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Abstract 

Campylobacter jejuni infection often results in bloody, inflammatory diarrhea, indicating 

bacterial disruption and invasion of the intestinal epithelium. Whilst C. jejuni infection can be 

reproduced in vitro using intestinal epithelial cell (IEC) lines, low numbers of bacteria 

invading IECs do not reflect these clinical symptoms. Performing in vitro assays under 

atmospheric oxygen conditions is neither optimal for microaerophilic C. jejuni nor reflects 

the low oxygen environment of the intestinal lumen. A Vertical Diffusion Chamber (VDC) 

model system creates microaerobic conditions at the apical surface and aerobic conditions at 

the baso-lateral surface of cultured IECs producing an in vitro system that closely mimics in 

vivo conditions in the human intestine. Nine-fold increases in interacting and eighty-fold 

increases in intracellular C. jejuni 11168H wild-type strain bacteria were observed after 24 

hours co-culture with Caco-2 IECs in VDCs with microaerobic conditions at the apical 

surface compared to aerobic conditions. Increased bacterial interaction was matched by an 

enhanced and directional host innate immune response, particularly an increased baso-lateral 

secretion of the pro-inflammatory chemokine IL-8. Analysis of the invasive ability of a non-

motile C. jejuni 11168H rpoN mutant in the VDC model system indicates that motility is an 

important factor in the early stages of bacterial invasion. The first report of the use of a VDC 

model system for studying the interactions of an invasive bacterial pathogen with IECs 

demonstrates the importance of performing such experiments under conditions that represent 

the in vivo situation and will allow novel insights into C. jejuni pathogenic mechanisms. 
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Introduction 

The Gram-negative, microaerophilic Campylobacter jejuni is one of the most common causes 

of foodborne bacterial gastroenteritis in developed countries (6), with 500,000 and 2,500,000 

predicted cases each year in the UK and USA respectively (27). The predominant route of 

transmission is by consumption and handling of undercooked, contaminated poultry (20). 

Once ingested, C. jejuni can lead to symptoms ranging from mild, watery diarrhea to severe, 

bloody inflammatory diarrhea (1). The majority of C. jejuni infections are self limiting, 

however infection with C. jejuni can potentially lead to post-infectious sequelae such as 

Guillain-Barré Syndrome, reactive arthritis and Inflammatory Bowel Disease (IBD) (8, 22, 

38). 

Despite the prevalence of C. jejuni as a causative agent of gastroenteritis, knowledge of the 

molecular basis of pathogenesis and interactions with host cells is still very limited when 

compared to other enteropathogens such as Salmonella species, Yersinia species, Shigella 

species and pathogenic Escherichia coli (47). This knowledge gap can in part be attributed to 

the lack of a convenient, reproducible small animal model system to study C. jejuni-host 

interactions (15). Although several animal models have been used, each one has major 

drawbacks. Animal models using either ferrets (4) or Rhesus monkeys (40, 41) have been 

shown to closely mimic the disease observed in humans. However, the facilities required for 

the handling of such animals, the unavailability of host genetic manipulation techniques, as 

well as the relatively long generation time render these animals impractical for regular use in 

most laboratories. Chickens, as a natural host of C. jejuni, can easily be experimentally 

inoculated (13). However, although both chicks and chickens have been successfully used in 

various studies (18, 24), such studies reflect C. jejuni colonisation and the direct relevance of 

the chick and chicken models relating to human Campylobacteriosis is debatable. The model 

organism most frequently used to study human pathogens is the mouse. Indeed, experimental 
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inoculation of mice with C. jejuni has been performed for nearly 30 years (7). However, 

differences in the mouse strains used, the pre-treatments of the mice, the routes of inoculation 

and the inoculation loads have resulted in findings as diverse as non-colonization, non-

symptomatic carriage or severe diarrhea (3, 8, 43, 48). Knock-out mice models of C. jejuni 

enteritis using mice deficient in NF-B (19), MyD88 (45), interleukin-10 (33) and Nramp1 

(9) have been reported. Additionally, infections of mice with limited enteric flora have also 

been reported (10). The outcome of C. jejuni infection in these models differs between 

genetically engineered mice, suggesting that a robust, reproducible, “gold standard” mouse 

model for C. jejuni infection remains elusive and as such the C. jejuni research community 

has yet to adopt a defined mouse model for pathogenesis studies. 

In the absence of a convenient, reproducible small animal model, tissue culture assays 

represent a useful alternative. C. jejuni has been shown to adhere to and invade various 

polarised and non-polarised intestinal epithelial cells (IECs) in vitro including the Caco-2 

(16), INT 407 (31) and T84 (35) cell lines. However, the reported adhesion and invasion 

interactions of C. jejuni with IECs are minimal compared to other enteric pathogens, with 

often less than 1% of the starting inoculum recovered intracellularly following gentamicin 

protection assays (21). This low level of adhesion and invasion does not correlate with the 

clinical presentation of C. jejuni infection in humans (21). One explanation for these low 

adhesion and invasion levels is that co-culturing of C. jejuni with IECs is routinely performed 

under atmospheric oxygen conditions, as this is required for survival of the IECs. Even 

though the microaerophilic C. jejuni possesses several defence mechanisms against oxidative 

stress such as the SodB superoxide dismutase (39) and the KatA catalase (14), it is likely that 

the bacterium will behave differently under atmospheric oxygen conditions than in the natural 

low oxygen environment of the intestinal lumen.  
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When the microaerophilic human pathogen Helicobacter pylori was co-cultured with 

epithelial cells with microaerobic conditions at the apical surface and aerobic conditions at 

the baso-lateral surface using a Vertical Diffusion Chamber (VDC) or Ussing chamber, the 

result was a significant increase in bacterial adherence under microaerobic conditions 

compared to aerobic conditions (12). An increase in the expression of the H. pylori virulence 

factor CagA and changes in the host response were also observed (12). However the VDC 

system has not previously been used to study an invasive enteric bacterial pathogen. The use 

of a similar VDC model system for C. jejuni infection of IECs will more closely mimic the in 

vivo situation and as such should allow more accurate investigations of host-pathogen 

interactions. In this study, a modified VDC system was used to allow the co-culture of C. 

jejuni with IECs under microaerobic conditions in the apical compartment, resulting in an 

eighty-fold increase in levels of bacterial invasion and an enhanced host innate immune 

response. 
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Materials and Methods 

Bacterial strains and growth conditions 

C. jejuni wild-type strains used in this study were 11168H and 81-176. 11168H is a 

genetically stable hypermotile derivative (28, 30) of the original sequenced strain 

NCTC11168 (37). 11168H shows much higher colonisation levels in a chick colonisation 

model than the NCTC11168 strain (28) and is thus considered a better strain to use for host-

pathogen interaction studies. 81-176 is a gastroenteritis isolate from a multistate outbreak 

from contaminated milk widely used for C. jejuni infection and human volunteer studies (5). 

The C. jejuni 11168H rpoN mutant was obtained from the LSHTM Campylobacter Resource 

Facility (http://crf.lshtm.ac.uk/index.htm). C. jejuni strains were routinely cultured on blood 

agar (BA) plates supplemented with Campylobacter selective supplement (Oxoid, 

Basingstoke, UK) and 7% (v/v) horse blood (TCS Microbiology, Botolph Claydon, UK) at 

37°C in a VAIN (Variable Atmosphere INcubator) microaerobic chamber (Don Whitley 

Scientific, Sheffield, UK) containing 85% N2, 10% CO2 and 5% O2. Appropriate antibiotics 

were added at the following concentrations; ampicillin (100 μg/ml), kanamycin (50 μg/ml) 

and chloramphenicol (50 μg/ml) for E. coli studies or (10 μg/ml) for C. jejuni studies. All 

reagents were obtained from Invitrogen (UK) unless otherwise stated.  

 

Epithelial cell line and culture conditions 

The human Caco-2 IEC line was cultured in Dulbecco's modified essential media (DMEM) 

supplemented with 10% (v/v) fetal calf serum (FCS; Sigma-Aldrich, Poole, UK), 100 U/ml 

penicillin, 100 μg/ml streptomycin and 1% (v/v) non-essential amino acids and maintained at 

37°C in 5% CO2 and 95% air. The human T84 IEC line was cultured in 1:1 DMEM/F12 

medium (Invitrogen, Paisley, UK) supplemented with 10% (v/v) FCS and 100 U/ml 

penicillin, 100 μg/ml streptomycin. For VDC experiments, 4 x 105 Caco-2 or T84 IECs were 
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seeded into the upper compartment of a Snapwell™ filter (Corning Lifesciences, Amsterdam, 

The Netherlands). To allow for the formation of a polarised monolayer, cells were grown for 

a minimum of 21 days for Caco-2 IECs and 14 days for T84 IECs respectively. The growth 

medium was changed every 3 days. 

 

Assembly of the Vertical Diffusion Chamber model system 

Prior to assembly, the two compartments of the VDC (Harvard Apparatus, Holliston, USA) 

were sterilised by immersion in Haz-Tabs (Guest Medical Ltd, Aylesford, UK) solution for 3 

h, followed by a three washes with sterile water. A Snapwell™ filter carrying a polarised 

monolayer of Caco-2 or T84 IECs was removed from the culture plate, washed three times 

with phosphate-buffered saline (PBS) and inserted between the two compartments of the 

VDC. The baso-lateral compartment was filled with 4 ml of the appropriate tissue culture 

medium supplemented with 1% (v/v) FCS and 1% (v/v) non-essential amino acids. The 

apical compartment was filled with 4 ml Brucella broth (Oxoid). For infections, 

approximately 1 x 109 C. jejuni were harvested from a 24 h BA plate and added to the apical 

compartment. For aerobic co-culturing, the VDC was maintained at 37°C in 5% CO2 and 

95% air. For microaerobic co-culturing, the VDC was maintained under microaerobic 

conditions (85% N2, 10% CO2 and 5% O2) in a VAIN. A gas mixture of 95% O2 and 5% CO2 

was perfused through the baso-lateral compartment, while the apical compartment was left 

open to the microaerobic atmosphere in the VAIN (Figure 1).  

 

Immunofluorescence analysis of cellular distribution of actin and occludin 

IECs were fixed with 2% (w/v) paraformaldehyde (Sigma-Aldrich) for 1 h at 4°C, 

permeabilised with 0.1% (v/v) Triton X-100 in PBS for 20 min then blocked with 1% (w/v) 

BSA in PBS for 1 h, both at room temperature. The filter was excised from the carrier and 
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placed in a 12-well dish. For actin staining, IECs were incubated with Alexa Fluor 555 

conjugated phalloidin (Invitrogen) (stock diluted 1:1000 in PBS) for 1 h in the dark. For 

occluding staining, IECs were incubated with mouse anti-occludin primary antibody (stock 

diluted 1:100 in PBS) (Invitrogen) for 1 h at room temperature followed by an Alexa Fluor 

488 conjugated goat anti-mouse (Invitrogen) (stock diluted 1:200 in PBS) for 1 h at room 

temperature in the dark. Stained filters were mounted in Vectashield mounting medium 

containing 4’,6 diamidino-2-phenylindole (DAPI, final concentration 1.5 µg/ml) (Vector 

Laboratories, Peterborough, UK) on a coverslip (Fisher Scientific, Loughborough, UK) and 

examined with a Zeiss LSM510 Confocal microscope (Carl Zeiss AG, Jena, Germany). 

 

Fluorescent dextran diffusion assay 

IECs on Snapwell™ filters were washed three times with sterile PBS, placed back into the 

hanging support and 500 µl of 100 µM FITC-labelled dextran (Sigma-Aldrich) with an 

average molecular weight of 4 kilodaltons (kDa) in Ringer’s solution (115 mM NaCl, 1 mM 

KCl, 1 mM CaCl2) added to the apical side of the monolayer and incubated for 3 h at room 

temperature, with the baso-lateral side of the monolayer immersed in Ringer’s solution. The 

amount of fluorescently labelled dextran on the baso-lateral side of the monolayer was 

determined post-incubation by removal of the baso-lateral solution and measurement of the 

fluorescence intensity at 488 nm using a Gemini XPS Fluorescence Microplate Reader 

(Molecular Devices, Sunnyvale, USA). 

 

Measurement of Caco-2 monolayer Trans-Epithelial Electrical Resistance in the VDC 

The trans-epithelial resistance (TEER) of a Caco-2 monolayer in a VDC was measured by 

placing two voltage sensing AgCl electrodes close to the cell monolayer on each side of the 

insert, passing a current through two further electrodes placed at the two distal ends of the 
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VDC and reading the voltage necessary to keep the current flowing. Resistance was 

calculated according to Ohm’s law (R = V/I) and multiplied by the surface area of the 

monolayers (1.12 cm2). 

 

Enumeration of interacting bacteria and intracellular bacteria 

At the desired time point of co-culturing, the apical and baso-lateral supernatants were 

removed from the VDC and stored at -80˚C for subsequent analysis. The Snapwell™ filter 

was removed from the VDC, washed three times with sterile PBS and placed into a 6-well 

tissue culture dish. IECs were lysed by addition of 0.1% (v/v) Triton X-100 in PBS for 20 

minutes at room temperature. The lysates were serially diluted in PBS, plated on BA plates 

and incubated microaerobically for 72 h. CFU counts were determined and the number of 

bacteria interacting with the IECs calculated. Enumeration of intracellular bacteria was 

essentially performed as above, with the following modification. Before lysis with Triton X-

100, the IECs were incubated in DMEM containing 150 g/ml gentamicin (Sigma-Aldrich) 

for 2 h at 37˚C. This step kills extracellular, adherent bacteria and allows for the analysis of 

the number of intracellular bacteria present after co-culturing. All VDC experiments were 

performed with at least two technical replicates and at least three biological replicates per 

experimental data set. 

 

Cytokine analysis of the co-culturing supernatants 

Co-culturing supernatants were probed for the presence of Interleukin 8 (IL-8) with the 

Human IL-8 ELISA Development Kit (Peprotech, London, UK), according to the 

manufacturers’ instructions. 
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Microarray analysis of C. jejuni 11168H gene expression profiles 

Gene expression profiles of C. jejuni 11168H in the apical compartment of the VDC after co-

culturing with Caco-2 IECs for 6 h or 24 h under either aerobic or microaerobic conditions 

were analysed using an indirect comparison method or type 2 experimental design (46). 

Replicate test sets of Cy5-labelled C. jejuni 11168H total RNA samples were combined with 

a common reference sample (Cy3-labelled C. jejuni 11168H genomic DNA) using 

methodology described previously (23). Whole genome C. jejuni NCTC11168 microarrays 

printed on UltraGAPS™ glass slides (Corning Lifesciences), constructed by the BμG@S 

Microarray Group (http://www.bugs.sgul.ac.uk/) were used in this study (29). The microarray 

slides were scanned with an Affymetrix 418 array scanner (MWG Biotech, Ebersberg, 

Germany) according to the manufacturer's guidelines. Signal and local background intensity 

readings for each spot were quantified using ImaGene software v8.0 (BioDiscovery, El 

Segundo, USA). Quantified data were analysed using GeneSpring GX software v7.3 

(Agilent, Santa Clara, USA). Statistically significant up- and down-regulated genes were 

selected when comparing 11168H gene expression under microaerobic conditions against 

aerobic conditions using ANOVA (ANalysis Of VAriance) with a Benjamini and Hochberg 

False Discovery Rate as the Multiple Testing Correction (2, 11). 

 

Complementation of the C. jejuni 11168H rpoN mutant 

Complementation was performed by inserting a copy of the rpoN gene into the rpoN mutant 

chromosome using a C. jejuni NCTC11168 complementation vector (25) using previously 

described techniques (23). The complementation vector utilises the constitutive 

chloramphenicol cassette promoter to express the rpoN gene and not the native rpoN 

promoter. The coding region for rpoN was amplified by PCR using proof-reading Pfu 

polymerase (Fermentas, Sankt Leon-Rot, Germany) and ligated into the NcoI and NheI sites 

http://www.bugs.sgul.ac.uk/
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on the complementation vector. This construct was checked by sequencing (data not shown) 

and electroporated into the 11168H rpoN mutant. Putative clones were selected on BA plates 

containing kanamycin and chloramphenicol. Confirmation of the presence of copies of both 

rpoN and rpoN-KmR was performed by PCR and also by sequencing (data not shown). 

 

Statistical analysis 

Data was statistically analysed using Prism software (GraphPad Software Inc., La Jolla, 

USA). Figures display means ± standard error as well as the p – values of unpaired student t-

tests. All experiments represent at least three biological replicates performed in triplicate in 

each experiment. 

 

Microarray data accession numbers 

The array design is available in BµG@Sbase (accession No. A-BUGS-9; 

http://bugs.sgul.ac.uk/A-BUGS-9) and also ArrayExpress (accession No. A-BUGS-9). Fully 

annotated microarray data has been deposited in BµG@Sbase (accession number E-BUGS-

125; http://bugs.sgul.ac.uk/E-BUGS-125) and also ArrayExpress (accession number E-

BUGS-125). 
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Results 

Cellular distribution of actin and occludin within IECs is not affected by culture in a 

VDC with microaerobic conditions at the apical surface 

Prior to using the VDC to co-culture C. jejuni and IECs with microaerobic conditions at the 

apical surface, the effect of these conditions on polarised IECs was determined. The 

morphology of Caco-2 monolayers after 24 h incubation in a VDC was analysed by confocal 

laser microscopy. No difference was detected in the distribution of actin between IECs that 

had been maintained under microaerobic conditions (Figure 2B) compared to under aerobic 

conditions (Figure 2A). The fluorescence signal localised predominantly to the junctions 

between adjacent cells. Additionally, a strong localisation of actin to the apical side of the 

Caco-2 IECs was noted, indicating the formation of a dense microvilli brush border. This 

indicated the IECs were not adversely affected under microaerobic conditions and remained 

attached to the Snapwell™ filter. As the distribution of actin does not provide any 

information on the intactness of monolayers, the presence of intact tight junctions between 

the IECs was also analysed. No difference was detected in the distribution of occludin 

between IECs that had been maintained under microaerobic conditions (Figure 2B) compared 

to under aerobic conditions (Figure 2A). Fluorescence was tightly localised to the cell-cell 

boundaries, indicating the presence of intact tight junctions. A similar distribution in actin 

and occludin was observed with T84 IECs (data not shown). 

 

The barrier function of polarised IECs is not affected by culture in a VDC with 

microaerobic conditions at the apical surface 

To quantitatively assess monolayer integrity after culture in a VDC, the diffusion of 

fluorescently labelled dextran across Caco-2 (Figure 3A) and T84 (Figure 3B) monolayers 

was determined. Approximately 25% of the labelled dextran diffused across an empty 
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Snapwell™ filter after 3 h. However there was no significant difference in dextran diffusion 

between IECs grown on Snapwell™ filter and IECs maintained in a VDC for 24 h with either 

microaerobic or aerobic conditions at the apical surface. Dextran diffusion was dramatically 

increased across IECs grown on Snapwell™ filters after permeabilisation with Triton X-100, 

demonstrating that it is the barrier function of the polarised IECs that prevents dextran 

diffusion. Measuring the trans-epithelial electrical resistance (TEER) of an IEC monolayer on 

a permeable support is a direct, quantitative method for analysis of the polarisation status of 

the IEC monolayer. There was no reduction in the TEER of a Caco-2 monolayer over a 24 h 

period under microaerobic conditions compared to aerobic conditions (Figure 3C). 

 

C. jejuni interactions with IECs are enhanced during co-culture in a VDC under 

microaerobic conditions 

C. jejuni 11168H wild-type strain was co-cultured with Caco-2 IECs at an MOI of 

approximately 100:1 with either microaerobic or aerobic conditions in the apical 

compartment for 3, 6 and 24 h (Figure 4). The numbers of bacteria interacting with the IECs 

under microaerobic conditions increased markedly over this period. After 24 h, a significant 

(p < 0.05) 9-fold increase in interacting C. jejuni 11168H was observed under microaerobic 

conditions compared to under aerobic conditions. It is possible that the increased numbers of 

interacting bacteria under microaerobic conditions may be the result of an increase in 

bacterial numbers during the 24 h assay due to increased proliferation of C. jejuni under 

microaerobic conditions. However, serial dilution plating of the contents of the apical 

compartment demonstrated equal numbers of bacteria present under microaerobic and aerobic 

conditions after 24 h of co-culturing (data not shown). This indicated that the observed 

increase in C. jejuni interactions with IECs under microaerobic conditions was due to 

changes in bacterial activity, rather than an increase in bacterial numbers. Another possibility 
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is that the microaerophilic conditions affect the activity and/or biology of the IECs that then 

become more susceptible to C. jejuni infection. 

 

C. jejuni invasion of IECs is dramatically enhanced during co-culture in a VDC under 

microaerobic conditions 

C. jejuni 11168H wild-type strain was co-cultured with Caco-2 IECs at an MOI of 

approximately 100:1 with either microaerobic or aerobic conditions in the apical 

compartment for 6 and 24 h and the numbers of intracellular bacteria determined (Figure 5A). 

There was a significant (p < 0.05) 5-fold increase after 6 h in the numbers of intracellular C. 

jejuni under microaerobic conditions. After 24 h, there was a significant (p < 0.01) 80–fold 

increase in intracellular C. jejuni recovered under microaerobic conditions. To confirm that 

the observed increase in numbers of intracellular C. jejuni after 24 h of co-culturing in the 

VDC under microaerobic conditions was not a specific effect of the bacterial strain or IEC 

line used, two further experiments were performed. The C. jejuni 81-176 wild-type strain was 

co-cultured for 24 h with Caco-2 IECs with either aerobic or microaerobic conditions in the 

apical compartment (Figure 5B). After 24 h, there was a significant (p < 0.05) 89–fold 

increase in intracellular C. jejuni 81-176 recovered from Caco-2 cells under microaerobic 

conditions. Additionally, C. jejuni 11168H wild-type strain was co-cultured for 24 h with T84 

IECs with either aerobic or microaerobic conditions in the apical compartment (Figure 5C). 

After 24 h, there was a significant (p < 0.05) 41–fold increase in intracellular C. jejuni 

11168H recovered from T84 cells under microaerobic conditions. 

 

Increased C. jejuni interactions with IECs during co-culture in a VDC results in an 

increased, polarised innate immune response 
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The neutrophil chemoattractant Interleukin-8 (IL-8) has been shown to be involved in the 

host innate immune response to C. jejuni in both IECs and primary human tissue (26). Caco-2 

IECs have been shown to secrete only low levels of IL-8 in response to C. jejuni infection, 

whilst T84 IECs have been shown to secrete much higher levels of IL-8 (32). Also C. jejuni 

81-176 wild-type strain has been shown to induce a stronger IL-8 response than the 11168H 

wild-type strain from both Caco-2 and HEp-2 cells (49). IL-8 secretion from Caco-2 or T84 

IECs co-cultured with C. jejuni 11168H or 81-176 in a VDC under either microaerobic or 

aerobic conditions was assessed. Supernatants from both apical and baso-lateral VDC 

compartments were probed separately for the presence of IL-8 (Figure 6). There was a 

significant increase in IL-8 secretion from Caco-2 IECs under microaerobic conditions when 

infected with either 11168H or 81-176 and IL-8 secretion was significantly higher into the 

baso-lateral compartment than into the apical compartment during infection with 81-176 

(Figure 6B). 81-176 induced higher levels of IL-8 secretion from Caco-2 IECs than 11168H. 

Compared to Caco-2 IECs, the levels of IL-8 secreted by T84 IECs in response to either 

11168H or 81-176 were much higher under both microaerobic and aerobic conditions (Figure 

6CD). However the highest levels of IL-8 secretion were into the baso-lateral compartment 

under microaerobic conditions, suggesting that analogous to Caco-2 IECs, T84 IECs respond 

to increased numbers of interacting C. jejuni by mounting an increased, polarised innate 

immune response. 

 

Analysis of C. jejuni 11168H gene expression after co-culturing with Caco-2 IECs in the 

apical compartment of a VDC under either aerobic or microaerobic conditions 

In order to investigate bacterial factors involved in the observed increased bacterial 

interaction and invasion of IECs after co-culturing in a VDC under microaerobic conditions, 

gene expression profiles of C. jejuni 11168H wild-type strain in the apical compartment of 
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the VDC after 6 and 24 h of co-culturing with Caco-2 IECs were analysed using standard 

microarray techniques. Based on an ANOVA selection methodology, a total of 67 genes were 

differentially expressed after 6 h under microaerobic conditions compared to aerobic 

conditions, with 43 genes upregulated and 24 genes downregulated (Supplementary Tables 

S1-2). Of most significance was the up-regulation of fdhA, petA and Cj0414, suggesting the 

activation of a different respiratory pathway during co-culturing under microaerobic 

conditions. After 24 h, a total of 132 genes were differentially expressed under microaerobic 

conditions compared to aerobic conditions, with 73 genes upregulated and 59 genes 

downregulated under microaerobic conditions (Supplementary Tables S3-4). The recN, mfd, 

rarA and ruvA genes encoding DNA repair proteins were up-regulated under aerobic 

conditions, suggesting greater levels of DNA damage under aerobic conditions. Also the 

Cj1425c, Cj1440c and kpsT genes in the capsular polysaccharide (CPS) locus were down-

regulated under microaerobic conditions. A recent study demonstrated the down-regulation of 

CPS genes when in contact with IECs in vitro (11). Down-regulation of CPS may lead to 

greater exposure of C. jejuni surface structures that may be involved in mediating bacterial 

interactions with the IECs. However the expression of genes encoding many C. jejuni 

virulence factors are unchanged. It is possible that changes in the regulation of bacterial 

factors involved in the observed increased bacterial interaction and invasion of IECs after co-

culturing in a VDC under microaerobic conditions occur at the post-transcriptional level and 

would not be reflected in these results. 

 

A non-motile C. jejuni 11168H rpoN mutant lacks the ability for enhanced interactions 

with IECs during co-culture in a VDC under microaerobic conditions 

Motility has previously been demonstrated to be important for C. jejuni interaction and 

invasion of the intestinal epithelium (36, 44). Despite the lack of significant changes in the 
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expression of flagellar biosynthesis genes observed in the microarray studies, the effect of 

motility on the observed increased bacterial interaction and invasion of IECs after co-

culturing in a VDC under microaerobic conditions was investigated. A non-motile 11168H 

rpoN mutant was co-cultured with Caco-2 IECs in a VDC with either microaerobic or aerobic 

conditions in the apical compartment for 6 h. Significantly lower numbers of rpoN mutant 

bacteria were able to interact with (Figure 7A) and invade (Figure 7B) Caco-2 IECs 

compared to the 11168H wild-type strain under both microaerobic and aerobic conditions. 

Most importantly the rpoN mutant had lower levels of interaction with and invasion of Caco-

2 IECs under microaerobic conditions than under aerobic conditions, in contrast with the 

wild-type strain. A complemented 11168H rpoN mutant strain was generated by re-insertion 

of a functional copy of the gene into a predicted pseudogene on the chromosome (25). 

Successful complementation was demonstrated by restoration of wild-type autoagglutination 

and motility phenotypes (data not shown). The 11168H rpoN complement also partially 

restored the wild-type phenotype, demonstrating enhanced interaction with and invasion of 

Caco-2 IECs under microaerobic conditions (Figures 7A and 7B). 
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Discussion 

C. jejuni is one of the most prevalent causes of foodborne gastroenteritis worldwide. 

However, despite the prevalence of this human pathogen, the molecular basis of 

pathogenicity remains poorly understood in comparison to other enteric pathogens. This is 

partly due to the lack of a convenient, reproducible small animal model and major drawbacks 

with the widely used in vitro tissue culture cell models (15, 21). To date, in vitro tissue 

culture assays have indicated only very low levels of C. jejuni invasion, which does not 

correlate with the observed clinical symptoms of bloody, inflammatory diarrhea that suggest 

infection by an invasive enteric pathogen. One of the drawbacks with in vitro tissue culture 

cell assays used to study C. jejuni interactions with host cells is the co-culturing of the 

microaerophilic C. jejuni with IECs under aerobic conditions, which are likely to result in 

changes in the ability of the bacteria to interact with IECs. These assay conditions are also 

not reflective of the very low oxygen environment in the gut lumen encountered by enteric 

pathogens during the initial stages of in vivo infection of IECs (34). In this study, a modified 

VDC system was used to allow the co-culture of C. jejuni with IECs under microaerobic 

conditions, to provide a more relevant model of the conditions under which in vivo infection 

occurs. 

After establishing that both Caco-2 and T84 IECs could be maintained in the VDC with 

microaerobic conditions in the apical compartment for at least 24 h without any apparent 

detrimental effects, the effect of co-culturing C. jejuni 11168H wild-type strain bacteria with 

IECs under these conditions was assessed. A time-dependent increase of the numbers of both 

interacting and intracellular C. jejuni 11168H wild-type strain bacteria was demonstrated 

under microaerobic conditions. These results were confirmed using a second C. jejuni wild-

type strain (81-176) as well as using a second IEC line (T84) to rule out possible strain or cell 

line specific effects. The increased levels of bacterial interaction and invasion were 
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demonstrated to lead to an increased, polarised innate immune response from the IECs. 

Significantly more IL-8 was detected after co-culturing under microaerobic conditions, 

suggesting that IECs are able to sense and respond to the increased bacterial challenge. In 

addition, significantly more IL-8 was detected in the baso-lateral supernatants compared to 

the apical supernatants. This suggests that the IL-8 secretion occurs in a polarised fashion, 

with the chemokine secreted from the baso-lateral surface. This concurs with the biological 

function of IL-8 as a neutrophil attractant, which would be of limited use in the intestinal 

lumen. In agreement with previous reports (32), a marked difference in the amount of 

secreted IL-8 was detected between the two IEC lines used, with the T84 IECs demonstrating 

higher levels of secretion compared to the Caco-2 IECs. Both C. jejuni wild-type strains 

induced similar levels of IL-8 secretion from T84 IECs, but differed in the ability to induce 

an IL-8 response from the Caco-2 IECs, despite demonstrating similar numbers of interacting 

and invading bacteria. This suggests that both C. jejuni strain-specific factors and IEC line 

specific-factors contribute to the level of the innate immune response observed in these 

experiments. 

A C. jejuni NCTC11168 rpoN mutant is completely aflagellate, non-motile and unable to 

secrete the CiaB protein (17). In this study a 11168H rpoN mutant exhibited lower numbers 

of interacting and intracellular bacteria compared to the wild-type strain when co-cultured 

with Caco-2 IECs in the VDC under either microaerobic or aerobic conditions after 6 h of co-

culturing. However lower numbers of intracellular 11168H rpoN mutant bacteria were 

recovered after co-culturing under microaerobic conditions. This is in contrast to the C. jejuni 

11168H wild-type strain, where less intracellular bacteria were recovered after co-culturing 

under aerobic conditions. This data suggests that bacterial motility is not just important for 

the interaction and invasion of C. jejuni per se, but is also an important factor involved in 
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mediating the increased interaction and invasion of C. jejuni when co-cultured with Caco-2 

IECs in the VDC under microaerobic conditions.  

A VDC model system was used to investigate the interactions of the microaerophilic gastric 

pathogen H. pylori with epithelial cells under low oxygen conditions in the apical 

compartment, demonstrating increased numbers of adherent bacteria when co-cultured with 

Caco-2 IECs under microaerobic conditions (12). Caco-2 IECs were used as no polarised 

gastric epithelial cell line was available. A more recent study using a similar VDC model to 

analyse the interaction of the facultative anaerobe EHEC with IECs under anaerobic 

conditions demonstrated increased interactions of the bacteria when co-cultured with 

anaerobic/microaerobic conditions in the apical compartment of the VDC (42). This suggests 

that the behaviour not only of microaerobic bacteria but also of bacteria that are capable of 

proliferating at atmospheric oxygen concentration is changed when co-cultured with IECs 

under microaerobic or anaerobic conditions. Using the VDC model with C. jejuni allows for 

the first time the interactions of an invasive enteric bacterial pathogen to be studied under low 

oxygen co-culture conditions. The data suggests that the VDC model is a very useful model 

for analysis of the host-pathogen interactions of a wide range of pathogenic bacteria under 

conditions more closely resembling the in vivo situation in the human intestinal lumen. 

However it should be noted that VDC models, like other in vitro cell culture models, are 

limited in the extent to which they model the complexity of real tissue. Further steps need to 

be taken to more closely represent the complexity of the intestinal epithelium, especially in 

terms of mucous secretion and different cell types present in the human intestine. 

Even though it has been demonstrated that C. jejuni can invade and survive within IECs in 

vitro, the fate of the bacteria post-infection has been very difficult to assess due to the low 

amounts of invasion observed under standard in vitro tissue culture conditions (21). 

Performing such co-culture experiments in the VDC model system increased by 80-fold the 
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number of intracellular bacteria observed after 24 h. This will allow for a much more detailed 

analysis of mechanisms of IEC invasion by C. jejuni, as invasion is no longer a rare event. 

Furthermore, the intracellular fate of C. jejuni will be more easily traceable. Methods such as 

analysis of gene transcription from intracellular bacteria that have not been possible to date 

due to the amounts of recoverable RNA being below a useful threshold should now be 

possible. Furthermore, as the compartment in which the bacteria are incubated is separate 

from the one supporting the IECs with nutrients and oxygen, it is more amenable to 

manipulations than classical co-culturing in tissue culture plates without interfering with the 

IECs. This means that it will be easier to test the effect of different substances on the invasive 

behaviour of the bacteria. Substances like bile salts that have been shown to increase 

expression of C. jejuni virulence genes can be added to the bacterial suspension and their 

effect on bacterial invasion, host response or monolayer disruption analysed. 

Using the VDC model system to co-culture C. jejuni with IECs under microaerobic 

conditions resulted in dramatic changes in the host-pathogen interactions observed. This 

model provides an improved mimic of the in vivo situation encountered by C. jejuni in the 

human intestinal lumen. IECs are not negatively affected by microaerobic conditions at the 

apical surface over 24 h. A time-dependent increase of the numbers of both interacting and 

intracellular C. jejuni was demonstrated after co-culturing with Caco-2 IECs in the VDC 

under microaerobic conditions. This increased interaction of C. jejuni with the IECs was 

mirrored by an increased innate immune response. Taken together, these results indicate that 

use of the VDC model system provides an improved model to investigate C. jejuni-host cell 

interactions and the elucidation of the molecular basis of pathogenesis. 
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Figure Legends 

Figure 1. The Vertical Diffusion Chamber (VDC) model system. IECs (IECs) were grown 

to polarisation on Snapwell™ filters and placed between the two compartments of the VDC. 

The apical compartment was filled with Brucella broth and the baso-lateral compartment was 

filled with tissue culture media. For infection studies, C. jejuni were added to the apical 

compartment of the VDC. For the aerobic controls, the VDC was left open and placed into a 

tissue culture incubator containing air enriched with 5% CO2. For microaerobic co-culturing, 

the VDC was placed into a microaerobic incubator with the apical compartment open to the 

atmosphere within the incubator and the baso-lateral compartment closed and perfused with 

95% O2 and 5% CO2. 

 

Figure 2. Microaerobic conditions and bacterial broth on the apical side of intestinal 

epithelial cells (IECs) in a Vertical Diffusion Chamber (VDC) have no detrimental effect 

on Caco-2 IECs over 24 hours. Caco-2 IECs were grown for 21 days on Snapwell™ filters 

and maintained in VDCs with Brucella broth and either aerobic (A) or microaerobic (B) 

conditions in the apical compartment for 24 h. After the incubation, the IECs were processed 

for immunostaining and stained for occludin (green), actin (red) and the nuclei counterstained 

with DAPI (blue). The images represent projections of a stack of Z-axis slices viewed from 

above.  

 

Figure 3. Analysis of the diffusion of a fluorescent marker across cellular monolayers on 

Snapwell™ filters following incubation in the Vertical Diffusion Chamber (VDC). Caco-

2 (3A and 3C) or T84 (3B) intestinal epithelial cells (IECs) were grown for 21 or 14 days 

respectively on Snapwell™ filters and maintained in VDCs with Brucella broth and either 

aerobic (A) or microaerobic (M) conditions in the apical compartment for 24 h. VDCs were 
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dismantled and 500 µl of 100 µM FITC-labelled dextran (average molecular weight of 4 

kilodaltons) in Ringer’s solution was added to the apical side of the monolayer and incubated 

for 3 hours at room temperature (3A and 3B). After 3 hours, the percentage of FITC-labelled 

dextran that had passed across the monolayer was determined from the relative fluorescence 

of the baso-lateral solution and the relative fluorescence of the input solution. An empty 

Snapwell™ filter (No cells), IECs grown for 21 days on Snapwell™ filters and permeabilised 

with 0.5% (v/v) Triton X-100 for 20 mins at room temperature (Triton) and IECs grown for 

21 days on Snapwell™ filters (Un) were used as controls. The trans-epithelial electrical 

resistance (TEER) was measured after assembly of the VDCs and set as 100% (3C). After 3h, 

6h and 24 h post-assembly, the TEER was measured and calculated as a percentage of the 

value obtained at time point 0. 

 

Figure 4. C. jejuni interactions with intestinal epithelial cells (IECs) are significantly 

increased under microaerobic conditions. C. jejuni 11168H wild-type strain bacteria were 

co-cultured with Caco-2 IECs in a Vertical Diffusion Chamber for 3 h, 6 h and 24 h with 

either aerobic or microaerobic conditions in the apical compartment and the numbers of 

interacting bacteria were assessed. * = p < 0.05. 

 

Figure 5. C. jejuni invasion of intestinal epithelial cells (IECs) is significantly increased 

under microaerobic conditions. C. jejuni wild-type strains were co-cultured with IECs in a 

Vertical Diffusion Chamber with either aerobic or microaerobic conditions in the apical 

compartment and the numbers of intracellular bacteria were assessed. (A) 11168 co-cultured 

with Caco-2 IECs for 6 h and 24 h. (B) 11168H or 81-176 co-cultured with Caco-2 IECs for 

24 h. (C) 11168H co-cultured with Caco-2 or T84 IECs for 24 h. * = p < 0.05, ** = p < 0.01. 
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Figure 6. Increased C. jejuni interactions with and invasion of intestinal epithelial cells 

(IECs) is mirrored by an enhanced host response. Supernatants from apical (Ap) and baso-

lateral (Bl) compartments of a Vertical Diffusion Chamber (VDC) after either Caco-2 (A & 

B) or T84 (C & D) IECs were co-cultured with C. jejuni 11168H (A & C) or 81-176 (B & D) 

wild-type strains with either aerobic (Aerobic) or microaerobic (Micro) conditions in the 

apical compartment were probed for the presence of the pro-inflammatory chemokine IL-8 by 

enzyme-linked immune-sorbent assay. Uninfected IECs were used included as controls. * = p 

< 0.05, ** = p < 0.01. 

 

Figure 7. A C. jejuni 11168H rpoN mutant demonstrates reduced interactions with and 

invasion of Caco-2 intestinal epithelial cells (IECs) under microaerobic conditions. C. 

jejuni 11168H wild-type, rpoN mutant or complemented rpoN bacteria were co-cultured with 

Caco-2 IECs in a Vertical Diffusion Chamber for 6 h with either aerobic or microaerobic 

conditions in the apical compartment. The numbers of interacting (A) and intracellular (B) 

bacteria were assessed. * = p < 0.05, ** = p < 0.001. 
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