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Background. Plasmodium–helminth coinfection can have a number of consequences for infected hosts, yet

our knowledge of the epidemiology of coinfection across multiple settings is limited. This study investigates the

distribution and heterogeneity of coinfection with Plasmodium falciparum and 3 major helminth species across

East Africa.

Methods. Cross-sectional parasite surveys were conducted among 28 050 children in 299 schools across a range of

environmental settings in Kenya, Uganda, and Ethiopia. Data on individual, household, and environmental risk factors

were collected and a spatially explicit Bayesian modeling framework was used to investigate heterogeneities of species

infection and coinfection and their risk factors as well as school- and individual-level associations between species.

Results. Broad-scale geographical patterns of Plasmodium–helminth coinfection are strongly influenced by the

least common infection and by species-specific environmental factors. At the individual level, there is an enduring

positive association between P. falciparum and hookworm but no association between P. falciparum and Schistosoma

species. However, the relative importance of such within-individual associations is less than the role of spatial

factors in influencing coinfection risks.

Conclusions. Patterns of coinfection seem to be influenced more by the distribution of the least common

species and its environmental risk factors, rather than any enduring within-individual associations.

Most hosts, including humans, are often simultaneously

infected with multiple parasite species [1]. The occur-

rence of such coinfections results from (1) similar envi-

ronmental envelopes of coinfecting species that increase

exposure-related risks of coinfection [2, 3] and/or (2)

within-host interactions between coinfecting species that

alter the susceptibility to either species [4]. Experimental

and observational studies in animal populations have

begun to disentangle these processes [5] and provide

clear evidence of how parasites directly (through resource

competition) or indirectly (via host immunity) [4, 6, 7]

interact within hosts. By contrast, our understanding of

the epidemiology of coinfection in human populations is

limited. Some of the most common parasitic infections of

humans are plasmodia and helminth species, and their

widespread geographical overlap in the tropics means

that coinfection is common [2, 8]. It has been suggested

that the immune response evoked by helminth infections

may modify immune responses to plasmodia and

consequently alter infection and disease risks [9–11].

However, studies conducted to date have been typi-

cally cross-sectional and conducted in single pop-

ulations, and they have produced conflicting results

[12–15]. In such studies, little regard has been made of

the environmental and socioeconomic context of co-

infection and there is, therefore, limited scope for

determining whether distributions of coinfection

simply reflect the geographical cooccurrence of co-

infecting species or whether interactions within hosts

play a role.
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In a previous population-based study in Uganda [16], we

demonstrated that coinfection with plasmodia and hookworm

reflected the age-dependency and small-scale spatial heteroge-

neity of coinfecting species, and that plasmodia–hookworm

coinfection occurred more than would be expected by chance

among preschool children and adults, but not school-aged

children. Here, we extend this work and investigate coinfection

with plasmodia and 3 helminth species (hookworm, Schistosoma

mansoni, or Schistosoma haematobium) in schoolchildren across

multiple transmission settings in Ethiopia, Kenya, and Uganda.

Special emphasis is placed on the broad-scale geographical dis-

tributions of coinfection and on environmental and household

risk factors. Specifically, we investigate the extent to which

geographical co-occurrence and common risk factors influence

distributions of coinfection. Multivariate Bayesian geostatistical

logistic modeling is used to investigate school- and individual-

level associations between species while accounting for spatial

clustering of infection.

METHODS

Reporting of the study has been verified in accordance with the

STROBE (Strengthening the Reporting of Observational Studies

in Epidemiology) checklist.

School Surveys
A series of school surveys were conducted using a standard

protocol in Oromia Regional State, Ethiopia [17], Kenya [18],

and Uganda. The sampling designs and survey procedures are

detailed elsewhere [17, 18]. In brief, schools were selected to

provide a representative sample of malaria endemicity in each

setting. Malaria transmission in Oromia is unstable, exhibit-

ing marked temporal and spatial variation [19], and in Kenya

it ranges from very low (central), to moderate (coast), to high

(western) transmission [20]. Most of Uganda experiences

high rates of malaria transmission [21]. Hookworm occurs

throughout all settings, whereas transmission of S. mansoni only

occurs in Oromia, Uganda, and western Kenya. Schistosoma

haematobium is found throughout the Kenyan coast and small

pockets of western Kenya [22]. The surveys were carried out

between September 2008 and December 2009 to coincide with

the peak malaria transmission season in each setting. Addi-

tional data for Uganda were available from a 2006 survey

(May–July).

In each school in Ethiopia and Kenya, 10 children plus 1 reserve

(in case of refusal or assay failure) of each sex were randomly

selected from each of classes 2–6 based on the children present

that day and using computer-generated random table numbers.

This sample size of 100 children per school sought to estimate

a prevalence of infection of 5%, with 1% precision, based on 95%

confidence limits, 80% power, and a design effect of 2. In Uganda,

50 children were randomly selected for logistical reasons.

Selected children were asked to provide a fingerprick blood

sample, which was used to assess Plasmodium infection in the

peripheral blood based on expert microscopy (in Ethiopia and

Uganda) and microscopy-corrected malaria rapid diagnostic

test (RDT) results (in Kenya). Two independent microscopists

read the slides, with a third microscopist resolving discrepant

results. Children in all schools were asked to provide stool

samples, and children in coastal Kenya were asked to provide

urine samples. Stool samples were examined in duplicate

within 1 hour using the Kato-Katz technique for the eggs of

intestinal nematodes (Ascaris lumbricoides, Trichuris trichiura,

and hookworm species [assumed to be predominantly Necator

americanus [23]]) and S. mansoni, and the concentration of

eggs were expressed as eggs per gram of feces. Ten milliliters of

collected urine was filtered through a polycarbonate membrane

with a pore size of 12 lm; the eggs were counted and the

number was expressed as eggs per 10 mL of urine.

Household Data
A simple questionnaire was administered to pupils to obtain

data on insecticide-treated net ownership and use, key socio-

economic variables, household construction, education of the

child’s parent/guardian, and (in Kenya and Uganda) reported

fever on the day of survey and in the previous 2 weeks. All field

workers were trained in a standardized manner to administer

the questionnaire, although no measure of interobserver vari-

ability was made. Reported information on ownership of house-

hold assets and household construction was used to construct

country-specific wealth indices using principal component anal-

ysis [24], and resulting scores for each country were divided

into terciles.

Ethics
The surveys received ethical approval from the ethics review

committees of Kenya Medical Research Institute (1407 and

1596), the Ethiopian Science and Technology Agency (RDHE/

2-89/2009), and the Uganda National Council of Science and

Technology.

Consent for participation was based on passive, opt-out

consent rather than written, opt-in consent because of the

routine, low-risk nature of the survey [18]. Head teachers were

briefed about the survey, provided with an information sheet,

and asked for their written consent to have their school involved

in the survey. The head teachers subsequently informed the

students, parents, and the school committee members about the

survey and obtained their oral approval for the study. Parents/

guardians who did not want their children to participate in the

study were free to refuse participation. On the survey day,

children were informed about the survey procedures, making it

clear that their participation was voluntary and that they might

opt out at any time if they chose to. Children who were un-

willing to participate or children whose parents did not attend

the school meeting were excluded from the selection procedure,
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with assent obtained from selected children before samples

were collected. Children’s names were removed in the final

database to ensure anonymity. Children with a positive malaria

RDT plus documented fever were treated for malaria according

to national guidelines. All children received treatment with

400 mg of albendazole and those found to be infected with

schistosomes with 40 mg/kg of praziquantel.

Satellite-Derived Environmental Data
A global positioning device was used to determine the location

of each school. Monthly average precipitation data at 1 km

resolution [25] for the period 1950–2000 and interpolated

using a thin-plate smoothing spline algorithm [26] were used

to define areas with 3 continuous months of precipitation

.80 mm in an average year [20]. Land surface temperature

and the Normalized Difference Vegetation Index (NDVI,

a measure of vegetation greenness) for 1992–2006 were ob-

tained from Advanced Very High Resolution Radiometer data

at 5 km resolution and smoothed using temporal Fourier

analysis, and the annual amplitude was determined [27, 28].

Elevation was obtained from an interpolated digital elevation

model [29] and distance to permanent water bodies was de-

rived from a water-body map [30]. Mapping was undertaken

using the ArcGIS 9.3 system (Environmental Systems Re-

search Institute).

Data Analysis
Analysis is restricted to P. falciparum infection, which was re-

sponsible for the vast majority of infections: 52.1% in Ethiopia,

96.7% in Kenya, and 100% in Uganda. Five infection status

outcomes were investigated: presence (regardless of other spe-

cies) of (1) P. falciparum infection; (2) hookworm infection;

(3) S. mansoni or S. haematobium infection, as well as (4) con-

comitant infection with P. falciparum and hookworm (Pf-Hk

coinfection); and (5) concomitant infection with P. falciparum

and schistosomes (either S. mansoni in Ethiopia, Uganda, or

western and central Kenya or S. haematobium in costal

Kenya) (Pf-Sch coinfection). Infection with A. lumbricoides

or T. trichiura was ,2% prevalence and was therefore not

analyzed.

Table 1. Summary of Survey Data

County Year

No. of

Schools/Children % Male

Median No. Examined

(Interquartile Range)

Median Age of Children, Years

(Interquartile Range)

Kenya 2008–09 177/17 871 51.0 104 (99–107) 12 (10–13)

Ethiopia 2008–09 68/6681 53.2 101 (94–106) 11 (9–12)

Uganda 2009 34/2225 50.4 52 (44–86) 10 (8–13)

Uganda 2006 20/1273 50.1 65 (64–66) 10 (7–13)

Table 2. Prevalence of Single Plasmodia and Helminth Species and Species Coinfection and Reported Insecticide Net Use and Recent
Deworming Among Schoolchildren in Ethiopia, Kenya and Ethiopia, 2006–2009

Outcomea Kenya (2008–09) Ethiopia (2008–09) Uganda (2006) Uganda (2009)

P. falciparum 6.4 (4.6–8.2) 0.1 (.08–.2)b 45.7 (41.9–49.9)c 55.8 (50.8–61.3)c

Hookworm 11.7 (9.4–14.0) 17.3 (12.6–22.0) 27.2 (22.5–32.9)c 14.5 (10.9–19.3)c

S. mansoni 0.9 (.01–1.7) 2.8 (.4–5.3) 7.3 (5.7–9.5) 32.9 (29.1–36.7)

S. haematobiumd 24.4 (18.0–30.8) No transmission occurs or occurs in small isolated foci

Any schistosome infection 9.3 (6.6–12.1) 2.8 (.4–5.3) 7.3 (5.7–9.5) 32.9 (29.1–36.7)

Coinfection

P. falciparum–hookworm 0.9 (.5–1.3) 3 cases 9.3 (7.4–11.7) 11.1 (8.4–13.7)

P. falciparum–S. haematobiumd 1.0 (.05–1.5) No transmission of S. haematobium occurs

P. falciparum–S. mansoni 0.1 (.05–.2)b Not present 2.1 (1.2–3.6) 17.5 (11.2–24.7)

P. falciparum–schistosome 0.4 (.2–.7) Not present 2.1 (1.2–3.6) 17.5 (11.2–24.7)

Reported ITN usec 57.2 (54.0–60.3) 53�8 (45.8–61.8) 21.6 (18.1–25.7) 31.3 (25.5–38.7)

Sleeping under ITN previous nightc 52.8 (49.8–55.9) 40�0 (38.6–41.7) Not recorded 28.7 (23.3–35.5)

Dewormed in last 6 moc 55.3 (51.3–59.2) 27.8 (25.1–29.5) Not recorded 70.5 (68.5–72.5)

Abbreviation: ITN, insecticide-treated net.
a Prevalence and 95% binomial confidence intervals adjusted for clustering using zero-inflated Poisson regression, unless stated otherwise.
b No adjustment for clustering made because of very low prevalence.
c Prevalence and 95% binomial confidence intervals adjusted for clustering using generalized mixed model.
d Analysis for 6160 children in 63 schools along the coast of Kenya.
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We present 3 sets of analyses. First, regional patterns are

described across all 3 countries. Data from Ethiopia indicated

a very low prevalence of coinfection, so these data were not

analyzed further. Second, data from Kenya and Uganda were

analyzed to identify risk factors using a multivariable geo-

statistical approach [31] but was extended to model joint as-

sociations between species using a multivariate outcome

Bayesian hierarchical model. This approach helps to improve

the efficiency of parameter estimates for each infection, and

crucially allows estimation and inference to be made about

dependencies between infections. Third, a subset analysis was

undertaken for coastal Kenya and around Lake Victoria where

coinfection was most prevalent and thus provided the oppor-

tunity to investigate both school- and individual-level factors.

This subset analysis included survey data from Kenya and

from Uganda for 2009, data sets for which full information

on individual-level risk factors was available. A similar geo-

statistical modeling approach was adopted as in the second

stage of data analysis.

Descriptive results are adjusted for school-level clustering

using random effects regression modeling [32]. Generally,

proportions and 95% binomial confidence intervals were es-

timated using a zero-inflated Poisson (ZIP) model to account

for the excess of schools with zero prevalence. No adjustment

was made for very low (#0.1%) prevalences. In cases where

the ZIP model was unable to converge and for estimates of

insecticide-treated net use and deworming, estimates were

derived using generalized linear and latent mixed models,

with a logit link and a random effects component using

adaptive quadrature [32].

Univariate analysis was undertaken using logistic regression

in order to select candidate variables for spatial multivariable

analysis (criteria: Wald test P , .1). Standard errors were

adjusted for dependence between individuals within schools

using a clustered sandwich estimator. Backward-stepwise

elimination was used to generate a minimum adequate model;

excluded covariates (P . .05) were retested in the minimal

model to confirm lack of association. These statistical analyses

were carried out using Stata 11.1 software (StataCorp).

Retained covariates were subsequently included into spa-

tial multivariable Bayesian mixed-effect logistic regression

models using WinBUGS 14�1 (MRC Biostatistics Unit). For

Figure 1. Geographical distribution of Plasmodium or helminth monoinfection and coinfection among school children in 299 schools in Ethiopia, Kenya,
and Uganda. A, Plasmodium falciparum and hookworm coinfection. B, P. falciparum and schistosome (either Schistosoma haematobium along the coast of
Kenya or Schistosoma mansoni elsewhere) coinfection.
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each outcome, a binomial regression model was fitted to the

number of examined and infected individuals for each species

at each school location. (See Appendix.) These models in-

cluded environmental covariates, a school-level geostatistical

random effect (using an isotropic, stationary exponential

decay function [31]), and a nonspatial joint random effect.

This approach incorporates a degree of spatial smoothing,

adjustment for nonspatial clustering within schools and for

dependency between infections at the school level. These

models were extended to include individual-level factors in

the subset analysis where individual infection status for each

species was modeled including household and environmental

covariates, a geostatistical random effect, and an individual-

level joint random effect. The month and the year of surveys

were originally included in the models but were found not to

improve model fit and so were removed for reasons of model

parsimony.

RESULTS

Overall, 28 050 children from 299 schools across Ethiopia,

Kenya, and Uganda were examined. Median ages and

proportion of children male were similar across countries

(Table 1). The overall prevalence of single species infections

and species coinfection by country and year are reported in

Table 2. Prevalence of coinfection with P. falciparum and either

hookworm (Pf-Hk) or schistosome (Pf-Sch) infection was

most common in Uganda and least common in Ethiopia: only

3 Ethiopian children harbored Pf-Hk coinfection and none

harbored Pf-Sch coinfection. Coinfection with P. falciparum

and S. haematobium occurred at very low levels (1.0%). The

majority (96%) of Plasmodium infections were asymptomatic.

There was marked geographical heterogeneity in the distribu-

tion of coinfection (Figure 1), with the prevalence of Pf-Hk

coinfection being highest around Lake Victoria in western

Kenya and eastern Uganda; a pocket of high prevalence also

occurs on the south Kenyan coast. Pf-Sch coinfection (due to

S. mansoni) was most prevalent around Lake Victoria in

Uganda.

Figure 2 shows the relationship between observed prevalence

of coinfection and the school-level prevalence of the least and

most prevalent species in each coinfection pairing. The prev-

alence of both Pf-Hk and Pf-Sch coinfection is strongly related

to the overall prevalence of the least common species in the

Figure 1. Continued
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coinfection pairing (Figure 2A and 2C). In contrast, the most

common species was often prevalent in settings where co-

infection was absent (Figure 2B and 2D). These observations

suggest that the geographical distribution of coinfection re-

flects the geography of the least common species in the co-

infection pairing.

In terms of environmental factors associated with infection

and coinfection (Table 3), the environmental factors associated

with Pf-Hk coinfection were generally the same as those asso-

ciated with hookworm infection (NDVI and precipitation

.80 mm/year), and those for Pf-Sch coinfection were the same

as for schistosome infection (elevation, land surface tempera-

ture, and location within 12 km of a permanent water body).

These findings suggest that the environmental factors associ-

ated with individual helminth species are also associated with

large-scale spatial patterns of coinfection. The residual non-

spatial, school-level correlation between species in each co-

infection pairing can be estimated from model estimates of

rho (q). A positive q value indicates that schools with higher

than expected prevalence of one parasite species also tend to

have higher than expected prevalence of the second species,

after adjusting for environmental risk factors and spatial

correlation. Estimates from Table 3 indicate that there is

a strong positive correlation between P. falciparum and schis-

tosome infection (q 5 0.91) and a moderate correlation be-

tween P. falciparum and hookworm (q5 0.69), but only a weak

positive correlation for hookworm–schistosome coinfection

(q 5 0.38) (Table 3). Importantly, however, comparison of

the magnitude of the spatial and joint variance parameters

suggests that for all 3 species, independent spatial factors have

greater influence on infection prevalence than (nonspatial)

joint factors responsible for correlation between parasites.

Table 4 presents a multivariate analysis of individual- and

school-level factors that are associated with species infection

and coinfection in coastal Kenya and around Lake Victoria

(see Figure 3). In coastal Kenya, the Pf-Hk coinfection was

significantly associated with a number of individual-level

factors: coinfection was higher among boys, decreased with

increasing age, and was highest among children from most

poor households. These factors mirrored those associated

with the least common species infection in coastal Kenya,

namely, P. falciparum. No environmental factors were asso-

ciated with Pf-Hk coinfection in south coastal Kenya, pre-

sumably due to the lack of major environmental variation in

(a)

0
10
20
30
40
50
60
70
80
90

100

P
re

va
le

n
ce

 o
f 

co
in

fe
ct

io
n

Prevalence of least common species 

P. falciparum

Hookworm

0 10 20 30 40 50 60 70 80 90 100

(c)

0
10
20
30
40
50
60
70
80
90

100

P
re

va
le

n
ce

 o
f 

co
in

fe
ct

io
n

Prevalence of least common species

P. falciparum

Schistosomes

0 10 20 30 40 50 60 70 80 90 100

(b)

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

P
re

va
le

n
ce

 o
f 

co
in

fe
ct

io
n

Prevalence of most common species 

P. falciparum

Hookworm

(d)

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100
P

re
va

le
n

ce
 o

f 
co

in
fe

ct
io

n
Prevalence of most common species 

P. falciparum

Schistosomes

Figure 2. Relationship between the prevalence of Plasmodium–helminth coinfection and the least and most common species among schoolchildren in
299 schools in Ethiopia, Kenya, and Uganda, according to species: coinfection with Plasmodium falciparum and hookworm and (A ) least common and (B )
most common species; coinfection with P. falciparum and schistosome (either Schistosoma mansoni or Schistosoma haematobium ) infection and (C )
least common and (D ) most common species, as defined on a school-by-school basis. Line of identity is indicated by dashed line. Overall correlation
coefficients for each graph: (A ) 0.937, (B) 0.685, (C) 0.967, and (D) 0.615; all P , .001.
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the area. Around Lake Victoria, both Pf-Hk coinfection and

hookworm were significantly lower among children who

were recently dewormed. Pf-Hk coinfection was associated

(negatively) with elevation, which was also associated with

hookworm and P. falciparum. Pf-Sch coinfection was sig-

nificantly associated with environmental factors that were

also associated with S. mansoni. In these data subsets, there

was evidence for residual associations between species within

individuals, as indicated by significant values of q. In coastal

Kenya there was evidence of very strong residual positive

associations between P. falciparum and hookworm. Signifi-

cant, but weaker, residual association between P. falciparum

and hookworm was apparent around Lake Victoria. How-

ever, it should be noted that these residual individual-level

factors were still considerably less important than spatial

location, as evidenced by large differences in the standard

deviations of spatial and multivariate random effects. No

associations were observed between P. falciparum and either

schistosome species in either setting.

DISCUSSION

The present study is the first of its kind to investigate the

epidemiology of coinfection of P. falciparum and different

helminth species at a regional scale, with previous studies

conducted at local scales [16, 33–36]. In particular, we

sought to relate the distribution of coinfection with the

underlying epidemiology and risk factors of the individual

component species that make up coinfection. Our findings

relate mainly to asymptomatic Plasmodium infection as the

majority of infected children were without clinical

symptoms. The results indicate that at a regional level,

Table 3. Large-Scale Environmental Factors Associated With the Prevalence of Hookworm, Plasmodium falciparum, and Schistosoma
Infection, and P. falciparum Coinfections Among Schoolchildren in 234 Schools in Kenya and Uganda, 2006–2010

(1) Hookwormd (1) P. falciparumd (1) Schistosomad (2) Pf-Hk Coinfectione (3) Pf-Sch Coinfectione

Covariatesa,b,c OR (95% BCI) OR (95% BCI) OR (95% BCI) OR (95% BCI) OR (95% BCI)

Elevation 0.98 (0.86–1.14) 0.85 (0.57–1.04) 3.08 (2.11–4.36) 1.12 (0.86–1.41) 2.41 (1.71–3.66)

Elevation squared 0.99 (0.99–1.00) 0.99 (0.99–1.01) 0.94 (0.92–0.96) 0.99 (0.98–1.00) 0.96 (0.94–0.98)

NDVI 1.49 (1.15–1.77) 0.67 (0.37–1.09) 1.62 (1.12–2.32) 0.85 (0.55–1.22)

LST 0.87 (0.69–1.09) 0.84 (0.58–1.13) 0.31 (0.18–0.46) 0.74 (0.41–1.32) 0.35 (0.21–0.54)

Within 12 km of PWB 9.94 (1.86–34.09) 5.44 (1.73–12.51)

Rainy area 2.79 (1.41–4.81) 1.83 (0.75–3.82) 2.15 (0.66–4.96) 7.55 (0.34–41.32)

X (longitude) 0.65 (0.56–0.71) 0.50 (0.46–0.56) 0.63 (0.56–0.71)

Y (latitude) 0.64 (0.53–0.78) 0.99 (0.57–.52)

Variance parameters

Spatial r2 (SD) 3.37 (4.76) 38.7 (28.4) 12.9 (3.9) 3.70 (0.98) 3.54 (1.66)

MVN r2 (SD) 0.71 (0.17) 0.27 (0.12) 1.26 (0.58)

Range, kmf 259 (157–318) 269 (206–315) 36 (17–89) 88 (37–520) 34 (5–276)

Correlation between species

Rho–Pf-Hkg 0.69 (0.19–1.00)

Rho– Hk-Schg 0.38 (0.01–1.00)

Rho–Pf-Schg 0.91 (0.77–1.00)

Results are based on (1) geostatistical Bayesian multivariate logistic regression models for infection status, including dependence between infections at the school

level for malaria, hookworm, and schistosome infection, and (2) geostatistical Bayesian logistic regression models for coinfection status. Deviance information

criteria values indicated that including spatial correlation and (nonspatial) dependence between infections improved model fit. Models are adjusted for clustering

within schools.

Abbreviations: BCI, 95% Bayesian credible interval; LST, land surface temperature; MVN, multivariate normal error; NDVI, Normalized Difference Vegetation Index;

OR, odds ratio; Pf-Hk, Plasmodium falciparum–hookworm; Pf-Sch, P. falciparum–schistosome; PWB, permanent water body; SD, standard deviation.
a Elevation: per 100 m; rainy area: .80 mm rainfall for $3 consecutive months; longitude and latitude are expressed in decimal degrees.
b Noninformative priors were used for all coefficients (normal prior with mean 0 and precision 1 3 106), the variance component of the joint random effect was

assigned the weakly informative diffuse inverse Wishart prior p(X21) � Wishart (p, Q), where p the scalar and Q is a prior estimate of X (hyperpriors were assigned

P 5 3 and Q 5 I where I is an identity matrix), the precision of both the spatial and joint random effects were given noninformative c distributions and the prior

distribution of u was uniform with upper and lower bounds set at 0.5 and 50.
c All significant variables were identified through backward selection in the frequentist logistic regression were included in the Bayesian logistic models.
d Regardless of infection with any other species.
e Comparison between coinfection and single infection/uninfected, based on a spatial model.
f Range refers to the distance at which correlation between prevalence between schools drops below 5%, and is estimated from the modeled rate of decline of

spatial correlation (3 3 1/q).
g Rho represents the residual correlation between infections at the school level, after accounting for spatial correlation and risk factors, estimated from the MVN r2

variance covariance matrix.
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Table 4. Environmental and Individual-Level Factors Associated With the Prevalence of Hookworm, Plasmodium falciparum and
Schistosoma mansoni Infections, and Plasmodium–Helminth Coinfections, Among School Children in 51 Schools on the South Coast of
Kenya and 56 Schools in Eastern Uganda and Western Kenya, 2006–2010

Hookwormc
Plasmodium

falciparumc
Schistosoma

mansonic
Pf–Hk

Coinfectiond
Pf–Sm

Coinfectiond

Variablea,b OR (95% BCI) OR (95% BCI) OR (95% BCI) OR (95% BCI) OR (95% BCI)

Lake Victoria

Age (y) 1.10 (1.07–1.15) 0.93 (0.90–0.96) 1.12 (1.07–1.17)

Recently dewormed 0.63 (0.46–0.82) 0.76 (0.53–1.07)

Used net last night

NDVI 1.46 (0.99–2.19) 0.45 (0.35–0.57) 3.31 (1.29–7.50) 3.22 (1.28–7.23)

NDVI2 0.79 (0.68–0.90) 0.81 (0.71–0.93)

Elevation 0.73 (0.59–0.84) 1.24 (0.92–1.56) 0.55 (0.43–0.69)

LST 0.39 (0.18–0.98)

Within 12 km of PWB 6.55 (0.77–18.95)

Variance parameters

Spatial r2 (SD) 2.04 (1.13–3.85) 2.07 (1.09–4.21) 18.9 (3.77–95.66) 1.01 (0.05) 3.08 (7.78)

MVN r2 (SD) 1.34 (1.05–1.72) 0.12 (0.04–0.22) 0.61 (0.49–0.82)

Range, km 17 (7–67) 34 (12–121) 214 (74–2000) 15 (7–81) 11 (4–267)

Correlation between species

Rho–Pf-Hke 0.30 (0.14–0.51)

Rho–Hk-Sme 0.96 (0.91–0.99)

Rho–Pf-Sme 0.02 (-0.24–0.35)

Coastal Kenya

Sex (male) 1.64 (1.39–1.93) 1.57 (1.19–2.05) 1�92 (1.27–2.92)

Age (y) 0.75 (0.70–0.80) 0�75 (0.68–0.82)

SES (vs poorest)f

Middle tercile 0.86 (0.71–1.02) 0.82 (0.60–1.11) 0�86 (0.54–1.26)

Least poor 0.56 (0.44–0.69) 0.56 (0.35–0.84) 0�47 (0.24–0.83)

Recently dewormed 0.78 (0.65–0.94) 0�70 (0.46–1.05)

Used net last night 0.65 (0.48–0.86) 0�86 (0.54–1.26)

NDVI 3.27 (2.24–3.12)

Elevation 0�86 (0.28–2.06)

Variance parameters

Spatial r2 (SD) 1.28 (0.38) 2.22 (1.66) 6�53 (1.78–21.10)

MVN r2 (SD) 0.84 (0.06) 0.09 (0.007)

Range in kmg 8 (4, 44) 15 (4105) 17 (4–249)

Correlation between species

Rho–Pf-Hke 0.998 (0.998–0.999)

Results are based on spatial Bayesian multivariate logistic regression models for infection status, including dependence between infections at the school level.

The low prevalence of Plasmodium falcipatrum–Schistosoma coinfection in coastal Kenya precluded its analysis.

Abbreviations: BCI, 95% Bayesian credible interval; Hk-Sm, hookworm–Schistosoma mansoni; LST, land surface temperature; MVN, multivariate normal error;

NDVI, Normalized Difference Vegetation Index; OR, odds ratio; Pf-Hk, Plasmodium falciparum–hookworm; Pf-Sm, P. falciparum–S. mansoni; PWB, permanent

water body; SD, standard deviation; SES, socioeconomic status.
a Recently dewormed: reports receiving deworming medication in the previous 6 mo; net last night: reports sleeping under a bed net the previous night; SES is

based on terciles of SES asset index; elevation: per 100 m.
b All significant variables identified through backward selection in the frequentist logistic regression were included in the Bayesian logistic models.
c Regardless of infection with any other species.
d Comparison between coinfection and single infection/uninfected, based on a spatial model.
e Rho represents the residual correlation between infections within individuals, after accounting for spatial correlation and risk factors, estimated from the MVN r2

variance covariance matrix.
f For Kenya, variables entered into the principal component analysis included household ownership of mobile phones, electricity supply to the household, primary

source of drinking water, and construction materials of the household walls, roof, and floor. Similar variables except primary source of drinking water were included

for Uganda.
g Range refers to the distance at which correlation between prevalence between schools drops below 5%, and is estimated from the modeled rate of decline of

spatial correlation (3 3 1/q).
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Plasmodium–helminth coinfection is not widespread among

schoolchildren in East Africa and observed patterns pre-

dominantly reflect the distributions of the least prevalent com-

ponent species. In regression analysis, environmental factors

specific to the least common species were important predictors of

large-scale patterns of coinfection. These findings are epidemio-

logically intuitive but are shown here for the first time; it is

plausible that similar results can be shown in other areas and for

other tropical and vector-borne diseases that are strongly influ-

enced by environmental factors on a broad scale. At smaller spatial

scales, the picture of coinfection is more complicated, but there

does appear to be differences in the within-individual associations

between species according to helminth species, with evidence of

a positive association between P. falciparum and hookworm, but

no evidence of an association between P. falciparum and schis-

tosome species. However, the relative importance of such within-

individual associations is considerably less than the role of spatial

factors in influencing the occurrence of coinfection.

A notable feature of the analysis of broad-scale dis-

tributions is the remarkable consistency of findings for Plas-

modium coinfection involving hookworm and schistosome

infections. Such consistency suggests that where environmental

and socioeconomic conditions are suitable for both component

species, coinfection can be expected, and hence that the different

patterns of coinfection observed in different geographical lo-

calities may be a function simply of environmental differences.

Figure 3. Geographical distribution of Plasmodium–helminth monoinfection and coinfection among school children in the subset analysis: 4220
children in 56 schools in western Kenya and eastern Uganda (A and B ) and 5232 children in 51 schools in south coastal Kenya (C ).
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This observation has important consequences for the spatial

mapping of coinfection. Recent efforts have sought to de-

velop global databases of malaria [37] and helminth infection

[38], which can be used to generate contemporary and high-

resolution maps of single-species infection prevalence using

space–time geostatistical models within a Bayesian frame-

work [20, 22, 37, 39] and can be used to predict the distri-

bution of Plasmodium–helminth coinfection [3, 40, 41].

In this study, we also investigated associations between

Plasmodium and helminth species, while adjusting for envi-

ronmental and socioeconomic factors as well as spatial cor-

relation. Positive correlations between Plasmodium and all

helminth species were observed at the school level (Table 3)

and between Plasmodium and hookworm at the individual

level (Table 4), but importantly independent spatial factors

were shown to be more important in explaining variation in

risks of infection than correlations between species. Previous

studies have indicated positive associations between Plasmo-

dium infection and (1) hookworm and among pregnant

women [33, 42] and (2) hookworm and S. mansoni among

schoolchildren [35]. None of these studies explicitly accoun-

ted for environmental factors and spatial correlation and it

is conceivable that the findings are subject to confounding

by these factors. However, in a total population study in eastern

Uganda using methods similar to the current ones, we provided

evidence for associations between Plasmodium and hookworm

among preschool children and adults, but, in contrast to the

current findings, not among school-aged children [16]. The

available evidence is therefore contradictory, but at broad spatial

scales, environmental exposure-related factors seem to be more

important that within individual associations in explanatory

infection risks. Such a finding does not, however, downplay the

significance of observed associations for the individuals them-

selves, and this aspect deserves more careful investigation by

means of longitudinal studies.

Cross-sectional studies are inevitably subject to a number of

limitations, including the potential of ecological fallacy. Our

spatially explicit hierarchical approach, incorporating school-

and individual-level factors, seeks to maximize the usefulness

of the cross-sectional data. There remain, inevitably, some

study limitations. First, our estimates of Plasmodium and hel-

minth infection relied on standard parasitological diagnosis.

The ability of these techniques to detect infection, especially

light infection, is undoubtedly subject to error due to the in-

sensitivity of light microscopy to detect malaria infection [43],

day-to-day and intraspecimen variation in fecal egg counts

[44], and human error. These limitations may have led to the

misclassification of low-density/low-intensity infections as

negative. Despite the limited sensitivity of our methods, the

observed consistency of findings across settings and for dif-

ferent helminth species suggests that diagnostic error is unlikely

to explain observed results, especially as all species are likely to

be underestimated. Molecular malariologic techniques [45]

and more intensive corpological sampling [44] may have in-

creased diagnostic specificity, but such approaches add con-

siderable cost and complexity to large-scale field studies.

Second, the current results represent a snapshot of the period

2006–2009 and it is conceivable that seasonality and in-

tervention-related factors may have confounded results.

However, the inclusion of month and year into the multivariate

models did not improve model fits, suggesting that temporal

factors were relatively unimportant over the 3 years covered by

the data. Furthermore, models were adjusted for mosquito-net

use and recent deworming.

This study is unusual in its geographical scale and that

it investigates the epidemiology of Plasmodium-helminth co-

infection involving 3 major helminth species. At broad scales,

the distribution of coinfection seems to be principally driven

by the distribution of the least common species of the co-

infection pairing and its environmental risk factors. Although

there is evidence of enduring association between Plasmodium

and hookworm within individuals, this effect is less important

than the role of spatial factors in explaining the risk of co-

infection. Further longitudinal studies are now required to

better understand the clinical consequences for individuals

harboring coinfections.
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Appendix
Bayesian spatially explicit logistic regression models

included environmental covariates, a school-level geostatistical
random effect (using an isotropic, stationary exponential
decay function [31]), and a nonspatial joint random effect.
Models had the following form:

Yi;k � Binomial
�
nk; pi;k

�
;

logit

�
pi;k

�
5a1

PL
l51

blXk;l1ui;k1mi;k;

where nk is the number of children examined and Yi,k is the

number of children infected with each species i (i5 1, 2) at each

school location k (k 5 1, .., K). The component a is the

intercept,
PL
l51

blXk;l; the matrix of environmental covariates, ui,k

a geostatistical random effect modeled using an isotropic,

stationary exponential decay function [31]: (f(dab; ui) 5 exp

[2(uidab)] where dab is the straight-line distance between pairs

of schools a and b, and ui is the species-specific rate of decline of

spatial correlation); and mi,k a nonspatial joint random effect

modeled using an unstructured multivariate normal prior with

covariance matrix X21. The diagonal element of this covariance

matrix is equal to the variance, whereas the off-diagonals

are the covariance components; school-level correlation

between species infections a and b is calculated as

ho
�
qi
�
5ri;ab=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ri;aa � ri;bb

�
:

q
These models were extended to include individual-level

factors in the subset analysis to take the form:

Yi;j;k � Binomial
�

1; pi;j;k

�
;

logit

�
pi;j;k

�
5a1

PM
m51

blXj;m1
PL
l51

blXk;l1ui;k1mj;k;

where Yi,j,k is the observed infection status for each species i

(i5 1, 2), for individual j (j2 1, .., J) at each school location k

(k 5 1, .., K); a is the intercept,
PL
l51

blXk;l; the matrix of in-

dividual covariates,
PL
l51

blXk;l; the matrix of environmental co-

variates, ui,k the geostatistical random effect, and mi,k the

individual-level nonspatial joint random effect. Model fitting

used Markov chain Monte Carlo simulation techniques, with

9000 iterations for burn-in and 20 000 iterations for full con-

vergence, thinning every 20 iterations. Subset analysis models

including both school-level and individual-level joint random

effects were also explored, but model comparison using the

deviance information criteria and inspection of time-series plots

for each parameter suggested that the additional school-level

effect did not improve the fit or convergence of the model.
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