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ABSTRACT
Objective: To develop a composite MRI-based measure of motor network integrity, and determine if it explains disability better than conventional MRI measures in subjects with multiple sclerosis (MS).

Methods: Tract density imaging and constrained spherical deconvolution tractography were used to identify motor network connections in 22 controls. Fractional anisotropy (FA), magnetisation transfer ratio (MTR) and normalized volume were computed in each tract in 71 people with relapse onset MS. Principal component analysis was used to distill the FA, MTR and tract volume data into a single metric for each tract, which in turn was used to compute a composite measure of motor network efficiency (composite NE) using graph theory. Associations were investigated between the expanded disability status scale (EDSS) and the following MR measures: composite motor NE, NE calculated using FA alone, FA averaged in the combined motor network tracts, brain T2 lesion volume, brain parenchymal fraction, normal appearing white matter MTR, cervical cord cross-sectional area.

Results: In univariable analysis, composite motor NE explained 58% of the variation in EDSS in the whole MS group, more than twice that of the other MRI measures investigated. In a multivariable regression model, only composite NE and disease duration were independently associated with EDSS.

Conclusions: Multiparameter MRI based measures of network efficiency may have a useful role in the assessment of clinically relevant pathology in MS.

INTRODUCTION

In clinical practice and in treatment trials, effective markers of disease severity and progression are required. In multiple sclerosis (MS) the most widely used clinical score is the expanded disability status scale (EDSS).1,2 This has been validated as a clinical outcome measure3 and is accepted by regulatory authorities as a primary outcome in treatment trials. However, its reliability4 and longitudinal sensitivity to change are both limited, and large cohorts and lengthy periods of observation are required in trials. Magnetic resonance imaging (MRI) measures of disease progression, such as white matter (WM) lesion load5 and brain atrophy6 enable treatment effects to be detected in smaller cohorts. However, MRI measures have not been accepted as primary outcomes, as their correlation with disability is modest.7,8 The development of MRI markers more closely linked with disability is a key goal of current MS research. 

MS pathology is diverse with focal inflammation and demyelination, and widespread neuronal damage, all contributing to clinical outcomes.9 To address spatial variability in pathology, several MRI approaches have been used. One is to acquire whole brain measures, which will include pathology in regions that are not relevant to the outcome of interest, so weakening associations. Another is to study anatomically defined regions of interest (ROI), which offer a degree of functional specificity, but may overlook relevant pathology occurring beyond the ROI.10 A different approach is to evaluate composite measures within the anatomical network underlying the function of interest.11 This offers a more complete evaluation of regions sub-serving a specific function while not including functionally unrelated regions. It is possible to treat a network as a single ROI thus obtaining an average measure of abnormalities, but doing so information about the way the network is connected is lost. An alternative is to use graph theory (GT), a mathematical approach used in connectomics.12,13 GT enables network-wide damage to be assessed in a single measure, while weighting the effects of pathology dependent on where it occurs in the network. Network efficiency (NE) is a commonly used GT measure, and represents the potential for a network to exchange information between its components.12,13 
Structural connectomic studies have mainly relied on diffusion-based metrics such as fractional anisotropy (FA).14 Diffusion-based imaging measures, however, do not capture the full range of MS pathology,15,16 and so combining them with other MRI techniques, such as measures of magnetization transfer ratio (MTR) and tissue volumes, could provide a more complete picture of MS pathology. 

In this study we focused on measurement of motor network pathology and their associations with EDSS scores. The aims of this work were to determine if:

1. MRI measurements of motor network pathology correlate more closely than non-network based MRI measures with EDSS scores.

2. A measure of NE in the motor network correlates better with disability than mean white matter FA in the motor network  

3. A composite NE measure is better able to account for disability than a conventional FA based NE measure.

METHODS

SUBJECTS

Seventy-one subjects with relapse-onset MS (mean age: 46.2±10.3 years; mean disease duration:  15.4±10.0 years, 44 females, 27 males; 27 secondary progressive (SP) MS and 44 relapsing-remitting (RR) MS) were included in this study. Clinical and MRI assessments were not undertaken in those who had had a relapse or received corticosteroids within the preceding four weeks. The primary clinical measure of this study was the EDSS.1 Clinical and demographic data for the whole MS group and the SPMS and RRMS subgroups are shown in Table 1.

A group of 22 age and gender matched healthy controls (age: 44.4±2.4; 13 females, 9 males), with no known neurological or psychiatric conditions, were also enrolled in the study. Written informed consent was obtained from all subjects. This study was approved by the local Institutional Ethics Committee. 

MRI PROTOCOL AND ANALYSIS

An outline of the analysis pipeline is shown in Figure 1. 

MRI protocol and pre-processing

Brain MRI was performed on a Philips Achieva 3T system (Philips Healthcare, Best, Netherlands) using a 32-channel head-coil. The High Angular Resolution Diffusion Imaging (HARDI) scan consisted of a cardiac-gated spin-echo echo-planar imaging sequence, with slices acquired in the axial-oblique orientation aligned with the anterior and posterior commissure (AC-PC) line (2*2*2 mm3, 61 isotropically distributed diffusion-weighted directions with b = 1200 s/mm2, 7 b = 0 volumes, TE = 68 msec, TR = 24 sec [depending on the cardiac rate], SENSE factor = 3.1, field of view 112x112, number of slices: 72). In each subject we also acquired: (i): Dual-echo proton density/T2-weighted axial-oblique scans aligned with the AC-PC line (1*1*3 mm3, TR = 3500 msec, TE = 19/85 msec, field of view: 240x240), (ii) 3D sagittal T1-weighted fast field echo  scan (1*1*1 mm3, TR = 6.9 msec, TE = 3.1 msec) and (iii) Magnetization Transfer Imaging (MTI) scans (1x1x1 mm3. TR= 6.4 msec, TE= 2.7 msec/4.3 msec, field of view: 256x256, number of slices: 180). 

Preprocessing steps included: (i) removal of non-brain tissue using FSL,17 (ii) eddy-current correction of diffusion images and vector realignment using FSL17 and (iii) fitting of the diffusion tensor using Camino.18 

Network based analysis: Identification of the motor network components

The cortical and subcortical GM structures of the motor network were identified. Using these as seed points, we extracted WM tracts for use in the subsequent GT network analysis. This was undertaken using data from healthy controls. In outline the steps to achieve this were as follows:

a) GM mask generation: Based on published models of motor function19 masks of relevant GM regions were prepared in Montreal Neurological Institute (MNI) space (Figure 2). Left- and right-side masks were created separately for each region. Superior and middle cerebellar peduncle masks were also prepared as waypoints for cortico-cerebellar fibre tractography. 

b) Generation of Track Density Imaging (TDI) maps: TDI is a post-processing method of diffusion images that takes into account the distribution of fibre tracts over the whole brain to better characterize tract trajectories at a local level, and has been shown to improve the extraction of tracts with complex trajectories.20,21 TDI maps, representing the number of tracts passing within each element of a 1 mm3 grid were computed using Constrained Spherical Deconvolution (CSD) tractography22 as previously described.21 

c) Registration of the GM masks from MNI space to each control native diffusion space: GM masks were registered to each subject’s TDI maps in native diffusion space using a non-linear transformation23 as previously described,24 and as outlined in the supplementary online methods. GM masks in TDI space were then dilated to reach the neighbouring WM, so they could be more reliably used as seed points for WM tractography. The positioning of each mask was then checked by MP.

d) Extraction of WM tracts connecting GM regions: Tractography was performed on the eddy-current-corrected and brain extracted HARDI data in MRtrix22 (www.brain.org.au/software/mrtrix/) using probabilistic CSD.22 Pairs of GM masks (Figure 2) were used as seed and target areas (step-size = 0.1 mm, maximum angle between steps = 10°, maximum harmonics order = 8, termination criteria: CSD fibre-orientation distribution amplitude was < 0.1, number of tracks: 3000). Tracts were then mapped back on TDI images and their trajectory assessed for anatomical accuracy by MP.  

e) Generation of WM tract of interest (TOI) masks: All tracts obtained in (c) were registered to MNI space using the inverse of the transformation described in (c). Where a voxel was included in a tract in ≥ 50% of controls25 it was also included in the final TOI (Figure 2).

Network based analysis: Quantification of motor network WM tract FA, MTR and volume

FA, MTR and normalized volume was computed for each TOI for all MS subjects as described in the supplementary online methods. 

Network based analysis: Principal component analysis (PCA) of multiparameter MRI data

FA, MTR and normalized volume for each WM tract were distilled using PCA, with each tract in each subject representing a separate data point. The analysis revealed a single factor which explained ~80% of the variance in these three measures, i.e. 80% of the unique information in the tracts’ MTR, FA and normalized volume measures was captured by this PCA factor. The value of this factor, rescaled between 0 and 1 in each tract was then used in the subsequent GT network analysis.

Network based analysis: computation of multiparameter and FA NE

NE, normalized to the maximum theoretical efficiency of the network was computed using the Matlab Connectivity Toolbox (fwww.brain-connectivity-toolbox.net). NE was computed separately (i) based on the WM tract FA (as per previous studies)16 to generate an FA based NE measure (FA NE), and (ii) using the PCA main factor to generate a composite NE measure incorporating effects of FA, MTR and tissue volume. In this analysis, higher NE values represent the potential for more efficient information exchange.15
Other MRI metrics 

All the tracts of the motor network were merged to form a single mask of motor network white matter. Mean FA was then measured inside this mask (whole network FA). Whole brain PD/T2-weighted lesion volumes, normal appearing (NA) WM MTR, brain parenchymal fraction (BPF) and cervical cord area were measured. WM PD/T2 lesion load was measured using PD/T2 images and JIM (Xinpase Systems, www.xinapse.com). Normal appearing WM (NAWM) MTR values were computed from the WM mask (generated as above) excluding PD/T2 WM lesions. BPF was computed using the GM, WM and cerebrospinal fluid (CSF) masks.26 Cervical spinal cord area was measured using the T1-weighted volumetric images as previously described.27

Statistical analysis

Log transformed volume was used to normalize the PD/T2 WM lesion load data. In the whole MS group associations between EDSS and MRI metrics were examined with Spearman and Pearson correlations. Multivariable associations with EDSS were examined using multiple linear regression, with the MRI and demographic variables as predictors. There was no evidence of residual non-normality, but as a precaution the results assuming normality were confirmed using a non-parametric bias-corrected and accelerated bootstrap with 1000 replicates. There was evidence of heteroscedasticity, but robust standard error28 regressions accommodating heteroscedasticity did not materially alter results, therefore standard least squares results are reported. Although the regression p-values, confidence intervals and R-squares are valid after the residual checks above, regression coefficients must be interpreted with caution: the EDSS scale does not have a uniform linear interpretation.  For this reason the potentially different association between EDSS and composite NE in SP and RR was examined not with a conventional interaction test, which compares slopes in the two groups, but by comparing residual variance between the groups using an F-test, smaller variance indicating better model fit. Statistical analyses were performed in Stata 13.1 (Stata Corporation, College Station, Texas, USA), and statistical significance reported at P<0.05. Data are reported as mean ± standard deviation, unless stated otherwise. 

RESULTS
MRI AND EDSS ASSOCIATIONS IN THE WHOLE MS GROUP

The connectivity matrix of the motor network is shown in Figure 2 (lower panel). The MRI measurement values are given in Table 1. Table 2 shows pairwise correlations and R-square values between EDSS, the MRI and demographic variables. While all correlations were significant (Table 2), composite NE had the highest R-square, explaining 58% of variance in EDSS scores compared with 21% for FA NE (Figure 3) and with 18% for cervical cord area (the second and third best performing metrics). 

In a multivariable regression analysis including composite NE and other MRI or demographic variables, disease duration was the only significant predictor of EDSS independent from the composite NE (model R-square: 0.64, composite NE P<0.001, disease duration P=0.003). While none of the MRI parameters were independent predictors of EDSS in models with composite NE, the logarithmic transformation of T2 lesion load approached significance (P=0.081), despite having the smallest univariable R-square (0.09). However log T2 lesion load lost significance in a model with disease duration as a covariate.
MRI AND EDSS ASSOCIATION IN RRMS AND SPMS SUBGROUPS

The composite NE was also significantly associated with EDSS in the RRMS (R-square 0.46) and SPMS (R-square 0.50) groups. The reduced R-square value observed in either subgroup compared to that in the whole MS cohort is consistent with the smaller range of values in the MRI and EDSS measures seen in the subgroups when compared with the whole MS group. A comparison of the residual variance in the two subgroups confirmed a higher variance in RR than in SPMS (P<0.001), providing evidence that composite NE prediction of EDSS is better in the SP than in RRMS group. Neither disease duration nor any other variable predicted EDSS independently of composite NE in separate models for SP and RRMS.

DISCUSSION
The results of this study suggest that a network-based multiparameter MRI measure (composite NE) correlates significantly better with EDSS scores than either conventional brain or spinal cord MRI measures, or NE calculated using FA alone. Composite NE explained ~58% of the variability in EDSS scores, with the next best measure (FA NE) explaining about half of this variability. While FA measured in the motor network correlated at least as well with EDSS as conventional MRI measures, using calculating NE from the network FA measures improved on this, and a further substantial gain was achieved by using multiple MRI measures (in this study tract FA, MTR and volumes) to calculate NE.

Developing MRI markers of clinical outcomes has proven difficult in MS. One major issue is the spatial variability of MS pathology, which can have very different effects on clinical outcomes dependent on its location. As such, it is not surprising that the correlations between whole brain MRI measures of MS pathology and neurological and cognitive disability7,8 are only modest, and ROI-based studies have not clearly found a single region that consistently correlates with motor outcomes.10 Network-based metrics avoid these pitfalls by incorporating data from all the functionally relevant components of a network. 

Assessing performance across a neural network can be undertaken in different ways, but in connectomics GT has proven useful as it enables network-wide characteristics to be summarised in a single metric.12,13 In MS, GT has been applied at a whole brain level using functional MRI (fMRI),29,30 diffusion31,32 and volumetric MRI data,33 showing that MS pathology has detectable effects on the function of networks. At a single network level, we have previously found that for Paced Auditory Serial Addition Test (PASAT) scores, FA NE was better able to predict test performance than the raw PASAT network WM tract FA measures used to calculate NE.34 The results of the present study confirm that this approach is applicable to other brain networks in MS.
NE is calculated using a single measure only, and previous structural GT studies have relied exclusively on FA measures to calculate NE in MS31,32 and other neurological conditions.14 However, no single MRI measure fully captures the spectrum of MS pathology, and so using several different MRI measures may provide a more comprehensive assessment. Previous multiparameter MRI studies in MS, however, have looked at each MR measure independently.35,36 We found that multiparameter MRI data combined using PCA, when compared with FA alone, further improved the association between network-based MRI measures and EDSS scores, increasing the explained variance in EDSS scores from 21% using a FA NE measure (based on FA alone) to 58% with a composite NE that used MTR, FA and normalized tract volume measures. These three measures provide complementary information on the underlying pathology. MTR is reduced with demyelination,37 FA in WM tracts is reduced both with demyelination and when axonal integrity is disrupted38, and a decrease in tissue volumes are thought to reflect axonal loss and neurodegenerative changes.39 This may account for the stronger correlation of the composite NE measure with disability than NE computed using FA alone. Associations between the composite NE measure and EDSS were similar in RRMS (R-square 0.46) and SPMS (0.50) suggesting that this measure may be equally useful across different disease subtypes.

A limitation of the study is the difficulty in identifying relevant GM areas to prime motor network tractography. While we included all the main areas described in published models of motor function,19 in people with MS additional cortical areas are recruited during the execution of motor tasks as disability increases.40 However the majority of studies localize these additional areas in contralateral motor or prefrontal territories, i.e. all areas already included in our network.40 In addition, our GM masks are bigger than those usually used in whole-brain connectomics studies, potentially incorporating in some masks functionally independent areas. This will tend to reduce the apparent associations between network measures and clinical scores. However, bigger GM regions, and consequently larger WM tract masks, will reduce the impact of inter-individual anatomical variability.  As this study sought to determine whether a GT-based approach was worth pursuing in MS, we focused on NE, the most commonly use GT metric. As NE quantifies a physiologically relevant property, i.e. the structural capacity for information transfer between parts of a network, it was a suitable choice for this proof-of-concept study. Other network properties that can be characterized using GT, such as ‘nodal degree’ (which represents the strength with which a given GM region is connected to the rest of the network),15 should be explored in future studies to determine which parameters best encapsulates the effects of MS pathology on a network. Similarly, the MRI parameters included in this study were based on those most often used in MS clinical studies, but again future work could determine whether or not other parameters contribute further.

In conclusion, the results of this study suggest that multiparameter MRI based measures of motor network efficiency may have a useful role in the assessment of clinically relevant pathology. They were able to explain about 58% of the variation in EDSS scores in a diverse group of people with MS, substantially and significantly outperforming a series of conventional and non-network based MRI measures.

FIGURE LEGENDS

Figure 1. MRI analysis pipeline. Legend: GM: Grey Matter, HC: healthy controls, TDI: track density imaging, MNI: Montreal Neurologic Institute (atlas), MTR: magnetization transfer ratio, FA: fractional anisotropy. 
Figure 2: Upper panel: Grey matter regions included in the motor network. Lower panel: Connectivity matrix of the tracts included in the motor network based on the tractography results. Included tracts are shown in light gray, tracts not identified by fibre tractography are shown in dark grey. Legend: R: Right, L: Left, PFC: prefrontal cortex, S2: secondary sensory area, M2; secondary motor area, As Sens C: associative parietal sensory cortex, S-M1: primary sensory motor cortex, deep GM: deep grey matter
Figure 3: Correlation between multiparameter motor NE (composite NE) and EDSS scores. 
TABLES
Table 1. Demographic, MRI and clinical data for the relapsing remitting (RR) and secondary progressive (SP) MS subjects. 
	 
	Whole MS group
	RRMS
	SPMS

	Age
	46.2±10.3
	42.4±10.0
	52.4±7.6

	Gender
	44 Females 

/27 Males
	29 Females

/ 15 Males
	15 Females 

/ 12 Males

	Disease Duration
	15.4±10.0
	11.4±8.1
	21.9±9.3

	EDSS
	4.5 (range 1-8.5)
	2.0 (range 1-7)
	6.5  (range 4- 8.5)

	composite NE a
	0.57±0.05
	0.59±0.04
	0.54±0.04

	FA NEa
	0.40±0.04
	0.41±0.04
	0.37±0.04

	NAWM MTRb
	38.1±1.4
	38.4±1.1
	37.5±1.6

	BPFa 
	0.80±0.02
	0.80±0.02
	0.79±0.02

	Whole Network FA
	0.45±0.06
	0.47±0.06
	0.43±0.06

	WM PD/T2 lesion volc
	8.50±10.28
	7.60±10.92
	9.97±9.13

	Cervical Cord Aread
	74.1±11.1
	77.2±10.8
	69.0±10.0


Legend: composite NE: multiparameter principal component derived network efficiency; FA NE: uni-modal network efficiency (based on FA values only); NAWM: normal appearing white matter; BPF: brain parenchimal fraction; Network Mask FA: FA computed in a mask of the whole motor network; WM PD/T2 LL: white matter lesion load quantified on PD/T2 scans. Unit of measure: a: unitless,  b: percentage unit, c: ml, d: mm2
Table 2. Spearman and Pearson Correlations and univariable R-squares of the MRI measures with EDSS  in the whole MS group. 
	Demographic measures
	Spearman Correlations
	Pearson Correlations
	Univariable R-square

	Age
	rho=0.45, P<0.001
	r=0.49, P<0.001
	0.24

	Disease duration
	rho=0.57, P<0.001
	r=0.55, P<0.001
	0.30

	MRI measures
	Spearman Correlations
	Pearson Correlations
	Univariable R-square

	composite NE
	rho=-0.77, P<0.001
	r=-0.77, P<0.001
	0.58

	FA NE
	rho=-0.52, P<0.001
	r=-0.52, P<0.001
	0.28

	NAWM MTR
	rho=-0.37, P=0.002
	r=-0.34, P=0.004
	0.12

	BPF
	rho=-0.30, P=0.011
	r=-0.31, P=0.009
	0.10

	Whole Network FA
	rho=-0.39, P<0.001
	r=-0.43, P<0.001
	0.18

	WM PD/T2 LL
	rho=0.27, P=0.026
	r=0.08, P=0.486 (n.s)
	0.01 (n.s).

	log WM PD/T2 LL
	rho=0.27, P=0.026
	r=0.30, P=0.012
	0.09

	Cervical Cord Area
	rho=-0.41, P<0.001
	r=-0.43, P<0.001
	0.18


Legend: composite NE: multiparameter principal component derived network efficiency; FA NE: uni-modal network efficiency (based on FA values only); NAWM: normal appearing white matter; BPF: brain parenchimal fraction; Network Mask FA: FA computed in a mask of the whole motor network; WM PD/T2 LL: white matter lesion load quantified on PD/T2 scans. 
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