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Vitamin D is well known for its role in promoting skeletal health. Vitamin D status is determined conventionally
by circulating 25-dihydroxyvitamin D (25OHD) concentration. There is evidence indicating that circulating
25OHD concentration is affected by variation in Gc, the gene encoding the vitamin D binding protein (DBP).
The composite genotype of two single nucleotide polymorphisms (rs7041 and rs4588) results in different DBP
isotypes (Gc1f, Gc1s and Gc2). The protein configurational differences among DBP isotypes affect DBP substrate
binding affinity.
The aims of this studywere to determine 1)Gc variant frequencies in a population froman isolated rural region of
The Gambia, West Africa (n= 3129) with year-round opportunity for cutaneous vitamin D synthesis and 2) the
effects of Gc variants on 25OHD concentration (n = 237) in a genetically representative sub-group of children
(mean (SD) age: 11.9 (4.8) years).
The distribution of Gc variants was Gc1f: 0.86, Gc1s: 0.11 and Gc2: 0.03. The mean (SD) concentration of 25OHD
was 59.6 (12.9) nmol/L andwas significantly higher in those homozygous for Gc1f compared to other Gc variants
(60.7 (13.1) vs. 56.6 (12.1) nmol/L, P = 0.03). Plasma 25OHD and 1,25(OH)2D concentration was significantly
associated with parathyroid hormone in Gc1f-1f but not in the other Gc variants combined.
This study demonstrates that different Gc variants are associated with different 25OHD concentrations in a
rural Gambian population. Gc1f-1f, thought to have the highest affinity for 25OHD, had the highest 25OHD
concentration compared with lower affinity Gc variants.
The considerable difference in Gc1f frequency observed in Gambians compared with other non-West African
populations and associated differences in plasma 25OHD concentration, may have implications for the way in
which vitamin D status should be interpreted across different ancestral groups.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

VitaminDplays an essential role inmaintaining skeletal health. Vita-
min D status is typically determined by plasma 25-hydroxyvitamin D
(25OHD) concentration because it has a half-life of a couple of weeks,
it is an integrated marker of different sources of vitamin D supply and
it reflects the balance between supply and expenditure [1,2]. Unlike
other vitamins, vitamin D is obtained both through the diet and through
endogenous production from skin exposure to UVB. 25OHD status is
therefore dependent on a number of non-dietary factors. These include
skin pigmentation and skin exposure to UVB, i.e. factors associated with
genetic, behavioural and environmental factors. Recent studies have
highlighted the importance of genetic variation in vitamin D-regulating
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genes for vitamin D status [3,4]. Many studies have looked at multi-
ethnic populations with diverse ancestry and have shown differences
in 25OHD status depending on single nucleotide polymorphisms
(SNPs) in vitamin D pathway-related genes. However, few studies
have looked within a population, which is homogenous with respect
to ancestry and to environmental influences relevant to vitamin D
status.

Vitamin D binding protein (DBP) is encoded by Gc located on
chromosome 4q11–q13 [5]. DBP is an albumin-like protein produced
in the liver, which carries vitamin D metabolites in the circulation.
DBP also has other physiological roles such as sequestering actin [6],
binding fatty acids [7] and as a macrophage activating factor [8].

DBP transports vitamin Dmetabolites to tissues such as the liver and
kidney. The major vitamin D metabolites (i.e. 25OHD and 1,25(OH)2D)
are bound to DBP (N95%) or another circulatory protein such as
albumin, leaving only a small percentage circulating in its free form
(for 25OHD (b1%) [5,9,10]. Internalisation of DBP-bound 25OHD by
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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the megalin/cubulin endocytic pathway in the proximal tubule
epithelium allows for hydroxylation of 25OHD by 1- hydroxylase to
produce 1,25(OH)2D, the active metabolite of vitamin D for systemic/
endocrine functions [9]. It is thought that other tissues (non-renal)
which do not express megalin rely largely on the diffusion of free
25OHD through the plasma membrane for subsequent conversion to
1,25(OH)2D for autocrine and paracrine effects. The biological relevance
of the DBP-bound vitamin D metabolites versus the DBP-unbound or
“free fraction” of vitamin D has not yet been established [9] and the
role of DBP in the potential regulation of the free fraction is not fully
understood.

The three common Gc variants, described as Gc1f, Gc1s and Gc2 are
determined by two SNPs in Gc; rs7041(Asp432Glu) and rs4588
(Thr436Lys). Combinations of these two SNPs give rise to six DBP
isotypes (Gc1f-1f, Gc1f-1s, Gc1f-2, Gc1s-1s, Gc1s-2, Gc2-2). These
isotypes have protein configurational differences which may in turn
cause differences in the binding affinity of DBP for vitamin D metabo-
lites (see Fig. 1) [9]. However, divergent results have been published
that describe either very similar [11,12], or several-fold differences in
affinity between 25(OH)D and DBP isoforms [13].

Gc1f-1f has the highest and Gc2-2 the lowest binding affinity for
25OHD and therefore different Gc variants may also influence the free
fraction of 25OHD; the largest free fraction being associated with Gc2-
2 and the smallest with Gc1f-1f isotype (see Fig. 1) [9].

The frequency of different DBP isotypes varies by ancestry; Gc1f-1f
being most common in West Africans and African Americans and least
common in Caucasians [14]. Thus, studies with participants of different
ancestries cannot easily distinguish between the genetic versus
environmental influences on vitamin D status.

The aim of this study was to determine the Gc variant frequencies in
a sample of West-Africans (n = 3129) of predominantly Mandinka
origin from the isolated rural West Kiang region of The Gambia using
the Infinium HumanExome BeadChip. We investigated the association
of variations in DBP isotype with vitamin D metabolites (25OHD and
1,25(OH)2D) and PTH concentration in a population of children from
the same region (n = 237). This population has the opportunity for
year-round endogenous vitamin D production and has a life-long low
dietary calcium intake [15].
Materials & methods

Participants

The Gambia, West Africa, is a tropical country situated at latitude
13°N and has abundant sunshine, in 280–315 nm wavelength range,
allowing for endogenous vitamin D production all year. The West
Kiang province of The Gambia is a subsistence agricultural society
Fig. 1.Gc composite genotypes; DBP isotype; DBP substrate binding affinities (i.e. vitamin Dmet
study population (n = 3129).
where the majority of time is spent outside and customary dress does
not restrict sunshine exposure to arms and face [16]. Samples and
data for this study were available for West Kiang residents (collected
in 2002–2003 and 2012-2014) as part of the MRC Keneba Biobank
(http://www.ing.mrc.ac.uk/research_areas/the_keneba_biobank.aspx).
All study participants were self-reported as being well at the time of
recruitment (n = 3129; M = 1409). Ethical approval was given by
The Gambian Government/MRC Unit Joint Ethics Committee and
written informed consent was obtained from participants or their
parents or guardians.

Sample collection and biochemical analysis

For a subset of children biochemical data, including plasma 25OHD
concentrations, were available from previous studies (n = 237; M =
87; age 11.9 (SD 4.8) years) [17–19]. Briefly, overnight-fasted venous
blood samples (5–15 mL) were collected and transferred into pre-
cooled lithium heparin (LiHep) and EDTA-coated tubes. The blood was
separated by centrifugation at 4 °C within 45 min of collection. The
plasma and the plasma depleted cell pellets were frozen at −80 °C
and −20 °C respectively and were later transported on dry ice to MRC
Human Nutrition Research (HNR), Cambridge, for analysis and DNA
extraction. 25OHD concentration (DiaSorin, UK; assay performance
monitored by DEQAS http://www.deqas.org/), parathyroid hormone
(PTH; Immulite, Siemens Healthcare Diagnostics, UK; assay perfor-
mance monitored by NEQAS http://www.ukneqas.org.uk), 1,25(OH)2D
(IDS, UK also DEQAS), calcium, phosphate and albumin (Kone Analyser
20i, Finland) were measured. In a smaller number of participants
(n = 172) fibroblast growth factor-23 (FGF23; C-terminal Immutopics
Inc., CA, USA), total alkaline phosphatase (TALP) and creatinine (Cr)
(Kone Analyser 20i, Finland) were also measured.

DNA extraction & genotyping

DNA was extracted from fresh or frozen plasma-depleted whole
blood using standard methodology (QIAamp DNA kits, Qiagen,
Manchester, UK; Nucleon Bacc2 DNA extraction kits, Scientific
Laboratory Supplies Ltd, Nottingham, UK; or salting-out [20]). Samples
(n = 3129) were then processed on the Infinium 240 k Human
Exome Beadchip v1.0 and v1.1 (Illumina, CA, USA), which captures
putative functional variation genome-wide. Genotypes were called
using data-driven clustering (Genome Studio, Illumina, CA, USA).

The Exome Beadchip includes the two SNPs that determine DBP
isotype, rs7041 and rs4588 [4,21], which were the focus of this
study. The SNPs of interest were not in linkage disequilibrium
(r2 = 0.004) as determined using genotype data on the whole sample
(n = 3129) in Haploview using default criteria [22]. KING kinship
0.73

0.19

0.06

0.01

0.008

0.0003

abolites ) and relative free fraction of [5] and frequency ofGc variants in this Gambian

http://www.ing.mrc.ac.uk/research_areas/the_keneba_biobank.aspx
http://www.deqas.org/
http://www.ukneqas.org.uk
Unlabelled image
Unlabelled image


168 V.S. Braithwaite et al. / Bone 74 (2015) 166–170
analysis software [23] was used to estimate relatedness. This informa-
tion was then used to generate family clusters based on 1st and 2nd
degree relatives (i.e. 50% of genetic information shared (sibling) and
25% of genetic information shared (cousins)) and a family ID was
allocated to each participant [23].
Statistical analysis

Biochemical analytes were compared between those homozygous
for Gc1f-1f vs. other Gc variants (Gc1f-1s, Gc1s-1s, Gc1f-2, Gc1s-2 &
Gc2-2) using DataDesk 6.3.1 (Data Description Inc, Ithaca, NY, USA)
with Student's 2-sample t-tests. Data are reported asmean and standard
deviation (SD) for normally distributed or geometric mean (+1SD,
−1SD) for negatively skewed data. Regression was used to identify
relationships between vitamin D metabolites and PTH in univariate
models unadjusted for age and sex, since their inclusion made no
material difference to the results. Family groupings (family ID) were
not significantly associated with 25OHD concentration and so was not
adjusted for in any of themodels. The inclusion of “study” as a covariate
made no material difference to the DBP genotype effect on 25OHD
concentration and so was not included in the analyses. The beta (β)
coefficients of the ln-ln univariate regression analysis multiplied by
100 provide a sympercentage [24]which reflects the percentage change
in the y variable based on one percentage change in the x variable.
A DBP isotype group × variable interaction term was included to
identify differences in the association between variables by DBP isotype
group. P ≤ 0.05 was considered as statistically significant.
Results

DBP isotype/Gc variant distribution

The distribution of DBP isotype in the complete cohort (n = 3129)
was Gc1f-1f: 73.3% (n = 2295), Gc1f-1s: 18.8% (n = 588), Gc1f-2:
5.8% (n = 183), Gc1s-1s: 1.2% (n = 37), Gc1s-2: 0.8% (n = 25) and
Gc2-2: 0.03% (n = 1) (Fig. 1), which corresponds to Gc variants of
Gc1f: 86.0%, Gc1s: 11.0% and Gc2: 3.0%.

The distribution of DBP isotypes was comparable in the subset
with biochemistry (n = 237); Gc1f-1f: 73.8% (n = 175), Gc1f-1s:
20.7% (n = 49), Gc1f-2: 4.2% (n = 10), Gc1s-1s: 0.8% (n = 2). Gc1s-2:
0.4% (n = 1) and Gc2-2: 0% (n = 0). There were no differences in age
or sex between DBP isotype groups (Gc1f-1f vs. other Gc variants
together, Table 1).
Table 1
Biochemistry by Gc variation; Gc1f-1f n = 175 vs. other: Gc1s-1f n = 49, Gc1s-1s n = 2,
Gc2-1f n = 10, Gc2-1s n = 1, Gc2-2 n = 0. Data are mean (SD) apart from C-FGF23,
PTH and 1,25(OH)2D which are geometric mean (−1SD, +1SD). P-value determined by
unadjusted linear regression. Adjusting for age and sex made no material difference
and so is not presented. Variables denoted with ⁎ were measured in a smaller sample
set (n = 172).

Variable Gc1f-1f (n = 175) Other (n = 62) P-value

Age (y) 12.1 (4.9) 11.5 (4.9) 0.4
Sex (M/F) 63/112 24/38 0.7
25OHD (nmol/L) 60.7 (13.1) 56.6 (12.1) 0.03
PTH (pg/mL) 65.3 (39.6, 101.0) 69.6 (44.2, 109.7) 0.1
1,25(OH)2D (pmol/L) 268.0 (196.0, 366.4) 275.4 (206.8, 366.8) 0.5
C-FGF23 (RU/mL)⁎ 267.7 (196.1, 366.4) 275.4 (206.8, 366.8) 0.1
Phosphate (mmol/L) 1.49 (0.23) 1.52 (0.20) 0.4
Calcium (mmol/L) 2.29 (0.14) 2.30 (0.12) 0.8
Albumin (g/L)⁎ 38.6 (3.4) 38.7 (2.9) 0.8
Total alkaline
phosphatase (U/L)⁎

312.4 (103.5) 331.2 (103.7) 0.3

Creatinine (μmol/L)⁎ 56.6 (8.9) 55.9 (9.5) 0.6

Bold data indicates statistical significance.
Biochemistry

The mean (SD) concentration of plasma 25OHD was 59.6 (12.9)
nmol/L. The geometric mean (−1SD, +1SD) of PTH and 1,25(OH)2D
were 64.9 (40.6, 103.5) pg/mL and 269.9 (198.8, 366.5) pmol/L
respectively.

Biochemistry by Gc variation

25OHD concentration was higher in those homozygous for Gc1f
(n = 175) compared to all other variants combined (n = 62)
(25OHD: 60.7 (13.1) vs. 56.6 (12.1) nmol/L, P = 0.03) (Table 1). PTH
tended to be lower in those homozygous for Gc1f compared to
all other variants combined (PTH: 65.3 (39.6, 101.0) vs. 69.6 (44.2,
109.7) pg/mL, P = 0.10). 1,25(OH)2D was not different between Gc
variant groups (1,25(OH)2D: 268.0 (196.0, 366.4) vs. 275.4 (206.8,
366.8) pmol/L, P = 0.5). There were no significant differences in other
markers of bone mineral metabolism between Gc variant group.

Correlations between vitamin D metabolites and PTH by Gc variation

In univariate models 25OHD was significantly negatively associated
with PTH (beta coefficient (β) = −29%, P = 0.03), 1,25(OH)2D
significantly positively associated with PTH (β = 32%, P = 0.001)
and 25OHD tended to be negatively associated with 1,25(OH)2D
(β = −16%, P = 0.06) (Fig. 2). Gc1f homozygotes had significant
associations between both 25OHD and 1,25(OH)2D with PTH whereas
this was not seen in the other Gc variant groups (Fig. 2.) This Gc variant
group difference was also reflected in the relationship between 25OHD
and 1,25(OH)2D although this did not reach statistical significance.
There were no significant Gc variant group × vitamin D metabolite in-
teractions suggesting that the slopes were not statistically significantly
different between variant groups.

Conclusions

To our knowledge this study reports the frequency of DBP isotypes in
the largest cohort of rural West Africans (n = 3129) to date with
frequencies of Gc1f 86.0%, Gc1s 11.0% and Gc2 3.0%.

This study adds to the body of evidence that Gc variation appears to
influence vitamin D status [4] andmay be associated with differences in
plasma 1,25(OH)2D and PTH, potentially reflecting differences in the
association between vitamin D metabolites and PTH by DBP isotypes.
Gc1f homozygotes, suggested to have the highest affinity for 25OHD,
had the highest plasma 25OHD concentration compared with the
lower affinity DBP isotypes. There was a tendency for PTH to be lower
in Gc1f homozygotes and the relationship between PTH and 25OHD or
1,25(OH)2D was stronger in Gc1f homozygotes than in other Gc
variants.

These findings suggest that DBP isotype may influence vitamin D
metabolism through multiple pathways. We speculate that this may
be associatedwith a) differences in plasma 25OHD directly suppressing
PTH production and secretion in the parathyroid gland [25] and/or
b) differences in the free fraction of 25OHD which may modulate the
availability for renal hydroxylation into 1,25(OH)2D which in turn
suppresses PTH through the calcium-PTH-1,25(OH)2D axis. However,
the renal internalisation of 25OHD has been reported to be dependent
on the megalin/cubulin pathway [9] and may be independent of the
free fraction of 25OHD. The influence of DBP isotype on free 25OHD
needs further investigation.

A strength of this study is that the participants were subject to
relatively uniform environmental exposures and all participants were
rural Gambian of predominantly Mandinka ancestry with a dark
skin type. Although we did not monitor skin exposure to the sun we
anticipate that skin exposure allowing for endogenous vitamin D
synthesis is likely to have been similar among participants due to
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x=25OHD y= PTH 
all n=237 [lnPTH]= 5.38 (SE 0.55) - 0.29 (SE 0.13)[ln25OHD], r2=2.1%, P=0.03 
Gc1f-1f  n=175 [lnPTH]= 5.38 (SE 0.64) - 0.30 (SE 0.16)[ln25OHD], r2=2.2%, P=0.05 
other n=62 [lnPTH]= 5.04 (SE 1.09) - 0.19 (SE 0.27)[ln25OHD], r2=0.9%, P=0.5 
x =1,25(OH)2D y = PTH 
all n=237 [lnPTH]= 2.38 (SE 0.55) + 0.32 (SE 0.09)[ln1,25(OH)2D], r2=4.4%, P=0.001 
Gc1f-1f  n=175 [lnPTH]= 2.116 (SE 0.63) + 0.36 (SE 0.11)[ln1,25(OH)2D], r2=5.9%, P=0.01 
other n=62 [lnPTH]= 3.37 (SE 1.15) + 0.15 (SE 0.20)[ln1,25(OH)2D], r2=0.9%, P=0.5 
x =25OHD y = 1,25(OH)2D 
all n=237 [ln1,25(OH)2D]= 6.26 (SE 0.36) - 0.16 (SE 0.08)[ln25OHD], r2=1.5%, P=0.06 
Gc1f-1f  n=175 [ln1,25(OH)2D]= 6.35 (SE 0.43) - 0.18 (SE 0.10)[ln25OHD], r2=1.8%, P=0.07 
other n=62 [ln1,25(OH)2D]= 5.92 (SE 0.69) - 0.07 (SE 0.17)[ln25OHD], r2=0.3%, P=0.6 

Fig. 2. Scatterplot of PTH and 25OHD and 1,25(OH)2D by Gc variant group: Gc1f-1f (n = 175) vs. other (n = 62; Gc1s-1f, Gc1s-1s, Gc1f-2, Gc1s-2). Regression lines indicate the two
different genotype groups (Gc1f-1f = broken line, other = solid line). Table indicates the equations of the lines for the association between 25OHD and 1,25(OH)2D with PTH and
25OHD with 1,25(OH)2D in all participants and divided into Gc variant group.
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similar day to day outdoor activities in year-round tropical sunshine
and similar cultural dress. Similarly, previous studies in the region
have demonstrated consistently low dietary calcium intakes in other-
wise healthy rural Gambian children and we do not anticipate that
dietary habits were different among the study participants. Other stud-
ies which have looked at differences between different Gc genotypes
may have been confounded by other genetic factors (e.g. influencing
skin type), ethnicity, environmental factors, particularly UVB exposure,
lifestyle and different dietary habits that may have influenced plasma
25OHD and PTH concentrations. An analytical limitation of the study
is the uneven group sizes of different DBP isotypes in our sample. An
additional limitation is the small number of biochemical markers
available for analysis. Analytes such as DBP concentration, free 25OHD,
albumin and calculated free 25OHD would have provided some
additional mechanistic insight into the role of DBP genotype on vitamin
D metabolism and these should be included in future studies. These
small but significant DBP isotype-dependent difference in 25OHD
concentration, and subsequent effects on PTH may have a longer term
implications on bone and other health outcomes.

In conclusion, this study shows that in a populationwith a relatively
high vitamin D status, differences in 25OHD concentration are present
between carriers of different DBP isotypes. This may have implications
for the way in which circulating 25OHD concentration is interpreted
across groups differing in predominant DBP isotypes.
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