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a  b  s  t  r  a  c  t

Outbreaks  of  Ebola  virus  can  cause  substantial  morbidity  and  mortality  in  affected  regions.  The largest
outbreak  of  Ebola  to  date  is  currently  underway  in  West  Africa,  with  3944  cases  reported  as  of 5th
September  2014.  To  develop  a better  understanding  of Ebola  transmission  dynamics,  we revisited  data
from  the first  known  Ebola  outbreak,  which  occurred  in  1976  in  Zaire  (now  Democratic  Republic  of Congo).
By  fitting  a mathematical  model  to time  series  stratified  by  disease  onset,  outcome  and  source  of  infection,
we  were  able  to estimate  several  epidemiological  quantities  that have  previously  proved  challenging  to
measure,  including  the  contribution  of  hospital  and community  infection  to  transmission.  We  found
evidence  that transmission  decreased  considerably  before  the  closure  of the  hospital,  suggesting  that  the
decline of  the outbreak  was  most  likely  the  result  of  changes  in host  behaviour.  Our  analysis  suggests  that
athematical model
asic reproduction number

the person-to-person  reproduction  number  was  1.34  (95%  CI:  0.92–2.11)  in  the  early  part  of  the  outbreak.
Using  stochastic  simulations  we  demonstrate  that  the  same  epidemiological  conditions  that  were  present
in 1976  could  have  generated  a large  outbreak  purely  by  chance.  At  the  same time,  the  relatively  high
person-to-person  basic  reproduction  number  suggests  that Ebola  would  have  been  difficult  to control
through  hospital-based  infection  control  measures  alone.

© 2014  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
ntroduction

There have been more than twenty-five known outbreaks of
bola virus disease in Africa since the disease was first identi-
ed in Zaire (now Democratic Republic of Congo) in 1976 (Centers

or Disease Control and Prevention, 2014). Five ebolavirus strains
ave been identified in total, the most virulent of which appears
o be the Ebola Zaire variant (EBOV); it was responsible for over a
ozen outbreaks between 1976 and 2008, with overall case fatal-

ty rate of 79% (95% CI: 0.76–0.81) (Centers for Disease Control
nd Prevention, 2014; Breman et al., 1978; Formenty et al., 2003;
eorges et al., 1999; Heymann et al., 1980; Khan et al., 1999;
eroy et al., 2004; Nkoghe et al., 2011; Pattyn, 1978; Report of an

nternational Commission, 1978). Transmission occurs as a result
f direct contact with the body fluids of infected individuals, and is
nlikely to occur during the incubation period (Breman et al., 1978;
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Dowell et al., 1999). In March 2014, a new outbreak of EBOV was
identified in West Africa. Cases were reported first in Guinea (Baize
et al., 2014), then in Liberia, Sierra Leone, Nigeria and Senegal. The
outbreak is the largest to date: as of 5th September 2014, 3944
cases have been reported by the World Health Organisation, and
1759 deaths (World Health Organisation, 2014). Unlike previous
outbreaks, which were centred on rural communities, infections
have also been detected in large urban areas in 2014. It is there-
fore crucial to develop a better understanding of the transmission
dynamics of EBOV, and the implications it could have for control
measures.

There have been a number of modelling studies of Ebola,
which have focused on two historical outbreaks (Table 1). For the
1995 outbreak in Democratic Republic of Congo, estimates of the
basic reproduction number have ranged from 1.4 to 3.7 (Chowell
et al., 2004; Ferrari et al., 2005; Legrand et al., 2007; Lekone and
Finkenstädt, 2006; Ndanguza et al., 2013; White and Pagano, 2008);
for the 2000/1 outbreak in Uganda, estimates span 1.3–2.7 (Chowell
et al., 2004; Ferrari et al., 2005; Legrand et al., 2007; McKinley

et al., 2009). These studies fitted models of varying complexity to
time series with date of disease onset and/or death. However, in
both outbreaks, hospital-based infection played a substantial role
in transmission (Borchert et al., 2011; Khan et al., 1999; Francesconi

der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Fig. 1. Daily incidence time series of Ebola virus disease onsets in 1976. Cases are coloured by route of transmission, as reported by the epidemiological investigation team
(Breman et al., 1978). ‘Both’ indicates infections that could have come from syringe or person-to-person transmission; ‘other’ denotes alternative infection routes (mainly
congenital). The dotted line corresponds to the hospital closure date (30th September). (Fo
to  the web version of this article.)

Table 1
Previously published estimates of basic reproduction number, R0, for Ebola.

Location Date R0 95% CI (if given) Reference

DRC 1995 1.83 Chowell et al. (2004)
3.65 3.05–4.33 Ferrari et al. (2005)
2.7 1.9–2.8 Legrand et al. (2007)
1.38 Lekone and Finkenstädt (2006)
2.22 1.9–2.73 Ndanguza et al. (2013)
1.93 1.74–2.78 White and Pagano (2008)
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Uganda 2000/1 1.34 Chowell et al. (2004)
1.79 1.52–2.30 Ferrari et al. (2005)
2.7 2.5–4.1 Legrand et al. (2007)

t al., 2003). As the data were not stratified by likely source of
nfection, it was not possible to identify the relative contribution
f different transmission routes to the reproduction number. It
herefore remains unclear to what extent person-to-person trans-

ission contributed to past Ebola outbreaks, and how community
nd hospital-specific control measures influenced the reproduction
umber in each setting.

To gain further insights into the dynamics of Ebola, we revis-
ted case data from the first known EBOV outbreak in 1976. These
ata included information on the likely source of infection, as well
s date of onset and outcome. We  used a transmission model
o infer the basic reproduction number in different settings, and
ssessed the contribution of hospital and community infection to
isease transmission. Having characterised the dynamics of EBOV,
e used stochastic simulations to investigate alternative outcomes

hat could have been generated with the same epidemiological
onditions present in 1976, and assessed the potential for a large
utbreak of the disease. Finally, we discuss the implications of our
esults for other Ebola outbreaks.

ethods

ata

Between August and November 1976, there were 318 reported
ases of Ebola in the Yandongi collectivity of Zaire, with 280 deaths.

he outbreak was centred around the Yambuku Mission Hospital.
ith only five syringes issued each day, exposure to contami-

ated syringes and needles during routine outpatient visits was
 common route of transmission; infected hosts then returned to
r interpretation of the references to color in this figure legend, the reader is referred

their villages, and in some cases infected others in the community
(Breman et al., 1978).

In our analysis, we  used a line list of 262 cases, taken from the
original epidemiological investigations (Breman et al., 1978; Report
of an International Commission, 1978). The data (Supplementary
File S1) reported: date of disease onset; outcome (death/recovery);
date of outcome; and likely source of transmission (syringe during
outpatient visit/person-to-person transmission/both/other). The
progression of the outbreak is shown in Fig. 1. Of the reported 262
cases, 250 had a likely source of infection recorded and 8 dates
of onset and outcome were missing (Table S1). We used the line
list to compile four daily time series: onset of disease following
hospital infection via syringe (87 cases in total); onset of disease
following person-to-person infection (140 cases in total); reported
deaths (248 cases in total); and reported recoveries (11 cases in
total).

Model

We used a compartmental model of infection to analyse the tem-
poral dynamics of Ebola (Legrand et al., 2007). The model structure
is outlined in Fig. 2. We assumed that individuals start off sus-
ceptible to infection (S). Upon infection they enter an incubation
period (E), then become symptomatic and infectious in the com-
munity (I). We  therefore assume that the latent and incubation
periods are equivalent. After this point, they either: enter a recov-
ered state (R); remain infectious and go into hospital (H); or die
and remain infectious (D) until buried (B). Following hospitalisa-
tion, infectious hosts also move either into the recovered or dead
compartment.

We assumed susceptible hosts in the community could become
infected in three different ways: person-to-person transmission
from an infectious host in the community, at rate ˇi(t), or from a
dead but not buried patient during a traditional funeral ceremony,
at rate ˇd(t); or hospital transmission via syringe during outpatient
visits, at rate ˇh(t).

There was  evidence that hospital and person-to-person
transmission declined over the course of the 1976 outbreak. Epi-

demiological reports note that the community stopped coming to
the outpatient department as they associated the epidemic with
the Yambuku Mission Hospital, which eventually was closed on
30th September. Also, as time went on the population became very
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Fig. 2. Schematic of model structure. Individuals start off susceptible to infection
(S). Upon infection they enter an incubation period (E), then at symptom onset they
become infectious in the community (I). After this point, they either: enter a recov-
ered state (R); remain infectious and go into hospital (H); or die and remain infectious
(D) until buried (B). Hospitalised infectives also move either into the recovered or
dead compartment. Finally, the E compartment is split according to the route of
transmission in order to keep track whether a case was  infected via contaminated
syringes at the hospital (Eh) or by person-to-person contact (Epp) with either an
infective in the community or a dead but not buried case. The forces of infection for
the two  transmission processes are �h(t) = ˇh(t)H/N and �pp(t) = (ˇi(t)I + ˇd(t)D)/N,
where ˇh(t), ˇi(t) and ˇd(t) are the time-varying transmission rates given by Eq. (1).
Other parameters are as follows: �, inverse of the mean incubation period; �h , �d and
� r , inverse of the mean duration from symptom onset to hospitalization, death and
recovery respectively; �d and �r , inverse of the mean duration from hospitalization
to  death and recovery respectively (see Eq. (7)); �b , inverse of the mean duration
from death to burial; �i(t) is computed to ensure that the overall hospitalisation rate
is  equal to � until hospital closure (see Eq. (5)); �i and �h are computed to ensure
that the overall case–fatality ratio is equal to � (see Eq. (4)). Parameter values and
prior assumptions can be found in Table 2. The model was  simulated by integrating
the set (3) of ordinary differential equations using the SSM library (Dureau et al.,
2013).
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Finally, �i(t) denotes the total rate of exit from the I compartment:
uspicious and did not touch the corpses anymore, not even to bury
hem (Breman et al., 1978). We  therefore used time-dependent
mooth decreasing functions for ˇi(t), ˇd(t) and ˇh(t) (Chowell et al.,
004; Lekone and Finkenstädt, 2006; Ndanguza et al., 2013):

ˇi(t) = ˇi(1 − ıpp	(t, ˛pp, 
pp))

ˇd(t) = ˇd(1 − ıpp	(t, ˛pp, 
pp))

ˇh(t) = ˇh(1 − 	(t, ˛h, 
h))1t<Th

(1)

here 1t<Th
is the indicator function and 	 is the following sigmoid

unction:

(t, ˛, 
) = 1
1 + exp(−˛(t − 
))

. (2)

s t grew large, we assumed that ˇi(t) and ˇd(t) approached values
qual to a proportion ıpp of their initial values. We also assumed
hat no further hospital transmission occurred after the hospi-
al closed on 30 September (i.e. ˇd(t) = 0), and that no new cases
ntered the H compartment after this point.

Using our estimates of ˇi(0), ˇd(0) and ˇh(0), we were able to
alculate the basic reproduction number, R0, defined as the aver-
ge number of secondary cases produced by a typical infectious
ost at the onset of the outbreak (i.e., in a completely susceptible
opulation), see details in Text S3. At the start of the outbreak, the
eproduction number, R(t), defined as the average number of sec-
ndary cases produced by a typical infectious host at time t, was
qual to R0; as the outbreak progressed, R(t) could vary depending

n the values of ˇi(t), ˇd(t) and ˇh(t), as well as through depletion
f susceptibles.
ics 9 (2014) 70–78

The full model was as follows (for brevity, the time dependencies
of state variables are omitted):

dS

dt
= −(ˇi(t)I + ˇh(t)H + ˇd(t)D)

S

N

dEpp

dt
=  (ˇi(t)I + ˇd(t)D)

S

N
− �Epp

dEh

dt
= ˇh(t)H

S

N
− �Eh

dI

dt
= �(Epp + Eh) − �i(t)I

dH

dt
= �h�i(t)I − (�h�d + (1 − �h)�r)H

dD

dt
= �d(1 − �i(t))�iI + �d�hH − �bD

dR

dt
= �r(1 − �i(t))(1 − �i)I + �r(1 − �h)H

dB

dt
= �bD

(3)

Parameters are summarised in Table 2. We  used flat priors for
case–fatality ratio and transmission-related parameters. We also
used additional epidemiological information not in our time
series (Supplementary File S2; (Breman et al., 1978; Report of an
International Commission, 1978; Khan et al., 1999; Nkoghe et al.,
2011; Okware et al., 2002)) to inform strong prior distributions
for: proportion of cases reported; proportion of cases hospitalised;
incubation period; time from onset to hospitalization, death and
recovery. A strong prior centred around 24 h was used for the time
from death to burial of individuals (Isaacson et al., 1978; Sureau
et al., 1978). We  fixed the initially susceptible population size at
60,000, as this was the number of people for which the Yambuku
Mission Hospital served as principal point of care (Report of an
International Commission, 1978). We assumed that the index case
was introduced in the H compartment at a time T0, which was
also estimated. Indeed, the first reported case (25th August) was
infected via a syringe and there is evidence that an unknown man
came to the hospital with Ebola-like symptoms shortly before that
date (Breman et al., 1978).

As the model included multiple transitions between compart-
ments, we  needed to define certain parameters carefully. To ensure
that the overall case–fatality ratio was equal to �, we  defined �i and
�h as follows:

�i = ��r

��r + (1 − �)�d

�h = ��r

��r + (1 − �)�d
.

(4)

Similarly, �i(t) was  computed to ensure that the overall hospitali-
sation rate was  equal to � until hospital closure:

�i(t) = �(�r(1 − �i) + �i�d)
�(�r(1 − �i) + �i�d) + (1 − �)�h

1t<Th
. (5)
�i(t) = �h�i(t) + �d(1 − �i(t))�i + �r(1 − �i(t))(1 − �i), (6)
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Table  2
Parameter definitions and corresponding estimates. Prior distributions used during model fitting are also shown.

Parameter Description Prior Estimates: median (95% CI)

N Population size Fixed 60, 000
T0 Date of introduction of index case to H compartment U[August 05–August 25] August 24 (August

21–August 24)
Th Date of hospital closure Fixed September 30
�onset Proportion of onsets reported N(0.71,  0.05) 0.70 (0.62–0.79)
�d Proportion of death reported N(0.89,  0.05) 0.89 (0.80–0.97)
�r Proportion of recovery reported N(0.29,  0.05) 0.28 (0.19–0.39)
�  Proportion of cases hospitalised until hospital closure N(0.17, 0.05) 0.21 (0.14–0.30)
�  Case–fatality ratio U[0–1] 0.88 (0.80–0.94)
1/� Incubation period (days) N(6,  0.1) 5.99 (5.80–6.18)
1/�h Mean time from onset to hospitalisation (days) N(3,  0.1) 3.00 (2.81–3.20)
1/�d Mean time from onset to death (days) N(7.5, 0.1) 7.49 (7.30–7.69)
1/� r Mean time from onset to recovery (days) N(10, 0.1) 10.00 (9.80–10.19)
1/�b Mean time from death to burial (days) N(1, 0.1) 0.99 (0.80–1.18)
ˇi Transmission rate in the community at the onset of the epidemic U[0–100] 0.10 (0.01–0.20)
ˇd Transmission rate during traditional burial at the onset of the epidemic U[0–100] 0.78 (0.08–2.00)
˛pp Shape of the change of person-to-person contact behaviour in community

and  during traditional burial
U[0–5] 0.30 (0.14–4.17)


pp Midpoint date for the change of person-to-person contact behaviour U[August 25–October 14] September 27 (September
20–October 03)

ıpp Reduction of the person-to-person transmission rate following change of
contact behaviour (%)

U[0–100] 98.00 (90.00–100.00)

ˇh Transmission rate in hospital at the onset of the epidemic U[0–100] 3.24 (2.36–4.43)
˛h Shape of the change of hospital seeking behaviour from outpatients U[0–5] 2.29 (0.49–4.85)

h Midpoint date for the change of hospital seeking behaviour U[August 25–September 30] September 17 (September

14–September 19)
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nd �d and �r are the inverse of the mean time from hospitalisation
o death and recovery respectively:

�d = �d�h

�h − �d

�r = �r�h

�h − �r
. (7)

nference

To compare the model output with observed data, we  calcu-
ated the incidences corresponding to the four time series on each
ay:


Ipp(t) =
∫ t+1

t

�Eppdt


Ih(t) =
∫ t+1

t

�Ehdt


D(t) =
∫ t+1

t

(�d(1 − �i(t))�iI + �d�hH)dt


R(t) =
∫ t+1

t

(�r(1 − �i(t))(1 − �i)I + �r(1 − �h)H)dt

(8)

e assumed that onset (i.e. 
Ipp(t), 
Ih(t)), death (
D(t)) and
ecovery (
R(t)) data were reported according to Poisson processes
ith constant reporting rates �onset, �d and �r respectively. We

llowed for three potentially different reporting rates because (i)
ot all cases had reported onsets; (ii) 30 of the 262 were reported
ith both, other or unknown source of infection rather than person-
o-person or syringe. These cases were therefore included in the
utcome time series but not in the onset one; and (iii) only 11 of
8 (29%) recovery cases versus 248 of 280 (89%) death cases were
eported.
The probability of observing ypp(t) new onsets resulting from
person-to-person transmission on day t, for a given parameter set
� (summarised in Table 2) was therefore as follows:

Lpp(ypp(t) | �) = [�onset
Ipp(t)]ypp(t)e−�onset
Ipp(t)

ypp(t)!
. (9)

Similar expressions (Lh, LD and LR) were derived for the other inci-
dence data and combined into the likelihood function:

L(ypp, yh, yD, yR | �) =
72∏

t=1

∏
k∈{pp,h,D,R}

Lk(yk(t) | �) (10)

We used a Bayesian framework to fit the model to all four time
series simultaneously and make inference on the parameter set �.
Given the likelihood function L and the chosen prior distribution
of the parameters, the posterior distribution is known up to a nor-
malising constant. Markov chain Monte Carlo methods construct
Markov chains whose stationary distribution is the distribution
of interest, when it cannot be directly simulated. We  used the
SSM library (Dureau et al., 2013), which implements an adaptive
Metropolis–Hastings algorithm (Roberts and Rosenthal, 2009) to
generate sequences of draws from the posterior distribution of the
parameters. We  refer to Text S1 for more details. To test the accu-
racy of our inference framework, we fitted the model to observed
data, generated a set of simulated time series from our fitted model,
then estimated the parameters from the simulated data; our infer-
ence framework was  able to recover the parameters in question
(Text S2, Table S2 and Figs. S2–S5).

Results

Our model was  able to capture the dynamics of Ebola virus
disease, including infections resulting from exposure to contami-

nated syringes and person-to-person transmission, and the timing
of outcomes (Fig. 3). By fitting to multiple time series, we  were
able to jointly estimate a number of key epidemiological param-
eters (Table 2 and Fig. S1). Using these estimates, we calculated
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ig. 3. Comparison of our fitted model and observed daily incidence time series (b
edian fits are represented by solid and dashed red lines respectively. The dark and l

f  the references to color in this figure legend, the reader is referred to the web  ver

he contribution of person-to-person transmission (via infection
rom living and dead hosts in the community) and hospital-based
ransmission (via contaminated syringe) to the overall basic repro-
uction number, R0 (see Text S3). We  found that the overall R0 was
.71 (95% CI: 3.92–5.66) at the onset of the epidemic. Most of this
umber was the result of hospital-based transmission, although
e found evidence that the person-to-person basic reproduction
umber was above 1 (Table 3).

Person-to-person transmission was separated into two  compo-
ents in the model: infections occurring while the case was  alive
nd those occurring after death (i.e. before the patient had been
uried). This meant fitting both transmission rates ˇi and ˇd. How-
ver, due to limited data on these specific transmission routes, the
elative contribution to infection from living and dead patients in
he community was not fully identifiable (see Text S1). When we fit-
ed both transmission rates independently, the contributions from
ommunity and funeral cases to R0 were highly correlated (Fig. S6).
s it was not possible to identify the contribution from commu-
ity and funeral infection to person-to-person transmission, we
herefore gathered the two measurements together into a single
erson-to-person basic reproduction number, denoted R0pp, which

ould be estimated from the available data.

As the epidemic progressed, we found that the overall reproduc-
ion number decreased due to changes in the contact rate within the

able 3
stimates of the basic reproduction number, R0, split into different component
ransmission routes.

Parameter Route of transmission Estimates: median (95% CI)

R0h Hospital via syringe 3.32 (2.53–4.34)
R0pp Person-to-person (in

community and during funeral)
1.34 (0.92–2.11)

R0 Overall 4.71 (3.92–5.66)
ots) reconstructed from the line list of Ebola cases in Zaire in 1976. The mean and
d shaded areas correspond to the 50% and 95% credible intervals. (For interpretation
f this article.)

community and within the hospital. Splitting the overall reproduc-
tion number into its person-to-person and hospital components,
we found that although hospital transmission was dominant during
the early stages of the epidemic, it had dropped significantly by mid
September (Fig. 4). Our results suggest the hospital reproduction
number Rh was  below 1 well before the hospital closed on the 30 of
September. Moreover, we  found that hospital closure alone could
not explain the observed data; when changes in person-to-person
and hospital-based transmission were excluded, the model per-
formed significantly worse (Table S3). We  estimated that the drop
in person-to-person transmission occurred later and less sharply
than the reduction in exposure to contaminated syringes. However,
the reduction in person-to-person transmission was  still enough
to drive the overall reproduction number below 1 by the end of
September. Overall, these results are consistent with the observa-
tions reported by the epidemiological investigation team (Breman
et al., 1978).

To examine the possible range of dynamics for an outbreak with
the same characteristics as the one observed in the 1976 Yambuku
outbreak, we ran 10,000 stochastic simulations of our model under
the maximum a posteriori probability estimates of the parameters
(Fig. 5). We found that although most simulated epidemics were of
similar size to the one in 1976, major outbreaks could also occur.
Although only 3% of simulations resulted in a major outbreak (i.e.
more than 1000 cases), the cumulated number of cases could reach
up to several thousands in the worst-case scenario (Fig. 6A). In the
context of the 1976 epidemic, such a major outbreak could have
arisen if – by chance – a sufficiently high number of infections
had occurred before the change of community contact and hospital

seeking behaviours.

To understand how different control measures could affect out-
break size, we  also considered several alternative scenarios in our
simulation study. First, we set the hospital closure date in the
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Fig. 4. Drop in the reproduction number (R(t)) owing to change of behaviour in
community contacts and visit of outpatients to the hospital. The overall R (lower
panel) can be split into an hospital (upper panel) and person-to-person (middle
panel) component. The dashed line indicates the epidemic threshold (R = 1) and the
dotted line corresponds to the hospital closure (30th September). Solid, dashed and
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haded red lines/area as in Fig. 3. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

odel to be 7 days after the onset date of the first case in the line
ist i.e. on 1st September rather than 30th. Although early closure
esulted in fewer cases, with no outbreaks generating more than
000 cases, there were still occasionally outbreaks consisting of
everal hundred cases (Fig. 6C). Next, we examined the effect of a
maller reduction in person-to-person transmission, assuming that
he hospital reduction remained the same. We  found that if the
erson-to-person transmission rate was reduced by 50% – rather
han 98% as in our median estimates – transmission could persist
onger in the community, and hence 28% of simulations resulted in
n outbreak of at least 1000 cases (Fig. 6D). The number of reported
ases in historical Ebola outbreaks has varied greatly, from a few
nfections to more than 3500 (Fig. 6B); our results suggest that such
ariability might be expected given the transmission dynamics of
bola.

To explore the possibility of a large outbreak occurring without
he large contribution from hospital transmission, we  also consid-
red a model with only person-to-person transmission (i.e. R0h = 0).
e assumed that the index case started in the community (I com-
artment). In the absence of control measures, we  found that 35%
f outbreaks resulted in more than 1000 cases.

As well as allowing us to model setting-specific transmission,
he line list made it possible to directly calculate the case–fatality
ics 9 (2014) 70–78 75

ratio (CFR) in different settings. We  found that the probability of
survival varied depending on route of transmission. The overall CFR
– defined as the proportion of cases that died – across the 262 cases
in our line list was  251/262 = 0.96 (binomial 95% CI: 0.93–0.98).
The CFR for cases that resulted from person-to-person transmis-
sion was 0.92 (0.87–0.96); in contrast, the CFR for cases that were
exposed via a contaminated syringe was  1.00 (0.96–1.00). Note that
these empirical CFR estimates are based on a subset of 262 of the
318 reported cases in the Yambuku outbreak, for whom individual
data were available. The CFR based on all 318 reported cases was
280/318 = 0.88 (95% CI: 0.86–0.92) (Breman et al., 1978).

Discussion

Using a model of Ebola virus transmission, we  examined the
role of different transmission routes during the 1976 outbreak in
DRC. We  found that the basic reproduction number (R0) associated
with hospital transmission was  significantly above one. Our anal-
ysis also suggests that the person-to-person reproduction number
Rpp could have been above 1 for the early part of the outbreak.
This has profound implications: it suggests that a large outbreak
(involving thousands of cases) could have happened even with-
out changing any epidemiological conditions. We  estimated the
probability of such a large outbreak (>1000 cases) to be around 3%.
This means that given the same initial conditions, Ebola outbreaks
would have been occasionally been large, just by chance. More-
over, a relatively high person-to-person transmission component
(R0pp ≈ 1) implied that the 1976 epidemic would have been diffi-
cult to control via hospital-based infection control measures alone.
If the reduction in community transmission had been smaller, or
infection had been seeded into a number of different communities,
the outbreak could have continued for some time.

Our results also suggest that changes in behaviour caused a
significant reduction in both hospital-to-community and within-
community transmission. Although Yambuku Mission hospital
closed on the 30th September, we found that the reduction in
transmission occurred well before this point, most likely from
susceptible hosts having less contact with infected patients, and
making fewer routine outpatient visits to the hospital (Breman
et al., 1978). As well as contributing to transmission, infections
from syringes also appeared to have a higher case fatality ratio
(CFR) than person-to-person infections. This could have been the
result of a larger viral inoculum during contact with a contami-
nated syringe. With more data on transmission events – including
chains of person-to-person infection – it would be possible to fur-
ther investigate the role of exposure in the natural history of Ebola
infection.

Even with four time series, it was not possible to robustly dis-
tinguish between person-to-person transmission resulting from
contact with community cases and funeral attendance. Additional
case data, such as dates on which patients took care of an infected
case or attended a funeral ceremony could allow us to disentangle
the relative role of these two routes of community transmission.
However, it is plausible that individuals had similar contact rates
with infected and dead patients. Epidemiological investigations
in 1976 found that 86% of hosts infected from person-to-person
transmission reported prior contact with alive Ebola patients; the
same proportion reported attending the funeral of an infected case
(Breman et al., 1978). Assuming similar transmissibility for both
types of contact, this would be equivalent to setting ˇi = ˇd in our
model.
There are some additional limitations to the model. First, we
assumed that hosts mixed randomly both in the community and
hospital. This was a reasonable assumption given that we strat-
ified the data by route of transmission and outcome. However,
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ig. 5. Potential alternative trajectories of an Ebola outbreak in Yambuku. Ten thou
osteriori probability estimate (for readability only the first 200 are plotted). For co

here was evidence that certain groups, such as women  aged 15–29,
ere more likely to attend clinics at Yambuku Mission Hospital in

976 and hence be exposed to syringes (Report of an International
ommission, 1978). To model the dynamics of the infection at a
ner resolution, for instance by comparing model outputs to age-
tratified case data, it would be necessary to account for such
eterogeneity. We  also assumed that occurrence of reported cases
as Poisson distributed, and the proportion reported did not vary

ver time or by location. This might be plausible when cases occur
n a relatively short outbreak in a small geographic region, but dur-
ng outbreaks that span a much larger geographic area and persist
or several months, reporting could change with time and vary
etween different settings. Moreover, if the dynamics of Ebola were
o be modelled in real-time, it would be important to account for
otential delays in reporting of cases and outcomes.

In our stochastic scenario analysis we also assumed that timing
nd magnitude of changes in transmission rate were independent
f epidemic size. Our simulations that used parameters from the
tted model (Fig. 6A) therefore assumed that identification and
ontrol of the infection would not have occurred quicker if more
ndividuals had been infected earlier. However, we  tested the sen-
itivity of our results to timing of hospital closure by assuming that
he hospital closed one week after the first case (Fig. 6C); we also

xplored the effects of a smaller change in magnitude in person-
o-person risk (Fig. 66D). Ideally, it would be possible to define a
unctional relationship between incidence and changes in trans-

ission rate (Funk et al., 2009). However, this relationship is likely
tochastic simulations were run with parameter values taken from the maximum a
ison, data are plotted as black dotted points.

to be complex and setting-specific: in 1976, behavioural changes
reduced transmission (Breman et al., 1978); in other Ebola out-
breaks, large amounts of infection have increased fear and mistrust
in the community, which might also have increased transmission
(Borchert et al., 2011; World Health Organisation, 2014).

The modelling tools illustrated here could easily be adapted for
other Ebola outbreaks, and highlight the benefits of having data
on likely source of infection and time of onset, hospitalisation and
outcome for each patient. Previous Ebola modelling studies have
examined the 1995 outbreak in Kikwit, DRC (Chowell et al., 2004;
Ferrari et al., 2005; Legrand et al., 2007; Lekone and Finkenstädt,
2006; White and Pagano, 2008; McKinley et al., 2009; Ndanguza
et al., 2013), and the 2000/1 outbreak in Uganda (Chowell et al.,
2004; Ferrari et al., 2005; Legrand et al., 2007). As in Yambuku in
1976, hospital-based transmission played a substantial role in both
outbreaks (Khan et al., 1999; Francesconi et al., 2003). However,
modelling studies so far have incorporated time series for onset
and/or death only, which meant that it was not possible to robustly
infer the role of different routes of infection, such as the contribu-
tion of hospital and community transmission. In contrast, by fitting
a transmission model to time series stratified by transmission route,
we were able to estimate the contribution of different sources of
infection to the dynamics of the epidemic.
We estimated that the overall R0 was 4.71 (95% CI: 3.92–5.66) for
the 1976 Yambuku outbreak. This is high compared to estimates of
R0 in the 1995 and 2000/1 outbreaks, which ranged from 1.34–3.65
(Table 1). However, our analysis suggests that most of the R0 in
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Fig. 6. Distribution of Ebola outbreak sizes in different scenarios. (A) Outbreak size distribution from 10,000 stochastic simulations using the maximum a posteriori probability
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stimate.  (B) Distribution of number of cases reported in Ebola outbreaks in Africa 

hen  hospital is closed 7 days after the date of the first onset (i.e. 1st September). All
imulations when person-to-person transmission is reduced by 50% rather than 98

976 consisted of transmission via syringe; the person-to-person
asic reproduction number was 1.34 (0.92–2.11). Given data on

ikely source of infection in 1995 and 2000/1, it would be possible
o establish whether person-to-person transmission contributed a
imilar amount to overall transmission during these outbreaks.

Our estimate of a person-to-person basic reproduction number
0pp ≈ 1 in 1976 suggests that Ebola would have been capable of
enerating a wide range of outbreak sizes in the absence of any
xtrinsic variation in epidemiological conditions. This implies that
ffective reduction in person-to-person transmission was  crucial in
educing the potential size of the outbreak; stochastic simulations
uggest Ebola could still have generated a large number of cases
f hospital transmission was absent in 1976. Measures to reduce
erson-to-person transmission – including isolation of patients,
ollow-up surveillance of their contacts, and education to curtail
nfection in the community – are therefore likely to form a crucial
art of the response to Ebola outbreaks (Borchert et al., 2011; Khan
t al., 1999; Okware et al., 2002).

As well as variation in social and cultural factors between dif-
erent regions, the stochastic nature of Ebola outbreaks means that
nference to other settings must be done with caution. Our anal-
sis concentrates on a single outbreak of 318 cases, rather than a
et of past Ebola outbreaks, which have ranged from a small num-
er of cases to several thousand (Fig. 6B). Analyses of data from
 large number of historical outbreaks simultaneously would help
educe this stochastic uncertainty and allow comparative studies
o be performed. By making the line listing of the 1976 outbreak
vailable (Supplementary File S1), we hope to stimulate such work.
1976 to present. (C) Outbreak size distribution from 10,000 stochastic simulations
 parameters remain the same. (D) Outbreak size distribution from 10,000 stochastic

 final category includes all outbreaks with more than 2500 cases.

Comparative studies could potentially shed further light on which
underlying factors contribute to the differences in outcome of Ebola
outbreaks, and which control measures are likely to be most effec-
tive.
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