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Abstract

Patterns of social mixing are key determinants of epidemic spread. Here we present the results of an internet-based social
contact survey completed by a cohort of participants over 9,000 times between July 2009 and March 2010, during the 2009
H1N1v influenza epidemic. We quantify the changes in social contact patterns over time, finding that school children make
40% fewer contacts during holiday periods than during term time. We use these dynamically varying contact patterns to
parameterise an age-structured model of influenza spread, capturing well the observed patterns of incidence; the changing
contact patterns resulted in a fall of approximately 35% in the reproduction number of influenza during the holidays. This
work illustrates the importance of including changing mixing patterns in epidemic models. We conclude that changes in
contact patterns explain changes in disease incidence, and that the timing of school terms drove the 2009 H1N1v epidemic
in the UK. Changes in social mixing patterns can be usefully measured through simple internet-based surveys.
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Introduction

Seasonal changes in patterns of social contacts have a marked

influence on the spread of infectious diseases. In particular, the

patterns of school terms and holidays affect the incidence of

infections with a significant impact on school-age children,

including measles, pertussis, and influenza [1–6].

Mathematical models can be used to explain and attempt to

predict the spread of infectious diseases; however until recently a

lack of data about social contact patterns has restricted the

applicability of these models. In 2008 results were published from

the POLYMOD study, a social contact survey involving

participants in 8 European countries [7]; this study described

patterns of social mixing, quantifying the tendency of people to

mix with others of a similar age, and showing that the highest

levels of contact were between children. These data have been

used to model close-contact infectious diseases, and have been

found useful in explaining observed patterns of incidence [2,5,7–

10].

Important factors are still missing from available datasets. One

such factor is good information about how social contact

behaviour varies over time. On an individual level, there is day-

to-day variation in social behaviour [11], and incidence data

suggest that there are population-level changes resulting from

events such as school holidays [1–4,6]. As part of the POLYMOD

study, some data were collected during the school holidays,

demonstrating significant changes in contact patterns during

holiday periods [12]. Studies focusing on school-age children have

confirmed that children make substantially fewer contacts on

average during the holidays and at weekends than when at school

[13–16]. However, there is a general lack of information about

temporal changes in contact patterns, in particular quantifying the

impact of school holidays on contact behaviour within the

population as a whole. In the absence of these data, mathematical

models of disease spread have been obliged to make a range of

plausible assumptions about how to model the impact of school

holidays [2–4,6,17–19]. Here, we present the results of a

longitudinal population-level social mixing survey and use these

data to parameterise an age-structured model of H1N1v

incidence.

In April 2009, H1N1v influenza emerged in the Americas. Over

the next few months, this virus spread around the globe, causing

millions of cases worldwide. The UK experienced two distinct

peaks in incidence, one in July 2009, and another in October 2009

[1,2]. Serological data collected during the epidemic suggest that,

in some parts of the UK, over 40% of children aged 5–14 were

infected before the end of the first wave of infection [20], with an

estimated cumulative incidence over the second epidemic wave in

this group of 59% [21]; these serological data suggest that the great

majority of cases were not captured in incidence estimates derived

from clinical surveillance [1], even though such estimates may give

a good indication of incidence trends.

The UK flusurvey (www.flusurvey.org.uk) was developed as an

internet-based tool to augment existing influenza surveillance

[22,23], most of which depends on recording healthcare usage by

symptomatic individuals [1,24,25] and so misses individuals with

influenza-like-illness (ILI) who do not seek medical attention. The

UK flusurvey is an attempt to record ILI incidence that does not

depend on ill individuals seeking healthcare [23]. As well as

estimating incidence trends [26], flusurvey data have been used to
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estimate the effectiveness of influenza vaccination [27]. Flusurvey

participants were also asked about their social contact behaviour.

Here we describe the results of the social contact survey carried

out during the H1N1v epidemic in the UK. We describe changes

in contact patterns that took place during the pandemic; in

particular, we quantify the impact of school holiday periods. In

order to test whether this internet-based social contact survey

captures epidemiologically-relevant patterns of social interactions,

we use the measured dynamic contact patterns in a simple

mathematical model of influenza spread, and explore their ability

to explain the observed patterns of incidence. We find that a

relatively simple model, parameterised by our age-structured

mixing data, gives a good match with observed patterns of

incidence.

Results

Contact Survey
The contact survey was completed 9,261 times by 3,338

individuals, many completing it multiple times. 104 surveys were

excluded from further analysis because of missing age information;

the analysis that follows is based on the remaining 9,157 reports.

The data can be found in the Supporting Information, Dataset S1.

As expected, the majority of reports were completed by adults

during the school term time (Table S1 in Text S1). We have

therefore not further subdivided the school-aged groups or to

attempted to distinguish between different holiday periods (e.g.

summer holiday and autumn half term holiday).

Fig. 1 shows the impact of school holidays on the social mixing

patterns of the population. Both for conversational and for

physical contacts the most obvious change was in the number of

interactions between school-aged children. School holidays had a

much smaller effect on the number of contacts made by or with

other age groups.

There was a large, highly significant, reduction during the

school holidays in the daily average number of conversational

contacts made by those aged 5–18 (from 41.2 during term time to

24.8 during the holidays, p = 0.001; Table 1). Older age groups

reported a small, but statistically significant, change. There were

fewer physical contacts than conversational contacts reported, and

the reduction in the number of physical contacts reported by

school children during school holidays (from 11.0 to 8.9) was not

statistically significant.

Model Performance
Models parameterised using these measured mixing patterns

were fitted to estimated incidence curves (Fig. 2). While models

parameterised using both conversational and physical contact

patterns broadly capture observed incidence, the patterns of

conversational contacts appear to provide a better fit to incidence

data than patterns of physical contacts. In particular, models

parameterised using physical contact patterns cannot capture the

timing and depth of the trough in incidence at the end of the

summer holidays. The model fits are similar whether using Health

Protection Agency (HPA) or flusurvey-adjusted incidence estimates.

An outbreak would have grown more slowly had it begun

during the school holidays than during term time. During the

holidays, in the absence of prior immunity, the initial growth rate

of the epidemic, R, would have been approximately 35% lower

than during term time (25% lower in the model using patterns of

physical contact) – falling from 1.57 to 1.07. Prior immunity

reduced initial growth rate by approximately 10%, to 1.42 in term

time and 0.91 in the holidays (Fig. 3).

Estimated parameter values are reasonably consistent across the

models used (Table S2 in Text S1), aside from the transmission

rate per encounter, t, which, as expected, is larger in the models

using physical contact patterns. The value of the rescaling factor is

estimated to be between 9 and 15.

The models suggest that around 30% of adults and over 50% of

school-aged children had acquired immunity by the end of the

outbreak (Table S3 in Text S1). Both models and incidence

estimates indicate that incidence during school term time was

dominated by those aged under 18, whereas during holidays the

majority of cases were in adults (Fig. 4) [1]. The good agreement

between the models and the data supports the usefulness of the

mixing data obtained.

Mixing matrices generated from bootstrapping the original

dataset suggest that the substantial change in contacts between

term time and holidays is necessary for the model to be able to fit

the incidence data, with low-difference bootstrap matrices

resulting in models that fit the observed data less well (Figs S1, S2).

Discussion

Substantial and significant changes in social contact patterns

take place during school holidays. The greatest change is seen in

school-aged children, who make approximately 40% fewer

conversational contacts (95% CI 22–59%) each day during the

school holidays than during term time.

These changes in social contact patterns have a large impact on

the spread of infections. As the incidence patterns of the 2009

H1N1v epidemic in the UK show, incidence began to fall at the

start of the holiday period and began to rise again when schools

reopened. Models incorporating these dynamic contact patterns

capture the observed dynamics of influenza, suggesting that the

social contact patterns reported here are closely correlated to those

relevant to the spread of influenza. The large fall in contacts

during school holidays generates the observed decline in cases seen

during the summer of 2009.

The models highlight the impact of prior immunity on epidemic

behaviour, and suggest that, had the first cases arrived in the

population during the school holidays, existing immunity in the

population would have been sufficient to prevent the epidemic

from taking off until schools reopened.

This work supports previous studies that suggest that school

holidays are associated with significant changes in mixing patterns

and in epidemic behaviour. The impact of holidays appears larger

than some studies suggest [12], though not as large as others [13–

Author Summary

Changes in patterns of social mixing can result in changes
in epidemic behaviour; this was observed during the 2009
influenza pandemic, in which the epidemic declined
during school holidays and grew during term time. Until
now, little information has been available to quantify how
people’s mixing patterns change over time. Here, we
present the results of an internet-based survey of social
mixing patterns that was carried out in the UK throughout
the 2009 pandemic. We show that school holidays resulted
in a substantial drop in the number of social contacts
made each day, particularly between children. To test
whether these measured patterns of social mixing could
explain the observed epidemic, we used our mixing data in
a simple mathematical model of influenza spread. We
found that changing social contact behaviour could
explain levels of infection in the community, and conclude
that the timing of school terms was responsible for the
shape of the influenza epidemic.

Dynamic Social Contact Patterns and Influenza
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16]. Different survey tools are likely to give different results: in

contrast to surveys that use a detailed contact diary-based

approach [7,12–14,28,29] the method used here did not require

participants to give additional details about each of the people they

met, and thus there was no time-saving incentive towards

recording fewer contacts; on the other hand, listing one by one

all encounters may provide an aid to recall.

Several different methods of collecting social contact data have

been used in other studies, including self-completed paper contact

diaries [7,11,28,29], network studies [8,30,31], electronic contact

diaries [32], online contact diaries [29] and automated electronic

proximity sensors [33]. All have been found to be useful, and none

to be perfect. Perfect recall of all encounters is unlikely, especially

for short-duration encounters [30]. Some studies have found

Figure 1. Social contact matrices. Values and colours show the mean number of contacts per day reported between each age group. In each
panel, the participant’s age group is shown on the vertical axis, that of their contacts on the horizontal axis. The four panels show patterns of A:
conversational contacts during school term time; B: conversational contacts during school holidays; C: physical contacts during school term time; D:
physical contacts during school holidays.
doi:10.1371/journal.pcbi.1002425.g001

Table 1. Daily contact numbers.

number of conversational contacts number of physical contacts

age group school term time school holidays p school term time school holidays p

0–4 13.8 (14.6) 15.4 (24.1) 0.701 8.2 (6.8) 7.1 (10.3) 0.750

12 [5, 18] 7 [4, 17.5] 7 [3, 12] 3 [2, 9]

5–18 41.2 (62.4) 24.8 (38.9) 0.001 11.0 (21.1) 8.9 (14.0) 0.342

14 [6, 55] 9.5 [6, 26] 6 [3, 13] 5 [2, 9]

19–64 20.5 (32.7) 19.6 (35.6) 0.017 5.0 (14.7) 5.0 (14.0) 0.633

12 [6, 21] 12 [6, 21] 2 [1, 5] 3 [1, 5]

65+ 9.1 (19.6) 7.6 (8.3) 0.014 2.4 (3.3) 2.7 (4.2) 0.525

4 [2, 9] 6 [3, 10] 1 [1, 3] 2 [1, 3]

Summary of the number of daily contacts reported by participants in each age group, comparing term time with school holidays. For each age group, the mean
(standard deviation), and median [inter-quartile range] are shown. p-values give the significance level for differences in number of contacts reported in school term time
and school holidays.
doi:10.1371/journal.pcbi.1002425.t001
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electronic self-reported contact data to perform similarly to paper

diaries [29], while others have found that more encounters are

reported when using paper diaries [32]. In our study, we collected

aggregate numbers of contacts (by age group and social setting), in

order to reduce the time required to complete the surveys; a

previous study suggests that this approach gives similar results to

contact diaries if, as in our case, the recall period was short [28].

In common with other contact surveys [7,11], data about the

contact patterns of young children could be reported on their

behalf by their parents, which may limit its reliability. Collecting

contact data from young children is challenging though not

impossible [13,15,31], and although our survey was designed to be

straightforward to complete it was not possible to devise something

that would be equally suitable for all age groups.

School closure has been suggested as an intervention to control

infection, an idea that models have helped to explore [17–19].

Although this work demonstrates that scheduled school holidays

have a large impact on transmission, school closure as a public

health intervention may not have the same effect on social mixing

patterns, since child care arrangements during unplanned, short-

notice, closures may differ from those during school holidays.

Unsurprisingly, there is only limited information available on this

subject [15,16,34]. Furthermore, as was seen in the UK, it is likely

that the epidemic would take off again once schools re-opened;

thus school closure is more likely to be useful as a way to delay

transmission than to prevent it altogether.

The models developed here suggest that a large fraction of the

UK population was infected during the 2009 H1N1v epidemic.

The same conclusion resulted from serological sampling that

reported seropositivity by the end of the first wave of over 45% in

children aged 5–14 in the regions of the UK first affected by the

epidemic [20], and a cumulative incidence of 59% in this group

over the second wave [21]. Interpretation of serological data is

difficult, since not all those infected are expected to have

seroconverted by the time of the sampling and blood samples

used in these studies are not sampled at random [20,21]. However,

the models presented here, available serological data [20,21], and

other modelling work [2] all suggest that the original incidence

figures dramatically underestimated the true number of infections.

The models suggest that estimated influenza incidence only

includes around 7–11% of all people infected. A number of

factors may account for this, including mild or asymptomatic

infections that would not have been diagnosed as ILI, imperfect

test sensitivity, or poor estimates of the fraction of individuals with

ILI who seek medical attention.

Ideally, there would be perfect incidence data to which to fit

epidemic models. However, incidence estimates are not perfect,

and serological surveys cannot give fine-scaled information about

Figure 2. Incidence estimates, comparing models and data. A comparison of estimated per-capita weekly incidence data (black) and best-
fitting model output (red). The four panels show A: model using patterns of conversational contacts fitted to HPA incidence estimates; B: model using
patterns of conversational contacts fitted to flusurvey-adjusted incidence estimates; C: model using patterns of physical contacts fitted to HPA
incidence estimates; D: model using patterns of physical contacts fitted to flusurvey-adjusted incidence estimates. Best-fitting parameter sets and fits
using bootstrapped matrices can be found in Table S2 in Text S1, and Figs S1 and S2.
doi:10.1371/journal.pcbi.1002425.g002
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weekly incidence patterns. Here, we have used models appropriate

to the level of incidence and behavioural data available and fitted

models to incidence estimated in two different ways, in both cases

drawing similar conclusions.

The social contact data used here are, likewise, imperfect.

Participants in the flusurvey are not a random sample of the UK

population, and we are unable to control for all biases in this self-

selecting sample [23]. It would be interesting to be able to look at

variations in contact patterns at a finer temporal resolution, such

as comparing different holiday periods or detecting other temporal

variations, but in this case the sample size, particularly of school

age children, is not large enough to make this feasible. We cannot

reasonably justify splitting up the most interesting and important

groups – school-aged children – any further into, for example,

primary and secondary school groups. It is planned to continue the

UK flusurvey in future years, and it is hoped that wider

recruitment will allow these issues to be explored more fully in

due course.

We found that patterns of conversational encounters provided a

better fit to incidence data than patterns of physical encounters.

Some other studies have found that models using patterns of

physical encounters provide a better fit to serological profiles [8,9]

though other studies do not find a difference between using

physical and conversational encounter patterns [10]. Of course,

fitting models to serological profiles that are the result of many

years of potential exposure is not the same as fitting to short term

incidence data. We found that the relatively small school-holiday

change in numbers of physical encounters was unable to explain

the sharp decline in incidence associated with the summer holiday

period, an effect that may be less important when considering

cumulative exposure over many years. Or it may simply be the

case that conversational encounters provide a better proxy for

interactions that led to the transmission of H1N1v than physical

encounters.

The mathematical model of influenza transmission used here is

extremely simple, with a population categorised into broad age

groups roughly corresponding to normal patterns of work and

school attendance. The model ignores geographical differences in

transmission and incidence across the UK. The novel aspect of the

model is that it makes use of measured changes in patterns of social

contacts taking place between these groups as a result of the

opening and closing of schools. The model is parameterised by

data collected from an internet-based survey completed by a

subset of the population of interest at the time of the epidemic.

Despite the caveats, the survey reported here is, to our

knowledge, the only large-scale longitudinal study of population-

level social contacts to have been carried out. We have shown that

internet-based contact surveys can be used in large-scale studies.

The fact that the contact data can be used in models to capture

observed incidence patterns suggests that we have succeeded in

quantifying epidemiologically relevant longitudinal social contact

patterns.

Methods

Ethics Statement
Participation in this opt-in study was voluntary, and all analysis

was carried out on anonymised data. The study was approved by

the ethics committee of the London School of Hygiene and

Tropical Medicine.

The UK Flusurvey
The UK flusurvey was launched in July 2009, based on similar

systems used elsewhere in Europe [22]. It ran from July 2009 until

March 2010. Members of the public were encouraged to register

via the flusurvey website and reported their symptoms (or lack of

symptoms) each week. On registration, participants completed a

background survey recording information about themselves

including age, gender, and vaccination history. Participation in

all parts of the flusurvey was entirely voluntary. Participants were

prompted to continue to take part with a weekly email reminder.

 

Figure 3. The impact of school holidays on epidemic growth
rate. The impact of school holidays and prior immunity on initial
epidemic growth rate predicted using the best-fitting model (using
patterns of conversational contacts fitted to HPA incidence estimates)
considering an epidemic that began during term time or during the
school holidays, with and without measured levels of prior immunity.
Comparable results from the other models can be found in Table S5 in
Text S1. Lines show the range of model predictions using the low-
difference and high-difference bootstrapped contact matrices.
doi:10.1371/journal.pcbi.1002425.g003

Figure 4. Incidence within younger age groups, over time. The
fraction of incidence each week that occurs in younger people, as
predicted using the best-fitting model (using patterns of conversational
contacts fitted to HPA incidence estimates) and as reported in the HPA
incidence estimate data. Incidence data showing the proportion of
incidence in those aged under 25 (black, dashed) and under 15 (black,
dash-dotted); model predicted fraction of incidence in those aged
under 19 is shown in red; model predictions using the low-difference
and high-difference bootstrapped contact matrices are shown in green
and blue respectively.
doi:10.1371/journal.pcbi.1002425.g004
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Further details about the flusurvey can be found in [23] and in

Text S1.

Participants could also take part in a contact survey. This could

be completed as often as participants chose; they were reminded of

it each week, but its completion was not heavily advocated since

the principal interest was in measuring incidence and behavioural

response to infection [23,26].

The contact survey was a simplified version of that used in other

contact studies [7,12–14,16]: participants were asked two main

questions: ‘‘How many people did you have conversational contact

with yesterday?’’ and ‘‘How many people did you have physical

contact with yesterday?’’ In each case, participants were asked to

report the numbers of people they met in 4 different age groups

(0–4; 5–18; 19–64; 65+), roughly corresponding to normal school

and work attendance, and three different social settings (Home,

Work/School/College, Other). Participants were asked to ap-

proximate larger numbers of contacts using in the following

categories: 16–24; 25–49; 50–99; 100 or more; while we would

have liked to collect precise numbers, it was decided that this

would present an unrealistic recall challenge for participants. For

larger numbers of contacts, in the analyses that follow the number

of contacts was approximated by midpoint of these categories

aside from the category ‘‘100 or more’’, which was approximated

by 150. Further details can be found in Text S1.

Statistical Analyses
Participants were categorised into the same age groups as

contacts (0–4; 5–18; 19–64; and 65+); time period was categorised

as term time or school holidays.

To explore the influence of school holiday periods on the

number and age distribution of contacts, accounting for multiple

reports from participants who completed the contact survey

multiple times, we used a population averaged negative binomial

regression model with robust standard errors [35,36]. Analyses

were carried out separately for each age group of participants.

Time period and gender were considered as explanatory variables,

but gender was found not to be a significant factor and was

subsequently omitted from the analyses. Analyses were carried out

in Stata 11.

Because the weekly survey reminder email was sent to

participants each Wednesday, and the contact survey asked about

‘‘yesterday’s’’ contacts, most reports related to Tuesdays. There-

fore, although a small number of surveys were completed on other

days, day of the week was not included as a variable in the analysis.

Dynamic Disease Model
A dynamic, differential-equation, age-structured, Susceptible-

Exposed-Infectious-Recovered (SEIR) model [3] was used to

investigate whether measured changes in contact patterns could

explain the observed epidemic dynamics.

In this model, susceptible individuals become infected at a rate

proportional to the number of contacts they have with infected

individuals. Each contact (whether made during term time or

holidays) has the same rate of transmission, t; thus the rate at

which a susceptible individual in age group i acquires infection is

given by t
P

j Bi,jIj=nj , where Ij is the number of infectious

individuals in group j, nj the size of group j, and Bi,j the number of

contacts per unit time each individual in group i makes with

individuals in group j.

When infected, an individual enters the exposed (latent) class,

during which she is infected but not yet infectious. She then enters

the infectious class at rate n, then recovers at rate g. Because we

consider events taking place over only a few months, ageing is not

included.

The model is described by the following set of differential

equations:

dSi=dt~{tSi

X
j
Bi,j Ij=nj

dEi=dt~tSi

X
j
Bi,jIj=nj{nEi

dIi=dt~nEi{gIi

dRi=dt~gIi,

where Si, Ei, Ii, and Ri are respectively the number of susceptible,

exposed, infected, and recovered individuals in group i. The

contact matrix {Bi,j} is time dependent, representing differences in

mixing patterns between school term times and holidays, taking

values BT
i,j during term time and BH

i,j during the school summer

holiday.

The initial growth rate of the epidemic, R, was calculated as the

dominant eigenvalue of the next generation matrix M, with

elements {Mi,j = (t/g)Bj,iSi/ni} (where, in the early stages of the

epidemic Si = ni in the absence of immunity) [3].

Incidence and Immunity Data
The model was fitted to weekly incidence data based on

individuals with ILI who sought medical attention [1]. Combined

with laboratory testing of swabs taken from a subset of those who

sought medical attention, these data are thought to give a good

estimate of the number of cases of H1N1v with ILI who sought

medical attention. To estimate the total number of H1N1v cases

these observed cases must be scaled up to account for those

individuals with influenza who do not seek medical attention.

We fit the model to two different estimates of weekly influenza

incidence: one calculated by the HPA, using a scaling factor that

was informed by flusurvey data made available to the HPA during

the early part of the 2009 H1N1v pandemic [1]; the other using

subsequent analysis of healthcare-seeking behaviour recorded by

flusurvey users with ILI [27]. In reality, both estimates only

provide approximations to true incidence trends. The advantage

of the latter, flusurvey-adjusted, estimate is that it uses directly

measured differences in healthcare-seeking behaviour between

different age groups, and changes in this behaviour over time.

A large, unknown, number of people infected with influenza

were either asymptomatic or displayed only mild symptoms, and

as such would not have been recorded as ILI [2,21], even if they

had sought medical attention. In common with other modeling

work, to account for this under-recording we apply a rescaling

factor to the case estimates. Previous modeling work considered a

rescaling factor of 7.5, 10, and 12.5, and concluded that a rescaling

factor of 10 was reasonable [2]; here, we seek a more precise value

for this parameter.

Model Fitting
Two models were used: one using social contact pattern data

relating to conversational encounters, and a second using data

about physical encounters.

Weekly incidence as predicted by the model was fitted to

estimated incidence data using a least-squares fit. Five model

parameters were estimated: the transmission rate, the rescaling

factor, the start of the epidemic and the beginning and end of the

school holidays. Because of the rescaling factor included in the

model, we fit to the shape of the incidence curve not its absolute

value.

The best-fitting parameter sets (Table S2 in Text S1) were used

to calculate the initial growth rate of the epidemic, R, for an

Dynamic Social Contact Patterns and Influenza
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outbreak beginning during term time and for one beginning

during the school holidays, in the presence and in the absence of

pre-existing immunity. Calculated values of R can be found in

Table S5 in Text S1.

Bootstrapping Contact Matrices
To explore the role of variability in the collected contact data,

1000 bootstrap copies of the dataset were generated, matching

the original dataset in the number of responses from each age

group in term time and holiday periods. These bootstrapped

datasets were used to estimate a range of contact matrices

describing term time and school holiday mixing patterns. It is

not the absolute number of contacts but rather the change

between holiday and term time contact patterns that is important

for understanding the observed incidence; therefore, boot-

strapped matrices were ranked according to the ratio of the

term time and holiday epidemic growth rates. Models were fitted

using those bootstrapped datasets that resulted in contact

matrices that generated the 5th and 95th percentiles of this ratio

(referred to as ‘‘low-difference bootstrap’’ and ‘‘high-difference

bootstrap’’ respectively).

Parameterisation
Serological testing in England indicated that a large number of

people, particularly older people, had prior immunity to H1N1v

[20]. In common with other interpretations [2,20], we have

assumed that a haemagluttination inhibition titre at or above 1:32

provides immunity, and that the fraction of the population in each

age group with levels greater than this before the epidemic is

immune to further H1N1v infection. Values used in the models

can be found in Table S4 in Text S1. To match the availability of

serological data, the model population is parameterised to

represent the population of England.

For simplicity, we use a latent period of one day and an

infectious period of 1.8 days for H1N1v influenza in the UK,

derived from previous modeling work by Baguelin et al [2].

Contact rates between age groups are taken directly from the

flusurvey contact survey, and can be found in Text S1.

Supporting Information

Figure S1 Incidence estimates, comparing models and
data. Equivalent to Figure 2, using the low-difference

bootstrap contact matrices. Comparison of estimated per-

capita weekly incidence data (black) and best-fitting model

output (red). The four panels show A: model using patterns of

conversational contacts fitted to HPA incidence estimates; B:

model using patterns of conversational contacts fitted to

flusurvey-adjusted incidence estimates; C: model using patterns

of physical contacts fitted to HPA incidence estimates; D:

model using patterns of physical contacts fitted to flusurvey-

adjusted incidence estimates. Best-fitting parameter sets can be

found in Table S2 in Text S1, and values for contact matrices

in Table S7 in Text S1.

(EPS)

Figure S2 Incidence estimates, comparing models and
data. Equivalent to Figure 2, using the high-difference bootstrap

contact matrices. Comparison of estimated per-capita weekly

incidence data (black) and best-fitting model output (red). The four

panels show A: model using patterns of conversational contacts

fitted to HPA incidence estimates; B: model using patterns of

conversational contacts fitted to flusurvey-adjusted incidence

estimates; C: model using patterns of physical contacts fitted to

HPA incidence estimates; D: model using patterns of physical

contacts fitted to flusurvey-adjusted incidence estimates. Best-

fitting parameter sets can be found in Table S2 in Text S1, and

values for contact matrices in Table S7 in Text S1.

(EPS)

Figure S3 Contact survey screen shot. Screen shot from the

contact survey, showing wording and layout of questions. Each

entry in the matrix of encounter numbers consisted of a drop down

menu. The number of physical encounters was asked similarly.

(TIFF)

Text S1 The file Text S1 contains further information
and parameters. Section 1 contains the contact matrices (and

bootstrapped contact matrices) as measured in the contact survey

and as used in the dynamic disease model. Section 2 contains

additional details about the survey design and participant

recruitment.

(DOC)

Dataset S1 The file DatasetS1.csv contains the data
used in this manuscript. Columns contain the number of

reported conversational and physical encounters with each of the

four age groups. The column ‘‘Term time’’ takes a value of 1 for

surveys completed during school term time, and zero for surveys

completed during the school holidays.

(CSV)
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