctacac aagtacactg tgcagctgag tgccaccccc cgaaggacca 

catagtcaac tacccggcgt cacataccac cctcggggtc caggacatct 

ccgctacggc gatgtcatgg gtgcagaaga tcacgggagg tgtgggactg 

gttgttgctg ttgccgcact gattctaatc gtggtgctat gcgtgtcgtt 

cagcaggcac taacttgaca attaagtatg aaggtatatg tgtcccctaa 

gagacacact gtacatagca aataatctat agatcaaagg gctacgcaac 

ccctgaatag taacaaaata caaaatcact aaaaattata aaaacagaaa 

aatacataaa taggtatacg tgtcccctaa gagacacatt gtatgtaggt 

gataagtata gatcaaaggg ccgaataacc cctgaatagt aacaaaatat 

gaaaatcaat aaaaatcata aaatagaaaa accataaaca gaagtagttt 

aaagggctat aaaacccctg aatagtaaca aaacataaag ttaataaaaa 

tcaaatgaat accataattg gcaaacggaa gagatgtagg tacttaagct 

tcctaaaagc agccgaactc actttgagaa gtaggcatag cataccgaac 
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11751 

11801  
 

tcttccacga ttctccgaac ccacagggac gtaggagatg ttattttgtt 

tttaatattt c  
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C2 Virus titres obtained by conducting plaque assays in triplicate using 

Vero cells in 6 well (35mm) assay dishes for (a) w/t and (b) A533V mutant 

viruses. 
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Time 
(hr) 

w/t 1 
pfu/ml 

w/t 2 
pfu/ml 

w/t 3 
pfu/ml 

wt Ave 
pfu/ml 

1 6.50E+04 5.46E+04 3.50E+04 5.15E+04 

2 5.20E+04 4.00E+04 4.80E+04 4.67E+04 

4 6.30E+04 4.26E+04 4.40E+04 4.99E+04 

7 1.28E+06 4.20E+06 4.09E+06 3.19E+06 

9 1.83E+07 1.81E+07 1.37E+07 1.67E+07 

20 2.89E+08 5.60E+08 4.53E+08 4.34E+08 

24 4.60E+07 2.49E+08 2.00E+08 1.65E+08 

48 3.30E+07 9.81E+07 1.62E+08 9.77E+07 

Time(hr) mut vero 
1 

mut vero 
2 

mut vero 
3 

Ave 
pfu/ml 

1 1.40E+04 1.20E+04 1.40E+04 1.33E+04 

2 1.40E+04 1.20E+04 1.60E+04 1.40E+04 

4 2.20E+04 3.10E+04 2.90E+04 2.73E+04 

7 7.60E+05 1.04E+06 1.02E+06 9.40E+05 

9 3.60E+06 4.00E+06 2.00E+06 3.20E+06 

20 1.09E+08 1.83E+08 1.29E+08 1.40E+08 

24 2.06E+08 1.92E+08 2.60E+08 2.19E+08 

48 8.71E+07 9.23E+07 1.01E+08 9.35E+07 
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C3 Virus titres obtained by conducting plaque assays in triplicate using 

L929 cells in 6 well (35mm) assay dishes for (a) w/t and (b) A533V mutant 

viruses. 
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Time 
(hr 

w/t 1 
pfu/ml 

pfu/ml pfu/ml wt Ave 
pfu/ml 

1 1.28E+04 1.20E+04 1.06E+04 1.18E+04 

3 7.20E+03 8.20E+03 6.40E+03 7.27E+03 

6 5.00E+03 6.80E+03 7.50E+03 6.43E+03 

8 4.20E+04 4.40E+04 5.50E+04 4.70E+04 

20 9.80E+04 1.30E+05 1.14E+05 1.14E+05 

26 5.47E+05 4.93E+05 5.60E+05 5.33E+05 

50 3.87E+05 4.27E+05 4.26E+05 4.13E+05 

Time mut 1 mut 2 mut 3 Ave 
pfu/ml 

1 4.20E+03 5.20E+03 4.80E+03 4.73E+03 

3 8.00E+03 1.10E+04 7.20E+03 8.73E+03 

6 1.28E+04 9.80E+03 1.20E+04 1.15E+04 

8 1.00E+05 1.00E+05 1.08E+05 1.03E+05 

20 3.60E+05 3.64E+05 3.30E+05 3.51E+05 

26 7.00E+04 1.10E+05 1.08E+05 9.60E+04 

 3.40E+04 2.80E+04 3.60E+04 3.27E+04 


