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Abstract
African trypanosomes escape the host adaptive immune response by switching their dense
protective coat of Variant Surface Glycoprotein (VSG). Each cell expresses only one VSG gene at
a time from a telomeric expression site (ES). The ‘pre-genomic’ era saw the identification of the
range of pathways involving VSG recombination in the context of mono-telomeric VSG
transcription. A prominent feature of the early post-genomic era is the description of the molecular
machineries involved in these processes. We describe the factors and sequences recently linked to
mutually exclusive transcription and VSG recombination, and how these act in the control of the
key virulence mechanism of antigenic variation.

Introduction
Many pathogens have evolved strategies for phenotypic and clonal variation of surface
proteins. This allows for the establishment of a persistent infection in immunocompetent
hosts, enhancing transmission. The African trypanosome, Trypanosoma brucei, is one such
pathogen; a protozoan of major medical and economic importance. These highly motile cells
circulate in the mammalian host bloodstream and are spread by tsetse flies. Evasion of the
adaptive host immune response is achieved by changing the composition of a dense Variant
Surface Glycoprotein (VSG) coat on bloodstream form cells [1]. The VSG is invariably
encoded in a polycistronically transcribed telomeric expression site (ES). Importantly, VSG
expression is monoallelic such that only one among 10–20 telomeric ESs is transcribed at a
time [2]. Silencing at all other ESs maintains monoallelic expression and the integrity of the
evasion strategy while the multiplicity of potential ESs (Figure 1) allows for a co-ordinated
switch to transfer active transcription from one telomere to another [3]. Beyond the VSGs
found in the ES, T. brucei also possesses a massive archive of ∼1000 silent VSGs and VSG
pseudogenes which dominate subtelomeres [27]. Recombination is therefore central to
antigenic variation, allowing the parasite to utilise this VSG archive, typically by copying a
different gene into the active ES (Figure 1).

Recent reviews have dealt with a range of topics related to antigenic variation in T. brucei,
focusing on DNA breaks as triggers for recombination-based switching [4], expression-site
associated genes [5], VSG expression patterns and mechanisms [6] and the trafficking and
barrier function of the VSG coat [7,8]. Here, we focus on recent advances in understanding
the molecular machineries that maintain VSG allelic exclusion and that execute
recombination-based VSG switching.
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Control of monoallelic VSG expression site transcription
The epigenetic mechanisms underlying VSG gene silencing and allelic exclusion are of great
intrinsic scientific interest and also present potential targets for chemotherapy. Subtelomeric
promoters and genes are typically prone to silencing in a range of organisms, a phenomenon
first described in yeast [9] and subsequently demonstrated in trypanosomes [10,11•].
Crucially, in T. brucei, only one of the available bloodstream ESs [2] must specifically
escape silencing to maintain homogeneity of the VSG coat and the ability to rapidly swap
exposed epitopes; the resulting differential in VSG expression between silent and active ESs
may be in excess of 10,000-fold. A notable feature of VSG ESs is transcription by RNA
polymerase I (RNAPI). Although all VSG ES promoters appear to initiate RNAPI-mediated
transcription at a similar rate, transcription is processive only at the single ‘active’ VSG ES
[12] and this ES associates with an extranucleolar accumulation of RNAPI known as the ES
body (ESB) [13]. It remains unknown whether the ESB self-assembles around the active
gene [14], or whether the structure excludes other ESs [13]. Thus, the mechanism allowing
one ES to escape silencing remains something of a mystery, and no ESB-specific factor has
been identified to date, but there has been some recent progress in understanding the
structure and behaviour of the active ES. Nucleosomes are depleted at the active ES [15•,
16•], thereby reflecting either transcription-based ejection and/or another form of
destabilisation. In addition, sister chromatid cohesion promotes inheritance of the active
state; in cells depleted for cohesin components, cohesion at the active ES is compromised
leading to an increased rate of transcription switching to alternative telomeres [17•]. These
studies, and the DOT1B work described below, may provide some early insight into the
elusive mechanism of cross-talk that operates among the active and silent ESs.

The powerful silencing mechanism itself has been more readily amenable to investigation
and at least six factors required to maintain ES silencing have been identified in recent
years. It has also become clear that other factors participate in a distinct form of silencing
defined by the distance that the effect spreads from the telomere (Figure 2). ‘Short-range’
telomeric silencing is restricted to a region immediately adjacent to the telomeric repeats and
in T. brucei, the distal ES promoters and antigenic variation escape this effect. This silencing
mechanism requires SIR2rp1, the only nuclear NAD-dependent histone deacetylase in T.
brucei [18]. Furthermore, the histone acetyltransferase, HAT1 [19], and a histone
deacetylase, DAC1 [20•], appear to regulate SIR2rp1 spreading. These latter findings
reinforce the parallels with telomeric silencing in yeast where the putative homologues, Sas2
[21] and Rpd3 [22], control the spreading of Sir2-dependent silencing.

Substantial evidence has emerged recently to also link chromatin structure and modification
to the more extensive ‘long-range’ VSG ES silencing (Figure 2). The chromatin chaperones,
CAF-1 and ASF1, are required for inheritance of the silent state, presumably through cycles
of nucleosome (dis)assembly associated with DNA replication (Alsford et al., unpublished).
In addition, several enzymes have been identified that are likely to stabilise the nucleosomes
at silent sites thereby repressing transcription. These include a chromatin remodeler, ISWI
[23], a histone deacetylase, DAC3 [20•] and a histone (H3K76) methyltransferase, DOT1B
[24•]. Most of the factors above are essential for growth and have been depleted using RNA
interference. Only the methyltransferase is dispensable and cells lacking this factor display a
relatively subtle VSG transcription derepression phenotype [24•]; the essential factors reveal
a more pronounced derepression phenotype at the promoter that, nonetheless, due to
attenuation, does not lead to detectable VSG expression from the ‘silent’ ESs. This may
reflect a more pronounced role at the promoter or simply stasis associated with only partial
alteration of the chromatin through the long polycistronic ES. Thus, current results suggest
that chromatin modifiers and remodelers cooperate to reinforce and propagate the silent
state. Specifically, the silent sites are likely to comprise hypoacetylated, hypomethylated
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(H3K76, the DOT1B methyltransferase effect is thought to be indirect) and ordered
chromatin. The viable dot1b methyltransferase mutants also presented an opportunity to
investigate the impact on transcription switching to an alternative telomere and these cells
displayed a substantial delay in this process [24•].

Evidence indicating a role for the telomere itself in VSG ES silencing comes from studies on
repressor/activator protein 1 (RAP1). This telomere-associated protein is also essential for
growth, and RNA interference-based knockdown produced cells expressing multiple VSGs
on the surface [11]. RAP1 may recruit SIR2rp1 and additional factors, thereby mediating
short-range telomeric silencing, as in yeast [25] and long-range VSG ES silencing (see
Figure 2). Intriguingly, sustained VSG ES silencing at a chromosome end lacking RAP1-
binding sites, the terminal telomeric repeats [26], may indicate the presence of silent
compartments containing subtelomere clusters.

Telomeres and chromatin are central to tightly regulating interaction between the nuclear
pool of RNA polymerase and VSG genes. It seems likely that the silencing mechanism
targets all telomeres in the context of a dominant, and currently mysterious, anti-silencing
machine or factor that compels VSG ESs to obey the rules of allelic exclusion. This latter
activity apparently acts in a telomere-specific manner. A better understanding of the
exclusion process might reveal targets that can be exploited for therapy. Indeed, at least one
of the factors linked to silencing, the DAC3 deacetylase, represents a potentially druggable
target [20•].

Control of VSG expression site recombination
Subtelomeres tend to be ‘fragile sites’ that are prone to rapid gene turnover and increased
rates or sequence exchange. As such, these hotbeds of innovation are ideal sites for
contingency genes such as VSGs [3]. VSG switching by recombination most commonly
occurs by gene conversion reactions that copy a silent VSG into the active ES, replacing the
VSG that was previously transcribed (Figure 1). This mitotic process requires considerable
mechanistic flexibility, since gene conversion reactions have been documented using donor
VSGs from three distinct genomic locations: the silent ESs, the telomeres of African
trypanosome-specific minichromosomes, and from the subtelomeric VSG arrays [3]. Gene
conversion of array VSGs can recombine complete genes into the ES, or can generate novel
VSGs (‘mosaics’) by segmental gene conversion reactions using multiple VSG pseudogenes
[27]. A role for homologous recombination (HR) [28] in these gene conversion processes
was first revealed by mutating RAD51, the key enzyme of homology-directed DNA strand
exchange, resulting in impaired VSG switching [29]. Subsequent analysis confirmed the
importance of RAD51-directed strand exchange. Mutation of at least one of four T. brucei
RAD51 paralogues also impairs switching [30] (R Dobson et al., unpublished), as does
mutation of the T. brucei orthologue of BRCA2 [31•], a breast cancer oncogene that co-
ordinates loading of RAD51 onto processed DNA double strand breaks (DSBs) [28]. In part,
this is mediated through conserved BRC repeats, which are dramatically expanded in T.
brucei BRCA2 [31•]; possibly an example of adaptations imposed on the HR machinery by
VSG switching. An important recent development is the use of a yeast meganuclease (I-SceI)
for the controlled generation of a chromosomal DSB [32•]; at a chromosome internal locus
this results in a temporal cascade of cell cycle stalling, accumulation of RAD51 in
subnuclear foci and predominant allelic HR. The system has also now been used for genetic
dissection of chromatin control of DSB repair (DSBR) in T. brucei (Glover et al.,
unpublished); a histone acetyltransferase and a histone deacetylase have been shown to
impact DNA resection and RAD51 filament disassembly respectively.
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Beyond the HR strand exchange step, we have much to learn about the upstream and
downstream processes in VSG switching, and alternative recombination pathways. 70 bp
repeats are a key element of VSG switching as they flank >90% of VSGs [27], meaning they
can provide upstream sequence homology for recombination as well as ES-specific
initiation. Recent work suggested an initiating role for DSBs at 70 bp repeats upstream of
the active VSG [33•]: naturally occurring breaks were detected in this region, and the
generation of an I-SceI-induced DSB adjacent to the 70 bp repeats increased the rate of
switching. A key factor in the detection of DSBs and in nucleolytic processing to allow
RAD51 filament formation is the Mre11-Rad50-Xrs2/Nbs1 (MRX) complex [34]. Mutation
of MRE11 in T. brucei reveals a role in HR repair [35,36], but not in VSG switching [35],
meaning VSG switch-initiating breaks may not be DSBs, at least initially, or that other
factors assume an MRX-like function during VSG switching.

A number of pathways may contribute to VSG switching (Table 1, reviewed in [6]) but the
recombination steps that operate downstream of RAD51-mediated strand exchange have
been explored to only a limited extent. Break-induced replication (BIR) has gained
prominence recently [37], at least in part because of roles in telomere maintenance in yeast
and mammals [38]. BIR, involving telomere-proximal VSGs and associated 70 bp repeats,
might be an adaptation of backup telomere maintenance pathways to satisfy the demands of
VSG switching [33•,39]. However, a mechanistic demonstration of BIR, rather than gene
conversion, in VSG switching is still needed [40]. For instance, the DNA polymerases (Pols)
that catalyse DNA synthesis during VSG switching remain unknown. Though HR in
eukaryotes relies on Pols α, δ and ɛ, B family replication enzymes [41], other work has
suggested roles for Y family Pols in recombination [42].

RAD51-mediated HR is clearly important in antigenic variation, but RAD51-independent
pathways also operate [29,30,31•]. Deletions based on microhomology-mediated end-joining
(MMEJ, aka micro-single-strand annealing) are readily detectable in T. brucei following an
I-SceI-induced DSB [32•] and one-sided, MMEJ-based gene conversion also operates
(Glover et al., unpublished). MMEJ has also been observed in T. brucei cell extracts [43]
and following DNA transformation [44] and occurs in mutants lacking RAD51 and KU, a
key component of non-homologous end-joining (NHEJ). The relationship between MMEJ in
T. brucei and alternative end-joining (A-EJ) pathways in other eukaryotes [45] is currently
unclear. Nevertheless, though MMEJ/A-EJ is considered subservient to NHEJ in other
eukaryotes, significant roles in immunoglobulin gene rearrangements have been described
[46]. In addition, evidence is emerging that MMEJ/A-EJ can be a significant route for
chromosome rearrangements [47], a process that can shape genomes and may be suppressed
by NHEJ [48]. Indeed, MMEJ may be coupled to BIR in such rearrangements [49]. Though
KU70-80 is conserved, the Ligase IV-XRCC4 complex of NHEJ has not been found in the
trypanosomatids, so these parasites may have evolved to enhance MMEJ.

Conclusions
Mono-telomeric VSG expression and recombination are central to the process of antigenic
variation in African trypanosomes and it will be important to understand the machinery
underlying both of these processes. The recent work highlighted above has begun to
illuminate both areas with chromatin and epigenetics emerging as prominent features.
Additional regulators will emerge and further studies on interactions, mapping of epigenetic
marks and their functional analysis, nuclear location and cell-cycle control will provide
further insights while forward genetic approaches may reveal further novelty and could shed
some light on the machinery required for mutually exclusive escape from silencing. Further
characterization of DSB processing, HR and MMEJ, their contribution to the various VSG
recombination reactions and their genetic dissection, are also needed. Finally, now the
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importance of the terminal telomeric repeats is established for gene silencing, other
subtelomeric sequences may be found to serve cis-regulatory functions in spreading
heterochromatin, serving as transcription boundaries or enhancers or promoting instability
and recombination.
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Figure 1.
The schematic illustrates mono-telomeric VSG expression and routes of VSG switching. NB:
there are >1000 VSG (pseudo)genes available for the exchange or assembly of new VSGs at
the active ES; most of these are in long subtelomeric arrays flanked by repetitive elements.
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Figure 2.
Factors that impact telomeric and VSG expression site silencing in T. brucei. The role of
each factor in the table on the left is illustrated in the schematic on the right. Only the
SIR2rp1 and RAP1 effects have been shown to diminish as distance from the telomere
increases. The short-range effects have only been shown to affect de novo telomeres but may
also impact VSG ES transcription, particularly at the short monocistronic ESs used in the
insect mid-gut and during the establishment of a mammalian infection [3]. It is also
important to note that these factors could impact recombination. Many of the factors shown
were originally named based on phenotypes identified in yeast: ASF, anti-silencing factor;
DOT, disruptor of telomeric silencing; SIR, silent information regulator; RAP, repressor/
activator protein. The DAC3 homologue in yeast (Hda1p) has also been linked to telomeric
exclusion of genes encoding surface-exposed proteins [50,51]. Flags represent promoters
and blue boxes represent repetitive sequences; dark, T2AG3, light, 70 bp.
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Table 1

DSBR pathways and their possible contribution to antigenic variation in T. brucei.

Pathway Sub-pathway Features Proposed role in VSG
switching

Ref.

Homologous recombination (HR) Gene conversion (GC) Copying and replacement of
a segment of DNA using
flanking homologies

Any VSG (fragment) with
sufficient homology could
be copied into the active ES
by this typically RAD51-
dependent mechanisma

[29]

Single-strand annealing (SSA) Deletion of a segment of
DNA using flanking
homologies

None

Break-induced replication (BIR) Copying and replacement of
a segment of DNA to the
chromosome end using a
single region of homology

The subset of telomeric
VSGs could be copied into
the active ES by this
typically RAD51-dependent
mechanisma

[33]

End-joining (EJ) Non-homologous EJ (NHEJ) Re-ligation of broken
strands typically with small
deletions

None — not seen in T.
brucei

Microhomology-mediated EJ
(MMEJ, aka micro-SSA)

Deletion of a segment of
DNA using flanking
microhomologies of 5–
20 bp. Gene conversion (see
above) can be mediated by
one-sided MMEJ

MMEJ-based equivalents of
(one-sided) GC and BIR
would be predicted to be
RAD51-dependentand
independent respectivelya
(see above)

[32]

a
Recombination-based VSG switching operates via RAD51-dependent and independent mechanisms.
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