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 Abstract  
 

Background: Current malaria vector control programmes rely on insecticides with rapid 

contact toxicity. However, spatial repellents can also be applied to reduce man-vector 

contact, with the ultimate goal of reducing malaria transmission.  

Objectives and methods: The overall goal of my PhD thesis was to evaluate existing 

spatial repellents as potential tools for malaria control. This thesis focused on 

characterizing the effect of pyrethroid spatial repellents on mosquito behaviour indoors 

and outdoors. Emphasis was placed on the effect on entomological parameters that 

influence malaria transmission. Experiments were conducted in experimental huts in a 

malaria endemic village in rural south eastern Tanzania and in a semi-field system against 

laboratory reared Anopheles gambiae sensu stricto mosquitoes.  

Results and conclusions: Transfluthrin and Metofluthrin coils and DDT reduced human 

vector contact through deterrence, irritancy/excito-repellency and blood-feeding 

inhibition. Pyrethroid coils were shown to cause excitation and increased activity of 

mosquitoes in the presence of humans. Transfluthrin coils did not hinder attraction of 

mosquitoes to humans but prevented mosquitoes from biting and blood feeding. This way 

coils provided area wide protection for up to 15m and prolonged anti-feeding for 12 

hours. There was no evidence of Transfluthrin induced repellency (directional movement 

of mosquitoes away from humans) under outdoor conditions. Locally developed 

Transfluthrin hessian strips also prevented mosquitoes from biting. This thesis elucidates 

the mode of action of spatial repellents: spatial repellents reduce human – vector contact 
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and induce mortality, hence directly affect ma: human biting rate, m: mosquito density 

and p: mosquito survival which are among the most important parameters of the vectorial 

capacity of a mosquito population. This information is critical for the development of 

target product profiles for spatial repellent products. This study shows that spatial 

repellents may be a suitable complementary option where mosquitoes feed in the early 

evening and rest outdoors.  
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CHAPTER ONE 

1     General introduction 

1.1. Public health importance of malaria in Africa 

 
Malaria burden is generally falling albeit to varying degrees across most regions of the 

world [1]. From 2000 to 2013 estimated malaria mortality rates dropped by 47% 

worldwide and by 54% in the World Health Organization Africa region [1]. The success 

in malaria control is attributed to high coverage of long lasting insecticidal nets (LLINs) 

and indoor residual spraying (IRS) programmes [2, 3] as well as use of effective 

diagnostic testing, malaria treatment and chemoprevention [1].  

Massive scale up of interventions in sub Saharan Africa is attributed to tremendous 

financing. International financial disbursements to malaria-endemic countries totalled 

US$ 2.7 Billion in 2013. [1]. Despite increased funding, the amount available remains 

below that required to achieve universal access to malaria interventions that would 

control and eliminate malaria. These are among challenges facing malaria control in sub-

Saharan Africa. The development of artemisinin resistance in the Greater Mekong sub-

region [4], insecticide resistance in parts of Africa [5], lack of tools that sufficiently 

reduce vectorial capacity, and the presence of mosquitoes that rest and feed outdoors are 

factors that may hinder malaria elimination and eradication [6].  
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1.2. Distribution and bionomics of malaria vectors in Africa 

 
The most important vector of malaria in Africa is Anopheles gambiae species complex 

[7]. It comprises at least six sibling species including: An. gambiae sensu stricto, An. 

arabiensis, An. quadrianulatus, An. melas, An. merus and An. bwambae [8, 9]. The 

distribution of these vectors in Africa is shown in Figure 1.1 [10]. Within this complex, 

An. gambiae sensu stricto, An. arabiensis and An. funestus are the most dominant vector 

species [11, 12] and are responsible for most of malaria transmission throughout Africa 

[13]. Anopheles gambiae s.s. and An. funestus mosquitoes are shown to exhibit 

anthropophilic (feed on humans) [14-16], endophagic (feed indoors) and endophilic (rest 

indoors) behaviour [17, 18] and typically feed late at night [19] hence the ability to 

sustain high malaria transmission in Sub Saharan Africa. .Unfortunately, close proximity 

to humans and indoor insecticides, is believed to have led to selective pressure and 

development of resistance to pyrethroids followed by resurgence of malaria in Kwa Zulu- 

Natal, South Africa. An. arabiensis mosquitoes exhibit behavioural plasticity that allows 

them to survive in a range of geographical locations [12]. These mosquitoes are 

considered to be mainly zoophilic (feed on animals), exophagic (feed outdoors) and 

exophilic (rest outdoors) [20] but have also been shown to exhibit a range of feeding and 

resting behaviour showing both anthropophilic and zoophilic behaviour [21]. The plastic 

behaviour is believed to enhance their adaptability to avoid contact with LLINs and IRS 

[20]. Studies indicate that An. gambiae s.s. mosquitoes that previously predominated in 

western Kenya [22] and northeastern Tanzania [23] have tremendously decreased in 

relation to An. arabiensis. This change is attributed to the plastic behaviour of An. 

arabiensis that makes them less responsive to intra-domiciliary vector control tools such 
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as LLINs and IRS. A recent illustration of the distribution of malaria vectors shows 

predominant distribution of An. arabiensis and An. funestus mosquitoes in East Africa 

[24] (Figure 1.2.) compared to Figure 1.1 where An. gambiae s.s. were predominant.  

1.3. Mosquito control and malaria transmission 

 
The main objective of malaria vector control is reduction of the vectorial capacity. 

Vectorial capacity refers to the expected number of new human malaria infections 

disseminated per human per day, by a mosquito population from a single case, presuming 

that all vector females feeding on the case become infective [25]. It relates to 

entomological parameters relevant for malaria transmission including: the density of 

mosquitoes in relation to man, human biting rate and the daily probability of the survival 

of vectors [26, 27]. A decrease in the vectorial capacity of mosquitoes leads to a 

reduction in malaria transmission [25]. The main mosquito control tools include larval 

source management, use of LLINs and IRS. The distribution of LLINs and high coverage 

of IRS have led to massive reduction of malaria [28-30]. The main aim of larviciding is to 

reduce vector density in order to reduce malaria transmission [31]. Efficacy of larviciding 

depends on location and treatment of all larval habitats. This is challenging in rural areas 

where larval habitats are many and hard to identify and may be the reason why 

larviciding is not as effective as other tools [32]. However, larval source management is 

proven effective against malaria transmission as well as cost effective where mosquito 

larval habitats are accessible and well defined. IRS is particularly effective where female 

mosquitoes after feeding, rest inside houses to digest blood meals. Therefore, high 

coverage of spraying and ensuring that all surfaces are sprayed enhances efficacy of IRS 
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due to increased contact of mosquitoes with toxic insecticides hence a decrease in 

survival and population densities. In this respect IRS has successfully reduced malaria 

transmission where vectors are endophilic [30] but may be ineffective against exophilic 

mosquitoes. LLINs massively reduce malaria because they affect different stages of the 

mosquito life cycle hence lead to more gains [33, 34]. They reduce the mosquito lifespan, 

lengthen the cycle and prevent biting through the killing and repellent actions [33]. 

However, efficacy is highest where mosquitoes are zoophagic because mosquitoes that 

are prevented from feeding can be diverted to non-malaria hosts [35]. Other control 

measures such as improving housing have also been shown to reduce malaria 

transmission [36, 37] through reduction of indoor densities of mosquitoes and  human - 

vector contact [38, 39]. 

In order to achieve maximum benefits from vector control interventions, it is necessary to 

consider the distribution and behaviour of mosquitoes as well as the level endemicity of 

malaria before implementation. For instance, ntra-domiciliary tools are effective where 

mosquitoes are anthropophilic, endophagic and endophilic but less effective where 

mosquitoes are exophagic and exophilic [40]. These underscore the need for additional 

vector control tools that can protect people in the early evening and when they are 

outdoors. This thesis focuses on the use of spatial repellents as complementary tools for 

malaria control. Spatial repellents are chemicals that work at a distance in the vapour 

phase [61] causing mosquitoes to sit apart from the source of the chemical [62]. Spatial 

repellents render a specific area mosquito free by preventing landing or biting within that 

area [63]. 
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Figure.1.1: Map of Africa showing distribution of Anopheles gambiae species complex 

mosquitoes. (These maps were produced in 2000). Source: [10]. 
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Figure. 1.2. A regional map showing the distribution of the three most dominant malaria vectors 

in Africa. (This map was produced in 2012) Source: [24]. 
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1.4. Statement of problem 

 

The World Health Organization recommends full coverage of Long Lasting Insecticidal 

Nets (LLINs) for all people at risk of malaria [41], and Indoor Residual Spraying (IRS) 

for low and moderate transmission areas in order to reduce seasonal annual malaria 

transmission [42]. Recent massive scale up of LLINs and IRS has successfully reduced 

malaria throughout sub Saharan Africa including Tanzania [2, 3]. Despite these 

successes, elimination and eradication remain challenging for most countries in Africa 

[6]. The main goal for vector control is to reduce vectorial capacity to levels that prevent 

transmission of parasites. Existing vector control tools are failing to elicit complete 

malaria control due to factors including: development of insecticide resistance and the 

presence of mosquitoes that rest and feed outdoors [6].  

Use of LLINs and IRS targets night biting, indoor feeding (endophagic) and indoor 

resting mosquitoes (endophilic), which are primarily anthropophilic (feed on man). High 

coverage of LLINs and IRS has successfully reduced these mosquitoes in most areas in 

Africa [22, 43, 44]. Unfortunately, success of indoor mosquito control means that there is 

a competitive advantage for those species and sub-species that feed when hosts are still 

active outdoors and they are able to maintain transmission, albeit at lower levels [40]. 

LLINs prevent blood feeding and therefore disrupt the feeding process of mosquitoes, 

increasing the length of the oviposition cycle of the overall population. This mechanism 

might explain the immediate change in biting cycles of several species such as has been 

reported for An. farauti and An. koliensis in Papua New Guinea [45]. Other studies also 
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report complete species shift to those that are able to feed and rest outdoors [22, 43, 44] 

and the appearance of cryptic species that have increased outdoor activity [46]. In 

addition, reduced malaria transmission is accompanied by heterogeneous transmission 

that has created transmission hot spots that remain highly malaria endemic, despite 

existing control programmes [47]. This indicates that apart from new control tools there 

is need to identify and target hot spots that continue to maintain transmission [47]. 

So far, there has been no deliberate control strategy geared towards early evening or 

outdoor biting and resting mosquitoes in sub-Saharan Africa, although in Greater 

Mekong sub region outdoor malaria transmission is well recognized [48, 49]. In order to 

eliminate and eventually eradicate malaria, efforts should be put into developing tools 

that target outdoor biting mosquitoes. Tools that protect people when they are not 

protected by LLINs and IRS are topical repellents. Topical repellents protect people from 

early – biting mosquitoes and the effect on reduced malaria transmission has been 

reported [50-52]. However, most topical repellents provide an average of 4 -10 hours 

protection [53] hence the development of long lasting formulations that confer maximum 

protection is necessary. Furthermore, efficacy of topical repellents is highly dependent on 

regular compliance by users. Studies indicate that when there is inconsistent compliance, 

mosquitoes are likely to be diverted between users and non-users. This might undermine 

control efforts due to increased diversion of infectious mosquitoes to unprotected people, 

who are potentially the poorest members of a population (unable to afford repellents), 

hence most vulnerable to the effects of malaria [54]. Efficacy of other interventions such 

as LLINs is also attenuated by lack of compliance by the community [55, 56]. 
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Behavioural, change is needed to make compliance a daily occurrence. It is widely 

recognized that interventions requiring minimal compliance by users are needed.  

 

One such method, to protect people at times when they are near to the home but not yet 

under their bednets are Spatial Repellents (SR) [57-60]. Spatial repellents are chemicals 

that work at a distance in the vapour phase [61] causing mosquitoes to either fly away 

from the source of the chemical [62] or mask human odours and prevent attraction. 

Spatial repellents render a specific area mosquito free by preventing landing or biting 

within that area [63]. They are also referred to as area repellents. Examples of SR include 

vaporizing mats, candles, mosquito coils and passive emanators [64].  

There is need to develop passive means of dispensing SR that provide area wide 

protection especially outdoors and extend protection to the whole household rather than 

to one person. Mosquito coils are commonly used in sub-Saharan Africa and their 

efficacy is well documented [64]. However, coils burn out after 6-8 hours, hence 

requiring replacement and therefore may end up being expensive and unaffordable. In 

addition, coils produce smoke that may be undesirable. To solve this problem, paper 

strips and plastic impregnated with the volatile pyrethroid Metofluthrin have been 

developed [59, 65-67]. The active ingredient evaporates at ambient temperature without 

the need for electricity or heating. This suggests that they can be used anywhere and 

makes them suitable for developing regions where there is no electricity. Like coils, 

emanators reduce landing and biting mosquitoes and have been shown to be effective 

against indoor and outdoor biting mosquitoes [59, 68, 69]. Efficacy of these emanators 

lasts a few weeks, and thus there is a need to develop novel passive ways of dispensing 
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volatile chemicals that last longer: preferably as long as a malaria transmission season. 

There is need to generate more data on the entomological mode of action i.e. the way a 

vector control intervention works preventing disease transmission by killing, repelling or 

inhibiting reproduction of target insects [70] of spatial repellents that can be linked with 

the epidemiological modes of action in order to understand the impact of SR on malaria 

transmission. 

The overall goal of this thesis is to determine the range of mosquito behaviours elicited 

by SR that minimize human - vector contact and consequently reduce malaria 

transmission. The SR selected for evaluation in this thesis are: Transfluthrin and 

Metofluthrin mosquito coils and DDT used as IRS.  

Metofluthrin and Transfluthrin compounds are highly volatile at ambient temperature; 

and hence are good candidates for passive emanators. However, the mode of action is not 

fully understood. This study focuses on determining the mode of action during indoor and 

outdoor use. 

Firstly, coils were selected because they have been extensively studied. [64]. Secondly, 

coils burn uniformly for 6-8 hours thus the release rate of the active ingredient is likely to 

be constant over time. Thirdly, coils are widely used for protection against mosquito bites 

and have high user acceptability [71]. This makes them suitable for use in experimental 

studies involving humans who are easily convinced to use them unlike when the product 

being tested is new. The mosquito coils used in the study have undergone rigorous safety 

testing and were donated by a reputable Personal Products supplier: SC Johnson. We 

were therefore sure that they were of the correct concentration and free of contaminants 

that could cause respiratory complications. 
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Mosquito coils were compared to DDT used as IRS because its mode of action as SR and 

the effect on malaria transmission are well documented [72, 73]. DDT was sprayed on 

palm woven mats. This enabled rotation between huts alongside other treatments and 

reduced locational bias that could have arisen from experimental huts.  

 

1.5. Hypotheses 

 

It is hypothesized that airborne pyrethroids 1) induce mosquitoes to move away from the 

highest concentration of the molecule to an area of lower concentration [74], 2) interfere 

with host detection [72] and blood feeding behaviour of mosquitoes [65, 69, 75] and also 

3) prevent mosquitoes from flying through sub-lethal incapacitation [76-78]. This study 

aims at characterizing the effect of pyrethroid based spatial repellents on mosquito 

behavior that reduces their vectorial capacity. The effect of DDT, Metofluthrin coils and 

Transfluthrin coils on house entry and exiting, host seeking, blood feeding, mosquito 

fertility and survival of the Afro Tropical malaria vectors An. gambiae s.s. and An. 

arabiensis were measured in experimental huts and the semi-field system.  

 

1.6. Specific objectives 

1. To perform an in-depth literature review, on existing studies of spatial repellents 

with emphasis on mosquito coils and passive emanators that are suitable for use in 

rural areas 
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2. To develop and standardize an assay for evaluation of the modes of action of 

volatile pyrethroids: Metofluthrin and Transfluthrin against outdoor biting 

mosquitoes 

3. To measure the effect of airborne pyrethroids: Metofluthrin and Transfluthrin 

released by mosquito coils on mosquito behaviours that influence entomological 

parameters of malaria transmission indoors and outdoors 

4. To determine the effect of volatile Transfluthrin in coils on the host seeking and 

blood-feeding behaviour of mosquitoes 

5. To evaluate an appropriate alternative low-cost, passive format of dispensing 

volatile Transfluthrin to protect humans against outdoor biting mosquitoes suitable 

for use by the poor people in rural sub-Saharan Africa 



 31 

 

1.7. References 

1. WHO. World Malaria Report. WHO Global Malaria Programme. Geneva, 

WHO, 2014 

2. Steketee RW, Campbell CC: Impact of national malaria control scale-up 

programmes in Africa: magnitude and attribution of effects. Malar J 2010. 

3. Bhattarai A, Abdullah SA, Partrick K, Andreas M, Ali K, Rashid K, Salim A: 

Impact of artemisinin-based combination therapy and insecticide-treated 

nets on malaria burden in zanzibar. Plos Med 2007, 4:1784-1790. 

4. Cui L, Yan G, Sattabongkot J, Chen B, Cao Y, Fan Q, Parker D, Sirichaisinthop J, 

Su XZ, Yang H, et al: Challenges and prospects for malaria elimination in the 

Greater Mekong Subregion. Acta Trop 2012, 121:240-245. 

5. Ranson H, N'guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid 

resistance in African anopheline mosquitoes: what are the implications for 

malaria control? Trends Parasitol 2011, 27:91-98. 

6. Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, Doumbo 

OK, Greenwood B, Hall BF, Levine MM, et al: A Research Agenda to 

Underpin Malaria Eradication. PLoS Med 2011, 8:1000406. 

7. Coetzee M, Fontenille D: Advances in the study of Anopheles funestus, a 

major vector of malaria in Africa. Insect Biochem Mol Biol 2004, 34:599-605. 

8. Temu EA, Minjas JN, Coetzee M, Hunt RH, Shift CJ: The role of four 

anopheline species (Diptera: Culicidae) in malaria transmission in coastal 

Tanzania. Trans R Soc Trop Med Hyg 1998, 92:152-158. 



 32 

9. Bryan JH: Anopheles gambiae and A. melas at Brefet, The Gambia, and their 

role in malaria transmission. Ann Trop  Med Parasitol 1983, 77:1-12. 

10. Coetzee M, Craig M, le Sueur D: Distribution of African malaria mosquitoes 

belonging to the Anopheles gambiae complex. Parasitol Today 2000, 16:74-77. 

11. Sinka ME: Global Distribution of the Dominant Vector Species of Malaria.. ; 

2013: pp 109-143. 

12. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil 

AP, Temperley WH, Gething PW, Kabaria CW, et al: The dominant Anopheles 

vectors of human malaria in Africa, Europe and the Middle East: occurrence 

data, distribution maps and bionomic précis. Parasit Vectors 2010, 3:117. 

13. Kiszewski AE, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J: A 

global index representing the stability of malaria transmission. Am J Trop 

Med Hyg 2004, 70:486-498. 

14. Githeko AK, Mbogo CN, Curtis CF, Lines J, Lengeler C: Entomological 

monitoring of large-scale vector-control interventions. Parasitol Today 1996, 

12:127-128. 

15. Magesa SM, Wilkes TJ, Mnzava AEP, Njunwa KJ, Myamba J, Kivuyo MDP, Hill 

N, Lines JD, Curtis CF: Trial of pyrethroid impregnated bednets in an area of 

Tanzania holoendemic for malaria. Part 2 Effects on the malaria vector 

population. Acta Tropica 1991, 49:97-108. 

16. McCann RS, Ochomo E, Bayoh MN, Vulule JM, Hamel MJ, Gimnig JE, Hawley 

WA, Walker ED: Reemergence of Anopheles funestus as a Vector of 



 33 

Plasmodium falciparum in Western Kenya after Long-Term Implementation 

of Insecticide-Treated Bed Nets. Am J Trop Med Hyg 2014, 90:597-604. 

17. Gillies MT, DeMeillon B: The Anophelinae of Africa South of the Sahara 

(Ethiopian zoogeographical region). Johannesburg: South Afric Instit for Med 

Res; 1968. 

18. Githeko AK, Adungo NI, Karianja DM, Hawley WA, Vulule JM, Seroney IK, 

Ofulla AVO, Atieli FK, Ondijo SO, Genga IO, et al: Some observations on the 

biting behaviour of Anopheles gambiae s.s., Anopheles arabiensis and 

Anopheles funestus and implications for malaria control. Exp Parasitol 1996, 

82:306-315. 

19. Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W: Density 

independent feeding success of malaria vectors (Diptera: Culicidae) in 

Tanzania. Bull Entomol Res 1995, 85:29-35. 

20. White GB: Anopheles gambiae complex and disease transmission in Africa. 

Trans R Soc Trop Med Hyg 1974, 68:279-301. 

21. Bogh C, Clarke SE, Pinder M, Sanyang F, Lindsay SW: Effect of passive 

zooprophylaxis on malaria transmission in The Gambia. J Med Entomol 2001, 

38:822-828. 

22. Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule 

JM, Hawley WA, Hamel MJ, Walker ED: Anopheles gambiae: historical 

population decline associated with regional distribution of insecticide-treated 

bed nets in western Nyanza Province, Kenya. Malar J 2010, 9:62. 



 34 

23. Kitau J, Oxborough RM, Tungu PK, Matowo J, Malima RC, Magesa SM, Bruce 

J, Mosha FW, Rowland MW: Species shifts in the Anopheles gambiae 

complex: do LLINs successfully control Anopheles arabiensis? PLoS One 

2012, 7:e31481. 

24. Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee 

M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, et al: A global map of 

dominant malaria vectors. Parasit Vectors 2012, 5:69. 

25. MacDonald G: Epidemiological basis of malaria control. Bull World Health 

Organ 1956, 15:613-626. 

26. Garrett-Jones C: The human blood index of malarial vectors in relationship to 

epidemiological assessment. Bull World Health Organ 1964, 30:241-261. 

27. Coosemans M, Wery M, Mouchet J, Carnevale P: Transmission factors in 

malaria epidemiology and control in Africa. Mem Inst Oswaldo Cruz 1992, 

3:385-391. 

28. Lengeler C: Insecticide-treated bed nets and curtains for preventing malaria. 

Cochrane Database Syst Rev 2004:CD000363. 

29. Mabaso ML, Sharp BL, Lengeler C: Historical review of malarial control in 

southern African with emphasis on the use of indoor residual house-

spraying. Trop Med Int Health 2004, 9:846-856. 

30. Pluess B, Tanser FC, Lengeler C, Sharp BL: Indoor residual spraying for 

preventing malaria Cochrane Database Syst Rev 2010, 4:CD006657. 

31. Coosemans M, Carnevale P: Malaria vector control: a critical review on 

chemical methods and insecticides. Ann Soc Belg Med Trop 1995, 75:13-31. 



 35 

32. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, Bonner KE, Bottomley 

C, Lindsay SW: Mosquito larval source management for controlling malaria. 

Cochrane Database Syst Rev 2013, 8:CD008923. 

33. Le Menach A, Takala S, McKenzie FE, Perisse A, Harris H, Flahault A, Smith 

DL: An elaborated feeding cycle model for reductions in vectorial capacity of 

night-biting mosquitoes by insecticide-treated nets Malar  J 2010, 6:10. 

34. Takken W: Do insecticide-treated bednets have an effect on malaria vectors? 

Trop Med Int Health 2002, 7:1022-1030. 

35. Le Menach A, Takala S, McKenzie FE, Perisse A, Harris A, Flahault A, Smith 

DL: An elaborated feeding cycle model for reductions in vectorial capacity of 

night-biting mosquitoes by insecticide-treated nets. Malar J 2007, 6:10. 

36. Kirby MJ, West P, Green C, Jasseh M, Lindsay SW: Risk factors for house-

entry by culicine mosquitoes in a rural town and satellitte villages in the 

Gambia. Parasit Vectors 2008, 1:41. 

37. Bradley JR, A.M., Schwabe C, Vargas D, Monti F, Ela C, Riloha M, 

Kleinschmidt I: Reduced prevalence of malaria infection in children living in 

houses with window screening or closed eaves on Bioko Island, equatorial 

Guinea. PLoS One 2013, 8:e80626. 

38. Ogoma BS, Kannady K, Sikulu M, Chaki P, Govella NJ, Mukabana RW, Killeen 

GF: Window screening, ceilings and closed eaves as sustainable ways to 

control malaria in Dar es Salaam, Tanzania. Malar J 2009, 8. 

39. Ogoma BS, Lweitoijera DW, Ngonyani H, Furrer B, Russell TL, Mukabana RW, 

Killeen GF, Moore JS: Screening Mosquito House Entry Points as a Potential 



 36 

Method for intergrated Control of Endophagic Filariasis, Arbovirus and 

Malaria Vectors. PloS Negl Trop Dis 2010, 4. 

40. Durnez L, Coosemans M: Residual transmission of malaria: An old issue for 

new approaches . Anopheles mosquitoes - New insights into malaria vectors. 

Manguin, S, 2013:pp. 671–704.  

41. WHO: Insecticide treated mosquito nets: A position statement. Geneva: 

Global Malaria Programme; WHO; 2007. 

42. WHO: Indoor residual spraying. An operational manual for indoor residual 

spraying (IRS) for malaria transmission conrol and elimination. Geneva: 

WHOPES; 2013. 

43. Bugoro H, Iro'ofa C, Mackenzie DO, Apairamo A, Hevalao W, Corcoran S, 

Bobogare A, Beebe NW, Russell TL, Chen CC, Cooper RD: Changes in vector 

species composition and current vector biology and behaviour will favour 

malaria elimination in Santa Isabel Province, Solomon Islands. Malar J 2011, 

10:287. 

44. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur KC, Killeen GF: 

Increased proportions of outdoor feeding among residual malaria vector 

populations following increased use of insecticide-treated nets in rural 

Tanzania. Malar J 2011, 10:80. 

45. Charlwood JD, Graves PM: The effect of permethrin-impregnated bednets on 

a population of Anopheles farauti in coastal Papua New Guinea. Med Vet 

Entomol 1987, 1:319-327. 



 37 

46. Stevenson J, St. Laurent B, Lobo NF, Cooke MK, Kahindi SC, Oriango RM, 

Harbach RE, J. C, Drakeley C: Novel vectors of malaria parasites in the 

Western highlands of Kenya. Emerg Infect Dis 2012, 18. 

47. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, Takken W, 

Ghani A, Drakeley C, Gosling R: Hitting hotspots: spatial targeting of malaria 

for control and elimination. PLoS Med 2012, 9:e1001165. 

48. Hewitt S, Delacollette C, Chavez I: Malaria situation in the Greater Mekong 

Subregion. Southeast Asian J Trop Med Public Health 2013, 44. 

49. Trung HD, Bortel WV, Sochantha T, Keokenchanh K, Briët OJ, Coosemans M: 

Behavioural heterogeneity of Anopheles species in ecologically different 

localities in Southeast Asia: a challenge for vector control. Trop Med Int 

Health 2005, 10:251-262. 

50. Hill N, Lenglet A, A M Arne´z AM, Carneiro I: Plant based insect repellent and 

insecticide treated bed nets to protect against malaria in areas of early 

evening biting vectors: double blind randomised placebo controlled clinical 

trial in the Bolivian Amazon. BMJ 2007, 335:1001-1002. 

51. Deressa W, Yihdego YY, Kebede Z, Batisso E, Tekalegne A, Dagne GA: Effect 

of combining mosquito repellent and insecticide treated net on malaria 

prevalence in Southern Ethiopia: a cluster-randomised trial. Parasit Vectors 

2014, 7:132. 

52. Dadzie S, Boakye D, Asoala V, Koram K, Kiszewski A, Appawu M: A 

community-wide study of malaria reduction: evaluating efficacy and user-



 38 

acceptance of a low-cost repellent in northern Ghana. Am J Trop Med Hyg 

2013, 88:309-314. 

53. Lupi E, Hatz C, Schlagenhauf P: The efficacy of repellents against Aedes, 

Anopheles, Culex and Ixodes spp. - a literature review. Travel Med Infect Dis 

2013, 11:374-411. 

54. Maia MF, Onyango SP, Thele M, Simfukwe ET, Turner EL, Moore SJ: Do 

Topical Repellents Divert Mosquitoes within a Community? - Health Equity 

Implications of Topical Repellents as a Mosquito Bite Prevention Tool. PLoS 

One 2013, 8:e84875. 

55. Aluko JO, Oluwatosin AO: Utilization of insecticide treated nets during 

pregnancy among postpartum women in Ibadan, Nigeria: a cross-sectional 

study. BMC Pregnancy Childbirth 2012, 12:21. 

56. Grietens KP, Ribera JM, Soto V, Tenorio A, Hoibak S, Aguirre AR, Toomer E, 

Rodriguez H, Cuentas AL, D'Alessandro U, et al: Traditional nets interfere with 

the uptake of long-lasting insecticidal nets in the Peruvian Amazon: the 

relevance of net preference for achieving high coverage and use. PLoS One 

2014, 8:e50294. 

57. Killeen GF, Chitnis N, Moore JS, Okumu FO: Target product profile choices 

for intradomiciliary malaria vector control pesticide products: repel or kill? 

Malar J 2011, 10:207. 

58. Achee NL, Bangs MJ, Farlow R, Killeen GF, Lindsay S, Logan JG, Moore SJ, 

Rowland M, Sweeney K, Torr SJ, et al: Spatial repellents: from discovery and 

development to evidence-based validation. Malar  J 2012, 11:164. 



 39 

59. Kawada H, Maekawa Y, Tsuda S, Takagi M: Trial of spatial repellency of 

metofluthrin-impregnated paper strips in shelters without walls in Lombok 

Island in Indonesia. J Am Mosq Control Assoc 2004, 20:434-437. 

60. Ogoma BS, Ngonyani H, Simfukwe E, Mseka A, Moore J, Killeen GF: Spatial 

repellency of Translfuthrin-treated hessian strips against laboratory-reared 

Anopheles arabiensis mosquitoes in a semi-field tunnel cage. Parasit Vectors 

2012, 5:54. 

61. Bar-Zeev M, Sternberg S: Testing space repellents against mosquitoes.". 

Mosquito news 1970, 30:27-29. 

62. Miller JR, Siegert PY, Amimo FA, Walker ED: Designation of Chemicals in 

Terms of the Locomotor Responses They Elicit From Insects: An Update of 

Dethier et al. (1960). J Econ Entomol 2009, 102:2056-2060. 

63. White GB: Terminology of insect repellents. In Insect repellents Principles, 

Methods and Uses. Edited by Debboun M, Frances SP, Strickman D. Boca Raton: 

CRC Press Taylor and Francis Group; 2007 

64. Ogoma SB, Moore SJ, Maia MF: A systematic review of mosquito coils and 

passive emanators: defining recommendations for spatial repellency testing 

methodologies. Parasit Vectors 2012. 

65. Kawada H, Maekawa Y, Tsuda Y, Takagi M: Laboratory and field evaluation 

of spatial repellency with Metofluthrin-impregnated paper strip against 

mosquitoes in Lombok Island, Indonesia. J Am Mosq Control Assoc 2004, 

20:292-298. 



 40 

66. Kawada H, Temu EA, Minjas NJ, Matsumoto O, Iwasaki T, Takagi M: Field 

evaluation of spatial repellency of Metofluthrin-impregnated plastic strips 

against Anopheles gambiae complex in Bagamoyo, Coastal Tanzania. J Am 

Mosq Control Assoc 2008, 24:404-409. 

67. Kawada H, Yen NT, Hoa NT, SANG MT, Dan NV, Takagi M: Field evalaution 

of spatial repellency of metofluthrin plastic impregnated strips against 

mosquitoes in Hai Phong city, Vietnam. Am J Trop Med Hyg 2005, 73:350-353. 

68. Lucas J, R., Shono Y, Iwasaki T, Ishiwatari T, Spero N: Field evaluation of 

metofluthrin- A new mosquito repellent. In Fifth International Conference on 

Urban Pests; Malaysia. Edited by Robinson C-YLaWH. 2005 

69. Lucas J, R., Shono Y, Iwasaki T, Ishiwatari T, Spero N, Benzon G: U.S. 

Laboratories and field trials of metofluthrin (SumiOne) emanators for 

reducing mosquito biting outdoors. J AM Mosq Control Assoc 2007, 23:47-54. 

70. Vontas J, Moore S, Kleinschmidt I, Ranson H, Lindsay S, Lengeler C, Hamon N, 

McLean T and Hemingway J: Framework for rapid assessment and adoption 

of new vector control tools. Trends Parasitol, 2014, 30: 191-204 

71. Chavasse DC: The relationship between mosquito density and mosquito coil 

sales in Dar es Salaam. Trans R Soc Trop Med Hyg 1996, 90:493. 

72. Grieco JP, Achee NL, Chareonviriyaphap T, Suwonkerd W, Chauhan K, Sardelis 

MR, Roberts DR: A new classification system for the actions of IRS chemicals 

traditionally used for malaria control. PLos One 2007:716. 

73. Roberts DR, Alecrim WD, Hshieh P, Grieco JP, Bangs M, Andre RG, 

Chareonviriphap T: A probability model of vector behavior: effects of DDT 



 41 

repellency, irritancy, and toxicity in malaria control. J Vector Ecol 2000, 

25:48-61. 

74. Dethier GV, Browne BL, Smith NC: The designation of chemicals in terms of 

the responses they elicit from insects. J Econ Ento 1960, 53:134-136. 

75. Chadwick PR: The activity of some pyrethroids, DDT and lindane in smoke 

from coils for biting inhibition, knock down and kill of mosquitoes (Diptera, 

Culicidae). Bull Entomol Res 1975, 67:97-101. 

76. Amalraj DD, Sivagnaname N, Boopathidoss PS, Das PK: Bioefficay of mosquito 

mats, coils and dispenser formulations, containing allethrin group of 

synthetic pyrethroids against mosquito vectors. J Commun Dis 1996, 28:85-93. 

77. Katsuda Y, Leemingsawat S, Thongrungkiat S, Komalamisara N, Kanzaki T, 

Watanabe T, Kahara T: Control of mosquito vectors of tropical infectious 

diseases: (1) Bioefficacy of mosquito coils containing several pyrethroids and 

a synergist. Southeast Asian J Trop Med Public Health 2008, 39:48-54. 

78. Yamaguchi T, Shinjo G, Tsuda S, Yoshida K, Inaba E, Okuno Y: Insecticidal 

activity of a new synthetic pyrethroid. Japan J Sanit Zool 1981, 32:59-66. 

 



 42 

 

CHAPTER TWO 

2     Literature review 

A systematic review of mosquito coils and passive emanators: 

defining recommendations for spatial repellent testing 

methodologies of spatially acting pyrethroids 

2.1. Abstract 

 
Mosquito coils, vaporizer mats and emanators confer protection against mosquito bites 

through the spatial action of emanated vapour or airborne pyrethroid particles. These 

products dominate the pest control market; therefore, it is vital to characterize mosquito 

responses elicited by the chemical actives and their potential for disease prevention. The 

aim of this review was to determine effects of mosquito coils and emanators on mosquito 

responses that reduce human-vector contact and to propose scientific consensus on 

terminologies and methodologies used for evaluation of product formats that could 

contain spatial chemical actives, including indoor residual spraying (IRS), long lasting 

insecticide treated nets (LLINs) and insecticide treated materials (ITMs). PubMed, 

(National Centre for Biotechnology Information (NCBI), U.S. National Library of 

Medicine, NIH), MEDLINE, LILAC, Cochrane library, IBECS and Armed Forces Pest 

Management Board Literature Retrieval System search engines were used to identify 
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studies of pyrethroid based coils and emanators with key-words “Mosquito coils” 

“Mosquito emanators” and “Spatial repellents”. It was concluded that there is need to 

improve statistical reporting of studies, and reach consensus in the methodologies and 

terminologies used through standardized testing guidelines. Despite differing evaluation 

methodologies, data showed that coils and emanators induce mortality, deterrence, 

repellency as well as reduce the ability of mosquitoes to feed on humans. Available data 

on efficacy outdoors, dose–response relationships and effective distance of coils and 

emanators is inadequate for developing a target product profile (TPP), which will be 

required for such chemicals before optimized implementation can occur for maximum 

benefits in disease control. 

Keywords: Spatial repellents, Pyrethroids, Coils, Passive emanators, Mosquito responses 

 

2.2. Review 

 
Currently, control of malaria vectors relies almost entirely on indoor residual-spraying 

(IRS) and Long Lasting Insecticidal Nets (LLINs) [1]. These vector control tools have 

successfully reduced mosquito population densities and malaria by targeting indoor-

feeding (endophagic) and indoor-resting (endophilic) mosquitoes [2]. The most 

successful IRS chemical active used to date is DDT, which, in addition to killing 

mosquitoes, also reduces indoor mosquito densities consequently reducing malaria 

transmission [3-6]. 
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Literature shows that much of the success of DDT is due to excito-repellency [4, 5]. An 

excito-repellent is defined as a chemical that causes insects to make undirected 

movements that set them apart from insecticides [7]. Excito-repellency results from 

insect‟s physical contact with chemicals on treated surfaces or with vapour particles at a 

distance [8, 9]. It has been demonstrated that volatile DDT can induce neural excitement 

in insects [10] and importantly, it was observed that insects exposed to sub-lethal 

concentrations of DDT move towards the light explaining why mosquitoes are likely to 

quickly leave a sprayed dwelling [11]. Excito-repellency was also originally seen as a 

beneficial feature of pyrethroid treated bednets to reduce the probability of mosquitoes 

developing resistance to insecticides through lower contact with insecticides [12]. It is 

known that DDT and pyrethroids act on the voltage-gated sodium channel proteins found 

in insect nerve cell membranes, disrupting transmission of nerve impulses thereby 

causing mortality [13]. Cross resistance between DDT and pyrethroids is conferred by 

point mutations on the voltage gated sodium channel in mosquitoes indicating a common 

mode of toxic action for these insecticides on mosquitoes [14]. Mechanisms underlying 

host-seeking and feeding behaviours of mosquitoes are largely unknown and have been 

the topic of current investigations. It is known that sublethal exposure to both pyrethroids 

and DDT has a differing effect on insect feeding responses: pyrethroids inhibit responses 

to attractants while DDT increases neural sensitivity to attractive sources [15, 16]. New 

advancements in the field of neurobiology have demonstrated that perception of 

chemicals in the environment by insects begins when compounds activate ionotropic 

receptors, gustatory receptors and olfactory receptors (ORs) located on the dendritic 

surface of chemosensory neurons of the olfactory receptor cells (ORCs) housed in a head 
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appendage (e.g. antenna or palp) [17]. ORs recognize biologically meaningful chemical 

ligands, and shape responses of olfactory sensory neurons (OSNs), thus regulating many 

behaviours including repellency. 

Repellents either activate or inhibit action of ORs interfering with the host-seeking 

behaviour of mosquitoes, resulting in repellency or anti-feeding [18]. A repellent 

pyrethroid has been shown to disrupt insect behaviour not through targeting the voltage 

gated sodium channel but instead inhibits the response of odorant receptors (ORs) to 

attractants in a similar way to para-menthane 3,8 diol and nepetalactone [18]. Repellency 

is a characteristic of personal protection tools such as mosquito coils, liquid vaporizers, 

vaporizer mats and ambient emanators [19]. These tools have been extensively studied 

yet they have not been promoted as formal methods for mosquito control. In 2006 the 

consumer market for pesticides was about $8.4 billion, with expected double-digit annual 

growth mainly due to rising income levels in several developing-world markets, notably 

China [20]. By far the most popular segment was aerosols, at $3.6 billion, followed by 

topical repellents, powders, and gels at $2 billion. The smaller segments of mats and 

vaporizers accounted for $1.6 billion and coils for $1 billion [20]. These products are 

already widely used and would therefore be expected to have community uptake if they 

were introduced as a formal means of disease control in an integrated vector management 

(IVM) strategy. 

In addition, due to increased need for effective vector control tools, to combat residual 

outdoor-biting and resting mosquitoes [21], it is timely to review studies of mosquito 

coils and emanators. This will enable better understanding of their mode of action and 

hence gain useful knowledge for development of effective spatially acting chemical 
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products that can be used outdoors hence complement LLINs and IRS for integration into 

a malaria elimination strategy [22]. 

The main active ingredients recommended by the World Health Organization (WHO) for 

use in the vapour phase all belong to the pyrethroid chemical class. The most commonly 

used format; mosquito coils are cheap and effective but produce smoke [23] which is 

undesirable. Vaporizer mats are an alternative to coils. The mats contain embedded 

repellent active ingredients that are volatilised using an electric heating element. The 

need for electricity can increase product costs making them inappropriate for some rural 

and urban settings in low or middle-income countries. 

Recently, other delivery formats that do not require heating or combustion have been 

developed. These are commonly known as emanators and are composed of insecticides 

impregnated on substrates such as paper, plastic or agarose-based gels [24, 25]. Unlike 

coils and mats, emanators function through passive evaporation of chemical actives. 

These chemicals are less polar and have lower vapour pressure than conventional 

pyrethroids hence evaporate at ambient temperature without the need for an external 

source of energy. Examples of these insecticides include metofluthrin and transfluthrin. 

The aim of this review was to determine effects of mosquito coils and emanators on 

mosquito responses that reduce human-vector contact and to propose scientific consensus 

on terminologies and methodologies used for evaluation of product formats that could 

contain spatial repellents including IRS, LLINs and insecticide treated materials (ITMs). 

 

This review was conducted in accordance with PRISMA (Preferred Reporting Items for 
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Systematic Reviews and Meta-Analyses) guidelines [26]. PubMed, (National Centre for 

Biotechnology Information (NCBI), National Library of Medicine, NIH), MEDLINE, 

LILACS, Cochrane library, IBECS and Armed Forces Pest Management Board Literature 

Retrieval System were searched systematically for both field and laboratory studies that 

included pyrethroid based coils and/or emanators using the English key-words “Mosquito 

coils”, “Mosquito emanators” and “Spatial repellents”, between January and November 

2011. In addition to journal articles, we searched reference lists of identified papers. We 

also checked the System for Information on Grey Literature in Europe (SIGLE) for 

unpublished data from sources such as conference proceedings and abstracts in an 

attempt to avoid the so called top drawer effect where only positive findings are 

published. The last search was conducted on 21
st
 September 2012. We were confident 

that the search engines we used provided almost all relevant studies of interest. Data were 

extracted from selected articles that met all study criteria using a standardized 

spreadsheet. The information collected included first author, year of publication, methods 

and design, active ingredient, dose, mosquito species, sample size, description of the 

control, testing conditions (experimental huts, rooms, chambers or cylinders) and the 

outcome measures reported with any available statistical information. 

 

2.3. Inclusion and exclusion criteria 

 
All publications evaluating coils and/or emanators were reviewed. However, to facilitate 

comparison of bioefficacy of different active ingredients across studies, the following 

selection scheme was employed (Figure 2.1): (i) laboratory and field studies were 

http://www.parasitesandvectors.com/content/5/1/287/figure/F1
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reviewed separately; (ii) only laboratory and field studies that quantified mosquito 

responses including biting/feeding inhibition of mosquitoes, knock-down time and 

percentage mortality 24 hours post-exposure to insecticides, deterrence, repellency or 

irritancy of insecticides were included; (iii) studies where the dose of active ingredient 

was not indicated were excluded, (iv) all studies where coils contained a mixture of 

insecticides or additives were excluded. 
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877 articles were identified

through database searching

54 duplicates were removed

824 articles were screened for

eligibility

806 studies were excluded:

Studies that did not report mosquito behavioral outcomes - 800

Studies that did not report the dose of active ingredient used - 4

Studies where the active ingredients included additives - 2

17 full-text articles were

included in qualitative analysis

Meta-analysis was not

conducted
 

Figure 2.1: A flow diagram of the selection procedure of articles included in the systematic review 
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2.4. Summaries of reported mosquito responses to coils and 

emanators, and suggestions for harmonization of terminologies 

 
Several investigators report a number of mosquito responses to airborne 

insecticide particles. These responses are classified into measurable indicators 

namely: deterrence, repellency and irritancy, biting/feeding inhibition, knock-

down and mortality. Scientific discussions differentiate between mechanisms in 

mosquitoes leading to responses elicited in the presence of chemical actives and 

the outcomes quantified [4, 7, 8, 11], this review is restricted to measured 

behavioural endpoints or consequences and not possible mechanisms causing 

them. 

All studies identified and included in the review evaluated formulated/optimized 

emanators and coils. It should be noted that comparison of pyrethrins to 

metofluthrin emanators is only appropriate if both actives were formulated or 

both were neat material (unoptimized) as effects on volatization and longevity 

(among other chemical properties) will be different and bias analyses. This holds 

true even for comparing results of the same active ingredient. 

2.4.1. Deterrence 

 
Airborne insecticide particles present inside and around houses create a chemical 

barrier that prevents mosquitoes from entering [27]. Deterrence has been 

measured in the field by comparing the number of mosquitoes entering houses 

with insecticides and those without. Coils containing pyrethrins deter between 
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45% and 80% mosquitoes (Table 2.1) and 200mg optimized metofluthrin 

emanators reduce mosquitoes by > 80% within the first 4 weeks of treatment 

[28]. However, results from these studies cannot be generalized for other spatial 

repellent compounds due to potential differences in product formulation i.e., 

optimized components for release and retention. Only one study measured dose-

dependent effects of pyrethrum coils [29] and showed no correlation between the 

proportion of mosquitoes deterred and the dose of pyrethrum (Table 2.1). 

Reduced indoor density of mosquitoes in insecticide treated houses could be due 

to the spatial action of chemical actives that interfere with the host seeking 

process of mosquitoes making the houses less attractive even when humans are 

present. In addition, mosquitoes entering treated houses are prevented from 

feeding. Such observations warrant further investigations of spatially acting 

chemicals. 

 

http://www.parasitesandvectors.com/content/5/1/287/table/T1
http://www.parasitesandvectors.com/content/5/1/287/table/T1
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Table 2.1.: Mosquito behavioural reactions induced by burning pyrethrum coils in experimental huts 
Dose of pyrethrum (w/w %)  Vector  Feeding inhibition (%)  Non-Contact irritancy (%)  Deterrence (%)  Mortality (%) 

0.10  Anopheles gambiae Gillies
a 

 54  82  51  16 

0.10  Culex fatigans  26  58  64  4 

0.10  Mansonia uniformis  24  93  45  3 

0.50  Anopheles gambiae Gillies  60  87  58  15 

0.50  Culex fatigans  46  67  51  7 

0.50  Mansonia uniformis  69  87  58  15 

a 
The sub species of Anopheles gambiae Gillies was not specified. These data is  from Smith et al 1972 [29]. 
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2.4.2. Repellency and irritancy 

 

Repellency was originally defined to refer to the distribution of insects/mosquitoes on 

chemically treated surfaces compared to untreated surfaces [11]. This description considers 

the end result of the effect of chemicals and does not account for a series of preceding 

behaviours exhibited by mosquitoes that lead to the final outcome. Therefore, this definition 

was refined to refer to movement of mosquitoes away from a source to which they would 

otherwise be attracted [30]. Dethier described two kinds of behaviour causing insects to sit 

apart from insecticide treated surfaces: [7] “taxis”: - immediate directional reaction, 

resulting in movement away from a treated surface and; 2) “orthokinesis”: - increased 

undirected activity after contact with insecticides. Both reactions reduce mosquitoes on 

treated surfaces [7, 8]. These terms have been developed further to include "contact 

irritancy” where mosquitoes make oriented movement away from a chemical source after 

physical contact with insecticide treated surfaces [3, 4] and “non-contact irritancy”, where 

mosquitoes move away when exposed to vapour insecticide particles usually operating at a 

distance. This has also been described as “spatial repellency” [4, 31], or “area repellency” 

[32] or “non-contact disengagement” [8]. Non-contact irritancy, spatial repellency and non-

contact disengagement all describe behavioural endpoints resulting from exposure to 

chemical emanations from coils and emanators. For purposes of clarity we propose that 

spatial repellency should be used as a general term to refer to the sum of mosquito 

behaviours produced by airborne chemicals that result in mosquitoes sitting apart from a 

source of stimulation [8]. 

“Non-contact irritancy” was measured in the field using local houses or experimental huts 
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fitted with exit- and entry-traps [29, 33-35] by comparing the proportion of mosquitoes 

exiting untreated and treated structures. Using this approach, studies have demonstrated an 

increased proportion of mosquitoes that exit earlier from huts with burning coils compared 

to huts that do not have coils [29]. There was a positive correlation between the proportion 

of mosquitoes exiting huts and the concentration of the active ingredient [29]. This indicates 

that the magnitude of irritancy might be dose-dependent [31]. An effective way of 

measuring “non-contact irritancy” is by releasing laboratory-reared mosquitoes inside 

experimental huts [4] and observing how fast they leave treated huts compared to control 

huts. This field data demonstrated good correlation with laboratory data from a high-

throughput screening system (HiTSS) developed for evaluating behavioural mode of action 

of active ingredients [4]. 

 

2.4.3. Biting/feeding inhibition 

 

Feeding or biting inhibition is where mosquitoes are prevented from biting or feeding on 

humans. Coils reduce the biting rate of mosquitoes (Table 2.1). Small amounts of 

insecticides [36] or repellents have been shown to interfere with the host-seeking process of 

disease vectors [37, 38]. Sometimes mosquitoes land on the host but do not feed in the 

presence of repellent actives [39]. Therefore, the act of feeding (probing) should be 

quantified rather than landing rate. Only one study displayed an increase in the proportion 

of mosquitoes inhibited from feeding when the dose was increased [29]. In some cases even 

the smoke which does not contain chemicals reduces biting rate significantly compared to 

http://www.parasitesandvectors.com/content/5/1/287/table/T1
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controls where coils are not used [40]. This warrants the need to conduct more studies with 

different doses of spatial chemical actives and to generate dose–response curves which will 

enhance better understanding of the mode of action. 

The most accurate and representative method to measure feeding inhibition is through 

human landing catch (HLC) [41]. Some studies use guinea-pigs as bait [42], which are not 

proxy indicators for man. A study comparing biting inhibition on guinea pigs and man 

indicated that guinea pigs underestimated reduction in biting inhibition [42]. This is because 

guinea pigs do not produce sufficient heat, moisture and carbon dioxide and have a different 

composition of head space kairomones hence do not attract anthropophilic mosquitoes as 

much as humans. We propose conducting HLC evaluations inside semi-field systems (SFS) 

using laboratory reared disease-free mosquitoes to reflect the end use of spatial repellents, 

while protecting participants from potential exposure to disease carrying mosquitoes. 

 

2.4.4. Knock-down and mortality 

 

Knocked-down (KD) is the incapacitation of mosquitoes after contact with a sub-lethal dose 

of insecticide [43] resulting in the inability of the insect to maintain normal posture or fly. 

High concentrations of pyrethrins induce faster KD50 (within 3–5 minutes of exposure) 

followed by high mortality rate while low concentrations induce slower KD50 (more than 

10 minutes after exposure) indicating a dose–response relationship (Table 2.2). It is also 

important to note that coils induce up to 95% mortality in laboratory-assays compared to 

very low levels observed in field-assays (3%–16%) (Table 2.2). This is attributed to volume 

http://www.parasitesandvectors.com/content/5/1/287/table/T2
http://www.parasitesandvectors.com/content/5/1/287/table/T2
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and/or ventilation limitations that may occur in some laboratory subsequently assay spaces, 

which reduce insecticide dispersion consequently increasing relative insecticide 

concentration.  

The relationship between KD50 and mortality of mosquitoes exposed to different pyrethroid 

mosquito coils is presented in Figure 2.2; 2.3 and 2.4. 
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Table 2.2. Knock-down time and mortality of mosquitoes after exposure to smoke from mosquito coils impregnated with different 

doses of Allethrin, d- allethrin, d,d-T-plarethrin, dl,d-T80 allethrin, d-trans allethrin, Esbiothrin, Pyrethrin, S-d- t –allethrin, and 

Terallethrin pyrethroids. 

Dose 

(w/w %) 

Vector Mortality (%) Knock-down (KT50 

minutes) 

Method  

0.60 Culex pipiens pallens 0.12 5.10 70 cm³ Chamber 

0.60 Stegomyia (Aedes) aegypti 0.72 3.10 70 cm³ Chamber 

0.60 Anopheles stephensi 0.81 3.20 70 cm³ Chamber 

0.50 Anopheles stephensi 33.00 9.50 25m³ room 

0.25 Anopheles stephensi 38.00 11.10 25m³ room 

0.20 Anopheles stephensi 25.00 11.30 25m³ room 

0.15 Anopheles stephensi 32.00 14.50 25m³ room 

0.50 Stegomyia (Aedes) aegypti 88.00 14.90 25m³ room 

0.25 Stegomyia (Aedes) aegypti 70.00 24.80 25m³ room 

0.20 Stegomyia (Aedes) aegypti 54.00 29.00 25m³ room 

0.20 Anopheles stephensi 49.00 4.50 500 mm by 300 mm cylinder 

0.15 Anopheles stephensi 49.00 4.90 500 mm by 300 mm cylinder 

0.10 Anopheles stephensi 42.00 5.50 500 mm by 300 mm cylinder 
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0.05 Anopheles stephensi 32.00 6.80 500 mm by 300 mm cylinder 

0.20 Stegomyia (Aedes) aegypti 95.00 6.20 500 mm by 300 mm cylinder 

0.15 Stegomyia (Aedes) aegypti 73.00 7.50 500 mm by 300 mm cylinder 

0.10 Stegomyia (Aedes) aegypti 54.00 10.00 500 mm by 300 mm cylinder 

0.05 Stegomyia (Aedes) aegypti 26.00 16.00 500 mm by 300 mm cylinder 

0.30 Culex pipiens pallens 0.15 3.80 70 cm³ Chamber 

2.00 Stegomyia (Aedes) aegypti 0.32 1.57 2m³ Peet-Grady chamber 

2.00 Culex quinquefasciatus 0.49 0.98 2m³ Peet-Grady chamber 

2.00 Anopheles stephensi 0.67 1.94 2m³ Peet-Grady chamber 

0.30 Anopheles stephensi 0.81 2.40 70 cm³ Chamber 

0.30 Stegomyia (Aedes) aegypti 0.84 2.40 70 cm³ Chamber 

0.10 Stegomyia (Aedes) aegypti 0.22 171.00 25m³ room 

0.10 Stegomyia (Aedes) aegypti 0.24 120.00 25m³ room 

0.10 Culex pipiens quinquefasciatus 0.25 108.00 25m³ room 

0.15 Stegomyia (Aedes) aegypti 0.25 140.00 25m³ room 

0.20 Stegomyia (Aedes) aegypti 0.28 130.00 25m³ room 

0.10 Culex pipiens quinquefasciatus 0.30 55.00 25m³ room 
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0.15 Stegomyia (Aedes) aegypti 0.30 100.00 25m³ room 

0.20 Stegomyia (Aedes) aegypti 0.30 85.00 25m³ room 

0.10 Culex pipiens pallens 0.36 20.60 25m³ room 

0.15 Culex pipiens pallens 0.39 14.00 25m³ room 

0.15 Culex pipiens quinquefasciatus 0.47 100.00 25m³ room 

0.20 Culex pipiens quinquefasciatus 0.50 63.00 25m³ room 

0.10 Culex pipiens pallens 0.51 14.50 25m³ room 

0.15 Culex pipiens pallens 0.53 11.40 25m³ room 

0.15 Culex pipiens quinquefasciatus 0.55 42.00 25m³ room 

0.20 Culex pipiens pallens 0.67 13.10 25m³ room 

0.20 Culex pipiens quinquefasciatus 0.71 24.00 25m³ room 

0.10 Anopheles dirus 0.91 8.00 25m³ room 

0.10 Anopheles dirus 0.91 8.00 25m³ room 

0.20 Culex pipiens pallens 0.92 10.30 25m³ room 

0.20 Anopheles dirus 1.00 8.10 25m³ room 

0.27 Culex pipiens quinquefasciatus 0.04 196.00 25m³ room 

0.27 Stegomyia (Aedes) aegypti 0.15 361.00 25m³ room 
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0.27 Culex pipiens pallens 0.20 28.30 25m³ room 

0.27 Stegomyia (Aedes) aegypti 0.21 174.00 25m³ room 

0.27 Culex pipiens pallens 0.27 18.60 25m³ room 

0.50 Culex pipiens pallens 0.28 20.80 25m³ room 

0.50 Stegomyia (Aedes) aegypti 0.29 170.00 25m³ room 

0.27 Culex pipiens quinquefasciatus 0.35 41.00 25m³ room 

0.50 Culex pipiens quinquefasciatus 0.55 72.00 25m³ room 

0.27 Anopheles dirus 1.00 11.10 25m³ room 

0.50 Anopheles dirus 1.00 8.00 25m³ room 

0.30 Culex pipiens pallens 0.18 3.90 70 cm³ Chamber 

0.30 Stegomyia (Aedes) aegypti 0.80 2.50 70 cm³ Chamber 

0.30 Anopheles stephensi 1.00 2.50 70 cm³ Chamber 

1.00 Stegomyia (Aedes) aegypti 0.30 1.14 2m³ Peet-Grady chamber 

1.00 Culex quinquefasciatus 0.76 0.81 2m³ Peet-Grady chamber 

1.00 Anopheles stephensi 0.90 1.68 2m³ Peet-Grady chamber 

0.30 Culex pipiens pallens 0.12 8.80 70 cm³ Chamber 

0.30 Anopheles stephensi 0.31 5.20 70 cm³ Chamber 
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These data is courtesy of Chadwick 1975, Yamaguchi et al 1981, Amalraj et al 1996 and Katsuda et al 2008 [42, 44, 45, 46] 

 

 

0.30 Stegomyia (Aedes) aegypti 0.46 5.50 70 cm³ Chamber 

0.15 Culex pipiens pallens 0.22 3.60 70 cm³ Chamber 

0.15 Stegomyia (Aedes) aegypti 0.87 2.50 70 cm³ Chamber 

0.15 Anopheles stephensi 0.88 2.70 70 cm³ Chamber 

0.15 Culex pipiens pallens 0.38 2.80 70 cm³ Chamber 

0.15 Stegomyia (Aedes) aegypti 0.59 1.80 70 cm³ Chamber 

0.15 Anopheles stephensi 0.73 1.70 70 cm³ Chamber 
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Figure 2.2: Mosquito species response of the relationship between KT50 and mortality. 

These data was extracted from Katsuda et al 2008 (Part 1) 
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Figure 2.4: The relationship between knock down time (KT50) and 24 hour mortality in 

laboratory assays. These data was extracted from Chadwick et al 1975 

 

Optimized metofluthrin emanators induce 100% KD of mosquitoes within 30 

minutes of exposure followed by 100% mortality within 24 hours in the laboratory 

[28]. We did not find any studies that demonstrated correlation between dose and 

response of mosquitoes to emanators. However, Kawada et al. reported that caged 

mosquitoes placed immediately near metofluthrin-treated paper strips showed 100% 

KD within 30 minutes and 100% mortality 24-hours post-exposure, while 

mosquitoes placed 1.5m away from the strip had slower KD and 70% mortality and 

mosquitoes placed 5m away were unaffected [28]. This could be attributed to 

decreasing concentration of airborne active ingredients as one moved away from the 

source. It is noteworthy that these results may not be representative of natural 
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conditions because mosquitoes are confined within the cage thus are likely to take up 

a high concentration of the active ingredient compared to when they are free flying. 

The intensity of KD and mortality of mosquitoes is largely dependent on release and 

degradation rates of active ingredients, initial loading dose on substrate and 

environmental conditions. 

 

2.5. Harmonization in methodologies for testing spatial mosquito 

repellents 

 
To characterize behavioural endpoints of mosquitoes exposed to chemical 

emanations of coils and emanators through rigorous independent and repeatable tests, 

it is essential to harmonize methodologies used. 

2.5.1. Mosquito species 

 
The mosquito species selected for bioefficacy studies is dependent on the objective 

and medical importance of a particular species in a given study area. The World 

Health Organization (WHO) recommends use of Stegomyia (Aedes) aegypti and 

Culex quinquefasciatus for testing household-insecticides [19]. Evaluations should 

be conducted on both susceptible and resistant strains of different mosquito species. 

Different mosquito genera, species, and population strains of the same species, vary 

in their susceptibility to insecticides due to specific selection pressures at site of 

origin and this can bias the intensity of outcome measures (Table 2.1.). 

http://www.parasitesandvectors.com/content/5/1/287/table/T1
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Consequently, we recommend that, when available, mosquito test populations should 

be acquired from disease endemic areas for which the chemical active ingredients are 

intended to be used. 

 

2.5.2. Size of the laboratory test chambers or rooms 

 
Field and laboratory studies are usually conducted in chambers, cylinders, rooms or 

huts of different sizes (Table 2.2.). Mosquitoes are knocked-down faster in cylinders 

or small chambers compared to large rooms (25m
3
) [42]. This is attributed to low 

aerial concentration of chemical actives in large ventilated rooms. Peet-Grady 

chambers [19] are good alternatives to air-tight cylinders. These chambers have 

improved ventilation provided by built-in fans and a larger volume (180cm by 

180cm by 180cm) [19]. Tests carried out in Peet-Grady chambers and large rooms 

demonstrated that KD time was relatively shorter in the chambers than in the rooms 

[42]. Despite these limitations, cylinders, chambers and small rooms enable precise 

measurement of mosquito responses to various doses of chemical actives and 

generation of dose response curves. This might not be possible in field settings where 

external environmental factors such as wind speed and direction are likely to 

influence efficacy of the spatially acting actives. Cylinders or small chambers should 

be used primarily during initial screening for actives. Subsequent studies should then 

be conducted in more natural environments such as experimental huts and semi-field 

systems. 

 

http://www.parasitesandvectors.com/content/5/1/287/table/T2
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2.5.3. Environmental factors 

 
The spatial activity of airborne insecticide is dependent on airflow (i.e., air 

exchange), wind speed, temperature and humidity within the treated space [47]. The 

greater the air current, the greater the insecticidal dispersion over a specified area 

followed by reduced insecticide concentration accompanied by dilution of chemical 

attractants from the human, leading to reduced host attack by mosquitoes [48]. A 

study carried out in Tanzania demonstrated reduced efficacy of emanators when used 

in houses with open eaves [25] compared to houses that did not have eaves in 

Vietnam [47]. It is necessary to consider the degree of ventilation of the test structure 

and average environmental conditions during peak disease transmission seasons 

within the test area where the spatial repellent will be used. High temperature 

increases evaporation rate of active ingredient [47] that may improve efficacy but 

can also lead to faster loss of actives followed by reduced efficacy over time. 

Therefore, it is necessary to determine the rate at which chemical actives are released 

from coils and emanators under different environmental conditions in order to 

determine how much repellent active ingredient will be required for efficacy over 

time. 

 

2.5.4. Experimental design 

 
Other factors affecting experimental outcomes include sample size, which may refer 

to the number of people used in the trial or number of mosquitoes used and the 
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number of replicates performed during evaluations. It is necessary to determine the 

number of mosquitoes required for a representative sample. This also applies to the 

number of human subjects required to account for differences in individual 

attractiveness to mosquitoes [49-51]. Wherever possible, a balanced Latin Square or 

William‟s Square design with rotation of volunteers and or treatments is desirable. 

We recommend analysis with generalised linear mixed models [52] which account 

for over-dispersed nature of repellent mosquito data when variance is greater than 

mean due to variability caused by the great variability among experimental days [53]. 

Few of the studies reviewed used appropriate study design or analyses. We propose 

that future studies should report means with standard errors or confidence intervals, 

or medians with the inter-quartile range in addition to test statistics. This information 

was not given by most of the studies reviewed, thus, we were unable to conduct a 

meta-analysis. 

 

2.6. Conclusion 

 
Spatial repellents is the general term used to describe delivery formats such as coils, 

mats and passive emanators which release vaporised chemical actives capable of 

affecting mosquito behaviour at a distance. Most vapour chemical actives also knock 

down, kill or inhibit feeding of mosquitoes. General use of this term causes 

confusion especially where oriented movement away from the chemical source is not 

demonstrated. For purposes of clarity we propose that spatial repellency should be 

used as a general term to refer to sum of mosquito behaviours induced by airborne 
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chemicals that cause mosquitoes to sit apart from a source of stimulation. Despite 

differences in evaluation methodologies, coils and emanators clearly reduce human-

mosquito contact. They induce mortality, deterrence, repellency and reduce feeding 

of mosquitoes on humans. Mortality was the least observed effect where tests were 

conducted in experimental huts. This shows that these products do not kill 

mosquitoes in natural settings with free air movements and therefore may not affect 

overall mosquito densities or contribute to “community effect” as other toxic 

insecticides would. 

Mosquito coils increased the proportion of mosquitoes exiting huts. It is not clear 

whether mosquitoes leave treated houses because they are unable to locate hosts for 

blood meals and therefore continue searching for other blood sources or whether they 

leave because they are irritated by chemicals in the smoke/vapour and are forced to 

escape. This needs more investigation. 

Reduction in human-vector contact through feeding inhibition is likely to have an 

epidemiologically significant effect because of reduced risk of getting infectious 

mosquito bites. Any reduction in human-biting rate of mosquitoes is likely to lower 

vectorial competence of vectors and affect the lifetime fecundity of vectors which 

will in turn influence the basic reproductive rate of any parasites that they transmit. 

In addition to the measure of chemically induced feeding inhibition, it is necessary to 

conduct studies that quantify fecundity in order to see whether reduced blood feeding 

consequently reduces fertility of mosquitoes and leads to an overall reduction of 

mosquito population. 
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There is minimal data available on dose–response relationships, effective distance 

and residual efficacy of treated materials. However, the data reviewed here indicate 

that feeding inhibition, knockdown and mortality are positively influenced by high 

doses of active ingredient while deterrence does not change with change in dose. 

However, other studies indicate that deterrence resulting from DDT residues inside 

huts diminishes with time as the active ingredient degrades [3], indicating a dose 

dependent-response relationship. Unfortunately, there was no evidence from testing 

coils and emanators, hence there is need to conduct studies to ascertain this for 

different doses of coils and emanators under outdoor conditions. 

It is hypothesized that since spatial repellents do not kill mosquitoes, there is 

increased risk of unprotected people being infected with pathogens transmitted by 

mosquitoes diverted from repellent users [54]. Therefore it is necessary to determine 

the distance at which non-users are at increased risk of receiving more mosquito bites 

for repellent-specific actives. On the other hand, non-users may in fact be protected 

due to airborne dispersion of volatized chemicals. In addition, it is also worthwhile to 

understand whether feeding inhibition of mosquitoes can be prolonged over several 

hours or days through product optimization, as this is an epidemiologically 

significant endpoint for arthropod-borne diseases. 

A meta-analysis could not be conducted as a result of the differences in evaluation 

methodologies as well as minimal statistical parameters reported by various studies. 

Hence, we strongly underline the need to reach consensus in spatial repellent testing 

methodologies and data reporting facilitated through the development of 

standardized assay guidelines. It is important to note that it is highly likely that 
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additional data on spatial repellents has been gathered but not made available to the 

scientific community. Publication bias due to industry-associated research may 

contribute to missing data sets, which if shared could greatly contribute to better 

characterization of spatial repellents. This information is vital for the development of 

standardized testing methodologies as well as target product profiles. Therefore 

scientists in industry are encouraged to share their data which will aid this process. 

Spatial repellents have the potential to become an important component of vector 

control since outdoor biting vectors are gaining importance as malaria vectors [55]. 

In order to understand the dynamics of these products and their potential for vector 

control programs it is necessary to comprehensively characterize their mode of action 

(i.e., physiological pathways/receptors and behavioural modification involved in 

insect response) using standardized methodologies to facilitate the development of a 

target product profile (TPP) and testing of candidate products so that the required 

information on their efficacy in disease prevention can be more rapidly collected and 

policy makers better informed for maximum effective benefit in disease control. 
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CHAPTER THREE 

3     Screening Mosquito House Entry Points as a Potential 

Method for Integrated Control of Endophagic Filariasis, 

Arbovirus and Malaria Vectors 

3.1. Abstract 

 
Background: Partial mosquito-proofing of houses with screens and ceilings has the 

potential to reduce indoor densities of malaria mosquitoes. We wish to measure 

whether it will also reduce indoor densities of vectors of neglected tropical diseases. 

Methodology: The main house entry points preferred by anopheline and culicine 

vectors were determined through controlled experiments using specially designed 

experimental huts and village houses in Lupiro village, southern Tanzania. The benefit 

of screening different entry points (eaves, windows and doors) using PVC-coated fibre 

glass netting material in terms of reduced indoor densities of mosquitoes was 

evaluated compared to the control. 

Findings: 23,027 mosquitoes were caught with CDC light traps; 77.9% (17,929) were 

Anopheles gambiae sensu lato, of which 66.2% were An. arabiensis and 33.8% An. 

gambiae sensu stricto. The remainder comprised 0.2% (50) An. funestus, 10.2% (2359) 

Culex spp. and 11.6% (2664) Mansonia spp. Screening eaves reduced densities of 

Anopheles gambiae s. l. (Relative ratio (RR) = 0.91; 95% CI = 0.84, 0.98; P = 0.01); 
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Mansonia africana (RR = 0.43; 95% CI = 0.26, 0.76; P,0.001) and Mansonia 

uniformis (RR = 0.37; 95% CI = 0.25, 0.56; P,0.001) but not Culex quinquefasciatus, 

Cx. univittatus or Cx. theileri. Numbers of these species were reduced by screening 

windows and doors but this was not significant. 

Significance: This study confirms that across Africa, screening eaves protects 

households against important mosquito vectors of filariasis, Rift Valley Fever and 

O‟Nyong nyong as well as malaria. While full house screening is required to exclude 

Culex species mosquitoes, screening of eaves alone or fitting ceilings has considerable 

potential for integrated control of other vectors of filariasis, arbovirus and malaria. 

 

3.2. Author Summary 

 
Mosquito vectors that transmit filariasis and several arboviruses such as Rift Valley 

Fever, Chikungunya and O‟Nyong nyong as well as malaria co-occur across tropical 

Africa. These diseases are co-endemic in most rural African countries where they are 

transmitted by the same mosquito vectors. The only control measure currently in 

widespread use is mass drug administration for filariasis. In this study, we used 

controlled experiments to evaluate the benefit of screening the main mosquito entry 

points into houses, namely, eaves, windows and doors. This study aims to illustrate the 

potential of screening specific house openings with the intention of preventing 

endophagic mosquitoes from entering houses and thus reducing contact between 

humans and vectors of neglected tropical diseases. This study confirms that while full 
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house screening is effective for reducing indoor densities of Culex spp. mosquitoes, 

screening of eaves alone has a great potential for integrated control of neglected 

tropical diseases and malaria. 

3.3. Introduction 

 
Houses are the main site for contact between humans and night biting mosquito 

vectors [1, 2]. The impact of improved housing on indoor malaria vector densities [3-

7] and transmission [4] is well established. In Africa, the primary malaria vectors are 

nocturnal, endophilic and endophagic mosquitoes of the Anopheles gambiae species 

complex [8, 9]. These vectors prefer to enter houses via open eaves [2]. Therefore, 

houses with open eaves or those lacking ceilings have higher numbers of mosquitoes 

and a greater malaria burden compared to those with closed eaves or with ceilings [4-

6, 10]. 

Regardless of evidence that improved housing provides protection from Anopheles 

malaria vectors, its potential to reduce indoor biting densities of other mosquito genera 

has received little attention, despite the fact that several of these species are known 

vectors of diseases which cause significant morbidity and mortality. These diseases 

include lymphatic filariasis, several arboviruses such as Chikungunya, O‟Nyong 

nyong, Rift Valley Fever (RVF) and West Nile Virus (WNV) (Table 3.1). 

An. gambiae sensu stricto and An. arabiensis are the most abundant malaria vectors in 

rural tropical African countries and are also the main vectors of filariasis [11] as well 

as O‟Nyong nyong [12]. Mansonia africana and Ma. uniformis are vectors of RVF 
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and filariasis, although the latter predominantly transmits Brugian filariasis in Asia. 

Integrated control of filariasis and malaria is feasible [13, 14] due to their co-

occurrence in rural areas, where they are often co-endemic and transmitted by the 

same vectors [15]. Though the main control measure against filariasis is 

chemotherapy, achieved through mass drug administration, a more holistic approach 

that integrates other proven interventions may be feasible in many endemic areas [16]. 

Culex quinquefasciatus is a vector of Wuchereria bancrofti causing lymphatic 

filariasis in Africa. It is the main vector in urban areas [17] but also contributes to rural 

transmission. Cx quinquefasciatus is also a vector of other arboviruses such as 

Chikungunya and West Nile Virus (Table 3.1.). Several other Culex species transmit 

other arboviruses in East Africa; these are shown in Table 3.1. 

Crucially, culicines are also the major cause of nuisance biting in rural and especially 

urban areas [18]. Several studies have shown that the community is sensitive to 

changes in biting nuisance related to changes in mosquito densities. Uptake of several 

control measures such as use of house screens [19] and mosquito coils [20] is 

dependent upon the desire to prevent mosquito bites in addition to preventing diseases. 

Similarly, use of insecticide treated nets (ITNs) is motivated by the desire to prevent 

nuisance bites [21, 22], as shown by reduction in the use of ITNs when mosquito 

densities are lower due to seasonal decline [23, 24] even when mosquito numbers are 

sufficient for disease transmission to continue. 

Unfortunately, efficacy of insecticide based interventions declines when resistance 

develops, as has already been seen in Tanzania [25, 26]. If people continue to be bitten 
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by nuisance mosquitoes due to development of insecticide resistance, it undermines 

public acceptance of ITNs as an intervention [27, 28]. Therefore, there is need to 

develop supplementary tools for control of nuisance mosquitoes. Reduction in 

nuisance mosquitoes will increase users‟ confidence in the available mosquito control 

measures and therefore also encourage use of other measures. 

The aim of the study was to evaluate preferential points of entry of different mosquito 

species into houses. This was determined by indoor densities of different species of 

mosquitoes when a specific entry point was screened, precisely, eaves, windows and 

doors compared to an unscreened control. Our overall goal was to evaluate the optimal 

method needed for house screening in order to provide integrated control of filariasis, 

arboviruses and malaria vectors. 
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Table 3.1: Mosquitoes naturally infected with arboviruses or Bancroftian filariasis in 

southern and eastern Africa. 

Species Disease carried  Country References 

Anopheles gambiae s.l. O‟Nyong nyong Uganda, Kenya, Mozambique [12] 

Bancroftian filariasis Tanzania [11] 

Anopheles funestus  O‟Nyong nyong Uganda, Kenya, Mozambique [12] 

Bancroftian filariasis Tanzania [11] 

Mansonia africana Rift Valley Fever Kenya [29] 

 Uganda [30, 31] 

Chikungunya Uganda [12] 

Culex pipiens quinquefasciatus West Nile Virus Madagascar [32] 

Chikungunya Tanzania [33] 

Bancroftian filariasis Tanzania [11] 

Culex univittatus complex Sindbis Virus South Africa [34, 35] 

West Nile Virus South Africa [34, 36] 

 Madagascar [32] 

 Kenya [32, 37] 

Culex theileri West Nile Virus South Africa [12, 32] 

Rift Valley Fever South Africa [38, 39] 

Culex rubinotus Witswatersrand Uganda, Mozambique, South 

Africa 

[12, 30, 40] 

 



 85 

 

3.4. Methods 

3.4.1. Study site 

The experimental hut study was carried out at Lupiro village (8.01 °S and 36.63 °E) 

located in Ulanga district, in the south eastern part of Tanzania. The village lies 300 

meters above sea level on the flood plain of Kilombero River, approximately 26 km 

south of Ifakara town. The climate is hot and humid, experiencing annual rainfall 

ranging between 1200–1800 mm and annual mean temperature between 20–32 °C. 

This climate and the clearance of a perennial swamp for rice farming create ideal 

conditions for perennially abundant populations of both An. gambiae s. s. and An. 

arabiensis and many species of culicine mosquitoes [41]. Malaria transmission 

intensity in this village is exceptionally high, averaging between 474 and 851 

infectious bites per person per year, despite mosquito net coverage which consistently 

exceeds 75% [42]. In addition, there have been several cases of RVF and filariasis (E. 

Mossdorf pers comm).  

3.4.2. Local houses 

In Ulanga and Kilombero DSS (Demographic Surveillance System) areas, most of the 

local houses have mud walls (56%), while the remainder is made of baked mud bricks. 

The roofs are mostly thatched (70%) or made of corrugated iron. The houses chosen 

for these experiments therefore had mud walls and thatched roofs with open eaves and 

one or two windows (Figure 3.1.). Cooking was mainly done outside of the hut and 

each of the local houses selected had two or three people living in them. 



 86 

 

Figure 3.1. A local house. The local houses are made of mud walls and thatched 

roofs. They have one door and two windows and open eaves (open spaces 

between the roof and the wall). 
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3.4.3. Experimental huts 

Several prototypes of new designs of experimental huts (Unpublished Moore et al) 

were built in Lupiro (Figure 3.2.)with the intention of representing, as closely as 

possible, the key structural features of local housing in southern Tanzania (i.e. brick or 

mud huts with corrugated iron or thatched roofing). These huts were designed in kit 

form for ease of portability, with a galvanized piping framework so that the entire hut 

could be flat packed. The roof is corrugated iron covered with grass thatch on the top, 

to simulate the temperature of local houses with thatched roofing. The outer walls are 

constructed from wooden planks or canvas. The inner walls are removable panels 

coated with mud, to simulate local mud walls. Two huts were constructed to mimic 

average local huts in the village. These were 6.5 m long, 3.5 m wide and 2 m high, 

(the size of these huts was determined by measuring 100 houses in Lupiro and 

calculating the average dimensions). The remaining two were smaller, at 3 m long, 3.5 

m wide and 2 m high. The height of each structure measured 2.5 m at the roof apex. 

Each experimental hut had one door and two window openings as this was the median 

number seen in local houses. 
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Figure 3.2. A wooden experimental hut. The experimental huts were designed to 

represent local housing in southern Tanzania An experimental hut had a corrugated roof 

and covered with grass thatch on the top, to simulate the temperature of local houses with 

thatched roofing. The outer walls were constructed from wooden planks or canvas. The 

inner walls were made of removable panels coated with mud. They had one door and two 

functional windows with open eaves (open spaces between the roof and the walls). 
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3.4.4. Experimental design 

 

Two blocks of four huts were used for these experiments: one block of four local 

houses and one block of four experimental huts. The selected houses were located 

nearest to the experimental huts and were selected to be approximately 50 m apart 

from each other. Two male volunteers slept in each experimental hut. The volunteers 

were not rotated between huts but remained in the same hut for the duration of the 

study. The bias created by variation in human attractiveness to mosquitoes and spatial 

variation between huts were therefore combined and treated as a single source of bias 

in the statistical analysis. For each of the two blocks of four houses, the following 

sequence of experimental treatments was completed. In each block, four repetitions of 

four experimental treatment arrangements were completed between 4th December and 

19th December 2007. This is the peak of short rains and therefore there is wide spread 

flooding leading to high densities of mosquitoes of all genera. Each repetition included 

three nights during which three of the four houses had the same one of the three 

potential entry points screened while the remaining fourth house was completely 

unscreened. On the first night of each repetition, all the four huts remained completely 

unscreened. For the subsequent three nights of each repetition, all the three treatments 

were changed each night from screening the eaves to windows and then doors, in that 

order. For each night, a different hut was chosen within each block to have no entry 

point screened, so that at the end of the four repetitions, all four huts had acted as these 

contemporaneous controls. The treatments were rotated across all the huts 

systematically. Rotation of treatments reduced the bias of mosquito collections 
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between the huts. 

 

3.4.5. Screening entry points 

 

PVC-coated fibre glass netting material (Elastic Manufacturing, Tanzania) was used to 

screen specific entry points each particular night. The netting was cut to fit each of the 

entry points (doors, windows and eaves). In the experimental huts, the size of the 

windows, eaves and doors was uniform for all the huts. Screens were fitted on the 

experimental huts by hook and loop fasteners. In the local houses, the screens were 

nailed onto the wall (mud wall). The nails could be removed easily each morning at 

the end of the experiments. Due to uneven wall surfaces of the local huts, small gaps 

were found between the netting and the wall. These gaps were blocked with cotton 

wool to create a complete barrier. 

3.4.6. Mosquito collection 

 

CDC light trap is an appropriate tool for sampling mosquito vectors that would 

otherwise bite humans, thus being comparable to human landing catches [43-46]. A 

CDC miniature light trap (model 512) was positioned approximately 1 m above the 

ground. It was placed next to the bed (at the foot end) occupied by an adult male 

volunteer, under an untreated bed net [45]. Volunteers operated light traps from 19:00 

to 07:00 hrs each night. 

Although no attempt was made to control times at which occupants slept, this period 
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typically approximated 19:00 hrs to 07:00 hrs. Traps were collected from each house 

every morning at 07.00. Collection bags were then placed in a plastic bucket, and 

mosquitoes were killed using cotton wool treated with chloroform. 

3.4.7. Mosquito identification 

 

The mosquitoes were morphologically identified to genus level each morning in the 

field while they were still fresh. Mosquitoes were stored in small centrifuge tubes 

which contained tissue paper with silica gel beneath, then transported to the laboratory 

where they were stored at 20°C, until further identification. Further identification was 

done to species level using polymerase chain reaction (PCR) for An. gambiae s. l. [47]. 

Mosquitoes allocated for PCR were sampled randomly from An. gambiae s. l., 

mosquitoes collected from different trap nights by placing labelled tubes in a box and 

picking them at random. Morphological identification of culicines was done using a 

key [47]. 

3.4.8. Ethics 

 

Volunteers were recruited only if they agreed to participate in the study and signed a 

written informed consent form. To minimize risk of infection of mosquito borne 

diseases, participants were provided with untreated nets. In addition, they were offered 

free malaria screening and treatment. Ethical approval was granted by Ifakara Health 

Institute (IHI) (IHRDC/IRB/No. A- 014-2007, IHRDC/IRB/No.A-019-2007) and the 

National Institute of Medical Research (NIMR/HQ/R.8a/Vol. W710). The Centre for 

Disease Control (CDC) ethical review deemed the work non- human subjects research. 
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3.4.9. Statistical analysis 

 

Generalized estimating equations were used with SPSS 15 to estimate the effect of 

screening specific entry points, which was treated as a categorical independent 

variable, on indoor mosquito densities relative to unscreened controls. House number 

was fitted as a subject effect and day as the within-subject variable, with an 

exchangeable working correlation matrix, to account for spatial and temporal 

heterogeneity in the dependent variable, namely number of mosquitoes of a given 

mosquito taxon caught in each house on each night. Note that, each species was 

analyzed separately using generalised estimating equation models (GEE). An. gambiae 

s. l. mosquito catch had a normal distribution and was fitted to an identity link. All the 

other species were negatively skewed and were therefore fitted with a negative 

binomial and a log link function. The model was used to derive the relative rates and 

their 95% confidence intervals. 

Binary logistic regression was used to test the strength of the influence of different 

treatments on the proportion of An. arabiensis and An. gambiae s. s caught that were 

identified to sibling species by PCR. The independent variables fitted in the model 

were treatment and house number. The outcome variable was binomial; An. arabiensis 

and An. gambiae s. s were coded as 1 and 0 respectively and the effect of treatment on 

the odds ratio of finding An. arabiensis relative to An. gambiae s. s. was calculated. 
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3.5. Results 

 

3.5.1. Mosquito collections 

During the cumulative 16 nights of sampling, with the CDC light traps, 77.9% 

(17,929) of the total catch were Anopheles gambiae s. l. This species complex 

comprised 66.2% (738) An. arabiensis and 33.8% (n = 377) An. gambiae s. s (n = 

1115 successful PCR amplifications). There were only 0.2% (n = 50) An. funestus 

species complex caught in the entire study. One tenth (10.2%, n = 2359) of all 

mosquitoes collected were various Culex spp. Three quarters (76.9%) of Culex spp. 

were identified as Cx. pipiens complex of which four fifths (80.3%, n = 875) were Cx. 

pipiens quinquefasciatus, while the remainder (19.7%, n = 214) were Cx. pipiens 

pipiens. Other culicines included Cx. univittatus and Cx. theileri (20.0% of the total 

Culex spp). Just over one tenth (11.6%) of all mosquitoes collected were Mansonia 

spp., of which more than half (58.3% n = 1038) were Ma. uniformis and the remaining 

41.6% (n = 742) were Ma. africana. Other species of culicines caught in smaller 

numbers were, Cx. horridis (n = 7), Cx. andersanius (n = 11), Cx. acrostichalis (n = 

43), Cx. rubinotus (n = 30), Cx. sitiens (n = 5), Cx. simpsoni (n = 18), and Cx. aureus 

(n = 69). 

3.5.2. Effect of screening different entry points on indoor densities 

 

A summary of the median indoor density species collections when each entry point 

was screened is presented in Table 3.2 and a statistical estimate of the impact of 
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screening is presented in Table 3.3. 

An. gambiae s. l. mosquitoes were less likely to be found in houses with screened 

eaves (Table 3.3.). Binary logistic regression revealed that both treatment (screening 

of various entry points) and house did not affect the proportion of An. gambiae s. s. 

versus that of An. arabiensis mosquitoes, (Treatment, Odds Ratio [95% confidence 

interval] = 1.06 [0.94, 1.20]; Wald Chi square = 0.87; P = 0.35), indicating that the 

effect of treatment on the two sibling species was similar. Screening eaves also 

reduced both Ma. africana and Ma. uniformis mosquito densities by almost half (Table 

3.3.). Screening windows and the door reduced indoor densities of Cx. 

quinquefasciatus, Cx. theileri and Cx. univittatus mosquito densities by a quarter or 

more although this was not significant (Table 3.3.). The relative densities of Cx. 

univittatus and Cx. theileri mosquitoes were increased when eaves were screened 

respectively (Table 3.3). 
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Table 3.2: Median indoor densities of different mosquito species caught in experimental huts and local houses when different entry 

points were screened. 

Screened entry points 
 

None
a
  Eaves  Windows  Doors 

Mosquito species 
n 

Median 

[IQR] 
n 

Median [IQR] n Median [IQR] n Median [IQR] 

An. gambiae sensu lato 
8341 80.0[4,630] 2708 59.0[9,415] 2946 80.0[15,370] 3934 96.0[17,700] 

Ma. africana 
336 3.0[0,31] 144 0.0[0,12] 138 3.0[0,24] 144 1.0[0,36] 

Ma. uniformis 
584 3.5[0,66] 93 1.5[0,21] 198 6.0[0,36] 163 1.5[0,37] 

Cx. quinquefasciatus 

sensu lato 544 2.0[0,79] 206 2.0[0,40] 171 2.0[0,46] 168 0.0[0,50] 

Cx. theileri 
27 0.0[0,5] 28 0.0[0,8] 4 0.0[0,2] 9 0.0[0,5] 

Cx. univittatus 
60 0.0[0,11] 49 0.5[0,10] 19 0.0[0,5] 16 0.0[0,4] 

n = number of mosquitoes. 
a
 =Reference group (No entry point was screened). IQR = Interquartile range. A total of 127 experimental hut nights were conducted. 

The number of experimental nights conducted for screened entry points are: None – 56, Eaves – 24, Windows – 23 and Doors – 24. A CDC Light trap on an eave 

night was attacked by ants, thus no data was recorded for that particular hut night. 
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Table 3.3: Impact of screening various entry points upon indoor densities of different mosquito species caught with reference to 

indoor densities when no entry point was screened. 

Screened entry points None
a 

Eaves  Windows  Doors  

Mosquito species 
 

RR [95%CI] P RR [95%CI] P RR [95%CI] P 

An. gambiae sensu lato 
1 0.91[0.84,0.98] 0.010 0.98[0.94,1.02] 0.340 1.03[0.97,1.09] 0.310 

Ma. africana 
1 0.43[0.26,0.76] <0.001 0.91[0.58,1.44] 0.700 1.03[0.63,1.70] 0.900 

Ma. uniformis 
1 0.37[0.25,0.56] <0.001 0.85[0.54,1.33] 0.470 0.65[0.38,1.13] 0.130 

Cx. quinquefasciatus sensu lato 
1 0.91[0.50,1.65] 0.740 0.77[0.42,1.39] 0.380 0.72[0.36,1.45] 0.360 

Cx. theileri 
1 2.42[1.13,5.18] 0.020 0.36[0.11,1.22] 0.100 0.78[0.25,2.46] 0.670 

Cx. univittatus 
1 1.91[1.05,3.47] 0.040 0.77[0.37,1.61] 0.490 0.62[0.31,1.25] 0.180 

The relative rates (RR), model estimated 95% confidence intervals (CI) and probability of equivalence (P) were all estimated by Generalized estimating 

equations as described in the Methods section.a = Reference group (No entry point was screened). 
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3.6. Discussion 

More than three quarters of the mosquitoes caught during the study were An. gambiae s. l. a 

major vector of both lymphatic filariasis as well as malaria in this area and across most of 

Africa [11]. An. funestus complex mosquitoes caught in this study were not identified to 

species level. However, other studies from Tanzania have shown that this species complex 

shows distinct behavioural differences. An. funestus s. s. mosquitoes are mainly endophagic 

while others like An. rivulorum are mainly exophagic [48]. Therefore, since mosquitoes 

were collected indoors we assume that most of the mosquitoes caught were An. funestus s. 

s. 

Culicine mosquitoes collected in this study contribute to the transmission of filariasis and 

arboviruses (Table 3.1). Cx. quinquefasciatus was the most abundant Culex spp. caught. 

Significant numbers of Cx. univittatus and Cx. theileri mosquitoes were also caught. Ma. 

africana has been incriminated as a vector of RVF [29-31], and was present in high 

densities during an outbreak of RVF among humans at the field site (E. Mossdorf pers 

comm). 

Most of the mosquitoes caught were unfed, and therefore considered to be in the act of host 

seeking [43, 44]. Studies carried out previously in the same experimental huts (unpublished 

data) indicated that there were very low densities of indoor resting mosquitoes. Only 0.35% 

of the mosquitoes caught in that particular study were caught resting. Therefore it may be 

assumed that indoor resting mosquitoes were present in insufficient numbers to bias the 

outcome of the screening experiments. 

Consistent with previous reports [5-7], Anopheles gambiae s. s. and An. arabiensis 
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mosquitoes were noted to prefer eaves as the main entry point, demonstrated by reduced 

indoor densities when this particular entry point was screened. Both Ma. africana and Ma. 

uniformis also preferred entry via eaves as exhibited by reduced indoor densities when 

eaves were screened. This data indicates that some mosquito borne diseases could be 

prevented by blocking eaves [2]. 

A study carried out in the Gambia showed a reduction in culicine indoor densities in houses 

with closed eaves but in association with horses tethered outside and with increased room 

height [49]. Indoor Cx. pipiens s. l. densities were reduced by 38% when eaves were closed 

[49]. On the contrary, a second study recently carried out in The Gambia measured the 

impact of closing eaves in addition to screening the doors in houses with no windows. The 

same study indicated that there was no additional reduction in culicine mosquito densities 

when eaves were blocked [50]. In the present study, we have shown that Cx. 

quinquefasciatus, Cx. univittatus and Cx. theileri mainly prefer windows and doors as their 

main point of entry. It is also important to note that when eaves were screened and windows 

and doors were left open, indoor densities of Cx. univittatus and Cx. theileri mosquitoes 

were increased in comparison to when all the three entry points were left unscreened. This 

indicated the importance of screening all the three entry points to achieve control of Culex 

spp. mosquitoes. 

Effectiveness of house proofing on mosquito vectors depends on the interaction between 

their feeding behaviour and human behaviour especially when and where people eat and 

sleep [51-53]. House screening will only reduce exposure to endophagic mosquito vectors. 

Several anophelines in Africa are endophagic; therefore, house screening would be highly 

effective. Since most Culex spp. mosquitoes are commonly thought to be predominantly 
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exophagic, then it raises concerns of whether house screening would be effective against 

them. However, varying levels of both endophagy and exophagy observed in different 

species; differ from one region to another. In East and West Africa Cx quinquefasciatus is 

more endophagic [54]. Cx. univittatus and Cx theileri exhibit both exophagy and endophagy 

in some areas [55-57]. 

Our findings suggest that screening eaves reduces indoor densities of An. gambiae s. l. as 

well as Mansonia spp. both of which are vectors of several neglected tropical diseases in 

rural areas of Africa and some parts of Asia. Blocking eaves and full house screening, as a 

control tool against mosquito vectors may reduce nuisance mosquitoes and thus encourage 

uptake of control interventions that rely on acceptance, participation and even investment 

by the community. 

Screening of eaves and/or installation of ceilings may prove to be practical and affordable 

where existing house designs prove amenable to such modifications. While most of the 

African population does not live in houses as uniform as our experimental huts, it is 

encouraging that mosquito proofing of houses by screening the eaves or installing ceilings 

has proven equally effective for anophelines and some culicines in rural settings in both 

East and West Africa. Blocking the eaves of the mud-walled, thatch-roofed village houses 

included in this Tanzanian study yielded results which are remarkably consistent with those 

observed when netting ceilings and screened eaves were installed into typical houses in The 

Gambia despite the wide geographical separation between them [5]. 

Recent evidence from urban Dar es Salaam [19] suggests that communities perceive closed 

ceilings and window screening as successful means to prevent house entry by mosquitoes. 
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They demonstrate high levels of acceptance, uptake and even investment, despite the fact 

that this intervention has never been specifically promoted on this basis. We suggest that the 

true full potential of protecting houses against house entry by culicine and anopheline 

mosquitoes, could be better achieved through insecticide treated screening material for 

targeted killing by placing them on either eaves, windows and doors. 
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CHAPTER FOUR 

4     An experimental hut study to quantify the effect of DDT and 

airborne pyrethroids on entomological parameters of malaria 

transmission 

4.1. Abstract 

Background 

Current malaria vector control programmes rely on insecticides with rapid contact toxicity. 

However, spatial repellents can also be applied to reduce man-vector contact, which might 

ultimately impact malaria transmission. The aim of this study was to quantify effects of 

airborne pyrethroids from coils and DDT used as an indoor residual spray (IRS) on 

entomological parameters that influence malaria transmission. 

Methods 

The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit 

and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in 

experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction 

in house entry of mosquitoes; irritancy or excito-repellency - induced premature exit of 

mosquitoes; blood feeding inhibition and effect on mosquito fecundity. 

Results 

Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through 
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deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave 

huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts 

with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the 

DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes 

collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 

hours. 

Conclusion 

This study highlights that airborne pyrethroids and DDT affect a range of anopheline 

mosquito behaviours that are important parameters in malaria transmission, namely 

deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in 

addition to significant toxicity and reduced mosquito fecundity that affect mosquito 

densities and, therefore, provide community protection against diseases for both users and 

non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, 

irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if 

delivered in suitable formats, may complement existing mainstream vector control tools. 

 

4.2. Background 

Currently, malaria vector control is focused on two interventions: Indoor Residual Spraying 

(IRS) and Long Lasting Insecticidal Nets (LLINs) that have successfully reduced malaria 

transmission throughout sub-Saharan Africa [1]. In public health vector control 

programmes, efficacy of insecticidal tools (LLINs and IRS) is measured by the 

epidemiological endpoints: malaria mortality and morbidity, related to reduced intensity of 

transmission in the mosquito vector population [2]. Mathematical models have been used to 
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explain dynamics of malaria transmission through entomological, immunological and 

parasitological parameters that influence malaria transmission [3] expressed as the basic 

reproductive rate (R0). The basic reproductive rate refers to the number of secondary disease 

infected persons arising from a single infected person in a completely susceptible 

population [2]. Therefore, the object of any control intervention is to reduce R0 to less than 

1. 

Garrett-Jones [4] described the relationship between entomological parameters that 

influence malaria transmission, termed the vectorial capacity of a mosquito population. . 

The parameters of the entomological equation include mosquito abundance (m), mosquito 

daily survival (p) (the vector must live long enough for parasites to develop to the infective 

stage inside the mosquito) and frequency of contact between mosquitoes and humans 

through the man biting rate (ma). Vectorial capacity is defined as the expected number of 

new human malaria infections disseminated per human per day, by a mosquito population 

from a single case, presuming that all vector females feeding on the case become infective 

[2]. 

 

4.2.1. Vectorial capacity equation 

 
The vectorial capacity equation as described by Garrett-Jones is as follows: C = ma

2
p

n
/-

logep. C = vectorial capacity, ma = density of mosquitoes per person per night, a
2
 = average 

frequency of biting on humans per day (a is squared because a mosquito must bite twice; 1
st
 

to receive parasites and 2
nd

 to transmit them), p = the probability of daily survival of the 

mosquito and n = the duration of sporogony i.e the time required for the parasites to develop 
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in the mosquito (extrinsic period). 

According to the vectorial capacity equation, changes to different aspects of the life cycle of 

mosquitoes will have differential impacts on malaria transmission [5]. For instance, a 

reduction in mosquito density (m) leads to an equal reduction in vectorial capacity because 

of their linear relationship, while a reduction in biting rate (ma) leads to a two-fold 

reduction in transmission due to the quadratic relationship (arising from the fact that 

mosquitoes need to feed twice to transmit malaria: once to become infected and once to 

infect) [5]. Importantly, interventions that affect the survival rate (p) of mosquitoes have the 

greatest impact on transmission due to their exponential relationship [5, 6]. Therefore, it 

becomes obvious why LLINs are such a successful vector control tool: they reduce man-

vector contact (ma) because they create a barrier between mosquitoes and humans, reduce 

mosquito average daily survival (p) through their insecticidal mode of action and therefore 

also affect mosquito density (m). 

Although the primary entomological modes of action (ENMoA) of insecticides used for 

LLINs and IRS are rapid knockdown and mortality, studies have shown other effects of 

insecticides that include 1) deterrence: when mosquitoes are prevented from entering human 

dwellings treated with insecticides [7, 8]; 2) irritancy: when mosquitoes contact insecticide 

surfaces inside houses and leave early [7]; 3) excito-repellency; when mosquitoes contact 

airborne insecticides and leave the house and 4) feeding inhibition; when mosquitoes are 

prevented from biting and getting blood meals [7]. The ENMoA of insecticides affect 

various aspects of the mosquito life cycle and this largely influence the success of any 

intervention. Despite emphasis placed on the importance of toxic insecticides, studies show 

that some highly effective insecticides, such as DDT (dichlorodiphenyltrichloroethane), are 
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primarily spatial repellents and feeding inhibitors [9] while toxicity is a lesser, but still 

important feature [9, 10]. In fact, the success of DDT is attributed to its deterrence and 

irritancy, and only to a lesser extent to its mortality [10, 11]. 

Mosquito coils, vaporizer mats and emanators also induce repellency, irritancy, feeding 

inhibition and toxicity [12, 13]. The impact of coils and emanators on vector borne diseases 

has been proven. These tools act over a distance by evaporating insecticides into a given 

space, hence are known as spatial repellents. This mode of action has parallels with the 

deterrent, feeding inhibition and excito-repellent modes of action of DDT. For this reason, it 

is worthwhile to compare their effects on entomological components that pertain to 

vectorial capacity. It is hypothesized that insecticides that have more than one mode of 

action affect different parameters of the vectorial capacity (m, a, ma, p,) and are likely to 

bring forth greater changes in transmission than anticipated if only toxicity is considered. 

The purpose of this study was to quantify the effect of airborne pyrethroids released by 

mosquito coils on mosquito behaviour. Emphasis was placed on outcome measures that 

influence entomological parameters of malaria transmission (Table 4.1) and to compare the 

mode of action of Transfluthrin and Metofluthrin coils against DDT, representing a gold 

standard insecticide with known impact on malaria transmission [11]. 

http://www.malariajournal.com/content/13/1/131/table/T1
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Table 4.1: Entomological parameters of the vectorial capacity targeted by effects of 

airborne insecticides on mosquito behaviour 

Effect of airborne insecticides Parameter of the vectorial 

capacity 

System of 

study 

Deterrence ma
 

Field 

Excito-repellency and irritancy ma Semi-field 

Toxicity 

m, p
 

Field and semi-

field 

Reduced fecundity (ability of mosquitoes 

to lay eggs) 

m Semi-field 

Feeding inhibition 

(mosquitoes prevented from blood 

feeding) 

ma
 

Semi-field 
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4.3. Methods 

Studies were conducted in experimental huts in the field with wild Anopheles arabiensis 

mosquitoes and in a semi-field system [14] with laboratory reared Anopheles gambiae sensu 

stricto (s.s.) as a standard test organism for repellents [15]. The overall objective was to 

determine the effect of DDT, Metofluthrin and Transfluthrin coils on parameters of 

vectorial capacity using experimental huts. 

 

4.3.1. Outcomes measured in the field 

Deterrence 

Deterrence refers to reduced house entry of mosquitoes resulting to reduced indoor 

densities. It was determined by comparing the total number of mosquitoes in huts with 

insecticides to control huts. The total number of mosquitoes inside huts included: live and 

dead mosquitoes in exit traps, dead mosquitoes found on the floor as well as mosquitoes 

found resting inside the hut. 

Toxicity 

Toxicity of coils and DDT was determined by comparing the proportion of dead versus live 

mosquitoes in insecticide huts to the control huts. Mosquitoes collected from huts were kept 

for 24 hours in an insectary after which mortality was recorded. 

 



 116 

4.3.2. Outcomes measured in the semi-field 

Contact irritancy and excito-repellency 

Contact irritancy and excito-repellency refer to the rate at which mosquitoes exit huts after 

physical contact with insecticide treated surfaces or airborne insecticides, respectively. The 

exit rate is the proportion of female mosquitoes found in the exit traps at the top of every 

hour compared with the total number found inside huts (resting or dead on the floor) 

relative to the control hut. The increased or premature exit of mosquitoes is the estimated 

irritancy or excito-repellency [16] of insecticides used in the house. 

Toxicity 

The number of dead versus live mosquitoes out of those recaptured was compared between 

huts. Mortality was recorded after 24 hours. The difference in mortality between a control 

hut (natural mortality) and a treated hut allows assessment of the insecticide-induced 

mortality [16]. 

Blood feeding inhibition 

Feeding inhibition was determined by comparing the number of blood fed versus unfed 

mosquitoes of total mosquitoes recaptured from huts. 

Reduced fecundity of mosquitoes 

Fecundity was determined by comparing the proportion of blood fed mosquitoes that laid 

eggs after exposure to different treatments compared to the control. In addition, the total 

number of eggs laid by each mosquito was determined. 
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4.3.3. Experiment 1: field 

Study area 

The study was conducted in Lupiro village in the Kilombero valley in the South East of 

Tanzania. Annual rainfall ranges between 1200 and 1800 mm with two rainy seasons per 

year: November to December and January to April. Annual mean temperature ranges 

between 20-32°C. Communities in Lupiro practice irrigated rice farming that provides 

suitable mosquito breeding conditions. Anopheles arabiensis is the dominant species (>95% 

of the malaria vector population) with the remainder comprising Anopheles funestus sensu 

lato (s.l.) mosquitoes. There is a high density of culicines comprised of Culex and Mansonia 

species [17]. A study conducted at the same time and site indicated 100% susceptibility of 

An. arabiensis mosquitoes to World Health Organization recommended doses of DDT and 

between 95.8% and 90.2% for Permethrin, Lambda cyhalothrin and Deltamethrin [18]. 

 

Treatments 

 
Mosquito coils were used at a standard dose recommended and approved by the World 

Health Organization for Pesticides (WHOPES). They included Transfluthrin (0.03%) and 

Metofluthrin coils (0.00625%). Seventy-five percent pure DDT wettable powder (AVIMA, 

South Africa) was applied to woven palm leaf mats using Hudson sprayers at 2 g/m
2
 

concentration of the active ingredient. DDT was sprayed on mats that could be rotated 

between huts during experiments. Rotation of treatments between huts is a crucial part of 

experimental hut study design because it minimizes the spatial bias between huts that often 
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affects relative mosquito density and behaviour. 

Palm woven mats were measured and cut out to fit the entire surface of the inside wall of an 

experimental hut. The reverse side of the mats was covered with plastic sheets (Figure 1) to 

prevent contamination of experimental hut surfaces with DDT during rotation of mats 

between huts. Two sets of mats were prepared, the control was sprayed with water and the 

other set was sprayed with DDT at a dose of 2 g/m
2
 as recommended by WHOPES [16] 

using a separate Hudson sprayer for each treatment. The quantity of DDT required to cover 

walls of one hut was determined by measuring the surface area of walls. The amount of 

DDT required in g/m
2
 was calculated and weighed. The volume of water required for 

mixing DDT was determined by pouring a known amount of water in a Hudson sprayer. 

The sprayers were calibrated to 55 psi and control mats were sprayed with water. The 

volume of water used in the control was measured and an equal volume of water was used 

for mixing DDT in a plastic bucket. Spraying was conducted in a disposable tent located 50 

meters from experimental huts (Figure 4.1). The mats were air dried for 15 minutes then 

fixed to respective walls using removable staples so that they could be detached easily 

during rotation (Figure 4.1). 

 

http://www.malariajournal.com/content/13/1/131/figure/F1
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Figure 4.1. Spraying palm woven mats with DDT. Palm woven mats previously cut out to 

fit on the walls of experimental huts were sprayed with 2 g/m
2
 DDT. Spraying was conducted 

in a temporary structure that was later burnt. Spraying the mats instead of the walls ensured 

that mats could be moved easily from one hut to another without contaminating the walls. 

This allowed rotation of treatments between huts. 
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Experimental huts 

Studies were conducted in Ifakara experimental huts [19] (Figure 3.2). Initially, information 

about the size, design of the houses and the materials required for constructing the roofs and 

walls was collected through a house hold survey conducted in Kilombero valley. The local 

houses (Figure 3.1) in this region are constructed with corrugated iron sheets or thatched 

roofing and walls are constructed with bricks or mud. This information was used in the 

construction of experimental huts to ensure a good representation of local houses in 

Kilombero valley. The experimental huts measure 6.5 m long, 3.5 m wide and 2.5 m high at 

the roof apex. They are made of galvanized pipe framework, the roof is made of corrugated 

iron sheets and the inner walls are made of removable mud panels while outer walls are 

covered with canvas. The outer roof is grass thatched. This provides cool temperatures 

inside huts just like in local houses. Each experimental hut has one door and four windows. 

The huts have open spaces (eaves) between the roof and the wall similar to local huts. This 

results in volume, surface area, temperature and air-flow profiles similar to local homes, 

which is extremely important when measuring spatially active vector control tools. Half of 

the eaves and all of the windows are fitted with exit traps suspended outside the huts to trap 

those mosquitoes that attempt to leave. The traps are made of metal frames and UV resistant 

black plastic coated fibreglass netting (Phifer, USA). The traps are fitted with cotton sleeves 

through which mosquitoes can be collected. On the eaves there are spaces left between 

traps. These spaces are fitted with netting baffles through which mosquitoes enter huts but 

cannot leave. Mosquitoes can only leave through exit traps. Previous studies indicated that 

entry behaviour of mosquitoes in experimental huts was similar to local houses [17]. 
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Study design 

A partially-randomized fully-balanced 4 × 4 Latin square design was performed to 

determine efficacy of DDT used as IRS, Transfluthrin and Metofluthrin coils in four 

experimental huts. The treatments were tested for four nights per week and were rotated 

weekly. Therefore, one balanced round of experiments was completed in 16 days. Four 

rounds of 16 days were performed (n = 64 nights). The treatments tested were: 1) standard 

control – DDT IRS; 2) negative control – no insecticide used; 3) two Transfluthrin coils 

(0.03%) per hut each night and 4) two Metofluthrin (0.00625%) coils per hut each night. 

The huts were located approximately 300 metres from local houses and arranged linearly 

along a mosquito-breeding site with 50 metres spaces left between them to minimize 

interaction between treatments. Treatments were randomly allocated to huts with two male 

volunteers. Treatments were not moved between huts on a nightly basis because of the 

possibility of a carryover effect of treatments. The huts were left without treatments during 

the fifth, sixth and seventh night in order to wash out the effect of the previous treatment, 

after which treatments were moved to the next hut. Two coils were placed on the floor in 

the middle of the hut at the start of the experiment and they were replaced with new ones 

when they burnt out. Freshly sprayed DDT mats were used for each round of experiment, 

meaning that sprayed mats were used for one month and kept in a store to be later burnt in 

an incinerator. 
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Mosquito collection 

 
Experiments were conducted between 24

th
 November 2010 and 15

th
 October 2011 for 64 

nights. Experiments took place each night between 1800 hours and 0600 hours. Every 

evening, volunteers removed all insects and predators from exit traps to prepare huts for the 

next experimental night and then they retired to bed. In huts selected for coils, the 

technicians lit two coils and volunteers were given additional coils and instructed to replace 

those that burnt out before 0600 hours. Volunteers slept under untreated bed nets and woke 

up at the top of every hour to collect mosquitoes from exit traps. Mosquitoes were collected 

between 1900 hours and 0600 hours using a mouth aspirator and a spotlight for a maximum 

of 15 minutes each hour. At 0600 hours, all mosquitoes resting inside the huts as well as 

those found on the floor were collected. Mosquitoes were placed in paper cups labelled by 

the time and place of collection (exit traps, resting on hut surfaces and the floor), provided 

with 10% glucose solution soaked on pieces of cotton wool and kept in a field insectary for 

24 hours. Mean temperature inside the insectary was 29.1°C ± 3.0°C during the day and 

26.7°C ± 2.3°C at night, while mean relative humidity was 70.6% ± 17.9% during the day 

and 75.7% ± 13.7% at night. The insectary was located 50 m away from experimental huts. 

 

Mosquito handling and identification 

 
Each morning, mosquitoes previously collected from huts and kept for 24 hours in the 

insectary were morphologically identified as An. gambiae s.l., Mansonia spp. or Culex spp. 

Mosquitoes were also grouped as dead, alive, fed or unfed. A sub sample of the Anopheles 
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genus mosquitoes was randomly selected and transported to the laboratory for further 

identification to species using ribosomal DNA-polymerase chain reaction (PCR) [20]. 

 

Quality control: assessment of the carryover effect of airborne insecticides 

 
During experiments, there was a three-day wash out period after four days of experiments 

when there were no insecticides in the huts. Volunteers entered huts at 1800 hours and slept 

until 0600 hours. They collected mosquitoes in exit traps, from resting surfaces inside huts 

and the floor at 0600 hours. This experiment enabled us to determine whether the three-day 

wash out period was sufficient to reduce any residual airborne insecticides before treatments 

were rotated between huts. 

 

Assessment of residual efficacy of DDT on grass woven mats 

 
The method of evaluating residual efficacy of DDT on grass woven mats was based on the 

WHO insecticide testing guidelines [16]. Two locations on each of the four “walls” of DDT 

sprayed mats were randomly selected. We attached WHO cones on the walls using masking 

tape and 10 laboratory-reared, 2–6 day old female nulliparous An. arabiensis mosquitoes 

were introduced into each cone. The time was noted and mosquitoes were removed from the 

cones after 30 minutes. Mosquitoes removed from cones were kept in the field insectary and 

monitored for 24 hours after which dead and live mosquitoes were recorded. Bioassays 

were conducted a day after spraying and once every week for four weeks during 
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experiments. Additional control bioassays were conducted simultaneously on control mats 

previously sprayed with water only. 

 

4.3.4. Experiment 2: semi-field 

Semi-field system 

Studies were conducted in experimental huts placed inside a Semi-Field System (SFS) in 

Bagamoyo District, Tanzania (Figure 4.2) Use of the SFS [14] allowed replications of 

experiments within a short period of time because laboratory reared mosquitoes were used 

and therefore experiments were not dependent on the season. In addition, laboratory 

mosquitoes are disease free, therefore, not putting volunteers at risk of being infected with 

mosquito-borne diseases. 



 125 

 

 

Figure 4.2. Semi-field system. The walls and the roof of the semi-field system (SFS) are 

made of metal frames and fibreglass netting material. It was divided into four equal square 

sections divided by fibreglass netting. An experimental hut was placed in each 

compartment. The SFS [14] allowed replication of experiments within a short period of 

time. Laboratory reared mosquitoes were used and were available throughout the duration 

of experiments hence there were no delays as usually experienced in the field. 
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Mosquitoes 

Insecticide susceptible mosquitoes of the species An. gambiae s.s. (Ifakara strain) were 

used. The colony was maintained by feeding larvae on Tetramin fish food and adults on 

human blood between 3 and 6 days after emergence and 10% glucose solution ad libitum. 

Temperature and humidity within the insectary were maintained between 28 – 29°C and 70 

– 80% respectively. The mosquitoes used in the experiments were female nulliparous, 3–8 

days old An. gambiae s.s. that had never blood fed and were sugar starved for 6 hours prior 

to the start of experiments. 

  

Study design 

 
Four Ifakara design experimental huts (Figure 3.2) fitted with window and eave exit traps 

were used inside the SFS. The huts were placed in individual compartments separated by 10 

metres and a netting screen. A fully-randomized fully-balanced 4 × 4 Latin square design 

was performed to determine efficacy of DDT used as IRS, Transfluthrin and Metofluthrin 

coils in four experimental huts. The treatments were tested for four nights per week. 

Therefore, one balanced round of experiments was completed in 16 days. The treatments 

tested were: 1) standard control – DDT as IRS; 2) negative control – no insecticide used; 3) 

two Transfluthrin coils (0.03%) per hut each night and 4) two Metofluthrin (0.00625%) 

coils per hut each night. Treatments and two male volunteers were randomly allocated to 

each hut. The pair of volunteers was rotated between huts every fourth night while the 

treatments remained in the same huts during the entire study period. Equal numbers of 
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mosquitoes were used in each compartment; hence there was no need to rotate the 

treatments between huts to minimize location bias as is the case in field experiment. 

Experiments began each evening at 1930 hours when volunteers entered respective huts. 

Technicians placed two lit coils on the floor 0.5 m from the volunteer inside respective huts 

(Figure 4.3). After 10 minutes, the volunteers simultaneously released 100 female 

mosquitoes in each hut from netting cages. The volunteers slept on mattresses on the floor 

and did not use bed nets. 
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Figure 4.3. Process of collecting mosquitoes from experimental huts. A: A coil placed 

on the floor 0.5 m from the volunteer B: HN collecting mosquitoes from exit traps using 

a mouth aspirator; C: AM collecting resting mosquitoes using a backpack aspirator; D: 

HN sorting mosquitoes and keeping them in individual tubes for checking oviposition. 
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Mosquito collection and processing 

Technicians collected mosquitoes from exit traps at the top of every hour from 2100 hours 

to 0700 hours using mouth aspirators (Figure 4.3 B). Additional collection was done at 0700 

hours inside the huts to capture resting, knocked down and dead mosquitoes using CDC 

backpack aspirators (Figure 4.3. C). Mosquitoes were placed in labelled paper cups and 

provided with 10% glucose solution. They were kept in an insectary with temperature at 28 

– 29°C and between 70 – 80% relative humidity. Each morning mosquitoes were sorted as 

either dead or alive, and fed and unfed. The total number of mosquitoes in each group was 

recorded. Blood fed mosquitoes were kept in the insectary in individual vials with moist 

filter paper and were left to lay eggs (Figure 4.3.D). The number of eggs in each vial was 

counted and recorded after 3 days. 

Protection of participants and ethical approval 

 
The male persons who slept in experimental huts were recruited on a voluntary basis 

through written informed consent after the risks and benefits of the study were clearly 

explained, and they were free to leave at any time during the study. The participants were 

screened for malaria before the beginning of the study and those participants found malaria 

positive were given artemisinin combination therapy anti-malarial drugs and referred to the 

nearest health centre. Those fit to participate in the study were tested for malaria every two 

weeks. Adverse events such as respiratory symptoms were monitored. The participants were 

also compensated for their time and effort. The ethical review boards of Ifakara Health 

Institute IHI/IRB/No A-019-2007, the National Malaria Research Institute Tanzania 
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(NIMR/HQ/R.8a/Vol.1X/710) and the London School of Hygiene and Tropical Medicine 

(LSHTM ERB 5552) approved the study. 

 

4.3.5. Statistical analysis 

 
In experiment 1, the mortality of mosquitoes in the field was calculated using the WHOPES 

formula due to the low number of dead mosquitoes collected, while deterrence (Experiment 

1), contact irritancy and excito-repellency, feeding inhibition and fecundity, (Experiment 2) 

were analyzed using the R statistical software version 3.02 [21] with a significance level of 

0.05 for rejecting the null hypothesis. All generalized linear mixed models (GLMMs) were 

conducted using the lme4 package [22]. 

 

Assessment of residual efficacy of DDT on grass woven mats 

 
Mortality of mosquitoes in different cone assays was calculated as a proportion of the total 

number of those exposed to the chemical. 

Deterrence 

 
Deterrence was determined using GLMMs. The model included the number of mosquitoes 

as the response variable (dependent variable) and the independent variables included the hut 

(because only 4 huts were used in the study) and treatment as fixed factors and the day of 

experiment as a random variable. The first model did not account for overdispersion in the 
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data (performing a Poisson GLMM), the second model accounted for overdispersion by 

fitting a random intercept for each row of the data (performing a log-normal Poisson 

GLMM) and the third model was fitted with an interaction term between hut and treatment 

and accounted for overdispersion. The models were compared using Aikaike‟s Information 

Criterion (AIC) [23] and the second model was chosen because it had the smallest AIC. 

 

Toxicity 

 
The proportion of mortality in the field study was calculated using the following formula: 

100 × (Dt–Dc)/Ec (The proportion of dead mosquitoes Dt = number of mosquitoes dead in 

treated hut, Dc = number of mosquitoes dead in control hut and Ec = total number of 

mosquitoes in control hut. This formula is used to calculate the overall insecticidal effect of 

treatment inside huts [16]). Mortality in the semi-field studies was determined by fitting a 

GLMM with binomial error and a logit link function. The dependent variable was the 

proportion of dead mosquitoes and independent variables were treatment and trap (exit or 

floor or resting) included as fixed factors while the day of experiment was set as a random 

variable. 

 

Contact irritancy and excito-repellency 

 
The number of mosquitoes that exited huts was compared to those that stayed inside the 

huts that had insecticides relative to the control. A GLMM with a binomial error and a logit 

link function was fitted. The dependent variable was the proportion of exiting mosquitoes. 
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Independent variables included treatment as fixed factor and day as a random factor. 

The rate at which mosquitoes left huts that had insecticides was compared to the control 

huts using survival analysis and Kaplan-Meier survival graphs. Analysis was conducted 

with survival and splines survival packages in R 3.02 [21]. The time at which an individual 

mosquito left the hut was considered to be the “event”. 

 

Blood feeding inhibition 

 
The proportion of blood-fed mosquitoes was compared between the treatment and control 

huts in the semi-field experiments. This was determined by fitting a GLMM with binomial 

error and logit link. The dependent variable was the proportion of unfed mosquitoes and 

independent variables included treatment, volunteer and trap type as fixed factors and day 

as a random variable. 

 

Reduced fecundity 

 
The data was analysed in two different ways. The first method was to determine the 

proportion of mosquitoes that laid eggs after blood feeding in the presence of insecticides in 

semi-field experiments. This was determined by fitting a GLMM with binomial error and 

logit link. Treatment was included as a fixed factor and day of experiment as a random 

variable. 
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The second method was used to determine the number of eggs laid by blood fed mosquitoes 

exposed to insecticides compared to the control. The effect on number of eggs laid was 

determined using a GLMM. A Poisson model was fitted with the number of eggs as the 

dependent variable and the independent variables included treatment as a fixed factor and 

the day of experiment as a random variable. The best fitting model as measured by AIC did 

not account for overdispersion. 

 

4.4. Results 

4.4.1. Experiment 1 field 

 
The total number of mosquitoes collected was 30,280 of which 19,593 mosquitoes were An. 

gambiae s.l., 2016 were Mansonia sp. 7829 were Culex quinquefasciatus, 136 were 

Stegomyia aegypti [24] and 706 were An. coustani. PCR analysis was conducted on species 

of An. gambiae s.l., 100% (n = 975) of all successful amplifications were An. arabiensis 

mosquitoes [25]. 

 

Quality control: assessment of the carryover effect of airborne insecticides 

During the three-day wash period, the total number of mosquitoes inside huts increased 

gradually from the first day to the second day but there was no significant difference 

between the first day and the last two days (Table 4.2). There was no significant difference 

in the number of mosquitoes between huts that previously contained insecticides and the 

control hut (Table 4.3).
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Table 4.2: Total mosquitoes collected from experimental huts in the field during the 3 – day wash out period (experimental nights; n = 

12). 

Day of wash out N
 

Median
 

IQR
 

Odds
 

Odds Ratio
 

z Value p Value 

1 1064 42.00 22.80 – 91.80 
48.92 1.00 

NA NA 

2 1232 46.50 37.50 – 123.00 54.73 1.12 0.237 0.812 

3 1187 71.00 33.30 – 92.30 59.61 1.22 0.418 0.676 

This table illustrates the indoor densities of mosquitoes of experimental hut that previously had coils and DDT. Entry of mosquitoes was measured for 3 days. N - 

Total number of mosquitoes; Median
 
– Number of mosquitoes per experimental day; IQR – Interquartile range. 
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Table 4.3: Total mosquitoes that entered untreated huts that previously had insecticides (experimental nights; n = 12) 

Treatment N
 

Median
 

IQR
 

Odds
 

Odds ratio
 

z Value p Value 

No insecticide  1048 47.00 22.00 – 110.30 53.67 1.00 NA NA 

Transfluthrin coils 737 71.00 28.00 – 92.50 53.70 1.00 0.006 0.995 

Metofluthrin coils 877 67.00 39.80 – 103.00 61.02 1.14 1.220 0.223 

DDT 2gm² 821 42.50 37.50 – 72.30 49.10 0.91 -0.832 0.406 

This table illustrates the indoor densities of huts that previously had coils and DDT. The mosquitoes were collected during the wash period when the huts had no 

insecticides. N = Total number of mosquitoes; Median = Number of mosquitoes per hut per night;
 
IQR – Interquartile range 
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Deterrence 

All compounds deterred malaria vectors from entering huts but coils had a 

greater impact than DDT (Table 4.4). Transfluthrin coils reduced entry of 

An. arabiensis mosquitoes by 38% (RR – 0.62 [0.47 - 0.87]; z = -6.37, p < 

0.001) and Metofluthrin coils reduced An. arabiensis mosquitoes by 30% 

(RR – 0.70 [0.50 - 0.98]; z = -4.77, p < 0.001) (Table 4). Both Metofluthrin 

and Transfluthrin coils reduced entry of Mansonia spp. mosquitoes by more 

than three quarters while DDT reduced them by half (Table 4.4). There was 

no significant difference in the number of Cx. quinquefasciatus mosquitoes 

entering control, DDT and Transfluthrin huts although Metofluthrin coils did 

reduce their entry. 
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Table 4.4: Indoor mosquito densities in field experimental huts that had 

mosquito coils and DDT compared to huts that did not have insecticides (n=64 

nights). 

Treatment N
 

Median IQR
 

RR
 

95% CI
 

z Value p 

Value 

Anopheles arabiensis 

No 

insecticide 

5650 70.00 50.25 – 104.50 NA NA NA NA 

Transfluthri

n coils 

3881 47.00 27.25 – 75.25 0.62 [0.47 - 0.87] -6.37 <0.001 

Metofluthrin 

coils 

4249 54.00 35.50 – 82.00 0.70 [0.50 - 0.98] -4.77 <0.001 

DDT 2gm² 5813 67.00 41.50 – 108.75 0.92 [0.65 - 1.20] -1.22 0.224 

Culex quinquefasciatus 

No 

insecticide 

2300 26.00 19.50 – 46.25 NA NA NA NA 

Transfluthri

n coils 

1782 26.50 13.00 – 39.25 0.87 [0.73 - 1.05] -1.46 0.143 

Metofluthrin 

coils 

1645 22.50 13.75 – 36.25 0.72 [0.61 - 0.85] -3.80 <0.001 

DDT 2gm² 2102 27.00 16.75 – 44.00 1.13 [1.01 - 1.28] -1.40 0.161 

Mansonia spp. 

No 

insecticide 

947 12.00 8.75 NA NA NA NA 

Transfluthri

n coils 

150 2.00 1.00 0.16 [0.07 - 0.19] -8.17 <0.001 

Metofluthrin 

coils 

185 2.00 0.75 0.12 [0.09 - 0.24] -7.56 <0.001 
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DDT 2gm² 734 9.00 5.75 0.50 [0.33 - 0.77] -3.16 0.002 

N- Total number of mosquitoes; Median – number of mosquitoes per hut per night; IQR – 

Interquartile range; RR – Relative rate; CI – Confidence intervals 
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Toxicity 

Mortality of mosquitoes after 24 hours in field experiments was very low. Only 

0.02% mortality of all mosquito species collected was observed. 

Residual efficacy of DDT on grass woven mats 

 
Cone bioassays conducted on DDT mats on the second day and a week after 

spraying showed 100% mortality of mosquitoes after 24 hours. Mortality 

dropped in the second, third and fourth week to 73%, 92% and 90%, 

respectively. It is likely that DDT flaked off from mats when they were moved 

between huts resulting in reduced residues hence reduced toxicity. There was no 

mortality in the bioassays conducted on control mats. 

4.4.2. Experiment 2: semi-field 

 
Seventy percent (n = 4476/6400) of the mosquitoes released in the huts were 

recaptured. The relatively low recovery rate could be explained by loss of 

mosquitoes that might have been eaten by predators and those that escaped 

through small cracks in the huts or when the door was opened briefly. However 

analysis was conducted on recovered mosquitoes and not released mosquitoes. 

Contact irritancy and excito-repellency 

 
The proportion of mosquitoes that left huts that had DDT, Transfluthrin and 

Metofluthrin coils was significantly higher than the control (Table 4.5). 
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Approximately 48% (95% CI: [0.44 -0.53]; z = 9.950, p < 0.001) of the 

mosquitoes left DDT huts (Table 4.5). In huts with Transfluthrin and 

Metofluthrin coils approximately 56% (95% CI: [0.51 - 0.60]; z = 12.779, p < 

0.001) and 55% (95% CI: [0.51 -0.60]; z = 12.890, p < 0.001) mosquitoes left 

huts, respectively. The rate at which mosquitoes left huts throughout the night is 

illustrated using Kaplan Meier survival curves (Figure 4.4). The highest exodus 

of mosquitoes from huts was observed in the first half of the night (2100 – 0000 

hours) regardless of treatment or control, but overall, more mosquitoes exited 

when huts contained DDT, Transfluthrin or Metofluthrin coils compared to the 

control. 

 

 

http://www.malariajournal.com/content/13/1/131/table/T5
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Table 4.5: The proportion of mosquitoes that left experimental huts that had mosquito coils and DDT compared to the hut that did not 

have insecticides in the semi field system (experimental hut nights = 16).  

Treatment Proportion of 

mosquitoes
 a 

OR [95% CI] 

Mean proportion 95% CI
 

z value p value 

Control 313/1067 1.00 [0.00 - 2.00] 0.27 [0.22 - 0.34] -6.68 NA 

DDT 581/1185 2.32 [0.45 – 4.55] 0.48 [0.44 -0.53] 9.95 <0.001 

Transfluthrin coils 599/1067 3.08 [0.61 - 6.08] 0.56 [0.51 - 0.60] 12.78 <0.001 

Metofluthrin coils 645/1157
 

3.03 [0.63 - 5.98] 0.55 [0.51 -0.60] 12.89 <0.001 

a = mosquitoes in exit traps/total number of mosquitoes recaptured from the hut; CI – Confidence intervals CI – Confidence intervals; OR – Odds ratios of the 

proportion of mosquitoes 
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Figure 4.4. Survival curves illustrating the rate at which mosquitoes left huts with 

DDT, transfluthrin and metofluthrin coils. The curves represent the rate at which 

mosquitoes exit huts that have different insecticides compared to the control. Analysis was 

based on a Kaplan-Meier stepped survivorship function. Each curve represents one 

treatment. 
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Toxicity 

The proportion of mortality in control huts was 18% (n = 193/1067). Therefore, Abbot‟s 

correction formula was used to correct for mortality induced by tested insecticides because 

mortality in the control huts was more than 10% [15]. There was a much higher proportion 

of mortality induced by insecticides in the semi-field study compared to the field. DDT 

induced 64% (95% CI: [0.60 - 0.67]; z = 22.49, p < 0.001), Transfluthrin induced 66% 

(95% CI: [0.63 - 0.70] z = 23.32, p < 0.001) and Metofluthrin 61% (95% CI: [0.57 - 0.64]; p 

< 0.001; z = 21.96) mortality (Table 4.6). More than 90% of the mosquitoes collected inside 

huts that had mosquito coils and DDT had died within 24 hours unlike in the control hut 

(Table 4.7). Out of the mosquitoes collected from exit traps of DDT, Transfluthrin and 

Metofluthrin huts, 49%, 46% and 57%, respectively died after 24 hours (Table 4.7). 

 

http://www.malariajournal.com/content/13/1/131/table/T6
http://www.malariajournal.com/content/13/1/131/table/T7
http://www.malariajournal.com/content/13/1/131/table/T7
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Table 4.6: The proportion of the mortality of mosquitoes 24 hours after collection from experimental huts  

Treatment Total dead 

mosquitoes 

Total 

mosquitoes 

recaptured  

Crude mortality OR [95% CI] Corrected mortality⌘ z value p value 

Mean 

proportion 

[95% CI] 

 

Mean 

proportion 

[95% CI]
 

Control 193 1067 0.17 [0.13 - 0.22] 1.00 [0.00 – 2.00] 0.00 [0.00 - 0.00] -10.04 NA 

DDT 836 1185 0.70 [0.65 - 0.74] 9.68 [4.19 – 21.00] 0.64 [0.60 - 0.67] 22.49 <0.001 

Metofluthrin coils 763 1157 0.67 [0.63 - 0.72] 8.77 [2.34 – 17.79] 0.61 [0.57 - 0.64] 21.96 <0.001 

Transfluthrin coils 727 1067 0.72 [0.68 - 0.76] 10.85 [1.53 – 21.01] 0.66 [0.63 - 0.70] 23.32 <0.001 

Experiments were conducted in experimental huts within a semi field system. Mortality of mosquitoes is compared between huts that had mosquito coils, DDT 

and no insecticide. Experiments were conducted for 16 nights. CI – Confidence intervals. ⌘ - Corrected using Abbott‟s formula; OR – Odds ratios of the 

proportion of mosquitoes 
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Table 4.7: Mortality of mosquitoes collected from exit traps compared to those collected inside experimental huts  

Treatment Mosquitoes in exit traps  Mosquitoes indoors 

 Dead 

mosquitoes/Total 

mosquitoes
 

Median IQR
 

 

Dead 

mosquitoes/Total 

mosquitoes 

Median
2
 IQR 

Control 91/313 0.35 0.19 – 0.43  102/754 0.15 0.09 -0.18 

DDT 286/581 0.52 0.30 – 0.75  550/604 1.00 0.94 – 1.00 

Transfluthrin coils 273/599 0.49 0.34 – 0.55  454/468 1.00 1.00 - 1.00 

Metofluthrin coils 333/645 0.35 0.25 – 0.73  430/512 1.00 1.00 - 1.00 

The proportion of mortality induced by insecticides was measured in experimental huts in a semi field system for 16 nights. Mortality was compared between 

huts that had mosquito coils, DDT and no insecticides. Median – median proportion of mosquitoes per hut per night; IQR – Interquartile range 
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Blood feeding inhibition 

Blood-feeding inhibition was the most pronounced mode of action in all 

three treatments. Transfluthrin and Metofluthrin coils had the highest impact 

on feeding of mosquitoes. Transfluthrin coils reduced feeding by 98% (95% 

CI: [0.96 - 0.99]; z = 22.03, p < 0.001), Metofluthrin reduced it by 93% 

(95% CI: [0.90 – 0.95]; z = 25.57, p < 0.001) and DDT by 77% (95% CI: 

[0.73 - 0.81]; z = 24.10, p < 0.001) (Table 4.8). 
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Table 4.8: Insecticide induced blood-feeding inhibition of mosquitoes in experimental huts  

Treatment Proportion of 

unfed 

mosquitoes 
a 

OR [95%CI] Mean proportion [95% CI]
 

z value p value 

Control 321/1120 1.00 [0.00 – 2.00] 0.15 [0.10 - 0.22] -7.49 NA 

DDT 881/1047 13.21 [9.96 – 29.04] 0.77 [0.73 - 0.81] 24.10 <0.001 

Transfluthrin coils 1164/1184 144.87 [67.19 – 382.05] 0.98 [0.96 - 0.99] 22.03 <0.001 

Metofluthrin coils 1085/1146
 

44.27 [37.03 – 110.97] 0.93 [0.90 – 0.95] 25.57 <0.001 

The proportion of mosquitoes that were inhibited from blood feeding on humans was measured inside experimental huts inside a semi field system 

for 16 nights. The proportion of unfed mosquitoes was compared between mosquito coils, DDT and no insecticide. 
a
 - unfed mosquitoes /total 

number of mosquitoes recaptured from the hut; OR – Odds ratios of the proportion of mosquitoes that are likely not to feed; CI – Confidence 

intervals 
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Reduced fecundity 
 
The difference in the number of mosquitoes that laid eggs versus those that 

did not lay eggs was determined from the number that acquired blood meals. 

The proportion of mosquitoes that laid eggs was low in all huts (Table 4.9). 

There was no difference in the proportion of mosquitoes that laid eggs 

between treatments relative to the control. DDT reduced the total number of 

eggs laid per female by 90% (RR – 0.10 [0.04 - 0.26]; z = -4.57, p < 0.001), 

Transfluthrin coils by 97% (RR – 0.03 [0.01 - 0.15]; z = -4.13, p < 0.001 and 

Metofluthrin coils by 91% (RR – 0.09 [0.03 - 0.27]; p < 0.001; z = -4.28) 

(Table 4.10). 

 

http://www.malariajournal.com/content/13/1/131/table/T9
http://www.malariajournal.com/content/13/1/131/table/T10
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Table 4.9: The fecundity of mosquitoes after exposure to mosquito coils and DDT in experimental huts  

Treatment Total mosquitoes 

that laid eggs /Total 

blood fed 

mosquitoes 

OR [95%CI] Mean 

proportion 

[95% CI]
 

z value p value 

Control 202/614 1.00[0.00 – 2.00] 0.33 [0.28 - 0.37] -7.36 NA 

DDT 19/76 0.68[-0.32 – 1.41] 0.20 [0.13 - 0.30] -2.41 0.016 

Transfluthrin coils 1/6 0.41[-0.36 – 3.02] 0.15 [0.02 - 0.61] -0.94 0.347 

Metofluthrin coils 11/34
 

0.96[-0.57 – 5.98] 0.24 [0.13 - 0.40] -1.13 0.258 

Legend: Fecundity was measured by determining the proportion of mosquitoes that laid eggs out of those that successfully blood fed. Fecundity was compared 

between mosquitoes exposed to mosquito coils, DDT and no insecticide inside experimental huts in the semi field system for 16 nights. 

CI – Confidence intervals; OR – Odds ratios of the proportion of mosquitoes 
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Table 4.10: The number of eggs laid by mosquitoes collected from experimental huts 

Treatment Total number of eggs Median
 

IQR
 

RR
 

[95% CI]
 

z Value p Value 

Control 10089 649.0 443.5 - 943.0 NA NA 18.66 NA 

Transfluthrin coils 57 0.0 0.0 - 0.0 0.03 [0.01 – 0.15] -4.13 <0.001 

Metofluthrin coils 526 0.0 0.0 - 57.5 0.09 [0.03 - 0.27] -4.28 <0.001 

DDT 2gm² 837 42.0 6.0 - 82.5 0.10 [0.04 - 0.26] -4.57 <0.001 

Blood fed mosquitoes collected from huts that had mosquito coils, DDT and no insecticides were kept in individual oviposition tubes and the number of eggs laid 

was compared between mosquitoes that had been collected from huts that had different insecticides. The number of eggs was fitted in a Poisson model because 

the number of eggs was count data. IQR – Interquartile range; RR – Relative rate; CI – Confidence intervals 
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4.5. Discussion 

Traditionally, efficacy of insecticides for disease control is attributed to 

toxicity while other effects are considered less important. The spread of 

insecticide resistance threatens the sustainability of insecticides applied to 

kill mosquitoes [26, 27]. While development of new insecticides is an 

undisputed requirement to fight insecticide resistance, management of 

existing insecticides to prolong their usefulness is also necessary. 

A critical look at the modes of action of insecticides by several authors 

indicate that toxicity may not be the single most important action of 

insecticides as far as malaria transmission is concerned [7, 10, 28, 29]. 

Experimental hut studies enable detailed observation of the impact of 

insecticides on mosquito behaviour [30, 31]. This study substantiates the 

mode of action of reduced blood feeding by mosquitoes [9] and irritancy [7, 

32] (Figure 4.5). It is worth noting that despite the irritant effect of 

chemicals, 49% 46% and 57% of the mosquitoes that left DDT, 

Transfluthrin and Metofluthrin huts respectively died after 24 hours (Table 

4.7). Moreover this study shows that the magnitude of these effects was 

similar between coils and DDT (Figure 4.5). 

http://www.malariajournal.com/content/13/1/131/table/T7
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Figure 4.5. Overall impact of insecticides on mosquito behaviour insides 

houses. The graph illustrates the mode of action of DDT, Transfluthrin and 

Metofluthrin coils on mosquito behaviour. The outcomes measured included 

deterrence, irritancy, feeding inhibition and toxicity. The value of deterrence was 

derived from the effect of insecticides on An. arabiensis mosquitoes from field 

experiments and irritancy, feeding inhibition, mortality and fecundity of An. 

gambiae s.s. mosquitoes from the semi field system experiment. 

 

Using figures collected from the field (deterrence) and the semi field experiments 

(irritancy, feeding inhibition, mortality and fecundity) it can be seen that in a 

scenario where 100 mosquitoes approach a house, deterrence comes into play in 

the first instance and only approximately 62, 70 and 92 mosquitoes enter the 

house with Transfluthrin, Metofluthrin coils and DDT respectively. The next 

behavioural effect of the insecticides is then likely to be irritancy or excito–

repellency. After mosquitoes are repelled and exit a house, 35, 39 and 44 would 

remain inside the house with Transfluthrin, Metofluthrin coils and DDT 

respectively. Of those, approximately 1, 3 and 10 mosquitoes would manage to 

acquire a blood meal, which in turn directly influences the proportion of eggs laid, 
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i.e. female mosquito fecundity. Lastly, the survival rate of mosquitoes in 

Transfluthrin and Metofluthrin huts would be close to 0 and approximately 10 in 

DDT huts (Figure 4.6). This implies that through deterrence, irritancy and feeding 

inhibition of pyrethroid coils and DDT, more than 90% of the mosquitoes would 

be prevented from contacting humans inside houses before mortality is even 

considered. By reducing human-vector contact, coils and DDT directly influence 

the biting rate of mosquitoes (ma): an important parameter of malaria transmission 

Vectorial capacity equation, subsection). The data collected on DDT, agrees with 

field observations [9] of feeding inhibition and population level data that 

consistently demonstrate a reduction in the Human Blood Index (HBI) after DDT 

is applied to dwellings [33, 34]. However, the experimental design does have the 

limitation of combining data from two species: An. arabiensis and An. gambiae 

s.s. 
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Figure 4.6. Impact of insecticides on mosquito behaviour around and insides 

houses. The graph illustrates the effect of DDT, Transfluthrin and Metofluthrin 

coils on the house entry and behaviour of 100 female An. arabiensis and An. 

gambiae s.s. mosquitoes are approaching the house. Assumptions made included 

the fact that deterrence was the first mode of action followed by irritancy, feeding 

inhibition, toxicity and fecundity. The data used was derived from field 

experiments for deterrence and semi-field system experiments for irritancy, 

feeding inhibition, toxicity and fecundity. 

 

Studies have been conducted on the host preference and time and place of biting 

and resting in Kilombero. It is known that An. arabiensis, the dominant Anopheles 

species in Kilombero, readily enter houses [17], and exit to rest outside whereas 

An. gambiae s.s. feed and rest indoors (K. Kreppel, unpublished). The human 

blood index (HBI) of An. arabiensis is related to the availability of human hosts, 

and since cattle are not common in Kilombero due to the Tanzanian Government 
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forcibly relocating Pastoralists and their 250,000 cattle, An. arabiensis feeds 

almost exclusively on humans in the area, indoors and outdoors (K. Kreppel, 

unpublished). As the impact of spatial repellents indoors was being measured, a 

standard laboratory strain of An. gambiae s.s. for repellent testing was used [15]. 

Previous unpublished work in local houses demonstrated that An. arabiensis 

demonstrated a similar response to 0.03% Transfluthrin coils as that measured in 

experimental huts with >95% feeding inhibition as measured by human landing 

catch. It is possible that mortality data was overestimated because An. arabiensis 

might be more likely to leave treated huts than An. gambiae s,s., although the vast 

majority of An. gambiae s.s. in the semi-field did leave experimental huts unfed 

and subsequently died. It would be worthwhile to repeat the study with An. 

arabiensis, mosquitoes. 

Coils and DDT induced more than two-thirds mortality of mosquitoes in the semi-

field experiments compared to about 2% in the field. The mortality (18%) 

observed in control huts may be attributed to poor handling of mosquitoes during 

collection. Resting mosquitoes were collected using backpack aspirators that may 

have caused mechanical damage to mosquitoes and increased mortality. However, 

mortality in the treatments was corrected using Abbots formula. Higher mortality 

observed in semi-field experiments compared to the field experiments may be due 

to the fact that in the semi-field studies, volunteers did not sleep under bed nets 

and were consequently more attractive to host seeking mosquitoes that spent more 

time around the host trying to feed. In the field where volunteers were protected 

by untreated bed nets mosquitoes may have given up and left the huts. It is 



 156 

possible that availability of an unprotected host and the need to obtain blood 

outweighs the irritant or excito-repellency effects of insecticides, meaning that 

mosquitoes spend more time in the house trying to obtain a blood meal, hence 

acquire more lethal insecticides. These observations provide useful insights for 

malaria control programmes and demonstrate that spatial repellents are useful for 

locations where people do not use nets for cultural reasons [35] or where vectors 

bite before people go to bed [36, 37]. The mortality of mosquitoes induced by 

coils was as high as that of DDT. More than 60% of the mosquitoes collected 

from huts after exposure to coils died within 24 hours, having acquired lethal 

doses. This has implications for vector control programmes as it is thought that 

irritancy or excito-repellency of insecticides used on LLINs attenuates efficacy by 

preventing contact of mosquitoes with treated surfaces [38, 39]. In this study it is 

shown that coils are capable of dispensing lethal doses of airborne insecticides 

and have the potential to reduce mosquito densities (m) and indirectly reduce 

chances that a mosquito would survive (p) long enough to become infectious. This 

study also shows that airborne pyrethroids reduce fitness of mosquitoes by 

reducing the number of eggs laid. Reduced fecundity is an indirect measure of 

pyrethroids on mosquito densities (m). However, further studies will be performed 

to investigate the combined impact (additional or deleterious) of indoor spatial 

repellents combined with LLINs on mosquito mortality and feeding success. 

Among challenges facing malaria control, insecticide resistance could be 

considered top of the list. In this particular study area susceptibility of An. 

arabiensis mosquitoes is within the WHO set range of 80% - 97% at which 
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resistance is suspected [40]. Therefore low mortality observed in the field could 

be attributed to slow emerging resistance [41-43]. A study carried out in Benin 

indicated that coils were effective against highly kdr resistant Cx. 

quinquefasciatus quinquefasciatus (Raphael Nguessan pers. comm). This 

indicates that spatial repellency may still provide protection where resistance has 

developed because airborne pyrethroids have an olfactory mode of action at low 

concentrations [44], different from the sodium channel target. These data warrant 

further investigation to see whether pyrethroid-resistant mosquitoes react 

differently to spatial repellents in ways that would affect vectorial capacity and 

malaria transmission. 

The risk of mosquitoes being diverted to non-users of spatial repellents is likely to 

be increased if mosquitoes are prevented from feeding and continue host seeking 

[45]. A recent study has shown that topical repellents increase the proportion of 

mosquitoes to nearby non-users by approximately 4 times [46]. Nevertheless, the 

high toxicity of coils observed in the semi-field study might contribute to 

community protection. Toxicity coupled with the spatial activity of coils 

conferring protection in a defined area, may minimize the risk to non-users. In 

addition, almost half of the mosquitoes that left huts with mosquito coils and DDT 

died after 24 hours, consequently minimizing the population of mosquitoes that 

would be diverted to non-users within a community. 

Nevertheless, it is necessary to improve delivery formats of airborne insecticides 

with the aim of expanding protection to a household or a community. In addition, 

it is essential to quantify the effect of using spatial repellents among non-users at 
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different coverage levels and determine the implications on malaria transmission 

at a community level through large-scale trials before they are considered as a 

public health intervention. 

Effectiveness of any vector control tool is influenced by whether or not it protects 

users against nuisance bites. Results from this study indicate that only 

Metofluthrin coils reduced house entry of Cx. quinquefasciatus mosquitoes by 

almost 28% in Lupiro village while DDT and Transfluthrin coils had no effect. 

The impact of all compounds on the entry of Mansonia spp. mosquitoes was 

outstanding (Table 4.4). All compounds reduced entry by more than 50%. It is 

necessary to develop spatial repellents that are equally effective against nuisance 

mosquito species in order to enhance compliance. 

It should be noted that mosquito coils need to be used on a daily basis and 

produce smoke that could be harmful in long term exposure and might not be 

desirable to many people. The development of safer, effective, long lasting 

passive delivery formats is underway [47, 48]. 

 

4.6. Conclusion 

It is critical to determine the impact of spatial repellents on malaria transmission. 

This study outlines several important entomological parameters that should be 

quantified in a proof of concept clinical trial in order to effectively determine the 

impact of spatial repellents on malaria epidemiology. In this study spatial 

repellents reduce human – vector contact and induce mortality, hence directly 

http://www.malariajournal.com/content/13/1/131/table/T4
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affect ma, m and p which are among the most important parameters of the 

vectorial capacity of a mosquito population. In addition, the role of spatial 

repellents in integrated approach of malaria control should be critically considered 

with an aim of complementing existing mainstream tools. Most available control 

tools, such as LLINs, require daily compliance by the user and may only be fully 

effective where malaria vectors still bite indoors late at night. Spatial repellents 

may be a suitable supplementary option where mosquitoes feed in the early 

evening and/or rest outdoors. In addition, because they render a given space 

mosquito free, they will protect multiple individuals in this space. The 

development of a passive spatial repellent that delivers the same mosquito control 

benefits of the mosquito coils tested in this study, but lasts for several weeks 

without the need for user compliance would contribute considerably to vector 

borne disease prevention. 
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CHAPTER FIVE 

5     The mode of action of spatial repellents and their 

impact on vectorial capacity of Anopheles gambiae sensu 

stricto 

5.1. Abstract 

 
Malaria vector control relies on toxicity of insecticides used in bednets and indoor 

residual spraying only, despite evidence of reduced malaria transmission due to 

prevention of human – vector contact.  

The overall aim of this study was to determine the impact of sub-lethal 

insecticides on host seeking and blood feeding of mosquitoes. Taxis boxes were 

used to study mosquito responses towards or away from Transfluthrin coils. 

Protective distance of coils was measured in the semi-field tunnel. In addition, 

short-term and long-term effects of sub-lethal pyrethroids on blood feeding were 

measured in a semi-field tunnel and in the Peet Grady chamber. Experiments were 

conducted on laboratory reared susceptible Anopheles gambiae sensu stricto 

mosquitoes.  

In the taxis boxes experiment a higher proportion of mosquitoes were activated 

and flew towards the human in the presence of Transfluthrin. Hence coils did not 

hinder attraction of mosquitoes towards the human but increased it. Coils reduced 

biting by 86% (95% CI [0.66; 0.95]) when coils were placed 0.3m around a 
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human in a „bubble” compared to a 65% (95% CI (0.51; 0.76) reduction when 

coils were used as a “point source”. Results indicated that coils used, as a 

“bubble” were more effective than the “point source”. 

Mosquitoes exposed to Transfluthrin coils in an enclosed space were prevented 

from feeding and only resumed normal feeding behaviour 12 hours later. However 

there was no effect on free flying and caged mosquitoes exposed to Transfluthrin 

in the semi-field tunnel. 

These findings indicate that airborne pyrethroids influence mosquito behaviour in 

ways other than killing by minimizing human - vector contact through fewer 

blood feeding events. This study provides critical information necessary for the 

development of target product profiles of spatial repellent products that can be 

used to complement existing mainstream malaria vector control tools. 

 

5.2. Introduction 

 
The probability of mosquito vectors successfully transmitting disease pathogens 

to a host depends on their ability to effectively locate the host and feed. Among 

factors that influence the rate at which new human malaria infections are 

disseminated per day by a mosquito (i.e. vectorial capacity), is the man-biting rate 

of mosquitoes [1]. Man-biting rate describes the frequency with which mosquitoes 

contact humans to obtain blood. For malaria parasites to be transmitted from one 

person to another, mosquitoes need to feed at least twice: once to become infected 

and once to infect, hence it has profound effect on vectorial capacity and 
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consequently malaria transmission [2]. Factors that interfere with host seeking of 

mosquitoes influence man-biting rate. Even though man-biting rate is just one 

component of the vectorial capacity, it substantially contributes to variation in the 

stability of malaria transmission in different areas and is especially critical where 

vectors are anthropophilic, i.e. prefer feeding on humans [3]. 

The efficient malaria vectors Anopheles gambiae sensu stricto (s.s.) and An. 

funestus s.s have evolved innate feeding preferences for humans due to their 

ability to discern human kairomones from other hosts [4]. This enhances the 

ability of mosquitoes to locate and orient towards hosts at distances [5, 6] as far as 

30 meters [7]. Several human odours have been identified as olfactory cues that 

govern mosquito host seeking and feeding behaviour [8, 9]. Studies of the insect 

olfactory system have led to identification and development of synthetic chemical 

compounds that attract insects to hosts [10]. This knowledge is successfully 

applied in the agricultural sector in the control of crop pests [11], tsetse flies [12, 

13, 14] as well as mosquitoes [15, 16, 17]. 

Other volatile compounds, commonly known as repellents, interfere with 

mosquitoes‟ host finding ability and consequently prevent blood feeding. They are 

intended to reduce human-mosquito contact and lately have been shown to reduce 

disease transmission [18]. Repellency has been described as: 1) “taxis”: - 

immediate directional movement of target insects such as mosquitoes away from 

the source of the chemical and; 2) “orthokinesis”: - increased mosquito activity 

after contact with insecticides [19, 20]. Other studies indicate that volatile 

compounds such as DEET, linalool, dehydrolinalool, catnip oil and citronella 
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interfere with attraction of mosquitoes to host odours by blocking natural response 

to attractants, hence acting as attraction inhibitors and not repellents [21 ,22, 23]. 

On the other hand, Lucas et al (2007) suggest that even in the presence of airborne 

pyrethroids, mosquitoes are able to detect host odours but are inhibited from 

feeding: “When mosquitoes detected host odours, flew upwind and landed, the 

majority of insects were still inhibited from biting. This effect is probably a result 

of pyrethroid – induced neural hyperexcitation, which can occur at much lower 

doses than those required for insect knockdown and mortality” [24].  

Mosquito behaviour elicited in response to airborne compounds including 

movement away from a chemical stimulus, loss of host detection, anti-feeding as 

well as knockdown and mortality are collectively referred to as spatial repellency. 

Spatial repellents do not require physical contact of the mosquito with treated 

surfaces, as is the case of chemicals used in Indoor Residual Spraying (IRS) and 

Long Lasting Insecticidal Nets (LLINs) but act in the volatile state at a distance. 

Mosquito coils, candles and emanators impregnated with volatile pyrethroids and 

other compounds including plant terpines are collectively known as spatial 

repellents. Among these products, coils have been most extensively studied [25] 

and are commonly used to control mosquitoes [26]. Coils prevent mosquitoes 

from entering houses, induce early exit and reduce human biting [25, 27]. Despite 

numerous evaluations of coils, their mode of action is not clear: Do they interfere 

with orientation of mosquitoes towards humans, inhibit blood feeding or even 

induce both processes? It is essential to ascertain which of these actions is at play 

to aid the development of effective spatial repellents. This study aimed to 
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distinguish between repellency as described by Dethier [20] and attraction 

inhibition [28] induced by airborne pyrethroids. The taxis box system [7] was 

used to measure orientation of An. gambiae s.s. mosquitoes towards and away 

from humans in the presence of airborne pyrethroids. Protective distance 

conferred by coils was determined in the semi-field system by measuring reduced 

blood feeding by mosquitoes and whether exposure of mosquitoes to different 

doses of pyrethroids prolonged feeding inhibition beyond the immediate effect in 

a way that could impede human-mosquito contact and reduce malaria 

transmission.  

 

5.3. Materials and Methods 

5.3.1. Test compounds 
 

Transfluthrin coils contained a range of doses of Transfluthrin: 0.015%, 0.03% 

and 0.045%. Blank coils used contained no active ingredient.  

5.3.2. Mosquitoes 

 

Insecticide susceptible mosquitoes of the species An. gambiae s.s. Ifakara strain 

were used. Larvae were fed on Tetramin fish food while adults were fed on human 

blood between 3 and 6 days after emergence and offered 10% glucose solution ad 

libitum. Temperature within the insectary was maintained between 28 – 29ºC, 

between 70 - 80% relative humidity and natural light periods (12:12 hours light: 

dark periods). Female nulliparous 3-8 days old mosquitoes that had never blood 
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fed and were sugar starved for 6 hours prior to starting experiments were used for 

all studies. 

 

5.3.3. Experiment 1: Orientation of mosquitoes in the presence of 

coils and humans 

 

Taxis boxes system 

 

A new assay using taxis boxes to measure long-range mosquito responses to 

different stimuli developed at IHI [7] was used to measure effect of coils on the 

orientation of mosquitoes towards humans. Briefly, taxis boxes consist of three 

chambers measuring 40 x 40 x 40 cm separated by metal sheets: one chamber 

facing the stimuli, the middle chamber and one chamber facing away from the 

stimuli. The middle chamber has a “letter box slit” (30cm long and 2.5cm wide) 

on either side, which allows mosquitoes to leave the middle but reduces the 

likelihood of them returning. During the experimental period the sheets were 

lifted using a simple pulley mechanism comprising a rope and lever located 10 

meters from the boxes, which opened the slits and allowed mosquitoes to fly 

through. The boxes were raised 15cm off the floor and placed into plastic cups 

with water and grease to prevent predators from entering.  
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Experimental design 

A fully randomized study was conducted. The study involved 6 treatments; 1) a 

positive control – human without a coil; 2) human + blank coil; 3) human + 

0.015% coil; 4) human + 0.03% coil; 5) human + 0.045% coil and 6) a negative 

control – no human and no coil. The last treatment was included in order to 

measure mosquito response in the absence of any stimulus. The response of 

mosquitoes was measured in taxis boxes placed 1m away from the treatment 

(Figure 5.1). A treatment was randomly allocated to an experimental night using 

the lottery method. The treatments were tested four times using four human 

volunteers randomly assigned on a nightly basis to give an average human 

response. Two taxis boxes were used to increase the sample but each box was 

treated as a separate factor in the analysis to ensure independence of experimental 

replicates.  
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Figure 5.1: Taxis boxes experimental design 
Two taxis boxes placed 1m away from the human and or human and a coil. Mosquitoes 

were introduced in the middle chamber of each taxis box and the stimulus was changed 

each day to determine the effect on orientation of mosquitoes. The semi-field tunnel 

measures 100m long, 2m wide and 2.5m high. 
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Procedure 

Experiments were conducted between 1830 and 2200 hours. Wind speed and 

direction were measured nightly using a hand-held anemometer (Heavy weather 

WS - 2300 or WS – 2310). Wind speed was consistently less than 0 m/s even 

though experiments were conducted outdoors. Thirty female mosquitoes were 

placed in the middle chamber of each taxis box and left to acclimatize for 20 

minutes. The metal barriers were pulled up and left open for 2 hours, allowing 

mosquitoes time to respond to the stimulus, after which they were closed. The 

next morning, mosquitoes were collected from the chambers using mouth 

aspirators. 

5.3.4. Experiment 2: Protective distance of coils against outdoor 

biting mosquitoes 

 

Semi-field tunnel cage 

The semi-field tunnel (SFT) is 100 meters long, 2m wide and 2.5 high.. The walls 

and roof of the tunnel are screened with fiberglass netting supported by metal 

frames. A palm-thatch roof approximately 1m above the netting roof protects the 

tunnel from direct sunlight and rain. The tunnel was operated at temperatures of 

24°C - 29°C at night. 
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Experimental design 

Point source experiments 

A partially randomized study was conducted inside the SFT. Treatments included 

1) control (human alone) and 2) treatment (two 0.03% Transfluthrin coils next to a 

human). The SFT was divided into two equal compartments, each measuring 30m 

x 2m x 1.5 m. A plastic sheet between the compartments prevented airflow 

between them. On the first night of experiments, treatments and two volunteers 

were randomly allocated to each compartment. This was followed by a pairwise 

rotation of volunteers and treatments between compartments on consecutive 

experimental nights. The control was always conducted first in the chosen 

compartment followed by the treatment in the other compartment after 2 hours on 

the same night. In the treatment, two 0.03% Transfluthrin coils were placed at a 

specified distance from the volunteer, hence creating a single source from which 

the chemical was released (Figure 5.2). This arrangement is referred to as “point 

source”. The protective distance of coils was evaluated by placing two coils at six 

different distances from the human at 0.3m, 1m, 5m, 10m, 15m, 20m and 30m. 

These distances were randomly allocated to each experimental night and each 

distance was repeated four times. 
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15m 15m

 

Figure 5.2: Point source experimental set up 

Two coils were placed on one side of the human conducting human landing catches. The 

distance between the coils and the human was changed each day to determine the 

protective distance. In the control no coils were used. Mosquitoes were released within 

the tunnel and left to acclimatize for 10 minutes before the human started conducting 

mosquito catches. The semi-field tunnel measures 100m long, 2m wide and 2.5m high. 
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Bubble experiments 

A partially randomized study was conducted. Treatments included 1) control 

(human alone) and 2) treatment (two 0.03% Transfluthrin coils next to a human). 

The same two volunteers from the “point source” experiment also conducted the 

“bubble” experiment. Experiments were conducted in a 60m long compartment. 

Unlike the point source, treatments had to be tested on separate days from the 

control to minimize contamination of the control experiment with residues from 

burning coils. Treatments were allocated to day one and day two and a volunteer 

was allocated to each night. Volunteers were switched between nights such that at 

the end of 4 days both volunteers had been paired with the control and treatment 

once, which resulted into a four – day block. Six distances (0.3m, 1m, 5m, 10m, 

15m, 20m and 30m) were randomly allocated to each four – day block. In this set 

up, one coil was placed equidistant on the left hand side and another coil on the 

right hand side of the volunteer at the designated distance creating a “bubble” of 

chemical around the volunteer (Figure5. 3). 

Experiments were started at 1830 hours each evening. One hundred female An. 

gambiae s.s. aged between 3 and 8 days and previously starved for 6 hours were 

released from cages placed inside the tunnel by a pulley system (Figure 5.3) and 

operated from outside the tunnel. Mosquitoes were left to acclimatize for 20 

minutes after which a volunteer entered the tunnel. Volunteers collected 

mosquitoes that landed on the bare legs and feet for 2 hours using mouth 

aspirators. Mosquitoes were kept in labelled paper cups for counting the following 
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morning. All mosquitoes were kept in the testing room whose temperature was 

maintained between 28 – 29ºC and 70 - 80% relative humidity. 

 

15m 15m15m 15m

 

Figure 5.3: Bubble experimental set up 

A coil was placed equidistantly on either side of the human. The distance was changed 

each night to determine the protective distance. Coils were not used in the control. 

Mosquitoes were released within the tunnel and left to acclimatize for 10 minutes 

before the human started conducting mosquito catches. 
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5.3.5. Experiment 3: Resumption to blood feeding of mosquitoes 

after exposure to coils  

Peet Grady chamber tests 

Experimental design  

A fully randomized study was conducted. Treatments included; 1) a negative 

control (no coil) 2) blank coil; 3) 0.015% coil; 4) 0.03% coil and 5) 0.045% coil. 

These treatments were randomly assigned to five days of experiments in a 5 x 5 

Latin square design. One hundred female mosquitoes exposed to a treatment were 

randomly divided into equal batches of 10 mosquitoes per cup. Two cups of 

mosquitoes were randomly assigned to each blood feeding time regime, namely 

15 minutes, 1 hour, 12 hours and 24 hours blood feeding after exposure to coils. 

Each treatment was repeated five times. 

 

Procedure  

 
The Peet Grady chamber [29] was fitted with a battery operated fan to provide 

ventilation. One hundred female mosquitoes were placed in 30cm by 30cm netting 

cages at 1830 hours. A treatment was applied (e.g. a 0.03% Transfluthrin coil was 

lit) inside the chamber and after 10 minutes, the cage containing mosquitoes was 

placed inside on a stool. Mosquitoes were exposed to the burning coil for two 

minutes after which they were transferred to the laboratory and the coil was 
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extinguished. Mosquitoes were kept in a testing room with temperature 

maintained between 28ºC – 29ºC and between 70 - 80% relative humidity. 

Mosquitoes were gently aspirated and placed into paper cups labelled with the 

allotted blood feeding time. Pieces of cotton wool soaked in 10% glucose solution 

were placed on the remaining paper cups. The cotton wool was removed six hours 

prior to each specific feeding time. After each time interval had elapsed, a human 

arm was placed above the paper cups and mosquitoes were allowed to feed 

through the netting for 15 minutes. The number of fed and unfed mosquitoes in 

each cup was counted and recorded. Experiments with the control were conducted 

in the same way except that mosquitoes were not exposed to a coil.  

 

Semi-Field Tunnel tests 

 
The experiment included two treatments in the SFT; 1) control (no coil) and 2) 

treatment (two 0.03% Transfluthrin coils). Treatments were randomly allocated to 

two days of experiments and one treatment was tested each day. Female 

mosquitoes were simultaneously exposed to the treatments in the SFT in two 

different ways; 1) caged mosquitoes and 2) free flying mosquitoes. Experiments 

were conducted in a 20-meter long SFT lined with white plastic sheets to enable 

easy location of mosquitoes that were knocked down. Both treatments were 

repeated four times.  
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Procedure  

 
Experiments were started at 1830 hours. In the caged mosquitoes set up, 25 

female mosquitoes were each placed in four 30 cm by 30cm netting cages. Cages 

were suspended inside the tunnel one meter above the floor approximately half a 

meter apart from each other and from two burning 0.03% Transfluthrin coils 

placed on the floor. In the free flying mosquitoes set up, 100 female mosquitoes 

were placed in a 30 cm by 30cm netting cage. The cage was placed in the middle 

of the chamber. A pulley was operated outside the tunnel to release mosquitoes to 

fly freely inside the tunnel. For both assays, mosquitoes were left in the tunnel for 

two hours after which caged mosquitoes were removed and free flying mosquitoes 

were recaptured using mouth aspirators. Knocked down and dead mosquitoes 

were collected from the floor. All mosquitoes were kept in the testing room whose 

temperature was maintained between 28ºC – 29ºC and 70 - 80% relative humidity. 

Live mosquitoes were placed into paper cups. Two paper cups were allocated to 

each blood feeding time regime. The time regimes were 1 hour, 12 hours, 18 

hours, and 24 hours after mosquitoes had been exposed to burning coils or the 

control. Mosquitoes were blood fed at the allocated time by placing an arm above 

the cup for 15 minutes and the number of fed and unfed mosquitoes was recorded. 

Pieces of cotton wool soaked in 10% glucose solution were placed on paper cups 

to maintain mosquitoes in between blood feeding. The glucose pads were 

removed six hours prior to blood feeding.  
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5.3.6. Protection of participants and ethical approval 

 
The volunteers were recruited on a voluntary basis through written informed 

consent. The risks and benefits of the study were clearly explained, and they were 

free to leave at any time during the study. Volunteers were provided with clothing 

that protected them from the cold temperature at night and were advised to dress 

in shorts that reached the knees with covered shoes to avoid bites on the feet. 

They were required not to smoke, take alcohol or use scented soaps and 

deodorants six hours prior to experiments. The participants were screened for 

malaria at the beginning of the study and those found with malaria were given 

Artemisinin Combination Therapy antimalarial drugs and referred to the nearest 

health centre. Those fit to participate in the study were tested for malaria every 

two weeks. Adverse events such as respiratory symptoms were monitored. The 

participants were also compensated for their time and effort. The ethical review 

boards of Ifakara Health Institute IHI/IRB/No A-019-2007, the National Malaria 

Research Institute Tanzania (NIMR/HQ/R.8a/Vol.1X/710) and the London 

School of Hygiene and Tropical Medicine (LSHTM ERB 5552) approved the 

study. 

5.3.7. Statistical analysis  

 
Data was analyzed using the R statistical software version 2.15.0 [30] with 

significance level of 0.05 for rejecting the null hypothesis. All generalized linear 

mixed models (GLMMs) were conducted using the lme4 package [31]. 
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Experiment 1: Orientation of mosquitoes in the presence of coils 

and humans 

Activation of mosquitoes to the stimulus 

It was assumed that the distribution of mosquitoes in the taxis boxes is a result of 

movement in response to stimuli. We set the proportion of mosquitoes that were 

activated by the stimuli equal to the proportion of mosquitoes that left the middle 

chamber. This was determined by dividing the total number of mosquitoes in the 

away and towards chamber by the total number of mosquitoes in the taxis boxes 

including those in the middle chamber. Generalized mixed effects models with 

binomial error structure and logit link function were used to analyze the behaviour 

of mosquitoes in taxis boxes. The dependent variable was the proportion of 

activated mosquitoes. Independent variables included treatment and taxis box 

code as fixed factors. The taxis boxes were considered as a fixed effect because 

only two boxes were used. Day was a random factor.  

 

Attraction of mosquitoes to the stimuli 

 
Mosquitoes that were collected from the chamber towards the stimuli were 

considered to be attracted to the stimulus. Therefore, the proportion of attracted 

mosquitoes was determined by dividing the number of mosquitoes found in the 

chamber towards the stimuli by the total number of mosquitoes in the taxis box. 

Attraction of mosquitoes was analyzed using a GLMM with binomial error 

structure and logit link function. The dependent variable was the proportion of 
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attracted mosquitoes. The independent variables were treatment and taxis box 

code as fixed factors and day as a random factor.  

 

Repellency of mosquitoes by the stimuli 

 
Mosquitoes found in the chamber away from the stimuli were considered to be 

repelled. This was determined by dividing the number of mosquitoes in the away 

chamber by total number of mosquitoes in the taxis boxes. Mosquitoes repelled 

were analyzed using a GLMM with binomial error structure and logit link 

function. The dependent variable was the proportion of repelled mosquitoes. The 

independent variables were treatment and taxis box code as fixed factors and day 

as a random factor. 

 

Experiment 2: Protective distance of coils against outdoor biting 

mosquitoes 

 
Data from the point source and bubble experiments were analyzed separately. 

GLMMs were used to determine the proportion of biting mosquitoes at different 

distances with reference to the control. The dependent variable was the proportion 

of blood fed mosquitoes while the independent variables included treatment 

(control and coil), distance and their interaction, which were fixed categorical 

variables. The day of experiment was included as a random variable. The models 

were fitted with a binomial error and a logit link function.  
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Experiment 3: Resumption to blood feeding of mosquitoes after 

exposure to coils 

 
The data from the Peet Grady, caged and free flying experiments were analyzed 

separately. GLMMs were fitted with a binomial error and a logit link function. 

The dependent variable was the proportion of blood fed mosquitoes. Treatment, 

time regime at which mosquitoes were offered blood and their interaction were set 

as fixed categorical variables and day of experiment as a random variable.  

5.4. Results 

5.4.1. Experiment 1: Orientation of mosquitoes in the presence of 

coils and humans 

Activation of mosquitoes 

The proportion of activated mosquitoes increased with increasing Transfluthrin 

dose (Table 5.1). About 82% of the mosquitoes left the middle chamber when 

0.045% coils were placed next to the human. The activation of mosquitoes by all 

the three doses of Transfluthrin was significantly higher compared to the 

proportion of mosquitoes activated where there was a human alone (Table 5.2). 

The proportion of activated mosquitoes was lowest (42% – 49%) when there was 

no Transfluthrin.  
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Table 5.1: Dose response of mosquitoes to Transfluthrin coils with a human using taxis boxes 

Treatment Total 
a
 Activated 

b
 % Activated 

c 
95%CI Attracted 

d
 %Attracted 

e 
95%CI Repelled 

f 
% Repelled

 g 
95%CI 

No stimulus 189 90 48 [0.40 – 0.55] 71 38 [0.30 – 0.45] 19 10 [0.06 – 0.15] 

Human 169 71 42 [0.35 – 0.50] 55 33 [0.26 – 0.40] 16 9 [0.06 – 0.15] 

Human + blank 189 93 49 [0.42 – 0.57] 73 39 [0.32 – 0.46] 20 11 [0.07 – 0.16] 

Human + 0.015% 178 116 65 [0.58 – 0.72] 103 58 [0.50 – 0.65] 13 7 [0.04 – 0.12] 

Human + 0.030% 178 121 68 [0.61 – 0.75] 90 51 [0.43 – 0.58] 31 17 [0.12 – 0.23] 

Human + 0.045% 185 151 82 [0.75 – 0.87] 128 69 [0.62 – 0.76] 23 12 [0.08 – 0.18] 

 
a 
– total number of mosquitoes recovered from all chambers of the taxis boxes; 

b
 – sum of mosquitoes in the towards and away chamber; 

c
 – percentage 

proportion of mosquitoes in the towards and away chamber divided by total mosquitoes in the taxis box; 
d
 – number of mosquitoes in the towards chamber; 

e
 – 

percentage proportion of mosquitoes in the towards chamber divided by total mosquitoes in the taxis box; 
f 
– number of mosquitoes in the away chamber; 

g 
– 

percentage proportion of mosquitoes in the away chamber divided by total number of mosquitoes in the taxis box, CI – Confidence intervals. 
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Table 5.2: The proportion of activated mosquitoes in taxis boxes placed 1 meter away from different doses of mosquito coils and a 

human.  

Treatment Odds ratio 95% CI Proportion 

activated 
a 

95% CI 
 

z Value p Value 

Human 1.00 [0.57 – 2.18] 0.42 [0.30 – 0.54] - - 

Human + blank 1.34 [0.87 – 3.27] 0.49 [0.32 – 0.66] 0.824 0.410 

Human + 0.015% 2.58 [1.62 – 6.66] 0.67 [0.49 – 0.80] 2.845 0.004 

Human + 0.030% 2.93 [1.90 – 7.30] 0.68 [0.51 – 0.81] 3.034 0.002 

Human + 0.045% 6.13 [3.95 – 15.92] 0.82 [0.69 – 0.91] 4.988 0.001 

No stimulus 
b 1.25 [0.80 – 3.13] 0.48 [0.31 – 0.65] 0.735 0.462 

 
a 
- Model estimated mean proportions of activated mosquitoes; CI – Confidence intervals; 

b 
– There was no human or coil, representing movement of mosquitoes 

in response to nature. The proportion of activated mosquitoes was calculated by dividing the number of mosquitoes collected from the chambers of taxis boxes 

facing towards and away the treatment by mosquitoes collected from all chambers of the taxis box.  
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Attraction and repellency of mosquitoes  

Approximately half of the mosquitoes were attracted when 0.015% and 0.03% 

Transfluthrin coils were used (Table 5.1 and Table 5.3). The highest dose of 

Transfluthrin (0.045%) induced a significantly higher proportion of attracted 

mosquitoes (69%) relative to the human alone (33%) (z = 5.160; p= 0.001) (Table 

5.3). 

The proportion of repelled mosquitoes ranged between 7% and 17% (Table 5.1) 

and was not significantly different from the human alone (human + blank coil: z = 

0.296; p = 0.767, human + 0.0015%: z = -0.656; p = 0.572, human + 0.03%: z = 

1.895; p = 0.058, human + 0.045%; z = 0.789; p = 0.430, human alone: z = 0.185; p 

= 0.853). This indicates that the taxis boxes did not detect movement of mosquitoes 

away from coils and humans.  
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Table 5.3: The proportion of attracted mosquitoes in taxis boxes placed 1 meter away from different doses of mosquito coils and a 

human.  

Treatment Odd ratios 95% CI Proportion 

attracted 
a 

95% CI 
 

z Value p Value 

Human 1.00 [0.70 – 1.74] 0.32 [0.23 – 0.42] - - 

Human + blank 1.30 [0.97 – 2.43] 0.38 [0.25 – 0.53] 0.917 0.359 

Human + 0.015% 2.85 [2.08 – 5.41] 0.58 [0.43 – 0.72] 3.639 0.001 

Human + 0.030% 2.12 [1.57 – 3.95] 0.50 [0.36 – 0.65] 2.531 0.011 

Human + 0.045% 4.65 [3.43 – 8.81] 0.69 [0.55 – 0.81] 5.160 0.001 

No stimulus 
b 1.25 [0.92 – 2.34] 0.38 [0.25 – 0.52] 0.822 0.411 

a 
- Model estimated proportions of attracted mosquitoes; CI – Confidence intervals; 

b 
– There was no human or coil, representing movement of mosquitoes in 

nature. The proportion of attracted mosquitoes was calculated by dividing the number of mosquitoes collected from the chambers of taxis boxes facing towards 

the treatment by mosquitoes collected from all chambers of the taxis box. 
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5.4.2. Experiment 2: Protective distance of coils against outdoor 

biting mosquitoes 

Coils placed on one side of the human: ‘point source’.  

Smoke from Transfluthrin coils prevented mosquitoes from effectively locating 

hosts with fewer mosquitoes landing in the presence of coils. Coils were most 

effective when placed 0.3m away from volunteers. Approximately 20% (95% CI 

[0.12; 0.31]) of the mosquitoes fed when the coil was 0.3m away compared to 

65% (95% CI (0.51; 0.76) when there was no coil (z = 12.206; p = <0.001) (Table 

4). The proportion of feeding mosquitoes also decreased when coils were placed 

between 1m and 20m (Table 5.4). There was no significant reduction of blood 

feeding mosquitoes when coils were placed 30m away (Table 5.4). 

 

Coils placed on the left and right side of the human: ‘bubble’  

Coils were most effective when they were placed 0.3m away from the human 

(Table 5.5). Approximately 4% (95% CI [0.01; 0.13]) of the mosquitoes fed when 

the coil was 0.3m away compared 86% (95% CI [0.66; 0.95] when there was no 

coil (z = -5.546; p <0.001) (Table 5.5). The odds of mosquitoes landing on a 

human next to a coil increased slightly as the distance between the coils and the 

human increased (Table 5.5). There was no significant difference in the proportion 

of landing mosquitoes when coils were placed 30m away (Table 5.5). 
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Table 5.4: The proportion of mosquitoes that blood feed on humans in the 

presence of 0.03% Transfluthrin coils placed as a point source at different 

distances 

Treatment Distance Biting 

/Total  

Mean 

proportion 
a 

95% CI z Value p Value Odds ratio 

Control 

0.3m 

257/400 0.65 [0.51 - 0.76] - - 1.00 

Treatment 80/400 0.20 [0.12 - 0.31] -12.206 <0.001 0.14 

Control 

1m 

167/400 0.41 [0.28 - 0.55] - - 1.00 

Treatment 88/400 0.21 [0.12 - 0.31] -6.153 <0.001 0.39 

Control 

5m 

177/400 0.44 [0.31 - 0.58] - - 1.00 

Treatment 114/400 0.28 [0.18 - 0.41] -4.709 <0.001 0.50 

Control 

10m 

394/400 0.90 [0.83 - 0.94] - - 1.00 

Treatment 274/440 0.63 [0.49 - 0.75] -9.017 <0.001 0.19 

Control 

15m 

344/440 0.79 [0.67 - 0.87] - - 1.00 

Treatment 252/440 0.57 [0.43 - 0.71] -6.595 <0.001 0.37 

Control 

20m 

347/440 0.80 [0.69 - 0.88] - - 1.00 

Treatment 273/400 0.63 [0.48 - 0.75] 5.535 <0.001 0.44 

Control 

30m 

147/400 0.33 [0.22 - 0.47] - - 1.00 

Treatment 156/400 0.36 [0.24 - 0.50] 0.713 0.476 1.10 

Legend: 
a 
– Model estimated mean proportions, CI Confidence intervals 
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Table 5.5: The proportion of mosquitoes that blood feed on humans in the 

presence of 0.03% Transfluthrin coils creating a „bubble‟ 

Treatment Distance Biting 

/Total  

Mean 

proportion 
a 

95% CI z Value p Value Odds ratio 

Control 

0.3m 

80/100 0.86 [0.66 - 0.95] - - 1.00 

Treatment 4/100 0.04 [0.01 - 0.13] -5.546 <0.001 0.01 

Control 

1m 

259/600 0.43 [0.36 - 0.51] - - 1.00 

Treatment 12/600 0.02 [0.01 - 0.04] -11.950 <0.001 0.02 

Control 

5m 

331/600 0.41 [0.35 - 0.48] - - 1.00 

Treatment 5/800 0.01 [0.00 - 0.01] -10.580 <0.001 0.009 

Control 

10m 

216/600 0.35 [0.29 - 0.43] - - 1.00 

Treatment 8/600 0.01 [0.01 - 0.03] -10.210 <0.001 0.02 

Control 

15m 

83/100 0.84 [0.63 - 0.94] - - 1.00 

Treatment 39/100 0.37 [0.17 - 0.63] -2.808 0.005 0.13 

Control 

20m 

70/100 0.71 [0.46 - 0.87] - - 1.00 

Treatment 37/100 0.37 [0.17 - 0.62] -1.891 0.060 0.25 

Control 

30m 

90/100 0.92 [0.77 - 0.97] - - 1.00 

Treatment 78/100 0.79 [0.56 - 0.92] -1.353 0.176 0.39 
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5.4.3. Experiment 3: Resumption to blood feeding of mosquitoes 

after exposure to coils 

 

Experiments in the Peet Grady chamber 

 
The proportion of fed mosquitoes was lowest at 12% (95% CI [0.06; 0.22]), (z = -

5.301; p <0.001) 15 minutes after exposure to 0.03% Transfluthrin coils. The 

presence of smoke without the insecticide (blank coil) significantly inhibited 

feeding after 15 minutes (Table 5.6) but the proportion of mosquitoes inhibited 

from feeding was lower than when Transfluthrin coils were used. The effect of 

Transfluthrin coils demonstrated a dose response relationship although increasing 

the dose beyond 0.03% had little effect (Figure 5.4).  
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Figure 5.4: The effect of Transfluthrin coils on blood feeding behaviour of mosquitoes. 
Mosquitoes were exposed to different doses of Transfluthrin coils inside a Peet Grady chamber and later offered blood 

meals at different time intervals. The proportion of blood fed mosquitoes was significantly lower than the control in all 

treatments after 25 minutes (
a
) and 1 hour (

a
). At 12 hours only 0.03% Transfluthrin coils significantly (

b
) reduced feeding 

compared to the control while after 24 hours there was no significant difference between all treatments and controls (
c
).  

 

Exposure to burning coils also influenced subsequent blood feeding. The 

proportion of mosquitoes that took blood up to 12 hours after exposure to 0.03% 

and 0.045% Transfluthrin coils were significantly lower compared to the control 

(Table 5.6). In addition, the propensity of mosquitoes to feed increased gradually 

with time irrespective of whether they were exposed to Transfluthrin coils or not. 

Results indicate that at some point between 12 and 24 hours, there was no 

difference in the proportion of fed mosquitoes between the control and coils 
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(Table 5.6), showing that mosquitoes resume normal feeding one day after indoor 

exposure to Transfluthrin coils. 
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Table 5.6: The proportion of mosquitoes that blood fed at different time intervals 

following exposure to different doses of Transfluthrin coils inside a Peet Grady 

chamber 

Treatment Time 

(Hours) 

Fed 

/Total 

Mean 

proportion 
a 

95% CI z Value p Value Odds 

ratio 

Control 

0.25 

61/98 0.63 [0.49 - 0.76] - - 1.00 

Blank 42/100 0.39 [0.27 - 0.53] -2.409 0.174 0.53 

0.015% 23/99 0.25 [0.15 - 0.38] -3.815 0.002 0.18 

0.030% 12/99 0.12 [0.06 - 0.22] -5.301 <0.001 0.08 

0.045% 20/100 0.19 [0.11 - 0.31] -4.393 <0.001 0.08 

Control 

1 

74/100 0.76 [0.62 - 0.85] - - 1.00 

Blank 47/98 0.45 [0.32 - 0.59] -3.115 0.025 0.32 

0.015% 26/98 0.29 [0.18 - 0.42] -4.674 <0.001 0.13 

0.03% 43/100 0.43 [0.29 - 0.54] -3.267 0.015 0.13 

0.045% 39/99 0.39 [0.26 - 0.53] -3.610 0.005 0.23 

Control 

12 

78/98 0.81 [0.69 - 0.89] - - 1.00 

Blank 58/93 0.61 [0.47 - 0.73] -2.254 0.245 0.42 

0.015% 55/100 0.58 [0.45 - 0.71] -2.544 0.126 0.31 

0.030% 41/94 0.43 [0.30 - 0.58] -3.810 0.002 0.20 

0.045% 60/93 0.65 [0.50 - 0.77] -1.842 0.516 0.47 

Control 

24 

71/93 0.78 [0.65 - 0.87] - - 1.00 

Blank 66/93 0.70 [0.57 - 0.81] -0.915 0.992 0.76 

0.015% 69/96 0.75 [0.63 - 0.84] -0.379 1.000 0.79 

0.03% 71/88 0.82 [0.69 - 0.90] 0.443 1.000 1.29 

0.045% 64/85 0.76 [0.62 - 0.86] -0.273 1.000 0.94 

Legend: 
a 
– Model estimated mean proportions, CI Confidence intervals 
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Experiments in the Semi-Field Tunnel 

 
Two Transfluthrin coils (0.03%) did not influence the feeding behavior of free 

flying mosquitoes exposed outdoors in the netting tunnel. The proportion of 

mosquitoes that fed after exposure to coils was not significantly different from the 

control (z = -0.943; p = 0.346); around 53% (42/76) (95% CI [0.43; 0.67]) blood 

fed after 1 hour after exposure to Transfluthrin compared to 61% (48/80) (95% CI 

[0.48; 0.71]) in the control. More than three quarters of the mosquitoes had fed 

after 12 hours and subsequent time feeding intervals. There was no significant 

difference between the proportion of fed mosquitoes in the control and the 

treatment at subsequent feeding times (12 hours: z = 0.526; p = 0.599, 18 hours: z 

= -0.169; p = 0.866, 24 hours: z = -0.098; p = 0.922).  

There was a slight impact on the feeding behaviour of caged mosquitoes. After 1 

hour, 56% (35/62) (95% CI [0.43; 0.69]) mosquitoes exposed to Transfluthrin fed 

compared to 79% (61/77) (95% CI [0.69; 0.88]) in the control (z = -2.937; p = 

0.003) and after 18 hours 84% (59/70) (95% CI [0.74; 0.92]) mosquitoes had 

blood fed compared to 72% (39/54) (95% CI [0.58; 0.84]) in the treatment (z = -

2.445; p = 0.015). However, more than three quarters of the mosquitoes fed after 

12 hours and 24 hours and this was not significantly different between the control 

and the treatment (12 hours: z = -1.341; p = 0.180, 24 hours: z = -0.006; p = 

0.996). 
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5.5. Discussion 

 
This study highlights challenges in the measurement of mosquito responses to 

different stimuli whilst outdoors. Mosquito activity such as orientation towards 

hosts, oviposition and resting sites are largely influenced by external stimuli such 

as atmospheric carbon dioxide, light sources, humans, animals and wind. In the 

taxis box experiment, mosquitoes moved between chambers even when there was 

no coil or human (no stimuli). This shows that mosquitoes may have been 

responding to external stimuli within the taxis boxes, making it quite difficult to 

discern between mosquito responses to experimental or external stimuli. Despite 

these challenges, taxis boxes have been used to successfully demonstrate 

orientation of malaria mosquitoes towards attractive stimuli outdoors in field 

conditions [7]. In the current study, taxis boxes were used to determine attraction 

and repellency of airborne pyrethroids. 

Here, Transfluthrin coils placed next to a human increased movement of 

mosquitoes within the taxis boxes. A higher proportion of mosquitoes left the 

middle chamber and flew towards the human. The presence of transfluthrin did 

not hinder movement of mosquitoes towards the human, hence they did not inhibit 

attraction. In fact, an increase in the dose of transfluthrin increased activation and 

attraction of mosquitoes. This behaviour has been previously reported in other 

study as excito-repellency [25]. Pyrethroid coils are thought to cause excitation 

and increased activity of mosquitoes. This may explain high activation observed 

in the current study. A low proportion of mosquitoes (7% and 17%) moved away 

from the human even when there was a coil. This indicates that Transfluthrin coils 
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did not induce movement away from the coil. However, there was no difference 

between the proportion of mosquitoes that moved away from the human alone and 

the human and coil. This questions the suitability of taxis boxes to accurately 

measure repellency outdoors where there are a lot of competing stimuli, 

highlighting the need for better methods to test repellency in the field. 

Mosquitoes seen to fly towards humans even in the presence of coils indicated 

that coils did not inhibit attraction to the human. It is possible that coils actually 

work at close range resulting in other responses such as bite prevention [24]. 

Similar observations are reported elsewhere describing the effect of metofluthrin 

emanators and pyrethroid coils [24,32,33]. Catnip and 1-methylpiperazine acts at 

short distances to prevent mosquitoes from landing and biting humans but do not 

prevent attraction to attractive stimuli [34,35]. This study reinforces the fact that 

airborne pyrethroids do not prevent attraction of mosquitoes to their hosts but 

likely interfere with the mosquito feeding process at the last stages after attraction 

to the host and prevent blood feeding. Other studies show that airborne 

pyrethroids exert multiple effects on a range of odorant receptors (ORs) and 

gustatory receptors located on antennae and feeding appendages of mosquitoes. 

They block, inhibit, or induce a number of different responses and scramble the 

host seeking process [22,36,37].  

In this experimental design, mosquitoes were presented with conflicting stimuli: 

attraction to host odours versus the insecticide. A previous study showed that in 

such a case the need to feed can overpower the effect of the insecticide, hence the 

mosquito is still attracted to the host but is prevented from feeding [38]. This is 
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evident with the use of insecticide treated bed nets, where mosquitoes are attracted 

to humans and attempt to feed through treated nets but then become irritated and 

move away without feeding [38]. This information is useful in the development of 

“push – pull” strategies that include compounds thought to chase mosquitoes from 

humans and attract them to odour-baited traps [11,34]. 

Coils used as a “point source” reduced bites by almost half when coils were 

placed 0.3m away from the human and were effective even when the human was 

20m away from coils (Table 5.4). Interestingly the “bubble” was highly effective 

providing approximately 80% protection against bites when coils were 0.3m away 

from the human (Table 5.5). Hence coils were more effective when used as a 

“bubble” rather than the “point source”. This highlights the need to consider 

presentation of the source of the active ingredient as a bubble around humans in 

order to achieve maximum efficacy. These results show the spatial activity and 

efficacy of volatile pyrethroids against mosquito bites. Efficacy of coils outdoors 

indicates that volatile pyrethroids may be an appropriate tool against outdoor 

biting mosquitoes and may be used outdoors in bars, restaurants, backyards or 

verandas especially when multiple sources of repellent are used to ensure 

saturation of the space with active ingredient.  

Previous studies indicate that mosquitoes inhibited by topical repellents from 

blood feeding are diverted to neighbouring people who are not protected [39]. 

This may not be the case with volatile insecticides such as mosquito coils. This 

study shows that coils prevented bites when they were placed as far as 15m away 

(Table 5.4 and 5.5.), thus they provided area wide protection and hence are likely 
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extend protection to the non users at a particular distance from the source and 

reduce risk of diversion of mosquitoes. A study testing this hypothesis is currently 

being analyzed (Maia pers. comm.).  

In addition to the spatial mode of action of coils, this study also shows that they 

offer temporal protection. In a closed laboratory setting (Peet Grady chamber), 

mosquitoes did not resume normal blood feed behaviour up to 12 hours after they 

had been exposed to coils. We suggest that in addition to a spatial bubble, 

prolonged feeding inhibition may also protect non-users of coils to a certain 

extent, which would also reduce the risk of diversion. Similar results were 

reported in a study where the time of activation and flight of Cx. quinquefasciatus, 

An. albimanus and Stegomyia aegypti mosquitoes was reduced significantly 24 

hours after they had been exposed to sublethal doses of Deltamethrin and 

Permethrin [40]. In the current study, mosquitoes resumed normal feeding after 24 

hours. If mosquitoes miss one feeding opportunity due to exposure to coils, this is 

likely to prolong the gonotrophic cycle and may change the vectorial capacity of 

the mosquitoes [41]. 

However, when free-flying mosquitoes were exposed to coils under outdoor 

conditions in the SFT, there was no effect. This may be attributed to limited 

ventilation in the Peet Grady chambers resulting in reduced airflow accompanied 

by increased insecticide particles per area. This enabled mosquitoes to contact 

insecticides more easily, resulting in the large effect on blood feeding inhibition in 

mosquitoes exposed in the chambers. The effect of coils in the SFT was less 

pronounced probably due to the large surface area of the facility as well as natural 
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airflow within the tunnel. It is hypothesize that sparse distribution of insecticide 

particles within the tunnel due to high airflow resulted in low concentration of 

insecticide particles. Therefore, mosquitoes did not contact sufficient insecticides 

in the SFT. It should be noted that coils used under outdoor conditions contained 

the standard dose of Transfluthrin (0.03%) meant for indoor use. It is therefore 

necessary to explore the effect of increasing the dose for products that are 

intended for outdoor use, in particular by advising users to put several coils 

around the area that they are occupying to create the “bubble effect”. In addition, 

there is need to determine the No observed effect level (NOEL) of airborne 

chemicals whilst in use outdoors.  

The human biting rate of mosquitoes is one of the most important parameters that 

influences malaria transmission [3]. Hence, chemicals that interfere with feeding 

behaviour of mosquitoes or prevent feeding altogether are likely to reduce 

transmission. This study emphasizes the importance of reduced blood feeding as 

the main indicator for efficacy of airborne pyrethroids used against outdoor biting 

mosquitoes.  
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5.6. Conclusion 

 
This study indicates that coils do not prevent attraction to the human, but mainly 

prevent blood feeding. It is possible that pyrethroid based coils, specifically 

Transfluthrin, target gustatory receptors involved in feeding rather than olfactory 

receptors. It is essential to conduct further studies to determine target sites of 

pyrethroid - based airborne particles in mosquitoes. This study provides critical 

information necessary for the development of target product profiles of spatial 

repellent products that can be used to complement existing mainstream malaria 

vector control tools. 

Increased reports of outdoor biting and resting mosquitoes in endemic areas 

[42,43] indicate that mainstream malaria control tools that target indoor biting and 

resting mosquitoes (LLINs and IRS) may not be sufficient to eliminate malaria 

especially when transmission occurs outdoors [44]. This study demonstrates the 

potential benefit of airborne pyrethroids for use against outdoor biting mosquitoes 

by reducing the outdoor man-biting rate, an important parameter of malaria 

transmission. It is worthwhile to conduct large scale clinical studies with 

entomological correlates of mosquito human-landing also observed to determine 

whether outdoor use of airborne insecticides in addition to the use of LLINs 

translates into additional protection from malaria, therefore complementing 

existing tools used against indoor biting and resting mosquitoes. 
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CHAPTER SIX 

6     Spatial repellency of transfluthrin-treated hessian 

strips against laboratory-reared Anopheles arabiensis 

mosquitoes in a semi-field tunnel cage 

 

6.1. Abstract 

Background 

Vapour phase spatial repellents deter mosquitoes from attacking one or more 

humans in a protected space. Simulation models indicate that high coverage of 

spatial repellents can enhance the impact of Long Lasting Insecticidal Nets 

(LLINs) and indoor residual spraying (IRS) where mosquito vectors commonly 

bite humans outdoors. Here we report a preliminary evaluation of an effective, 

user-friendly prototype product for delivering spatial repellents to protect against 

malaria vector mosquitoes. 

Findings 

Protective efficacy of a 4.0 × 0.3 m strip of hessian sacking treated with 10 ml of 

transfluthrin was evaluated in a 60 m × 2 m ×2.5 m netting tunnel with malaria-

free insectary-reared Anopheles arabiensis Patton mosquitoes. Personal 

protection, in terms of proportional reduction of exposure to bites, was measured 

by comparing human landing catches of volunteers with treated and untreated 
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strips. A freshly treated hessian strip reduced mosquito attack rate on human 

volunteers by > 99% and consistently conferred > 90% protective efficacy for a 

period of 6 months. Over the entire study period, only 22 out of 1400 released 

mosquitoes bit volunteers using the treated sacking strip while 894 out of 1400 

mosquitoes released into cages containing volunteers using an untreated strip fed 

upon them. 

Conclusion 

Locally available natural fibres may be promising absorbent substrates for 

delivering spatial repellents, such as transfluthrin, to protect against mosquitoes in 

tropical settings. However, these observations relate to a single prototype 

specimen of this particular device, therefore, much more detailed, well replicated 

studies are essential to establish long-term efficacy, effectiveness, practicability 

and affordability. 

Keywords: Outdoor mosquito control; Spatial repellency; Hessian strips 

 

6.2. Findings 

 
Long lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) have 

successfully reduced malaria in many endemic regions of Africa [1-4]. These 

measures have successfully reduced malaria vectors, which predominantly feed 

upon humans (anthropophagic) and rest (endophilic) and feed (endophagic) 

indoors [5-11]. Despite impressive successes, these tools are less effective against 

exophagic, and exophilic mosquito vectors [12, 13]. It is therefore critical to find 
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new tools that would protect people whilst outdoors. 

Recently developed mathematical models suggest that highly efficacious spatial 

repellents are likely to be effective when used outdoors in areas where 

transmission commonly occurs outside of houses [14] or is mediated by 

mosquitoes which primarily feed upon animals (Kiware et al, Unpublished). 

Examples of spatial repellent products include mosquito coils and vaporizer mats 

[15]. Kerosene lamps containing transfluthrin and vegetable oil is a cheap and 

effective means of dispensing repellents, use of which is well matched to the 

times and locations of peak human activity [16]. These delivery formats require 

frequent replacement of the active ingredient and external sources of energy such 

as combustion or electricity. 

Passive methods of delivering spatial repellents without external energy input are 

highly desirable for impoverished populations in developing countries. Existing 

products typically consist of paper or plastic strips impregnated with fluorinated 

pyrethroids, such as metofluthrin or transfluthrin, and have exhibited high efficacy 

of protection against mosquito bites in some parts of Southeast Asia [17, 18]. 

These pyrethroids are less polar and highly volatile than conventional pyrethroids 

and therefore evaporate at room temperature without the need for any external 

source of energy [19]. Such strips can produce vapour for 18 weeks, during which 

time it repels mosquitoes or prevents them from feeding on humans [18, 19]. 

Interestingly, the level of repellency achieved by treated paper strips has been 

shown to be more short lived than plastic strips treated in exactly the same 

manner, demonstrating how different substrates can affect the duration of efficacy 
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exhibited by a given active ingredient [19]. 

Natural fibres are readily available and affordable in all tropical countries. Initial 

assessments to compare the physical properties of hessian sacking materials, 

commonly used for storing and transporting goods in Tanzania, indicated that it 

had far greater absorbent capacity than commonly available alternatives. The 

hessian fabric used in this study is made from fine sisal fibres woven together. 

The fabric is imported from India and is used to make cereal storage bags. 

We evaluated the spatial repellency of a hessian sacking strip treated with 

transfluthrin, in terms of its ability to prevent attack by vectors of malaria in 

Africa when used outdoors. 

Hessian strips 4 m long and 30 cm wide were impregnated with 10 ml technical 

grade transfluthrin (SC Johnson Home Hygiene Products). A volume of 10 ml of 

transfluthrin was mixed with 90 ml Axion
® 

liquid detergent (Orbit Chemical 

Industries Ltd, Nairobi and Colgate-Palmolive East Africa Ltd) to enable its 

solubility in 400 ml of water. The strips were dipped in the mixture in a plastic 

basin and suspended indoors at ambient temperature where they were left 

overnight to dry. A negative control was treated exactly the same way using the 

mixture of detergent and water only, without any transfluthrin active ingredient. 

Experiments were conducted in a screened tunnel measuring 60 m long, 2 m wide 

and 2.5 m high at the Ifakara Health Institute (IHI) facility in Ifakara, Morogoro, 

United Republic of Tanzania. The tunnel was divided into three equal-sized 
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experimental units (A, B and C) separated by plastic sheets. Each unit was 20 m 

long (Moore et al. unpublished). 

We conducted tests with Anopheles arabiensis mosquitoes previously collected 

from Sakamaganga village, Kilombero valley, South East of the United republic 

of Tanzania. The mosquitoes were reared in an insectary built within the IHI 

semi-field system [20]. The temperature in the insectary was between 28 - 29°C 

and 70-80% relative humidity. Mosquito larvae were fed on tetramin fish food and 

adults were given 10% glucose solution and blood meals. Nulliparous female, 

insectary-reared, 2 to 6 day old mosquitoes that had never had a blood meal were 

used. 

Personal protection in terms of the proportion of reduction in mosquitoes 

attacking volunteers was measured by comparing the number of mosquitoes that 

landed upon a volunteer with a treated sacking strip and the one who had an 

untreated strip. Experiments were conducted in units A and C while unit B was 

used as a buffer zone with no experiments between these two experimental units 

to minimize the risk that the transfluthrin-treated sacking in one unit would affect 

mosquitoes in the unit containing the negative control. 

Each strip was suspended 1 m above the ground in the middle of each unit on a 

square frame of 4 wooden poles 1 meter apart, thus creating approximately 1 m
2 

sitting space (Figure 1). Treated and untreated strips were randomly assigned to 

the units on the first night of every round of 4 nights of experimentation, they 

were exchanged between units on the third day, and remained in that arrangement 

for the fourth day. A cage containing 25 mosquitoes was placed at each of the two 

http://www.parasitesandvectors.com/content/5/1/54/figure/F1
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opposite ends of each unit so that, at the start of the experiment, a total of 50 

mosquitoes were released in each unit. Mosquitoes were released at 1900 hours by 

pulling strings attached to mosquito netting cages placed on each side of the 

volunteer. Mosquitoes were recaptured by human landing catches simultaneously 

in both units for 2 hours each night. The two male participants involved in the 

study were randomly assigned to the experimental units on the first night using 

the lottery method. They exchanged positions on the second night. On the third 

night volunteers were randomly assigned to the units again and exchanged 

positions on the fourth night. Each round of rotation of volunteers and strips 

between experimental units was completed in 4 nights. One round of 

experimentation was repeated once every month to check for residual activity of 

transfluthrin on the hessian strips. The strips were kept in separate plastic basins 

and stored uncovered at ambient room temperature indoors. 
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Figure 6.1: Transfluthrin hessian strip. The hessian strip is made from fine sisal 

fibre woven together to make sacking fabric. The strip is 4 × 0.3 m long. It is treated 

with transfluthrin. The strip is suspended on 4 wooden poles making approximately 

1 m
2 

area surrounding the human participant conducting mosquito catches. 
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This study was approved by The National Institute of Medical Research 

(NIMR/HQ/R.8 C/VOL.1/100). Participants signed a written informed consent 

form before commencing the study. 

The freshly treated sisal strip provided > 99% protective efficacy against 

mosquitoes: In the first round of assays only 1 mosquito out of 200 that were 

released was recovered by the volunteer in the experimental unit with a treated 

strip, while 148 out of 200 released mosquitoes were recovered in the unit with an 

untreated control. The treated strip continued to consistently confer > 99% 

protective efficacy for a period of 6 months and all assay rounds, except one 

during the fourth month, indicated approximately 91% protective efficacy. Over 

the entire study period only 22 out of 1400 mosquitoes released into the 

experimental unit with the treated sacking strip were recovered by the protected 

human catcher. In stark contrast, 894 out of 1400 released mosquitoes bit the 

volunteers using an untreated sacking strip (Figure 6. 2). 

http://www.parasitesandvectors.com/content/5/1/54/figure/F2
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Figure 6.2: The number of mosquitoes recovered by human landing catches with 

transfluthrin and untreated strips. A graph comparing the number of mosquitoes 

recovered by human landing catches during rounds of experiments with transfluthrin 

treated and untreated strips during six months. The graph indicates a reduction in the 

number of bites occurring on a human participant who had a treated strip compared to 

one with an untreated strip. Each data point represents a single release of mosquitoes in a 

single experimental unit with either a treated or untreated strip of hessian sacking. 
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While a generalized linear mixed model with a Poisson distribution indicated a clear 

effect of the treatment status of the hessian strip (P < 0.001), there was no apparent 

difference between the participants in terms of their attractiveness to mosquitoes (P = 

0.208), but the experimental units were significantly different (P = 0.027). The latter 

effect could be explained by external factors such as light from the nearby security lights 

shining through one of the units. 

Such a prototype conferring such high apparent protective efficacy against outdoor-biting 

Anopheles mosquitoes may well be useful for preventing malaria transmission that 

mostly occurs outdoors. Our results indicate that hessian sacking substrates may be an 

efficient means for delivering transfluthrin vapour into an occupied space to protect 

humans against mosquito bites. Hessian and other natural fibres can be affordably 

produced in tropical countries, even locally within afflicted communities themselves, thus 

reducing potential costs of transportation and importation because only the active 

ingredient needs to be manufactured in bulk by specialist chemical manufacturers. 

Hessian fibres are a versatile fabric that can be readily woven into a variety of practical 

formats such as treated wall hangings, door mats or curtains. It might even be possible to 

weave it into items that can be worn on the body, such as wrist bands, head bands or 

anklets, so long as the absorbent fibre can be packaged within porous, untreated coating 

materials that preclude human dermal exposure to the active ingredient. 

These preliminary results demonstrated efficacy of transfluthrin strips against mosquitoes 

under the near-natural conditions of an outdoor semi-field system. However, these 

observations relate to a single, un-replicated prototype specimen of this particular device 

[21] so more intensive, well replicated studies in both semi-field systems and full field 
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settings will be required in order to establish these results and characterize the properties 

of such devices. In particular, it would be important to conduct experiments in which the 

control and treatment are exposed to mosquitoes alongside each other at a range of 

proximities within a single semi-field chamber or in full field settings. 

The long-term efficacy of the prototype will need to be evaluated at frequent time 

intervals after formulation and initiation of routine, representative use in target 

communities. Also, the relationship between protective efficacy and distance from the 

product will need to be assessed. In particular, the possibility that vapour-phase repellents 

which prevent mosquitoes from feeding on humans without killing them might pose a 

risk to nearby non-users by diverting mosquitoes to them [22, 23], as is known to occur 

when using some topical repellents [24] will need to be investigated. 

 

When considering use of spatial repellents, it is necessary to take into account how these 

can be used with existing tools such as LLINs and IRS in order to complement, rather 

than reduce, their efficacy [14, 22, 23, 25]. Recently developed models indicate that 

insecticides which deter mosquitoes from entering houses may undermine the 

community-level impact upon malaria transmission by the contact toxicity of less volatile 

conventional pyrethroids applied in the form of LLINs and IRS [14, 25]. This is because 

mosquitoes deterred by sub-lethal doses of an insecticide are prevented from making 

contact with toxic doses on treated surfaces and are therefore not killed directly. For 

settings where malaria transmission is dominated, or has historically been dominated, by 

vectors that typically feed indoors upon humans, it will therefore be essential to assess 

the mode of action, and community-level impact upon transmission, of products relying 
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upon vapour phase active ingredients when applied both indoors and outdoors to ensure 

that they complement rather than attenuate the impact of existing front-line LLIN and 

IRS technologies. 



 225 

 

6.3. Reference 

1.         Mabaso ML, Sharp BL, Lengeler C: Historical review of malarial control in 

southern African with emphasis on the use of indoor residual house-

spraying. Trop Med Int Health 2004, 9:846-856.  

2.         Lengeler C: Insecticide-treated bed nets and curtains for preventing malaria. 

Cochrane Database Syst Rev 2004, CD000363.  

3.         Pluess B, Tanser FC, Lengeler C, Sharp BL: Indoor residual spraying for 

preventing malaria. Cochrane Database Syst Rev 2010, 4:CD006657.  

4.         Meyrowitsch DW, Pedersen EM, Alifrangis M, Scheike TH, Malecela MN, 

Magesa SM, Derua YA, Rwegoshora RT, Michael E, Simonsen PE: Is the 

current decline in malaria burden in Sub-saharan Africa due to a decrease in 

vector population? Malar J 2011, 10:188.  

5.         Gillies MT, Smith A: Effect of a residual house-spraying campaign on species 

balance in the Anopheles funestu group: The replacement of Anopheles 

gambia Giles with Anopheles rivuloru Leeson. Bull Entomol Res 1960, 51:248-

252.   

6.         Gillies MT: A new species of the Anopheles funestus complex (Diptera: 

Culicidae) from East Africa. Proc Roy Ent Soc 1962, 31:81-86.  

7.         Gillies MT, Furlong M: An investigation into the behaviour of Anopheles 

parensi Gillies at Malindi on the coast of Kenya.  

8.         Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule 

JM, Hawley WA, Hamel MJ, Walker ED: Anopheles gambiae: historical 

http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B2
http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B5


 226 

population decline associated with regional distribution of insecticide-treated 

bed nets in western Nyanza Province Kenya. Malar J 2010, 9:62.  

9.         Bugoro H, Cooper RD, Butafa C, Iro'ofa C, Mackenzie DO, Chen CC, Russell 

TL: Bionomics of the malaria vector Anopheles faraut in Temotu Province, 

Solomon Islands: issues for malaria elimination. Malar J 2011, 10:133.  

10. Reddy M, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski A, Slotman 

MA: Outdoor host seeking behavior of Anopheles gambia mosquitoes 

following initiation of malaria vector control on Bioko Island. Equitorial 

Guinea. Malar J 2011, 10:184.  

11. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur KC, Killeen GF: 

Increased proportions of outdoor feeding among residual malaria vector 

populations following increased use of insecticide-treated nets in rural 

Tanzania. Malar J 2011, 10:80.  

12. Govella NJ, Okumu FO, Killeen GF: Insecticide-treated nets can reduce 

malaria transmission by mosquitoes which feed outdoors. Am J Trop Med Hyg 

2010, 82:415-419.  

13. Griffin JT, Hollingworth TD, Okell LC, Churcher TS, White M, Hinsley W, 

Bousema T, Drakeley CJ, Ferguson HM, Basanez MG, Ghani AC: Reducing 

Plasmodium falciparu malaria transmission in Africa: a model-based 

evaluation of intervention strategies. PLoS Med 2010, 7:8.   

14. Killeen GF, Moore JS: Target product profiles for protecting against outdoor 

malaria transmission. Malar J 2012, 11:17.  

15. WHO: Guidelines for efficacy testing of household insecticides products. 

http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B13


 227 

Mosquito coils, vaporizer mats, liquid vaporizers, ambient emanators and 

aerosols. Geneva: WHOPES 2009.3  

16. Pates HV, Line JD, Keto AJ, Miller JE: Personal protection against mosquitoes 

in Dar es Salaam, Tanzania, by using a kerosene oil lamp to vaporize 

transfluthrin. Med Vet Entomol 2002, 16:277-284.  

17. Kawada H, Maekawa Y, Tsuda S, Takagi M: Trial of spatial repellency of 

metofluthrin-impregnated paper strips in shelters without walls in Lombok 

Island in Indonesia. J Am Mosq Control Assoc 2004, 20:434-437.  

18. Kawada H, Maekawa Y, Takagi M: Field trial on the spatial repellency of 

metofluthrin-impregnated plastic strips for mosquitoes in shelters without 

walls (beruga) in Lombok, Indonesia. J Vec Ecol 2005, 30:181-185.  

19. Kawada H, Maekawa Y, Tsuda Y, Takagi M: Laboratory and field evaluation 

of spatial repellency with metofluthrin-impregnated paper strip against 

mosquitoes in Lombok Island, Indonesia. J Am Mosq Control Assoc 2004, 

20:292-298.   

20. Ferguson HM, Ng'habi RK, Walder T, Kadungula D, Moore JS, Lyimo I, Russell 

TL, Urrasa H, Mshinda H, Killeen FG, Knols GJB: Establisment of a large 

semi-field system for experimenta study of African malaria vector ecology 

and control in Tanzania.   Malar J 2008, 7:158.  

21. Hurlbert HS: Pseudoreplication and the design of ecological field experiments. 

Ecol Mon 1984, 54:187-211.  

22. Muirhead-Thompson RC: The significance of irritability, behaviouristic 

avoidance and allied phenomena in malaria eradication. Bull World Health 

http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B16
http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B18
http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B19


 228 

Organ 1960, 22:721-734.  

23. Pates H, Curtis C: Mosquito behavior and vector control. Annu Rev Entomol 

2005, 50:53-70.  

24. Moore SJ, Davies C, Cameron MM: Are mosquitoes diverted from repellent-

using individuals to non-users? Results of a field study in Bolivia. Trop Med 

Int Health 2007, 12:1-8.  

25. Killeen GF, Chitnis N, Moore JS, Okumu FO: Target product profile choices 

for intradomiciliary malaria vector control pesticide products: repel or kill? 

Malar J 2011, 10:207.  

 

http://www.parasitesandvectors.com/sfx_links?ui=1756-3305-5-54&bibl=B22


 229 

 

CHAPTER SEVEN 

7     General discussion 

 

7.1. The mode of action of spatial repellents against mosquitoes 

 

Rapid toxicity of neuro-toxic insecticides is considered the main outcome indicator of 

efficacy of mosquito control tools such as LLINs and IRS, while sub-lethal effects of 

insecticides that include spatial repellency, irritancy and reduced human biting rate are 

considered secondary attributes, and perhaps negative effects of insecticides because they 

do not result in a directly measurable death of that insect. Several studies have shown that 

indoor spraying with DDT led to the reduction of malaria transmission through such 

sublethal effects [1]. More importantly, DDT functions first as a spatial repellent and then 

a feeding inhibitor [2] while toxicity comes into action slowly and later after repellency 

[3, 4]. 

Despite several studies conducted on the topic of spatial repellency, the mode of action 

and the mechanisms driving the range of behaviours exhibited by mosquitoes are still 

under debate by the vector-control community. A repellent was described as a chemical 

that caused the responder to move away from the source of the chemical [5]. More 

recently the terms irritancy and spatial repellency have been used to distinguish between 

directed movement away after physical contact with the stimulus and oriented movement 

away after contact with odour or airborne stimulus, respectively [4]. Miller et al suggest 
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that use of these terms may not be appropriate especially where directional movement is 

not proven [6]. They suggest reverting to Dethier et al where repellency is described with 

regards to the mechanisms involved. Repellency is described by two terms i.e. taxis – 

immediate directional avoiding reaction, and orthokinesis – irritating effect, causing 

insects to increase activity resulting in decreased number on the surface [5, 6]. The term 

excito-repellency has also been used by some authors to refer to the hyper - locomotor 

activity observed when some insects contact insecticides [7, 8]. In this thesis spatial 

repellency generally refers to a range of behaviours exhibited by insects after exposure to 

airborne chemicals and resulting in reduced human-vector contact. It was hypothesized 

that airborne insecticides 1) induce mosquitoes to move away from them, 2) interfere 

with host detection and blood feeding behaviour of mosquitoes and also 3) prevent 

mosquitoes from flying [9]; and the overall goal of this thesis was to determine the range 

of mosquito behaviours exhibited by airborne pyrethroids that minimize human - vector 

contact and consequently reduce malaria transmission by the major Afro-Tropical vectors 

An. gambiae s.s. and An. arabiensis. 

 

7.1.1. Irritancy and excito-repellency 

 
One notable feature of this study was that the rate at which mosquitoes left huts was 

measured throughout the night (excito-repellency and irritancy) [10]. More mosquitoes 

left huts earlier than normal where both Transfluthrin ad Metofluthrin coils and DDT 

were used. In the semi-field studies reported in Chapter 4, almost half of the mosquitoes 

(56%, 55% and 48%) prematurely left huts that had Transfluthrin coils, Metofluthrin 
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coils, and DDT, respectively [10]. High irritancy (82% and 87%) by pyrethrum coils on 

An. gambiae s.l. mosquitoes has been reported [11] while another study indicated 14% 

irritancy of Aedes aegypti by DDT [4]. There are several possible explanations as to why 

mosquitoes rapidly leave houses upon contact with DDT and airborne pyrethroids. The 

first one is that mosquitoes contact airborne insecticides and they are irritated or excited 

(orthokinsesis) [5] hence they move around faster than usual [2, 12]. This mechanism 

may be as a result of the action of DDT and pyrethroids on the voltage-gated sodium 

channel of insect nerve cells resulting in restlessness, un-coordination and hyperactivity 

of the insects [13]. It is not clear how this rapid locomotion of mosquitoes causes them to 

leave houses. Kennedy suggests that mosquitoes are inclined to move towards light and 

that is why they leave through open spaces in a house [14]. Several experimental hut 

studies concur with this explanation as demonstrated by exit of mosquitoes through eave 

gaps [15, 16]. The second explanation may be that low concentrations of insecticides 

induce loss of response to host cues [17] and prevents mosquitoes from feeding and 

therefore mosquitoes leave huts in search of other blood sources. Insecticides that cause 

mosquitoes to leave treated houses before or after they have fed are likely to attenuate 

efficacy of interventions such as IRS that rely on resting behaviour of mosquitoes. 

Irritancy and excito-repellency are likely to prevent mosquitoes from contacting lethal 

insecticides and thus reduce mortality of mosquitoes. Despite this widespread notion, it is 

also believed that irritancy by DDT led to tremendous success in malaria control [3, 18]. 

This may be explained by reduced human biting rate and thus reduced malaria 

transmission. There is need to conduct further studies to determine whether spatial 

irritancy by spatial repellents (SR) is likely to increase transmission. 
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7.1.2. Directional taxis and feeding inhibition 

 

In the semi-field experiments in Chapter 5, airborne pyrethroids produced by burning 

coils did not induce taxis (directional movement away from coils) of mosquitoes. 

Interestingly, the taxis boxes results were congruent with experimental hut results [10] 

and indicated activation of mosquitoes and therefore excito-repellency as the main mode 

of action of the coils. Increasing the dose of Transfluthrin to 0.045% increased the 

activity of mosquitoes, implying a dose response relationship. More mosquitoes were 

activated to move towards the human especially in the presence of coils. This shows that 

airborne pyrethroids do not hinder attraction of mosquitoes to humans at short distance 

away from them.  

These results are congruent with other studies of airborne pyrethroids. For example in the 

presence of metofluthrin dispensed by emanators, mosquitoes detected host odours and 

flew upwind towards the host but they were prevented from biting [19]. Further studies 

with pyrethroid coils also indicate that coils did not induce repellency but “interfered” 

with host seeking and prevented feeding [20] and (Chapter 5). This behaviour has been 

observed with Permethrin treated bed nets. Mosquitoes stayed far much longer on treated 

bed nets because of the desire to blood feed on humans protected by the nets despite the 

irritating effect of pyrethroids. Similarly the pyrethroids did not inhibit attraction to 

humans [21]. It should be noted that chemicals other than pyrethroids such as DEET have 

been shown to inhibit attraction of mosquitoes to humans [22]. Despite the controversies 

surrounding the mode of action of DEET, evidence suggests that DEET affects feeding 
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behaviour of Drosophila through the activation of gustatory receptor neuron and hence 

induces avoidance and suppresses feeding [23]. This might explain the effect of coils on 

the feeding behaviour of mosquitoes in the Peet Grady chamber and in the SFS. Other 

studies indicate that DEET inhibits positive olfactory responses to attractive compounds 

such as Lactic acid and octan-3-l [22, 24] or acts as a “confusant” through direct 

modulation of olfactory receptor activity and interferes with behavioral responses such as 

attraction of mosquitoes to human odours [25, 26]. A comprehensive study on the effect 

of insect repellents of different chemical structures and repellent pyrethroids on odorant 

receptors in mosquitoes implies that all repellents modulate the function of odorant 

receptors. This is either through inhibiting odorant-evoked currents mediated by odorant 

receptors or through responses elicited in the absence of odours [27, 28]. These studies 

elucidate mechanisms underlying the response of mosquitoes to repellent compounds. 

This information is useful in the development of better repellents. For instance pyrethroid 

repellents act on olfactory receptors rather than target the sodium-gated channels are 

potential chemicals for spatial repellent products because low amounts of repellent may 

be needed to achieve high efficacy and this is likely to slow down the development of 

resistance. 

 

7.1.3. Feeding inhibition 

 

Exposure of mosquitoes to airborne Transfluthrin in the Peet Grady chamber seemed to 

“jam” the mosquito feeding system for 12 hours when mosquitoes were unable to blood 

feed (Chapter 5). The prolonged feeding inhibition status is an extremely important 
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finding because it is likely to also protect non-users of SR by reducing diversion of unfed 

mosquitoes to unprotected individuals. Similar results have been reported in a study 

where the time of activation and flight of Cx. quinquefasciatus, An. albimanus and 

Stegomyia aegypti mosquitoes was reduced significantly for 24 hours after exposure to 

sublethal doses of Deltamethrin and Permethrin [29]. In the current study, mosquitoes 

resumed normal feeding after 24 hours. It is hypothesized that if mosquitoes miss one 

feeding opportunity due to exposure to SR, they are likely to continue host seeking and 

therefore this may prolong the gonotrophic cycle and in return change the vectorial 

capacity of mosquitoes [30]. However, when free-flying mosquitoes were exposed to 

coils under outdoor conditions in the SFT, there was no effect on successive blood 

feeding as depicted by similar proportions of blood fed mosquitoes in the control and 

treatment. The different results observed in the Peet Grady chamber may be attributed to 

limited ventilation that resulted in increased insecticide particles per area and a higher 

dose of insecticide obtained by the mosquito, hence the enormous reduction in blood 

feeding. The effect of coils in the SFT was less pronounced probably because of the large 

surface area of the facility and increased airflow, consequently a low dose of 

Transfluthrin was distributed within a large area and mosquitoes contacted much lower 

doses that did not affect their feeding. It should be noted that the coils used in the SFT 

contained the standard dose of Transfluthrin (0.03%) that is meant for indoor use. 

Therefore increasing the dose is likely to enhance efficacy of the coils. These results 

emphasize the need to consider the dose of the active ingredient required to confer 

maximum protection for different settings such as indoors and outdoors. 
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7.1.4. Location of repellent and its efficacy 

 

Coils used as a “point source” reduced bites by almost half when coils were placed 0.3m 

away from the human (Chapter 5). Interestingly the “bubble” reduced bites by more than 

three quarters when coils were placed 0.3m away from the human (Chapter 5). The 

“bubble” reduced bites by approximately 40% when coils were placed between 1m - 15m 

from the human compared to the “point source” where bites were reduced by less than 

27% when coils were placed between 1m - 15m. This study highlights the need to 

consider presentation of the source of the active ingredient around humans. In order to 

achieve maximum efficacy, there should be a chemical barrier between the human and 

mosquitoes. The “bubble” provided a chemical barrier in all directions around the human 

and ensured maximum saturation of the space with the active ingredient.  

It should be noted that the An. gambiae s.s. mosquitoes used in the semi-field studies 

were anthropophilic, endophagic and endophilic. Therefore these results should be 

regarded with caution. This study indicates that SRs are likely to have pronounced effects 

on human biting rate and indoor mosquito densities where mosquitoes bite and rest 

indoors. This is due to high irritancy that forces mosquitoes to leave houses prematurely 

as well as reduction in feeding.  

Unfortunately this study could not measure irritancy on exophilic An. arabiensis 

mosquitoes in field experimental huts. This is because mosquitoes were removed from 

experimental huts at the top of every hour and thus there was no way of knowing how 

many mosquitoes were left inside the hut at a specific time. This meant that the 

proportion of mosquitoes that left huts was known but the proportion of the ones that did 
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not leave was unknown. It is worthwhile noting that mortality reported in the semi-field 

was a lot higher (66% by Transfluthrin and 61% by Metofluthrin coils and 64% by DDT) 

than the field (0.02% overall mortality). These discrepancies can be explained by the fact 

that in field experimental huts human baits slept under untreated bed nets while in the 

semi-field, mosquitoes were allowed to feed freely on unprotected humans. It is 

hypothesized that in the semi-field, mosquitoes likely spent more time inside huts 

because they were tempted to blood feed on unprotected individuals and the time spent 

inside huts was sufficient to pick up lethal insecticides. In the field, mosquitoes might 

have left earlier than usual due to irritation of the insecticides and inability to blood feed. 

A study by Miller and Gibson indicates that despite irritancy caused by Permethrin on 

bed nets, mosquitoes spent more time on nets due to the need to feed [21]. This might 

have happened in the semi-field experiments too, leading to high mortality of mosquitoes. 

It should be noted that laboratory reared An. gambiae s.s. mosquitoes were used in the 

semi-field compared to wild ones in the field, this might have also contributed to a lesser 

extent to high mortality. However this is highly unlikely because mortality was measured 

with reference to the control in the particular experiment.  

Spatial repellents can be used outdoors for personal protection. In this case they would 

reduce human biting rate only, and are unlikely to be used at concentrations high enough 

to induce mortality due to the high cost of the compounds and toxicity accompanied with 

high doses of insecticide that might render them unsafe for humans or non-target 

organisms. It is necessary to conduct further studies in different geographical settings in 

order to determine the effect of SR on mosquitoes of different behaviours and the effect 

on malaria transmission as well as nuisance mosquitoes because efficacy against these 
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mosquitoes will encourage uptake of the tool and regular use by the community. 

It is important to consider the overall mode of action of SR on the mosquito population 

structure and the behaviour. The effect of LLINs on mosquito behaviour was not 

considered until recently when it has been shown that high coverage may have prompted 

species shift or behaviour change of mosquitoes [31]. Therefore it seems worthwhile to 

consider the effect that long-term, widespread use of SR would have on mosquito 

behaviour as early as possible. This study highlights subtle effects of SR such as the 

effect on feeding behaviour and fecundity. Sufficiently high doses of SR delay the 

resumption of the normal feeding process of mosquitoes, but mosquitoes can resume 

feeding after 12 hours – they do not become refractory. This is might shift the feeding 

cycle of mosquitoes forward to different biting times as has been observed with LLINs 

[32]. By preventing man-vector contact LLINs can disrupt the feeding process of 

mosquitoes hence increase the length of the oviposition cycle of the overall population. 

This mechanism might explain the immediate change in biting cycles of both An. farauti 

and An. koliensis after LLINs distribution in Papua New Guinea [32]. Another study also 

showed that females that failed to obtain blood during the previous night were likely to 

start host seeking early in the evening of the next day [33]. Such studies conducted at 

large scale under natural settings would be beneficial in the long run if SR will be proven 

to complement existing tools by reducing malaria prevalence and transmission. 

This study highlights the need for standardizing testing procedures for airborne 

chemicals. Testing conditions such as temperature, humidity, wind speed, wind direction 

and the presence or absence of the human influence the results. The WHOPES recently 

published guidelines for testing SR[9]. They include laboratory studies which provide 
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information on critical outcome measures for testing active ingredients comprising; 

movement of mosquitoes away from chemicals, host attraction-inhibition as well as dose-

response relationships. The guidelines also include a section on testing formulations in 

semi-field trials. In the semi-field trials experiments can be conducted using free-flying 

pathogen free mosquitoes in screened enclosures [9]. Some of the experiments reported 

in this study were conducted according to the semi-field trial guidelines. Feeding 

inhibition, irritancy and excito-repellency were measured accurately in experimental huts 

enclosed in a screen house (Chapter 5).  

 

7.2. The effect of spatial repellents on malaria transmission 

 
Mosquito control measures are aimed at interrupting disease transmission by significantly 

reducing vectorial capacity over a prolonged period of several years to induce disease 

interruption. Effective vector control tools target several stages of the mosquito‟s feeding 

cycle thereby reduce the probability of mosquitoes to transmit diseases. According to the 

vectorial capacity equation, changes to different aspects of the life cycle of mosquitoes 

will have differential impact on malaria transmission [34]. A reduction in mosquito 

density (m) leads to an equal reduction in vectorial capacity because of their linear 

relationship, while a reduction in biting rate (ma) leads to a two-fold reduction in 

transmission due to the quadratic relationship (arising from the fact that mosquitoes need 

to feed twice to transmit malaria: once to become infected and once to infect) [34]. This 

study shows that through deterrence, irritancy and feeding inhibition of SR, more than 

90% of the mosquitoes are prevented from contacting humans inside houses before 
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mortality occurs. By reducing human-vector contact, SR directly influence the biting rate 

of mosquitoes (ma): an important parameter of malaria transmission. In addition results 

from the semi-field system indicate that SR lead to delayed mortality of mosquitoes and 

therefore affect mosquito densities (m) and indirectly reduce chances that a mosquito 

would survive (p) long enough to become infectious. This study also shows that airborne 

pyrethroids reduce fitness of mosquitoes by reducing the number of eggs laid. Reduced 

fecundity is an indirect measure of pyrethroids on mosquito densities (m). This study 

suggests that SRs are likely to have greater impact on malaria transmission than initially 

considered because they influence more than one parameter of the vectorial capacity 

equation. This study underlines entomological parameters that are affected by SR and 

highlights the need for further field studies to confirm the results and demonstrate 

epidemiological impact. 

 

7.3. Where do SR fit in the malaria vector control strategies?  

 

The WHO currently recommends diagnosis of malaria cases and treatment with effective 

medicines; distribution of LLINs, to achieve full coverage of populations at risk of 

malaria; and IRS to reduce epidemic transmission and eliminate malaria at low 

transmission [35]. In endemic areas everyone should sleep under an LLIN irrespective of 

the age group [36]. LLINs are highly effective where mosquitoes are highly 

anthropohilic, endophagic, endophilic and bite late at night. Increasing reports of changes 

in mosquito behaviour or species shift of malaria vectors threaten the efficacy of bed 

nets. Mosquitoes have been shown to exhibit a range of behaviours that may attenuate 
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efficacy of LLINs including early evening and outdoor biting, exophily and avoidance of 

insecticide treated houses [31].  

7.3.1. Outdoor mosquito control 

 

Currently there are no vector control tools that target outdoor biting mosquitoes apart 

from insecticide treated materials such as pyrethroid treated clothing, hammock nets and 

use of topical repellents that are being used for personal protection against outdoor biting 

mosquitoes. Among these tools, topical repellents [37, 38] and long lasting insecticidal 

hammocks [39] have been shown to reduce malaria prevalence. Topical repellents are 

especially effective for personal protection but the effect on malaria control in a 

community may be undermined where there is minimal coverage and minimal 

compliance by users. This is because topical repellents prevent mosquitoes from feeding. 

Therefore mosquitoes that don‟t feed are likely to be diverted to non-users of the 

repellent [40]. Larviciding may also be used to control outdoor biting mosquito densities 

through larval source management where larval habitats can be identified and targeted. 

However it is likely to be inappropriate for rural settings in most parts of Africa where 

there are numerous larval habits that are not easy to identify and may be left out during 

treatment [41]. This study indicates that SR may be useful against early evening and 

outdoor biting mosquitoes because unlike personal protection tools they are likely to offer 

household protection due to the area wide effect which extends over several distances up 

to 15 meters. In addition to reduction of human biting rate SR used indoors also delay 

future mosquito feeding episodes and hence, they are likely to prevent diversion to non-

users and also reduce mosquito fitness by reducing fecundity. Therefore long-lasting 
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passive SR are likely to be superior to personal protection tools for community or 

programmatic control because they affect more than just the human biting rate of 

mosquitoes [10]. 

 

7.3.2. Combination with other control tools 

 

Mathematical modeling suggests that adding SR indoors in the same space as LLINs may 

reduce their efficacy. It is suggested that SR through excito-repellency may prevent 

mosquitoes from reaching bed nets and acquiring lethal doses [42]. This underscores the 

need to determine the effect of SR in the presence of LLINs as well as IRS. Laboratory 

and semi-field trials should be conducted to evaluate the effect of using SR products 

alongside LLINs and IRS that are treated with different active ingredients. Different 

techniques of combining SR with existing tools without influencing their efficacy should 

be developed. For instance SR may be used exclusively outdoors where mosquitoes are 

exophagic and exophilic when people are outdoors at the same times when vectors are 

active there. Another method may be combining a SR and an LLIN. A novel long lasting 

polymer-coating multi-layer technique was previously used to combine different 

repellents with pyrethroid treated nets. DEET combined with a permethrin treated bed net 

increased knock down, contact toxicity, spatial repellency and also reduced biting [43]. 

This technique is likely to be useful for adapting use of SR for malaria vector control. 

Lessons may be learnt from studies conducted to determine the effect of combining 

LLINs and IRS or durable wall linings [44-47]. Combining LLINs and non-pyrethroid 
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durable wall lining was shown to be more effective than using pyrethroid durable wall 

linings and the combination of interventions was less likely to select for resistance [47].  

 

7.3.3. Resistance management 

 

Resistance against pyrethroids has been reported in many endemic areas [48]. Increased 

use of pyrethroids through use of spatial repellent is likely to fuel development of 

pyrethroid resistance. May be it is worthwhile to develop other SR from new compounds 

that are not pyrethroids in order to lessen the burden of insecticide resistance. Despite 

this, a study carried out in Benin indicated that coils were effective against highly kdr 

resistant Cx. quinquefasciatus quinquefasciatus (Raphael N'Guessan pers. comm). 

Efficacy of SR against resistant mosquitoes may be explained by the fact that airborne 

repellent pyrethroids modulate the action of numerous odorant receptors and lead to 

multiple behavioral responses of mosquitoes that include reduced feeding and avoidance 

[27]. The target sites for repellent modes of action of pyrethroids are different from those 

involved in toxic effects that result in knock down and mortality of mosquitoes and this is 

to which insecticide resistance has developed. The most important question is whether 

resistance is likely to develop towards the anti-feeding and avoidance effects elicited 

through the effect of repellent pyrethroids on odorant receptors.  

7.3.4. Community studies 

 

It is important to consider mosquitoes that are prevented from feeding. Where do they 

go? Are they diverted to non-users leading to increased infectious bites? A study 
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conducted in Kilombero valley, Tanzania indicated that topical repellents that also 

prevented biting, increased the density of mosquitoes to nearby non-users by four fold 

[40]. Spatial repellents may be of minimal risk because apart from reducing feeding 

instantly, they delay feeding for hours and also induce mortality of mosquitoes. 

Nevertheless, it is necessary to conduct further studies that measure whether SR result to 

diversion when used at a large scale in the community. 

It is essential to not only develop SR products that are effective but also those that are 

readily acceptable by the targeted user. It is important to determine the preferences and 

choice of SR products. This will enable development of suitable delivery formats that are 

desirable and therefore increase compliance by users. In developing countries, there is 

need to develop affordable tools that do not require an external source of energy such as 

electricity. Paper emanators impregnated with metofluthrin have been shown to be 

effective against indoor and outdoor biting mosquitoes [49-51]. Development of 

emanators that last for several weeks or months is underway. In this study a delivery 

format for dispensing Transfluthrin from hessian strips was developed and evaluated 

[52]. Transfluthrin treated hessian strips reduced bites by more than 90% for more than 6 

months without retreating the fabric [52]. Long-term efficacy of the strips may be 

attributed to the high dose of Transfluthrin used. Two percent Transfluthrin (10ml of 

Transfluthrin/500ml of the solvent) was impregnated on a 4 x 0.3m long strip. The strips 

were used outdoors therefore the risk of users inhaling toxic amounts was lower due to 

increased airflow. However, toxicology studies giving a No Observed effect Level for 

chronic outdoor exposure will be needed before this product can be adapted for inclusion 

in vector control strategies. This information is useful in determining the minimal active 
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ingredient required to provide protection against mosquito bites as well as ensure safety 

for users. Application of the strip for use in a household was heavily criticized because 

the strips were presented in close proximity to users and which increased the risk of skin 

contact with the treated material. Further studies are being conducted with the aim to 

modify current strips into more user-friendly formats. The new formats will include 

reduced doses of Transfluthrin as well as improved formats that prevent direct skin or 

oral contact with chemical. If proven effective, the new formats will be a great tool for 

protecting people whilst outdoors in verandas especially in coastal tropical areas where 

evening and night temperatures are quite high; hence people rest, play, cook or sleep 

outdoors. The tools can also be used in outdoor restaurants in the early evening and late 

at night or by night watchmen. 

 

7.4. Conclusion 

 

This study elucidates the mode of action of SR. Spatial repellents mainly interfere with 

host seeking and thus ultimately prevent mosquitoes from blood feeding. This 

information is critical for the development of target product profiles for spatial repellent 

products. 

This study highlights the potential of SR for mosquito and malaria control and underlines 

several important entomological parameters that should be quantified in a proof of 

concept clinical trial in order to effectively determine the impact of SR on malaria 

epidemiology.  
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This study distinguishes between taxis and orthokinesis and reveals that airborne 

Transfluthrin elicits orthokinesis and do not prevent attraction of mosquito to humans but 

prevent them from blood feeding. This study also indicated that coils provide area wide 

protection and provided insights on how to use SR to provide a chemical “bubble that 

provides maximum efficacy. In addition, this study demonstrates that locally available 

natural fibres such as hessian/sisal [52] are promising absorbent substrates for dispensing 

volatile insecticides, such as Transfluthrin, without the need for electricity and they are 

likely to protect people against outdoor biting mosquitoes in tropical settings.  

Spatial repellents may be a suitable complementary option where mosquitoes feed in the 

early evening and/or rest outdoors. The role of SR in integrated approach of malaria 

control should be critically considered with an aim of complementing existing 

mainstream tools rather than undermining existing control efforts.  
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Glossary 

Anthropophilic: Tendency of hematophagous anthropods to prefer human hosts [53]. 

Attraction inhibition: Compounds with an effect that results in a reduction of the 

number of organisms that respond to an attractive stimulus [54]. In the case of insects this 

is accomplished by inhibition or excitation of olfactory receptor neurone responses [55]. 

Behavioristic avoidance: Also known as behaviouristic resistance or protective 

avoidance- modified behaviour whereby endophilic mosquito populations sometimes 

adapt to exophily in response to pressure of indoor residual spraying with excitorepellent 

insecticide [53]. 

Deet: N,N-diethyl-3-methylbenzamide (originally known as N,N-diethyl-meta-

toluarnide), usually abbreviated to deet or deet in literature. It is the dominant repellent 

used worldwide since the 1960s [53]. 

Deterrence: In the repellent context, something that inhibits feeding or oviposition when 

present in a place where insects would, in its absence, feed or oviposit [5]. It also refers to 

when mosquitoes are prevented from entering insecticide treated houses [56, 57]. 

Diversion: Movement of a haematophagous arthropod from a protected to unprotected 

target caused by the use of repellents [58]. 

Endophilic: Tendency of insects (especially female Anopheles mosquitoes of some 

species) to come into houses for biting nocturnally and resting diurnally [53]. 

Exophilic: Behavioral tendency of female insects to stay outdoors [53]. 
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Excito-repellency: A chemical that causes insects to make undirected movements that 

set them apart from the source [5]. This is due to a combination of orthokinesis 

undirected changes in the speed and klinokinesis undirected changes in the rate of turning 

of an organism depending on the intensity of the stimulus. When exposed to excito-

repellent insecticides such as DDT mosquitoes tend to move towards to the light resulting 

in escape from treated houses [14]. 

Feeding inhibition: An inhibitor is a compound that suppresses the action with another 

compound. Several repellents have been shown to suppress insect attraction to a resource, 

e.g. inhibitor of attraction [22]. Therefore feeding inhibition is whereby mosquitoes are 

prevented from biting and/or feeding on humans [56].  

Irritancy: The terms irritancy and excito-repellency are used interchangeably to refer to 

increased undirected activity of mosquitoes through orthokinesis or klinokinesis arising 

after 1) tarsal contact with insecticide treated surfaces “contact irritancy” or 2) airborne 

insecticides, “non-contact irritancy” [4].  

Knockdown: Sublethal incapacitation; early symptom of an insect responding to a 

pesticide; not necessarily lethal because metabolic recovery may occur [53]. 

Olfactory receptor Perception of chemicals in the environment by insects begins when 

compounds activate ionotropic receptors (IR), gustatory receptors (GR) and odorant 

receptors (ORs) located on the dendritic surface of olfactory receptor neurons (ORNs), 

chemosensory neurons housed in a head appendage (e.g. antenna or palp) [59]. Olfactory 

receptors recognize biologically meaningful chemical ligands, governing their sensitivity 

and specificity thus regulating innate and learned olfactory behaviours including 
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attraction and repellency [60]. The expression of ORs follows the general rule of one OR 

to one ORN. Rather than binding specific ligands, olfactory receptors may display an 

affinity for a range of odour molecules, and conversely a single odorant molecule may 

bind to a number of olfactory receptors with varying affinities, with some such as 

pheromone receptors showing high affinities (specificities). The insect odorant receptors 

are atypical 7-transmembrane domain proteins that form ligand-gated ion channels by 

assembling a ligand-selective subunit with the olfactory correceptor Orco [61]. 

Orthokinesis: Irritation effect which causes insects to move undirected to stimulus 

gradient and increase their activity with the result that there would be a decreased number 

on the surface [5]. 

Pyrethroids: Numerous synthetic organic compounds, mostly based on the 

chrysanthemate moiety of pyrethrum, having analogous neurotoxic modes of action 

causing rapid knockdown and insecticidal effects [53]. 

Repellent: a chemical that causes insects to make oriented movements of avoidance 

without having made actual tarsal contact with the chemical stimulant [5]. 

Spatial repellent: refers to all mosquito behavioural reactions induced by any airborne 

chemicals that cause mosquitoes to eventually sit apart from the source of stimulation [6]. 

Taxis: Immediate directional avoiding reaction [5]. 

Vectorial capacity: the expected number of new human malaria infections disseminated 

per human per day, by a mosquito population from a single case, presuming that all 

vector females feeding on the case become infective [62]. 
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Zoophilic: Tendency of hematophagous insects to bite or prefer hosts other than humans 

[53]. 
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United States  
Environmental Protection Agency 
Office of Prevention, Pesticides and Toxic Substances 
(7505P) 

_______________________________________________________ 

Pesticide 
Fact Sheet 

 
Name of Chemical: Metofluthrin 
Reason for Issuance: New Chemical 
 Nonfood Use 
Date Issued: September 2006 

_______________________________________________________ 
 
 
Description of Chemical
 
IUPAC name: 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl (EZ)-

(1RS,3RS;1RS,3SR)-2,2-dimethyl-3-prop-1-
enylcyclopropanecarboxylate 

 
CAS name: [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 

2,2-dimethyl-3-(1-propenyl)cyclopropanecarboxylate 
 
Common Name:   Metofluthrin 
 
Empirical Formula: C18H20F4O3
 
EPA Chemical Code: 109709 
 
Chemical Abstracts  
Service (CAS) Number:  240494-70-6 
 
Chemical Class:   Pyrethroid ester  
 
Registration Status:   New Chemical, nonfood use 
 
Pesticide Type:   Insecticide repellent not applied to human skin 
 



U.S.Technical Registrant : Sumitomo Chemical Company, LTD. 
 1330 Dillon Hghts. Ave. 
 Baltimore, MD 21228 
  
 
Use Pattern and Formulations 
 
Currently there are two end use products being proposed for metofluthrin. 
DeckMate ™ Mosquito Repellent Strip is an impregnated paper strip (~3,528 cm2) 
containing 1.82 percent metofluthrin as the active ingredient.  The product also contains 
Bitrex ™ to discourage oral exposure to children or animals.  The product is for use on 
patios, campsites, decks, cabanas, and other outdoor areas.  One strip is applied per 10 ft 
× 10 ft outdoor area.  Indoors the application rate is two strips per 50 m3. There are 
approximately 200 mg of metofluthrin initially in the strip.  The strips can provide up to 
one week of protection   Metofluthrin evaporates readily and therefore requires no 
external heat. 
  
Norm 1- is a personal outdoor insect repellent product consisting of a holder containing a 
replaceable cartridge insert coated with up to 50 mg of metofluthrin.  The product is 
activated by turning on a battery powered fan to release the metofluthrin into the air 
surrounding the individual.  The device can be worn by adults or children for up to 12 
hours although a specific time is not presented on the proposed label.  A time of 12 hours 
was used in the exposure study and was used by the Agency.  There are no label 
restrictions on who can use the products or the use frequency.   
 
There are no proposed agricultural or occupational uses for metofluthrin.   
 
Science Findings 
 
Available product chemistry data supporting the use of flufenoxuron are summarized 
below in Tables 1 and 2.   



TABLE 1 Nomenclature and Physiochemical Properties of Metofluthrin 
Chemical Structure 

 
Empirical Formula C18H20F4O3

Common name Metofluthrin 
Company 
experimental name 

S-1264 

IUPAC name 2,3,5,6-tetrafluoro-4-(methoxymethyl)benzyl (EZ)-(1RS,3RS;1RS,3SR)-2,2-
dimethyl-3-prop-1-enylcyclopropanecarboxylate 

CAS name [2,3,5,6-tetrafluoro-4-(methoxymethyl)phenyl]methyl 2,2-dimethyl-3-(1-
propenyl)cyclopropanecarboxylate 

CAS Registry 
Number 

240494-70-6 

End-use product/EP SumiOne®, Eminence® 
Chemical Class Pyrethroid ester  
 
TABLE 2 Physiochemical Properties of Technical Grade Metofluthrin 

Molecular Weight 360.34 
Melting point/range NA 
pH 5.24 at 25°C (1% aqueous solution) 
Density 1.21 at 20°C 
Water solubility (20°C) 0.67 mg/L (20°C) for (S-1264RTE) 

0.50 mg/L (20°C) for (S-1264RTZ) 
Solvent solubility (20°C to 25°C) 
(g/L) 

Acetone 303.4, methanol 312.2, ethyl acetate 307.6, toluene 326.9, 
n-hexanes 328.7, dichloromethane 318.9, n-octanol 325.1, isopropyl 
alcohol 313.2 

Vapor pressure (25°C) 1.47x10-5 Torr 
Dissociation constant, pKa Could not be measured 
Octanol/water partition coefficient, 
logPOW (25°C) 

5.03 (S-RTE) 
4.97 (S-RTZ) 

UV/visible absorption spectrum In 100% methanol: peak maximum = 273 nm, extinction coefficient 
= 1670 M-1cm-1, band width 23 nm 

  
TOXICOLOGY SUMMARY 
The Registrant submitted the studies listed in Tables 3 and 4, which include a number of 



toxicity studies.  These include the usual acute studies for metofluthrin technical.  The 
Registrant has also submitted oral, dermal and inhalation studies as well as chronic, 
carcinogenicity and developmental studies as shown in Table 4. 

 
 

TABLE 3 Acute Toxicity Profile – Test Substance 
 
Guideline No./ 
Study Type 

 
MRID 
No. 

 
Results 

 
Toxicity Category 

 
870.1100 Acute 
oral toxicity 

 
46406719 

 
LD50 > 2000 
mg/kg 

 
III 

 
870.1200 Acute 
dermal toxicity 

 
46406721 

 
LD50 >= 2000 
mg/kg 

 
III 

 
870.1300 Acute 
inhalation 
toxicity 

 
46406723 

 
LC50 > 1.08 and 
< 1.96 mg/L 

 
III 

 
870.2400 Acute 
eye irritation 

 
46406724 

 
Not an eye 
irritant 

IV 

 
870.2500 Acute 
dermal irritation 

 
46406724 

 
Mildly irritating 
to the skin (PDI 
= 0.8) 

 
IV 

 
870.2600 Skin 
sensitization 

 
46406726 

 
Not a dermal 
sensitizer 

 
- 

 
 

Table 4  Subchronic, Chronic, and Other Toxicity Profile 
Guideline No./ Study 

Type 
MRID No. (year)/ Classification 

/Doses 
Results 

870.3100 
90-Day oral toxicity 
rats 
(Wistar rats) 

46454109 (2003) 
Acceptable/Guideline 
 
0, 100, 300, 1000,  or 2500 ppm 
M:  0, 6.8, 20.6, 70.4, or 183.6 
mg/kg/day 
F:  0, 7.5, 21.6, 73.0, or 185.6 
mg/kg/day 

NOAEL = 20.6/21.6 mg/kg/day 
LOAEL = 70.4/73.0 mg/kg/day, based on increased 
absolute and relative liver weights in both sexes; 
increased serum total cholesterol and phospholipids 
levels in males, and increased incidences of 
enlarged livers, hepatocellular hypertrophy, and 
basophilia in males; and decreased body weight 
gain in females. 

 
870.3100 
Subchronic (6-month) 
oral toxicity rats 
(Sprague-Dawley rats) 

46406733 (2002) 
Acceptable/Guideline 
 
0, 100, 300, 1000, or 3000 ppm 
M:  0, 5.3, 16.0, 54.1, 164.6 
mg/kg/day 
F:  0, 6.4, 19.0, 65.4, 191.4 
mg/kg/day 

NOAEL = 16.0/19.0 mg/kg/day 
LOAEL = 54.1/65.4 mg/kg/day, based on increased 
relative liver weights, serum phospholipids, and 
total cholesterol levels in males;  increased 
incidences of dark, enlarged livers and 
hepatocellular hypertrophy in both sexes; and an 
increased incidence of slight focal hepatic necrosis 
in females.   



Table 4  Subchronic, Chronic, and Other Toxicity Profile 
Guideline No./ Study 

Type 
MRID No. (year)/ Classification 

/Doses 
Results 

870.3100 
90-Day oral toxicity in 
mice 
(CD-1 mice) 

46454108 (2004) 
Acceptable/Guideline 
0, 100, 1500, 2500, or 3500 ppm 
M:  0, 13.7, 20.9, 35.7, or 48.7 
mg/kg/day 
F:  0, 17.2, 25.2, 43.9, or 58.7 
mg/kg/day 

NOAEL = 35.7/43.9 mg/kg/day 
LOAEL = 48.7/58.7 mg/kg/day, based on findings 
indicative of hepatotoxicity including increased 
absolute and relative liver weights in both sexes; 
increased serum total cholesterol, phospholipids, 
and triglycerides in females; and minimal 
degeneration/necrosis of the liver and minimal to 
moderate hepatocellular hypertrophy in both sexes, 
and increased Kupffer cells in males.  

870.3150  
90-Day oral toxicity in 
dogs (Beagles) 

46406734 (2002) 
Acceptable/Guideline 
 
0, 10, 30, or 100 mg/kg/day 

NOAEL = 30 mg/kg/day 
LOAEL = 100 mg/kg/day, based on tremor and 
vomiting observed in both sexes 

870.3250 
90-Day dermal 
toxicity in rats 
(Sprague-Dawley) 

46556101 (2004) 
Acceptable/Guideline 
 
0, 30, 100, 300, or 1000 
mg/kg/day  

Systemic NOAEL = 300 mg/kg/day 
Systemic LOAEL = 1000 mg/kg/day, based on 
mortality and clinical signs (tremor and salivation) 
 
Dermal NOAEL = not determined 
Dermal LOAEL = 30 mg/kg/day, based on 
hyperactivity and vocalization in the females during 
the daily exposure period 

870.3465  
Subchronic inhalation 
study in rats  
(Sprague-Dawley) 

46406736 (2002) 
Acceptable/Guideline 
 
0, 10, 50, 100, or 200 mg/m3 

0, 0.01, 0.051, 0.099, or 0.196 
mg/L) 
M: 4 hrs/day, 28 days 
F: 4 hrs/day, 29 days 

NOAEL = 0.099 mg/L 
LOAEL = 0.196 mg/L, based on mortality and 
clinical signs including tremors, hypersensitivity, 
ataxic gait, tiptoe gait, lateral position, clonic 
convulsion, and hypothermia in both sexes.  
Clinical signs began on days 1-4 and occurred 
consistently in the males and transiently in females 
thereafter. 

870.3700a 
Prenatal 
developmental in rats  
(Sprague-Dawley) 

46454111 (2002) 
Acceptable/Guideline 
 
0, 5, 15, or 30 mg/kg/day from 
GD6 – GD19 

Maternal NOAEL = 15 mg/kg/day 
Maternal LOAEL = 30 based on increased 
incidence of tremor 
 
Developmental NOAEL = 30 mg/kg/day 
Developmental LOAEL = not observed 

Prenatal 
developmental in rats  
(Sprague-Dawley) 

46454112 (2002) 
Acceptable/Non-Guideline 
 
M: 0, 10, or 20 mg/kg/day 
beginning 2 weeks prior to mating 
through necropsy (57 days) 
F:  0, 10, 20, or 40 mg/kg/day 
beginning 2 weeks prior to mating 
through GD7 

Parental NOAEL = 20 mg/kg/day (both sexes) 
Parental LOAEL = 40 mg/kg/day, based on 
mortality and incidences of tremors and salivation 
in females. 
 
Reproduction NOAEL = 20/40 mg/kg/day M/F 
 
Developmental NOAEL = 40 mg/kg/day in females 
Developmental LOAEL = not observed 

Prenatal 
developmental in rats 
(Sprague-Dawley 

46454113 (2002) 
Acceptable/Non-guideline 
 
0, 5, 15, or 30 mg/kg/day from 
GD6 through LD20 

Maternal NOAEL = 15 mg/kg/day 
Maternal LOAEL = 30 mg/kg/day, based on 
mortality and increased incidences of tremors and 
salivation. 
 
Reproductive NOAEL = 30 mg/kg/day 
Reproductive LOAEL = not observed 
 
Developmental NOAEL = 30 mg/kg/day 
Developmental LOAEL = not observed 



Table 4  Subchronic, Chronic, and Other Toxicity Profile 
Guideline No./ Study 

Type 
MRID No. (year)/ Classification 

/Doses 
Results 

870.3700b 
Prenatal 
developmental in 
rabbits 
(New Zealand White) 

46454114 (2002) 
Acceptable/Guideline 
 
0, 25, 125, or 250 mg/kg/day 
from GD6 – GD27 

Maternal NOAEL = 25 mg/kg/day 
Maternal LOAEL = 125 mg/kg/day, based on 
mortality 
 
Developmental NOAEL = 250 mg/kg/day 
Developmental LOAEL = not observed 

870.4100a 
Chronic toxicity 
rodents 
(Wistar rats) 

46611301 (2005) 
Acceptable/Guideline 
0, 20, 200, 900, or 1800 ppm 
M: 0, 0.8, 8.2, 38.1, or 77.8 
mg/kg/day 
F: 0, 1.0, 10.1, 47.4, or 96.1 
mg/kg/day 

NOAEL = 8.2/10.1 mg/kg/day 
LOAEL – 38.1/47.4 mg/kg/day, based on decreased 
body weights and body weight gains in both sexes; 
increased incidence of hepatic clear cell foci in both 
sexes; increased fatty liver change, and kidney 
lesions (including interstitial fibrosis, lipofuscin, 
mononuclear foci, and glomerulosclerosis) in 
males; increased centrilobular hepatocellular 
hypertrophy in females 

870.4100b 
Chronic toxicity dogs 
(Beagle) 

46454110 (2004) 
Acceptable/Guideline 
 
0, 10, 30, or 100 mg/kg/day 

NOAEL = 10 mg/kg/day 
LOAEL = 30 mg/kg/day, based on increased 
incidence of tremor in males. 

870.4300 
Carcinogenicity mice 
(CD-1 mice) 

46611302 (2005) 
Acceptable/Guideline 
0, 100, 1000, or 1750/2500 ppm 
M: 0, 12, 116, or 209 mg/kg/day 
F: 0, 15, 155, or 277 mg/kg/day 

NOAEL =  116/155 mg/kg/day 
LOAEL = 209/277 mg/kg/day, based on decreased 
body weight gain in both sexes. 

Gene Mutation 
870.5100 Bacterial 
Reverse Gene 
Mutation Assay 

46406742 (2002) 
Acceptable/Guideline 
0, 156, 313, 625, 1250, 2500, or 
5000 μg/plate +/- S9 in S. 
typhimurium TA98, TA100, 
TA1535 and TA1537 and E. Coli 
WP2 uvrA 

There was no evidence of induced mutant colonies 
over background levels. 

Gene Mutation 
870.5100 In vitro 
Bacterial Gene 
Mutation Assay 

46454115 (2004) 
Acceptable/Guideline 
Trial 1 (-S9): 4.88, 9.77, 19.5, 
39.1, 78.1, or 156 μg/plate strains 
TA100, TA1535 
  
Trial 2 (+S9): 19.5, 39.1, 78.1, 
156, 313, or 625 μg/plate  strains 
TA100, TA1535, and TA1537  
 
Trial 3 (+/-S9): 156, 313, 625, 
1250, 2500, or 5000 μg/plate 
strains TA98 and WP2uvrA  

There was no evidence of induced mutant colonies 
over background levels. 



Table 4  Subchronic, Chronic, and Other Toxicity Profile 
Guideline No./ Study 

Type 
MRID No. (year)/ Classification 

/Doses 
Results 

Cytogenetics  
870.5375  In vitro 
Mammalian 
Cytogenics 
(Chromosomal 
Aberration Assay in 
Chinese Hamster Lung 
Fibroblasts) 

46406744 (2002) 
Acceptable/Guideline 
 
Trial 1 (-S9): 50, 70, 90, 110, or 
130 μg/mL  
Trial 1 (+S9): 50, 100, 150, 200, 
or 250 μg/mL 
 
Trial 2 (-S9) 20, 50, 80, or 110 
μg/mL Trial 2 (+S9): 100, 150, 
200, or 250 μg/mL  

There was no evidence of chromosome aberration 
induced over background in the presence or absence 
of S9-activation. 

Other Effects  
870.5395  In vivo 
Mammalian 
Cytogenetics – 
Erythrocyte 
Micronucleus Assay in 
Mice  

46406745 (2002) 
Acceptable/Guideline 
0, 12.5, 25, or 50 mg/kg 

There was no significant increase in the frequency 
of micronucleated polychromatic erythrocytes in 
bone marrow compared to controls. 

870.6200a 
Acute neurotoxicity 
screening battery 
(Sprague-Dawley) 

46406728 (2004) 
Acceptable/Guideline 
 
0, 20, 50, or 100 mg/kg 

NOAEL = 50 mg/kg 
LOAEL = 100 mg/kg, based on mortality, adverse 
clinical signs, FOB (unusual behavior, limb 
twitches/tremors, and abnormal respiration) effects, 
and increased motor activity in both sexes. 

870.6200b 
Subchronic 
neurotoxicity 
screening battery 
(Sprague-Dawley) 

46406729 (2004) 
Acceptable/Guideline 
 
0, 300, 1000, or 3000 ppm 
 
M:  0, 18.3, 59.8, or 178.8 
mg/kg/day 
F:   0, 20.9, 68.8, 206.0 
mg/kg/day 

Systemic NOAEL = 59.8/68.8 mg/kg/day 
Systemic LOAEL = 178.8/206.0 mg/kg/day, based 
on mortality (females only); clinical signs 
(soft/liquid feces and scant feces in the males and 
tremors and twitches in the females); decreased 
body weight, body weight gain, and absolute and 
relative food consumption in both sexes. 
 
Neurotoxicity NOAEL = 59.8/68.8 mg/kg/day 
Neurotoxicity LOAEL = 178.8/206.0 mg/kg/day, 
based on the clinical signs of tremors and twitches 
in the females 

870.7485 
Metabolism and 
pharmacokinetics 

46406746, 46406747, 46406748, 
46414002, and 46414003 (2004) 
Acceptable/Guideline 
 
1 or 20 mg/kg for single dose 
studies 
 
1 mg/kg for 21 day studies 
 

Overall recoveries were 95-97% for both dose 
groups.  Absorption was rapid (detectable plasma 
residues within 30 minutes, Tmax 3.3-8.0 hours) and 
thorough (>80% absorption).  Absorption was not 
dose limited.  At 168 hours post dosing, urinary and 
fecal excretion accounted for 29-71% and 25-66% 
of the total administered dose, respectively.  
Radioactivity increased above plasma levels in both 
liver and kidney, but dissipated 12 hours post-dose.  
46 metabolites were identified, including all major 
metabolites. 

Non-Guideline 
An evaluation of the 
human relevance of 
the metofluthrin-
induced liver tumors 
in rats based on mode 
of action 
 

46756304 (2006) 
Acceptable/Nonguideline 
 

Summary of proposed MOA and weight of the 
evidence.  The MOA for metofluthrin-induced liver 
tumors is postulated to involve liver cytochrome 
P450 enzyme induction leading to stimulation of 
increased cellular proliferation. 
 
MOA not accepted by CARC due to insufficient 
data. 



Table 4  Subchronic, Chronic, and Other Toxicity Profile 
Guideline No./ Study 

Type 
MRID No. (year)/ Classification 

/Doses 
Results 

Non-Guideline 
Study for the mode of 
action of S-1264 for 
liver tumor promotion 
in rats 
(Wistar rats) 

46581501 (2005) 
Acceptable/Nonguideline 
0, 900, 1800, or 3600 ppm in the 
diet for 7 days 
 
Concurrent recovery group fed 
basal diet for 7 days following 
treatment period 

Liver morphology and enzyme induction were 
affected in at 900 ppm and above, as evidenced by  
increased liver weights, hepatocellular hypertrophy, 
replicative DNA synthesis in the hepatocytes, 
induction of CYP 2B and 3A mRNA, and increased 
expression of CYP 2B.  All of these findings were 
reversible on cessation of treatment.  
 

Non-Guideline 
The 2nd study of mode 
of action of S-1264 for 
liver tumor promotion 
in rats 

46756301 (2006) 
Acceptable/Nonguideline 
0, 200, 900, 1800, or 3600 ppm in 
diet for 7 days 

Metofluthrin inhibited gap junction interactions (as 
evidenced by decreased dye transfer) and induced 
oxidative stress (measured by lipid oxidation and 
GSH levels). 
 

Non-guideline 
Study for mode of 
action of S-1264 for 
liver tumor promotion 
in rats (in vitro effects 
of S-1264 on 
cytochrome P450 
activity and mRNA 
levels) 

46756302 (2006) 
Acceptable/Nonguideline 
 
Rat, mouse, and human 
hepatocytes were exposed 50 μM 
metofluthrin for 3 days, and 
comparative metabolic profiles 
were examined. 

Metofluthrin induced CYP 2B mRNA and 7-
pentoxyresorufin O-depentylase activity in rat and 
human hepatocytes, but not in mouse hepatocytes, 
but the induction level was less than that of 
phenobarbital induction in human hepatocytes. 
 

Non-Guideline 
Gene expression 
profiling analysis of 
early phase treatment 
in the liver from S-
1264 treated rats 
 

46756303 (2006) 
Acceptable/Nonguideline 
 
Wistar rats were exposed to 1800 
ppm metofluthrin for 1 week.  
DNA microarray was used to 
evaluate gene expression. 

The majority of genes upregulated by metofluthrin 
were GSTs, CYPs, and UDPGTs.  In general, this 
resembled the upregulation of Phenobarbital, only 
to a lesser degree. 
 

 
 

HAZARD CHARACTERIZATION/ASSESSMENT 
Potential areas of environmental justice concerns, to the extent possible, were considered 
in this human health risk assessment, in accordance with U.S. Executive Order 12898, 
“Federal Actions to Address Environmental Justice in Minority Populations and Low-
Income Populations.”  http://www.eh.doe.gov/oepa/guidance/justice/eo12898.pdf
 
Human Testing:  This risk assessment does not rely on any data from studies in which 
human subjects were intentionally exposed to a pesticide or other chemical. 
 
Hazard and Dose-Response Characterization  
 
The toxicology database for metofluthrin is complete for the proposed use pattern.  
Although metofluthrin is a neurotoxicant, a developmental neurotoxicity (DNT) study is 
not necessary at this time. However, if new uses are proposed, the need for a DNT study 

http://www.eh.doe.gov/oepa/guidance/justice/eo12898.pdf


will need to be re-evaluated.  The risk assessment team is confidant that risk to pregnant 
women and children will not be underestimated due to: 1) regulatory endpoints are based 
on neurotoxicity, 2) no neuropathy or changes in morphometrics were observed in the 
acute and subchronic neurotoxicity studies, and 3)  for pyrethroids where DNT studies 
are available for endpoint consideration, the regulatory endpoints are generally based on 
neurotoxicity to dogs because dogs are more sensitive to pyrethroids than rats (it is 
unlikely that a DNT in rats would produce a lower neurotoxicity NOAEL than the 
NOAEL from the chronic dog study). 
 
 Summary and Discussion of Dose Related Effects 
Metofluthrin, like other pyrethroids, is neurotoxic in rats, rabbits, and dogs; both sexes 
were equally sensitive to metofluthrin.  Clinical signs include tremor (all species), 
vomiting (dog only), and increased salivation (rats and dogs).  Clinical signs appeared 
within 206 hours post-dosing and generally disappeared by the dosing period the 
following day.  All routes of exposure (oral, dermal, and inhalation) elicited neurotoxic 
effects in rats.  Rats appeared to be most sensitive via the inhalation route, based on 
clinical signs including ataxic gait, tremors, tip-toe gait, lateral position, clonic 
convulsion, hypothermia, and mortality in both sexes.  In the acute neurotoxicity battery, 
neurotoxic effects were seen in rats following a single dose of 100 mg/kg/day including 
mortality, tremors/twitches, abnormal respiration, and increased motor activity (acute 
NOAEL = 50 mg/kg/day).  Dermal exposure to 10 mg/kg/day in rats produced increased 
vocalization during the daily application period, which subsided after the removal of the 
chemical.  There were no systemic effects resulting from dermal exposure.   In 
subchronic exposures in rats (based on the subchronic and developmental studies, 
NOAELs ranged 15-20 mg/kg/day) the LOAELs range from 30-54.1 mg/kg/day, based 
on liver effects and neurotoxicity.  Neurotoxicity was not noted in the chronic studies.  
The dose-response curve for neurotoxicity is steep with mortality occurring frequently at 
the LOAEL; death was preceded by tremor, convulsion, salivation, and prostration. 
 
Metofluthrin also targeted the liver in rats and mice, producing increased absolute and 
relative liver weights, hepatocellular hypertrophy, and increase incidence of enlarged, 
discolored livers.  Hepatocellular toxicity was present at or above 48.7 mg/kg/day in mice 
and 54.1 mg/kg/day in rats in the subchronic studies.  In the chronic rat study, exposure 
to metofluthrin was connected to increased incidence of hepatocellular adenomas, 
carcinomas, and combined tumor types at doses greater than or equal to 38.1 mg/kg/day.  
The registrant submitted a proposed mitogenic mode of action (MOA) for hepatocellular 
tumor induction.  While these studies did suggest a mitogenic MOA was plausible, the 
studies did not provide enough information for the Agency to accept their proposed 
MOA.  Metofluthrin is not mutagenic or cytotoxic; it does not induce peroxisomal 
proliferation.  The Agency classified this chemical as “likely to be carcinogenic to 
humans” and generated a Q1* of 1.62x10-2, based on the increased liver tumors in 
female rats. 
 
In utero and/or post-natal exposure to metofluthrin did not produce any evidence of 
increased qualitative or quantitative susceptibility in fetuses or pups.   Four acceptable 
developmental studies in rats and rabbits were submitted for metofluthrin.  Maternal 
toxicity was seen at or above 30 mg/kg/day in rats (tremor, salivation, and mortality) and 
125 mg/kg/day in rabbits (mortality, preceded by tremor/convulsion).  These doses did 



not produce any developmental effects on the fetuses or pups.   A developmental toxicity 
study is not being requested at this time for the following reasons: 1) neurotoxicity is well 
defined within the toxicology database, 2) regulatory endpoints are based on the 
neurotoxicity, and 3)  there were no pathology findings or changes in morphometrics 
noted in either the acute or subchronic neurtoxicity studies.  The FQPA safety factor has 
been reduced to 1x. 
 
Considerations for Infants and Children 
The toxicity database for this chemical is complete for the purposes of this risk 
assessment.  Acceptable neurotoxicity and developmental studies have been submitted 
for review.  Though not required for a non-food use registration, a 2-generation rat 
reproduction study is being conducted.  The Agency has received preliminary results in a 
6(a)(2) document, but the final study report has not been submitted at this time. 
 
Neurotoxicity 
Evidence of neurotoxicity exists throughout the entire toxicology database via the oral 
route of exposure in three species (rats, rabbits, and dogs) and via dermal and inhalation 
routes of exposure in rats.   
 
In the acute neurotoxicity study in rats, a single dose of 100 mg/kg produced tremors, 
twitches, abnormal respiration, increased motor activity, and mortality.  The animals 
found dead or in extremis 24 hours post-dosing (7 out of 20 animals) exhibited signs of 
clonic convulsions, hyperpnea, prostration, lost righting reflex, soft or liquid feces, tonic 
extensor convulsions, salivation, chromorhinorrhea, and chromodachyorrhea.  In the 
subchronic neurotoxicity study, the LOAEL (59.8/68.8 M/F, respectively) was based on 
mortality in the females; clinical signs including tremors and twitches (in females); 
decreased body weight and body weight gain, and absolute and relative food 
consumption in both sexes.  Neither study indicated neuropathy. 
 
In a subchronic oral study in rats, all animals exhibited signs of tremor 2-6 hours post-
dosing during Week 1 of treatment at doses above 164.6 mg/kg/day; 0-2 animals/sex 
exhibited transient tremors throughout Weeks 2-3.  No clinical signs were observed after 
Week 3.  At 100 mg/kg/day in the subchronic dog study, 5/6 males showed signs of 
tremor (1-7 incidences/animal) beginning on Day 23 and 5/6 females showed signs of 
tremor (1-5 incidences/animal) beginning on Day 10.  Mild repetitive jerks or tremors of 
the head, limb or body were seen in 1 animal/sex at Weeks 12-13 (male) and Weeks 11 
and 13 (female); these effects were evidenced during cage-side and table top 
observations. Three developmental rat studies were performed for metofluthrin; all three 
maternal LOAELs were based on tremor and salivation and two maternal LOAELs 
included mortality.   
 
 In the subchronic dermal study in rats, two females were found dead on Day 2 in the 
1000 mg/kg/day dose group.  One female, before being found dead, displayed tremors 
prior to dosing and salivation 3-5 hours post-dosing.  Hyperactivity and vocalization were 
transiently observed in the >= 30 mg/kg/day females and >= 100 mg/kg/day males during 
the daily application period on Days 1-4.  There were no treatment-related clinical signs 
outside of the daily dosing period.   
 



In the 28-day inhalation toxicity study in rats, 7/10 males and 3/10 females in the 0.196 
mg/L dose group died.  At this concentration, tremors of the tail and body were observed 
during the treatment period; tremor, hypersensitivity, ataxic gait, tiptoe gait, lateral 
position, clonic convulsion, and hypothermia were observed.  Onset occurred on Days 1-
4, and clinical signs were transiently seen until Day 26 in males and less frequently in the 
females until Day 24.   
 
No evidence of neurotoxicity was recorded in either the rat or the mouse 
chronic/carcinogenicity studies.  Increased incidence of tremor was observed in males at 
30 mg/kg/day in the chronic dog study.  Tremor was observed in the head, limbs, or body 
of all males beginning on Day 96 (1-5 incidences/dog except one male with 46 
incidences) and in only one female and only on Day 289.  Tremors were observed 2-6 
hours post-dosing and disappeared by the time of observation the next morning. 
 
Developmental Toxicity 
Acceptable guideline developmental toxicity studies in rats and rabbits have been 
submitted for review, along with two acceptable non-guideline developmental studies in 
rats.  In the three rat studies (MRID 46454111, 46454112, 46454113) maternal toxicity 
was observed in the form of neurotoxicity (tremors and salivation) and death.  Neurotoxic 
effects were observed 2-3 hours post dosing and disappeared by the following day.  The 
maternal NOAELs ranged from 15-20 mg/kg/day, and the maternal LOAELs ranged 
from 30-40 mg/kg/day.  No developmental effects were seen in the rat studies up to 40 
mg/kg/day.  In one non-guideline study (MRID 46454112) males and females were dosed 
during the premating and mating periods all the way through gestation day (GD)7 for 
females.  No reproductive effects were noted in either the males or females up to 20/40 
mg/kg/day (males/females, respectively, highest dose tested).    In the other non-guideline 
study (MRID 46454113), the female rats were dosed from GD6 (implantation) through 
lactation day (LD)20.  Reproductive effects were not observed in the P or F1 generations.  
There were no offspring effects noted with regard to FOB results, sensory reflexes, 
clinical signs, developmental landmarks, body weights, or gross pathology up to the 
highest dose tested of 30 mg/kg/day.   
 
In the rabbit developmental study, one female in the 125 mg/kg/day group exhibited 
sneezing and convulsions before death on GD23.  One female in the 250 mg/kg/day dose 
group was found dead on GD14.  These deaths were considered treatment related because 
another female was found dead with convulsions preceding death in the range finding 
study at 200 mg/kg/day.  There were no other mortalities or clinical signs; the LOAEL 
was determined to be 125 mg/kg/day.   The maternal NOAEL is 25 mg/kg/day.  There 
were no treatment-related effects on developing fetuses;  the developmental LOAEL was 
not observed.  The developmental NOAEL was determined to be 250 mg/kg/day, the 
highest dose tested. 
 
Reproductive Toxicity 
A reproductive study in rats has not been submitted to the EPA at this time.  However, 
the Agency has received a 6(a)(2) document indicating that a 2-generation reproduction 
study in rats is being performed.  Preliminary findings include neurotoxic effects 
(tremors, convulsions, and salivation) in the F1 and F2 generations.  When the final study 
report is submitted, a full review of the data will be conducted.   



 
 
Pre-and/or Postnatal Toxicity 
There were no effects on fetal growth or development up to 40 mg/kg/day in rats or 250 
mg/kg/day in rabbits; doses at which maternal toxicity was present.  There were no 
treatment related effects on the numbers of litters, fetuses (live or dead), resorptions, sex 
ratio, or post-implantation loss.  There were no effects on fetal body weights or skeletal 
ossification; and no external, visceral, or skeletal malformations or variations were 
observed. 
 
Developmental Neurotoxicity  
A DNT study is not being requested at this time; however, because this chemical is part 
of the pyrethroid class, the need for a DNT study will be re-evaluated for all future 
proposed uses 
 
Summary of Toxicological Doses and Endpoints for Metofluthrin for Use in Human 

Risk Assessments 
Table 3.4.2  Summary of Toxicological Doses and Endpoints for Metofluthrin for Use in Non-
Occupational Human Health Risk Assessments 
Exposure/ 
Scenario 

Point of 
Departure 

Uncertainty 
Factors 

Level of 
Concern for 
Risk 
Assessment 

Study and Toxicological Effects 

Incidental Oral 
Short-Term (1-
30 days) 

NOAEL = 
15  
mg/kg/day 

UFA= 10x 
UFH=10x 
 

Residential 
LOC for MOE 
= 100 

Developmental Rat Study 
LOAEL = 30 mg/kg/day based on 
increased incidence of tremor in 
maternal animals 

Dermal Short-
Term (1-30 
days) 

NOAEL= 
300 
mg/kg/day 
 
 

UFA= 10x 
UFH= 10x 
 

Residential 
LOC for MOE 
= 100 
 

 

90-Day Dermal Rat Study 
LOAEL = 1000 mg/kg/day based on 
mortality and clinical signs  

Inhalation  
Short-Term 
(ALL 
DURATIONS) 

NOAEL = 
16 
mg/kg/day 
 

UFA= 10x 
UFH =10x 
 

Residential 
LOC for MOE 
= 100 

28-Day Inhalation Study in Rats 
LOAEL = 32 mg/kg/day based on 
mortality and clinical signs including 
tremors, ataxia, hypersensitivity, ataxic 
gait, tiptoe gait, lateral position, clonic 
convulsion, and hypothermia in both 
sexes 

Cancer (oral, 
dermal, 
inhalation) 

Likely to 
be a human 
carcinogen 

Q1* = 
1.62x10-2 
(mg/kg/day)-

1 

Dermal 
absorption 
factor = 
17% 

 Based on female rat liver combined 
adenoma and carcinoma tumor rates 

NOAEL = no observed adverse effect level.  LOAEL = lowest observed adverse effect level.  UF = 
uncertainty factor.  UFA = extrapolation from animal to human (interspecies).  UFH = potential variation in 
sensitivity among members of the human population (intraspecies).  UFDB = to account for the absence of 
key data (i.e., lack of a critical study).  FQPA SF = FQPA Safety Factor.  PAD = population adjusted dose 
(a = acute, c = chronic).  RfD = reference dose.  MOE = margin of exposure.  LOC = level of concern.  N/A 
= not applicable. 



 
Public Health and Pesticide Epidemiology Data 
Metofluthrin is a new active ingredient; therefore, no epidemiological data is available at 
this time. 
 
Dietary Exposure/Risk Characterization 
There are no proposed agricultural uses for metofluthrin at this time; therefore dietary 
exposure is not expected. 
 
Residential (Non-Occupational) Exposure/Risk Pathway 
The aggregate exposure assessment is based solely on residential use patterns.  Due to the 
seasonal nature of insect repellents, only short-term exposure scenarios were considered.  
The incidental oral endpoint for children was based on maternal neurotoxicity in the rat 
developmental study (NOAEL = 15 mg/kg/day).  This endpoint was selected because of 
the appropriate time period in which the maternal neurotoxic effects were seen.  The 
short-term dermal endpoint for adults and children (15 mg/kg/day) was selected from the 
same developmental rat study based on neurtoxic effects because no systemic toxicity 
was present in the 90-day dermal study.  A dermal penetration study in rats was 
submitted for metofluthrin, which suggests a 17% dermal absorption rate.  This 17% 
dermal absorption rate was applied to all dermal exposure scenarios.  The 28-day 
inhalation study in rats provided a sensitive inhalation endpoint (0.099 mg/L) based on 
mortality and neurotoxic effects (including tremors, hypersensitivity, ataxic gait, tip-toe 
gait, clonic convulsion, and hypothermia.  The default absorption value of 100% was 
applied to the inhalation exposure assessment.  All levels of concern are set at 100, based 
on a 10x interspecies extrapolation safety factor and 10x intraspecies variability safety 
factor.  The FQPA safety factor was reduced to 1x. 
 
As a part of every pesticide risk assessment, the Agency considers a large variety of 
consumer subgroups according to well-established procedures.  The Agency estimates 
risks to population subgroups from pesticide exposure that are based on patterns of that 
subgroup’s food and water consumption, and activities in and around the home that 
involve pesticide use in a residential setting.  Extensive data on food consumption 
patterns are compiled by USDA under the Continuing Survey of Food Intake by 
Individuals (CSFII) and are used in pesticide risk assessments for all registered food uses 
of a pesticide.  These data are analyzed and categorized by subgroups based on age, 
season of the year, ethnic group, and region of the country.  Additionally, the Agency is 
able to assess dietary exposure to smaller, specialized subgroups and exposure 
assessments are performed when conditions or circumstances warrant.  Whenever 
appropriate, nondietary exposures based on home use of pesticide products and 
associated risks for adult applicators and for toddlers, youths, and adults entering or 
playing on treated areas post-application are evaluated.  Further considerations are 
currently in development as the Agency has committed resources and expertise to the 
development of specialized software and models that consider exposure to bystanders and 
farm workers as well as lifestyle and traditional dietary patterns among specific 
populations.   
 
Estimated Cancer Risk 
The Q1* for metofluthrin was based on female hepatocellular adenomas, carcinomas, and 



combined adenomas/carcinomas in rats.    The Q1* is 1.62 x 10-2 (mg/kg/day) -¹. This 
cancer assessment is conservative in assuming that the product will be used 12 times per 
year for 50 years out of a 70 year lifespan.   
 
A high-end worst case inhalation cancer assessment was performed for the metofluthrin 
products (DeckMate and NORM-1).   The saturation concentration of 0.28 mg/ m3 was 
used, with a 12 hour / day exposure time (half a day).  An adult breathes 20 m3 of air per 
day.  The use frequency was 12 applications per year from the use survey conducted by 
the Residential Exposure Joint Venture (REJV).  The users are expected to use the 
products over a 50 year period in their 70 year lifetime.  This results in a Lifetime 
Average Daily Dose (LADD) of 0.000939 mg/kg/day.   The LADD is multiplied by the 
Q1*, which results in an estimated cancer risk of 1.5 x 10-5. 
 
Aggregate Exposure Assessment 
Metofluthrin is proposed for residential use only at this time.  No food uses exist.  
Residues in water are unlikely.  An aggregate exposure assessment is not needed at this 
time. 
 
Cumulative Risk Characterization/Assessment 
Metofluthrin is a member of the pyrethroid class of pesticides.  Although all pyrethroids 
alter nerve function by modifying the normal biochemistry and physiology of nerve 
membrane sodium channels, EPA is not currently following a cumulative risk approach 
based on a common mechanism of toxicity for the pyrethroids. Although all pyrethroids 
interact with sodium channels, there are multiple types of sodium channels and it is 
currently unknown whether the pyrethroids have similar effects on all channels.  Nor do 
we have a clear understanding of effects on key downstream neuronal function e.g., nerve 
excitability, nor do we understand how these key events interact to produce their 
compound specific patterns of neurotoxicity.  There is ongoing research by the EPA’s 
Office of Research and Development and pyrethroid registrants to evaluate the 
differential biochemical and physiological actions of pyrethroids in mammals.  This 
research is expected to be completed by 2007.  When available, the Agency will consider 
this research and make a determination of common mechanism as a basis for assessing 
cumulative risk.  For information regarding EPA’s procedures for cumulating effects 
from substances found to have a common mechanism on EPA’s website at 
http://www.epa.gov/pesticides/cumulative/. 
 
 
Occupational Exposure/Risk Pathway 
Only residential uses are proposed for metofluthrin at this time; dietary and occupational 
risk assessments are not necessary at this time.   
 
 
ENVIRONMENTAL FATE AND EFFECTS SUMMARY 
Metofluthrin, like other synthetic pyrethroids, is practically non-toxic to mammals and 
birds, but it is highly to very highly toxic to aquatic animals and insects.  Its repellency 
power is related to its insecticidal character.  The published literature supports its 
character both as a repellent and as an insecticide.  No Level of Concern was exceeded, 
but the insecticidal properties of metofluthrin imply that it will pose a risk to non-target 

http://www.epa.gov/pesticides/cumulative/


insects and to species federally listed as endangered or threatened by the United States 
government.  
 
Since there is no geographic restriction on metofluthrin’s use, it will be used in every 
place where there are mosquitoes.    The proposed use is not expected to stress aquatic or 
terrestrial vertebrates or aquatic invertebrates even though it is toxic to them, because it is 
not expected to have a high aquatic concentration.  
 
Environmental Effects  
The registrant has submitted adequate effects and fate data needed to complete a Tier 1 
Risk Assessment.  A summary of all submitted studies are shown in Table 5 and 6 below.  
Metofluthrin’s effect on aquatic organisms is estimated from acute, subacute and chronic 
laboratory studies submitted to the Agency.  The registrant has submitted acute and 
chronic studies on aquatic vertebrates and invertebrates.  Freshwater fish, e.g., bluegill 
sunfish (Lepomis macrochirus), rainbow trout (Oncorhynchus mykiss) and fathead 
minnow (Pimephales promelas) are used as surrogates for all freshwater fish species.  
Freshwater fish are used as surrogates for aquatic-phase amphibians.  No acute bluegill 
sunfish (§72-1a) was submitted.  A common carp study was ruled “supplemental,” 
because it is not a standard species.  The Agency shall require confirmatory data to 
satisfy the acute bluegill sunfish data requirement. 
 
The effect of metofluthrin on all bird species is estimated from acute, subacute and 
chronic studies on two species, bobwhite quail (Colinus virginianus) and mallard duck 
(Anas platyrhynchos).  These species also act as surrogates for reptiles and terrestrial-
phase amphibians.  Effects on mammals are estimated from acute and chronic rat studies 
submitted to and reviewed by the Agency. 
 
No studies have been submitted that address toxicity to insects.  The registrants have 
requested a waiver for a study on beneficial insects (bees), but this has not been granted.  
There are no published field surveys or monitoring data.  Published information 
(Kawada, et al.) found that metofluthrin kills insects (mosquitoes) in a cage.  All 
experimental mosquitoes directly under a paper strip were killed within 24-hours.  This 
was not quantified nor was a measure of toxicity (LD50, etc.) calculated.   The Agency 
shall require confirmatory data to satisfy this data requirement. 
 
 
 
 

 TABLE 5 Measures of  Envrionmental Effects of metofluthrin 

Guidelines   Data Requirements   Measures Of Effect 

  71-1(a)   Acute Avian Oral Quail or 
Duck   LD50 >2250 mg/kg-bw.   

  71-2(a)   Avian Dietary/Quail   LC50 >5760 mg/kg-bw 

  71-2(b)   Avian Dietary/Duck   LC50 >5760 mg/kg-bw.   

  OPPTS 870.1100   Rat Acute Oral LD50   LD50 >2,000 mg/kg 



  Non-guideline   Rat reproductive 
development study 

 NOAEL = 20 mg/kg bw/day dose based on maternal mortality 
during the 57 days of dosing  

  72-1   Fish Toxicity- Common carp   LC50 = 2.61 

  72-1(c)   Fish Toxicity Rainbow Trout   LC50 = 1.2 

  72-2(a)   Invertebrate Toxicity, 
Daphnid   48-hr LC50 = 4.7 ppb 

 
 

Table 5.  Environmental Fate properties of metofluthrin. 

PARAMETER VALUE(S)  SOURCE 

Solubility  
in water (20 oC) 

0.50 mg/L (Z-isomer) 
0.67 mg/L (E-isomer) MRID 46406754 

Vapor Pressure (20 oC) 1.47 x 10-5 mmHg MRID 46402005 

Henry’s Law Constant  
(20 oC)  

1.5 x 10-5 atm m3/mol (Z-
isomer) 

1.1 x 10-5 atm m3/mol (E-
isomer) 

Estimated from vapor  pressure & solubility1

Hydrolysis Half-life  
(25 oC) 

pH 4 & 7:  Stable 
pH 9: 33 days MRID 46406750 

Aqueous Photolysis  
Half-life      (pH 4) 6 days 

MRID 46406754 
(Based on 12-hour light/12-hour dark cycle 

with Xe lamp) 

Aerobic Soil 
Metabolism Half-life 

MS sandy loam:  DT50 =  3-8 
days 
CA sandy loam:  DT50 =  1-3 
days 

MRID 46406751 

Soil Partition 
Coefficient (Kd) 

57.5, 75.8, 85.3, 163 
mL/g 

MRID 46406753 
(calculated,  based on submitted data) 

Organic Carbon 
Partition 
Coefficient (Koc) 

3704, 4489, 5414, 7187 
mL/goc

MRID 46406753 
(Calculated,  based on calculated Kd) 

1 Estimated as Hg = vapor pressure (atm) ÷ solubility (mol/L) 
 
 
 
 
 
 
 
 
 
 
 



Contact Person at USEPA 
 
Mailing address: 
 
Mark Suarez 
Product Manager (10) 
Environmental Protection Agency 
Office of Pesticide Programs 
Registration Division (7505P) 
Insecticide Branch 
1200 Pennsylvania Avenue NW 
Washington, D.C. 20460 
 
Office location and telephone number:  
 
Room S-7246, One Potomac Yard 
2777 S. Crystal Drive 
Arlington, VA 22202 
703-305-0120 
 
 
DISCLAIMER: The information in this Pesticide Fact Sheet is for information only 
and is not to be used to satisfy data requirements for pesticide registration. The 
information is believed to be accurate as of the date on the document.  



APPENDIX I 

GLOSSARY OF TERMS AND ABBREVIATIONS 

ADNT Acute delayed neurotoxicity 
a.i. Active Ingredient 
aPAD Acute Population Adjusted Dose 
ARI Aggregate Risk Index 
BCF Bioconcentration Factor 
CAS Chemical Abstracts Service 
ChE Cholinesterase 
ChEI Cholinesterase inhibition 
cPAD Chronic Population Adjusted Dose 
%CT Percent crop treated 
DAT Days after treatment 
DEEM-FCID Dietary Exposure Evaluation Model - Food Consumption Intake Database  
DNA Deoxyribonucleic acid  
DNT Developmental neurotoxicity  
DIT Developmental immunotoxicity  
DWLOC   Drinking Water Level of Comparison.  
EC Emulsifiable Concentrate Formulation  
EEC  Estimated Environmental Concentration. The estimated pesticide 

 concentration in an environment, such as a terrestrial ecosystem.  
EPA U.S. Environmental Protection Agency  
FQPA Food Quality Protection Act  
GLC Gas Liquid Chromatography  
GLN Guideline Number  
LC50    Median Lethal Concentration. A statistically derived concentration of a 

substance that can be expected to cause death in 50% of test animals. It is 
usually expressed as the weight of substance per weight or volume of 
water, air or feed, e.g., mg/l, mg/kg or ppm.  

LD50   Median Lethal Dose. A statistically derived single dose that can be 
expected to cause death in 50% of the test animals when administered by 
the route indicated (oral, dermal, inhalation). It is expressed as a weight of 
substance per unit weight of animal, e.g., mg/kg.  

LOAEL Lowest Observed Adverse Effect Level  
LOAEC Lowest Observed Adverse Effect Concentration  
LOC Level of Concern  
LOD Limit of Detection  
LOQ Limit of Quantitation  
mg/kg/day Milligram Per Kilogram Per Day  
mg/L Milligrams Per Liter  
MOE Margin of Exposure 



MRID Master Record Identification (number), EPA's system of recording and 
tracking studies submitted  

MTD Maximum tolerated dose  
NA Not Applicable  
NOEC No Observable Effect Concentration  
NOEL No Observed Effect Level  
NOAEL No Observed Adverse Effect Level  
NOAEC No Observed Adverse Effect Concentration  
NPDES National Pollutant Discharge Elimination System  
OP Organophosphate  
OPP EPA Office of Pesticide Programs  
OPPTS EPA Office of Prevention, Pesticides and Toxic Substances  
PAD Population Adjusted Dose  
PAG Pesticide Assessment Guideline  
PAM Pesticide Analytical Method  
PHED Pesticide Handler's Exposure Data  
PHI Preharvest Interval  
ppb Parts Per Billion  
PPE Personal Protective Equipment  
ppm Parts Per Million  
PRZM/EXAMS  Tier II Surface Water Computer Model  
RAC   Raw Agriculture Commodity  
RBC Red Blood Cell  
RED Reregistration Eligibility Decision  
REI Restricted Entry Interval  
RfD Reference Dose  
SCI-GROW Tier I Ground Water Computer Model  
SF Safety Factor  
TGAI Technical Grade Active Ingredient  
UF Uncertainty Factor  
µg micrograms  
µg/L Micrograms Per Liter  
µL/g Microliter per gram  
USDA United States Department of Agriculture  
WPS Worker Protection Standard 



APPENDIX II 
 

Citations Considered to be Part of the Data Base Supporting the Registration of 
Metofluthrin.  

 
MRID Citation Receipt Date 

46406701 

Todd, R. (2004) Product Identity and Disclosure of 
Ingredients of S-1264 Technical Grade. Project Number: 
QAP/0034. Unpublished study prepared by Insect Control 
and Research Inc. 5 p. 

12-Nov-2004 

46406702 

Suzuki, M. (2004) Description of Beginning Materials and 
Manufacturing Process for S-1264: Description of 
Formation of Impurities. Project Number: QAP/0033. 
Unpublished study prepared by Sumitomo Chemical 
Company, Ltd. 18 p. 

12-Nov-2004 

46406703 

Inoue, H. (2002) Preliminary Analysis of S-1264 Technical 
Grade: Final Report. Project Number: 3771, QAP/0016. 
Unpublished study prepared by Sumitomo Chemical 
Company, Ltd. 38 p. 

12-Nov-2004 

46406704 

Todd, R. (2004) Certification of Ingredient Limits of S-
1264 Technical Grade. Project Number: QAP/0035. 
Unpublished study prepared by Insect Control and Research 
Inc. 9 p. 

12-Nov-2004 

46406705 

Inoue, H. (2002) Enforcement Analytical Methods of S-
1264 Technical Grade: Final Report. Project Number: 3679, 
QAA/0009. Unpublished study prepared by Sumitomo 
Chemical Company, Ltd. 106 p. 

12-Nov-2004 

46406706 

Sweetapple, G.; Lentz, N. (2003) Determination of 
Physical-Chemical Properties of S-1264. Project Number: 
QAP/0020, 015682/1. Unpublished study prepared by 
Ricerca Biosciences, LLC. 44 p. 

12-Nov-2004 

46406707 

Sweetapple, G.; Lentz, N. (2004) Determination of 
UV/Visible Absorption and Boiling Point of S-1264. 
Project Number: 015681/1, 015681. Unpublished study 
prepared by Ricerca Biosciences, LLC. 36 p. 

12-Nov-2004 

46406708 

Walsh, K.; Lentz, N. (2003) Determination of Water 
Solubility - S-1264. Project Number: 015634/1, QAP/0019, 
015634. Unpublished study prepared by Ricerca 
Biosciences, LLC. 112 p. 

12-Nov-2004 

46406710 Beckwith, R.; Lentz, N. (2003) Determination of 
Dissociation Constant (pKa) - S-1264. Project Number: 12-Nov-2004 



MRID Citation Receipt Date 

015635/1, QAP/0021, 015635/0. Unpublished study 
prepared by Ricerca Biosciences, LLC. 34 p. 

46406711 

Walsh, K.; Lentz, N. (2003) Determination of n-
Octanol/Water Partition Coefficient - S-1264. Project 
Number: 015633/1, QAP/0023, 015633/0/1. Unpublished 
study prepared by Ricerca Biosciences, LLC. 86 p. 

12-Nov-2004 

46406712 

Inoue, H. (2004) Stability of S-1264 Technical Grade to 
Normal and Elevated Temperatures, Metals and Metal Ions: 
Final Report. Project Number: 0007, QAP/0024. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 15 p. 

12-Nov-2004 

46406715 

Inoue, H. (2004) Storage Stability of S-1264 Technical 
Grade: Final Report. Project Number: 0001, QAP/0025. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 54 p. 

12-Nov-2004 

46406716 

Inoue, H. (2004) Corrosion Characteristics of S-1264 
Technical Grade: Final Report. Project Number: 0002, 
QAP/0026. Unpublished study prepared by Sumitomo 
Chemical Co., Ltd. 11 p. 

12-Nov-2004 

46406717 

Todd, R. (2004) Waiver Rationale for Dielectric 
Breakdown Voltage Study on SumiOne (Metofluthrin). 
Project Number: 110804/DIEL. Unpublished study 
prepared by Insect Control and Research, Inc. 4 p. 

12-Nov-2004 

46406718 

Lentz, N. (2004) Determination of Freezing Point, Solvent 
Solubility, Absorption Spectra and Autoflammability of S-
1264. Project Number: QAP/0030, 016369/1, 016369/0. 
Unpublished study prepared by Ricerca Biosciences, LLC. 
72 p. 

12-Nov-2004 

46406719 

Kunimatsu, T. (2002) Acute Oral Toxicity STudy of S-1264 
in Rats: Final Report. Project Number: QAT/0004, 3670. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 30 p. 

12-Nov-2004 

46406721 

Kunimatsu, T. (2002) Acute Dermal Toxicity Study of S-
1264 in Rats: Final Report. Project Number: QAT/0005, 
3671. Unpublished study prepared by Sumitomo Chemical 
Co. Ltd., Envr. Health. 23 p. 

12-Nov-2004 

46406723 
Deguchi, Y. (2002) Acute Inhalation Toxicity Study of S-
1264 in Rats: Final Report. Project Number: 3666, 
QAT/0028, P01096. Unpublished study prepared by 

12-Nov-2004 



MRID Citation Receipt Date 

Sumitomo Chemical Co. Ltd., Envr. Health and Sumika 
Chemical Analysis Service, Ltd. 61 p. 

46406724 

Nakamura, Y. (2001) Skin and Eye Irritation Tests of S-
1264 in Rabbits: Final Report. Project Number: 3634, 
QAT/0014. Unpublished study prepared by Sumitomo 
Chemical Co. Ltd., Envr. Health. 19 p. 

12-Nov-2004 

46406726 

Nakamura, Y. (2002) Skin Sensitization Test of S-1264 in 
Guinea Pigs (Maximization Test): Final Report. Project 
Number: 3684, QAT/0017. Unpublished study prepared by 
Sumitomo Chemical Co. Ltd., Envr. Health. 27 p. 

12-Nov-2004 

46406728 

York, R. (2004) Oral (Gavage) Acute Neurotoxicity Study 
of S-1264 in Rats: Final Report. Project Number: 1119/032, 
QAT/0059, PACA/DE04. Unpublished study prepared by 
Argus Research Laboratories, Inc and Pathology 
Associates, Inc. 451 p. 

12-Nov-2004 

46406729 

York, R. (2004) Oral (Diet) Subchronic Neurotoxicity 
Study of S-1264 in Rats: Final Report. Project Number: 
1119/033, QAT/0060, PACA/DE05. Unpublished study 
prepared by Argus Research Laboratories, Inc and Charles 
River Laboratories and Pathology Associates, Inc. 510 p. 

12-Nov-2004 

46406731 

Kunimatsu, T. (2002) One-Month Oral Toxicity Study of S-
1264 in Rats: Final Report. Project Number: 3641, 
QAT/0029, P01063. Unpublished study prepared by 
Sumitomo Chemical Co. Ltd., Envr. Health. 432 p. 

12-Nov-2004 

46406733 

Kunimatsu, T. (2002) Six-Month Oral Toxicity Study of S-
1264 in Rats: Final Report. Project Number: QAT/0030, 
3663, P01063. Unpublished study prepared by Sumitomo 
Chemical Co. Ltd., Envr. Health. 452 p. 

12-Nov-2004 

46406734 

Uchida, H. (2002) 90-Day Oral Toxicity Study with S-1264 
in Beagle Dogs Followed by 42-Day Recovery Study: Final 
Report. Project Number: QAT/0018, 20142. Unpublished 
study prepared by Panapharm Laboratories Co., Ltd. 230 p. 

12-Nov-2004 

46406735 

Furukawa, H. (2004) A 90-Day Repeated Dose Dermal 
Toxicity Study of S-1264 in Rats: Final Report. Project 
Number: P030373, QAT/0064. Unpublished study prepared 
by Panapharm Laboratories Co., Ltd. 393 p. 

12-Nov-2004 

46406736 
Deguchi, Y. (2002) Four-Week Repeated Inhalation 
Toxicity Study of S-1264 in Rats: Final Report. Project 
Number: 3704, QAT/0031, P02027. Unpublished study 

12-Nov-2004 



MRID Citation Receipt Date 

prepared by Sumitomo Chemical Co. Ltd., Envr. Health. 
413 p. 

46406742 

Kitamoto, S. (2002) Reverse Mutation Test of S-1264 in 
Bacterial Systems: Final Report. Project Number: 3673, 
QAT/0026. Unpublished study prepared by Sumitomo 
Chemical Co. Ltd., Envr. Health. 18 p. 

12-Nov-2004 

46406744 

Odawara, K. (2002) In Vitro Chromosomal Aberration Test 
on S-1264 in Chinese Hamster Lung Cells (CHL/IU): Final 
Report. Project Number: 3633, QAT/0022. Unpublished 
study prepared by Sumitomo Chemical Co. Ltd., Envr. 
Health. 27 p. 

12-Nov-2004 

46406745 

Odawara, K. (2002) Micronucleus Test on S-1264 in Mice: 
Final Report. Project Number: 3685, QAT/0032. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 20 p. 

12-Nov-2004 

46406746 

Sugimoto, K. (2002) The Disposition and Metabolism of 
[Carbonyl-(Carbon-14)]S-1264RTZ in Rats. Project 
Number: PK0141, QAM0001, PPLK/PK0141. Unpublished 
study prepared by Sumitomo Chemical Co. Ltd., Envr. 
Health. 1043 p. 

12-Nov-2004 

46406747 

Sugimoto, K. (2002) The Disposition and Metabolism of 
Metoxymethylbenzyl-(alpha)-(Carbon 14)S-1264TRZ in 
Rats. Project Number: QAM/0003, PK0142, X0081. 
Unpublished study prepared by Panapharm Laboratories 
Co., Ltd. 871 p. 

12-Nov-2004 

46406748 

Sugimoto, K. (2004) The Disposition and Metabolism of 
[carbonyl-(Carbon 14)]S-1264RTE in Rats. Project 
Number: QAM/0002, PK0143, RIA01028. Unpublished 
study prepared by Panapharm Laboratories Co., Ltd. 777 p. 

12-Nov-2004 

46406749 

Tomigahara, Y. (2004) Percutaneous Absorption of S-1264 
in Rats. Project Number: X0088, QAM/0022. Unpublished 
study prepared by Sumitomo Chemical Co. Ltd., Envr. 
Health. 8 p. 

12-Nov-2004 

46406750 
Ponte, M. (2004) Hydrolysis of [Carbon-14]S-1264 at pH 4, 
7 and 9. Project Number: 1192W, 1192W/001. Unpublished 
study prepared by PTRL West, Inc. 187 p. 

12-Nov-2004 

46406751 
Kodaka, R.; Sugano, T.; Yoshimura, J.; et. al. (2003) 
Aerobic Soil Metabolism Study of [Carbon-14]S-1264. 
Project Number: SOI2002B, EF/2003/003, QAM/0014. 

12-Nov-2004 
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Unpublished study prepared by Sumitomo Chemical Co. 67 
p. 

46406752 
Curry, K.; Brookman, D. (2004) Metofluthrin Aerobic Soil 
Metabolism: Supplemental Information. Unpublished study 
prepared by Technology Sciences Group, Inc. 29 p. 

12-Nov-2004 

46406753 

Ponte, M. (2004) Soil Adsorption/Desorption of [Carbon-
14]S-1264 by the Batch Equilibrium Method. Project 
Number: 1191W, 1191W/1, QAM/0018. Unpublished study 
prepared by PTRL West, Inc. 291 p. 

12-Nov-2004 

46406754 

Ponte, M. (2004) Aqueous Photolysis of (Carbon 14)S-
1264 in pH 4 Buffer by Artificial Light. Project Number: 
QAM/0019, 1238W. Unpublished study prepared by PTRL 
West, Inc. 251 p. 

12-Nov-2004 

46406755 

Curry, K.; Brookman, D. (2004) Request for a Waiver of 
the Requirement for Data on Metofluthrin Terrestrial Field 
Dissipation. Unpublished study prepared by Technology 
Sciences Group, Inc. 19 p. 

12-Nov-2004 

46406756 

Todd, R. (2004) Waiver Rationale for Honey Bee Acute 
Contact Toxicity Study on SumiOne (Metoflurin). Project 
Number: 110804/BEE. Unpublished study prepared by 
Insect Control And Research Inc. 5 p. 

12-Nov-2004 

46406757 

Gallagher, S.; Grimes, J.; Beavers, J. (2003) An Acute Oral 
Toxicity Study with the Northern Bobwhite. Project 
Number: QAW/0005, 166/172. Unpublished study prepared 
by Wildlife International, Ltd. 50 p. 

12-Nov-2004 

46406758 

Gallagher, S.; Grimes, J.; Martin, K.; et. al. (2003) A 
Dietary LC 50 Study With the Northern Bobwhite. Project 
Number: QAW/0003, 166/170. Unpublished study prepared 
by Wildlife International, Ltd. 63 p. 

12-Nov-2004 

46406759 

Gallagher, S.; Grimes, J.; Martin, K.; et. al.; (2003) S-1264: 
A Dietary LC50 Study With the Mallard. Project Number: 
QAW/0004, 166/171. Unpublished study prepared by 
Wildlife International, Ltd. 64 p. 

12-Nov-2004 

46406760 

Takimoto, Y. (2002) [Methoxymethylbenzyl-alpha-(Carbon 
14)]S-1264: Acute Toxicity Test with Common Carp 
(Cyprinus carpio) Under Flow-Through Conditions. Project 
Number: QAW/0002, 1043/010/174. Unpublished study 
prepared by Springborn Laboratories (Europe) Ag. 89 p. 

12-Nov-2004 

46406761 Lima, W. (2004) S-1264 - Acute Toxicity to Rainbow Trout 12-Nov-2004 
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(Oncorhynchus mykiss) Under Flow-Through Conditions. 
Project Number: 13048/6398, QAW/0007. Unpublished 
study prepared by Springborn Smithers Laboratories. 51 p. 

46406762 

Putt, A. (2004) S-1264 - Acute Toxicity to Water Fleas 
(Daphnia magna) Under Flow-Through Conditions. Project 
Number: 13048/6397, QAW/0006. Unpublished study 
prepared by Springborn Smithers Laboratories. 53 p. 

12-Nov-2004 

46406764 
Todd, R.; Burin, G.; Brookman, D.; et. al. (2004) Reduced 
Risk Document for Metofluthrin-Based Mosquito Repellent 
Devices. 75 p. 

12-Nov-2004 

46414001 

Sweetapple, G.; Lentz, N. (2003) Determination of 
UV/Visible Absorption and Boiling Point of S-1264. 
Project Number: QAP/0022, 015681/1, 015681/0. 
Unpublished study prepared by Ricerca Biosciences, LLC. 
36 p. 

30-Nov-2004 

46414002 

Sugimoto, K. (2004) The Disposition and Metabolism of 
[Carbonyl-(Carbon 14)] S-1264RTZ (1R-trans-Z) After 
Repeated Administration to Rats. Project Number: 
P020096, QAM/0004. Unpublished study prepared by 
Panapharm Laboratories Co., Ltd. 113 p. 

30-Nov-2004 

46414003 

Sugimoto, K. (2004) The Disposition and Metabolism of 
[methoxymethylbenzyl-(alpha)-(Carbon 14)] S-1264RTZ 
(1R-trans-Z) After Repeated Administration to Rats. Project 
Number: QAM/0005, P020095. Unpublished study 
prepared by Panapharm Laboratories Co., Ltd. 118 p. 

30-Nov-2004 

46454101 

DiFrancesco, D.; Lentz, N. (2004) Determination of Vapor 
Pressure - S-1264. Project Number: 015632/1, QAP/0028. 
Unpublished study prepared by Ricerca Biosciences, LLC. 
82 p. 

26-Jan-2005 

46454102 

Nishiyama, M.; Katagi, T.; Takimoto, Y. (2004) Stability in 
Air of MFFO. Project Number: STA2004B, EF/2004/033, 
QAP/0031. Unpublished study prepared by Sumitomo 
Chemical Co. 8 p. 

26-Jan-2005 

46454103 

Nishyama, M.; Katagi, Takimoto, Y. (2004) Stability in Air 
of S-1264. Project Number: STA2004A, EF/2004/032, 
QAP/0032. Unpublished study prepared by Sumitomo 
Chemical Co. 9 p. 

26-Jan-2005 

46454104 Ose, K. (2004) Acute Oral Toxicity Study of MFFO in 
Rats. Project Number: 3910. Unpublished study prepared 26-Jan-2005 
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by Sumitomo Chemical Co. Ltd., Envr. Health. 30 p. 

46454105 

Ose, K. (2004) Acute Dermal Toxicity Study of MFFO in 
Rats. Project Number: 3911, QAT/0069. Unpublished study 
prepared by Sumitomo Chemical Co. Ltd., Envr. Health. 28 
p. 

26-Jan-2005 

46454106 

Nakamura, Y. (2004) Primary Skin Irritation Test of MFFO 
in Rabbits. Project Number: 3909, QAT/0071. Unpublished 
study prepared by Sumitomo Chemical Co. Ltd., Envr. 
Health. 16 p. 

26-Jan-2005 

46454107 

Nakamura, Y. (2004) Skin Sensitization Test of MFFO in 
Guinea Pigs (Buehler Method). Project Number: 3908. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 25 p. 

26-Jan-2005 

46454108 

Sommer, E.; Knuppe, C.; Gretener, P.; et. al. (2004) S-
1264: 13-Week Repeated Dose Oral Toxicity (Feeding) 
Study in the CD-1 Mouse: Final Report. Project Number: 
841949, 41620/WEK, QAT/0072. Unpublished study 
prepared by RCC Umweltchemie Ag. 592 p. 

26-Jan-2005 

46454109 

Sommer, E.; Knuppe, C.; Gretener, P.; et. al. (2003) S-
1264: 13-Week Repeated Dose Oral Toxicity (Feeding) 
Study in the Wistar Rat: Final Report. Project Number: 
QAT/0051, 841950. Unpublished study prepared by RCC 
Ltd. 658 p. 

26-Jan-2005 

46454110 

Uchida, H. (2004) 12-Month Repeated Dose Oral Toxicity 
Study of S-1264 in Dogs: Final Report. Project Number: 
P020637, QAT/0061. Unpublished study prepared by 
Panapharm Laboratories Co., Ltd. 353 p. 

26-Jan-2005 

46454111 

Hara, H.; Suyami, S.; Ushimaru, T. et. al. (2002) Study for 
Effects on Embryo-Fetal Developmental of S-1264 
Administered Orally to Rats. Project Number: QAT/0003, 
ST01085. Unpublished study prepared by Ina Research Inc. 
106 p. 

26-Jan-2005 

46454112 

Hara, H.; Suyami, S.; Ushimaru, T.; et. al. (2002) Study of 
Fertility and Early Embryonic Development to Implantation 
of S-1264 Administered Orally to Rats. Project Number: 
QAT/0011, ST01083. Unpublished study prepared by Ina 
Research Inc. 173 p. 

26-Jan-2005 

46454113 Hara, H.; Suyama, S.; Ushimaru, T.; et. al. (2002) Study for 
Effects on Pre - and Postnatal Development, Including 26-Jan-2005 
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Material Function, of S-1264 Administered Orally to Rats. 
Project Number: ST01084, QAT/0020. Unpublished study 
prepared by Ina Research Inc. 274 p. 

46454114 

Horie, N. (2002) Study for Effects on Embryo-fetal 
Develpment of S-1264 Administered Orally to Rabbits: 
Final Report. Project Number: QAT/0019, 3644. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 241 p. 

26-Jan-2005 

46454115 

Kitamoto, S. (2004) Reverse Mutation Test of MFFO in 
Bacterial Systems: (S. typhimurium, E. coli). Project 
Number: 3907, QAT/0070. Unpublished study prepared by 
Sumitomo Chemical Co. Ltd., Envr. Health. 23 p. 

26-Jan-2005 

46454116 

Todd, R. (2004) Summary of Physical/Chemical Properties: 
(Sumione Technical Grade). Project Number: 8570/36. 
Unpublished study prepared by Insect Control and 
Research, Inc. 5 p. 

26-Jan-2005 

46556101 

Bando, K. (2004) The Dose Finding Study for Abmsence of 
Clinical Signs by Single Dermal Administration of S-1264 
in Rats: Final Report. Project Number: 3888, QAT/0056. 
Unpublished study prepared by Sumitomo Chemical Co. 
Ltd., Envr. Health. 28 p. 

27-May-2005 

46567701 

Todd, R. (2005) Product Identity and Disclosure of 
Ingredients of S-1264 Technical Grade: Amended Report to 
Replace MRID # 464067-01. Project Number: 
QAP/0034/A. Unpublished study prepared by Insect 
Control and Research, Inc. 13 p. 

09-Jun-2005 

46567702 

Todd, R. (2005) Certification of Ingredient Limits of S-
1264 Technical Grade: Amended Report to Replace 
MRID# 464067-04. Project Number: QAP/0035/A. 
Unpublished study prepared by Insect Control and 
Research, Inc. 9 p. 

09-Jun-2005 

46581501 

Deguchi, Y. (2005) Study for Mode of Action of S-1264 for 
Liver Tumor Promotion in Rats. Project Number: 
QAT/0077, S1226. Unpublished study prepared by 
Sumitomo Chemical Company, Ltd. 177 p. Relates to 
L0000976. 

29-Jun-2005 

46611301 

Schmid, H.; Flade, D.; Gretener, P.; et. al. (2005) S-1264: 
Combined Chronic Toxicity/Oncogenicity (Feeding) Study 
in the Rat. Project Number: 846244, QUAT/0078, 
41708/WEK. Unpublished study prepared by RCC 

02-Aug-2005 
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Umweltchemie Ag. 3741 p. Relates to L0000976. 

46611302 

Schmid, H.; Flade, D.; Gretener, P.; et. al. (2005) S-1264: 
78-Week Oncogenicity (Feeding) Study in the CD-1 
Mouse. Project Number: 847663, QAT/0079, 42667/WEK. 
Unpublished study prepared by RCC Umweltchemie Ag. 
2636 p. 

02-Aug-2005 

46620601 

Todd, R. (2005) Appendix G: Testing Facility Positive 
Control Data for: Subchronic Neurotoxicity of S-1264 in 
Rats: Final Report. Project Number: 1119/033, QAT/0060, 
012/058. Unpublished study prepared by Sumitomo 
Chemical Co., Ltd. 165 p. 

10-Aug-2005 

46636501 
Todd, R. (2005) Ina Research Laboratory Historical Control 
Data of Embyro-Fetal Development to Rats. Unpublished 
study prepared by Sumitomo Chemical Co., Ltd. 3 p. 

06-Sep-2005 

46636502 

Todd, R. (2005) Environmental Health Science Laboratory 
of Sumitomo Chemical Co., Ltd. Historical Control Data of 
Embryo-Fetal Development to Rabbits. Unpublished study 
prepared by Sumitomo Chemical Co., Ltd. 3 p. 

06-Sep-2005 

46756301 

Deguchi, Y. (2006) The 2nd Study for Mode of Action of 
S-1264 for Liver Tumor Promotion in Rats. Project 
Number: S1255. Unpublished study prepared by Sumitomo 
Chemical Co. Ltd., Envr. Health. 147 p. Relates to 
L0000976. 

09-Feb-2006 

46756302 

Nagahori, H. (2006) Study for Mode of Action of S-1264 
for Liver Tumor Promotion in Rats (In vitro Effect of S-
1264 on Cytochrome P450 Activity and mRNA Level). 
Project Number: X0145. Unpublished study prepared by 
Sumitomo Chemical Co. Ltd., Envr. Health. 13 p. Relates 
to L0000976. 

09-Feb-2006 

46756303 

Yamada, T. (2006) Gene Expression Profiling Analysis of 
Early Phase of Treatment in the Liver From S-1264-Treated 
Rats. Project Number: S1274. Unpublished study prepared 
by Sumitomo Chemical Co. Ltd., Envr. Health. 19 p. 
Relates to L0000976. 

09-Feb-2006 

46756304 

Yamad, T. (2006) An Evaluation of the Human Relevance 
of the Metofluthrin-Induced Liver Tumors in Rats Based on 
Mode of Action. Unpublished study prepared by Sumitomo 
Chemical Co. Ltd., Envr. Health. 17 p. Relates to 
L0000976. 

09-Feb-2006 
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46926301 

Schmid, H. (2005) Combined Chronic Toxicity/ 
Oncogenicity (Feeding) Study in the Rat: S-1264. Project 
Number: 846244. Unpublished study prepared by RCC 
Umweltchemie Ag. 3741 p. 
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SIGMA-ALDRICH sigma-aldrich.com 
SAFETY DATA SHEET 

according to Regulation (EC) No. 1907/2006 
Version 4.0  Revision Date 13.03.2010 

Print Date 28.11.2010 
 

 

1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 

Product name : Transfluthrin 
 

Product Number : 46114 
Brand : Fluka 
 
Company : Sigma-Aldrich Company Ltd. 

The Old Brickyard 
NEW ROAD, GILLINGHAM 
Dorset 
SP8 4XT 
UNITED KINGDOM 

Telephone : +441747833000 
Fax : +441747833313 
Emergency Phone # : +44 (0)1747 833100 
E-mail address : eurtechserv@sial.com 

 

2. HAZARDS IDENTIFICATION 

Classification of the substance or mixture 

According to Regulation (EC) No1272/2008 
Skin irritation (Category 2) 
Acute aquatic toxicity (Category 1) 
Chronic aquatic toxicity (Category 1) 

According to European Directive 67/548/EEC as amended. 
Irritating to skin. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic 
environment.  

Label elements 

Pictogram 

  
Signal word Warning 
 
Hazard statement(s) 
H315 Causes skin irritation. 
H410 Very toxic to aquatic life with long lasting effects. 
 
Precautionary statement(s) 
P273 Avoid release to the environment. 
P501 Dispose of contents/container to an approved waste disposal plant. 
 
Hazard symbol(s) 
Xi Irritant 
N Dangerous for the environment 
 
R-phrase(s) 
R38 Irritating to skin. 
R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in 

the aquatic environment. 
 
S-phrase(s) 
S36/37 Wear suitable protective clothing and gloves. 
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S60 This material and its container must be disposed of as hazardous waste. 
S61 Avoid release to the environment. Refer to special instructions/ Safety data 

sheets. 

Other hazards - none 
 

3. COMPOSITION/INFORMATION ON INGREDIENTS 

Formula : C15H12Cl2F4O2  
Molecular Weight : 371.2 g/mol 
 

CAS-No. EC-No. Index-No. Classification Concentration 

2,3,5,6-Tetrafluorobenzyl trans-2-(2,2-dichlorovinyl)-3,3-dimethylcyclopropanecarboxylate 
118712-89-3 405-060-5 607-223-00-8 Skin Irrit. 2; Aquatic Acute 1; 

Aquatic Chronic 1; H315, 
H410 
Xi, N, R38 - R50/53 

 -  

For the full text of the H-Statements mentioned in this Section, see Section 16. 
 

4. FIRST AID MEASURES 

General advice 
Consult a physician. Show this safety data sheet to the doctor in attendance. 

If inhaled 
If breathed in, move person into fresh air. If not breathing give artificial respiration Consult a physician. 

In case of skin contact 
Wash off with soap and plenty of water. Consult a physician. 

In case of eye contact 
Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician. 

If swallowed 
Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician. 

 

5. FIRE-FIGHTING MEASURES 

Suitable extinguishing media 
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. 

Special protective equipment for fire-fighters 
Wear self contained breathing apparatus for fire fighting if necessary. 

 

6. ACCIDENTAL RELEASE MEASURES 

Personal precautions 
Use personal protective equipment. Avoid dust formation. Avoid breathing dust. Ensure adequate ventilation. 

Environmental precautions 
Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the 
environment must be avoided. 

Methods and materials for containment and cleaning up 
Pick up and arrange disposal without creating dust. Keep in suitable, closed containers for disposal. 

 

7. HANDLING AND STORAGE 

Precautions for safe handling 
Avoid contact with skin and eyes. Avoid formation of dust and aerosols. 
Provide appropriate exhaust ventilation at places where dust is formed. Normal measures for preventive fire 
protection.  

Conditions for safe storage 
Store in cool place. Keep container tightly closed in a dry and well-ventilated place.  
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Store under inert gas. Sensitive to carbon dioxide  
 

8. EXPOSURE CONTROLS/PERSONAL PROTECTION 

Contains no substances with occupational exposure limit values. 

Personal protective equipment 

Respiratory protection 
Where risk assessment shows air-purifying respirators are appropriate use a dust mask type N95 (US) or 
type P1 (EN 143) respirator. Use respirators and components tested and approved under appropriate 
government standards such as NIOSH (US) or CEN (EU). 

Hand protection 
The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the 
standard EN 374 derived from it. 
 
Handle with gloves. 
 
Eye protection 
Face shield and safety glasses 

Skin and body protection 
Choose body protection according to the amount and concentration of the dangerous substance at the 
work place. 

Hygiene measures 
Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at 
the end of workday. 

 

9. PHYSICAL AND CHEMICAL PROPERTIES 

Appearance 

Form crystalline 

Safety data 

pH no data available 
 

Melting point no data available 
 

Boiling point 135 °C at 0.09 hPa 
 

Flash point > 35.00 °C 
 

Ignition temperature no data available 
 

Lower explosion limit no data available 
 

Upper explosion limit no data available 
 

Density 1.507 g/cm3 at 23 °C 
 

Water solubility insoluble 
 

Partition coefficient: 
n-octanol/water 

log Pow: 5.46 at 20 °C 

 
 

10. STABILITY AND REACTIVITY 

Chemical stability 
Stable under recommended storage conditions.  

Conditions to avoid 
no data available 

Materials to avoid 
Strong oxidizing agents 
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Hazardous decomposition products 
Hazardous decomposition products formed under fire conditions. - Carbon oxides, Hydrogen chloride gas, 
Hydrogen fluoride 

 

11. TOXICOLOGICAL INFORMATION 

Acute toxicity 
LD50 Oral - rat - > 5,000 mg/kg 

LC50 Inhalation - rat - 4 h - > 513 mg/m3 

LD50 Dermal - rat - > 5,000 mg/kg 

Skin corrosion/irritation 
no data available 

Serious eye damage/eye irritation 
no data available 

Respiratory or skin sensitization 
no data available 

Germ cell mutagenicity 
no data available 

Carcinogenicity 

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as 
probable, possible or confirmed human carcinogen by IARC. 

Reproductive toxicity 
no data available 

Specific target organ toxicity - single exposure 
no data available 

Specific target organ toxicity - repeated exposure 
no data available 

Aspiration hazard 
no data available 

Potential health effects 

Inhalation May be harmful if inhaled. May cause respiratory tract irritation.  
Ingestion May be harmful if swallowed.  
Skin May be harmful if absorbed through skin. Causes skin irritation.  
Eyes May cause eye irritation.  

Additional Information 
RTECS: no data available 

 

12. ECOLOGICAL INFORMATION 

Toxicity 
 
no data available 

Persistence and degradability 
no data available 

Bioaccumulative potential 
no data available 

Mobility in soil 
no data available 

PBT and vPvB assessment 
no data available 
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Other adverse effects 
Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. 

 

13. DISPOSAL CONSIDERATIONS 

Product 
Observe all federal, state, and local environmental regulations. Contact a licensed professional waste 
disposal service to dispose of this material. Dissolve or mix the material with a combustible solvent and burn 
in a chemical incinerator equipped with an afterburner and scrubber.  

Contaminated packaging 
Dispose of as unused product.  

 

14. TRANSPORT INFORMATION 

ADR/RID 
UN-Number: 3077 Class: 9 Packing group: III 
Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (2,3,5,6-
Tetrafluorobenzyl trans-2-(2,2-dichlorovinyl)-3,3-dimethylcyclopropanecarboxylate) 
 
IMDG 
UN-Number: 3077  Class: 9 Packing group: III EMS-No: F-A, S-F 
Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (2,3,5,6-
Tetrafluorobenzyl trans-2-(2,2-dichlorovinyl)-3,3-dimethylcyclopropanecarboxylate) 
Marine pollutant: No 
 
IATA 
UN-Number: 3077 Class: 9 Packing group: III 
Proper shipping name: Environmentally hazardous substance, solid, n.o.s. (2,3,5,6-Tetrafluorobenzyl trans-2-
(2,2-dichlorovinyl)-3,3-dimethylcyclopropanecarboxylate) 

 

15. REGULATORY INFORMATION 

This safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006. 
 

16. OTHER INFORMATION 

Text of H-code(s) and R-phrase(s) mentioned in Section 3 

Aquatic Acute Acute aquatic toxicity 
Aquatic Chronic Chronic aquatic toxicity 
H315 Causes skin irritation.  
H410 Very toxic to aquatic life with long lasting effects. 
Skin Irrit. Skin irritation 
N Dangerous for the environment  
Xi Irritant  
R38 Irritating to skin.  
R50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic 

environment.  

Further information 
Copyright 2010 Sigma-Aldrich Co. License granted to make unlimited paper copies for internal use only. 
The above information is believed to be correct but does not purport to be all inclusive and shall be used 
only as a guide. The information in this document is based on the present state of our knowledge and is 
applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee 
of the properties of the product. Sigma-Aldrich Co., shall not be held liable for any damage resulting from 
handling or from contact with the above product. See reverse side of invoice or packing slip for additional 
terms and conditions of sale. 
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TRANSFLUTHRIN 
 

2,3,5,6-tetrafluorobenzyl (1R,3S)-3-(2,2-dichlorovinyl)-2,2- 
dimethylcyclopropanecarboxylate 
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Disclaimer1 
 
 
WHO specifications are developed with the basic objective of promoting, as far as 
practicable, the manufacture, distribution and use of pesticides that meet basic 
quality requirements. 
Compliance with the specifications does not constitute an endorsement or warranty 
of the fitness of a particular pesticide for a particular purpose, including its suitability 
for the control of any given pest, or its suitability for use in a particular area.  Owing 
to the complexity of the problems involved, the suitability of pesticides for a particular 
purpose and the content of the labelling instructions must be decided at the national 
or provincial level. 
Furthermore, pesticides which are manufactured to comply with these specifications 
are not exempted from any safety regulation or other legal or administrative provision 
applicable to their manufacture, sale, transportation, storage, handling, preparation 
and/or use. 
WHO disclaims any and all liability for any injury, death, loss, damage or other 
prejudice of any kind that may be arise as a result of, or in connection with, the 
manufacture, sale, transportation, storage, handling, preparation and/or use of 
pesticides which are found, or are claimed, to have been manufactured to comply 
with these specifications. 
Additionally, WHO wishes to alert users to the fact that improper storage, handling, 
preparation and/or use of pesticides can result in either a lowering or complete loss 
of safety and/or efficacy. 
WHO is not responsible, and does not accept any liability, for the testing of 
pesticides for compliance with the specifications, nor for any methods recommended 
and/or used for testing compliance.  As a result, WHO does not in any way warrant 
or represent that any pesticide claimed to comply with a WHO specification actually 
does so. 

____________________________________ 
 

                                             
1  This disclaimer applies to all specifications published by WHO. 
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INTRODUCTION 
 
 
WHO establishes and publishes specifications* for technical material and related 
formulations of public health pesticides with the objective that these specifications 
may be used to provide an international point of reference against which products 
can be judged either for regulatory purposes or in commercial dealings. 
 
From 2002, the development of WHO specifications follows the New Procedure, 
described in the 1st edition of Manual for Development and Use of FAO and WHO 
Specifications for Pesticides (2002).  This New Procedure follows a formal and 
transparent evaluation process.  It describes the minimum data package, the 
procedure and evaluation applied by WHO and the experts of the “FAO/WHO Joint 
Meeting on Pesticide Specifications” (JMPS). 
 
WHO Specifications now only apply to products for which the technical materials 
have been evaluated.  Consequently, from the year 2002 onwards the publication of 
WHO specifications under the New Procedure has changed.  Every specification 
consists now of two parts, namely the specifications and the evaluation report(s): 
 
Part One: The Specification of the technical material and the related formulations of 

the pesticide in accordance with chapters 4 to 9 of the 1st edition of the 
“FAO/WHO Manual on Pesticide Specifications.” 

 
Part Two: The Evaluation Report(s) of the pesticide, reflecting the evaluation of the 

data package carried out by WHO and the JMPS.  The data are provided 
by the manufacturer(s) according to the requirements of chapter 3 of the 
“FAO/WHO Manual on Pesticide Specifications” and supported by other 
information sources.  The Evaluation Report includes the name(s) of the 
manufacturer(s) whose technical material has been evaluated.  Evaluation 
reports on specifications developed subsequently to the original set of 
specifications are added in a chronological order to this report. 

 
WHO specifications under the New Procedure do not necessarily apply to nominally 
similar products of other manufacturer(s), nor to those where the active ingredient is 
produced by other routes of manufacture.  WHO has the possibility to extend the 
scope of the specifications to similar products but only when the JMPS has been 
satisfied that the additional products are equivalent to that which formed the basis of 
the reference specification. 
 
Specifications bear the date (month and year) of publication of the current 
version.  Dates of publication of the earlier versions, if any, are identified in a 
footnote.  Evaluations bear the date (year) of the meeting at which the 
recommendations were made by the JMPS. 
 
* Footnote: The publications are available on the Internet under 
(http://www.who.int/whopes/quality/en/). 
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PART ONE 
 
 
 

SPECIFICATIONS 
 

 
 
 PAGE 
 

TRANSFLUTHRIN INFORMATION 6 
TRANSFLUTHRIN TECHNICAL MATERIAL (NOVEMBER 2006) 7 
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WHO SPECIFICATIONS FOR PUBLIC HEALTH PESTICIDES 
 

TRANSFLUTHRIN 
 

INFORMATION 
 

ISO common name 
 transfluthrin 

Synonyms 
 benfluthrin 

Chemical names 
IUPAC: 2,3,5,6-tetrafluorobenzyl (1R,3S)-3-(2,2-dichlorovinyl)-2,2-

dimethylcyclopropanecarboxylate 
CA: (1R-trans)-(2,3,5,6-tetrafluorophenyl)methyl 3-(2,2-dichloroethenyl)-2,2-

dimethylcyclopropanecarboxylate 
Structural formula 

O

Cl

Cl O

F

F

F

F  

Empirical formula 
 C15H12Cl2F4O2 

Relative molecular mass 
 371.16 

CAS Registry number 
 118712-89-3 

CIPAC number 
 741 

Identity tests 
GC retention time and IR spectrum (CIPAC Handbook K, p. 121, 
2003); Enantioselective GC (CIPAC Handbook L, p. 128, 2006). 
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WHO SPECIFICATIONS FOR PUBLIC HEALTH PESTICIDES 
 

TRANSFLUTHRIN TECHNICAL MATERIAL 
WHO specification 741/TC (November 2006∗) 

 
This specification, which is PART ONE of this publication, is based on an 
evaluation of data submitted by the manufacturer whose name is listed in 
evaluation reports (741/2002 and 741/2006).  It should be applicable to TC 
produced by this manufacturer but it is not an endorsement of it, nor a 
guarantee that it complies with the specification.  The specification may not 
be appropriate for TC produced by other manufacturers. The evaluation 
reports 741/2002 and 741/2006, as PART TWO, form an integral part of this 
publication. 

 
1 Description 

The material shall consist of transfluthrin, together with related manufacturing 
impurities, and shall be a white to cream coloured crystalline powder, free 
from visible extraneous matter and added modifying agents. 

2 Active ingredient 
2.1 Identity tests (741/TC/(M)/2, CIPAC Handbook K, p.121, 2003; CIPAC 

Handbook L, p.128, 2005) 
The active ingredient shall comply with an identity test and, where the identity 
remains in doubt, shall comply with at least one additional test. 

2.2 Transfluthrin content (741/TC/(M/)3, CIPAC Handbook K, p.121, 2003) 
The transfluthrin content shall be declared (not less than 965 g/kg) and, when 
determined, the average measured content shall not be lower than the 
declared minimum content. 

                                             
∗ Specifications may be revised and/or additional evaluations may be undertaken.  Ensure the use of 

current versions by checking at: http://www.who.int/whopes/quality/en/. 
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PART TWO 
 

EVALUATION REPORTS 
 

 
 

 
TRANSFLUTHRIN 
 
 Page 
 
2006 Evaluation report based on submission of data from Bayer 

CropScience (TC) 9 
 
2002 Evaluation report based on submission of data from Bayer AG 

(TC) 11 
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WHO SPECIFICATIONS AND EVALUATIONS FOR PUBLIC HEALTH PESTICIDES 
 

TRANSFLUTHRIN 
EVALUATION REPORT 741/2006 

 
Recommendation 
The Meeting recommended that the specification for transfluthrin, proposed by Bayer 
CropScience∗, should be adopted by WHO. 
 
Appraisal 
Data in support of a specification for transfluthrin TC were evaluated by the JMPS in 
2002 (evaluation report 741/2002) but, at the request of the manufacturer, the 
specification was not published.  In 2004, following submissions of additional 
information, the manufacturer stated that new 5-batch analytical data would be 
generated to support production of the TC at a new site and requested 
reconsideration of the data and proposed specification by the JMPS.  The new data 
and a revised proposed specification for transfluthrin TC were submitted in 2005-6. 
The Meeting was provided with commercially confidential information on: 

(i) the comparability of data with those submitted for registration in Australia; 
(ii) the manufacturing process at the new site; 
(iii) the names, structures and methods of analysis of impurities; 
(iv) data from analysis of 5 batches and the manufacturing specification at the 

new site. 
The Australian Pesticides and Veterinary Medicines Authority (APVMA) confirmed 
that: 

(i) the new site manufacturing process described is essentially identical to that 
described in the data submitted for registration in Australia; 

(ii) the new site manufacturing specification for transfluthrin TC is identical to the 
declaration of composition provided for registration in Australia; 

(iii) the new site 5 batch analysis data provided to WHO comply with the 
declaration of composition provided for registration in Australia. 

Material accountability in the 5-batch data from the new site was high (99.4-100.1%).  
One impurity had a reported limit of quantification (0.08 g/kg) above the stated 
manufacturing QC limit (0.02 g/kg).  The impurity was non-relevant and the 
manufacturing specification for it was below the 1 g/kg threshold, therefore it was 
disregarded in considering whether or not the new manufacturing specification was 
within the earlier one.  Nonetheless, the manufacturer explained that the impurity is 
monitored indirectly by determining the level of its precursor and, if the precursor is 
<0.02 g/kg, then the impurity is taken to be within the same limit. 

                                             
∗ The manufacturer informed WHO that, in 2002, all Bayer AG assets related to crop protection and 

environmental science business, including the supporting data, were transferred to Bayer 
CropScience, which currently has the ownership. 
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The manufacturing process at the new site was identical to that at the previous site 
and the 5-batch data and manufacturing specification from the new site were all 
within the previous manufacturing specification.  Thus a formal determination of 
equivalence by the Meeting was unnecessary. 
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WHO SPECIFICATIONS AND EVALUATIONS FOR PUBLIC HEALTH PESTICIDES 
 

TRANSFLUTHRIN 
 

EVALUATION REPORT 741/20021 
 

Explanation 
The data for transfluthrin were evaluated in support of a new WHO specification.  
Transfluthrin is/was under patent in Barbados until 2002; Poland, Czech Republic, 
Slovakia, South Korea, Libya, Syria, Lebanon, Kuwait, Sri Lanka, China, Dominican 
Republic and Brazil until 2003; Jordan, Pakistan and Taiwan until 2004; Colombia 
until 2005; Panama until 2007; Denmark, Norway, Finland, Hungary, Pakistan, 
Malaysia, South Africa, Nigeria, Turkey, Israel, Ireland, Thailand, South Korea, 
Japan, USA, Mexico, El Salvador, Argentina, Australia and New Zealand until 2008; 
Canada until 2010.  
Transfluthrin has not been evaluated by the FAO/WHO JMPR and WHO/IPCS. 
The WHO hazard classification of transfluthrin is “unlikely to present acute hazard in 
normal use.” 
The draft specification and the supporting data were provided by Bayer AG, 
Leverkusen2, in 2001.  
Uses 
Transfluthrin is a fast acting insecticide.  It is used in household and hygiene 
products, mainly against flying insects, such as mosquitoes and flies, but also 
against material pests, such as moths (Pflanzenschutz Nachrichten Bayer, Special 
edition, 1995, Bayer AG, Leverkusen). 
Identity 
Common name 

transfluthrin: E-ISO (published) 
Synonyms 

benfluthrin (Bayer), NAK 44553 
Chemical names 

IUPAC: 2,3,5,6-tetrafluorobenzyl (1R,3S)-3-(2,2-dichlorovinyl)-2,2-
dimethylcyclopropanecarboxylate 

CA: (1R-trans)-(2,3,5,6-tetrafluorophenyl)methyl 3-(2,2-dichloroethenyl)-
2,2-dimethylcyclopropanecarboxylate 

                                             
1 2006 footnote: minor editorial corrections were introduced in 2006, mainly to clarify the CIPAC 

status of the analytical method for determination of transfluthrin. 
2 2006 footnote: the manufacturer informed WHO that, in 2002, all Bayer AG assets related to crop 

protection and environmental science business, including the supporting data, were transferred to 
Bayer CropScience, which currently has the ownership. 

3 The development code, NAK 4455, is included because it appears in various references provided 
by the proposer. 
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Structural formula 

O

Cl

Cl O

F

F

F

F  
 

Molecular formula 
C15H12Cl2F4O2 

Relative molecular mass 
371.2 

CAS Registry number 
118712-89-3 

CIPAC code number 
741 

Identity tests 
(GC retention time and IR spectrum (CIPAC Handbook K, p. 121, 2003); 
Enantioselective GC (CIPAC Handbook L, p. 128, 2006)) 
 
Physico-chemical properties 
Table 1. Physico-chemical properties of pure transfluthrin  
Parameter Value(s) and conditions Purity % Method 
Vapour pressure 9 x 10-4 Pa at 20°C 97.8 OECD 104 
Melting point, boiling 
point and/or 
temperature of 
decomposition 

melting point: 32°C 
boiling point: 242°C 
decomposition temperature: sublimes at 
≥204°C 

98 differential scanning 
calorimetry, OECD 103 

Solubility in water 0.057 mg/l at 20°C 97.8 OECD 105 
Octanol/water 
partition coefficient 

log KOW = 5.46 at 20°C 97.8 OECD 107 

Hydrolysis 
characteristics 

half-life = >1 year at 25°C at pH 5 and pH 7
half-life = 14 days at 25°C at pH 9 

min. 94 according to EPA 
Guideline, Subdivision 
N, § 161–1 (1982) 

Photolysis 
characteristics 

hardly affected by direct photo-degradation 
but accessible to natural photochemical 
degradation, through radical-induced 
oxidation 

97.8 not stated 

Dissociation 
characteristics 

does not show basic or acidic properties in 
water 

98.4 OECD 112, titration 
method 
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Table 2. Chemical composition and properties of transfluthrin technical material (TC) 
Manufacturing process, maximum limits for 
impurities ≥ 1 g/kg, 5 batch analysis data 

Confidential information supplied and held on file by 
WHO.  Mass balances were 99.2 to 99.8%. 

Declared minimum [a.i.] content 950 g/kg  
Relevant impurities ≥ 1 g/kg and maximum 
limits for them 

none 

Relevant impurities < 1 g/kg and maximum 
limits for them: 

none 

Stabilisers or other additives and maximum 
limits for them: 

none 

Melting or boiling temperature range 32°C melting point, 242°C boiling point 
 

Toxicological summaries 
Notes. 

(i)  The proposer confirmed that the toxicological and ecotoxicological data included in the summary 
below were derived from transfluthrin having impurity profiles to those referred to in the table above. 

(ii)  The conclusions expressed in the summary below are those of the proposer, unless otherwise 
specified. 

(iii)   A summary and references were provided by the proposer.  Original reports were not submitted. 

(iv)  The UK evaluation of transfluthrin (ACP 1997) was considered as part of this evaluation. 

 
Table 3. Toxicology profile of transfluthrin technical material, based on acute 

toxicity, irritation and sensitization. 
Species Test Duration and conditions or 

guideline adopted 
Result Reference 

Rat m/f Oral Acute, OECD 401  LD50 > 5000 mg/kg bw 17160 
Mouse m/f Oral Acute, OECD 401 LD50 = 583-688 mg/kg bw 17156 
Rat m/f Dermal Acute, OECD 402 LD50 >5000 mg/kg bw 17155 
Mouse m/f Dermal Acute, OECD 402 LD50 >= 4000 mg/kg bw 28471 
Rat m/f Inhalation Acute, OECD 403 LC50 >513 mg/m3 17216 
Rabbit  Skin irritation 4 hours, occlusive, OECD 404 Not irritating 15804 
Rabbit Eye irritation 24 hours, OECD 405 Not irritating 15804 
Guinea pig Skin 

sensitization 
Semi-occlusive, OECD 406 
(Buehler Test) 

Not sensitizing 17920 

Guinea pig Skin 
sensitization 

Semi-occlusive, OECD 406 
(M&K) 

Not sensitizing 17964 

 
Transfluthrin is of low acute toxicity in the rat, with an LD50 of >5000 mg/kg bw via 
each route of administration and with an acute and dermal NOEL of 100 mg/kg bw/d.  
The 4 h LC50 was >513 mg/m3 air for male and female rats.  The only sign noted 
during the 14 d observation period was a slight tremor in females for 5 minutes after 
dosing.  Transfluthrin is not a skin or eye irritant, nor a skin sensitizer. 
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Table 4. Toxicology profile of transfluthrin technical material based on repeated 
administration (sub-acute to chronic). 

Species Test Duration and conditions 
or guideline adopted 

Result Reference

Rat m/f Sub-acute oral Sub-acute, 28 days, 
OECD 407 
0-10-50-250 mg/kg 

NOEL = 50 mg/kg bw/d 19187 

Rabbit m/f Sub-acute dermal Sub-acute, 15 days, 
OECD 410 
0-20-200-2000 mg/kg 

NOEL = 1000 mg/kg bw/d 19236 

Rat m/f Sub-acute 
inhalation 

Sub-acute, 4 weeks, 
OECD 412 
0-1.6-6.6-36.6-168.1 
mg/m3 air (6 h/d; 5 d/wk) 

NOEL = 36.6 mg/m³  
(≡ 13 mg/kg bw/d) 

17588 

Dog m/f Sub-chronic oral 
diet 

Sub-chronic, 13 weeks, 
OECD 409 
0-50-350-2500 ppm 

NOEL = 50 ppm  
(≡ 1.9 mg/kg bw/d) 

R4723 

Rat m/f Sub-chronic oral 
diet 

Sub-chronic, 13-18 
weeks 
0-10-50-500-5000 ppm 

NOEL = 50 ppm  
(≡ 3.5 mg/kg bw/d) 

19756 

Rat m/f Sub-chronic 
inhalation 

Sub-chronic, 90 days 
0-4.9-46.7-220.2 mg/m3 
air (6 h/d; 5 d/wk) 

LOEL = 46.7 mg/m3 

(≡ 17 mg/kg bw/d) 
18417 

Dog m/f Chronic oral diet Chronic, 52 weeks, 
OECD 452 
0-30-300-3,000 ppm 

NOEL < 30ppm 
(≡ 0.75 mg/kg bw/d) 

22638 

Dog m/f Chronic oral diet Chronic, 53 weeks, 
OECD 452. 0-10 ppm 

NOEL = 10ppm  
(≡ 0.25 mg/kg bw/d) 

22678 

Rat m/f Carcinogenicity 
and Chronic 
toxicity diet 

Chronic, 2 years, OECD 
453 
0-20-200-2,000 ppm 

NOEL = 20 ppm  
(≡ 1,0 mg/kg) 
NOEL for carcinogenicity = 
200 ppm  
(≡ 9.9 mg/kg bw/d) 

22375 

Mouse 
m/f 

Carcinogenicity 
and chronic 
toxicity diet  

Oral feed, 2 years, OECD 
451. 10, 100, and 
1000 ppm diet, i.e. 2, 20, 
and 200 mg/kg bw/d for 
males, 3, 33 and 
280 mg/kg bw/d for 
females 

Males: NOAEL = 100 ppm 
(≡ 20mg/kg bw/d) 
Females: NOEL could not be 
determined as clinical changes 
were observed at the lowest 
dose level.  Liver adenomas 
were observed in females at 
1000 ppm dose level 

22744 

Rat m/f Multi-generation 
study oral diet 

Oral diet, 84 days, OECD 
416 
0-20-200-1000ppm 

NOAEL = 220ppm 
Parental NOAEL = 200ppm (= 9 
to 38 mg/kg) 
Neonatal NOAEL = 1,000ppm (= 
50 mg/kg calculated) 
Reproductive NOAEL = 1,000 
ppm (= 45 to 191 mg/kg) 

R5352 

Rat f Developmental 
toxicity, gavage 

10 days 
0-25-55-125 mg/kg/d 

Maternal NOAEL = 
25mg/kg bw/d 
Developmental NOAEL = 
125mg/kg bw/d 

MTD0058

Rabbit f Developmental 
toxicity, oral feed 
[gavage] 

13 days 
0-15-50-150 mg/kg/d 

Maternal NOAEL = 
15mg/kg bw/d 
Developmental NOAEL =  
150 mg/kg bw/d 

18069 
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In the rat, mortalities and body tremors were seen at 250 mg/kg/d following gavage 
dosing.  There were no mortalities following dietary administration of up 5000 ppm 
(approximately 40 mg/kg bw/d). 
A low incidence of urinary bladder papillomas/carcinomas was observed in rats at a 
dietary level of 2000 ppm of transfluthrin1. In female mice, an increased incidence of 
liver adenomas, but not of carcinomas, was observed at 1000 ppm, the highest dose 
level tested.  In 2-stage studies on promoting effects in rat liver cells with 
diethylnitrosamine as the initiator, transfluthrin had no initiating activity but was a 
weak promotor (22888).  Transfluthrin did not induce hepatocyte proliferation or 
increase mitoses in the liver in vivo (R5555). 
Developmental studies in both the rat and rabbit provided no evidence of 
teratogenicity when transfluthrin was administered at doses up to 125 and 
150 mg/kg bw/d, respectively.  NOELs of 25 and 15 mg/kg bw/d were established for 
maternal toxicity in the rat and rabbit respectively. 
In a dietary multi-generation reproductive toxicity study in the rat, there was no 
evidence of teratogenicity, foetoxicity or reproductive toxicity in rats administered 
transfluthrin at doses up to 191 mg/kg bw/d.  NOELs of 45 to 191 and 9 to 38 mg/kg 
bw/d were established for reproductive and parental toxicity, respectively. 
Table 5. Mutagenicity profile of the transfluthrin technical material based on in vitro 

and in vivo tests. 
Test system Test object Concentration Purity Results Reference
In vitro, Point mutation assays 
Salmonella 
microsome test 

S. typhimurium (TA 
98, TA 100, TA 1535, 
TA 1537) 

20 to 12500 µg/plate, with 
and without S9 activation 

96.0% negative 15144 

Salmonella 
microsome test 

S. typhimurium (TA 
98, TA 100, TA 1535, 
TA 1537) 

20 to 12500 µg/plate, with 
and without S9 activation 

94.5% negative 16084 

HPRT-test Chinese hamster 
ovary (CHO) cells 

25 to 100 µg/ml, with and 
without S9 activation 

94.8% negative 18148 

mitotic 
recombination 
assay 

Saccharomyces 
cerevisiae D7 

625 to 10000 µg/ml, with 
and without S9 activation 

94.5% negative 16083 

In vitro, DNA damage assays 
unscheduled DNA 
synthesis 

primary rat 
hepatocytes 

1 to 500 µg/ml 94.9% negative 21313 

sister chromatid 
exchange 

Chinese hamster 
ovary (CHO) cells 

0.0667 to 2000 µg/ml with 
and without S9 activation 

94.8% negative R4718 

In vivo, DNA damage assays 
unscheduled DNA 
synthesis 

mouse BOR:CFW1 
hepatocytes 

780 and 5580 mg/kg body 
weight 

95.0% negative R3658 

In vitro, Chromosomal damage/aberration assays 
cytogenetic study human lymphocytes 50 to 200 µg/ml, with and 

without S9 activation 
94.8%, 
95.0% 

negative 18742 

In vivo, Chromosomal damage/aberration assays 

                                             
1 The proposer noted that the effect was most likely attributable to a non-genotoxic mechanism of 

chronic urothelial irritation and regeneration, induced by transfluthrin or one of its metabolites 
(Cohen & Ellwein 1990; Bayer 1999). 
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Test system Test object Concentration Purity Results Reference
micronucleus test male and female 

NMRI-mouse bone 
marrow cells 

375 mg/kg body weight 95.0% negative 16912 

32P-post-labelling 
assay for detection 
of adduct formation 

male and female 
Wistar-rat 
hepatocytes and 
urinary bladder cells 

7 x 100 and 7 x 250 mg/kg 
body weight 

94.7% negative R6335 

Transfluthrin was not mutagenic in vitro in bacteria, yeast or mammalian cells with or 
without metabolic activation, neither was the any evidence of mutagenicity from in 
vivo tests on rats and mice. 

 
Table 6. Ecotoxicology profile of transfluthrin technical material. 
Species Test Duration and 

conditions 
Result Reference 

Colinus virginianus 
(bobwhite quail)  

Acute toxicity 14 days,  
OECD 401 

LD50 > 2000 mg/kg 
NOEL = 2000 mg/kg 

VB-003 

Serinus canarius (Canary 
bird) 

Acute toxicity 14 days, 
OECD 401 

LD50 > 2000 mg/kg 
NOEL = 2000 mg/kg 

VK315 

Salmo gairdneri (rainbow 
trout) 

Acute (flow through 
conditions) 

96 hours,  
OECD 203 

LC50 = 0.7 µg/l 
NOEC = 0.5 µg/l * 

FF-220 

Leuciscus idus melanotus 
(golden orfe) 

Acute (flow through 
conditions) 

96 hours,  
OECD 203 

LC50 = 1.25 µg/l 
NOEC = 0.89 µg/l 

F0-1108 

Daphnia magna (water 
flea) 

Acute toxicity 48 hours,  
OECD 202 

EC50 = 1.2 µg/l 
NOEC = 0.33 µg/l 

1091 A/01 
D 

Scenedesmus 
subspicatus (green alga) 

Growth inhibition 72 hours,  
OECD 201 

EC50 > 0.044mg/l 
NOEC = 0.017 mg/l 

1091 A/01 
AI 

Eisenia foetida 
(earthworm) 

Acute toxicity 14 days, 
OECD 207 

LC50 = 194 mg/kg 
NOEC = 32 mg/kg 

HBF/RG15
2 

Activated sludge Microbial respiration 
rate inhibition 

3 hours, 
OECD 209 

EC50 = 10 000 mg/l 1091 A/01 
B 

* It was unclear why the difference between LC50 and NOEC values was so small. 

 
Environmental fate and behaviour 
Tests of hydrolysis for transfluthrin at 25oC for 36 d gave a half-life of 14 d at pH 9 
and >1 year at pH 7 and 5.  Under the test conditions transfluthrin did not readily 
hydrolyse and, considering the very low water solubility and strong adsorption 
characteristics of the compound, hydrolysis is expected to play a minor role in the 
degradation of transfluthrin in the environment. 
Transfluthrin underwent photolysis when irradiated with light of wavelengths 
> 290 nm with an extrapolated half-life of 17 h1.  A calculation to determine the rate 
of degradation of transfluthrin in air estimated the half-life to be 4.1 d. 

                                             
1 The UV absorption spectrum of transfluthrin indicates that direct photodegradation should not 

occur.  Indirect photodegradation, by radicals generated coincidentally in the surrounding medium, 
was responsible for an extrapolated half-life of 17 h.  In a more recent study, the half-life of indirect 
photodegradation was determined as 26 h (3467). 
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Hazard summary 
Environmental toxicity tests showed that transfluthrin is of low toxicity to algae, 
earthworms and birds but is highly toxic to fish and daphnia.  If classified using the 
criteria laid out in the Globally Harmonized System for classification and labelling of 
chemicals (UN, 2003), transfluthrin would be classified in the category Acute I, in its 
lower band. 
Transfluthrin has not been evaluated by the WHO IPCS but the IPCS hazard 
classification based on acute toxicity of transfluthrin is "unlikely to present acute 
hazard in normal use" (WHO, 2002). 

The FAO/WHO JMPR has not evaluated transfluthrin but the UK evaluation of the 
compound (ACP, 1997) was considered as part of this evaluation.  The Australian 
Therapeutic Goods Administration of the Commonwealth Department of Health and 
Ageing has set an ADI of 0 to 0.003 mg/kg/d, based on the NOEL of 0.25 mg/kg 
bw/d for chronic dietary intake by dogs (TGA 2001).  
Formulations  
The main formulation types available are mosquito coils (MC) and liquid vaporizers 
(LV), which are registered and sold in many countries throughout the world. 
Methods of analysis and testing  
The analytical methods for determination of transfluthrin (including identity tests) in 
the TC. SL and LV are full CIPAC methods (CIPAC 2003, CIPAC 2006).  
Transfluthrin is determined by capillary gas chromatography with internal 
standardization (dipentylphthalate) and flame ionization detection. 
Test methods for determination of the physical-chemical properties of technical 
active ingredient were mainly OECD. 

Physical properties  

The limits proposed for physical properties (acidity and alkalinity) of the technical 
material and the methods for testing them comply with the requirements of the 
FAO/WHO Manual (FAO/WHO, 2002).   

Containers and packaging 

The technical active may be stored in glass containers, plastic containers or steel 
drums with appropriate plastic bags. 

Expression of the active ingredient  
The active ingredient content is expressed as transfluthrin in g/kg.  
Appraisal 
There is currently no WHO specification for transfluthrin and this was a new 
application by Bayer AG, Leverkusen.  
Transfluthrin is a synthetic pyrethroid insecticide used in household and hygiene 
products, mainly for the control of flying insects such as mosquitoes and flies.  It has 
been approved for use in about 50 countries worldwide.  The main formulation types 
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available are mosquito coils and aerosols.  Evaluation of specifications for public 
health use was restricted to the TC.  
Transfluthrin is of low acute and dermal toxicity and is classified as unlikely to 
present acute toxicity in normal use by the IPCS.  It is not a skin or eye irritant, nor a 
skin sensitizer. 
In a dietary multi-generation reproductive toxicity study in the rat, there was no 
evidence of teratogenicity, foetoxicity or reproductive toxicity in rats administered 
transfluthrin at doses up to 191 mg/kg bw/d. 
Transfluthrin induced a low frequency of urinary bladder adenomas/carcinomas in 
rats at high doses – the NOEL for non-cancer endpoints was 20 ppm, for cancer, 
200 ppm, and the urinary tumours were observed at a level of 2000 ppm diet.  It also 
induced adenomas in female mice at a high dose level.  Transfluthrin had no 
initiating activity, but was a weak promotor of carcinogenicity.  Transfluthrin was 
consistently negative in mutagenicity studies in vitro and in vivo; it is concluded that 
the tumours induced at high dose in rats and female mice are probably not produced 
by a genotoxic mechanism.  Field and laboratory tests showed that transfluthrin is of 
low toxicity to algae, birds and earthworms but it is highly toxic to fish and aquatic 
invertebrates such as daphnia. 
If classified according to the Globally Harmonized System for classification and 
labelling of chemicals, transfluthrin would be classified in category Acute I, lower 
band. 
The FAO/WHO JMPR has not evaluated transfluthrin.  However, the Australian 
authorities have set an ADI of 0 to 0.003 mg/kg bw/d (TGA 2001).  
The meeting considered the issue of relevant impurities.  WHO/PCS noted that the 
toxicity studies were all performed using transfluthrin with "similar" impurity profiles 
and the results showed not only a generally low toxicity but also the absence of 
unexpected effects.  Information provided by the proposer indicated that, at the 
levels found in the 5 batch analysis, none of the impurities is likely to be associated 
with important toxic effects.  WHO/PCS therefore concluded that none of the 
impurities was relevant and the meeting concurred with this view. 
There were some minor differences in the declared composition of the technical 
material submitted for registration in the UK and that submitted to the WHO, in that 
the batch analysis data and manufacturing limits submitted to WHO indicated 
somewhat lower concentrations of certain impurities.  The proposer explained that 
these were due to improvements in the quality of raw materials used and 
manufacturing improvements, made as part of the transition from pilot-scale to large-
scale production. 
CIPAC has adopted the analytical method for determination of the active ingredient 
in the technical material (including identity tests based on diastereoisomer ratio and 
stereoisomer ratios and infra-red spectroscopy) and in SL and LV formulations, 
which renders it acceptable for support of the specification for the TC.  Transfluthrin 
is determined by capillary gas chromatography with internal standardization.  The 
proposer has verified that the analytical method is capable of separation of the 
diastereoisomers of transfluthrin, i.e. that the corresponding cis-isomers would be 
separated and detected if present and would not be included in the measurement of 
transfluthrin (CIPAC, 2003). 
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Recommendations 
The meeting recommended that the proposed specification for the technical material 
should be adopted by WHO1. 
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