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Abstract

The occurrence of missing data due to protocol deviations is inevitable in clinical

trials. When missing data exist, analyses rely on assumptions about the behaviour

of the individuals after dropping out. As a result, sensitivity analysis, which is now

advocated by regulatory bodies, should be performed to explore the robustness of

the inference to those assumptions. These assumptions should be relevant to the

estimand of the study and be practically accessible by all parties.

The aim of this document is twofold: to assess the statistical validity of a new

method for sensitivity analysis, and apply this method to a published Alzheimer’s

study. At the beginning of the thesis, a description of the Alzheimer’s study and

issues with missing data encountered therein, take place. This study was mainly

set up to investigate the effect rosiglitazone, as an adjunct therapy in Alzheimer’s

patients. Two different doses of the drug were compared to placebo. The study

suffered from a moderate degree of missing data in each treatment arm.

The thesis proceeds with a critique on the per-protocol and intention-to-treat esti-

mands, and revisits their meaning when missing data occur. Two new estimands

are introduced, which are particularly amenable to studies with missing data. They

are termed de-jure and de-facto. Following that, the main methods for dealing with

missing data are introduced, with a particular emphasis on multiple imputation,

and how it can easily incorporate missing not at random (MNAR) analyses.

A thorough presentation of the new methodology is given. This is built around a

set of assumptions, that reflect possible distributional behaviours of the subjects

after protocol deviation. The assumptions are Randomised-treatment Missing at

Random (MAR), Jump to Reference, Last Mean Carried Forward, Copy Increments

in Reference, and Copy Reference. Estimation and inference is achieved via multiple

imputation, and it is shown how the predictive distribution of the imputation model

can be constructed from parameters borrowed from an MAR model and manipu-

lated in a pattern-mixture model approach, to obtain the five assumptions for the
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unobserved component of groups of individuals.

A number of simulations whose aim is to explore the statistical properties of the

new method, are carried out. The simulated datasets, which are based on the

parameters from the Alzheimer’s study, focus on the estimator bias, the size and

power of the methods, the bias of the variance estimator, and coverage. The results

obtained from the simulations show the method has sensible properties; no bias for

the estimator was detectable and the sizes and power of the methods agreed closely

with their theoretical equivalents. The main result however, pertains to Rubin’s

variance estimator, which proves to appropriately reflect the loss of information

from missing data. It is therefore argued, it is the right estimator to use in this

setting.

The results from the application of the proposed method on the Alzheimer’s dataset

are presented in tables. Inferences from the sensitivity analysis assumptions were

consistent with those from the original MAR analyses. The comparison between

high dose rosiglitazone and placebo did not show any evidence in favour of the

treatment under any sensitivity assumption. Some evidence of treatment difference

existed when the low dose treatment was compared to placebo. This finding though,

should be interpreted with caution, as the differences were obtained from analyses

not subjected to the rigorous inferential process that was used in the Harringtons

study. It was further argued, this finding might have been due to chance, and it was

not replicated in a different study.
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1 Introduction

Randomised clinical trials (RCTs) remain the gold standard method for exploring

the efficacy, effectiveness and safety of medicinal products and interventions. Miss-

ing data usually occur in these studies either due to poor treatment compliance

or withdrawal from the intervention or loss to follow-up. A number of approaches

to tackle the problem of missing data exist, which can be broadly distinguished

into simple ad-hoc methods and principled methods. Ad-hoc methods include i)

the completers analysis, where only subjects with no missing values in any variable

are retained, ii) imputation of simple mean, where missing values are replaced with

the arithmetic average of the observed data for that variable, iii) regression impu-

tation, which replaces the missing values with predicted values from a regression

of the missing variable on complete variables, and iv) last observation carried for-

ward (LOCF), where missing values are replaced by the last observed value of that

variable. The principled methods include Maximum Likelihood (ML), Genearalised

Estimating Equations (GEEs), Multiple Imputation (MI) and methods based on the

Expectation-Maximisation (EM) algorithm and its derivatives.

Generally, the objective of statistical analyses is to make inferences that apply to the

population targeted by the complete sample. With missing data the aim remains

the same, but the methodology is generally more complex. Since, it is not possi-

ble to know the data of subjects after drop-out or the definitive reason of the data

being missing only by looking at the observed data, the analyses relies inevitably

on statistical assumptions about the behaviour of individuals after drop-out. As

such, tackling the problem of missing data can be thought of as a two-step process.

The first step is to make sensible assumptions about the distributional behaviour

of the missing data. Then the second step would be to use an appropriate method

to draw valid inferences under these assumptions. The process of making assump-

tions is therefore separate from the statistical methodology used for estimation and

inference.

Note that the ad-hoc methods do not take this principled approach. Instead, they

6



create a single dataset, with no missing values, which is analysed as if it were the

true complete dataset. Then they seek to justify the results, which is often not

appropriate as they make strong restrictive assumptions which are hard to justify.

On the other hand, the principled methods do not attempt to replace a missing

value directly. They combine available information from the observed data with

assumptions about the statistical distribution of the missing data and then employ

a method that is inferentially valid under these assumptions.

In the presence of missing data, in order to explore the sensitivity of the inferences, a

set of plausible assumptions about the missing data distribution need be formulated,

and a flexible method for parameters estimation should be used, which can be applied

under the main assumptions. The assumptions should be relevant and accessible to

all interested parties. Multiple imputation can be used for parameter estimation,

as it proves to be a sufficiently flexible approach. The need for sensitivity analysis

is widely acknowledged by researchers (Kenward, 1998; Molenberghs, et al., 2004;

Carpenter and Kenward, 2007; Carpenter et al., 2013; Daniels and Hogan, 2008)

and regulatory bodies (ICH E9 Expert Working Group, 1999; CHMP, 2001).

Taking a parametric approach, three classes of models have been developed within

which sensitivity analyses can be accommodated. These are: selection models (Dig-

gle and Kenward, 1994), shared-parameters models (Wu and Carroll, 1998) and

pattern-mixture models (Little, 1993; Little, 1994). With selection models, the

data, either missing or not, are being weighted (or selected) through the probability

of being observed. Selection models describe ‘a unit’s self-selection mechanism to

either continue or leave the study’ (Molenberghs and Kenward, 2007). They can be

thought of as asking the question ‘what is the probability of a subject missing in the

next visit?’. The pattern-mixture models, where ‘pattern’ in this thesis will refer

to a separate response distribution, allow for a different response model for each

pattern of missingness. The observed data are a mixture of patterns, weighted by

the proportion of missing data in each drop-out pattern (Molenberghs and Kenward,

2007). Similarly to pattern-mixture models, shared-parameter models allow for a

different response model for each pattern of missingness, but they also introduce
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latent variables, upon which the response and the drop-out pattern is conditionally

independent (Molenberghs and Kenward, 2007). The mathematical forms of these

models are presented in Chapter 3.5.

This thesis has the following aims: first, a recent proposal for sensitivity analysis

by Carpenter, Roger and Kenward (CRK) (2013) will be demonstrated showing

how it provides a natural route for sensitivity analysis in our multivariate dataset.

Then, the properties of this method will be explored via simulation based on an

Alzheimer’s study and finally, the method will be applied to the Alzheimer’s study

and discuss the results.

1.1 Outline of the thesis

Chapter 2 introduces the Alzheimer’s study carried out by GSK. Its primary anal-

ysis is described and the power calculations are presented. Chapter 3 develops the

notation that will be used throughout the thesis, followed by a short review of Ru-

bin’s missing data taxonomy. In the same chapter the meaning of the most common

clinical trial estimands is expounded, for both complete and missing data analyses.

In addition, the main methods for the analysis of missing data in longitudinal studies

are described. The chapter concludes with a review of sensitivity analysis models,

and it makes a justificantion for the use of pattern mixture models in this setting.

In Chapter 4, CRK’s proposal for sensitivity analysis is formally illustrated, with

some analytical details on five different sensitivity assumptions. Chapter 5 includes

simulation studies for the evaluation of the proposed method, as well as a discussion

of the results. In Chapter 6 the Alzheimer’s study is revised with a view to iden-

tifying the predictors of withdrawal and the study is analysed under the proposed

sensitivity analysis method in Chapter 7. There, the results from the analyses are

tabulated and contrasted with those from the original study. Finally, in Chapter 8,

a concluding discussion takes place around the practical and methodological points

raised in the thesis.
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2 Alzheimer’s disease study

In this Chapter, a Randomised Controlled Trial on patients with Alzheimer’s disease

is introduced to motivate the material. This study has been selected because it is

very illustrative for the kinds of data problems with which this thesis is concerned

and because it is reanalysed using the proposed method for sensitivity analysis.

The disease, the primary research goals and outcomes, and the key complications

presented by missing data are described in this chapter.

The disease

Alzheimer’s disease (AD) is a physical condition which changes the way brain works.

Patients suffering from the disease develop protein ‘plaques’ and ‘tangles’ in the

structure of the brain, leading to the death of brain cells. Also, a general lack of the

acetylcholine chemical in the brain means nerve messages aren’t passed on properly.

Over time, as more and more areas of the brain become damaged, the symptoms

of the disease get progressively worse. Clinical symptoms include confusion and

forgetfulness, mood swings and difficulty carrying out everyday activities. No single

cause of the disease has been identified. A combination of factors such as age, genes,

environmental factors, lifestyle and overall general health is likely to be conducive

to the development of the disease (alzheimers.org.uk).

With respect to genetics, apolipoprotein E (APOE) allele plays an important role in

AD. A number of studies confirmed the pivotal role of the allele as a strong genetic

risk factor for AD (Corder E.H., et al. (1993); Strittmatter W.J., et al. (1993)). Out

of all different combinations of the APOE copies, people with two ε4 alleles have

the highest chance to develop AD, with up to 20 times the risk compared to other

combinations. The ε3/ε4 genotype is at increased risk, albeit not to the extend

of those with ε4/ε4 are. The genotype ε2/ε3 is considered at lower risk for AD,

and people with ε3/ε3 and ε2/ε4 are at normal risk (Blennow K., de Leon M.J.,

Zetterberg H. (2006)).

Currently, there is no cure for AD and all treatments are directed at alleviating some
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of the symptoms or slowing down the disease progression. In the U.K., the National

Institute for Health and Clinical Excellence recommends the drugs donepezil, galan-

tamine and rivastigmine as an option for people in the mild-to-moderate stages

of the disease. They work by maintaining existing supplies of acetylcholine. For

people in moderate and severe stages the only drug recommended is memantine

(nice.org.uk/ta217). These drugs may stabilise some of the symptoms for a limited

period, typically 6-12 months or longer (alzheimers.org.uk).

The study

The data analysed in this thesis come from the AVA102672 GSK study, which was a

published Phase III, multi-national, multi-center, randomised, double-blind, placebo

controlled, parallel-group clinical trial, investigating the efficacy and safety of rosigli-

tazone extended release tablets (RSG XR) as adjunctive therapy in mild to moderate

AD patients already being treated with donepezil. The motivation behind this study

was a ‘pharmacogenetic sub-group analysis which detected a statistically significant

interaction between RSG treatment and APOE ε4 allele status, suggesting that RSG

may be effective in a genetically defined subset of individuals with mild-to-moderate

AD (Harrington et al., 2011).

The primary research objectives of the study were a) to investigate the add-on effects

of daily dosing for 48 weeks with RSG XR versus placebo on cognitive function in

donepezil-treated subjects with mild to moderate Alzheimers disease, as a function

of APOE 4 status and b) to investigate the add-on effects of daily dosing for 48

weeks with RSG XR versus placebo on overall clinical response in donepezil-treated

subjects with mild to moderate Alzheimers disease, as a function of APOE 4 status.

Eligible subjects for the study were those between 50 and 90 years old, who were

diagnosed with mild to moderate AD and had a Mini-Mental State Examination

(MMSE) score (Folstein et al. (1975)) of 10 to 26 at screening. Also, subjects

should have received at least 6 months of ongoing donepezil for AD, with stable

dosing for at least 2 months prior to enrollment.
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The primary outcomes of the study were two. The first outcome was change from

baseline in Alzheimers Disease Assessment Scale cognitive subscale (ADAS-Cog)

total score, and the second outcome was change from baseline in Clinical Dementia

Rating scale - Sum of Boxes (CDR-SB).

ADAS-cog is the standard primary neuropsychological measure for AD trials cover-

ing several cognitive domains, including memory, language, and praxis (Rockwood

et al., 2007). Total scores in the ADAS-Cog test range from 0 to 70, with higher

scores (≥ 18) indicating greater cognitive impairment (Rosen et al., 1984). The

CDR-SB score is another instrument widely used in AD trials as a global measure

of disease progression. The scores range from 0 to 18 with higher scores indicat-

ing more impairment (Coley et al. 2011). Currently, there is no consensus as to

the choice of the most appropriate outcomes instrument in AD trials (Coley et al.

2011). ADAS-Cog is the most commonly used instrument, but its known shortcom-

ings (insensitivity to very mild impairments, difficulties in determining the clinical

relevance of changes, high within-subject variability resulting in large sample sizes

(Coley et al. (2011)) has led some investigators examine other potential candidate

tools for measurement in dementia. Coley et al. 2011 after comparing ADAS-Cog

and CDR-SB on structural and convergent validity, responsiveness and sample size,

and data quality, asserted that CDR-SB is ‘a promising candidate for a sole pri-

mary endpoint for AD trials’. All analyses of Alzheimer’s data in this document

concentrate on the ADAS-Cog outcome measure only.

The actual duration of the study was 58 weeks; this comprised a 4-week screening

phase, a 48-week double-blind treatment phase and a 6-week single-blind placebo

treatment phase, at the end of which all patients completing the 48-week double-

blind period were admitted receiving placebo daily as well as their regular donepezil

regime.

The scores from the ADAS-Cog tool were used as continuous variables. Under the

48-week double-blind phase, which formed the primary phase for analyses, there

were 6 time points: baseline, and week 8, 16, 24, 36, and 48. The two primary
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comparisons of interest were the effect of RSG at 2mg and 8mg compared to placebo,

on both ADAS-Cog and CDR-SB, at the end of the study treatment for the ‘Full

population’. The Full population consisted of all subjects randomised to treatment,

who had taken at least one dose of study medication and who had at least one

post baseline efficacy assessment. Comparisons were also conducted for two further

populations. These were: 1) APOE ε4 negative subjects (i.e., subjects with ε2/ε2,

ε2/ε3 or ε3/ε3 genotype) and 2) all subjects except ε4/ε4’s, which comprised APOE

ε4 negative subjects and ε4 heterozygote subjects.

In order to be able to determine effects at the APOE ε4 stratum level the sample

size calculations were based on powering at this level. Initially, within an individual

APOE stratum, 522 evaluable subjects (174 per treatment arm) were required to

provide a 90% power to detect a difference of 2 points between placebo and active

treatment in the change from baseline in ADAS-Cog score. The significance level

was set at 5% assuming a standard deviation (SD) of 5.74. However, a drop-out rate

of 10% was allowed, which meant 193 subjects per treatment arm per stratum, or

579 subjects within each stratum. The final eligible sample size in the study ended

up being 1496 subjects. This was obtained because the rate of recruitment in the

two APOE strata did not stop until both strata reached the target of 579 subjects.

Change from baseline in ADAS-Cog and CDR-SB were analysed using a mixed

model for repeated measures (MMRM) with restricted maximum likelihood estima-

tion and an unstructured covariance matrix. Inferences were based in least squares

mean change from baseline at week 48, obtained from the MMRM model. For the

APOE ε4 negative subgroup, the MMRM model included treatment, visit, treatment

by visit interaction, country, and continuous fixed covariates of baseline endpoint

score, baseline endpoint score by visit, screening Mini Mental State Examination

(MMSE), screening MMSE by visit, and baseline BMI (the MMSE was also used as

an outcome in secondary analyses; it ranges from 0-30, with higher values indicat-

ing less cognitive impairment). Analyses for the APOE negatives combined with ε4

heterozygotes and Full populations also utilised the above MMRM model structure

with an addition of a fixed categorical covariate APOE ε4 gene copies (ε4 negatives,
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ε4 heterozygotes, ε4 homozygotes).

Based on the study’s protocol, in order to proceed and draw inferences for a compar-

ison between the low dose treatment and placebo, a statistical significance between

the high dose treatment and placebo should have been observed first, on both co-

primary measures. Given that, a hierarchical testing procedure was implemented

to preserve the Type I error, with reduced α levels, for the individual tests. The

procedure started by examining the efficacy of 8mg RSG XR first, in the ‘All except

ε4/ε4 genotype’ and ‘APOE ε4 negative’ populations, with an α level set at 1% and

4%, respectively.

2.1 Missing data in the Alzheimer study

This section presents the patterns of missing data encountered in the Full popula-

tion in the Alzheimer’s study, for the double-blind phase, that formed the primary

analysis in the GSK study. Data were missing because patients withdrew, giving

rise to a monotonic pattern of missingness, with a few instances of non-monotone

missing data, as shown below. Monotone missing data imply that if a subject drops

out at a given time point, all responses up until drop out are observed and all their

subsequent responses are missing.
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Monotone missing data for Number of
placebo subjects (%)

X X X X X X 357 (71.4)

X X X X X · 25 (5.03)

X X X X · · 26 (5.23)

X X X · · · 21 (4.23)

X X · · · · 14 (2.82)

X · · · · · 37 (7.44)

· · · · · · 1 (0.20)

Non-monotone missing data for Number of
placebo subjects (%)

X X X X · X 2 (0.40)

X X X · X X 3 (0.60)

X X · X X X 2 (0.40)

X · X X X X 2 (0.40)

X X X · X · 1 (0.20)

X · X X · · 1 (0.20)

X · · X X X 1 (0.20)

X · · X · X 1 (0.20)

X · · X · · 1 (0.20)

X X X · · X 1 (0.20)

X X · X X · 1 (0.20)

Fig 1: Monotone and non-monotone missing data patterns for Placebo

Monotone missing data for Number of
2mg RSG XR subjects (%)

X X X X X X 387 (77.86)

X X X X X · 15 (3.04)

X X X X · · 25 (5.06)

X X X · · · 14 (2.83)

X X · · · · 18 (3.64)

X · · · · · 19 (3.85)

· · · · · · 1 (0.20)

Non-monotone missing data for Number of
2mg RSG XR subjects (%)

X X X X · X 3 (0.61)

X X X · X X 4 (0.81)

X X · X X X 2 (0.40)

X · X X X X 4 (0.81)

X X X · · X 1 (0.20)

X X · X X · 1 (0.20)

Fig 2: Monotone and non-monotone missing data patterns for 2mg RSG XR
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Monotone missing data for Number of
8mg RSG XR subjects (%)

X X X X X X 335 (67.13)

X X X X X · 31 (6.24)

X X X X · · 28 (5.63)

X X X · · · 23 (4.63)

X X · · · · 29 (5.84)

X · · · · · 36 (7.24)

· · · · · · 1 (0.20)

Non-monotone missing data for Number of
8mg RSG XR subjects (%)

X X X X · X 1 (0.20)

X X X · X X 4 (0.80)

X X · X X X 1 (0.20)

X · X X X X 4 (0.80)

X X X · · X 1 (0.20)

X X · X · · 1 (0.20)

X · X · · · 1 (0.20)

X X · X X · 1 (0.20)

Fig 3: Monotone and non-monotone missing data patterns for 8mg RSG XR
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At the start of the trial, there were 500, 497 and 499 patients randomised to placebo,

2mg treatment and 8mg treatment, respectively. By the final time point (week 48),

only 357 (71.4%) remained in the placebo group, 387 (77.86%) in the 2mg group,

and 335 (67.13%) in the 8mg group. Hence, by the end of the trial, the 2mg RSG

XR arm had the lowest proportion of missing data and the 8mg RSG XR arm the

highest.

The trellis plots below display the patterns for all patients with monotone missing

data in each treatment group. The first pattern of monotone missing data, shown

in the upper left plot, display those patients for whom only baseline measurements

are observed; that is, they dropped out after baseline. The second pattern, which

corresponds to the upper middle plot, show those patients that dropped out after

time 1. The same logic applies to the rest of the patterns. Overall, with six time

points, there were six patterns of missing data for each treatment group. The bold

line represents the group average for each pattern.
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Fig 4: Monotone missing data patterns in the Placebo arm.
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Fig 5: Monotone missing data patterns in the 2mg RSG XR arm.
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Fig 6: Monotone missing data patterns in the 8mg RSG XR arm.

In Figure 4, where the monotone patterns for the placebo arm are displayed, subjects

exhibit a similar degree of variability between their baseline scores and those at the

final time points, across all patterns of missing data. The general impression from
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the patterns is that the patients’ condition remained relatively stable; the mean

profiles seem to be following a straight line too. In Figure 5, no discernible effect of

the treatment can be asserted. The picture is roughly the same, as in the previous

trellis plot, with respect to the means and variability between starting and final time

points. Even at higher doses a treatment effect cannot be ascertained. In Figure

6, by examining the means and comparing the variability of the scores at the final

time point to that at the start, is that patients’ condition remained stable.

If the data were complete, an ANCOVA model could be used to estimate treatment

effects at the final time point, with treatment as the class variable and baseline as

the covariate. Inferences from the ANCOVA model however cannot be justified,

unless some assumptions about the missing responses are made; for example, unless

the missing data are missing at random given baseline and treatment, analysing the

dataset as if it were complete would lead to wrong inferences. So, what would an

analysis with an ANCOVA model mean? Would it reflect what is seen in practice? It

is true, that patients in real life after stopping treatment, might seek out and receive

alternative therapeutic regimes, or cease to receive treatment altogether, or maybe

carry on with the same treatment. As we shall see later, more sophisticated analyses

are needed to be put in place that would capture this reality. These analyses would

allow for a careful consideration of plausible assumptions about the distributional

behaviour of the subjects after drop-out.

2.2 Summary

The chapter describes a published trial on Alzheimer’s disease that is used to mo-

tivate this thesis. Alzheimer’s is a chronic disease, and affects how brain works. A

number of risk factors are associated with the disease, such as age, lifestyle, over-

all health, and the APOE allele, with homozygous people for ε4 at increased risk.

Currently, there is no cure for AD. The trial looked at the efficacy of daily intake of

RSG XR, as an adjunctive therapy, in people with mild to moderate Alzheimer’s,

as a means to slow down progression. The effect of two doses, a low and a high dose
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of RSG XR, were evaluated against placebo and the study was stratified by APOE

allele status. The stratification was done because there was evidence of drug efficacy

in a genetic subset of patients. The primary outcomes were change from baseline

in ADAS-Cog and CDR-SB at week 48, and measurements were taken at 6 time

points. The main tool for conducting the comparisons was an MMRM model. The

final sample size of the study was 1496 individuals, and there was approximately

20% to 30% drop-out in each treatment arm by the final time point.
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3 Background theory and methods

As stated earlier, incomplete data issues complicate the analysis of clinical and other

studies. In this chapter, the main estimands used in clinical trials and a number

of methods for dealing with the problem of missing data will be discussed. Two

new estimands will be presented which have been developed specifically to address

the confusion over what is estimated when a trial suffers from missing data. In

later chapters, we will see how methods presented here can come together to tackle

different assumptions about the unobserved values.

3.1 Notation

The analyses described herein assume the existence of monotone missing longitudinal

data patterns, which is also referred to as missing data with drop-out. Monotone

missing data implies that the absence of a measurement at time t = 0, ..., T , with t =

0 denoting time at baseline measurement, implies that all subsequent measurements

for subject i are absent. Therefore, for the special case of longitudinal data with

drop-out, let Di = 0, ..., di, ..., Ti, denote the last observed time before subject i drops

out. It is also possible for a subject to drop-out at the final time point, that is di = Ti.

It is assumed that baseline is always observed. Hence, for Di = 0, all measurements

for the specific subject are missing except baseline. Let yi = (yi1, ..., yiT )
′

denote

the full T × 1 vector of responses for subject i. With monotone missing data, yi can

be separated into yi,o = (yi,0, ..., yi,di)
′

and yi,m = (yi,di+1, ..., yi,Ti)
′
, where the first

di responses are observed and the rest Ti−di are missing. Also, yO = (y
′
1,o, ...,y

′
n,o)

′

and yM = (y
′
1,m, ...,y

′
n,m)

′
represent the vectors of all observed and missing data,

respectively. Finally, let g = {gi = j} denote the group of treatment for subject i

in treatment group j, θ a parameter vector that describes the measurement process

and φ a parameter vector that describes the drop-out process. Finally, let zik be

the ith subject’s value of the kth baseline covariate.
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3.2 The drop-out mechanisms

Little and Rubin (2002) classified 3 distinct mechanisms for missing data: miss-

ing completely at random (MCAR), missing at random (MAR) and missing not at

random (MNAR). These mechanisms were first developed in a survey setting. By

analogy, in a longitudinal data setting, with a fully observed matrix of baseline

covariates Zk, Verbeke and Molenberghs (2000) show that, MCAR is expressed as

f(Di|yi,o,yi,m,Zi,k,φ) = f(Di|φ), where the probability of a subject dropping out

is a constant. A different way to think of this mechanism, is the probability of a

subject dropping out is independent of all individual characteristics yi,Zi,k. MAR

is expressed as f(Di|yi,o,yi,m,Zi,φ) = f(Di|yi,o,Zi,φ), where the probability of

drop-out for subject i may depend on data observed prior to drop-out but, condi-

tionally on these observed data, not on the unobserved data. Hence, the probability

of drop-out is conditionally independent of the unobserved component yi,m, after

having conditioned on the observed yi,o Finally, if neither of the previous assump-

tions hold, then f(Di|yi,o,yi,m,Zi,φ) does not simplify; the probability of drop-out

depends on the missing data, even after having conditioned on the observed data.

The data in this case are said to be MNAR.

3.3 Common clinical trial estimands

In general, according to Rubin (1996) the term estimand can be defined as “the

quantity of scientific interest that can be calculated in the population and does

not change its value depending on the data collection design used to measure it”.

Careful description of the population when defining an estimand should be made.

A ‘per-protocol’ estimand seeks to estimate the effect of a new treatment only from

participants who conformed with the protocol requirements. These patients form

the per-protocol population. The analysis is typically restricted only to those sub-

jects who adhered to the clinical trial terms, such as eligibility, interventions, and

outcome assessment as stipulated in the protocol (National Research Council, 2010).

According to published guidelines (ICH E9 Expert Working Group, 1999) the use
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of this set of population, “may maximize the opportunity for a new treatment to

show additional efficacy in the analysis, and most closely reflects the scientific model

underlying the protocol”. On the negative side however, exclusion of patients and re-

striction of analyses to the per-protocol population hampers the examination of the

drug’s practical value. Also, it may cause severe biases, as adherence of the subjects

to the study protocol may be related to treatment assignment and outcome.

Contrary to the per-protocol analyses, the intention-to-treat (ITT) analysis de-

scribes the principle of analysing data from all participants randomised to treatment,

irrespective of the level of treatment received or protocol adherence (Hill, 1961).

Little and Yau (1996), argues that an ITT analysis has two principles. Firstly, all

randomised subjects should be included in the analysis. Secondly, subjects should

be analysed as part of the treatment group to which they were originally assigned

to, no matter if they actually received a different treatment during the course of the

trial. The population under the ITT principle is called the ITT population. Ideally,

an ITT analysis aims to analyse the full set of individuals enrolled in the study.

Sometimes though, failure to satisfy major entry criteria (eligibility violations), or

take at least one dose of trial medication coupled with the lack of any data post ran-

domisation, may sometimes lead to exclusion of patients from the ITT population.

No analysis should be considered complete however, unless all biases arising from

these exclusions are addressed. For instance, in the case patients were excluded due

to failure to take any trial medication, it can be argued that the ITT principle can

still be valid if this was not influenced by knowledge of the allocated treatment (ICH

E9 Expert Working Group, 1999).

Another type of analysis the makes use of the full set of randomised individuals in

a study is the as-treated analysis. Under an as-treated estimand, all randomised

subjects are included in the analysis, but these subjects, are grouped and analysed

according to the treatment they actually received, even if the initial randomisation

arm was different (Piantadosi’s, 1997). By doing so, an as-treated analysis does

not preserve the initial randomisation of patients. As a result, selection bias in the

treatment effect can be introduced; the treatment groups can be systematically dif-

22



ferent and hence no longer directly comparable, leading to the emergence of spurious

effects.

The rationale behind an ITT analysis is to preserve randomisation: groups must

be alike in all important aspects and only differ with respect to treatment. Tsiatis

(1990) explains that with randomisation, comparable treatment groups that are on

average similar, can be constructed, since prognostic factors will be averaged out

in the two different groups by the chance mechanism. Therefore, maintenance of

the initial randomisation would prevent bias. As Little and Yau (1996) point out,

contrary to the as-treated analysis where, when subjects take a different treatment

from that assigned to is more prone to selection bias, an ITT analysis can mirror

what actually occurs in clinical practice. For example, if a very effective drug is

avoided by patients due to side effects, this negative feature is taken into account by

an ITT analysis. An as-treated analysis, by focusing only on subjects who took the

treatment ignores this fact (Little and Yau, 1996). The as-treated estimand will not

be considered in this document, as selection bias and the methodology for dealing

with it, is a different topic.

Carpenter et al. (2013) embody the principles of the per-protocol and ITT analyses

into two new estimands. The de-jure estimand and the de-facto estimand. They

use the term de-jure, to address questions such as “what the expected treatment

effect be in the target population of eligible patients if the treatment and control

were taken as specified in the protocol”. Under this estimand it is assumed that

the targeted population commits no protocol deviation either at baseline or post-

randomisation. On the other hand, they term de-facto an estimand that seeks to

answer questions about“what would be the effect seen in practice if this treatment

was assigned to the target population of eligible patients as defined by the trial

inclusion criteria”. A de-facto estimand attempts to represent actual practice that

is observed in clinical trials.

As it will become obvious in the next section, these estimands are amenable to

situations where drop-out exists.

23



3.3.1 Implications for the occurence of missing data

To begin with, an implication of the MAR assumption needs to be stated. Molen-

berghs et al. (1998) proved that if the MAR assumption holds, within the context

of longitudinal data with drop-out, then:

f(yi,d+1|yi,0, ..., yi,d, D = d) = f(yi,d+1|yi,0, ..., yi,d, D ≥ d+ 1) (1)

hence, the conditional distribution of the missing responses Yd+1 given the observed

past responses, for those whose follow-up terminates at some time prior to d + 1,

that is D < d+ 1, can be estimated from the conditional distribution of individuals

who have observed responses at or beyond d+ 1.

Equation (1) implicitly assumes that the conditional distribution of the subjects with

missing responses is equivalent to the conditional distribution of the subjects with

observed responses who share the same ‘history’, where history typically includes

the treatment group. For instance, let us assume a clinical trial with two treatment

groups g1 and g2, with responses measured across 3 time points. Further, assume

a subset of individuals in group 1 drops out after time 2. Then the conditional

distribution of the drop-outs, that is f(yi,3|yi,0, yi,1, yi,2, gi,1, D = 2) can be estimated

by the conditional distribution of the completers who have the same yi,0, yi,1, yi,2

and gi,1 values, that is f(yi,3|yi,0, yi,1, yi,2, gi,1, D = 3). In practice, hardly ever will

two patients have the same yi,0, yi,1, and yi,2 values, and therefore a statistical model

is needed to estimate the conditional distributions.

The MAR assumption is sensible when we wish to answer per-protocol questions,

that is, to estimate the distribution of the subjects’ responses assuming they contin-

ued to adhere to the protocol (Carpenter and Kenward, 2007), since, under MAR,

the future statistical behaviour of a subject, conditional on the history, is the same

whether the subject drops out or not in the future. This assumes that all data prior

to drop-out are from patients who are complying with the protocol.

As previously stated, with no missing data, the ITT principle dictates the inclusion
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of all subjects, irrespective of protocol adherence. Consequently, if data are available

on subjects after protocol violation, then an ITT analysis can still be conducted.

When drop-out exists however, ITT requires a method of dealing with the missing

data in order to preserve the principle of analysing the full set of randomised in-

dividuals. According to Nich and Carroll (2002), and Hollis and Campbell (1999),

in the presence of missing data, evidence of confusion over the directives and as-

sumptions governing an ITT analysis appears to be widespread in the literature.

These authors concluded the ITT approach was often inadequately described and

inadequately applied, with the handling of missing data being the main problem.

It is true subjects that drop out might seek out and receive a treatment other than

that stated in their protocol. This imply a move away from the MAR assumption,

since according to Carpenter and Kenward (2007), the outcomes for patients who

discontinue treatment are likely to be different from those who continue with their

randomised treatment. Thus an ITT analysis, when a non-trivial proportion of

patients discontinue treatment and we don’t have outcome data for them after drop-

out, may well imply an MNAR missingness mechanism: the probability of drop-

out depends on the missing data, even after having noted the initial randomised

treatment, as well as baseline covariates and pre-drop-out data. There can be no

definitive ITT analysis, since assumptions should be put in place about the post-

treatment/post-withdrawal data. Thus in practice, we wish to make a primary

assumption and explore robustness of inferences to other plausible assumptions.

For this reason, some authors argue that an ITT analysis with drop-out, should be

seen in the context of a sensitivity analysis (Little and Yau, 1996; Heumann, 2000;

Carpenter and Kenward, 2007; Carpenter et al., 2013). Little and Yau (1996) and

Carpenter et al. (2013) developed such methodology.

To avoid confusion of what is meant by per-protocol and ITT estimands when drop-

out exists, the new set of estimands, that is de-jure and de-facto can be used. The

mathematical definitions of these are: let f̃act denote the joint probability distri-

bution (pdf) of baseline and post-randomisation responses for patients randomised

to the active treatment, without deviating from protocol, and analogously f̃cont for
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patients who receive the control treatment. Then a de-jure estimand is defined as:

Ef̃act(g(Y))− Ef̃cont
(g(Y))

where g(.) is any suitable function and Y is the response profile. In this thesis, g(y)

refers to the last scheduled observation, so that if the observed data come from f̃act

and f̃cont, then we can use regression of the final response on treatment group and

baseline to estimate this quantity (Carpenter et al. 2013).

The mathematical definition of a de-facto estimand is given by:

Efact(g(Y))− Efcont(g(Y))

where now fact and fcont refer to the pdfs “of baseline and post-randomisation re-

sponses that would be seen in the context of interest among patients randomised to

the active arm” (Carpenter et al. 2013).

Under the de-facto estimand deviation usually includes instances of unblinding and

loss to follow-up, but not moving to partial compliance with treatment and with-

drawal from treatment. Under the de-jure estimand, by deviation is typically meant

any instance of unblinding, for example of treatment allocation, moving to partial

compliance with treatment, withdrawal from treatment following an adverse event

and loss to follow-up.

In practice, patients after deviation will either switch treatments and continued to

be followed-up or withdraw entirely with no further contribution of data. As will

become obvious when the formal presentation of the new sensitivity method takes

place, to address a de-jure or a de-facto estimand, knowledge of which treatment is

being used after deviation and the reason why a patient withdraw can be readily

used.

Carpenter et al. (2013) also explain, through the use of the proposed estimands,

confusion over a per-protocol estimand, which emanates from the fact that is some-

times associated with an ‘on-treatment’ estimand which, in turn, does not specify
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the extent of treatment compliance, can be avoided. Similarly, uncertainty caused

by the use of the ITT estimand, which sometimes alludes to a specific population

or an estimation method, can be prevented.

3.4 Methods for analysing longitudinal studies with missing

data

3.4.1 Simple methods

This section presents some basic points on simple methods for dealing with missing

data. A thorough discussion of such simple methods, can be found in a monograph

by Carpenter and Kenward (2007) and downloaded from www.missingdata.org.uk.

One of the most commonly used imputation methods in longitudinal datasets with

drop-out is the LOCF (Kenward and Molenberghs, 2009). It replaces missing values

with the last observed value. There is widespread agreement amongst researchers

LOCF should be avoided, as it is prone to bias, and distorts the variance and correla-

tion structures (Yau and Little, 1996; Carpenter and Kenward, 2007; Mallinckrodt,

et al., 2003; Mallinckrodt, et al., 2004; Lane, 2008, Carpenter, et al., 2004; Beunck-

ens et al., 2005; Verbeke and Molenberghs, 2000; Molenberghs et al., 2004; Siddiqui

et al., 2009). As Kenward and Molenberghs (2009) show, this method, that gained

prominence due to its simplicity, can only be justified under stringent assumptions

(see also Shao and Zhong, 2003 and Carpenter et al., 2004).

All simple methods, apart from Completers Analysis, allow all cases to be analysed,

and the treatment effects are estimated with cases assigned to their randomised

arm. As noted by many authors, they suffer from severe drawbacks (Carpenter

and Kenward, 2007; Little and Rubin, 2002). The main process under which simple

methods operate is: they complete the dataset first, and then look at the assumption

the method makes. It turns out in the case of such methods these assumptions are

implausible. This is the reason why they are not considered in this thesis.

the approaches considered herein are such that an estimand is chosen, assumptions
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about the missing data are put into place in an accessible way, and valid inferences

under these assumptions are obtained.

3.4.2 Principled methods

Principled methods refer to the set of procedures for analysing missing data that,

contrary to simple methods, choose an estimand, and make assumptions about the

missing component of group of individuals. The analysis and inference under these

methods are usually conducted within a frequentist or Bayesian framework (Ken-

ward and Carpernter, 2007). Principled methods do not attempt to replace the

missing data. As previously stated, they combine available information from the

observed data with assumptions about the missing data, in order to generate sta-

tistical information about both the missing values and the process that caused the

missing data (Kenward and Carpernter, 2007).

Three commonly used methods for the analysis of clinical trials with longitudinal

follow-up and missing data are reviewed, focusing on the assumptions they make

about the missing data mechanism and hence their suitability for use in sensitivity

analysis.

3.4.2.1 Generalised Estimating Equations

With repeated measurements, when the response vector is Normal, only the spec-

ification of the first two moments suffices to fully determine the likelihood. With

discrete data however, the additional assumptions about higher-order moments as

well as the existence of many nuisance parameters that often make the likelihood

intractable give rise to the use of the Generalised Estimating Equations (GEEs), as

opposed to likelihood-based estimation methods (Diggle et al., 2002).

GEEs were originally developed by Liang and Zeger (1986) for clustered and repeated

data. They require only the correct specification of marginal distributions, and

they make assumptions about the association structure of responses either within
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a subject or cluster (Molenberghs and Verbeke, 2005) ignoring the higher-order

moments, while obtaining valid inferences with reasonable efficiency (Molenberghs

and Kenward, 2007). Molenberghs and Verbeke (2005) explain the GEEs estimate

the parameter values associated with the mean of the individuals’ responses vector,

and express the assumptions about the association structure in terms of marginal

correlations. The standard errors of the GEEs are calculated in a robust way that

adjusts any incorrect assumptions about the covariance structure.

GEEs are the popular choice of estimation for the population-averaged (PA) class

of models. Usually, with longitudinal data the primary interest lies on marginal

inferences, such as treatment difference at the final time point. In PA models the

outcomes are conditioned on covariates, but not on any other measurements or latent

covariates (Kenward and Molenberghs, 2007). The parameter estimates from these

models denote the change in the average response for a unit increase in a covariate

across the population (Ballinger, 2004).

With missing data, analysis of PA models is complicated by the fact that GEEs

are valid under MCAR but not MAR, since marginal means and variances are not

appropriate estimators of MAR (Carpenter and Kenward, 2007); as it was previously

shown in(1), the MAR assumption is a conditional statement. On the other hand,

GEEs use marginal distributions, and provide marginal estimates for the parameters.

For this reason, it is not sensible to use them directly for parameter estimation

when there are MAR missing data and the goal is to phrase population averaged

statements. Also, the fact that PA models do not specify the joint distribution of the

outcomes for each subject (in particular the dependence structure is left unspecified)

makes them unsuitable for use as sequential imputation models (Molenberghs and

Kenward, 2007). Under MAR, likelihood based methods use the covariance matrix to

correct for the bias caused by the missing data (Brown and Prescott, 2006) and this

correction is not available with GEEs as the correlation structure is only a ‘working

approximation’. Carpenter and Kenward (2007) illustrate the steps for a strategy

when the aim is to obtain population averaged treatment effects from longitudinal

discrete outcomes with missing values. In short, a subject-specific model and be
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fitted as an imputation model, and then a population-average model can be fitted

for the analysis of the imputed datasets, combining the estimates using multiple

imputation rules; these will be described later on in the thesis. GEEs will not be

pursued further in this thesis; herein, the response vector is assumed to be Normal

where population averaged and subject-specific (or conditional) treatment estimates

coincide.

3.4.2.2 Maximum likelihood

Maximum likelihood (ML), as opposed to the simple ad-hoc methods, analyses all

available data without the need to discard subjects with incomplete sequences, or

impute missing observations. ML based analyses provide consistent estimators un-

der both the MCAR and MAR mechanisms (Kenward and Molenberghs, 2009). In

particular, a key result of Rubin (1976) pertains to likelihood analyses when missing

data are MAR. Suppose subject i withdraws at time di. Then their contribution to

the likelihood is:

∫
f(yi, di;θ,φ)dyi,m =∫
f(di|yi;φ)f(yi;θ)dyi,m =∫
f(di|yi,o,yi,m;φ)f(yi,o,yi,m;θ)dyi,m =∫
f(di|yi,o;φ)f(yi,o,yi,m;θ)dyi,m = , under MAR

f(di|yi,o;φ)

∫
f(yi,o,yi,m;θ)dyi,m =

f(di|yi,o;φ)f(yi,o;θ)

Since we are interested in estimating θ, it follows subject i’s contribution to the

likelihood is simply the marginal density of their observed data, f(yi,o|θ), which is

straightforward to calculate for the multivariate Normal model. Inferences therefore

can be based solely on this marginal observed data density provided φ and θ are

independent too, a requirement referred to as distinctness by Little and Rubin
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(2002). That is, knowing the values of θ does not provide any additional information

about φ, and vice versa. So, the drop-out indicator Di can be ignored, since it does

not depend on the missing data, and the missing values are treated as unknown

random variables to be averaged over (Little and Rubin, 2002). As a result, analyses

with MAR data can be simplified, since there is no need to model D. If patients

have no data after deviation, where deviation refers to deviations from protocol, and

all the data come from on-protocol patients, then the MAR analysis through ML

estimates the de-jure effect.

Carpenter and Kenward (2007) provide a thorough illustration of ML methods in

analyses with missing data. The choice of covariates in such models is important.

Choosing the appropriate covariates for inclusion increases the plausibility of the

missing data being MAR, and hence reduces biases, as well as improving the preci-

sion of the estimates (Carpenter and Kenward, 2007; White et al., 2011). In practice,

it is advisable to include all covariates that have a significant association with the

incomplete variable, as well as the chance of withdrawal (Carpenter and Kenward,

2007; White et al., 2011; Collins et al., 2001). This point will be revisited in the

discussion about choosing covariates for the imputation model within a multiple

imputation settng. Carpenter and Kenward (2007) advocate for the use of logistic

and survival analysis to identifying key predictors of withdrawal.

Usually, in clinical trials, missingness is mainly encountered in the response vari-

able, but sometimes predictors of the response/withdrawal (that would be advisable

include in the model), may also be partially incomplete (Kenward and Carpenter,

2007). Methods such as the expectation-maximisation algorithm are suited to this

problem. Alternatively, assuming that these incomplete covariates can be modelled

using a Normal distribution, Carpenter and Kenward (2007) illustrate a method

which treats them as additional responses. At this point, the authors draw a dis-

tinction between obtaining a treatment effect conditional on the predictor (which is

now in the response vector) to be included in the analysis, and a treatment effect

marginal to this predictor. This distinction becomes important in situations where

it is inappropriate to obtain treatment effects conditional on a specific variable, for
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example with variables measured after randomisation, since they can be correlated

with treatment. The authors show that to obtain conditional effects, the predictor in

the response vector of the joint Normal distribution must have the same mean across

the treatment groups, whereas to obtain marginal effects the predictor should be

assigned a different mean in each treatment group (Carpenter and Kenward, 2007;

pages 55-67). The authors argue however, if the predictor is measured at baseline,

it tends to have relatively few missing values, and it is best included as a covariate

(given that we wish to adjust the treatment estimate for it).

When the outcomes are Normally distributed analysis of longitudinal data with

drop-out is carried out through the use of linear mixed models. The preferred

method of estimation in such models is the restricted maximum likelihood, which

controls for the downwardly biased estimate of variance in the profile likelihood

(Diggle et al., 2002; Verbeke and Molenberghs, 2000; Brown and Prescott, 2006).

In addition, when fitting a linear model, Carpenter and Kenward (2007) advocate

for the use of an unstructured covariance, the use of a separate covariance matrix in

each arm, and the adjustment to the standard errors and degrees of freedom derived

by Kenward and Roger (1997).

3.4.2.3 Multiple imputation

Multiple imputation (MI) was developed by Rubin (1987). It is known as the method

for fitting models to partially observed data. MI is a Bayesian procedure: the im-

puted values are draws from the posterior predictive distribution of the missing

data given the observed data and the parameters f(yM |yO,θ). The parameters are

draws from the posterior distribution f(θ|yO,yM), in which, as it can be seen, they

are not treated as fixed. This is the key to how MI handles uncertainty about the

parameters in the imputation model (Little and Rubin, 2002). It implies that both

missing data and parameters have distributions, where neither the missing data nor

the parameters are held fixed.

The model which is used to produce the imputations is called the imputation model,
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whereas the respective model for the analysis of the imputed datasets is called the

substantive or analysis model. In practice, the imputation model can either be based

on Bayesian distributions or an approximation to these distributions. In the latter

case, caution should be exercised to reflect the uncertainty in both the parameters

and missing data (Carpenter and Kenward, 2007).

The generic algorithm for the implementation of MI is: each missing datum in the

vector yi,m = (yi,di+1, ..., yi,Ti)
′

is replaced by a number of simulated values, say

y
(1)
i,d+1, y

(2)
i,d+1, ..., y

(k)
i,d+1, creating every time a number of different datasets that con-

tain both the original observed data and the imputed ones. Each of the k imputed

datasets is then analysed by standard, complete-data methods, as if they were com-

plete datasets, in order to obtain estimates of the parameters of interest and their

standard errors. Finally, the k different estimates and their standard errors are com-

bined under certain rules to form one inference (Little and Rubin, 2002; p. 85-87),

as shown next.

Rubin’s combining rules

With no missing data the mean and variance from the posterior distribution would

be E(θ|Y ) and var(θ|Y ). However, with missing data the simulated posterior mean

and variance from each imputed dataset k are:

Eθ(θ|Yo, Y k
m) = θ̂, and (2)

var(θ|Yo, Y k
m) = Vk (3)

calculated using the completed imputed dataset.

Little and Rubin (2002; p. 209-211), after relating the obseved data posterior dis-

tribution to the complete data posterior distribution, that is p(θ|Yo) =
∫
p(θ|Yo, Ym)

p(Ym|Yo)dYm, they show the overall posterior mean across the datasets is the average
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of (2), that is:

EYm|Yo(Eθ(θ|Yo, Y k
m)) (4)

Similarly, the overall posterior variance across the imputations is the sum of the

average of the posterior within-variance estimate (3) across the K imputed and the

between-imputation variances:

EYm|Yo(varθ(θ|Yo, Y k
m)) + varYm|Yo(Eθ(θ|Yo, Y k

m)) (5)

After some manipulation, both (4) and (5) can be shown to equal E(θ|Yo) and

var(θ|Yo), the posterior mean and variance if no missing data existed.

In practice, by the law of large numbers, as K →∞,

EYm|Yo(Eθ(θ|Yo, Y k
m)), EYm|Yo(varθ(θ|Yo, Y k

m)), and varYm|Yo(Eθ(θ|Yo, Y k
m)) can be ap-

proximated by,

θ̄ = k−1
k∑
t=1

θ̂k (6)

V̄ = k−1
k∑
t=1

Vk (7)

B = (k − 1)−1
k∑
t=1

(θ̂k − θ̄)2 (8)

respectively (Schafer, 1997). Hence, (6) is the MI estimate of θ, which is simply

the average of the estimates across the imputed datasets. Equation (7) provides an

estimate of the variability that would be obtained from a single complete dataset,

whereas (8) represents the variability across the imputations (with no missing data

B = 0). To approximate (5) the sum of the equations (7) and (8) would be normally

used. However, to allow for the extra uncertainty from using a finite number of impu-

tations K, an improved formula is used especially when the number of imputations

is small (Molenberghs and Kenward, 2007):

T = V̄ + (1 + k−1)Bk (9)
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As previously stated, missing data and the parameters can be draws either from

fully Bayesian distributions or approximations to these. In sufficiently large sam-

ples, Carpenter and Kenward (2007) describe an algorithm to conduct MI based on

regression, by approximations to the posterior distribution of the parameters. There,

they use the sampling distribution of the parameters, and the large sample covari-

ance matrix (the inverse of the information matrix), as in large samples these tend

to approximate the posterior distribution (Kenward and Carpenter, 2009). These

algorithms can be applied to many settings and is simple to extend to longitudinal

data with drop-out, where a sequential imputation procedure can be used (see for

example Kenward and Carpenter, 2009). Approximate MI draws can also be done

through a fully Bayesian process, usually through the Markov Chain Monte Carlo

(MCMC) algorithm (Little and Rubin, 2002; Carpenter and Kenward, 2013). Alli-

son (2002) provides an algorithm for using regression within an MCMC algorithm

and for general forms of missing data Schafer (1997) provides a comprehensive de-

scription of fully Bayesian imputations.

Multiple imputation and the maximum likelihood

Carpenter and Kenward (2007) show that results from 200 analysed imputed datasets

(in the case of estimating a single parameter and its variance) produce nearly iden-

tical estimates to mixed effects models: in their analyses they fitted a mixed model

in order to estimate 3 year treatment effect conditional on baseline and two other

covariates, exercising caution to develop an imputation model that uses the same

structure as the mixed model. ML methods and MI would produce asymptotically

the same results, provided, according to Collins et al. (2001), that:

the user of the ML procedure and the imputer use the same set of in-

put data, their models apply equivalent distributional assumptions to the

variables and the relationships among them, the sample size is large, and

the number of imputations, is sufficiently large
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The asymptotic equivalence of likelihood-based methods and Bayesian procedures

is based on the fact that as more data arrive, the posterior distribution of the

parameters approaches multivariate normality (Gelman et al., 2003). Gelman et

al. (2003) explain that in large samples, the importance of the prior distribution

diminishes, as the sample size increases; it is getting dominated by the likelihood and

as such, “the mode of the likelihood (the maximum likelihood estimator) and the

inverse of the curvature of the likelihood (the information based covariance matrix)

can be used to obtain the required moments (Carpenter and Kenward, 2013). Hence,

with large sample sizes, the choice of the prior distribution that accurately reflects

all available information “should not be of a concern” (Gelman et al., 2003).

The structure of the imputation model and further remarks

Within MI, the substantive model is constructed separately from the imputation

model. White et al. (2011) argues that all variables that appear in the substantive

model should exist in the imputation model too. It is important to preserve all

relationships between the variables, so that biases in the analysis model would be

reduced. In addition, the imputation model should be at least as functionally com-

plex as the substantive model, in terms of interactions and/or higher order terms

used in the substantive model (Schafer, 1997).

MI permits additional covariates to be included in the imputation model which may

not be desirable to include in the substantive model. If the aim for instance, is

to obtain a treatment effect conditional on a baseline predictor, but marginal to a

post-randomisation variable, this can simply be done by including both predictors in

the imputation model, but only the baseline covariate in the substantive model. As

White et al. (2011) explain, “the imputation model should include every variable

that both predicts the incomplete variable and predicts whether the incomplete

variable is missing”. This way, the MAR assumption would become more plausible,

the imputations can be improved and the standard errors of the estimates for the

analysis model can be reduced. Collins et al. (2001) term these predictors auxiliary

variables. If a variable is just predictive of deviation and not predictive of the
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incomplete variable, then there is no gain in including it in the imputation model,

since the justification for its inclusion is based on the fact that it may (or may not)

have a true association with the incomplete variable that failed to reach statistical

significance (White et al. 2011).

Meng (1994) calls the substantive and the imputation models uncongenial, when the

former does not correspond to the latter in terms of the structure of the predictive

distribution f(yM |yO) each model implies. Uncongeniality is an important feature of

the MI process, as it makes it very amenable to sensitivity analysis. Molenberghs and

Kenward (2007) explain, this can be achieved for example, by introducing an explicit

MNAR model into the imputation to modify the future behaviour of drop-outs

conditional on the past. Whereas under MAR such conditional behaviour is implied

to be the same between the completers and those who drop-out, under MNAR such a

behaviour may differ. Thus, the imputation model can be allowed to accommodate

different distributional assumptions from those implied by the substantive model

(Little and Yau, (1996); Kenward et al. (2003); Carpenter et al. (2013)) addressing

in this manner de-facto questions.

Based on Schafer (1997), the issue of uncongeniality can be split into two types.

Firstly, when the substantive model ‘assumes more’, in terms of estimating less

parameters than the imputation model. Then, as Schafer (1997) explains, if the as-

sumptions of the substantive model were true, inferences from the imputation model

will be unbiased. The variance estimates however would tend to be a little conser-

vative, because the imputation model will reflect an extra degree of uncertainty due

to the fact that it estimates more parameters. Also, interval estimates will tend

to be somewhat wider than what they would have been, if the imputation model

estimated the same number of parameters as the substantive model (Schafer, 1997).

This type of uncongeniality will be explored later on in this thesis.

The second type of uncongeniality arises when the imputation model assumes more

than the substantive model, that is, the substantive model is more elaborate. Fay

(1992) explored the properties of MI under this type of uncongeniality, given the
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assumptions made by the imputation model are true. Fay compared E(T∞|X,y)

to var(θ̄∞|X,y) over repeated realisations of the sampling and imputation proce-

dure, and showed that when uncongeniality exists E(T∞|X,y) ≥ var(θ̄∞|X,y), as

opposed to E(T∞|X,y) = var(θ̄∞|X,y), which holds when the two models apply

the same assumptions. Carpenter and Kenward (2013) explain this type of unconge-

niality should be avoided, “as it generally results in both inconsistent estimators of

the substantive model parameters and invalidity of the Rubin’s variance estimator”.

3.5 Multiple imputation and MNAR models

This section focused on the incorporation of MNAR assumptions within the MI

setting. Implicit up to this point was the fact that MI is valid under MAR. That is,

Di can be ignored in the conditional distribution f(yi,m|yi,o, Di) to give f(yi,m|yi,o)

since:

f(yi,m|yi,o, Di) =
f(yi,m,yi,o, Di)

f(yi,o, Di)
=

f(Di|yi,m,yi,o)f(yi,m,yi,o)

f(Di|yi,o)f(yi,o)
=
f(Di|yi,o)f(yi,m,yi,o)

f(Di|yi,o)f(yi,o)
=

f(yi,m,yi,o)

f(yi,o)
= f(yi,m|yi,o)

As such, it is suitable to address de-jure questions. Under MNAR however, Di can-

not be ignored, since the reason for dropping out could be different for each individ-

ual or, more typically, group of individuals. In order to reflect this, f(yi,m|yi,o, Di),

that forms the part of the imputation model, where the missing data from are drawn

from, can be modified, so that it represents assumptions specific to the treatment

arm, drop-out time-point and possibly other characteristics. This in turn, entails the

need to consider MNAR models, which retain Di. There are three main classes of

such models; selection models, shared-parameter models and pattern-mixture mod-

els. Starting from the full density, where Zi and Wi denote design matrices for the

measurement and missingness mechanisms respectively, the factorisations each class

of models implies is shown below.
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The factorisation under selection models is:

f(yi, Di|Zi,Wi;θ,φ) = f(yi|Zi;θ)f(Di|yi,Wi;φ) (10)

The first factor is the marginal density of the measurement process, and the second

one is the density of the missingness process conditional on the response. It can

be seen, the full vector of responses yi = (yi1, ..., yiT )
′

for subject i, either missing

or not, is being weighted (or selected) through the probability of being observed.

Kenward and Molenberghs (2007) explain that Rubin’s classification of missing value

processes, introduced in Section 3.2 is most naturally expressed within the selection

models framework, based on factorisation (10). For instance, under MAR, the joint

distribution for a selection model would be f(yi,o|Zi;θ)f(Di|yi,o,Wi;φ), as shown

in section 3.4.2.2.

The factorisation that characterises the shared-parameter models is:

f(yi, Di,bi|Zi,Wi,Qi;θ,φ, ξ) = f(yi|Zi,bi;θ)f(Di|Wi,bi;φ)f(bi|Qi; ξ)

Shared-parameter models allow for a different response model for each pattern of

missingness, and they also introduce latent variables, upon which the response

and the drop-out pattern is conditionally independent (Molenberghs and Kenward,

2007). The main characteristic of these models is that a single set of parameters

bi ∼ N(0,V) which denotes a vector of subject specific random effects, are shared

between both factors in the joint distribution of yi and Di. The factorisation follows

from the assumption that the drop-out mechanism Di is independent of both yi,o

and yi,m, conditionally on the random effects (Daniels and Hogan, 2008).

Finally, the factorisation of the joint distribution under the PM models is:

f(yi, Di|Zi,Wi;θ,φ) = f(yi|Di,Zi;θ)f(Di|Wi;φ) (11)

The pattern-mixture models, where ‘pattern’ in this thesis refers to a separate re-

sponse distribution, allow for a different response model for each pattern of miss-
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ingness. Here, the data y = (y1, ..., yT )
′

for a group of subjects, are a mixture

of patterns, weighted by the proportion of missing data in each drop-out pattern

(Molenberghs and Kenward, 2007).

There are no specific guidelines in the literature with regards to the choice among

those models. Each approach has its advantages and disadvantages (Molenberghs

and Kenward, 2007; Daniels and Hogan, 2008). Selection models treat the proba-

bility of drop-out as dependent on the response variable. Carpenter et al. (2002)

explain that in a trials context, patient drop-out would depend on treatment re-

sponse, and they argue in their asthma study, selection models are deemed the most

appropriate choice for analysis, since drop-out can be explained by a steady dete-

rioration of the health status of the patients. With respect to the shared model

parameters, formulation of the MAR assumption and consequently deviations from

it, as Daniels and Hogan (2002) note, is hampered by the fact that the random ef-

fects structure make it difficult to separate parameters indexing f(yi,m|yi,o, di) from

those indexing f(yi,o, di). The focus of this thesis however, will be on PM models.

This is due to their flexibility to formulate different patterns of response for those

who drop-out and those who do not (Carpenter et al., 2002), since the probability

distribution of the response depends on the drop-out status.

With PM models, the conditional distribution of the measurements yi given the

drop-out pattern is combined with the marginal distribution of the drop-out variable,

which can depend on covariates but not on measurements. As stated before, PM

models allow the distribution of yi to differ for each pattern of missing data. For

example, given the patterns in section 2.1, the PM factorisation (11), for drop-out

pattern 2, in the placebo group, would be:

f(yi|Di = 2,Zi, gi,pl;θ)f(Di = 2|Wi;φ) =
6∏
t=3

f(yi,t|yi,1, ..., yi,t−1, Di = 2,Zi, gi,pl;θ) (12)

×f(yi,1, yi,2|Di = 2,Zi, gi,pl;θ)

×f(Di = 2|Wi;φ)
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Within each pattern, the parameters of interest are estimated. With Normally dis-

tributed data, when pattern-specific estimates are of no interest, marginal estimates

can be obtained by averaging over the distribution of D.

An important issue with PM models is that, by construction, they are under-

identified. These unidentified parameters of the conditional distributions of the

incomplete patterns need be estimated nonetheless. Many authors addressed this

issue (Little, 1993; Little, 1994; Molenberghs et al., 1998; Thijs et al., 2002). These

authors constructed restrictions according to which, the unidentified parameters are

set equal to a linear combination of their equivalent counterparts from identified pat-

terns. Kenward et al. (2003) call these restrictions interior family constraints. In

their paper they develop further restrictions, namely non-future dependence missing

value.

Pattern-mixture models under-identifiability can also be dealt with through model

simplification. This approach was used by Hogan and Laird (1997); a linear mixed

model can be fitted in each of the patterns separately, replacing unobserved time

coefficients with their equivalent from observed patterns. Moreover, as Verbeke and

Molenberghs (2000) and Daniels and Hogan (2008) explain, one can also perform

model simplification by fitting a pattern factor in a linear mixed model.

The MAR assumption motivated by equation (1) is a good starting point for sensitiv-

ity analysis with PM models. According to this, under the interior family constraints

for example, the unidentified components of the means and variances of the condi-

tional distribution (12) would be identified as: f(yi,3|yi,1, yi,2, Di = 2,Zi, gi,pl;θ) =

f(yi,3|yi,1, yi,2, Di ≥ 3,Zi, gi,pl;θ), f(yi,4|yi,1, yi,2, yi,3, Di = 2,Zi, gi,pl;θ) =

f(yi,4|yi,1, yi,2, yi,3, Di ≥ 4,Zi, gi,pl;θ) and so on. The analysis then may proceed by

constructing MNAR models that match exactly the MAR model in its observed com-

ponents, but differ in the unobserved. In other words, the unidentified components

of the conditional means and variances would be identified according to appropri-

ate MNAR assumptions imposed by researchers. This gives a great advantage to

PM models, since they can accommodate assumptions that deviate from MAR in a
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transparent way.

Alternatively, as White et al. (2007) and Daniels and Hogan (2008) show, one could

add a sensitivity parameter, δ, to the unidentified parameters of the conditional

mean and variance; this parameter measures the degree of deviation from MAR.

For example, the intercept of the conditional mean of (12), b
(Di=2)
o = ȳ

(Di=2)
i,3 −

b
(Di=2)
1 ȳ

(Di=2)
i,2 −b(Di=2)

2 ȳ
(Di=2)
i,1 is equated to ȳ

(Di≥3)
i,3 −b(Di≥3)

1 ȳ
(Di≥3)
i,2 −b(Di≥3)

2 ȳ
(Di≥3)
i,1 +δ.

It follows that under MAR δ = 0. The details of this approach, which can be carried

out within a Bayesian framework, where a prior on δ can be assigned to construct

the posterior distribution from which the parameters are drawn, are provided in

Daniels and Hogan (2008, ch. 9).

3.5.0.4 Pattern-mixture imputation models

MNAR PM models can serve as imputation models. These will almost always be

uncongenial with the substantive model used at the end. Thijs et al. (2002) and

Kenward et al. (2003) describe the steps for drawing imputations from conditional

distributions, identified using interior family constraints and non-future dependence

missing value constraints, respectively. Following identification, the conditional dis-

tributions are then used for imputing missing data. Implicit in the identifications

used by the interior family constraints and non-future dependence missing value

constraints is the assumption that information is borrowed from within the same

treatment arm.

Little and Yau (1996) and Carpenter et al. (2013) presented an alternative strategy

for the use of PM models within MI. They developed sensitivity analyses wherein

the unidentified conditional distribution can be identified via components borrowed

from different treatment arms.

These sensitivity analyses are amenable to an ITT estimand, which requires the

drop-out population, that after dropping out may have switched treatments, should

be analysed as part of the treatment regime they were initially assigned to. Little and
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Yau (1996) modelled the behaviour of the drop-out population as imputations that

conditioned on actual or assumed treatments received; the subjects who dropped

out differed from the completers in their compliance status, where compliance un-

der MAR, was assumed to be the same in both groups. This was then followed

by a classical ITT analysis based on the treatment ‘as randomised’. Under this

setup, the imputation and substantive MAR models differed only with respect to

the unobserved behaviour of the drop-outs.

3.6 Summary

This chapter presented the 3 main missing data assumptions, MCAR, MAR, and

MNAR within a longitudinal data setting, and introduced two new estimands,

namely de-jure and de-facto. These estimands are intended to improve upon the

meaning of traditional estimands, such as per-protocol and ITT, as they are particu-

larly suited to situations where missing data occur. As such, a de-jure estimand seeks

to answer questions that pertain to the expected treatment effect in the population,

if treatments were taken as specified in the protocol, whereas a de-facto estimand

would address questions that pertain to the treatment effect seen in practice by the

eligible population.

The most popular principled methods for the analysis of longitudinal data were

presented. These were GEEs, maximum likelihood based methods, and multiple

imputation. Analyses under GEEs are only valid if the missing data are MCAR.

For this reason, they cannot be used for a direct parameter estimation when the data

are MAR. However, if the aim is to obtain marginal inferences, multiple imputation

can still be performed using a population-average model in the final analysis stage.

With MAR data, both likelihood based approaches and MI are suitable for analysis

of longitudinal datasets. Also, both likelihood based approaches and MI address

de-jure questions and asymptotically provide the same results. Both methods allow

for the incorporation of auxiliary variables to increase the possibility of obtaining

MAR missing data, even if it is not desired to condition effects on specific auxiliary
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variables; likelihood based models can achieve this by assigning the auxiliary variable

a different mean in each group, whereas MI by including the auxiliary variable in

the imputation model, but not in the substantive model.

The great advantage of MI over likelihood however, is its flexibility to have an un-

congenial imputation model, in terms of allowing for different structures between

the imputation and substantive models. This flexibility permits MNAR models to

enter the analysis of incomplete datasets and make various statistical assumptions

about the behaviour of the missing components. Three classes of MNAR mod-

els exist; selection models, shared-parameter models and pattern-mixture models.

Pattern-mixture models are very amenable to MI; they form the conditional pre-

dictive distribution of the imputation model, which missing data are drawn from,

and allow for the construction of assumptions about the incomplete components in

a transparent way. The next chapter presents a new method that shows how MI

incorporate PM structures into its imputation stage, and develop in this way various

assumptions about the statistical behaviour of groups of individuals with missing

data.

In conclusion, if a patient’s or group of patients’ post-deviation conditional distri-

bution given their pre-deviation data is estimated from the available data in their

treatment arm, then a de-jure MAR assumption is being addressed (the probability

of deviation, given pre-deviation data, does not depend on post-deviation data). In

such a setting, both maximum likelihood and MI produce valid estimates. However,

to answer de-facto questions, where departures from the MAR assumption are as-

sumed, MI is the natural choice of estimation, because the imputation model, which

represents the conditional post-deviation distribution, is allowed to be estimated

from a different treatment arm.
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4 Current research

The new sensitivity analysis developed by Carpenter J., Roger J. and Kenward M.

(CRK) (2013) is presented in this chapter. The method explicitly incorporates a

model for subjects’ post-deviation outcome data. This model will typically be based

on an assumption about the treatment patients receive post-deviation, and can be

extended to include post-deviation data where there are available. The key feature

of the CRK method is that, for the construction of the post-deviation distribution,

information can be borrowed from other patient groups, which may receive different

treatments to those received by the drop-out patients pre-deviation; this is different

to the methods proposed by White et al. (2007) and Daniels and Hogan (2008)

that make use of a sensitivity parameter. The CRK method utilises simulated

parameters initially estimated from an MAR model, and then manipulates these

parameters to construct conditional distributions that would correspond to imputing

under an MAR or a transparent set of various MNAR assumptions. As a result, this

framework allows to make a wide range of assumptions about post-deviation given

pre-deviation data, which are relevant to both de-jure and de-facto estimands, and

then use multiple imputation as a convenient tool for estimation and inference.

4.1 The method

Consider a clinical trial, which gives rise to a quantitative outcome that is mea-

sured longitudinally. Also, assume this can be modelled by the multivariate Normal

distribution, that is:

yi = Xib + εi, εi ∼MVN(0,Vi) (13)

where yi is a (Ti× 1) response vector for subject i, Xi a (Ti× p) design matrix of p

covariates, b a (p× 1) vector of parameters, ε
′
i = (εi1, ..., εiTi) the residual, with Σi

the positive definite covariance matrix for εi. With a balanced design, the subscript

i from T and Σ can be dropped.
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The aim of an analysis, if there were no missing data, would be to estimate the

treatment effect at time T . In order to do this, either an ANCOVA model using

as outcomes the measurements at the final time point, or a mixed-effects regression

model can be fitted. With missing data, model (13) would give equivalent estimates

and standard errors, provided time is included as a categorical variable, a treatment

by time and baseline by time interaction is fitted, and a common unstructured co-

variance matrix to the treatment arms is used. The treatment by time interaction

allows to examine the outcome profile across time within each treatment arm. As

Siddiqui et al. (2009) note, the advantage of this model specification, is that “it

provides the direct estimates and statistical test of least square mean (LSMEAN)

differences of the treatment groups at the study endpoint, as well as at each sched-

uled study time point with respect to the primary efficacy measure”.With missing

data, since estimation with model (13) is likelihood based, a de-jure question is

addressed (see previous chapter).

The approach proceeds as follows. At the beginning, model (13) is fitted through

REML. Initial values for the means, variances and covariances are obtained, for each

treatment separately. These values are then used to initialise the MI process, which is

carried out through the MCMC algorithm (Carpenter and Kenward, 2013, Appendix

A); a sequence of parameter values is drawn, whose stationary distribution is the

posterior distribution p(θ|y) (θ denotes the means and covariance parameters of

model (13)). After discarding the early values of the chain, the ‘burn-in’, separately

for each treatment arm, a vector of means and a covariance matrix are obtained.

The posterior has a Normal multivariate likelihood. Following Schafer (1997), an

improper prior distribution is assigned to the mean and a Jeffreys’ prior to the

covariance matrix. With two treatments, for instance, an active treatment j = A

and a reference treatment j = R, there will therefore be two vectors of posterior
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means and two posterior covariance matrices:

µ̃
′

i,A,t = (µi,A,0, ..., µi,A,T ) , µ̃
′

i,R,t = (µi,R,0, ..., µi,R,T ) (14)

Σ̃i,A =


Ai,11 Ai,12 ... Ai,1T

...
...

. . .
...

Ai,T1 Ai,T1 ... Ai,TT

 , Σ̃i,R =


Ri,11 Ri,12 ... Ri,1T

...
...

. . .
...

Ri,T1 Ri,T1 ... Ri,TT

 (15)

Missing data are then drawn from the posterior predictive distribution:

f(yM |yO,D,θ) =
n∏
i=1

f(yi,m|yi,o, Di;θ) (16)

where the parameter vector θ uses the imputed parameters from (14) and (15). For

each patient who deviates, their posterior predictive distribution of post-deviation

given pre-deviation responses, (16), is defined using one of the rules described in

Section 4.1.1. MI proceeds sequentially and each subject of the sample leads to

a separate imputed dataset. The substantive model, used to analyse the imputed

datasets, is an ANCOVA model.

4.1.1 Assumptions

This exposition assumes two treatment groups (for simplicity), but the ideas can

be extended to multi-arm studies. Before constructing the conditional distributions

for the imputation models, the time of drop-out, Di = d, for each individual, and

for each treatment arm is noted. The vectors and matrices in (14) and (15) can be

partitioned, according to di, as:

µ̃
′

i,A,T = (µ̃i,A,0, ..., µ̃i,A,di , µ̃i,A,di+1, ..., µ̃i,A,T ) (17)

µ̃
′

i,R,T = (µ̃i,R,0, ..., µ̃i,R,di , µ̃i,R,di+1, ..., µ̃i,R,T ) (18)
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Σ̃i,A =



Ãi,11 ... Ãi,1di Ãi,1di+1 ... Ãi,1T
...

. . .
...

...
. . .

...

Ãi,di1 ... Ãi,didi Ãi,didi+1 ... Ãi,diT

Ãi,di+11 ... Ãi,di+1di Ãi,di+1di+1 ... Ãi,di+1T

...
. . .

...
...

. . .
...

Ãi,T1 ... Ãi,Tdi Ãi,Tdi+1 ... Ãi,TT


=

 Ãi,11 Ãi,12

Ãi,21 Ãi,22

(19)

Σ̃i,R =



R̃i,11 ... R̃i,1di R̃i,1di+1 ... R̃i,1T

...
. . .

...
...

. . .
...

R̃i,di1 ... R̃i,didi R̃i,didi+1 ... R̃i,diT

R̃i,di+11 ... R̃i,di+1di R̃i,di+1di+1 ... R̃i,di+1T

...
. . .

...
...

. . .
...

R̃i,T1 ... R̃i,Tdi R̃i,Tdi+1 ... R̃i,TT


=

 R̃i,11 R̃i,12

R̃i,21 R̃i,22

(20)

Hence, the joint distribution

N


 µ̃i,j,o

µ̃i,j,m

 ,

 Ṽi,11 Ṽi,12

Ṽi,21 Ṽi,22


 (21)

for subject i under treatment j, is pieced together according to the assumptions pro-

posed by Carpenter et al. (2013), in order to construct the conditional distributions

for the post-deviation given pre-deviation data for each patient. The authors explain

that each option addresses either a de-jure or de-facto estimand. The nomination

of the ‘Reference’ treatment below is left at the researcher’s discretion and depends

entirely upon the assumptions they wish to apply.

Randomised-arm MAR (MAR) The subject’s observed and missing responses are

multivariate normal with mean and covariance from their randomised arm. Under

this assumption, for each subject that deviates at any time point, the unobserved

components of their conditional distribution of post- given pre-deviation data, bor-
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rows information from within the same treatment group. Therefore, a de-jure esti-

mand is addressed.

For instance, for a patient that is randomised to treatment group A their conditional

mean will be constructed from components from (17). With regards to the covariance

matrix a combination of marginal and conditional components is used: for pre-

deviation time-points, that is ti = 1, ..., di, the marginal component of (19) is used,

whereas for post-deviation time-points, ti = di+1, ..., T , the conditional components

of (19) are used.

First, the conditional covariance matrix can be obtained after sweeping the sym-

metric matrix (19) on positions 1, 2, ..., di, using the SWEEP operator described by

Goodnight (1979):

SWP [1, 2, ..., di]Σ̃i,A =

 −Ã
−1
i,11 Ã

−1
i,11Ãi,12

Ãi,21Ã
−1
i,11 Ãi,22 − Ãi,21Ã

−1
i,11Ãi,12


where Ãi,22 − Ãi,21Ã

−1
i,11Ãi,12 can be used to compute the conditional covariance

matrix of yi,m given yi,o. Likewise, Ãi,21Ã
−1
i,11 can be used for the conditional coeffi-

cients.

The new covariance matrix will therefore be constructed from the following con-

straints:

Ṽi,11 = Ãi,11

Ṽi,21Ṽ
−1
i,11 = Ãi,21Ã

−1
i,11

Ṽi,22 − Ṽi,21Ṽ
−1
i,11Ṽi,12 = Ãi,22 − Ãi,21Ã

−1
i,11Ãi,12 (22)

where the marginal components are:

Ṽi,11 = Ãi,11 (23)

Ṽi,21 = Ãi,21Ã
−1
i,11Ṽi,11 = Ãi,21 (24)
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For instance, for subjects that belong to treatment group A their conditional distri-

butions at time point T given the past will be:

yi,T |yi,0, y∗i,1, ..., y∗i,T−1, Di = T − 1, gi = A ∼

N(µ̃i,A,T + ṽi,21Ṽ
−1
i,11(yi,A − µ̃i,A), Ṽi,22 − ṽi,21Ṽ

−1
i,11ṽi,12) (25)

where (yi,A−µ̃i,A) is a (T −1×1) vector, and Ṽ
−1
i,11 is the generalised inverse of Ṽi,11

from (23). Following identification of these distributions the MI process will proceed

sequentially to fill-in the missing values for each individual. Details of the how a

sequential imputation algorithm proceeds can be found in Kenward and Carpenter

(2009).

Jump to reference (J2R)

Here, the missing components of the conditional distributions for subjects in the

active group A are taken from the reference group R, addressing, this way, a de-

facto estimand. Missing components for distributions in the reference group are

imputed under the randomised-arm MAR assumption. For example, the conditional

distribution for a subject that belongs to treatment A and switches to treatment R

after time T − 1, will be:

yi,T |yi,0, y∗i,1, ..., y∗i,T−1, Di = T − 1, gi = A ∼

N(µ̃i,R,T + ṽi,21Ṽ
−1
i,11(yi,A − µ̃i,A), Ṽi,22 − ṽi,21Ṽ

−1
i,11ṽi,12) (26)

where now the conditional variance is:

Ṽi,22 − ṽi,21Ṽ
−1
i,11ṽi,12 = R̃i,22 − r̃i,21R̃

−1
i,11r̃i,12

and

Ṽi,11 = Ãi,11

ṽi,21 = r̃i,21R̃
−1
i,11Ṽi,11 = r̃i,21R̃

−1
i,11Ãi,11
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This set up is based on the idea that we want the new covariance matrix to match

that from the active arm for the pre-deviation measurements and the reference arm

for the conditional components for the post-deviation given the pre-deviation mea-

surements.

Last mean carried forward (LMCF)

Under this assumption the marginal mean of the subject’s distribution stays constant

after deviation, at the marginal mean of their randomised treatment arm. Also, the

covariance matrix remains that of the same treatment. Since, it is assumed after

deviation the patient is off treatment (maintaining however a certain level of benefit

achieved through treatment), a de-facto estimand is addressed. For example for a

subject in treatment A, it is assumed that the marginal means stay constant after

deviation:

µ̃
′

i,A,t = (µ̃i,A,0, ..., µ̃i,A,di−1, µ̃i,A,di−1, ..., µ̃i,A,di−1) (27)

and therefore, the conditional distribution would be:

yi,T |yi,0, y∗i,1, ..., y∗i,T−1, Di = T − 1, gi = A ∼

N(µ̃i,A,T−1 + ṽi,21Ṽ
−1
i,11(yi,A − µ̃i,A), Ṽi,22 − ṽi,21Ṽ

−1
i,11ṽi,12) (28)

where (yi,A − µ̃i,A) is again a (T − 1 × 1) vector of pre-deviation residuals. The

conditional covariance matrix and the marginal components are same as in (22),

(23) and (24). It should be noted, LMCF should not be confused with LOCF;

LMCF does not impute the same single value for each of the post-deviation values.

Rather, data are imputed from a conditional distribution with fixed post-withdrawal

marginal means.

Copy increments in reference (CiR)

After deviation, the subjects’ mean increments copy those from the reference group.

51



This assumption seeks to answer a de-facto question. Specifically, if the reference is

the control arm, then the patient’s mean profile following deviation, tracks that of

the mean profile in the control arm, but starting from the benefit already obtained

from the treatment. For a subject in treatment A the conditional distribution would

be:

yi,T |yi,0, y∗i,1, ..., y∗i,T−1, Di = T − 1, gi = A ∼

N(µ̃i,A,T−1 + (µ̃i,R,T − µ̃i,R,T−1) + ṽi,21Ṽ
−1
i,11(yi,A − µ̃i,A), Ṽi,22 − ṽi,21Ṽ

−1
i,11ṽi,12)(29)

The conditional variances are constructed in the same fashion as those under J2R.

For subjects that belong to the reference group their missing data are imputed as

per the randomised-arm MAR assumption.

Copy reference (CR)

As the name of the assumption implies, when subjects drop-out of the study the

means and the covariance matrix of their response distribution, both before and

after deviation, are replaced entirely with those from the reference arm. Hence,

a de-facto question is addressed. Specifically, if the reference group is assumed to

be the control, then this assumption mimics the case where those deviating do not

respond to treatment. For subjects who belong in the reference arm their imputation

model is that under the randomised arm MAR assumption. For instance, according

to this assumption, for a subject in treatment A its conditional distribution at time

T given the past, would be:

yi,T |yi,0, y∗i,1, ..., y∗i,T−1, Di = T − 1, gi = A ∼

N(µ̃i,R,T + ṽi,21Ṽ
−1
i,11(yi,A − µ̃i,R), Ṽi,22 − ṽi,21Ṽ

−1
i,11ṽi,12) (30)

Under this assumption, both the mean and the covariance structures come from the

reference arm, irrespective of deviation time. Note how the residuals (yi,A − µ̃i,R),

are measured from mean µ̃i,R for the reference arm, rather than that for the subjects’
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own arm. The covariance is therefore:

Ṽi,22 − ṽi,21Ṽ
−1
i,11ṽi,12 = R̃i,22 − r̃i,21R̃

−1
i,11r̃i,12

Ṽi,11 = R̃i,11

ṽi,21 = r̃i,21R̃
−1
i,11Ṽi,11 = r̃i,21

4.1.2 Summary

What has been described so far is a method for conducting sensitivity analysis, that

injects new ideas about the handling of the distributional behaviour of the subjects

after deviation. The method is based on MI and estimation of the parameters pro-

ceeds within the MI paradigm too. The method takes advantage of MI’s flexibility

to incorporate pattern-mixture constructs into its imputation stage, and construct

various MNAR assumptions about the unseen component of groups of individuals.

As such, five different assumptions were developed; Randomised-arm MAR, Jump

to Reference, Last Mean Carried Forward, Copy Increments in Reference, and Copy

Reference. It was shown these assumptions were build by components drawn from

an MAR model, within a Bayesian context.

However, as the conditional predictive distributions are pattern-mixture models and

the substantive models are ANCOVA on the final time point, the imputation and

analysis models are uncongenial. Hence, there is a need to explore the statistical

properties of the MI variance estimator in this new setting. In the next section, a

simulation study is presented which has been developed for this purpose.
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5 Evaluation of the properties of sensitivity anal-

ysis

5.1 Introduction

This chapter is concerned with the establishment of the statistical properties of the

CRK method. To this end, the properties of the estimators and the corresponding

hypotheses tests were examined, using simulation. The simulations were based on

the Alzheimer study described in Chapter 2. More specifically, they make use of

the information on the sample size, parameter estimates under MAR, and drop-out

patterns reported there.

5.2 Description of the simulations

Simulated data were constructed for two treatment arms, a placebo and an active

treatment, and two scenarios; one where the null hypothesis of no treatment effect

is true, and another one where the alternative hypothesis of treatment effect is true.

As per the Alzheimer’s study, a baseline and 5 subsequent time points were created.

Choice of parameters for the simulation study

The sample size of each treatment arm was similar to that in the Alzheimer’s study.

Specifically, the simulation was powered at 0.9, for an ADAS-cog score difference

of 2 at the final time point, a significance level of 0.05 and a standard deviation of

5.74 per treatment group, as reported in the Alzheimer’s study. Following this, the

sample size was calculated as follows:

N =
2(z(1−α/2) + z(1−β))var(Y6|Y1)

(µ2 − µ1)2

=
2× (1.96 + 1.28)2 × 5.742

22
' 174

per treatment arm.
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In order to choose the means for the MVN distribution, where the simulated variates

would be drawn from, the following was done: a regression model, which included

only the variable time (as a factor), was initially fitted to the baseline and the 5 post-

randomisation measurements of ADAS-cog scores from the placebo arm of the APOE

negative stratum. The model used an unstructured mean and covariance matrix.

Under the null hypothesis, the LSMEANS output from this model populated the

means for both the placebo and treatment arms. Under the alternative hypothesis,

the marginal means for the active arm were constructed in such a way that would

allow them to differ from the placebo means by a factor of 0.5 ADAS-cog score for

time points 1 and 2, 1 ADAS-cog score for time points 3 and 4, and 2 ADAS-cog

scores for the final time point 5. Baseline means were the same for both treatment

arms. These differences were broadly consistent with the means reported in the

Alzheimer’s study for placebo and 2mg RSG XR, under the on treatment MAR

assumption.

With respect to the covariance structure used in the MVN distribution for generating

the simulated data, it is noted the treatment arms shared the same covariance

matrix. In order to preserve the same sample size with the Alzheimer’s study, the

marginal covariance matrix Σpl, which was taken from the same regression model

previously used to estimate the mean response at each time point, had to agree

with the standard deviation for the final time point reported in the Alzheimer’s

study. It was noted that since the estimate of the standard deviation reported in

the Alzheimer’s study was a conditional value, a parameter c had to be found such

that cΣpl had conditional variance of the final time point given baseline of 5.742.

Therefore,

5.742 = c(Σpl,66 − Σpl,61(Σpl,11)
−1Σpl,16)

c =
5.742

(Σpl,66 − Σpl,61(Σpl,11)−1Σpl,16)

where Σpl,11 denotes the marginal variance of baseline placebo, Σpl,16 the marginal

covariance of placebo for the final time point, and baseline and Σpl,66 the marginal
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variance of placebo at the final time point. The resulting covariance matrix used in

the simulations was therefore cΣpl.

Having estimated the means and covariance parameters at each time point for each

treatment arm, 1000 hypothetical datasets under the null hypothesis and another

1000 datasets under the alternative hypothesis were created. Each dataset contained

348 individuals, and 6 time points. The Normal variates that populated the datasets

were drawn using the RANDNORMAL() function in SAS, that took a vector of

means for the 6 time points and the matrix of variance/covariance estimates, for

each treatment arm separately.

The original set of 2000 datasets, Set 1, did not have any missing data. At later

steps, Set 1 was manipulated, so that two other sets of datasets, Set 2 and Set 3,

would be constructed. In Set 2, some variates were deleted and then filled back

in, using the assumptions implied by the new sensitivity analysis. Set 3 composed

of datasets with missing data. As a result, Sets 1 and 2 were analysed as ‘com-

plete’ datasets, and Set 3 as incomplete datasets. It should be kept in mind that

datasets whose missing values were filled back in, as well as datasets with incomplete

follow-up used the same pre-deviation data taken from the original set of complete

datasets. Complete datasets were analysed with either an MMRM or an ANCOVA

model, whereas incomplete datasets were analysed with an ANCOVA model, after

having been imputed by the new sensitivity analysis. Under the alternative hypoth-

esis, the MMRM model was fitted assuming either a common covariance matrix in

the two treatment groups (consistent with the data generating mechanism), or a

separate covariance matrix in each treatment group. Further details on the 3 sets

of datasets are given below.

Complete follow-up

With respect to the original set of datasets, estimates from treatment difference bias,

MMRM/ANCOVA or Rubin’s estimator variance, sampling variance, power or size,

and coverage for the final time point over 1000 replications, for each hypothesis,
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were obtained. Analyses were firstly run under a mixed MMRM model, and then

under an ANCOVA model on the final time point. The MMRM model took the

form:

Yij =
5∑
t=1

1(t = j){β0j + β1jyi0 + β2jgi + εij} (31)

where εi = (εi1, ..., εi5)
T is multivariate Normal with an unstructured covariance

matrix. The justification for the functional form of the model is that, with no

missing data, the estimates and standard errors of β05, β15 and β25 will be the same

as from an ANCOVA model.

With respect to Set 2 of the simulated datasets, missing values were created and

were then replaced with data assuming either MAR or one of the 4 MNAR assump-

tions, namely J2R, LMCF, CiR, and CiR, encountered in section 4.1. This way,

fully observed datasets under each of the different assumptions were obtained and

analysed with both the MMRM and the ANCOVA models. Details on how missing

data were created in the datasets are given in the next section. The post-deviation

data were imputed by random draws from the appropriate conditional Normal dis-

tribution of each individual. For example, under MAR, this distribution resembles

equation (25). As a result, the post-deviation data are stochastically equivalent to

the original values before deleting them. With respect to the MNAR assumptions,

the data were imputed by draws from the corresponding conditional Normal distri-

butions, whose means resemble equations (26), (28), (29), and (30). All means and

covariance parameters used in the construction of the various conditional Normal

distributions were obtained from the marginal parameters of the data generating

mechanism, described earlier.

In general, post-deviation data in Set 2 were put back in as though the various post-

deviation assumptions were true. The purpose for creating this set of datasets, was

to explore the behaviour of the ANCOVA and MMRM models, assuming one were

fully able to observe the post-deviation data under these assumptions. Also, the

results from these datasets provide a theoretical benchmark against which, results
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from analyses that imply the same assumptions and applied to incomplete datasets

can be judged.

Incomplete follow-up

The second phase of simulations involved creating some monotone missing data in

the datasets; a stochastic process was used to allow for a random determination of

a deviation time for each patient, after which all data were deleted. The missing

data were created under a pattern-mixture approach. As such, there was a fixed

proportion of individuals missing the final time point only, another fixed proportion

of individuals missing the last two time points, and so on. Data were deleted only

for the final 4 time points, leaving baseline and time point 1 fully observed across

all subjects. These were MCAR missing data; each subject was assigned a constant

uniform probability and based on this, they were allocated to one of the missing

data patterns. The proportion of missing data in each pattern was based on the

Alzheimer’s study. These proportions however, were slightly adjusted to allow for

the fact that datasets did not include non-monotone patterns. A higher proportion

of individuals with missing data was also allowed. Hence, under the low proportion

(based on the Alzheimer’s study), each dataset contained approximately 20% of

individuals that had incomplete follow-up, whereas under the high proportion, half

of the subjects in each dataset had incomplete follow-up. The table below shows

the percentages of missing data by pattern of missingness:

Patterns Missing measurement Low % High %

D=5 No missing data 81 50

D=4 At time point 6 5.75 14.94

D=3 At time points 5 and 6 5.78 14.95

D=2 At time points 4, 5 and 6 4.6 10.34

D=1 At time points 3, 4, 5 and 6 2.87 9.77

Table 1: Patterns for the low and high proportions of missing data.
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The incomplete datasets of Set 3, were firstly imputed by SAS macros, written by

James Roger, that implement the pattern-mixture sensitivity analyses of section

4.1.1. The datasets that were fed into the macros contained the following variables:

baseline measurement, outcome measurements for the subsequent 5 times, a time

factor and a treatment factor. Under the alternative hypothesis, the macros were

run with both single and separate covariance matrices for the treatment groups. For

each dataset, the MCMC algorithm produced 100 imputed datasets. The thinning

value for the algorithm was set to 500. For the simulations, the placebo treatment

was chosen as the Reference arm in all assumptions.

The simulations focused on inference for the treatment difference at the final time

point. All 1000 null-hypothesis, as well as the 1000 alternative-hypothesis datasets

were fed into the macros, under each sensitivity analysis assumption. In turn, the

bias E(θ̄m|y) of the treatment difference θ̄ = E(yi,6,2|yi,0,2, gi, Tt)−E(yi,6,1|yi,0,1, gi, Tt))

was estimated, as well as the expectation of the Rubin’s Rules (or imputation)

variance E(Tm|y) returned by the program, over the m iterations (or generated

datasets). The latter was compared to the sampling variance of the imputation esti-

mator θ̄, that is: s2 =
∑1000

m=1(θ̄m−
¯̄θ)2/(m−1). Under the null hypothesis the size of

the hypothesis test was calculated, and under the alternative hypothesis the power

of the methods was obtained. Finally, the coverage of the nominal 95% confidence

intervals was recorded.

5.3 Results from the simulations

The tables below show the results from the simulations. They are grouped according

to whether the analyses used fully observed datasets or partially observed datasets.

Results from both the null hypothesis and alternative hypothesis are presented, for

both the low and high proportion of missing values.
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With no missing data, the MMRM and the ANCOVA models in Table 2, models 1

and 2, and Table 4, models 16-18, returned almost identical results. There was no

estimator bias and the type I error, the power and the coverage achieved the nominal

levels, as they should by design. The MMRM/ANCOVA variance returned from

these models was also unbiased; it agreed very closely with the sampling variance.

With partially observed datasets and no imputation, shown in Tables 3, 6, 9, and

11, models 9-10, 30-32, 49-50, and 62-63, the ANCOVA model was less efficient

compared to the MMRM model. Under the alternative hypothesis, with partially

observed datasets and no imputation, the ANCOVA model was both less efficient

and more underpowered than the MMRM model. This was the case under both the

low and the high proportion of missing data (Tables 6 and 11). The MMRM model

performed better because, as Brown and Prescott (2006) explain, it uses a covariance

matrix which is specified to describe the within-subject correlations across the time

points. So, observations at each time point influence estimates of treatment effects

at every other time point. Therefore, the observed values of subjects who drop-out

of the study will nevertheless be taken into account at later time points.

With both a low and a high proportion of missing data, no estimator bias was

detected with any of the models applied to datasets that create missing data and

then filled back in. In Tables 2, 4, 5, 8, and 10, whenever there are fully observed

datasets, whose missing values are put back in according to the sensitivity analysis

assumptions, it can be seen the sampling and MMRM/ANCOVA variances agree

well. In Table 4, the results from the MAR models 16-18 that were fitted to datasets

with no missing data, agreed very closely with the MAR models 19-21, that were

fitted to datasets whose missing data were filled back in. A loss of power can be

observed in Table 6, for the MAR models 30-32, fitted on datasets with missing

data, when compared to table 4, models 16-18; the power appears to be around 85%

when there were missing data, compared to 90% when datasets were complete. This

was natural, since with missing data there is always loss of information.

More precisely, with respect to type II error, it is worth pointing out how power
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decreases for the MMRM model from 90% in model 16 with no missing data, to

85% in model 30 with a low rate of missing data, to 73% in model 62 with a high

rate of missing data. The power from the pattern-mixture methods (models 33-

42 for the low proportion of missing values and 64-68 for the high proportion of

missing data) was generally lower than the models which used the true means and

covariances, fitted in datasets whose missing data were put back in (methods 19-

29 and 56-61, respectively). Among the MACRO models, those under the MNAR

assumptions had a lower power when compared to the MACRO MAR models. The

MACRO MAR achieved values closer to 0.9, and agreed very well with the MMRM

analyses for the incomplete datasets, whereas the greatest drop in power can be

observed with the MACRO J2R model, especially with a high proportion of missing

data, method 65.

With respect to the MACRO MAR models, the results show models 11, 33, and 34

agreed closely with those from the MMRM models 9, 30, and 31 under both the null

and alternative hypotheses. This was also true with a high proportion of missing

data and expected, as these analyses were carried out under the MAR assumption.

In addition, the rate of coverage as well as the actual rejection rate were very close

to the nominal level.

When post-deviation data are missing, the appropriate variance estimator is the

one that reflects the loss of information, by returning a variance estimate greater

than the corresponding variance estimate that would have been obtained, if data

were fully observed. It can be seen from Table 3, under the MAR assumption,

models 9-11, both variance estimators reflect the loss of information by returning

higher variance estimates when compared to the respective variance estimates in

Table 2, models 1-4, fitted in fully observed datasets. However, under the MNAR

assumptions, only Rubin’s Rules variance estimator reflect appropriately the loss of

information, since it appears inflated compared to the respective variance estimate

in Table 2. Therefore, the sampling variances in Tables 3 and 9, models 12-15, and

52-55, which are less than the respective ones in Tables 2 and 8, models 5-8, and

45-48, are inappropriate. At the same time, since Rubin’s variance estimator returns
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greater values than the empirical estimator of the sampling variances does, the CIs

will have a frequency coverage greater than the nominal 100(1 − 0.05)% (Table 3,

models 12-15).

The same is true under the alternative hypothesis as well, for both low and high

rates of missing data. It can be seen from Table 7, and under the MNAR models

35-42, how the value from Rubin’s variance estimator is the appropriate estimate to

use; a comparison of the variance estimates between Tables 7 and 5 implies Rubin’s

variance estimator appropriately account for the loss of information, as opposed

to the sampling variance estimate, which is decreased (also seen when comparing

models 65 to 58, 66 to 59, 67 to 60 and 68 to 61). Moreover, with a high rate of

missing data in Tables 8 and 9 that refer to datasets under the null hypothesis, it

becomes discernible how the increase in Rubin’s variance has a noticeable impact

on the size as well (MACRO MNAR methods J2R, LMCF, CR and CiR, table 9,

models 52-55).

The discrepancies that were found between the sampling variances of the MNAR

macros 12-15, 35-42, 52-55, and 65-68, and the sampling variances of the respective

models 5-8, 22-29, 45-48, and 58-61 under the fully observed datasets, is due to two

reasons. Firstly, with respect to the models in the fully observed datasets (5-8, 22-29,

45-48 and 58-61), under the various assumptions, the post deviation distribution in

each arm has a mixture of means (with the same variance about each mean), so that

the overall variance about a common mean in each arm is increased. The second

reason is the existence of a correlation that is induced by estimating the conditional

means for the missing responses using data from the reference treatment. To show

that, let the variance of the treatment difference be expressed as:

var(A−R) = var(A) + var(R)− 2cov(A,R)

With no missing data cov(A,R) = 0. However, with missing data there exists a

correlation in the estimation of the variance of the treatment difference, because the

two treatments shared the same conditional variances used in the distribution from
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which the missing data were drawn. An analytic expression of the existence of this

covariance that shows that the variance of the estimated treatment difference with

dropout is less than the variance of the treatment difference with fully observed data

is presented in Appendix 2.

On a different note, the discrepancy between Rubin’s variance and the sampling

variance estimates, seen in the MACRO MNAR models 12-15 and 35-42, for the low

proportion of missing data, and models 52-55 and 65-68, for the high proportion

of missing data, can be attributed to the first form of uncongeniality discussed in

section 3.4.2.3; the MNAR pattern-mixture models contain a ‘richer’ structure in

terms of the estimated parameters in each treatment group at each time, to that

in the substantive ANCOVA model used for the final analyses. On the other hand,

under MAR, both imputation and substantive models imply the same structure;

there, the two variances are similar, reflecting the fact that the imputation and

substantive models are congenial.

With regards to coverage, all results from models 12-15, 35-42, 52-55 and 65-68 were

now somewhat overestimated compared to the MAR assumption based models. This

was due to the increase in Rubin’s Rules variance estimator. The results across the

datasets with a low proportion of missing data showed that models with separate

covariances did not yield different values to those with single covariance. For this

reason, models with separate covariances were not used under the high proportion

of missing data datasets.

As far as the alternative hypothesis is concerned, in order to calculate the biases

and the rates of coverage, the true value of the difference of the estimates at the

final time point, implied by the pattern-mixture models, was used. The derivation

of the true values is presented in Appendix 1. It can be seen the true values for the

MACRO MNAR models are all different from -2.

The results show that with a high proportion of missing data, with a sample size

of 348 and with 100 imputations, a very small bias was introduced in the MACRO

J2R and LMCF, methods 52 and 66, as the values of the true difference was slightly
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outside their confidence interval. However, when these simulations were rerun with

250 imputations, the bias in both cases disappeared (J2R difference estimate (C.I.): -

0.0178 (-0.0425,0.0067), LMCF difference estimate (C.I.):-1.3855 (-1.4138, -1.3590)).

The disappearance of the bias that was due to Monte Carlo error, agrees with

published research that advices on running more imputations as the number of

missing values increases (for example, White et al. (2011)). It is worth noting that

the estimates for the rest of the quantities returned after 250 imputations, remained

the same.

5.4 Summary

The statistical properties of the proposed sensitivity analysis method described in

Chapter 4 were explored in this chapter using simulation. A number of hypothetical

datasets were constructed, populated with Normal variates, based on information

from the Alzheimer’s study presented in Chapter 2. Six time point included and 174

subjects were allowed per treatment arm. Datasets were created both under the null

and alternative hypothesis, allowing for both a low and a high proportion of missing

observations. As well as incomplete datasets, fully observed datasets were created

after having deleted missing data, by putting back in values drawn by models that

were based on the MNAR assumptions described in Chapter 4. These datasets

were analysed with MMRM models. The creation of these kind of fully observed

datasets was done in order to facilitate comparisons of the results with those obtained

when incomplete datasets were analysed by the equivalent assumptions of the new

sensitivity method.

The results from the simulations show that the new method is a sensible tool for

sensitivity analyses. No evidence of bias for the treatment difference estimator was

detected either under de-jure or de-facto questions. The size, the power, the sam-

pling variance as well as Rubin’s variance of the MACRO MAR methods were similar

to those obtained from the MMRM model when fitted to incomplete datasets, as

expected. With respect to the MACRO MNAR models however, there were some
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noticeable discrepancies between the estimates returned by the sampling and Ru-

bin’s variance. When those variances were compared to their equivalent estimates,

from models fitted in datasets whose missing values had been populated based on

the corresponding assumptions, it became obvious that Rubin’s variance was always

increased, whereas the estimator of the sampling variance consistently returned de-

creased estimates. Therefore, Rubin’s estimator of variance is the appropriate one

in this setting, as it properly reflected the loss of information from missing data.

Also, in terms of size and power the estimates returned from the MACRO MNAR

models were slightly lower, but in accordance with their theoretical equivalent from

the fully observed datasets.

After running simulations to examine the statistical properties of the CRK method,

the Alzheimer’s study will be analysed using the MNAR assumptions of the proposed

method. This will test the robustness of the MAR results obtained in the original

study to the various deviations. The next chapter attempts to identify the predictors

that drive the missingness in the Alzheimer’s dataset, and Chapter 7 presents the

results from the sensitivity analyses.
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6 Missing data in the Alzheimer’s dataset

In this chapter, the Alzheimer’s study is revisited. The primary analysis, carried

out for the ADAS-cog score, is repeated, and then the new sensitivity analysis

methodology is applied to examine the robustness of the inferences under a range

of assumptions about the statistical post-deviation behaviour of the subjects in the

dataset.

As previously mentioned, in order to reduce biases in the imputation model and the

standard errors of the estimates of the substantive model, the imputation model may

be extended by the inclusion of additional auxiliary variables. At the beginning, fol-

lowing Carpenter and Kenward (2007), logistic regression and survival analyses were

used to identify key independent predictors of deviation in the Alzheimer’s dataset,

discussed in Chapter 2. Both analyses deployed a backward and forward selection

procedure. A significance level of 10% was adopted. The Full analysis population of

all randomised patients was used. All baseline variables in the dataset were consid-

ered. The exception was ’child bearing potential’ which was highly correlated with

age and sex.

Firstly, unadjusted log odds and log hazard ratios were calculated. With regards to

the logistic regression, the response variable was chosen to be the binary indicator

of whether a subject completed the study or not. A subject would be deemed to

have completed the study, if they were present at the final time point. With regards

to the survival analysis, the time-to-event variable was defined as the time up to

completion or withdrawal, measured in days. As withdrawal was considered to be

the event in the time-to-event analysis, all patients who completed the study were

censored (coded as 0 in the program), otherwise they had the event (coded as 1 in

the program).

The results from the likelihood ratio tests for the effect of each variable in the

logistic models showed that the following variables were significant at the 10% level:

treatment (p-value=0.0021), age (p-value=<.0001), country (p-value=<.0001), race

(p-value=0.0146), disease history of relatives (p-value=0.0183), time to diagnosis
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(p-value=0.0033). The log odds for 2mg RSG XR and 8mg RSG XR were -0.3699

(s.e.=0.1619) and 0.1765 (s.e.=0.1510), implying that patients who received 2mg

RSG XR as opposed to placebo were less likely to withdraw, and patients who

received 8mg RSG XR as opposed to placebo were more likely to withdraw. With

respect to ‘country’, the results showed that the log odds ratio for ’USA+CANADA’

was standing out at 1.0664 (s.e.=0.2950), suggesting that withdrawal in this category

was mainly driven by the combination of these two countries.

The picture from the unadjusted hazard ratios was the same. The variables that were

found to be significant predictors of withdrawal were: treatment (p-value=0.0020),

age (p-value <.0001), country (p-value <.0001), race (p-value=0.0032), disease his-

tory of relatives (p-value=0.0130), time to diagnosis (p-value=0.0032). However,

with the time-to-event analysis, baseline mmse score was also found to be signifi-

cant at the 10% level (p-value=0.060).

Having noted the unadjusted results above, full forward and backward analyses were

conducted. The results are displayed in Tables 12 and 13. Both logistic and sur-

vival forward analyses started by including ‘country’ as the first variable. This was

because it returned the lowest p-value in the unadjusted analyses. Regarding the lo-

gistic analyses, both forward and backward selection processes identified treatment,

country, age, and baseline mmse score as predictors. Under the logistic models, it

can be seen that the forward selection process included ‘time to diagnosis’, while the

backward selection did not. The term that appears in brackets in the logistic for-

ward selection process, denotes the next most suitable candidate term to be added

on to the process, whereas the bracketed term in the logistic backward selection

process denotes the last term omitted by the process.

Regarding the results from the survival analyses, the predictors common to both

forward and backward selection processes were again treatment, country, age, and

baseline mmse score. The term ‘race’ is in brackets in the forward selection process,

because it became non-significant after the inclusion of the final term ‘disease history

of relatives’, as the association between ‘race’ and ‘disease history of relatives’ was
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significant: χ2 p-value=0.04. The bracketed term in the survival backward selection

process was the last one omitted by the process.

For both logistic and survival forward analyses, the displayed estimates and p-values

are those obtained after fitting the model with all variables in. The reference group

for the categorical covariates in Tables 12 and 13 are: Placebo for Treatment, Ar-

gentina & Brazil & Chile & Mexico & India for Country, Positives for APOE Status

and finally, African American for Race. The Negatives category in the APOE status

includes the following allele combinations: ε3.ε3, ε2.ε3 and ε2.ε2. The Positives

category includes: ε3.ε4, ε2.ε4 and ε4.ε4.
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Forward Logistic Backward Logistic
Predictors Estimate (s.e.) p-value Predictors Estimate (s.e.) p-value

Treatment 0.002 Treatment 0.014

2 mg RSG XR -0.415 (0.167) 2 mg RSG XR -0.314 (0.180)

8 mg RSG XR 0.155 (0.156) 8 mg RSG XR 0.203 (0.172)

Country <.001 Country <.001

HUN/POL/CZE/SUI -0.343 (0.323) HUN/POL/CZE/SUI -0.402 (0.335)

GRE/ESP/POR -0.656 (0.344) GRE/ESP/POR -0.747 (0.375)

USA/CAN 0.804 (0.244) USA/CAN 0.732 (0.259)

JPN -0.614 (0.343) JPN -0.714 (0.349)

FRA 0.001 (0.295) FRA -0.009 (0.324)

GER 0.339 (0.261) GER 0.367 (0.289)

ITA 0.193 (0.265) ITA 0.063 (0.281)

AUT -0.214 (0.339) AUT -0.339 (0.366)

Age 0.032 (0.009) <.001 Age 0.028 (0.010) 0.003

MMSE score -0.031 (0.016) 0.058 MMSE score -0.034 (0.017) 0.053

Time to diag. 0.073 (0.041) 0.078 (Relatives hist.) (0.139)

No -0.340 (0.227)

(APOE status) (0.116)

Negatives 0.211 (0.134)

Table 12: Results of forward and backward stepwise logistic analyses. HUN; Hungary, Pol; Poland, CZE; Czech
Republic, SUI; Switzerland, GRE; Greece, ESP; Spain, POR; Portugal, CAN; Canada, JPN; Japan, FRA; France,
GER; Germany, ITA; Italy, AUT; Austria.
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Forward Survival Backward Survival
Predictors Estimate (s.e.) p-value Predictors Estimate (s.e.) p-value

Country <.0001 Country <.0001

HUN/POL/CZE/SUI -0.305 (0.316) HUN/POL/CZE/SUI -0.368 (0.301)

GRE/ESP/POR -0.604 (0.355) GRE/ESP/POR -0.664 (0.342)

USA/CAN 0.654 (0.236) USA/CAN 0.572 (0.217)

JPN 0.514 (1.064) JPN -0.733 (0.320)

FRA 0.002 (0.295) FRA -0.045 (0.281)

GER 0.347 (0.263) GER 0.303 (0.246)

ITA 0.111 (0.262) ITA 0.049 (0.244)

AUT -0.283 (0.339) AUT -0.342 (0.326)

Treatment 0.0159 Treatment 0.0137

2 mg RSG XR -0.282 (0.157) 2 mg RSG XR -0.287 (0.156)

8 mg RSG XR 0.157 (0.144) 8 mg RSG XR 0.159 (0.144)

Age 0.026 (0.008) 0.0017 Age 0.026 (0.008) 0.0015

MMSE score -0.027 (0.015) 0.0675 MMSE score -0.026 (0.015) 0.0731

Relatives hist. 0.0853 (Relatives hist.) (0.1231)

No -0.315 (0.183) No -0.282 (0.183)

(Race) (0.4098)

American Indian/
Alaskan Native 1.530 (1.121)

Central/S. Asian 0.821 (1.439)

Asian/S.E. Asian 1.551 (1.441)

White/Arabic/
North African 2.432 (1.241)

White/Caucasian/
European 1.190 (1.012)

Table 13: Results of forward and backward stepwise analyses. HUN; Hungary, Pol; Poland, CZE; Czech Republic,
SUI; Switzerland, GRE; Greece, ESP; Spain, POR; Portugal, CAN; Canada, JPN; Japan, FRA; France, GER;
Germany, ITA; Italy, AUT; Austria.
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Following on from the discussion in Chapter 3, after having identified the key base-

line predictors of deviation, important baseline predictors of the incomplete outcome

variable in the Alzheimer’s study were also sought. In order to do this, an MMRM

model was fitted to the full analysis set. This model had the same structure as

in section 5.2 that is, it regressed ADAS-cog score on full time-baseline and time-

treatment interactions plus a baseline variable. For instance, if the aim was to

check whether the covariate ‘country’ was a significant predictor of the outcome

(or whether it had any significant association with the outcome), then the MMRM

model would include full time-baseline and time-treatment interactions plus ‘coun-

try’. As a result, a number of MMRM models were fitted that included a different

baseline variable each time. For the comparison between placebo and 2mg RSG XR,

the covariates that significantly predicted the incomplete outcome were found to be:

country (p-value= <0.001), mmse score (p-value= <0.001), race (p-value=0.052),

ethnicity (being hispanic/latino or not) (p-value=0.036) and time to diagnosis (p-

value=0.070). For the comparison between placebo and 8mg RSG XR the corre-

sponding significant predictors were: country (p-value= <0.0001), ethnicity (being

hispanic/latino or not) (p-value=0.013) and mmse score (p-value= <0.0001).

The results from the analyses so far suggest that country, mmse score, ethnicity and

time to diagnosis are all potentially useful auxiliary variables. All these variables

(except ethnicity) were found to predict both outcome and deviation. However,

as the purpose was to make inferences about treatment effect, these variables were

further tested to see if adjusting for them, in the MMRM model 31, would alter

the estimated treatment effect at the final time point. The justification for doing

this is, if these variables were not to change the inference about the treatment

effect on the outcome under an MAR model, then there is no reason to believe they

would change this inference when fitted as auxiliary variables in an MAR imputation

analysis either. So, the additional work of including them in the sensitivity analysis

is unlikely to be worthwhile.

To this end, the impact of all covariates in the dataset (not just the auxiliary vari-

ables previously identified) on treatment was tested, by calculating confidence inter-

81



vals around the treatment estimates obtained firstly, from the original MMRM model

31, and secondly, from the ones that included an additional variable, and checking

whether these intervals overlap. If the intervals obtained from the MMRM models

with the additional variable overlap with that from the original MMRM model, that

would mean the treatment effect on the outcome had not changed. The treatment

effect from the original model 31 was also compared against two more elaborate

models: i) a MMRM model as reported in the Harrington et al. study, which in-

cluded the additional variables of country, mmse score, mmse by time, APOE copies,

and bmi, and ii) a model (termed ‘combo’ in the figures below) which utilised the

auxiliary variables previously found to be significant that is, country, mmse score,

race, ethnicity and time to diagnosis for the comparison between 2mg RSG XR arm

and placebo, and country, mmse score and ethnicity for the comparison between

8mg RSG XR arm and placebo.

In Figures 1 and 2 the original treatment estimate is plotted along with its 95% C.I.,

together with the corresponding results after adjusting for each of the covariates in

turn.
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Figure 1: Points represents treatment coefficients from the original MMRM model (Alpha) and
the MMRM models with the additional variable. Lines represent the corresponding confidence
intervals. The labels along the x-axis refer to the additional variable included in the MMRM
models. The model from the Harrington study is termed ‘Harrington’, whereas the model including
all the significant predictors of the outcome is termed ‘Combo’.
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Figure 2: Points represents treatment coefficients from the original MMRM model (Alpha) and
the MMRM models with the additional variable. Lines represent the corresponding confidence
intervals. The labels along the x-axis refer to the additional variable included in the MMRM
models. The model from the Harrington study is termed ‘Harrington’, whereas the model including
all the significant predictors of the outcome is termed ‘Combo’.

Considering the comparison between 2mg RSG XR and placebo, it can be seen that

none of the treatment estimates, in models with country, mmse score, race, ethnicity

and time to diagnosis, are significantly different to the treatment estimate obtained

from the original MMRM model. Actually, none of the covariates (or combination of

covariates) change dramatically the effect of treatment. The same conclusions can

be drawn from the comparison between 8mg RSG XR and placebo. Appendix C

presents the estimates of the treatment effects, after fitting the additional covariates,

as well as the estimates of the covariates themselves.

6.1 Summary

This chapter was concerned with finding suitable auxiliary variables for the imputa-

tion analysis of the Alzheimer’s data. The aim was to find predictors of deviation, as

well as predictors of the incomplete outcome, and finally test whether these would
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alter the inference around the treatment estimate. At the beginning, for the iden-

tification of predictors of deviation, unadjusted logistic and survival analyses were

conducted, and the significant covariates were noted. These were then put into a

logistic and a survival model, and stepwise processes for the elimination of non-

significant covariates were carried out. Pooling the results from both logistic and

survival analyses together, the identified predictors of deviation were: country, age,

mmse score, time-to-diagnosis, and relatives history of the disease. Moreover, the

predictors of outcome, after fitting an MMRM model, were found to be: country,

mmse score, race, ethnicity, and time-to-diagnosis for the low dose comparison, and

country, ethnicity, and mmse score for the high dose comparison. It was noted

however from further analyses, that none of these, nor any other baseline variables

altered the treatment estimate significantly. As such, it was decided not to use any

of these covariates as auxiliary variables.
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7 Sensitivity analysis for the Alzheimer’s study

In this chapter, a sensitivity analysis for the treatment difference at the final visit in

the Alzheimer’s study, introduced in Chapter 2, is performed and discussed. The aim

is to apply the new sensitivity analysis to explore the robustness of these conclusions

to various assumptions about the post-deviation behaviour.

Analyses are performed for all three analysis populations in the Alzheimer’s study;

APOE ε4 negative patients, all patients except those who are homozygous for the

ε4 genotype, and the full patient population. The Harrington study, showed there

was no significant difference at the final time point between 8 mg RSG XR and

placebo in change from baseline in any of these three analysis populations. As a

result, the authors did not proceed to formally test the comparison between 2 mg

RSG XR and placebo within the hierarchical process. They offer however results

from ‘exploratory’ analyses between 2 mg RSG XR and placebo; there, they state

‘a small to moderate potential benefit of 2 mg RSG XR was suggested’ (APOE ε4

negative: -1.3 ADAS-cog score points; p = 0.049, All except ε4/ε4 genotype: -1.0

ADAS-cog score points; p = 0.035, Full population: -1.0 ADAS-cog score points;

p = 0.02). The authors note however in the document, ‘these results should be

interpreted with caution because they were not statistically significant in light of

the hierarchical procedure which was employed to control type I error over multiple

statistical tests’. In the same study, ADAS-cog scores in the placebo group declined

over time. At the final time they had declined by 3.4 points since baseline.

As the proportion of individuals with missing data was approximately 20%, for

each sensitivity analysis 100 imputations were created updating the sampler 500

times between each imputed dataset. All MAR and the four MNAR assumptions

were deployed. The MAR analysis target the de-jure estimand, in other words,

what treatment effect is expected if post-deviation patients continued to adhere to

treatment as specified in the protocol. The J2R assumption addresses the de-facto

question that post-deviation patients would receive a different treatment from the

one they were randomised to. Usually, patients with chronic conditions who receive
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placebo would switch to an active treatment. Therefore, under the placebo vs 2mg

RSG XR comparison, J2R would allow placebo patients who deviate, to jump to 2mg

RSG XR, whereas under the placebo vs 8mg RSG XR comparison, placebo patients

who deviate jump to 8mg RSG XR. However, in this setting this assumption is

rather unfair to the treatments, and are not useful for evaluating whether the drugs

work. Instead, it shows the effect of a pragmatic post-deviation switch to active

treatment for the placebo patients.

The LMCF assumption assumes that patients after deviation did not receive any

treatment, but that their condition remained stable around their treatment group

mean at deviation. This is a plausible assumption, if it is believed the treatment

has managed to control the course of the Alzheimer’s disease.

The CiR assumption uses the placebo treatment as the reference treatment. Under

CiR, patients on the active treatment follow their randomised profile prior to devia-

tion, but after deviation the marginal means in the conditional distribution change

according to changes observed in the placebo group. This assumption is suited to

situations where it is believed that patients cease receiving treatment after drop-out

and as in the case of the Alzheimer’s disease, it is generally known that without

any treatment, patients display a steady deterioration. Under CR, when imputing

post deviation data for an 8mg say, patient who deviates, the joint distribution of

their pre- and post-deviation data is replaced entirely with those from the placebo

arm. For the Alzheimer’s disease data, the placebo treatment was used as refer-

ence, reflecting this way, a situation where someone on an active treatment does not

respond to it at all.

To run the imputations, three subjects with missing baseline measurements were

deleted. Moreover, the LMCF and CiR assumptions, required that the first mea-

surement after baseline be fully observed in order to run. As a result, all subjects

that were missing their first ADAS-cog measurement were deleted, that is 20 pa-

tients for the comparison between placebo and 2mg RSG XR and 47 patients for

the comparison between placebo and 8mg RSG XR.
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Following the conclusions of the previous chapter, auxiliary variables were not in-

cluded in the imputation model for the sensitivity analyses. Hence, the structure of

the imputation model involved only time as a categorical factor, treatment, baseline,

a baseline by time and a treatment by time interaction.

The results from the SAS MACROS for the treatment difference at the final time

point, under the three analysis populations are shown in Tables 14-19. Under the

‘J2R’ method the ‘2mg RSG XR’ and ‘8mg RSG XR’ treatments act as the ‘refer-

ence’ arm, where ‘placebo’ patients ‘jump to’, whereas the reference arm under ‘CR’

and ‘CiR’ is placebo. The results from the Harrington’s study are also displayed.
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Analysis 2mg RSG XR vs Placebo Harrington’s Result
Estimate (St. error) p-value Estimate 95% C.I.

MAR -1.3006 (0.6837) 0.0580 -1.3 (-2.7, -0.0)

J2R -1.0631 (0.6911) 0.1250

LMCF -1.1301 (0.6956) 0.1052

CR -1.1721 (0.6804) 0.0859

CiR -1.2669 (0.6909) 0.0676

Table 14: Results from the APOE ε4 negative subpopulation, for the 2mg RSG XR
vs Placebo comparison.

Analysis 2mg RSG XR vs Placebo Harrington’s Result
Estimate (St. error) p-value Estimate 95% C.I.

MAR -0.9903 (0.4670) 0.0440 -1.0 (-1.9, -0.1)

J2R -0.7398 (0.4689) 0.1151

LMCF -0.8919 (0.4689) 0.0576

CR -0.9029 (0.4686) 0.0544

CiR -0.9698 (0.4657) 0.0377

Table 15: Results from the All except ε4/ε4 genotype subpopulation, for the 2mg
RSG XR vs Placebo comparison.

Analysis 2mg RSG XR vs Placebo Harrington’s Result
Estimate (St. error) p-value Estimate 95% C.I.

MAR -1.0122 (0.4575) 0.0272 -1.0 (-1.9, -0.2)

J2R -0.7881 (0.4512) 0.0811

LMCF -0.9935 (0.4608) 0.0314

CR -0.9394 (0.4573) 0.0403

CiR -0.9932 (0.4574) 0.0302

Table 16: Results from the Full population, for the 2mg RSG XR vs Placebo
comparison
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Analysis 8mg RSG XR vs Placebo Harrington’s Result
Estimate (St. error) p-value Estimate 95% C.I.

MAR -0.1835 (0.4941) 0.7105 -0.2 (-1.7, 1.3)

J2R -0.1252 (0.4965) 0.8002

LMCF -0.3196 (0.4910) 0.5154

CR -0.1722 (0.4926) 0.7268

CiR -0.1367 (0.5000) 0.7847

Table 17: Results from the APOE ε4 negative subpopulation, for the 8mg RSG XR
vs Placebo comparison.

Analysis 8mg RSG XR vs Placebo Harrington’s Result
Estimate (St. error) p-value Estimate 95% C.I.

MAR -0.0823 (0.5189) 0.8740 0.0 (-1.0, 1.0)

J2R -0.0183 (0.5414) 0.9730

LMCF -0.2446 (0.5243) 0.6408

CR -0.0805 (0.5251) 0.8783

CiR -0.0075 (0.5273) 0.9887

Table 18: Results from the All except ε4/ε4 genotype subpopulation, for the 8mg
RSG XR vs Placebo comparison.

Analysis 8mg RSG XR vs Placebo Harrington’s Result
Estimate (St. error) p-value Estimate 95% C.I.

MAR -0.2290 (0.5027) 0.6488 -0.2 (-1.2, 0.7)

J2R -0.1797 (0.4919) 0.7150

LMCF -0.3349 (0.4957) 0.4996

CR -0.1124 (0.4996) 0.8221

CiR -0.1330 (0.4963) 0.7888

Table 19: Results from the Full population, for the 8mg RSG XR vs
Placebo comparison.

Under the MAR assumption the results above agree with those found in the Har-

rington study: the high dose treatment did not show a statistically significant effect

when compared to placebo, in any population. This was the case for all comparisons

under all analysis populations, and under all MNAR assumptions.
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With regards to the low dose comparison, it can be seen, under MAR, the results

across all populations agree again with those from the Harrington study. The 2mg

RSG XR treatment showed an effect at a 5% level at the final visit. Under J2R,

the 2mg RSG XR dose had a significant effect at the 10% level under the ‘Full

population’, but not under the other two populations. Generally, the differences

were more pronounced in the ‘Full population’, since this dataset had the highest

number of data, and hence the most information. With regards to the LMCF

assumption, a significant effect at the 10% level in favour of the 2mg RSG XR across

all populations exists, and under the ‘Full population’ the same treatment is showing

an effect at the 5% level. Under CR, the comparison shows a significant difference

at the 10% level in all populations, as does under CiR, as well. With regards to the

latter assumption, 2mg RSG XR exhibits a difference at the 5% level under the ‘all

except ε4 genotype homozygous’, and the ‘Full population’ populations.

In general, the results above imply that inferences from the initial MAR methods

are robust to the sensitivity analysis assumptions. Especially, in the case of the

high dose treatment, inferences are uniform across all analyses. The size of the

differences between the low dose RSG XR and placebo, seen in Harrington’s study,

was maintained in the results presented here too. These differences were described

as small to moderate. They were obtained from analyses that were not subjected to

the more rigorous inferential process, which controlled for type I error, since 8 RSG

XR was not found statistically different from placebo. This, coupled with the fact

the treatments were taken on top of the main therapy, makes it hard to assert the

clinical superiority of the low-dose treatment. In Harrington’s study, the authors

claim the difference seen in favour of the low dose treatment, but not in favour of

the high dose treatment, was “unexpected”. Scientifically, “the effect of RSG XR in

AD is thought to be via enhanced glucose uptake into the brain”, and as such the

high dose treatment is expected to confer more of a benefit. It was further argued,

the small supremacy of 2mg RSG XR over placebo, may well be due to chance, as

this finding was not replicated in a different study.
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7.1 Summary

In this chapter, the new MI sensitivity analysis was applied to the Alzheimer’s

dataset. The analyses populations were split according to criteria set in the original

Alzheimer’s study, and both de-jure and de-facto estimands were estimated under

the 5 available assumptions, the method allowed at the time of writing. None of

the results from the sensitivity analysis showed any difference between 8mg RSG

XR and placebo. On the other hand, there was a general tendency in favour of the

low dose RSG XR when compared to placebo, but this did not meet a clinically

meaningful cut-off point, and has not been adjusted for rigorous control of type I

error. The MAR findings which imply the high dose treatment is not any different

from placebo, is robust to de-facto sensitivity analyses. Also, it is fairly robust

under the low dose treatment comparisons, and agrees very closely with the CiR

assumption, which is perhaps one of the most plausible assumptions in this setting.
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8 Discussion

This thesis considered the analysis of clinical trials with continuous longitudinal

outcomes, when not all patients adhere to the protocol. It is widely acknowledged

that in this setting, inferences depends on untestable assumptions, so that sensitivity

analyses, as a means to testing inferences from such assumptions, is vital. However,

accessible and relevant methods for conducting sensitivity analyses in this setting

are lacking. The aim of this thesis was to evaluate and then apply to an Alzheimer’s

trial a new approach to sensitivity analysis, which frames accessible and relevant

assumptions in which, post-deviation, patients’s data are imputed by reference to

another treatment arm, or group, in the study.

In the beginning, the data from an Alzheimer’s study were introduced. These data

served to motivate this thesis. They came from a randomised controlled trial, which

was set up to examine whether the daily addition of rosiglitazone extended release

tablets to donepezil treated Alzheimer’s patients for 48 weeks, could slow the devel-

opment of the disease, as measured by ADAS-cog scores. The analysis was done on

three separate populations; the ‘APOE ε4 negative’ subpopulation, the ‘All except

ε4/ε4 genotype’ subpopulation and the ‘Full population’. The study suffered from

a non trivial proportion of drop-out, with 29%, 22%, and 33% missing data at the

final visit in the placebo, 2mg RSG XR, and 8mg RSG XR groups, respectively.

As the main tool for analysis in the study was an MMRM model, which implies

an MAR assumption, this thesis investigated the robustness of inference from these

data to different assumptions about patients’ behaviour post-deviation.

In Chapter 3, notation and basic principles of missing data are introduced, within

the longitudinal data setting. The occurrence of missing data in clinical trials ne-

cessitates a careful consideration of the population which the treatment effect is

estimated for, and for this reason two new estimands were introduced by Carpenter

et al. (2013); de-jure and de-facto. A de-jure estimand answers questions such as,

what the treatment effect be on average in the target population of eligible patients,

if treatment and control were taken as specified in the protocol. On the other hand,
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a de-facto estimand aims to answer questions about what would be the effect seen in

practice, if the treatment was assigned to the target population of eligible patients,

as defined in the trial’s inclusion criteria. The new estimands clarify the target of

estimation, by carefully describing the population under which the analysis is con-

ducted. Within this framework, it was explained that the analysis of longitudinal

per-protocol measurements addresses a de-jure question, and that a traditional ITT

analysis should best be seen within an MNAR framework, which seeks to answer

‘de-facto’ questions.

In order to analyse a trial and make inferences for these estimands, a primary anal-

ysis assumption should be identified followed by a series of alternative assumptions

to assess the robustness of the inferences. Therefore, in Chapter 4, a description

of the CRK sensitivity analysis, which makes assumptions about post-deviation be-

haviour under de-jure and de-facto estimands by reference to other patient group in

the study, was presented. It was shown this approach was based on MI for param-

eter estimation and inference, and that the incorporation of the different de-facto

assumptions was achieved via the manipulation of the predictive distribution of the

imputation model.

The first main contribution of this thesis was to thoroughly explore the statistical

properties of the new method via simulation. To this end, a series of simulation

studies were set up based on the motivating Alzheimer’s data. Two different sets of

simulated data were created; one under the null hypothesis and another one under

the alternative hypothesis. Within each set, datasets were divided into datasets

with no missing data, datasets whose missing data were filled back in using the

assumptions implied by the new sensitivity analysis, and finally datasets with miss-

ing data. Moreover, datasets with missing data were allowed to have a small or a

high proportion of missing values (20% and 50%). Datasets with complete follow-

up were analysed with either an MMRM or an ANCOVA model, whereas datasets

with incomplete follow-up were analysed with an ANCOVA model after having been

imputed by the new sensitivity analysis. In all datasets, the bias, size or power, Ru-

bin’s and empirical variances, as well as the coverage were calculated. The principal
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results were as follows:

Under the MAR assumption, the inferences drawn from the MACRO MAR models,

agreed closely with those from the MMRM analyses on datasets with missing data.

This was true for both the null and alternative hypotheses datasets, as well as for the

low and high rates of missing data datasets. No evidence of bias for the treatment

difference estimator was found. Under the MAR assumption, no bias was found

for Rubin’s Rules variance either. This variance was very similar to the empirical

variance; the very small observed differences between the two variance estimates

were due to Monte Carlo variability. Under the null hypothesis, the MAR method

attained coverages and sizes very close to the nominal levels for both low and high

proportions of missing data. Under the alternative hypothesis, the power values

for the new method under the MAR assumption, were a little lower than 90%,

reflecting the loss of information when missing data exist. It however remained

close to the power returned by the MMRM analyses, for both low and high missing

data proportions. In relation to coverage, the MACRO MAR methods, for either

hypotheses and proportions of missing data, achieved the nominal levels.

With respect to the MNAR methods, no estimator bias was found. In order to

estimate the various quantities in the simulations under the alternative hypotheses,

the true expected value for the difference between the two treatments, for each

MNAR scenario, had to be calculated. This theoretical value, that was operating

within a pattern-mixture approach, is different to the original value for treatment

differences that was allowed in the simulations by construction.

In the null hypothesis datasets, the sizes attained by the MNAR models of the new

method were similar to the equivalent sizes obtained from fully observed datasets.

With a large rate of missing data however there were some noticeable differences.

This resulted by the fact that Rubin’s variance increased in the absence of fully

observed dataset. In the alternative hypothesis datasets, the power returned by

the MNAR models of the new method agreed too with the powers from the fully

observed datasets, but this agreement started to disappear with a higher amount of
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missing data in the datasets.

It was noted, when missing data exist the appropriate variance estimator should

reflect the loss of information in the dataset, and hence, should be greater than

the respective variance estimate if data are complete. Although under MAR, both

Rubin’s and sampling variance estimators were able to reflect this loss of informa-

tion (they both increased compared to the respective variance estimates under fully

observed scenarios), it was only Rubin’s variance estimator that appropriately ac-

counted for it under the MNAR assumptions, as well. By contrast, under the MNAR

scenarios, the sampling variance was decreasing.

It was also shown that the discrepancies between the sampling variances of the

MACRO MNAR models and the sampling variances of the respective MNAR models

under fully observed datasets, were attributed to two operations; first was the fact

that in the fully observed datasets the variance about a common mean, derived from

a mixture of means, is increased and second was a correlation that enters the formula

for the variance of the treatment difference. This correlation exists due to the fact

the method is using information from the reference arm to impute the active arm.

The use of a greater number of imputations did not alleviate this problem.

All the above, suggest the new method is a valid technique for conducting sensitivity

analyses with missing data, with sensible statistical properties. It returns unbiased

point estimates with inflated standard errors that appropriately take into account

the loss of information. Inherent in principled analyses with missing data is the

fact that a power to detect an effect is reduced and this was also reflected in this

investigation.

The new sensitivity analysis method was applied to a published Alzheimer’s study.

Analyses were conducted in order to identify auxiliary variables for the imputation

models. The results showed that none of the tested covariates would alter the infer-

ence for treatment, and therefore it was decided the imputation models should run

with a baseline by time and treatment by time interaction only. Under the de-jure

estimand, no evidence of treatment difference was discernible from the comparison
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between the high dose treatment and placebo. Some evidence of treatment difference

existed when the low dose treatment was compared to placebo. This finding though,

should be interpreted with caution, as the differences were obtained from analyses

not subjected to the rigorous inferential process that was used in the Harrington’s

study, and, as the authors argued, the finding may have been due to chance, and it

was not replicated in a different study..

Under the de-facto estimands, the results showed that inferences, under the same

treatment comparison, were broadly similar to those obtained from the de-jure anal-

yses. This showed robustness of the primary inference to different assumptions

about patients’ behaviour after deviation. Given that gradually the condition of

Alzheimer’s patients who stop taking treatment deteriorates, the most plausible de-

facto assumption was deemed to be CiR. The CiR assumption agreed closely with

inferences from the MAR assumption. It was clear that any comparison between

8mg RSG XR and placebo did not provide any evidence towards the superiority of

the active treatment over placebo.

In summary, this thesis was set up to investigate the statistical behaviour of the new

method for sensitivity analysis proposed by Carpenter et al. (2013), and to apply the

method onto a published Alzheimer’s clinical trial, with a non-trivial proportion of

missing data. In order to explore the statistical properties of the method, a number

of simulations were conducted, with fully observed datasets that had missing data

and were filled in assuming ‘J2R’, ‘LMCF’, ‘CR’, and ‘CiR’, and with datasets whose

post-deviation data were missing, and imputed under the same assumptions using

MI. It was shown the sampling variance of the estimator was much smaller than

that from Rubin’s rules. The sampling variance under imputation was also much

smaller than the sampling variance obtained, if post-deviation data were observed,

something that was not true with Rubin’s rules variance. The latter was always

higher with missing data rather than with fully observed datasets, reflecting the

loss of information due to missing data. Therefore, in this context, Rubin’s rules

variance estimates are preferable. The second part of the thesis demonstrated the

application of the methodology in an Alzheimer’s study. The results corroborated
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the original findings of the de-jure analyses, since these were fairly robust to all the

de-facto analyses.

A key theoretical challenge is yet to be explored. This is to relate Rubin’s variance

estimator to the proportion of information lost by not seeing the post-deviation

data, and hence give the new method a stronger theoretical justification.

In conclusion, the new sensitivity analysis proposed by Carpenter et al. (2013) is a

valid method which permits the construction of transparent, relevant and accessible

assumptions for the post-deviation behaviour of the subjects in longitudinal settings.

Its validity was demonstrated by simulation and its applicability by real trial data.
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A Appendix

True pattern-mixture treatment differnce under the alternative hypothesis

This section illustrates how the true value at the final time-point under the alternative

hypothesis is obtained, according to the various constraints implied by the sensitivity as-

sumptions in section 4.1.1. The means for the Reference and Active treatments are:

Reference = 25.2569, −0.1545, −0.05384, 0.9923, 1.3188, 2.5282

Active = 25.2569, −0.6545, −0.55384, −0.0077, 0.3188, 0.5282

Before applying the assumptions, the conditional distributions of the final time point given

the previous time points, split by the various patterns, are presented. The patterns are de-

fined by D ∈ {1, 2, 3, 4, 5}. Distributions with non-identified components (whose parameters

do not appear in the observed data likelihood) are marked with �. For simplicity, notation

on subject i has been suppressed.

� f(y6|y1, y2, y3, y4, y5, g = j,D = 1) ∼

N(b
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0 + b
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(D=3)
5 y5, τ

2(D=3))

� f(y6|y1, y2, y3, y4, y5, g = j,D = 4) ∼

N(b
(D=4)
0 + b

(D=4)
1 y1 + b

(D=4)
2 y2 + b

(D=4)
3 y3 + b

(D=4)
4 y4 + b

(D=4)
5 y5, τ

2(D=4))

X f(y6|y1, y2, y3, y4, y5, g = j,D = 5) ∼

N(b
(D=5)
0 + b

(D=5)
1 y1 + b

(D=5)
2 y2 + b

(D=5)
3 y3 + b

(D=5)
4 y4 + b

(D=5)
5 y5, τ

2(D=5))

where τ 2 denotes the conditional variance.
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The conditional mean of the un-identified distribution for pattern 1 can be expressed as:

µ
(D=1)
6,j = Ey6(y6|D = 1, g = j)

= Ey5 [Ey4 [Ey3 [Ey2 [Ey1 [Ey6(y6|y1, y2, y3, y4, y5, D = 1, g = j)|D = 1, g = j]]]]]

= Ey5 [Ey4 [Ey3 [Ey2 [Ey1 [b
(D=1)
0,j + b

(D=1)
1,j y1 + b

(D=1)
2,j y2 + b

(D=1)
3,j y3

+ b
(D=1)
4,j y4 + b

(D=1)
5,j y5|D = 1, g = j]]]]]

= b
(D=1)
0,j + b

(D=1)
1,j µ

(D=1)
1,j + b

(D=1)
2,j µ

(D=1)
2,j + b

(D=1)
3,j µ

(D=1)
3,j + b

(D=1)
4,j µ

(D=1)
4,j + b

(D=1)
5,j µ

(D=1)
5,j

where the intercept:

b
(D=1)
0,j = µ

(D=1)
6,j − b(D=1)

1,j µ
(D=1)
1,j − b(D=1)

2,j µ
(D=1)
2,j − b(D=1)

3,j µ
(D=1)
3,j − b(D=1)

4,j µ
(D=1)
4,j − b(D=1)

5,j µ
(D=1)
5,j

Similarly, for the rest of the patterns:

µ
(D=2)
6,j = b

(D=2)
0,j + b

(D=2)
1,j µ

(D=2)
1,j + b

(D=2)
2,j µ

(D=2)
2,j + b

(D=2)
3,j µ

(D=2)
3,j + b

(D=2)
4,j µ

(D=2)
4,j + b

(D=2)
5,j µ

(D=2)
5,j

...

µ
(D=5)
6,j = b

(D=5)
0,j + b

(D=5)
1,j µ

(D=5)
1,j + b

(D=5)
2,j µ

(D=5)
2,j + b

(D=5)
3,j µ

(D=5)
3,j + b

(D=5)
4,j µ

(D=5)
4,j + b

(D=5)
5,j µ

(D=5)
5,j

The marginal mean for each treatment is given by:

µ6,j = E(y6|g = j) = ED[Ey6(y6|D = d, g = j)|g = j]

=
5∑

D=1

Ey6(y6|D = d, g = j)πg=jD (32)

So, the true marginal difference between the Active treatment and the Reference treatment,

at the final time point, is:

µ6,A − µ6,R (33)
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Randomised arm MAR

The population means across the different patterns for each treatment arm are equal. Under

the MAR assumption the marginal population treatment difference was calculated as:

Ey6(y6|D = 1, g = j,MAR)

= b
(D=5)
0,j + b

(D=5)
1,j µ

(D=1)
1,j + b

(D=5)
2,j µ

(D=1)
2,j + b

(D=5)
3,j µ

(D=1)
3,j + b

(D=5)
4,j µ

(D=1)
4,j + b

(D=5)
5,j µ

(D=1)
5,j

= µ
(D=5)
6,j + b

(D=5)
1,j (µ

(D=1)
1,j − µ(D=5)

1,j ) + b
(D=5)
2,j (µ

(D=1)
2,j − µ(D=5)

2,j ) + b
(D=5)
3,j (µ

(D=1)
3,j − µ(D=5)

3,j )

+ b
(D=5)
4,j (µ

(D=1)
4,j − µ(D=5)

4,j ) + b
(D=5)
5,j (µ

(D=1)
5,j − µ(D=5)

5,j )

= µ
(D=5)
6,j

...

Ey6(y6|D = 4, g = j,MAR)

= b
(D=5)
0,j + b

(D=5)
1,j µ

(D=4)
1,j + b

(D=5)
2,j µ

(D=4)
2,j + b

(D=5)
3,j µ

(D=4)
3,j + b

(D=5)
4,j µ

(D=4)
4,j + b

(D=5)
5,j µ

(D=4)
5,j

= µ
(D=5)
6,j + b

(D=5)
1,j (µ

(D=4)
1,j − µ(D=5)

1,j ) + b
(D=5)
2,j (µ

(D=4)
2,j − µ(D=5)

2,j ) + b
(D=5)
3,j (µ

(D=4)
3,j − µ(D=5)

3,j )

+ b
(D=5)
4,j (µ

(D=4)
4,j − µ(D=5)

4,j ) + b
(D=5)
5,j (µ

(D=4)
5,j − µ(D=5)

5,j )

= µ
(D=5)
6,j

Following (32), for the low proportion of missing data we have:

µ6,R = µ
(D=5)
6,R π1 + µ

(D=5)
6,R π2 + µ

(D=5)
6,R π3 + µ

(D=5)
6,R π4 + µ

(D=5)
6,R π5

= (2.5282× 0.0287) + (2.5282× 0.0460) + (2.5282× 0.0578)

+ (2.5282× 0.0575) + (2.5282× 0.81)

= 2.5282

µ6,A = µ
(D=5)
6,A π1 + µ

(D=5)
6,A π2 + µ

(D=5)
6,A π3 + µ

(D=5)
6,A π4 + µ

(D=5)
6,A π5

= (0.5282× 0.0287) + (0.5282× 0.0460) + (0.5282× 0.0578)

+ (0.5282× 0.0575) + (0.5282× 0.81)

= 0.5282
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and for the high proportion:

µ6,R = µ
(D=5)
6,R π1 + µ

(D=5)
6,R π2 + µ

(D=5)
6,R π3 + µ

(D=5)
6,R π4 + µ

(D=5)
6,R π5

= (2.5282× 0.0977) + (2.5282× 0.1034) + (2.5282× 0.1495)

+ (2.5282× 0.1494) + (2.5282× 0.5)

= 2.5282

µ6,A = µ
(D=5)
6,A π1 + µ

(D=5)
6,A π2 + µ

(D=5)
6,A π3 + µ

(D=5)
6,A π4 + µ

(D=5)
6,A π5

= (0.5282× 0.0977) + (0.5282× 0.1034) + (0.5282× 0.1495)

+ (0.5282× 0.1494) + (0.5282× 0.5)

= 0.5282

Following (33), the true difference in both cases is -2.

Jump to reference

Under J2R, the conditional means for the Active treatment take the following form:

Ey6(y6|D = 1, g = A, J2R)

= µ
(D=5)
6,R + b

(D=5)
1,A·R (µ

(D=1)
1,A − µ(D=5)

1,A ) + b
(D=5)
2,A·R (µ

(D=1)
2,A − µ(D=5)

2,A ) + b
(D=5)
3,A·R (µ

(D=1)
3,A − µ(D=5)

3,A )

+ b
(D=5)
4,A·R (µ

(D=1)
4,A − µ(D=5)

4,A ) + b
(D=5)
5,A·R (µ

(D=1)
5,A − µ(D=5)

5,A )

= µ
(D=5)
6,R

...

Ey6(y6|D = 4, g = A, J2R)

= µ
(D=5)
6,R + b

(D=5)
1,A·R (µ

(D=4)
1,A − µ(D=5)

1,A ) + b
(D=5)
2,A·R (µ

(D=4)
2,A − µ(D=5)

2,A ) + b
(D=5)
3,A·R (µ

(D=4)
3,A − µ(D=5)

3,A )

+ b
(D=5)
4,A·R (µ

(D=4)
4,A − µ(D=5)

4,A ) + b
(D=5)
5,A·R (µ

(D=4)
5,A − µ(D=5)

5,A )

= µ
(D=5)
6,R

since the true means within each treatment were the same across the patterns. The composite

coefficients bA·R formed from components of the Active and Reference treatments. However

in this case, their construction was straightforward since a single covariance matrix was used
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to generate the data for both Active and Reference treatments.

Therefore, for the low proportion of missing data, we have:

µ6,R = µ
(D=5)
6,R π1 + µ

(D=5)
6,R π2 + µ

(D=5)
6,R π3 + µ

(D=5)
6,R π4 + µ

(D=5)
6,R π5

= (2.5282× 0.0287) + (2.5282× 0.0460) + (2.5282× 0.0578)

+ (2.5282× 0.0575) + (2.5282× 0.81)

= 2.5282

µ6,A = µ
(D=5)
6,R π1 + µ

(D=5)
6,R π2 + µ

(D=5)
6,R π3 + µ

(D=5)
6,R π4 + µ

(D=5)
6,A π5

= (2.5282× 0.0287) + (2.5282× 0.0460) + (2.5282× 0.0578)

+ (2.5282× 0.0575) + (0.5282× 0.81)

= 0.9082

Hence, the true difference is -1.62. For the high proportion of missing data we have:

µ6,R = µ
(D=5)
6,R π1 + µ

(D=5)
6,R π2 + µ

(D=5)
6,R π3 + µ

(D=5)
6,R π4 + µ

(D=5)
6,R π5

= (2.5282× 0.0977) + (2.5282× 0.1034) + (2.5282× 0.1495)

+ (2.5282× 0.1494) + (2.5282× 0.5)

= 2.5282

µ6,A = µ
(D=5)
6,R π1 + µ

(D=5)
6,R π2 + µ

(D=5)
6,R π3 + µ

(D=5)
6,R π4 + µ

(D=5)
6,A π5

= (2.5282× 0.0977) + (2.5282× 0.1034) + (2.5282× 0.1495)

+ (2.5282× 0.1494) + (0.5282× 0.5)

= 1.5282

Thus, the true difference is -1.
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Last mean carried forward

This assumptions implies:

Ey6(y6|D = 1, g = j, LMCF )

= µ
(D≥1)
2,j + b

(D≥1)
1,j (µ

(D=1)
1,j − µ(D≥1)

1,j ) + b
(D≥1)
2,j (µ

(D=1)
2,j − µ(D≥1)

2,j )

+ b
(D≥1)
3,j (µ

(D=1)
3,j − µ(D≥1)

3,j ) + b
(D≥1)
4,j (µ

(D=1)
4,j − µ(D≥1)

4,j ) + b
(D≥1)
5,j (µ

(D=1)
5,j − µ(D≥1)

5,j )

= µ
(D≥1)
2,j

...

Ey6(y6|D = 4, g = j, LMCF )

= µ
(D≥4)
5,j + b

(D≥4)
1,j (µ

(D=4)
1,j − µ(D≥4)

1,j ) + b
(D≥4)
2,j (µ

(D=4)
2,j − µ(D≥4)

2,j )

+ b
(D≥4)
3,j (µ

(D=4)
3,j − µ(D≥4)

3,j ) + b
(D≥4)
4,j (µ

(D=4)
4,j − µ(D≥4)

4,j ) + b
(D≥4)
5,j (µ

(D=4)
5,j − µ(D≥4)

5,j )

= µ
(D≥4)
5,j

since the true means within each treatment were the same across the patterns.

For the low proportion of missing data, we obtain:

µ6,R = µ
(D≥1)
2,R π1 + µ

(D≥2)
3,R π2 + µ

(D≥3)
4,R π3 + µ

(D≥4)
5,R π4 + µ

(D=5)
6,R π5

= (−0.1545× 0.0287)− (0.0538× 0.0460) + (0.9923× 0.0578)

+ (1.3188× 0.0575) + (2.5282× 0.81)

= 2.1741

µ6,A = µ
(D≥1)
2,A π1 + µ

(D≥2)
3,A π2 + µ

(D≥3)
4,A π3 + µ

(D≥4)
5,A π4 + µ

(D=5)
6,A π5

= (−0.6545× 0.0287)− (0.5538× 0.0460)− (0.0077× 0.0578)

+ (0.3188× 0.0575) + (0.5282× 0.81)

= 0.4015
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Hence, the true difference is -1.7726. For the respective difference under the high proportion

of missing data, we have:

µ6,R = µ
(D≥1)
2,R π1 + µ

(D≥2)
3,R π2 + µ

(D≥3)
4,R π3 + µ

(D≥4)
5,R π4 + µ

(D=5)
6,R π5

= (−0.1545× 0.0977)− (0.0538× 0.1034) + (0.9923× 0.1495)

+ (1.3188× 0.1494) + (2.5282× 0.5)

= 1.5888

µ6,A = µ
(D≥1)
2,A π1 + µ

(D≥2)
3,A π2 + µ

(D≥3)
4,A π3 + µ

(D≥4)
5,A π4 + µ

(D=5)
6,A π5

= (−0.6545× 0.0977)− (0.5538× 0.1034)− (0.0077× 0.1495)

+ (0.3188× 0.1494) + (0.5282× 0.5)

= 0.1894

Hence, the true difference is -1.3995.

Copy reference

Under CR, the residuals component of the conditional means is measured from the mean

of the reference arm, rather than that of the subjects’ own arm. This means that the

non-identified conditional distributions of the Active treatment will be formed as follows:

Ey6(y6|D = d, g = A,CR)

= Ey5 [Ey4 [Ey3 [Ey2 [Ey1 [Ey6(y6|y1, y2, y3, y4, y5, D = d, g = A,CR)|D = d, g = A,CR]]]]]

= Ey5 [Ey4 [Ey3 [Ey2 [Ey1 [b0,j + b1,jy1 + b2,jy2 + b3,jy3

+ b4,jy4 + b5,jy5|D = d, g = A,CR]]]]]

= b0,R + b1,Rµ1,A + b2,Rµ2,A + b3,Rµ3,A + b4,Rµ4,A + b5,Rµ5,A

where the intercept:

b0,R = µ6,R − b1,Rµ1,R − b2,Rµ2,R − b3,Rµ3,R − b4,Rµ4,R − b5,Rµ5,R
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So, we get:

Ey6(y6|D = 1, g = A,CR)

= µ
(D=5)
6,R + b

(D=5)
1,R (µ

(D=1)
1,A − µ(D=5)

1,R ) + b
(D=5)
2,R (µ

(D=1)
2,A − µ(D=5)

2,R )

+ b
(D=5)
3,R (µ3,A

(D=1) − µ(D=5)
3,R ) + b

(D=5)
4,R (µ4,A

(D=1) − µ(D=5)
4,R ) + b

(D=5)
5,R (µ5,A

(D=1) − µ(D=5)
5,R )

Ey6(y6|D = 2, g = A,CR)

= µ
(D=5)
6,R + b

(D=5)
1,R (µ

(D=2)
1,A − µ(D=5)

1,R ) + b
(D=5)
2,R (µ

(D=2)
2,A − µ(D=5)

2,R )

+ b
(D=5)
3,R (µ

(D=2)
3,A − µ(D=5)

3,R ) + b
(D=5)
4,R (µ4,A

(D=2) − µ(D=5)
4,R ) + b

(D=5)
5,R (µ5,A

(D=2) − µ(D=5)
5,R )

Ey6(y6|D = 3, g = A,CR)

= µ
(D=5)
6,R + b

(D=5)
1,R (µ

(D=3)
1,A − µ(D=5)

1,R ) + b
(D=5)
2,R (µ

(D=3)
2,A − µ(D=5)

2,R )

+ b
(D=5)
3,R (µ

(D=3)
3,A − µ(D=5)

3,R ) + b
(D=5)
4,R (µ

(D=3)
4,A − µ(D=5)

4,R ) + b
(D=5)
5,R (µ5,A

(D=3) − µ(D=5)
5,R )

Ey6(y6|D = 4, g = A,CR)

= µ
(D=5)
6,R + b

(D=5)
1,R (µ

(D=4)
1,A − µ(D=5)

1,R ) + b
(D=5)
2,R (µ

(D=4)
2,A − µ(D=5)

2,R )

+ b
(D=5)
3,R (µ

(D=4)
3,A − µ(D=5)

3,R ) + b
(D=5)
4,R (µ

(D=4)
4,A − µ(D=5)

4,R ) + b
(D=5)
5,R (µ

(D=4)
5,A − µ(D=5)

5,R )

Note that the underlined means are non-identifiable and therefore they were equated to:

µ
(D=1)
3,A = µD≥23,R + b

(D≥2)
1,R (µ

(D=1)
1,A − µ(D≥2)

1,R ) + b
(D≥2)
2,R (µ

(D=1)
2,A − µ(D≥2)

2,R )

µ
(D=1)
4,A = µD≥34,R + b

(D≥3)
1,R (µ

(D=1)
1,A − µ(D≥3)

1,R ) + b
(D≥3)
2,R (µ

(D=1)
2,A − µ(D≥3)

2,R ) + b
(D≥3)
3,R (µ

(D=1)
3,A − µ(D≥3)

3,R )

µ
(D=1)
5,A = µD≥45,R + b

(D≥4)
1,R (µ

(D=1)
1,A − µ(D≥4)

1,R ) + b
(D≥4)
2,R (µ

(D=1)
2,A − µ(D≥4)

2,R ) + b
(D≥4)
3,R (µ

(D=1)
3,A − µ(D≥4)

3,R )

+ b
(D≥4)
4,R (µ

(D=1)
4,A − µ(D≥4)

4,R )

µ
(D=2)
4,A = µD≥34,R + b

(D≥3)
1,R (µ

(D=2)
1,A − µ(D≥3)

1,R ) + b
(D≥3)
2,R (µ

(D=2)
2,A − µ(D≥3)

2,R ) + b
(D≥3)
3,R (µ

(D=2)
3,A − µ(D≥3)

3,R )

µ
(D=2)
5,A = µD≥45,R + b

(D≥4)
1,R (µ

(D=2)
1,A − µ(D≥4)

1,R ) + b
(D≥4)
2,R (µ

(D=2)
2,A − µ(D≥4)

2,R ) + b
(D≥4)
3,R (µ

(D=2)
3,A − µ(D≥4)

3,R )

+ b
(D≥4)
4,R (µ

(D=2)
4,A − µ(D≥4)

4,R )

µ
(D=3)
5,A = µD≥45,R + b

(D≥4)
1,R (µ

(D=3)
1,A − µ(D≥4)

1,R ) + b
(D≥4)
2,R (µ

(D=3)
2,A − µ(D≥4)

2,R ) + b
(D≥4)
3,R (µ

(D=3)
3,A − µ(D≥4)

3,R )

+ b
(D≥4)
4,R (µ

(D=3)
4,A − µ(D≥4)

4,R )
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The conditional coefficients for the regressions, were estimated using the sweep operator,

based on Dempster’s (1969) algorithm. In order to estimate the conditional coefficients, a

matrix was formed whose elements comprised the true marginal means, variances and co-

variances of the reference group. The augmented matrix took the form:

B =



−1 µ1 µ2 µ3 µ4 µ5 µ6

µ1 σ11 σ12 σ13 σ14 σ15 σ16

µ2 σ21 σ22 σ23 σ24 σ25 σ26

µ3 σ31 σ32 σ33 σ34 σ35 σ36

µ4 σ41 σ42 σ43 σ44 σ45 σ46

µ5 σ51 σ52 σ53 σ54 σ55 σ56

µ6 σ61 σ62 σ63 σ64 σ65 σ66


Giving:

b31·12 = SWEEP [2, 3]B23 = −0.0135

b32·12 = SWEEP [2, 3]B33 = 0.5074

b41·123 = SWEEP [2, 3, 4]B24 = 0.0535

b42·123 = SWEEP [2, 3, 4]B34 = 0.3184

b43·123 = SWEEP [2, 3, 4]B44 = 0.6182

b51·1234 = SWEEP [2, 3, 4, 5]B25 = 0.1015

b52·1234 = SWEEP [2, 3, 4, 5]B35 = 0.1062

b53·1234 = SWEEP [2, 3, 4, 5]B45 = 0.2890

b54·1234 = SWEEP [2, 3, 4, 5]B55 = 0.4941

As a result,

µ
(D=1)
3,A = −0.3075

µ
(D=1)
4,A = 0.6763

µ
(D=1)
5,A = 1.0362

µ
(D=2)
4,A = 0.524

µ
(D=2)
5,A = 0.8898

µ
(D=3)
5,A = 0.6271

and therefore, the conditional means at the final time point were:
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µ
(D=1)
6,A = 2.2101, µ

(D=2)
6,A = 2.0591, µ

(D=3)
6,A = 1.7364, µ

(D=3)
6,A = 1.5362

Therefore, for the low proportion of missing data, we have:

µ6,R = (2.5282× 0.0287) + (2.5282× 0.0460) + (2.5282× 0.0578)

+ (2.5282× 0.0575) + (2.5282× 0.81)

= 2.5282

µ6,A = (2.2101× 0.0287) + (2.0591× 0.0460) + (1.7364× 0.0578)

+ (1.5362× 0.0575) + (0.5282× 0.81)

= 0.7747

Hence, the true difference is -1.7535. For the high proportion of missing data we have:

µ6,R = (2.5282× 0.0977) + (2.5282× 0.1034) + (2.5282× 0.1495)

+ (2.5282× 0.1494) + (2.5282× 0.5)

= 2.5282

µ6,A = (2.2101× 0.0977) + (2.0591× 0.1034) + (1.7364× 0.1495)

+ (1.5362× 0.1494) + (0.5282× 0.5)

= 1.1820

Thus, the true difference is -1.3462.
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Copy increments in reference

This assumption implies that the conditional means of the Active treatment would be formed

as:

Ey6(y6|D = 1, g = A,CiR)

= µ
(D=1)
2,A + (µ

(D=5)
6,R − µ(D=1)

2,R ) + b
(D=5)
1,A·R (µ

(D=1)
1,A − µ(D=5)

1,A ) + b
(D=5)
2,A·R (µ

(D=1)
2,A − µ(D=5)

2,A )

+ b
(D=5)
3,A·R (µ

(D=1)
3,A − µ(D=5)

3,A ) + b
(D=5)
4,A·R (µ

(D=1)
4,A − µ(D=5)

4,A ) + b
(D=5)
5,A·R (µ

(D=1)
5,A − µ(D=5)

5,A )

= µ
(D=1)
2,A + (µ

(D=5)
6,R − µ(D=1)

2,R )

...

Ey6(y6|D = 4, g = A,CiR)

= µ
(D=4)
5,A + (µ

(D=5)
6,R − µ(D=4)

5,R ) + b
(D=5)
1,A·R (µ

(D=4)
1,A − µ(D=5)

1,A ) + b
(D=5)
2,A·R (µ

(D=4)
2,A − µ(D=5)

2,A )

+ b
(D=5)
3,A·R (µ

(D=4)
3,A − µ(D=5)

3,A ) + b
(D=5)
4,A·R (µ

(D=4)
4,A − µ(D=5)

4,A ) + b
(D=5)
5,A·R (µ

(D=4)
5,A − µ(D=5)

5,A )

= µ
(D=4)
5,A + (µ

(D=5)
6,R − µ(D=4)

5,R )

Therefore, for the low proportion of missing data, we have:

µ6,R = (2.5282× 0.0287) + (2.5282× 0.0460) + (2.5282× 0.0578)

+ (2.5282× 0.0575) + (2.5282× 0.81)

= 2.5282

µ6,A = (2.0282× 0.0287) + (2.0282× 0.0460) + (1.5282× 0.0578)

+ (1.5282× 0.0575) + (0.5282× 0.81)

= 0.7555
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Hence, the true difference is -1.7726. For the high proportion of missing data we have:

µ6,R = (2.5282× 0.0977) + (2.5282× 0.1034) + (2.5282× 0.1495)

+ (2.5282× 0.1494) + (2.5282× 0.5)

= 2.5282

µ6,A = (2.0282× 0.0977) + (2.0282× 0.1034) + (1.5282× 0.1495)

+ (1.5282× 0.1494) + (0.5282× 0.5)

= 1.1288

Thus, the true difference is -1.3994.

110



B Appendix

Proof of covariance for treatment difference

Consider a trial with 100 patients in each of the two arms, baseline and a single follow-up,

common covariance matrix and normally distributed outcome. Suppose 50 patients drop-out

of the active arm, and none from the placebo arm. Further, suppose we use either Jump

to Placebo or Copy Placebo. These two assumptions agree in the case of a single follow-up

time, as baseline is assumed to be the same on average for the two arms. The respective

means for placebo and the active treatment can be expressed as:

µ̂R =
1

100

100∑
i=1

yi,1,R,

µ̂A =
1

100

(
50∑
i=1

yoi,1,A +
100∑
i=51

E
(
ymi,1,A|yoi,0,A, J2R/CR

))
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Hence, the covariance of the two means equals:

cov(µ̂R, µ̂A)

= cov

(
1

100

100∑
i=1

yi,1,R,
1

100

(
50∑
i=1

yoi,A +
100∑
i=51

E
(
ymi,1,A|yoi,0,A, CR/J2R

)))

= cov

(
1

100

100∑
i=1

yi,1,R,
1

100

(
50∑
i=1

yoi,A +
100∑
i=51

(
β̂0,R + β̂1,Ry

o
i,0,A

)))

= cov

(
1

100

100∑
i=1

yi,1,R,
1

100

(
50∑
i=1

yoi,A +
100∑
i=51

(
ȳ1,R + β̂1,R (yi,0,A − ȳ0,R)

)))

= cov

(
1

100

100∑
i=1

yi,1,R,
1

100

(
50∑
i=1

yoi,A +
100∑
i=51

(
ȳ1,R +

∑100
i=51(yi,0,R − ȳ0,R)(yi,1,R − ȳ1,R)∑100

i=51(yi,0,R − ȳ0,R)2
(yi,0,A − ȳ0,R)

)))

= cov

(
1

100

100∑
i=1

yi,1,R,
50

100
ȳ1,R

)
+

cov

(
1

100

100∑
i=1

yi,1,R,
1

100

100∑
i=51

∑100
i=51(yi,0,R − ȳ0,R)(yi,1,R − ȳ1,R)∑100

i=51(yi,0,R − ȳ0,R)2
(yi,0,A − ȳ0,R)

)

= cov

(
1

100

100∑
i=1

yi,1,R,
50

100

1

50

100∑
i=51

yi,1,R

)
+

1

200

1∑100
i=51(yi,0,R − ȳ0,R)2

cov

(
100∑
i=1

yi,1,R,
100∑
i=51

(yi,0,R − ȳ0,R)yi,1,R (yi,0,A − ȳ0,R)

)

=
1

100

1

100
cov

(
100∑
i=1

yi,1,R,
100∑
i=51

yi,1,R

)
+

1

200

1∑100
i=51(yi,0,R − ȳ0,R)2

cov(y1,1,R + ...+ y100,1,R,

(y51,0,R − ȳ0,R)y51,1,R(y51,0,A − ȳ0,R) + ...+ (y100,0,R − ȳ0,R)y100,1,R(y100,0,A − ȳ0,R))

=
1

100

1

100
50var(y1,R) +

1

200

1∑100
i=51(yi,0,R − ȳ0,R)2

[(y51,0,R − ȳ0,R)(y51,0,A − ȳ0,R)var (y51,1,R) + ...

+ (y100,0,R − ȳ0,R)(y100,0,A − ȳ0,R)var (y100,1,R)] > 0
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C Appendix

The following two tables present the treatment estimates from fitting the MMRM model

after the incorporation of each predictor in turn, as well as the estimate of the respective

predictor variable itself. The reference groups of the factor variables are: Argentina & Brazil

& Chile & Mexico & India for Country, Positives for APOE Status and finally, African

American for Race. The Negatives category in the APOE status includes the following allele

combinations: ε3.ε3, ε2.ε3 and ε2.ε2. The Positives category includes: ε3.ε4, ε2.ε4 and

ε4.ε4. The reference category for APOE copies is 0. The allele combinations that form the

categories in APOE copies are: ε4.ε4 coded as 0, ε3.ε4 and ε2.ε4 coded as 1, and ε3.ε3,

ε2.ε3 and ε2.ε2 coded as 2.
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Estimated Effect Coefficient Estimate for
2mg RSG XR vs Placebo additional variables included
Estimate (s.e.) p-value Predictors Estimate (s.e.) p-value

-1.019 (0.459) 0.026 None - -

-0.960 (0.457) 0.036 Country 0.005

HUN/POL/CZE/SUI 0.434 (0.605)

GRE/ESP/POR 1.001 (0.612)

USA/CAN 0.529 (0.520)

JPN 1.399 (0.608)

FRA 0.643 (0.601)

GER -0.126 (0.543)

ITA 1.062 (0.553)

AUT -0.956 (0.617)

-1.006 (0.457) 0.026 Age -0.030 (0.016) 0.074

-1.015 (0.459) 0.027 Gender 0.692

Male -0.107 (0.272)

-1.018 (0.449) 0.023 MMSE score -0.316 (0.048) <.0001

-1.046 (0.457) 0.022 Race 0.051

American Indian/
Alaskan Native -3.454 (2.267)

Central/S. Asian -4.323 (2.557)

Asian/S.E. Asian 1.196 (2.580)

White/Arabic/
North African -2.152 (2.998)

White/Caucasian/
European -2.551 (1.837)

-1.039 (0.457) 0.023 Hispanic/Latino 0.036

Not 0.715 (0.341)

-0.836 (0.447) 0.061 Centre <.001

-1.017 (0.459) 0.027 Weight -0.003 (0.009) 0.733

-1.043 (0.461) 0.024 Height 0.004 (0.013) 0.793

-1.043 (0.460) 0.023 BMI -0.018 (0.032) 0.569

-1.058 (0.458) 0.021 Educ. years -0.011 (0.032) 0.715

-0.828 (0.482) 0.086 Parents hist. 0.308

No -0.314 (0.308)

-0.768 (0.507) 0.130 Relatives hist. 0.556

No -0.290 (0.492)

-1.031 (0.460) 0.025 Time to diagnosis 0.160 (0.088) 0.069

-1.018 (0.459) 0.026 APOE copies 0.689

1 -0.399 (0.469)

2 -0.368 (0.473)

-1.019 (0.459) 0.026 APOE status 0.889

Negatives -0.037 (0.271)
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Estimated Effect Coefficient Estimate for
8mg RSG XR vs Placebo additional variables included
Estimate (s.e.) p-value Predictors Estimate (s.e.) p-value

-0.215 (0.497) 0.664 None - -

-0.238 (0.493) 0.630 Country <.001

HUN/POL/CZE/SUI 0.917 (0.591)

GRE/ESP/POR 1.513 (0.594)

USA/CAN 1.254 (0.511)

JPN 1.485 (0.597)

FRA 0.994 (0.594)

GER 0.481 (0.538)

ITA 1.098 (0.539)

AUT -1.325 (0.643)

-0.217 (0.498) 0.662 Age 0.009 (0.017) 0.596

-0.215 (0.497) 0.664 Gender 0.934

Male 0.022 (0.274)

-0.201 (0.492) 0.684 MMSE score -0.238 (0.049) <.001

-0.243 (0.496) 0.624 Race 0.439

American Indian/
Alaskan Native -2.711 (2.574)

Central/S. Asian -4.114 (3.016)

Asian/S.E. Asian 0.178 (3.602)

White/Arabic/
North African -4.083 (3.273)

White/Caucasian/
European -2.339 (2.282)

-0.254 (0.496) 0.608 Hispanic/Latino 0.013

Not 0.848 (0.342)

-0.230 (0.500) 0.645 Centre <.001

-0.197 (0.497) 0.692 Weight -0.017 (0.009) 0.055

-0.231 (0.498) 0.642 Height -0.001 (0.013) 0.922

-0.216 (0.497) 0.663 BMI -0.066 (0.031) 0.035

-0.191 (0.501) 0.702 Educ. years -0.035 (0.033) 0.285

-0.395 (0.523) 0.451 Parents hist. 0.241

No -0.361 (0.308)

-0.279 (0.550) 0.611 Relatives hist. 0.036

No -1.039 (0.496)

-0.258 (0.498) 0.603 Time to diagnosis 0.104 (0.085) 0.219

-0.225 (0.497) 0.650 APOE copies 0.416

1 0.288 (0.285)

2 0.503 (0.438)

-0.217 (0.497) 0.661 APOE status 0.219

Negatives -0.332 (0.270)
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