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a b s t r a c t

Infectious disease incidence data are increasingly available at the level of the individual and include high-
resolution spatial components. Therefore, we are now better able to challenge models that explicitly
represent space. Here, we consider five topics within spatial disease dynamics: the construction of net-
work models; characterising threshold behaviour; modelling long-distance interactions; the appropriate
scale for interventions; and the representation of population heterogeneity.
eywords:
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ntroduction

There have been many important ecological and public health
uestions related to the transmission of infectious disease that nei-
her need, nor would benefit from, a mechanistic model in which
pace is represented explicitly. In many instances, the concept of
he average behaviour of a large population is sufficient to provide
enuinely useful insight and to extract good information from the
ata that are available.

However, the importance of the spatial component of many
ransmission systems is being increasingly recognised. When there
s a need to consider spatially heterogeneous interventions, it is
learly essential to represent the location of hosts and the pattern of
ransmission. Sometimes the location of the hosts in space is clearly
efined and easily measured – such as for plant systems and some

ivestock systems. However, for humans and wild animals, the sin-

le location assigned to a host represents the best average from the
omplex social behaviour of each individual.

If it is thought that the aggregate characteristics of epidemic
ncidence are being driven by spatial aspects of transmission (such
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as waves), it is difficult to investigate data from these systems
with models that do not represent space in some way. Also, and
perhaps most importantly for future modelling work, where data
are provided with high spatial resolution, even when the primary
hypotheses of interest for a given phenomenon does not relate
directly to spatial effects, it is often necessary to account for spatial
processes in order to discount plausible alternate explanations for
an observed feature in the data.

Mechanistic spatial models are usually described as being; an
individual-based simulation, a metapopulation model or a network
model. Individual-based models explicitly represent every indi-
vidual host within a simulation algorithm and usually assume a
highly variable – but non-zero – probability that any infectious
host can infect any susceptible host. Metapopulation models do
not represent individuals. Rather, they keep track of the number of
individuals at different locations who are in each state of the nat-
ural history. Often, they also assume that each location (patch) is
connected to all others, but, again, with highly variable strengths
of connection. Network models typically define each node to be an
individual host and assume that each host is connected to only a
small subset of other hosts. Also, usually, the strengths of connec-

tion along each arc in a network epidemic model are assumed to
be equal.

Here we consider five broad challenges for theoretical infectious
disease dynamics.

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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. How can network models best be constructed to reflect
patial population structure?

The three types of spatial model outlined above do not form
isjoint sets. We can think of the network formulation as a
otential unifying framework within which the other two can
e nested. Individual-based simulations are very dense fully con-
ected networks with highly variable edge weights. Similarly,
etapopulation models become network models as the average

umber of individuals represented in each patch approaches 1.
herefore, given that it has proven difficult to obtain analytical
esults for metapopulation models and individual-based simula-
ions, it may be possible to make more analytical progress in our
bility to describe complex spatial phenomena by basing analysis
n network formulations that mimic these other model structures.

There is a long history of using regular lattices as a basis for infec-
ion spread (Mollison and Kuulasmaa, 1985), often in the context
f plant populations. Random geometric graphs (Penrose, 2003)
rovide another, less highly structured, way to represent a spa-
ial process by a simple graph. They are constructed by starting
rom a spatial Poisson point process, which need not necessarily be
omogeneous. Pairs of points (nodes) that are within some criti-
al distance are connected by an edge to form a graph, after which
he underlying spatial structure is ignored. The conditional inde-
endence properties of Poisson processes mean that the analytic
roperties of such graphs are well understood. When they form the
nderlying contact structure for epidemic processes (Isham et al.,
011), random geometric graphs provide a nice way of escaping
he lack of local correlation and clustering that are implicit prop-
rties of the configuration graphs often used to explore epidemic
ynamics.

The spatial construction of the random geometric graph leads
aturally to the question of how transmission is affected when
he hosts move in space, so that edges are continuously bro-
en and created. This scenario has direct application to computer
iruses spreading on wifi computer/phone networks (e.g. Rhodes
nd Nekovee, 2008). In other applications, it may be appropriate to
odel the creation and annihilation of nodes and edges. Network

ynamics is discussed in section “How do we define a threshold
arameter for spatial models?” of the chapter on Networks (this
olume).

In most metapopulation and network models, the group or net-
ork structure of the host population is fixed. The actual contacts

etween hosts in which transmission takes place are not explic-
tly represented; implicitly one might imagine some local spatial

ovement that brings the two hosts in contact. In contrast, in an
lternative modelling approach, hosts move between a set of dis-
rete spatial locations that form the nodes of a graph, and infection
s only possible between hosts in the same location. Thus, in a sim-
le model, hosts might perform independent random walks on the
raph (Draief and Ganesh, 2011; Abdullah et al., 2011).

Work is needed to develop other network models that reflect
patial structure and, when that network is not fully connected,
o explore how well the properties of an epidemic running on the
etwork approximate the full spatial dynamics.

. How should we model contact structure in spatially
eterogeneous populations?

Human populations are never distributed uniformly in space.
ence, the movement of people to achieve their daily tasks in
ife is driven strongly by the distribution of population density
round them. In rural areas, people must travel further on aver-
ge to shop compared with urban areas; while they may travel
ess far to socialise. The movement of hosts is clearly an important
10 (2015) 68–71 69

feature of spatially explicit infectious disease models (Riley, 2007).
It is also an important aspect of human behaviour for the study of
other social phenomena: urbanisation, disaster planning, transport
planning, and many others. There has been considerable interest in
developing parsimonious models of human movement in recent
years in order to support these different studies (González et al.,
2008; Wang et al., 2009; Simini et al., 2012).

Most quantitative descriptions of human movement are based
on the concept of a gravity model: that the flux of individuals from
area dA1 to area dA2 is proportional to the product of the popu-
lations of the two areas n1 and n2 and inversely proportional to
the distance between them r1, raised to some power (Viboud et al.,
2006). If the analogy with Newtonian gravity is direct, movement
between areas is assumed to be proportional to n1n2/r2. With only
minor refinements, for some systems, this formulation describes
observations extremely well. For example, the number of people
travelling between Germany and 28 other European cities by air
can be well estimated with simple gravity-based models (Grosche
et al., 2007).

However, spatial models of infectious disease are often defined
for an individual (as well as for linked metapopulations). Therefore
flux models must be refined so as to be consistent with simulated
infections between individuals. This is usually achieved by assum-
ing that the infectious contacts of individuals are determined by a
mobility kernel: the probability that an individual at location r1 will
make contact with an individual at location r2. The kernel itself can
be defined only up to a constant of proportionality, with the number
of infection events determined by a separate parameter (Riley and
Ferguson, 2006). Effectively, individual mobility becomes relative
to available opportunities.

The discovery of flexible and accurate movement models is a
current challenge for infectious disease dynamics, with high inter-
est in the recently proposed radiation flux model. In the radiation
model, the degree of flow between two populations is driven by
their population sizes, the distance between them and also by the
total number of people who live the same distance away from
each population (or closer) (Simini et al., 2012). Thus, the inter-
vening population absorbs journeys in the same way that radiation
is absorbed as it passes through a media. Although the radiation
model as currently proposed has no free parameters and is attrac-
tive in its simplicity, it is not yet clear to what degree previously
proposed gravity-like mobility kernels can achieve similar or better
fits to observed patterns by estimating two or three key parameters.

One obvious way forward is for the underlying movement
assumptions of spatial models of infectious disease to be compared
using spatially resolved social contact data (Read et al., 2014).

3. How do we define a threshold parameter for spatial
models?

The basic reproductive number R0 is most commonly under-
stood to be the average number of infections generated by one
infectious individual in an otherwise susceptible population. There-
fore, for simple non-spatial homogeneous mixing models, the
critical or threshold value of a straightforward R0 parameter is
unity: that is, when R0 ≤ 1, the expected outbreak size is small;
when R0 > 1, there is a significant probability of a large outbreak.

Where the population includes individuals of different infec-
tious types, a more sophisticated approach defines R0 as the largest
eigenvalue �* of the next generation operator for those types
(Diekmann and Heesterbeek, 2000; Heesterbeek, 2001). This is

appropriate for most non-spatial models, for which branching pro-
cess approximations can be applied (Ball, 1983; Davis et al., 2008),
showing that early growth is exponential, with the nth genera-
tion of infectives ∝ �n∗ , and with infectious numbers of each type in
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he ratios of the corresponding right eigen-vector. Thus, it can rea-
onably be claimed to be the natural generalisation of the simple
omogeneous case – and again the threshold value of R0 – is unity.

For spatial models, where the numbers of infectives often grow
nly quadratically, rather than exponentially, this generalised def-
nition of R0 is not applicable (Diekmann and Heesterbeek, 2000;

ollison, 1986). For simple spatial models with just one type
f individual, the original definition as the average number of
nfections generated by one infectious individual in an other-

ise susceptible population can be used. However, because of the
lumping effects inherent in spatial models, the threshold value
f this R0 will be greater than unity: for example, for nearest-
eighbour lattice models it lies between 2 and 2.4 (Mollison and
uulasmaa, 1985). Therefore, the transmissibility defined by R0 = 1

n this case underestimates the true critical value of transmissibil-
ty.

For more complex spatial models that do exhibit exponen-
ial growth, ideally we should be calculating a next generation
perator whose quasi-stationary state would be analogous to the
eading eigenvector of the homogeneously mixing case, but in gen-
ral this is not feasible. One can calculate the average number of
econdary infections generated by a randomly chosen individual
n an otherwise susceptible population, R∗

0 say, but it is not clear
hat this parameter will consistently under- or over-estimate crit-
cal transmissibility. Intuitively, it seems likely that infection from

randomly chosen individual will be less transmissible than an
ndividual chosen in accordance with a theoretical eigen-vector.
herefore, the critical threshold of transmissibility based on R∗

0 will
e an overestimate of the true critical threshold. However, there
ay be unusual distributions of mixing and transmissibility within
population that force the effect in the opposite direction. A proper
eneralisation of R0 to the spatial multi-type case remains elusive.

One alternative is for models to be parameterised such that the
azard of infection for all infection events is defined to be propor-
ional to a single parameter, ˇ. Then ˇ’s threshold value, ˇ0, can be
ound iteratively using simulations to arbitrary levels of precision,
nd R0 defined as ˇ/ˇ0. One merit of this definition of R0 is that the
ritical vaccination level is immediately seen to be 1 − 1/R0, as in
imple homogeneous mixing models.

. How should we analyse models with long distance
nteractions?

A basic challenge concerns the relationship between contact
tructure and the duration T of an epidemic in a population of size N.
or global models, where growth and decline are both exponential,
he duration is of order log(N), whereas for a spatial model with only
ocal contacts growth goes only as a quadratic (in 2 dimensions), so
hat the duration is much longer, of order

√
N.

There are two well-studied types of model between the entirely
ocal and the entirely global. The simpler, “great circle” (Ball et al.,
997) or “small world” (Watts and Strogatz, 1998) approach, just
dds a proportion of global contacts. The justification for the second
ame is that it takes only a relatively small proportion of global links
o greatly reduce the diameter of the contact network.

The second approach introduces long-distance contacts through
n arbitrary dispersal distribution V. If V has exponentially bounded
ails, a simple linearisation technique can be used to estimate the
elocity of spread (Mollison, 1991). For lattice models, the question
f when the velocity is finite, or more generally how does the graph
istance of vertices within Euclidean distance r scale in r, has been

nswered with robust analysis (Biskup, 2004; Trapman, 2010). This
odel has recently been extended to inhomogeneous individuals

nd weights on the vertices (Deijfen et al., 2013). Detailed results
n the exact scaling of the number of vertices that can be reached
10 (2015) 68–71

within k infection steps for a spatial epidemic on a square lattice
are needed.

Even for SIR epidemics on a network, it is interesting to know
how the number of vertices that can be reached within k infec-
tion steps scales with k. Random graphs are often constructed as if
this growth can only be exponential. Furthermore, epidemiologists
often assume that this growth is exponential.

Methods need to be developed to investigate the proper scal-
ing for available empirical networks based on data. Those methods
might also provide some insights into how long it takes for an
epidemic to go extinct in a spatial setting.

5. On what scale is intervention most effective?

At what spatial resolution, or broken down into what spa-
tial units, should modelling be carried out? The natural scale for
transmission, for data availability, and for intervention are not nec-
essarily the same (for administrative reasons, for example, school
closure may take place at a county level). In order to give use-
ful guidance, models need to contain the same granularity as that
used for interventions. This requirement is likely to result in addi-
tional model complexity that may not match the availability of data,
presenting challenges for model fitting and specification.

Where global or long-distance contacts are important, simple
large-scale interventions can be effective, as for example restric-
tions on air travel in the case of SARS and on transport of animals
in the 2001 UK foot and mouth epidemic. Such interventions can
reduce a large-scale outbreak into a number of local outbreaks that
can then be dealt with separately.

Examples of spatially localised interventions include ring vac-
cination (Tildesley et al., 2006) and ring culling (as carried out
in the 2001 UK foot and mouth epidemic, (Keeling et al., 2001)),
local school closure (House et al., 2011), and local top-up vac-
cination campaigns. Since nations typically determine their own
intervention strategies, every intervention is in some sense local,
and therefore spatially heterogeneous.

Interventions can be targeted in a number of different ways:
they may attempt to interfere with transmission by isolating
infected individuals or introducing biosecurity measures (e.g. face
masks in SARS); they may attempt to trace potential cases and con-
tacts using knowledge of the (spatial) network of transmission;
they may be based on an understanding of the general nature of the
transmission process to apply locally but not individually targeted
interventions, e.g. ring vaccination. In many instances, several of
these approaches may be followed at once (Keeling et al., 2001).
The spatial heterogeneities of intervention add another layer of
complexity to the system, and provide a challenge for modelling,
particularly in incorporating sufficiently detailed data to offer firm
conclusions.

Spatially localised mass treatment is a crude approach com-
pared to detailed contact tracing (Riley and Ferguson, 2006), but
likely to be quicker to implement in practice. However, its broad-
brush nature brings problems: the number of individuals subject to
the intervention will likely be larger, with the associated burden of
dealing with this greater load; when the intervention is detrimental
at the individual level (e.g. culling or quarantine), a large number
of individuals will suffer unnecessarily. Models need to incorpo-
rate costs, timescales, and logistical constraints, and account for
the full burden of the intervention, including the possibility that
public opinion may make some interventions impossible to imple-
ment or to sustain. Consideration should be given to how more and

less focussed interventions can be best combined.

It is important to recognise that spatially heterogeneous inter-
ventions may change transmission patterns in unintended ways.
For example, restricting cattle movements in one part of a country
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ay boost trade and increase movements elsewhere. Where there
s scope for a reorganisation of contacts, a misapplied interven-
ion may do more harm than good: people leaving a town to avoid
uarantine may seed infection elsewhere. Models need to consider
he impact of interventions on spatial mixing beyond the region in
hich the intervention takes place.

onclusions

Adding a spatial component to an applied infectious disease
odel has been viewed, to this point, as a complex technical extra

nly to be considered when absolutely necessary. While many
ractically relevant insights into infection dynamics can be gained
ithout incorporating spatial features, nevertheless as the open

ource coding toolbox available for the construction of these mod-
ls improves and spatial data become available at the level of the
ndividual, the explicit representation of space will likely become
he norm rather than the exception for applied disease dynamics.
ere we have highlighted a number of currently open challenges

hat, if met, should improve the quality of insight derived from the
uture application of spatial models.
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